Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Interfacial friction in low flowrate vertical annular flow
International Nuclear Information System (INIS)
Kelly, J.M.; Freitas, R.L.
1993-01-01
During boil-off and reflood transients in nuclear reactors, the core liquid inventory and inlet flowrate are largely determined by the interfacial friction in the reactor core. For these transients, annular flow occurs at relatively modest liquid flowrates and at the low heat fluxes typical of decay heat conditions. The resulting low vapor Reynolds numbers, are out of the data range used to develop the generally accepted interfacial friction relations for annular flow. In addition, most existing annular flow data comes from air/liquid adiabatic experiments with fully developed flows. By contrast, in a reactor core, the flow is continuously developing along the heated length as the vapor flowrate increases and the flow regimes evolve from bubbly to annular flow. Indeed, the entire annular flow regime may exist only over tens of L/D's. Despite these limitations, many of the advanced reactor safety analysis codes employ the Wallis model for interfacial friction in annular flow. Our analyses of the conditions existing at the end-of-reflood in the PERICLES tests have indicated that the Wallis model seriously underestimates the interfacial shear for low vapor velocity cocurrent upflow. To extend the annular flow data base to diabatic low flowrate conditions, the DADINE tests were re-analyzed. In these tests, both pressure drop and local cross-section averaged void fractions were measured. Thus, both the wall and interfacial shear can be deduced. Based on the results of this analysis, a new correlation is proposed for interfacial friction in annular flow. (authors). 5 figs., 12 refs
Entrainment in vertical annular two-phase flow
International Nuclear Information System (INIS)
Sawant, Pravin; Ishii, Mamoru; Mori, Michitsugu
2009-01-01
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each of the experiments, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using a liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant et al. (2008a) for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts (1987). (author)
Pressure loss of the annular air-liquid flow in vertical tufes
International Nuclear Information System (INIS)
Schmal, M.; Cantalino, A.
1976-01-01
In this work the pressure loss of the annular air-liquid flow in vertical tubes has been determined. Correlations are presented for the frictional pressure drop. The dimensional analysis and the following fluid systems were used for this determination: air-water, air-alcohol solutions and air-water and surfactants [pt
Gas-liquid annular flow in vertical circular tubes with liquid penetrated in nucleus
International Nuclear Information System (INIS)
Nogueira, E.; Brum, N.C.L.; Cotta, R.M.
1990-01-01
A semi-analytical model is proposed for fully developed upward gas-liquid annular flow inside vertical circular tubes, by utilizing wall-known turbulence algebraic models for single-phase flows, within both streams, combined with empirical correlations for the gas-liquid interface friction factor. Direct integration of the associated momentum equations provide the velocity distribution for each phase, as well as overall quantities of practical interest such as liquid film thickness and pressure gradient. The effects of liquid droplets entrainment in the gas is specialized empirical correlations. Extensive comparisons with experimental results are made in order to demonstrate the consistency of the proposed model. (author)
Experimental study of interfacial wave on a liquid film in vertical annular flow
International Nuclear Information System (INIS)
Hazuku, T.; Fukamachi, N.; Takamasa, T.; Matsumoto, Y.
2003-01-01
In this study, a precise database of microscopic interfacial wave-structure for annular flow developing in a vertical pipe was obtained using a new measuring technique with a laser focus displacement meter. Adiabatic upward annular air-water flow experiments were conducted using a 3-m-long, 11- mm-ID pipe. Measurements of interfacial waves were conducted at 21 axial locations, spaced 110 mm apart, in the pipe. The axial distances from the inlet (L) normalized by the pipe diameter (D) varied over L/D = 50 to 250. Data were collected for predetermined gas and liquid flow conditions and for Reynolds numbers ranging from Reg = 31,800 to 98,300 for the gas phase and Ref = 1,050 to 9,430 for the liquid phase. Using this new technique, we obtained such local properties as the minimum thickness, maximum thickness, and passing frequency of the waves. The results revealed that the maximum film thickness and passing frequency of disturbance waves decreased gradually, with some oscillations, as flow developed. The flow development, i.e., decreases of film thickness and passing frequency, existed until the pipe exit, which means that the flow might never reach a fully developed condition. Minimum thickness of the film decreased with flow development and with increasing gas flow rate. These results are discussed, taking into account the buffer layer calculated from Karman's three-layer model. Correlation is proposed for the minimum film thickness obtained in regard to interfacial shear stress and the Reynolds number of the liquid. This correlation expresses the minimum film thickness obtained from the experiment within a 5% deviation
Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow
Directory of Open Access Journals (Sweden)
Grazia Monni
2013-01-01
Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.
Wall pressure measurements of flooding in vertical countercurrent annular air–water flow
Energy Technology Data Exchange (ETDEWEB)
Choutapalli, I., Vierow, K.
2010-01-01
An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.
International Nuclear Information System (INIS)
Joong Hun Bae; Jung Yul Yoo; Haecheon Choi
2005-01-01
Full text of publication follows: The influence of variable fluid property on turbulent convective heat transfer is investigated using direct numerical simulations. We consider thermally-developing flows of air and supercritical-pressure CO 2 in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. Turbulence statistics show that the heat and momentum transport characteristics of variable-property flows are significantly different from those of constant-property flows. The difference is mainly caused by the spatial and temporal variations of fluid density. The non-uniform density distribution causes fluid particles to be accelerated either by expansion or buoyancy force, while the temporal density fluctuations change the heat and momentum transfer via transport of turbulent mass flux, ρ'u' i . Both effects of the spatial and temporal variations of density are shown to be important in the analysis of turbulent convective heat transfer for supercritical-pressure fluids. For variable-property heated air flows, however, the effect of temporal density fluctuations can be neglected at low Mach number, which is in good accordance with the Morkovin's hypothesis. (authors)
Annular Flow Distribution test
Energy Technology Data Exchange (ETDEWEB)
Kielpinski, A.L. (ed.) (Westinghouse Savannah River Co., Aiken, SC (United States)); Childerson, M.T.; Knoll, K.E.; Manolescu, M.I.; Reed, M.J. (Babcock and Wilcox Co., Alliance, OH (United States). Research Center)
1990-12-01
This report documents the Babcock and Wilcox (B W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing hydraulic similarity'' between an instrumented fuel assembly with the BFI removed and a reference'' fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions.
Annular Flow Distribution test
International Nuclear Information System (INIS)
Kielpinski, A.L.; Childerson, M.T.; Knoll, K.E.; Manolescu, M.I.; Reed, M.J.
1990-12-01
This report documents the Babcock and Wilcox (B ampersand W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing ''hydraulic similarity'' between an instrumented fuel assembly with the BFI removed and a ''reference'' fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions
Instantaneous Optical Wall-Temperature of Vertical Two-Phase Annular Flow
Fehring, Brian; Livingston-Jha, Simon; Morse, Roman; Chan, Jason; Doherty, James; Brueggeman, Colby; Nellis, Gregory; Dressler, Kristofer; Berson, ArganthaëL.; Multiphase Flow Visualization; Analysis Laboratory at University of Wisconsin-Madison Team
2017-11-01
We present a non-invasive optical technique for measuring the instantaneous temperature at the inner wall of a flow duct. The technique is used to characterize a fully-developed vertical annular flow of R245fa refrigerant. The test section includes transparent heating windows made of glass coated with fluorine-doped tin-oxide. A 15 mW helium-neon laser is directed through a prism mounted on one of the glass windows and reflected off of the interface between the 150-micron-thick liquid film and the inside wall of the testing section window. The intensity of the laser light reflected at the liquid film-window interface depends on the index of refraction of liquid R245fa, which itself depends on the temperature of the fluid. The intensity of the reflected light is measured using a photodiode and calibrated to a light reflectance model based on the Fresnel equations and Snell's law. Instantaneous temperature data is combined with optical liquid film thickness measurements to calculate the local instantaneous heat transfer coefficient at the wall.
The transition from flooding to upwards cocurrent annular flow in a vertical pipe
International Nuclear Information System (INIS)
Wallis, G.B.
1962-02-01
The limits of countercurrent flow in a vertical pipe are related to the onset of cocurrent upwards annual flow. The results are confirmed by evidence from several sources and lead to the criterion v g =(0.8→0.9)p g -1/2 [D g (p f -p g )] 1/2 for the minimum gas superficial velocity which will support a liquid film in concurrent flow. (author)
Numerical and experimental study of disturbance wave development in vertical two-phase annular flow
Hewitt, Geoffrey; Yang, Junfeng; Zhao, Yujie; Markides, Christos; Matar, Omar
2013-11-01
The annular flow regime is characterized by the presence of a thin, wavy liquid film driven along the wall by the shear stress exerted by the gas phase. Under certain liquid film Reynolds numbers, large disturbance waves are observed to traverse the interface, whose length is typically on the order of 20 mm and whose height is typically on the order of 5 times the thickness of the thin (substrate) layer between the waves. Experimental wok has been conducted to study the disturbance wave onset by probing the local film thickness for different Reynolds numbers. It is observed the disturbance waves grow gradually from wavy initiation and form the ring-like structure. To predict the wavy flow field observed in the experiment, 3D CFD simulations are performed using different low Reynolds number turbulence models and Large Eddy Simulation. Modeling results confirm that there is recirculation within the waves, and that they as a packet of turbulence traveling over a laminar substrate film. We also predict the coalescence and the break-up of waves leading to liquid droplet entrainment into the gas core. Skolkovo Foundation, UNIHEAT project.
International Nuclear Information System (INIS)
Mori, Shoji; Fukano, Tohru
2003-01-01
If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss the influence of the flow obstacle on the occurrence of burnout downstream of the flow obstacle in boiling two-phase upward flow within a vertical annular channel. (author)
Adiabatic Steam-Water Annular Flow in an Annular Geometry
DEFF Research Database (Denmark)
Andersen, P. S.; Würtz, J.
1981-01-01
Experimental results for fully developed steam-water annular flow in annular geometries are presented. Rod and tube film flow rates and axial pressure gradients were measured for mass fluxes between 500 and 2000 kg/m2s, steam qualities between 20 and 60 per cent and pressures ranging from 3 to 9 ...
International Nuclear Information System (INIS)
Mori, Shoji; Tominaga, Akira; Fukano, Tohru
2007-01-01
If a flow obstacle, such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions, a spacer has a cooling effect, and under other conditions, the spacer causes dryout of the cooling water film on the heating surface. The burnout mechanism, which always occurs upstream of a spacer, however, remains unclear. In a previous paper [Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90], we reported that the disturbance wave has a significant effect on dryout and burnout occurrence and that a spacer greatly affects the behavior of the liquid film downstream of the spacer. In the present study, we examined in detail the influences of a spacer on the heat transfer and film thickness characteristics downstream of the spacer by considering the result in steam-water and air-water systems. The main results are summarized as follows: (1)The spacer averages the liquid film in the disturbance wave flow. As a result, dryout tends not to occur downstream of the spacer. This means that large temperature increases do not occur there. However, traces of disturbance waves remain, even if the disturbance waves are averaged by the spacer. (2)There is a high probability that the location at which burnout occurs is upstream of the downstream spacer, irrespective of the spacer spacing. (3)The newly proposed burnout occurrence model can explain the phenomena that burnout does occur upstream of the downstream spacer, even if the liquid film thickness t Fm is approximately the same before and behind the spacer
Annular Flow Distribution test. Final report
Energy Technology Data Exchange (ETDEWEB)
Kielpinski, A.L. [ed.] [Westinghouse Savannah River Co., Aiken, SC (United States); Childerson, M.T.; Knoll, K.E.; Manolescu, M.I.; Reed, M.J. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center
1990-12-01
This report documents the Babcock and Wilcox (B&W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing ``hydraulic similarity`` between an instrumented fuel assembly with the BFI removed and a ``reference`` fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions.
Energy Technology Data Exchange (ETDEWEB)
Mori, S.; Fukano, T. E-mail: fukanot@mech.kyushu-u.ac.jp
2003-10-01
When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases, the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper, we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow. The results are summarized as follows: - When the heat flux approaches the burnout condition, the wall temperature on the heating tube fluctuates with a large amplitude. And once the wall temperature exceeds the Leidenfrost temperature, the burnout occurs without exception. - The trigger of dryout of the water film which causes the burnout is not the nucleate boiling but the evaporation of the base film between disturbance waves. - The burnout never occurs at the downstream side of the spacer. This is because the dryout area downstream of the spacer is rewetted easily by the disturbance waves.
International Nuclear Information System (INIS)
Mori, S.; Fukano, T.
2003-01-01
When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases, the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper, we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow. The results are summarized as follows: - When the heat flux approaches the burnout condition, the wall temperature on the heating tube fluctuates with a large amplitude. And once the wall temperature exceeds the Leidenfrost temperature, the burnout occurs without exception. - The trigger of dryout of the water film which causes the burnout is not the nucleate boiling but the evaporation of the base film between disturbance waves. - The burnout never occurs at the downstream side of the spacer. This is because the dryout area downstream of the spacer is rewetted easily by the disturbance waves
International Nuclear Information System (INIS)
Mori, Shoji; Fukano, Tohru
2002-01-01
If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)
Annular flow film characteristics in variable gravity.
MacGillivray, Ryan M; Gabriel, Kamiel S
2002-10-01
Annular flow is a frequently occurring flow regime in many industrial applications. The need for a better understanding of this flow regime is driven by the desire to improve the design of many terrestrial and space systems. Annular two-phase flow occurs in the mining and transportation of oil and natural gas, petrochemical processes, and boilers and condensers in heating and refrigeration systems. The flow regime is also anticipated during the refueling of space vehicles, and thermal management systems for space use. Annular flow is mainly inertia driven with little effect of buoyancy. However, the study of this flow regime is still desirable in a microgravity environment. The influence of gravity can create an unstable, chaotic film. The absence of gravity, therefore, allows for a more stable and axisymmetric film. Such conditions allow for the film characteristics to be easily studied at low gas flow rates. Previous studies conducted by the Microgravity Research Group dealt with varying the gas or liquid mass fluxes at a reduced gravitational acceleration.(1,2) The study described here continues this work by examining the effect of changing the gravitational acceleration (hypergravity) on the film characteristics. In particular, the film thickness and the associated pressure drops are examined. The film thickness was measured using a pair of two-wire conductance probes. Experimental data was collected over a range of annular flow set points by changing the liquid and gas mass flow rates, the liquid-to-gas density ratio and the gravitational acceleration. The liquid-to-gas density ratio was varied by collecting data with helium-water and air-water at the same flow rates. The gravitational effect was examined by collecting data during the microgravity and pull-up (hypergravity) portions of the parabolic flights.
International Nuclear Information System (INIS)
Mori, Shoji; Fukano, Tohru
2006-01-01
If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear. In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail
CFD simulation of slurry flow in annular pipelines
Sultan, Rasel A.; Rahman, M. A.; Rushd, S.; Zendehboudi, S.
2017-12-01
Three-dimensional CFD modeling of two-phase slurry flows is demonstrated in this paper. The flow domain consists of a vertically oriented annular pipe with outer and inner diameter of 0.125 m and 0.025 m, respectively. A mixture velocity range of 0.0738-0.197 m/s and overall volumetric concentration range of 0.8%-1.8% with 0.23 mm grain size (dp) are used for the simulation. Eulerian model with Reynolds Stress Model (RSM) for turbulence closure is adopted to analyze the monodispersed sand particles of varying granular diameters. The objective of this work is to study the slurry flow using CFD simulation and validating the simulation with experimental studies available in the literature. The simulated pressure losses are found to be in good agreement with experimental results at different conditions. Pressure drop per meter or pressure gradient increases with flow velocity of mixture but after a peak point pressure gradient decreases with the increasing velocity. These phenomena in vertical annular flow and its reasons are described in this paper. Effects of efflux solid concentration of slurry on pressure gradient is also studied.
Directory of Open Access Journals (Sweden)
Sharf Abdusalam M.
2014-03-01
Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.
Hydrodynamics of annular-dispersed flow
International Nuclear Information System (INIS)
Ishii, M.; Kataoka, I.
1982-01-01
The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data
Slug to annular flow transition during boiloff in a rod bundle under high-pressure conditions
International Nuclear Information System (INIS)
Osakabe, Masahiro; Koizumi, Yasuo; Yonomoto, Taisuke; Kumamaru, Hiroshige; Tasaka, Kanji
1986-01-01
High-pressure boiloff experiments in a wide range of bundle powers by using the Two-Phase Flow Test Facility (TPTF) were conducted. Two kinds of boiloff patterns were observed in these experiments. One is the boiloff pattern in a low bundle power, in which the dryout points of rods locate at a certain elevation in the bundle because the mixture level controls the dryout points. The other is the boiloff pattern in a high bundle power, in which the clear mixture level can not be observed and the dryout points of rods locate in a wide range of vertical directions. The vertical scatter of the dryout points is considered to be due to the break of the thin water film on the heater rods under the annular flow pattern. A simple model to predict the slug to annular flow transition in the rod bundle is proposed. In the model, the slug to annular flow transition takes place when the interferences of the water films on the neighboring rods cease. The model appeares to give good predictions of the previous flow transition experiment conducted in a rod bundle. The slug-annular transition below the dryout points was predicted with the present model in the high power boiloff experiments of TPTF. No slug-annular transition below the dryout points is predicted with the present model in the low power boiloff experiments. (orig.)
Displacement of one Newtonian fluid by another: density effects in axial annular flow
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole
1997-01-01
The arbitrary Lagrange-Euler (ALE) finite elementtechnique is used to simulate 3D displacement oftwo immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers....... Comparison with a simple theory for drainage of thin films is performed. It is found that recirculations deform the fluid-fluidinterface significantly in situations dominated by buoyancy forces. Also, a deviation from the concentric annular geometry is shown to induce azimuthal transport of fluid. Finally......, the efficiency of the displacement is analysed for various flow situations....
Numerical study of double-diffusive convection in a vertical annular enclosure with a baffle
Pushpa, B. V.; Prasanna, B. M. R.; Younghae, Do; Sankar, M.
2017-10-01
This paper numerically examines the influence of a circular thin baffle on thermosolutal convection in a vertical annular enclosure. The inner and outer cylindrical walls, and the baffle are retained with different temperatures and concentrations, while the upper and lower boundaries are kept at adiabatic and impermeable. The model equations are solved using an implicit finite difference scheme consisting of ADI and SLOR methods. Numerical simulations are performed to understand the size and position effects of the baffle on the thermosolutal convection and are successfully captured through our results. It has been observed that the baffle size and location has very important role in controlling the thermosolutal convective flow and the corresponding heat and mass transport characteristics. Further, our results are in good agreement with the available benchmark results for limiting cases.
Adjoint Optimisation of the Turbulent Flow in an Annular Diffuser
DEFF Research Database (Denmark)
Gotfredsen, Erik; Agular Knudsen, Christian; Kunoy, Jens Dahl
2017-01-01
In the present study, a numerical optimisation of guide vanes in an annular diffuser, is performed. The optimisation is preformed for the purpose of improving the following two parameters simultaneously; the first parameter is the uniformity perpen-dicular to the flow direction, a 1/3 diameter do...
International Nuclear Information System (INIS)
Qin Wei; Dai Youyuan; Wang Jiading
1994-01-01
Annular pulsed extraction column can successfully provide large throughput and can be made critically safe for fuel reprocessing. This investigation is to study the two phase flow characteristics in annular pulsed extraction column with four different annular width. 30% TBP (in kerosene)-water is used (water as continuous phase). Results show that modified Pratt correlation is valid under the experimental operation conditions for the annular pulsed extraction column. The characteristic velocity U K decreased with the increase of energy input and increased with the increase of the ratio of annular width to column diameter. Flooding velocity correlation is suggested. The deviation of the calculated values from the experimental data is within +20% for four annular width in a pulsed extraction column
A void fraction model for annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Tandon, T.N.; Gupta, C.P.; Varma, H.K.
1985-01-01
An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.
Hydrodynamics of adiabatic inverted annular flow: an experimental study
International Nuclear Information System (INIS)
De Jarlais, G.; Ishii, M.
1983-01-01
For low-quality film boiling in tubes or rod bundles, the flow pattern may consist of a liquid jet-like core surrounded by a vapor annulus, i.e., inverted annular flow. The stability, shape, and break-up mechanisms of this liquid core must be understood in order to model correctly this regime and to develop appropriate interfacial transfer correlations. This paper reports on a study in which inverted annular flow was simulated in an adiabatic system. Turbulent water jets, issuing downward from long-aspect nozzles were enclosed within cocurrent gas annuli. Jet-core diameter and velocity, and gas-annulus diameter, velocity, and species were varied, yielding liquid Reynolds numbers up to 33,000, void fractions from 0.29 to 0.95, and relative velocities from near zero to over 80 m/s. Jet-core break-up lengths and secondarily, core break-up mechanisms, were observed visually, using strobe lighting
Modelling of Churn-Annular foam flows
Westende, J.M.C. van 't; Shoeibi Omrani, P.; Vercauteren, F.F.; Nennie, E.D.
2016-01-01
Foam assisted lift is a deliquification method in the oil and gas industry, which aims to prevent or postpone countercurrent gas-liquid flow in maturing gas wells or to assist in removing downhole accumulated liquids. According to Nimwegen, who performed experiments with foam flows, foam
Flow of viscoplastic fluids in eccentric annular geometries
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole
1992-01-01
A classification of flowfields for the flow of a Bingham fluid in general eccentric annular geometries is presented. Simple arguments show that a singularity can exist in the stress gradient on boundaries between zones with yielded and un-yielded fluid respectively. A Finite Element code is used...... to verify this property of the Bingham fluid. An analytical solution for the flowfield in case of small eccentricities is derived....
Numerical simulation of random stresses on an annular turbulent flow
International Nuclear Information System (INIS)
Marti-Moreno, Marta
2000-01-01
The flow along a circular cylinder may induce structural vibrations. For the predictive analysis of such vibrations, the turbulent forcing spectrum needs to be characterized. The aim of this work is to study the turbulent fluid forces acting on a single tube in axial flow. More precisely we have performed numerical simulations of an annular flow. These simulations were carried out on a cylindrical staggered mesh by a finite difference method. We consider turbulent flow with Reynolds number up to 10 6 . The Large Eddy Simulation Method has been used. A survey of existent experiments showed that hydraulic diameter acts as an important parameter. We first showed the accuracy of the numerical code by reproducing the experiments of Mulcahy. The agreement between pressure spectra from computations and from experiments is good. Then, we applied this code to simulate new numerical experiments varying the hydraulic diameter and the flow velocity. (author) [fr
Numerical Simulation of Barite Sag in Pipe and Annular Flow
Directory of Open Access Journals (Sweden)
Patrick Kabanda
2017-01-01
Full Text Available With the ever increasing global energy demand and diminishing petroleum reserves, current advances in drilling technology have resulted in numerous directional wells being drilled as operators strive to offset the ever-rising operating costs. In as much as deviated-well drilling allows drillers to exploit reservoir potential by penetrating the pay zone in a horizontal, rather than vertical, fashion, it also presents conditions under which the weighting agents can settle out of suspension. The present work is categorized into two parts. In the first part, governing equations were built inside a two-dimensional horizontal pipe geometry and the finite element method utilized to solve the equation-sets. In the second part, governing equations were built inside a three-dimensional horizontal annular geometry and the finite volume method utilized to solve the equation-sets. The results of the first part of the simulation are the solid concentration, mixture viscosity, and a prediction of the barite bed characteristics. For the second part, simulation results show that the highest occurrence of barite sag is at low annular velocities, nonrotating drill pipe, and eccentric drill pipe. The CFD approach in this study can be utilized as a research study tool in understanding and managing the barite sag problem.
Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment
Keshock, Edward G.; Lin, Chin S.
1996-01-01
A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.
Interfacial shear modeling in two-phase annular flow
International Nuclear Information System (INIS)
Kumar, R.; Edwards, D.P.
1996-07-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment
Ooms, G.; Vuik, C.; Poesio, P.
2007-01-01
A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference
Flow Characteristics and Sizing of Annular Seat Valves for Digital Displacement Machines
DEFF Research Database (Denmark)
Nørgård, Christian; Bech, Michael Møller; Andersen, Torben O.
2018-01-01
This paper investigates the steady-state flow characteristics and power losses of annular seat valves for digital displacement machines. Annular seat valves are promising candidates for active check-valves used in digital displacement fluid power machinery which excels in efficiency in a broad op...
A Unique Facility for the Study of Transient Single-Species Annular Flow Near Total Film Evaporation
Morse, Roman; Kris Dressler Team; Brian Fehring Team; James Doherty Team; Simon Livingston-Jha Team; Arganthal Berson Team
2017-11-01
A new facility was built for the study of transient effects in two-phase vertical annular flow near dry out. The facility uses two water/glycol loops and two 10 kW heat pumps to vaporize and condense the working fluid in the annular flow experiment, R-245fa. The annular flow is created by mixing a steady flow of slightly superheated vapor refrigerant with a steady flow of subcooled liquid refrigerant in a junction specifically designed to minimize droplet entrainment. In a separate tank, saturated refrigerant is heated to generate additional vapor to add to the steady state vapor to create transient conditions. Trains of vapor pulses can be created with controlled amplitude and frequency. The effects of the transient flow on dry out are characterized in a test section 110 diameters downstream of the vapor-liquid mixing junction. The test section consists of 14 transparent windows, which are coated with conductive fluorine-doped tin oxide. Current is passed through each of the windows, providing up to 1.4 kW of additional heating power to create film evaporation, or dry out conditions. The transparent windows also allow for simultaneous laser-based film-thickness and wall-temperature measurements.
Fluid-structure coupling between a vibrating cylinder and a narrow annular flow
International Nuclear Information System (INIS)
Perotin, L.
1994-01-01
This paper presents an analytical investigation of the fluidelastic coupling between an axial annular flow and a flexible vibrating axisymmetrical structure. The model presented is suited to single-phase, incompressible, viscous fluids and to annular flows of variable cross-section, axially symmetrical when the structure is motionless.An experimental validation of this model is presented at the end of the paper: the results obtained with the numerical model are compared with experimental data for an oscillating cylinder free to vibrate under the effect of a variable-cross-section annular flow. ((orig.))
Sayar, Ersin; Sari, Ugurcan
2017-04-01
Experimental evaluation of the heat transfer in oscillating flow under the constant heat flux and constant amplitude fluid displacement conditions is presented for a vertical annular flow through a stainless steel wool porous media. The analysis is carried out for two different heat fluxes and for five different frequencies. The data is acquired from the measurements both in the initial transient period and in the pseudo-steady (cyclic) period by the system. The physical and mathematical behavior of the resulting Nusselt numbers are analyzed, according to data acquired from the experiments and in accordance with the results of the Buckingham Pi theorem. A cycle and space averaged Nusselt number correlation is suggested as a function of kinetic Reynolds number for oscillating flows. The suggested correlation is useful in predicting heat transfer from oscillating flows through highly porous and permeable solid media at low actuation frequencies and at low heat fluxes applied in the wall. The validity of the Nusselt numbers acquired by correlation is discussed using experimental Nusselt numbers for the selected kinetic Reynolds number interval. The present investigation has possible applications in moderate sized wicked heat pipes, solid matrix compact heat exchangers compromising of metallic foams, filtration equipment, and steam generators.
Study of development of disturbance waves in annular gas-liquid flow
Cherdantsev, Andrey V.; Cherdantsev, Mikhail V.; Isaenkov, Sergey V.; Markovich, Dmitriy M.
2017-09-01
Downstream development of disturbance waves properties in annular regime of gas - liquid flow was conducted in adiabatic air-water downwards flow in a vertical pipe with inner diameter of 11.7 mm. The measurements were conducted using brightness-based laser-induced fluorescence technique. Instantaneous distributions of local thickness of liquid film along one longitudinal section of the duct over the first 45 cm from the inlet were obtained with sampling frequency of 10 kHz. Based on these spatiotemporal plots, dependence of local average velocity of disturbance waves on downstream distance was obtained for a wide range of gas and liquid flow rates. Three main stages of flow development were identified: a stage prior to formation of disturbance waves, a stage of constant acceleration of disturbance waves and a stage of deceleration nearly compensating the initial acceleration. Transitions to both second and third stages occur closer to the inlet at higher gas velocities and lower liquid flow rates. The initial acceleration is defined by the effect of the gas shear; it grows in parabolic manner with superficial gas velocity and shows weak dependence on liquid flow rate. The deceleration is supposed to occur due to entrainment of liquid from disturbance waves.
Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle
International Nuclear Information System (INIS)
Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee
2012-01-01
In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application
Analysis of the pressure fields in a swirling annular jet flow
Perçin, M.; Vanierschot, M.; van Oudheusden, B.W.
2017-01-01
In this paper, we investigate the flow structures and pressure fields of a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved tomographic particle image velocimetry measurements, which enable the reconstruction of the three-dimensional
Experimental investigation of three-dimensional flow structures in annular swirling jets
Percin, M.; Vanierschot, M.; Van Oudheusden, B.W.
2015-01-01
Annular jet flows are of practical interest in view of their occurrence in many industrial applications in the context of bluff-body combustors [1]. They feature different complex flow characteristics despite their simple geometry: a central recirculation zone (CRZ) as a result of flow separation
Double helix vortex breakdown in a turbulent swirling annular jet flow
Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.
2018-01-01
In this paper, we report on the structure and dynamics of double helix vortex breakdown in a turbulent annular swirling jet. Double helix breakdown has been reported previously for the laminar flow regime, but this structure has rarely been observed in turbulent flow. The flow field is
Axial annular flow of power-law fluids - applicability of the limiting cases
Czech Academy of Sciences Publication Activity Database
Filip, Petr; David, Jiří
2007-01-01
Roč. 52, č. 4 (2007), s. 365-371 ISSN 0001-7043 R&D Projects: GA ČR GA103/06/1033 Institutional research plan: CEZ:AV0Z20600510 Keywords : Concentric annuli * Poiseuile flow * annular flow * power- law fluids * flow rate * pressure drop Subject RIV: BK - Fluid Dynamics
Hydrodynamic stability of inverted annular flow in an adiabatic simulation. [PWR; BWR
Energy Technology Data Exchange (ETDEWEB)
De Jarlais, G.; Ishii, M.; Linehan, J.
1983-01-01
In experiments, inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from long aspect nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, break-up mode, and dispersed-core droplet sizes were recorded at approximately 750 data points. Inverted annular flow was observed to develop into inverted slug flow at low relative velocities, and into dispersed droplet flow at high relative velocities. For both of the above transitions from inverted annular flow, a correlation for core jet length was developed by extending work done on free liquid jets to include this new, coaxial, jet disintegration phenomenon. The result, showing length dependence upon diameter, jet Reynolds number, jet Weber number, void fraction, and gas Weber number, correlates the data well, especially at moderate-to-large relative velocities.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Haibin, E-mail: hb-zhang@xjtu.edu.cn [School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom); Hewitt, G.F., E-mail: g.hewitt@imperial.ac.uk [Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom)
2016-08-15
Highlights: • A phenomenological model to predict the CHF for flows in annuli is described. • New correlations of droplet entrainment and deposition are used. • The present model has good predictive capability in predicting CHF in annuli. - Abstract: In this paper, we present a phenomenological model to predict the CHF (critical heat flux) for upward annular flow in heated vertical annuli. In present model, a new set of correlations of droplet deposition and entrainment in annuli was used which were verified by comparison with the data of Moeck (1970) for developing liquid films in adiabatic annuli. In the results presented here, these new correlations have been used to predict 2249 independent data on critical heat flux (CHF) obtained both regarding internal heating of the rod as well as simultaneous heating of the rod and the outer tube in six heated vertical annuli under various mass flow rate, pressure and inlet quality and where the conditions were such that (as is most common) the CHF condition occurred in the annular flow regime. The comparisons between the calculated and measured CHFs showed that the present model has good predictive capability in predicting CHF.
Interfacial shear stress and hold-up in an air-water annular two-phase flow
International Nuclear Information System (INIS)
Fukano, T.; Ousaka, A.; Kawakami, Y.; Tominaga, A.
1991-01-01
This paper reports on an experimental investigation that was made into hold-up, frictional pressure drop and interfacial shear stress of an air-water two-phase annular flow in horizontal and vertical up- and downward flows to make clear the effects of tube diameter and flow direction on them. The tube diameters examined are 10mm, 16mm and 26mm. Both the hold-up and the pressure drop considerably changed with time. Especially, the amplitude of the variation of the hold-up was quite larger in comparison with its averaged value in the cause of disturbance wave flow. for the time averaged hold-up and interfacial friction factor, we got new correlations, by which we can estimate them within an accuracy of ±20% and ±30%, respectively, independent of the flow direction and the tube diameter
Energy Technology Data Exchange (ETDEWEB)
Balcilar, Muhammet; Dalkilic, Ahmet Selim; Bolat, Berna [Yildiz Technical University, Istanbul (Turkmenistan); Wongwises, Somchai [King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)
2011-10-15
The heat transfer characteristics of R134a during downward condensation are investigated experimentally and numerically. While the convective heat transfer coefficient, two-phase multiplier and frictional pressure drop are considered to be the significant variables as output for the analysis, inputs of the computational numerical techniques include the important two-phase flow parameters such as equivalent Reynolds number, Prandtl number, Bond number, Froude number, Lockhart and Martinelli number. Genetic algorithm technique (GA), unconstrained nonlinear minimization algorithm-Nelder-Mead method (NM) and non-linear least squares error method (NLS) are applied for the optimization of these significant variables in this study. Regression analysis gave convincing correlations on the prediction of condensation heat transfer characteristics using {+-}30% deviation band for practical applications. The most suitable coefficients of the proposed correlations are depicted to be compatible with the large number of experimental data by means of the computational numerical methods. Validation process of the proposed correlations is accomplished by means of the comparison between the various correlations reported in the literature.
Hydraulic study of drilling fluid flow in circular and annular tubes
Energy Technology Data Exchange (ETDEWEB)
Scheid, C.M.; Calcada, L.A.; Braga, E.R.; Paraiso, E.C.H. [Universidade Federal Rural do Rio de Janeiro (PPGEQ/UFRRJ), Seropedica, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Dept. de Engenharia Qumica], E-mail: calcada@ufrrj.br; Martins, A. L. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas
2011-10-15
This study investigates the drilling fluid flow behavior of two water-based drilling fluids in circular and annular tubes. The study has four main objectives: 1) to evaluate correlations between the Power Law and the Casson rheological models, 2) to characterize the flow behavior, 3) to evaluate five hydraulic-diameter equations, and 4) to evaluate the correlations of five turbulent flow-friction factors. The experimental fluid flow loop consisted of one positive displacement pump of 25 HP connected to a 500-liter tank agitated by a 3-HP mixer. The fluids passed through six meters long tubes, arranged in three horizontal rows with independent inlets and outlets. The circular tubes had a 1 inch diameter and were configured as two concentric annular tubes. Annular Tube I had an outer diameter of 1 1/4 inch and an inner diameter of 1/2 inch. Annular Tube II had an outer diameter of 2 inches and an inner diameter of 3/4 inch. The results show that, for the fluids in exam, correlations proposed in the literature were inaccurate as far as predicting hydraulic diameter, estimating pressure drop, and defining the flow regime. In general, the performance of those correlations depended on the fluid properties and on the system's geometry. Finally, literature parameters for some of the correlations were estimated for the two drilling fluids studied. These estimations improved the predictive capacity of calculating the friction factor for real drilling fluids applications for both circular and annular tubes. (author)
Non-Newtonian fluid flow in annular pipes and entropy generation ...
Indian Academy of Sciences (India)
Non-Newtonian fluid; third-grade fluid; variable viscosity; entropy; entropy generation number. 1. Introduction. Flow through annular pipes finds application in the process industry. In some cases, the fluid may consist of two phases such as coal particles–water mixture (coal slurries) and the numerical modelling of such flow ...
International Nuclear Information System (INIS)
Yoshida, Kenji; Miyabe, Masaya; Matsumoto, Tadayoshi; Kataoka, Isao; Ohmori, Shuichi; Mori, Michitsugu
2004-01-01
Experimental studies on turbulence structure and liquid film behavior in annular two-phase flow were carried out concerned with the steam injector systems for a next-generation nuclear reactor. In the steam injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design for high-performance steam injector system, it is very important to accumulate the fundamental data of thermo-hydro dynamic characteristics of annular flow in the steam injector. Especially, the turbulence modification in multi-phase flow due to the phase interaction is one of the most important phenomena and has attracted research attention. In this study, the liquid film behavior and the resultant turbulence modification due to the phase interaction were investigated. The behavior of the interfacial waves on liquid film flow such as the ripple or disturbance waves were observed to make clear the interfacial velocity and the special structure of the interfacial waves by using the high-speed video camera and the digital camera. The measurements for gas-phase velocity profiles and turbulent intensity in annular flow passing through the throat section were precisely performed to investigate quantitatively the turbulent modification in annular flow by using the constant temperature hot-wire anemometer. The measurements for liquid film thickness by the electrode needle method were also carried out. (author)
Structure of the gas-liquid annular two-phase flow in a nozzle section
International Nuclear Information System (INIS)
Yoshida, Kenji; Kataoka, Isao; Ohmori, Syuichi; Mori, Michitsugu
2006-01-01
Experimental studies on the flow behavior of gas-liquid annular two-phase flow passing through a nozzle section were carried out. This study is concerned with the central steam jet injector for a next generation nuclear reactor. In the central steam jet injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design and to establish the high-performance steam injector system, it is very important to accumulate the fundamental data of the thermo-hydro dynamic characteristics of annular flow passing through a nozzle section. On the other hand, the transient behavior of multiphase flow, in which the interactions between two-phases occur, is one of the most interesting scientific issues and has attracted research attention. In this study, the transient gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves. (author)
Flow Characteristics and Sizing of Annular Seat Valves for Digital Displacement Machines
Directory of Open Access Journals (Sweden)
Christian Nørgård
2018-01-01
Full Text Available This paper investigates the steady-state flow characteristics and power losses of annular seat valves for digital displacement machines. Annular seat valves are promising candidates for active check-valves used in digital displacement fluid power machinery which excels in efficiency in a broad operating range. To achieve high machine efficiency, the valve flow losses and the required electrical power needed for valve switching should be low. The annular valve plunger geometry, of a valve prototype developed for digital displacement machines, is parametrized by three parameters: stroke length, seat radius and seat width. The steady-state flow characteristics are analyzed using static axi-symmetric computational fluid dynamics. The pressure drops and flow forces are mapped in the valve design space for several different flow rates. The simulated results are compared against measurements using a valve prototype. Using the simulated maps to estimate the flow power losses and a simple generic model to estimate the electric power losses, both during digital displacement operation, optimal designs of annular seat valves, with respect to valve power losses, are derived under several different operating conditions.
Creation and deposition of entrained droplets in swirling annular-mist two-phase flows
International Nuclear Information System (INIS)
Akagawa, Koji; Sakaguchi, Tadaski; Ishida, Toshihisa; Fujii, Terushige
1976-01-01
The liquid film flowrate, entrainment, torque, and flow angle along a tube (40mm ID, 5m in length) in a non-swirling flow and in swirling downward annular-mist air-water flows, which were induced by a different swirler into the inlet of the test tube in each run, were measured. Firstly, an empirical equation for the mass transfer coefficient of entrained droplets due to the eddy diffusion and creation rate of entrained droplets in a non-swirling flow was obtained. Secondly, the film flowrate along a tube in a swirling flow was studied by one-dimensional analysis in relation to the intensity of swirl, using the mass transfer coefficient and creation rate obtained above. This led to a method of estimating the distribution of film flowrate in a swirling annular-mist flow
Energy Technology Data Exchange (ETDEWEB)
Trabold, T.A.; Kumar, R. [Lockheed Martin Corp., Schenectady, NY (United States)
1999-07-01
In Part 1, detailed measurements were made in a high pressure, adiabatic (boiled at the inlet) annular flow in a narrow, high aspect ratio duct using a gamma densitometer, hot-film anemometer and high-speed video photography. Measurements of void fraction, droplet frequency, velocity, drop size, and interfacial area concentration have been made to support the three field computational capability. An important aspect of this testing is the use of a modeling fluid (R-134a) in a vertical duct which permits visual access in annular flow. This modeling fluid accurately simulates the low liquid-to-vapor density ratio of steam-water flows at high pressures. These measurements have been taken in a narrow duct of hydraulic diameter 4.85 mm, and a cross-section aspect ratio of 22.5. However, the flow displays profiles of various shapes not only in the narrow dimension, but also in the width dimension. In particular, the shape of the droplet profiles depends on the entrained droplet flux from the edges in the vapor core. The average diameter from these profiles compare well with the models developed in the literature. Interfacial area concentration for these low density ratio flows is higher than the highest concentration reported for air-water flows. Video records show that along with the bow-shaped waves, three-dimensional {lambda}-shaped waves appear in annular flows for high flow rates. Part 2 outlines the development of a three-field modeling approach in annular flow and the predictive capability of an analysis code. Models have been developed here or adapted from the literature for the thin film near the wall as well as the droplets in the vapor core, and have been locally applied in a fully developed, two-phase adiabatic boiling annular flow in a duct heated at the inlet at high pressure. Numerical results have been obtained using these models that are required for the closure of the continuity and momentum equations. The two-dimensional predictions are compared with
Damping of cylindrical structures subject to annular flow
International Nuclear Information System (INIS)
Hobson, D.E.; Dolding, M.
1989-01-01
In previous reports theoretical methods have been described for estimating the aerodynamic forces acting on cylinders vibrating laterally when surrounded by an annulus carrying high velocity gas. For a certain restricted set of geometries it is possible to predict whether a particular structure is stable or unstable and to determine the level of aerodynamic damping positive or negative due to the presence of the gas. This report describes experimental work which validates the computer program in which the theoretical methods are embodied; in particular the damping, inertial and decentralising forces acting on a cylinder in an annulus are measured and compared with theory over a range of frequencies from 0 to 25 Hz, and of Reynolds numbers from zero to 10 4 . In addition a summary of simple relationships is provided which can be used to provide credible initial estimates of both the positive and negative damping of cylinders in a range of annular geometries. (author)
Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular PhotoreactorE. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai11U.S. EPA, National Risk Management Research LaboratorySustainable Technology Division,...
Annular flow of cement slurries; Escoamento anular de pastas de cimento
Energy Technology Data Exchange (ETDEWEB)
Silva, Maria das Gracas Pena; Martins, Andre Leibsohn; Oliveira, Antonio Augusto J. de [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao
1989-12-31
This paper considers the analysis of laminar, transitory and turbulent flow regimes of cement slurries of various compositions flowing in annular sections. It is an experimental study to evaluate the performance of dozens of equations found in the literature that reflect the rheological behavior of non-Newtonian fluids, the dimensioning of annular sections, the delimitation of the transitory zone and the estimative of friction losses in the turbulent flow regime. A large-scale physical simulator (SHS-Surface Hydraulic Simulator), was designed and constructed at the PETROBRAS Research Center in order to obtain flow parameters. A computer program capable of analysing and drawing conclusions from the behavior of non-Newtonian fluids flowing in different geometries and energetic conditions was also developed. These were considered as essential stages for the development of the project. (author) 17 refs., 9 figs., 18 tabs.
Studying laminar flows of power-law fluids in the annular channel with eccentricity
Zhigarev, V. A.; Neverov, A. L.; Guzei, D. V.; Pryazhnikov, M. I.
2017-09-01
The paper deals with numerical and experimental investigation of non-Newtonian flow of modeling drilling fluids in the annular channel. The Reynolds number was ranged from 100 to 1500. The parameters of the power-law model of drilling fluids were varied within the following ranges: n = 0.43-0.49, K = 0.22-0.89. The eccentricity was changed from 0 to 1. We have measured pressure drop in the annular channel and compared calculations with experimental data, achieving good agreement between calculations and experiment.
Fluidelastic response of a tube in eccentric annular flows
International Nuclear Information System (INIS)
Lin, W.H.; Wambsganss, M.W.; Jendrzejczyk, J.A.; Mulcahy, T.M.
1981-11-01
Experimental measurements are reported on the dynamic response of a circular cylindrical tube located concentrically and eccentrically in a circular water-flow channel. Acceleration components in two perpendicular directions are measured at the midpoint of the test element using a pair of accelerometers. The investigation includes determinations of natural frequencies, damping factors, and rms displacements, and the variations of the above dynamic quantities with eccentricity and mean axial flow velocity. The experimental data are processed into statistical forms, including power spectral density function and root-mean-square values. The results show the following: (1) the natural frequency of the tube shifts as the eccentricity or flow velocity increases, (2) the damping in flowing water is greater than that in stationary water and increases with increasing flow velocity and eccentricity, and (3) the rms displacement increases as the eccentricity and/or flow velocity increases
Hydrodynamics of adiabatic inverted annular flow: an experimental study. [PWR; BWR
Energy Technology Data Exchange (ETDEWEB)
De Jarlais, G.; Ishii, M.
1983-01-01
For low-quality film boiling in tubes or rod bundles, the flow pattern may consist of a liquid jet-like core surrounded by a vapor annulus, i.e., inverted annular flow. The stability, shape, and break-up mechanisms of this liquid core must be understood in order to model correctly this regime and to develop appropriate interfacial transfer correlations. This paper reports on a study in which inverted annular flow was simulated in an adiabatic system. Turbulent water jets, issuing downward from long-aspect nozzles were enclosed within cocurrent gas annuli. Jet-core diameter and velocity, and gas-annulus diameter, velocity, and species were varied, yielding liquid Reynolds numbers up to 33,000, void fractions from 0.29 to 0.95, and relative velocities from near zero to over 80 m/s. Jet-core break-up lengths and secondarily, core break-up mechanisms, were observed visually, using strobe lighting.
Flow and scour around vertical submerged structures
Indian Academy of Sciences (India)
A comprehensive discussion of the investigations on flow characteristics and local scour due to steady currents and waves around vertical submerged structures are presented, which comprises scour process, dimensional analysis, parameters influencing scour, temporal evolution of scour, flow field, flow visualization ...
Experimental Determination of Heat Transfer Coefficient in Two-phase Annular Flow
Dressler, Kristofer; Fehring, Brian; Morse, Roman; Livingston-Jha, Simon; Doherty, James; Chan, Jason; Brueggeman, Colby; Berson, Arganthael
2017-11-01
The goal of the presented work is to validate published mechanistic heat transfer models in two-phase annular flow under transient conditions. Annular flow occurs in many steam generation and refrigeration systems. Knowledge of the heat transfer coefficient (HTC) between the wall and the thin liquid film is critical to the design and safe operation of these systems. In heat exchangers with multiple parallel channels, thermal hydraulic instabilities often lead to unsteady flow conditions. The current study is performed in a facility capable of producing pulsed two-phase, single-species annular flow in a heated test section while simultaneously measuring local film thickness and wall temperature using non-intrusive optical techniques. Available correlations between the HTC and wall shear at steady state are compared to our measurements. The HTC can be derived from the known heating power and measured wall temperature, while wall shear is deduced from film thickness measurements. The validity of steady-state correlations under oscillating flow conditions is assessed by performing tests at a variety of pulse frequencies and amplitudes.
Control of the flow in the annular region of a shrouded cylinder with splitter plate
Directory of Open Access Journals (Sweden)
Ozkan Gokturk Memduh
2017-01-01
Full Text Available In the present study, the flow control with a splitter plate was studied considering the annular region of a shrouded cylinder. The effect of splitter plate angle, α which was defined according to the cylinder centreline is investigated experimentally in deep water using Particle image Velocimetry (PIV technique and flow visualization by dye injection method. The range of splitter plate angle was selected within 60°≤ α ≤180° with an increment of 30°. The porosity of the shroud which is a perforated cylinder was selected as β=0.7 in order to have larger fluid entrainment through the cylinder. The results were compared with the no-plate case and showed that the splitter plate located in the annular region of shrouded cylinders is effective on reducing the turbulence levels just behind the cylinder base, as well as the near wake of the perforated shroud.
Control of the flow in the annular region of a shrouded cylinder with splitter plate
Ozkan, Gokturk Memduh; Durhasan, Tahir; Pinar, Engin; Yenicun, Arda; Akilli, Huseyin; Sahin, Besir
In the present study, the flow control with a splitter plate was studied considering the annular region of a shrouded cylinder. The effect of splitter plate angle, α which was defined according to the cylinder centreline is investigated experimentally in deep water using Particle image Velocimetry (PIV) technique and flow visualization by dye injection method. The range of splitter plate angle was selected within 60°≤ α ≤180° with an increment of 30°. The porosity of the shroud which is a perforated cylinder was selected as β=0.7 in order to have larger fluid entrainment through the cylinder. The results were compared with the no-plate case and showed that the splitter plate located in the annular region of shrouded cylinders is effective on reducing the turbulence levels just behind the cylinder base, as well as the near wake of the perforated shroud.
International Nuclear Information System (INIS)
Bottoni, M.; Sengpiel, W.
1992-01-01
Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy, derived for a two-phase flow by volume averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration, bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities make the rigorously formulated terms useless for computational purposes, modelling of these terms is discussed. 3 figs., 15 refs
Trotsyuk, Anatoliy V.
2017-09-01
A new supersonic flow-type annular detonation combustor is designed in which steady oblique detonation waves in the channel are generated using a compression body in the form of a solid single-wound spiral with a constant pitch angle. A two-dimensional unsteady mathematical model of the reacting flow in this device is formulated. The flow dynamics at the start of the chamber operation and steady supersonic flow structures for a stoichiometric hydrogen-air flow with an inlet Mach number M0=5 are numerically investigated. Two-dimensional numerical simulation is carried out for different spiral angles and geometrical dimensions of the chamber. A bifurcation of steady flow structures with respect to the initial condition of the problem is observed.
Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe
International Nuclear Information System (INIS)
Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol
2015-01-01
Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by
On the nonlinear interfacial instability of rotating core-annular flow
Coward, Aidrian V.; Hall, Philip
1993-01-01
The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.
Characterization of Interfacial Waves and Pressure Drop in Horizontal Oil-Water Core-Annular Flows
Bhattacharya, Amitabh; Tripathi, Sumit; Singh, Ramesh; Tabor, Rico; Vinay, K. S.
2017-11-01
Core-Annular Flows (CAF) consist of a highly viscous fluid (e.g. oils, emulsions) being pumped through pipelines while being lubricated by a fluid of a much lower viscosity (e.g. water). In a series of experiments, we study CAF with the core fluid as oil. We find a clear scaling for the energy spectra of the interfacial waves with respect to the shear Reynolds number Rec of the fluid flow in the annulus. Specifically, we find that, at low values of Rec , the low wavenumber modes of the interface appear to dominate, while, at high values of Rec , the high wavenumber modes of the interface appear to dominate. Linear stability analysis of viscosity stratified flows appears to confirm this trend. The effective friction factor does not appear to change strongly with Rec , suggesting that the interfacial waves do not significantly change the effective shear stress felt by the core fluid. This weak dependence of the friction factor on Rec , along with a model for the holdup ratio, allows us to propose a very straightforward relationship between the pressure gradient and the flow rates of the core and annular fluids, which agrees with the experimental data. We thank Orica Limited (Australia) for funding the experiment via the IITB-Monash Research Academy.
Annular flow induced vibration associated with on-load refuelling of advanced gas cooled reactors
International Nuclear Information System (INIS)
Fox, M.J.H.; Hodson, D.E.; Parkin, M.W.
1987-01-01
On-load refuelling of Advanced Gas Cooled Reactors results in a long, slender, articulated fuel assembly being suspended within a fuel channel, up which flows the high density gaseous coolant. The gas flow in the fuel assembly-channel annulus can cause vibration of the fuel assembly. This paper reports on continuing studies of this phenomenon. In particular it outlines the latest findings on the excitation mechanism, flow instabilities in an annular diffuser; successful developments in finite element modelling of the fuel assembly vibration which now include flow effects and non linearities caused by fuel assembly-channel impact; and finally experimental demonstration of the beneficial effect of introducing friction dampers into the fuel assembly. (author)
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
Film Thickness Prediction in an Annular Two-Phase Flow around C-shaped Bend
Directory of Open Access Journals (Sweden)
P.M. Tkaczyk
2011-03-01
Full Text Available A finite volume method-based CFD model has been developed in the commercial code Star CD to simulate the annular gas-liquid flow through pipes and bends. The liquid film is solved explicitly by means of a modified Volume of Fluid (VOF method. The droplets are traced using a Lagrangian technique. The film to droplets (entrainment and droplets to film (stick, bounce, spread and splash interactions are taken into account using sub-models to complement the VOF model. A good agreement is found between the computed film thickness value and those cited in the literature.
Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.
Ferrás, L L; Afonso, A M; Alves, M A; Nóbrega, J M; Pinho, F T
2014-04-15
In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Wilson, R.J.; Jones, B.G.; Roy, R.P.
1980-02-01
An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.
Operation control of fluids pumping in curved pipes during annular flow: a numerical evaluation
Directory of Open Access Journals (Sweden)
T Andrade
2016-10-01
Full Text Available To generate projects which provide significant volume recovery from heavy oils reservoirs and improve existing projects, is important to develop new production and transport technologies, especially in the scenario of offshore fields. The core-flow technique is one of new technologies used in heavy oil transportation. This core-flow pattern is characterized by a water pellicle that is formed close or adjacent to the inner wall of the pipe, functioning as a lubricant. The oil flows in the center of the pipe causing a reduction in longitudinal pressure drop. In this sense, this work presents a numerical study of heavy oil annular flow (core-flow assisted by computational tool ANSYS CFX® Release 12.0. It was used a three-dimensional, transient and isothermal mathematical model considered by the mixture and turbulence - models to address the water-heavy oil two-phase flow, assuming laminar flow for oil phase and turbulent flow for water phase. Results of the pressure, velocity and volume fraction distributions of the phases and the pressure drop for different operation conditions are presented and evaluated. It was observed that the oil core flowing eccentrically in the pipe and stops of the water flux considerably increases the pressure drop in the pipe after the restart of the pump.
Dilute suspensions in annular shear flow under gravity: simulation and experiment
Directory of Open Access Journals (Sweden)
Schröer Kevin
2017-01-01
Full Text Available A dilute suspension in annular shear flow under gravity was simulated using multi-particle collision dynamics (MPC and compared to experimental data. The focus of the analysis is the local particle velocity and density distribution under the influence of the rotational and gravitational forces. The results are further supported by a deterministic approximation of a single-particle trajectory and OpenFOAM CFD estimations of the overcritical frequency range. Good qualitative agreement is observed for single-particle trajectories between the statistical mean of MPC simulations and the deterministic approximation. Wall contact and detachment however occur earlier in the MPC simulation, which can be explained by the inherent thermal noise of the method. The multi-particle system is investigated at the point of highest particle accumulation that is found at 2/3 of the particle revolution, starting from the top of the annular gap. The combination of shear flow and a slowly rotating volumetric force leads to strong local accumulation in this section that increases the particle volume fraction from overall 0.7% to 4.7% at the outer boundary. MPC simulations and experimental observations agree well in terms of particle distribution and a close to linear velocity profile in radial direction.
Study of the stability of natural convection in partially enclosed vertical annular space
International Nuclear Information System (INIS)
Njamkepo, S.N.
1983-11-01
This paper presents the study of the bidimensional-tridimensional flow transition, solving a system of coupled equations, dynamic and thermic, with the finite element method. The study of the stability of the bidimensional flow shows: the stabilizing effect of a big space thickness-space height ratio; the destabilizing effect of the Grashof number (constant ratio) [fr
Effects of grid spacer with mixing vane on entrainments and depositions in two-phase annular flows
Directory of Open Access Journals (Sweden)
Akimaro Kawahara
2015-06-01
Full Text Available The effects of mixing vanes (MVs attached to a grid spacer on the characteristics of air–water annular flows were experimentally investigated. To know the effects, a grid spacer with or without MV was inserted in a vertical circular pipe of 16-mm internal diameter. For three cases (i.e., no spacer, spacer without MV, and spacer with MV, the liquid film thickness, liquid entrainment fraction, and deposition rate were measured by the constant current method, single liquid film extraction method, and double liquid film extraction method, respectively. The MVs significantly promote the re-deposition of liquid droplets in the gas core flow into the liquid film on the channel walls. The deposition mass transfer coefficient is three times higher for the spacer with MV than for the spacer without MV, even for cases 0.3-m downstream from the spacer. The liquid film thickness becomes thicker upstream and downstream for the spacer with MV, compared with the thickness for the spacer without MV and for the case with no spacer.
Energy Technology Data Exchange (ETDEWEB)
Teixeira, Alex F.; Mendes, Jose Ricardo P.; Morooka, Celso K. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo; Estevam, Valdir [PETROBRAS, Rio de Janeiro, RJ (Brazil); Guilherme, Ivan R. [UNESP, Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas. Dept. de Estatistica, Matematica Aplicada e Computacao; Rigo, Jose Eduardo [Centro Federal de Educacao Tecnologica no Espirito Santo (CEFETES), Vitoria, ES (Brazil)
2004-07-01
In this paper the designs of a fuzzy controller for the VASPS (Vertical Annular Separation and Pumping System) liquid level and separation pressure control are presented, as well as a simulation of its work to evaluate the performance of the controller designed. The VASPS is a two-phase subsea separation and pumping system, which is made up of a separation vessel, where the mixture (liquid and gas) enters and suffers the separation process through three levels, the expansion chamber, the helix and the pool. The liquid inside the pool is taken to the platform using a pump that with a choke control the pool liquid level. The pool liquid level control is necessary because if the level exceeds the maximum value allowed, the liquid can invade the space occupied by the helix and hinder the separation process. An the other hand if the level is below the minimum allowed the pump can be damaged. The separation pressure control is important for operational security and efficiency issues, because when we keep the separation pressure near an optimum value we are maximizing its efficiency. With the controller and the simulator, many simulations of the work of system were made to get results that could be used to evaluate if the designed controller solved the problem and if its performance were satisfactory. After, a PID control system was designed to be used as comparison with the results obtained with the fuzzy controller, since the PID is widely used in the industrial environment. (author)
Characterization of interfacial waves and pressure drop in horizontal oil-water core-annular flows
Tripathi, Sumit; Tabor, Rico F.; Singh, Ramesh; Bhattacharya, Amitabh
2017-08-01
We study the transportation of highly viscous furnace-oil in a horizontal pipe as core-annular flow (CAF) using experiments. Pressure drop and high-speed images of the fully developed CAF are recorded for a wide range of flow rate combinations. The height profiles (with respect to the centerline of the pipe) of the upper and lower interfaces of the core are obtained using a high-speed camera and image analysis. Time series of the interface height are used to calculate the average holdup of the oil phase, speed of the interface, and the power spectra of the interface profile. We find that the ratio of the effective velocity of the annular fluid to the core velocity, α , shows a large scatter. Using the average value of this ratio (α =0.74 ) yields a good estimate of the measured holdup for the whole range of flow rate ratios, mainly due to the low sensitivity of the holdup ratio to the velocity ratio. Dimensional analysis implies that, if the thickness of the annular fluid is much smaller than the pipe radius, then, for the given range of parameters in our experiments, the non-dimensional interface shape, as well as the non-dimensional wall shear stress, can depend only on the shear Reynolds number and the velocity ratio. Our experimental data show that, for both lower and upper interfaces, the normalized power spectrum of the interface height has a strong dependence on the shear Reynolds number. Specifically, for low shear Reynolds numbers, interfacial modes with large wavelengths dominate, while, for large shear Reynolds numbers, interfacial modes with small wavelengths dominate. Normalized variance of the interface height is higher at lower shear Reynolds numbers and tends to a constant with increasing shear Reynolds number. Surprisingly, our experimental data also show that the effective wall shear stress is, to a large extent, proportional to the square of the core velocity. Using the implied scalings for the holdup ratio and wall shear stress, we can derive
Analysis of the pressure fields in a swirling annular jet flow
Percin, M.; Vanierschot, M.; Oudheusden, B. W. van
2017-12-01
In this paper, we investigate the flow structures and pressure fields of a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved tomographic particle image velocimetry measurements, which enable the reconstruction of the three-dimensional time-resolved pressure fields using the governing flow equations. Both time-averaged and instantaneous flow structures are discussed, including a characterization of the first- and second-order statistical moments. A Reynolds decomposition of the flow field shows that the time-averaged flow is axisymmetric with regions of high anisotropic Reynolds stresses. Two recirculation zones exist that are surrounded by regions of very intense mixing. Notwithstanding the axisymmetric nature of the time-averaged flow, a non-axisymmetric structure of the instantaneous flow is revealed, comprising a central vortex core which breaks up into a precessing vortex core. The winding sense of this helical structure is opposite to the swirl direction and it is wrapped around the vortex breakdown bubble. It precesses around the central axis of the flow at a frequency corresponding to a Strouhal number of 0.27. The precessing vortex core is associated with a low-pressure region along the central axis of the jet and the maximum pressure fluctuations occur upstream of the vortex breakdown location, where the azimuthal velocity component also reaches peak values as a result of the inward motion of the fluid and the conservation of angular momentum. The POD analysis of the pressure fields suggests that the precessing helical vortex formation is the dominant coherent structure in the instantaneous flow.
Heat transfer coefficient for flow boiling in an annular mini gap
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2016-01-01
Full Text Available The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface – fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two–phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.
Local parameters of air–water two-phase flow at a vertical T-junction
Energy Technology Data Exchange (ETDEWEB)
Monrós-Andreu, G., E-mail: gmonros@uji.es; Martínez-Cuenca, R., E-mail: rcuenca@uji.es; Torró, S., E-mail: torro@uji.es; Chiva, S., E-mail: schiva@uji.es
2017-02-15
Significant experimental work and modeling about vertical T-junction as a phase separator has been done for churn and annular flows, but a survey on the literature reveals a lack of experimental data regarding bubbly flow nor any phenomenological explanation to their behavior. The objective of this work is to extend the understanding of these junctions by obtaining complete datasets, i.e. of both gas and liquid, of the phase splitting process in bubbly flow conditions by means of conductivity needle probes, Laser Doppler anemometry and visual inspection. Measurements and observations of the phase split, as well as the vortex structure in a vertical T-junction with equal pipe diameters (52 mm inner diameter), are reported. Results suggest a relationship between the vortex structure and the efficiency of the junction as phase separator.
Double helix vortex breakdown in a turbulent swirling annular jet flow
Vanierschot, M.; Percin, M.; van Oudheusden, B. W.
2018-03-01
In this paper, we report on the structure and dynamics of double helix vortex breakdown in a turbulent annular swirling jet. Double helix breakdown has been reported previously for the laminar flow regime, but this structure has rarely been observed in turbulent flow. The flow field is investigated experimentally by means of time-resolved tomographic particle image velocimetry. Notwithstanding the axisymmetric nature of the time-averaged flow, analysis of the instantaneous three-dimensional (3D) vortical structures shows the existence of a vortex core along the central axis which breaks up into a double helix downstream. The winding sense of this double helix is opposite to the swirl direction (m =-2 ) and it is wrapped around a central vortex breakdown bubble. This structure is quite different from double helix breakdown found in laminar flows where the helix is formed in the wake of the bubble and not upstream. The double helix precesses around the central axis of the jet with a precessing frequency corresponding to a Strouhal number of 0.27.
Study on cocurrent downtake gas-liquid flow in a vertical channel
International Nuclear Information System (INIS)
Lozovetskij, V.V.
1978-01-01
Hydraulic resistance and liquid stall from the film surface at cocurrent film and gas downflow in vertical channel in measurement range of reynolds number from 100 to 1260 for the film and from 1.2x10 4 to 10 5 for gas are studied. For downflow two regimes are characteristic: purely annular, that is separate phase flow regime, and the regime of stall and carrying liquid droplets from the film surface, that is annular dispersed flow regime. The existence boundaries of both regimes are determined and criterial equations for pressure drop calculation are obtained. It is established experimentally that at sufficient range from the liquid input place on the working zone the established two-phase flow takes place. In their nucleus two areas can be singled out, which differ by the flow density values of stalled liquid: central, having the permanent flow density value and area adjacent to the film surface, the liquid in the combs of waves making a significant contribution to the flow density value. At equal flooding density with the relative gas speed increase, the flow density value of stalled liquid in the channel central part increase. A similar result also takes place at flooding density increase at permanent relative speed. Flooding density and relative speed increase leads to levelling stalled liquid distribution about the channel cross section
Annular flow in rod-bundle: Effect of spacer on disturbance waves
Energy Technology Data Exchange (ETDEWEB)
Pham, Son H.; Kunugi, Tomoaki
2016-08-01
A high-speed camera technique is used to study the effect of spacers on the disturbance waves present in annular two-phase flow within a rod-bundle geometry. Images obtained using a backlight configuration to visualize the spacer-wave interactions at the micro-scale resolution (in time and space) are discussed. This paper also presents additional images obtained using a reflected light configuration which provides new observations of the disturbance waves. These images show the separation effect caused by the spacer on the liquid film in which the size of generated liquid droplets can be controlled by the gas superficial velocity. Furthermore, the data confirm that the spacer breaks the circumferential coherent structures of the waves.
DEFF Research Database (Denmark)
Voigt, Andreas Jauernik; Ludiciani, Piero; Nielsen, Kenny Krogh
2016-01-01
This paper presents a first venture into quantifying stiffness and damping coefficients for turbomachinery seals in multiphase flow using Computational Fluid Dynamics (CFD). The study focusses on the simplest seal type: the smooth annular seal. The investigation is conducted for both wet-gas and ...
A theoretical analysis of vertical flow equilibrium
Energy Technology Data Exchange (ETDEWEB)
Yortsos, Y.C.
1992-01-01
The assumption of Vertical Flow Equilibrium (VFE) and of parallel flow conditions, in general, is often applied to the modeling of flow and displacement in natural porous media. However, the methodology for the development of the various models is rather intuitive, and no rigorous method is currently available. In this paper, we develop an asymptotic theory using as parameter the variable R{sub L} = (L/H){radical}(k{sub V})/(k{sub H}). It is rigorously shown that present models represent the leading order term of an asymptotic expansion with respect to 1/R{sub L}{sup 2}. Although this was numerically suspected, it is the first time that is is theoretically proved. Based on the general formulation, a series of models are subsequently obtained. In the absence of strong gravity effects, they generalize previous works by Zapata and Lake (1981), Yokoyama and Lake (1981) and Lake and Hirasaki (1981), on immiscible and miscible displacements. In the limit of gravity-segregated flow, we prove conditions for the fluids to be segregated and derive the Dupuit and Dietz (1953) approximations. Finally, we also discuss effects of capillarity and transverse dispersion.
UNSTEADY HEAT TRANSFER IN AN ANNULAR PIPE. PART II: SWIRLING LAMINAR FLOW
Directory of Open Access Journals (Sweden)
Kelvin Ho Choon Seng
2012-02-01
Full Text Available The heat transfer problem in magnetocaloric regenerators during magnetization has been described and investigated for convective heat transfer by means of axial flow in part I of this series. This work will focus on enhancing the unsteady heat transfer using swirling laminar flow generated using axial vanes. The governing parameters for this studyare, the D* ratio (Inner diameter/Outer diameter and the swirl number, S. The study is conducted using dimensional analysis and commercial CFD codes provided by ANSYS CFX. The hydrodynamics and the heat transfer of the model are compared with data from similar cases found in literature and is found to be in the vicinity of good agreement.Keywords- Annular ducts; unsteady heat transfer; magnetic refrigeration/cooling; swirling laminar flow; dimensional analysis.
Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.
Directory of Open Access Journals (Sweden)
Gunar Boye
2015-06-01
Full Text Available The axial heat transfer coefficient during flow boiling of n-hexane was measured using infrared thermography to determine the axial wall temperature in three geometrically similar annular gaps with different widths (s = 1.5 mm, s = 1 mm, s = 0.5 mm. During the design and evaluation process, the methods of statistical experimental design were applied. The following factors/parameters were varied: the heat flux q · = 30 − 190 kW / m 2 , the mass flux m · = 30 − 700 kg / m 2 s , the vapor quality x · = 0 . 2 − 0 . 7 , and the subcooled inlet temperature T U = 20 − 60 K . The test sections with gap widths of s = 1.5 mm and s = 1 mm had very similar heat transfer characteristics. The heat transfer coefficient increases significantly in the range of subcooled boiling, and after reaching a maximum at the transition to the saturated flow boiling, it drops almost monotonically with increasing vapor quality. With a gap width of 0.5 mm, however, the heat transfer coefficient in the range of saturated flow boiling first has a downward trend and then increases at higher vapor qualities. For each test section, two correlations between the heat transfer coefficient and the operating parameters have been created. The comparison also shows a clear trend of an increasing heat transfer coefficient with increasing heat flux for test sections s = 1.5 mm and s = 1.0 mm, but with increasing vapor quality, this trend is reversed for test section 0.5 mm.
Energy Technology Data Exchange (ETDEWEB)
Reinink, S.; Copping, A.; Kedare, S.; Hovell, K.; Yaras, M.I. [Carleton University, Ottawa (Canada)
2014-07-01
Experiments were conducted at supercritical pressures and temperatures on a vertically-oriented annular heating rod with a wire-wrap spacer using upward-flowing R134a to determine the effect of a wire-wrap spacer on heat transfer in proximity of the pseudocritical point. Measurements were taken at quasi-steady-state and pressure-transient conditions. During each instance of deteriorated heat transfer, the Nusselt number is greater than values predicted by the Dittus-Boelter correlation. Heat transfer during the pressure transients is observed to be insensitive to the time rate of change of the fluid pressure, which implies that the transience does not affect the instantaneous state of the heat-transfer process. (author)
Interactions of solitary waves and compression/expansion waves in core-annular flows
Maiden, Michelle; Anderson, Dalton; El, Gennady; Franco, Nevil; Hoefer, Mark
2017-11-01
The nonlinear hydrodynamics of an initial step leads to the formation of rarefaction waves and dispersive shock waves in dispersive media. Another hallmark of these media is the soliton, a localized traveling wave whose speed is amplitude dependent. Although compression/expansion waves and solitons have been well-studied individually, there has been no mathematical description of their interaction. In this talk, the interaction of solitons and shock/rarefaction waves for interfacial waves in viscous, miscible core-annular flows are modeled mathematically and explored experimentally. If the interior fluid is continuously injected, a deformable conduit forms whose interfacial dynamics are well-described by a scalar, dispersive nonlinear partial differential equation. The main focus is on interactions of solitons with dispersive shock waves and rarefaction waves. Theory predicts that a soliton can either be transmitted through or trapped by the extended hydrodynamic state. The notion of reciprocity is introduced whereby a soliton interacts with a shock wave in a reciprocal or dual fashion as with the rarefaction. Soliton reciprocity, trapping, and transmission are observed experimentally and are found to agree with the modulation theory and numerical simulations. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).
International Nuclear Information System (INIS)
Groshev, A.I.; Anisimov, V.V.; Kashcheev, V.M.; Khudasko, V.V.; Yur'ev, Yu.S.
1987-01-01
The effect of wall material on convective heat transfer of turbulent gas flow in an annular tube with account of longitudinal diffusion both in the wall and in the liquid is studied numerically. The conjugated problem is solved for P r =0.7 (Re=10 4 -10 6 ). Based on numerical calculations it is stated that thermal conductivity of the wall and gas essentially affects the degree of preliminary heating of liquid in the range of a non-heated section
Free Convective Flow of a Reacting Fluid between Vertical Porous ...
African Journals Online (AJOL)
Free Convective Flow of a Reacting Fluid between Vertical Porous Plates. ... written in dimensionless forms. The resulting second order equations are solved to obtain expressions for the velocity, temperature, mass transfer skin friction, and rate of heat transfer. Keywords: Convective flow, reacting fluid, vertical porous plates ...
International Nuclear Information System (INIS)
Staron, E.
1996-01-01
Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs
International Nuclear Information System (INIS)
Moon, S.K.; Chun, S.Y.; Choi, K.Y.; Yang, S.K.
2001-01-01
An experimental study on transient critical heat flux (CHF) under flow coast-down has been performed for water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady state CHF. The transient CHF experiments have been performed for three kinds of flow transient modes based on the coast-down data of the Kori 3/4 nuclear power plant reactor coolant pump. Most of the CHFs occurred in the annular-mist flow regime. Thus, it means that the possible CHF mechanism might be the liquid film dryout in the annular-mist flow regime. For flow transient mode with the smallest flow reduction rate, the time-to-CHF is the largest. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to-CHF becomes large as the heat flux decreases. Usually, the critical mass flux is large for slow flow reduction. There is a pressure effect on the ratio of the transient CHF data to steady state CHF data. Some conventional correlations show relatively better CHF prediction results for high system pressure, high quality and slow transient modes than for low system pressure, low quality and fast transient modes. (author)
International Nuclear Information System (INIS)
Wuertz, J.
1978-04-01
Measurements are presented of film flow rates, pressure gradients film thicknesses, wave frequencies and velocities, and burnout heat fluxes in one annular and two tubular geometries. The more than 250 experiments were performed with steam-water at 30 to 90 bar under both adiabatic and diabatic conditions. On the basis of these data a film-flow model for the prediction of burnout is set up. General film roughness and entrainment correlations are derived from the adiabatic, equilibrium data. The capability of the model is demonstrated by several comparisons between calculations and measurements. (author)
Model for definition of heat transfer coefficient in an annular two-phase flow
International Nuclear Information System (INIS)
Khun, J.
1976-01-01
Near-wall heat exchange in a vertical tube at high vapor velocity in a two-phase vapor and liquid flow is investigated. The flow divides inside the tube into a near-wall liquid film and a vapor nucleus containing liquid droplets, with the boundaries being uniform. The liquid film thickness determines the main resistance during heat transfer between the wall and vapor nucleus. The theoretical model presented is verified in water vaporization experiments, the R12 cooling agent and certain hydrocarbons. The loss of friction pressure is determined by the Lockart-Martinelli method. The approximately universal Carman velocity profile is used to evaluate the velocity in film, and basing on this, film thickness is determined. The parameter ranges were: Resub(vap)=10 4 -3x10 6 , Resub(liq.)=0.9-10. The theoretical model ensures good correlation with the experiment
Contribution to the study of helium two-phase vertical flow
International Nuclear Information System (INIS)
Augyrond, L.
1998-04-01
This work aims at a better understanding of the dynamics of helium two-phase flow in a vertical duct. The case of bubble flow is particularly investigated. The most descriptive parameter of two-phase flow is the void fraction. A sensor to measure this parameter was specially designed and calibrated, it is made of a radioactive source and a semiconductor detector. Sensors based on light attenuation were used to study the behaviour of this two-phase flow. The experimental set-up is described. The different flow types were photographed and video filmed. This visualization has allowed to measure the diameter of bubbles and to study their movements in the fluid. Bubble flow then churn and annular flows were observed but slug flow seems not to exist with helium. A modelling based on a Zuber model matches better the experimental results than a Levy type model. The detailed analysis of the signals given by the optical sensors has allowed to highlight a bubble appearance frequency directly linked to the flowrate. (A.C.)
Pilot scale annular plug flow photoreactor by UV/H2O2 for the decolorization of azo dye wastewater.
Shu, Hung-Yee; Chang, Ming-Chin
2005-10-17
A pilot scale annular plug flow photoreactor with thin gap size, which combines with UV irradiation and hydrogen peroxide, was employed to deal with colored dyeing wastewater treatment. In the experiment, a mono-azo dye acid orange 10 was the target compound. The experimental parameters such as flow rate, hydrogen peroxide dosage, UV input power, pH and dye initial concentrations in a pilot scale photoreactor with flow rate of 9.32 m3day(-1) were investigated. Ultimately, the degradation rates were calculated and compared with a 100-l batch reactor. In our plug flow photoreactor design, the degradation rate of acid orange 10 was 233 times higher than that of 100-l annular batch reactor with same UV light source. The residence time needed for 99% decolorizing of 100 l of 20 mgl(-1) acid orange 10 wastewater was 26.9 min for the thin gap plug flow reactor and was far shorter than that of batch reactor needed.
Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin
2018-02-01
The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.
Characterization of vertical mixing in oscillatory vegetated flows
Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.
2016-02-01
Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy-flow
Convectively driven flow past an infinite moving vertical cylinder with ...
Indian Academy of Sciences (India)
, free convective flow over an infinite moving vertical cylinder under combined buoyancy effects of heat and mass transfer with thermal and mass stratifications. Laplace transform technique is adopted for finding solutions for velocity, ...
Buddly, slug, and annular two-phase flow in tight-lattice subchannels
Energy Technology Data Exchange (ETDEWEB)
Prasser, Horst-Michael; Bolesch, Charistian; Cramer, Kerstin; Papadopoulos, Petros; Saxena, Abhishek; Zboray, Robert [ETH Zurich, Dept. of Mechanical and Process Engineering (D-MAVT), Zurich (Switzerland); Ito, Daisuke [Kyoto University, Research Reactor Institute, Osaka (Japan)
2016-08-15
An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring subchannels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of 16 × 64 measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.
Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels
Directory of Open Access Journals (Sweden)
Horst-Michael Prasser
2016-08-01
Full Text Available An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI, Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1 a vertical channel modeling a pair of neighboring subchannels; and (2 an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of 16 × 64 measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.
Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.
1994-01-01
In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.
Unsteady Viscous Flow Past an Impulsively Started Porous Vertical ...
African Journals Online (AJOL)
This paper presents a new numerical approach for solving unsteady two dimensional boundary layer flow past an infinite vertical porous surface with the flow generated by Newtonian heating and impulsive motion in the presence of viscous dissipation and temperature dependent viscosity. The viscosity of the fluid under ...
Heitz, Sylvain A
2016-03-16
The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region. © 2016 IOP Publishing Ltd.
Growth and Interaction of Sand Ripples Due to Steady Viscous Flow in an Annular Channel
Oshiro, Yuki; Sano, Osamu
2007-12-01
An experimental study is made on the pattern formation of a sand bed immersed in a viscous fluid between two concentric cylinders of finite depth; the channel width is sufficiently large as compared with the particle size. The upper boundary of the fluid is in contact with an annular ring made of transparent acrylic resin, which slides at a constant angular velocity, whereas other boundaries are at rest. New results on the onset and growth of sand ripples, the propagation and interaction of the ripples, and the long-term behavior for adjusting to a constant wavelength are presented.
A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap
Directory of Open Access Journals (Sweden)
Musiał Tomasz
2017-01-01
Full Text Available In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.
A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap
Musiał, Tomasz; Piasecka, Magdalena; Hożejowska, Sylwia
In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.
Magnetic and velocity fields MHD flow of a stretched vertical ...
African Journals Online (AJOL)
Analytical solutions for heat and mass transfer by laminar flow of Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously moving vertical permeable surface with buoyancy in the presence of a magnetic field and a first order chemical reaction are reported. The solutions for magnetic ...
MHD flow of a uniformly stretched vertical permeable membrane in ...
African Journals Online (AJOL)
Journal of the Nigerian Association of Mathematical Physics ... Abstract. We present a magneto - hydrodynamic flow of a uniformly stretched vertical permeable surface undergoing Arrhenius heat reaction. ... It is also established that maximum velocity occurs in the body of the fluid close to the surface and not the surface.
Unsteady MHD free convective flow past a vertical porous plate ...
African Journals Online (AJOL)
An attempt has been made to study the unsteady MHD free convective flow past a vertical porous plate immersed in a porous medium with Hall current, thermal diffusion and heat source. Analytical solution has been found depending on the physical parameters including the Hartmann number M, the Prandtl number Pr, the ...
Energy Technology Data Exchange (ETDEWEB)
Jiao, Bo; Yang, Dongyu [Department of Mechanical Engineering, Rongcheng Campus, Harbin University of Science and Technology, Rongcheng 264300, Shandong (China); Gan, Zhihua, E-mail: gan_zhihua@zju.edu.cn [Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou (China); Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou (China); National Quality Inspection Center of Refrigeration Equipment (Henan), Minquan (China)
2017-06-15
Highlights: • A parallel look-up table for the entrainment fraction at annular point was developed. • A correlation was given based on the selected database from 2006 CHF look-up table. • Its reliability on the other conditions in the look-up table was discussed. - Abstract: The critical heat flux (CHF) of gas-liquid flow plays an important role in the safety of industrial equipment. At present, the liquid film dryout model is widely used for predicting CHF in gas-liquid annular flow. Most parameters in this model can be determined by some empirical correlations which are valid under different conditions. However, up to now, the entrainment fraction at the onset of annular flow is always assumed due to the lack of relevant experimental data. In this paper, the normalized data of the 2006 CHF look-up table (LUT) which has been adopted widely, especially in the nuclear industry, were used. Firstly, the empirical correlations, provided for the onset of annular flow and the limiting quality, were employed. In the valid pressure and mass flux range of these correlations, the selected database from LUT was confirmed. Secondly, the liquid film model was built. The entrainment fraction at the onset of annular flow was obtained when the calculated CHF by the model agreed with the corresponding value in LUT. A parallel look-up table for it was developed. Its correlation including the Weber and the liquid Reynolds number at outlet was proposed. The errors are mostly within ±30%. Finally, its reliability on the other conditions in LUT, which are beyond the valid range of the empirical correlations used for determining the database, was discussed. All the conditions whose errors are outside ±30% of the predictions by the provided correlation were marked in the tables.
Goldman, Louis J.
1993-01-01
An advanced laser anemometer (LA) was used to measure the axial and tangential velocity components in an annular cascade of turbine stator vanes operating at transonic flow conditions. The vanes tested were based on a previous redesign of the first-stage stator in a two-stage turbine for a high-bypass-ratio engine. The vanes produced 75 deg of flow turning. Tests were conducted on a 0.771-scale model of the engine-sized stator. The advanced LA fringe system employed an extremely small 50-micron diameter probe volume. Window correction optics were used to ensure that the laser beams did not uncross in passing through the curved optical access port. Experimental LA measurements of velocity and turbulence were obtained at the mean radius upstream of, within, and downstream of the stator vane row at an exit critical velocity ratio of 1.050 at the hub. Static pressures were also measured on the vane surface. The measurements are compared, where possible, with calculations from a three-dimensional inviscid flow analysis. Comparisons were also made with the results obtained previously when these same vanes were tested at the design exit critical velocity ratio of 0.896 at the hub. The data are presented in both graphical and tabulated form so that they can be readily compared against other turbomachinery computations.
Critical heat-flux experiments under low-flow conditions in a vertical annulus
International Nuclear Information System (INIS)
Mishima, K.; Ishii, M.
1982-03-01
An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF
Kuentz, Martin; Schirg, Peter
2013-09-01
An automated version of uniaxial powder flow testing has recently been developed and there is a need for experimental data from pharmaceutical powders. To compare the novel testing method with an annular shear cell using different pharmaceutical excipients. A particular aim was to gain an improved understanding of potential differences in the obtained flow results. Nine excipients were studied with both flow testers at different consolidation levels. Unconfined yield strengths were determined at similar major consolidation stresses. Finally, an anisotropic stress factor was calculated and the fractal character of the powders was assessed by means of image analysis in a rotating drum. Data correlated generally well; however, the unconfined yield strength from uniaxial testing resulted mostly in lower values compared to annular shear cell testing. Differences were specific for the given excipients and mannitol demonstrated the highest discrepancy of measured flow parameters. The differences were first discussed by considering wall friction, anisotropy of forces, brittleness as well as the fractal nature of the powder surface. This heterogeneity of the powder as well as the anisotropy of forces was also found to be important for the relative flow index. The automated uniaxial method demonstrated faster and more reproducible flow testing as compared to an annular shear cell. Therefore, the new method has a high potential in pharmaceutics for example in the quality-control of powders.
International Nuclear Information System (INIS)
Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S
2013-01-01
This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption. (paper)
Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.
2013-11-01
This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.
Central recirculation zones and instability waves in internal swirling flows with an annular entry
Wang, Yanxing; Yang, Vigor
2018-01-01
The characteristics of the central recirculation zone and the induced instability waves of a swirling flow in a cylindrical chamber with a slip head end have been numerically investigated using the Galerkin finite element method. The effects of Reynolds number as well as swirl level adjusted by the injection angle were examined systematically. The results indicate that at a high swirl level the flow is characterized by an axisymmetric central recirculation zone (CRZ). The fluid in the CRZ takes on a solid-body rotation driven by the outer main flow through a free shear layer. Both the solid-body rotating central flow and the free shear layer provide the potential for the development of instability waves. When the injection angle increases beyond a critical value, the basic axisymmetric flow loses stability, and instability waves develop. In the range of Reynolds numbers considered in this study, three kinds of instability were identified: inertial waves in the central flow, and azimuthal and longitudinal Kelvin-Helmholtz waves in the free shear layer. These three types of waves interact with each other and mix together. The mode selection of the azimuthal waves depends strongly on the injection angle, through the perimeter of the free shear layer. Compared with the injection angle, the Reynolds number plays a minor role in mode selection. The flow topologies and characteristics of different flow states are analyzed in detail, and the dependence of flow states on the injection angle and Reynolds number is summarized. Finally, a linear analysis of azimuthal instabilities is carried out; it confirms the mode selection mechanisms demonstrated by the numerical simulation.
Directory of Open Access Journals (Sweden)
Nili-Ahmadabadi M.
2012-01-01
Full Text Available This paper will present the results of the experimental investigation of heat transfer in a non-annular channel between rotor and stator similar to a real generator. Numerous experiments and numerical studies have examined flow and heat transfer characteristics of a fluid in an annulus with a rotating inner cylinder. In the current study, turbulent flow region and heat transfer characteristics have been studied in the air gap between the rotor and stator of a generator. The test rig has been built in a way which shows a very good agreement with the geometry of a real generator. The boundary condition supplies a non-homogenous heat flux through the passing air channel. The experimental devices and data acquisition method are carefully described in the paper. Surface-mounted thermocouples are located on the both stator and rotor surfaces and one slip ring transfers the collected temperature from rotor to the instrument display. The rotational speed of rotor is fixed at three under: 300rpm, 900 rpm and 1500 rpm. Based on these speeds and hydraulic diameter of the air gap, the Reynolds number has been considered in the range: 4000
Zhang, P.; Fu, X.
2009-10-01
Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.
De Biase, C.
2012-01-01
Vertical flow filters (unplanted) and vertical flow constructed wetlands (planted), simple and inexpensive technologies to treat effectively volatile organic compounds (VOCs) contaminated water, consist of containers filled with granular material which is intermittently fed with contaminated water.
International Nuclear Information System (INIS)
Peyghambarzadeh, S.M.; Sarafraz, M.M.; Vaeli, N.; Ameri, E.; Vatani, A.; Jamialahmadi, M.
2013-01-01
Highlights: ► The cooling performance of water and n-heptane is compared during subcooled flow boiling. ► Although n-heptane leaves the heat exchanger warmer it has a lower heat transfer coefficient. ► Flow rate, heat flux and degree of subcooling have direct effect on heat transfer coefficient. ► The predictions of some correlations are evaluated against experimental data. - Abstract: In this research, subcooled flow boiling heat transfer coefficients of pure n-heptane and distilled water at different operating conditions have been experimentally measured and compared. The heat exchanger consisted of vertical annulus which is heated from the inner cylindrical heater with variable heat flux (less than 140 kW/m 2 ). Heat flux is varied so that two different flow regimes from single phase forced convection to nucleate boiling condition are created. Meanwhile, liquid flow rate is changed in the range of 2.5 × 10 −5 –5.8 × 10 −5 m 3 /s to create laminar up to transition flow regimes. Three subcooling levels including 10, 20 and 30 °C are also considered. Experimental results demonstrated that subcooled flow boiling heat transfer coefficient increases when higher heat flux, higher liquid flow rate and greater subcooling level are applied. Furthermore, influence of the operating conditions on the bubbles generation on the heat transfer surface is also discussed. It is also shown that water is better cooling fluid in comparison with n-heptane
Oscillatory and Steady Flows in the Annular Fluid Layer inside a Rotating Cylinder
Directory of Open Access Journals (Sweden)
Veronika Dyakova
2016-01-01
Full Text Available The dynamics of a low-viscosity fluid inside a rapidly rotating horizontal cylinder were experimentally studied. In the rotating frame, the force of gravity induces azimuthal fluid oscillations at a frequency equal to the velocity of the cylinder’s rotation. This flow is responsible for a series of phenomena, such as the onset of centrifugal instability in the Stokes layer and the growth of the relief at the interface between the fluid and the granular medium inside the rotating cylinder. The phase inhomogeneity of the oscillatory fluid flow in the viscous boundary layers near the rigid wall and the free surface generates the azimuthal steady streaming. We studied the relative contribution of the viscous boundary layers in the generation of the steady streaming. It is revealed that the velocity of the steady streaming can be calculated using the velocity of the oscillatory fluid motion.
De Biase, C.; Reger, D.; Schmidt, A.; Jechalke, S.; Reiche, N.; Martínez-Lavanchy, P.M.; Rosell, M.; Van Afferden, M.; Maier, U.; Oswald, S.E.; Thullner, M.
2011-01-01
Vertical flow filters and vertical flow constructed wetlands are established wastewater treatment systems and have also been proposed for the treatment of contaminated groundwater. This study investigates the removal processes of volatile organic compounds in a pilot-scale vertical flow filter.
Burnout specific features in steam-water mixture annular flow in a tube
International Nuclear Information System (INIS)
Doroshchuk, V.E.
1981-01-01
Some unexplained burnout specific features in a steam-generating tube are analysed on the basis of experimental data. The following problems are considered: 1) the effect of the tube length and the state of the working medium (single-phase, two-phase) on burnout at the tube inlet; 2) the character of the specific thermal flow dependence at the moment of burnout appearance on the mass steam content q=f(x). It is found that the effect of the tube length on the burnout exists only in a relatively narrow range of the operating parameters. The run of the q=f(x) dependence is also explained [ru
International Nuclear Information System (INIS)
Choi, Gil Sik; Chang, Soon Heung; Jeong, Yong Hoon
2016-01-01
A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.
Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid
Energy Technology Data Exchange (ETDEWEB)
Mohseni, Mehdi Moayed; Rashidi, Fariborz; Movagar, Mohammad Reza Khorsand [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-02-15
Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.
Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands
International Nuclear Information System (INIS)
Tietz, Alexandra; Kirschner, Alexander; Langergraber, Guenter; Sleytr, Kirsten; Haberl, Raimund
2007-01-01
In this study a quantitative description of the microbial biocoenosis in subsurface vertical flow constructed wetlands fed with municipal wastewater was carried out. Three different methods (substrate induced respiration, ATP measurement and fumigation-extraction) were applied to measure the microbial biomass at different depths of planted and unplanted systems. Additionally, bacterial biomass was determined by epifluorescence microscopy and productivity was measured via 14 C leucine incorporation into bacterial biomass. All methods showed that > 50% of microbial biomass and bacterial activity could be found in the first cm and about 95% in the first 10 cm of the filter layer. Bacterial biomass in the first 10 cm of the filter body accounted only for 16-19% of the total microbial biomass. Whether fungi or methodical uncertainties are mainly responsible for the difference between microbial and bacterial biomass remains to be examined. A comparison between the purification performance of planted and unplanted pilot-scale subsurface vertical flow constructed wetlands (PSCWs) showed no significant difference with the exception of the reduction of enterococci. The microbial biomass in all depths of the filter body was also not different in planted and unplanted systems. Compared with data from soils the microbial biomass in the PSCWs was high, although the specific surface area of the used sandy filter material available for biofilm growth was lower, especially in the beginning of the set-up of the PSCWs, due to missing clay and silt fraction
Synthetic Jets Flow Control on a vertical stabilizer
Rathay, Nicholas; Boucher, Matthew; Amitay, Michael
2011-11-01
The vertical stabilizer on most commercial transport aircraft is much larger than required for stability and control. The tail is significantly oversized in order to maintain controllability in the event of asymmetric engine failure and meet flying qualities requirements related to dynamic motion. Using aerodynamic flow control techniques, it may be possible to reduce the size of the tail while maintaining similar control authority during inclement flight conditions. Reducing the size of the tail decreases the weight and the drag of the airplane, which results in considerable savings in fuel costs. In this work, it is shown that synthetic jet (zero-net-mass-flux) actuators are capable of reattaching the separated flow on the rudder and augmenting the performance of the stabilizer. Experiments were conducted in an open-return wind tunnel on a 1/25th scale model of a vertical stabilizer and a partial fuselage section. The surface pressure, aerodynamic loads and data acquired with a Stereo PIV system were used to investigate the effectiveness of this technology as well as provide a more detailed analysis of the flowfield and showed that the synthetic jets are capable of augmenting the side-force by up to 20%.
International Nuclear Information System (INIS)
Karimi, G.; Kawaji, Masahiro
1996-01-01
The hydrodynamic characteristics of a non-conductive falling liquid film inside a vertical pipe (ID = 50.8 mm, 244 cm) with and without a counter-current gas flow have been studied experimentally. A laser-induced photochromic dye activation method has been applied to investigate the internal hydrodynamic structure of thin films. A laser displacement sensor and high speed video photography were used to measure the film thickness fluctuations at two different positions along the test section over the film Reynolds number (Re L = 4Γ/μ) range of 1,358 to 7,845. Flow visualization data indicated occurrence of vortical structures under the large disturbance waves. Also, slight flow deceleration was observed at the interface and the maximum velocity shifted away from the interface even for freely falling films. Time-averaged film thickness data were in good agreement with Nusselt's theory in laminar region and other experimental data from the literature in turbulent region. The calculated spectral density functions showed a frequency of 4--12 Hz for disturbance waves in the well developed region (L = 150 cm), and higher frequencies up to 35 Hz in the developing flow region (L = 150 cm). The interfacial wave celerities, calculated based on the instantaneous film thickness data at two positions spaced 7.9 mm apart, showed a decreasing trend with increasing liquid and gas flow rates
Influence of clogging and resting processes on flow patterns in vertical flow constructed wetlands.
Hua, Guofen; Kong, Jun; Ji, Yuyu; Li, Man
2018-04-15
Vertical flow constructed wetlands are widely used for removing pollutants from wastewater. Substrate clogging is an operational challenge of constructed wetlands, which can result in impeded water flow and finally a significant decline in the ability of the system to treat the wastewater. The entire clogging process in a vertical flow constructed wetland (VFCW) was quantitatively analyzed by measurements of hydraulic conductivity. Tracer tests and model simulations were carried out to investigate internal flow patterns during the clogging and resting processes. This analysis revealed that hydraulic conductivity gradually decreased with operation time. Further, the distribution time of the flow field was different under different degrees of clogging. Non-uniformity in water flow was primarily observed in the first 400min after adding the tracer (NaCl) in the early clogging stage, as opposed to the last 400min in the late clogging stage. Variation in water flow divergence was closely correlated with piston flow; the reaction efficiency was highest in the early stages of clogging. In the later stages, stronger flow mixing was observed. Resting operations can reduce the dispersion of internal flow and improve reaction efficiency. After resting for approximately 15days, tracer concentration fluctuations decreased and internal flow back-mixing was alleviated. A simulation further described the internal flow pattern and elaborated and validated the tracer experiment. The outcomes of this study will assist in understanding how internal flow behavior varies in response to the clogging process and reveal details of the internal clogging mechanism in VFCWs. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Mosdorf Romuald
2015-06-01
Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.
Investigation of vertical slug flow with advanced two-phase flow instrumentation
International Nuclear Information System (INIS)
Mi, Y.; Ishii, M.; Tsoukalas, L.H.
2001-01-01
Extensive experiments of vertical slug flow were carried out with an electromagnetic flowmeter and an impedance void-meter in an air-water two-phase experimental loop. The basic principles of these instruments in vertical slug flow measurements are discussed. Time series of the liquid velocity and the impedance were separated into two parts corresponding to the Taylor bubble and the liquid slug. Characteristics of slug flow, such as the void fractions, probabilities and lengths of the Taylor bubble and liquid slug, slug unit velocity, area-averaged liquid velocity, and liquid film velocity of the Taylor bubble tail, etc., were obtained. For the first time, the area-averaged liquid velocity of slug flow was revealed by the electromagnetic flowmeter. It is realized that the void fraction of the liquid slug is determined by the turbulent intensity due to the relative liquid motion between the Taylor bubble tail region and its wake region. A correlation of the void fraction of the liquid slug is developed based on experimental results obtained from a test section with 50.8 mm i.d. The results of this study suggest a promising improvement in understanding of vertical slug flow
Energy Technology Data Exchange (ETDEWEB)
Lee, D.O.; Johnson, R.W.; Weatherbee, R.L.
1980-03-01
A test facility was designed and constructed to study forced flow boiling heat transfer in a closed loop long tube heat exchanger which is a two concentric-tube vertical design. The system consists of a 12 m long heat exchanger which can be operated at pressures to 689.3 kPa with pumped or natural convection flow rates from 0.0631 to 0.631 liters/second and which can be irradiated with a maximum steady heat flux rate of 50 kW/m/sup 2/ by a set of resistive heaters operable at temperatures up to 1250/sup 0/C. The facility was also designed so that other heat exchanger configurations can be tested with minimum difficulty (i.e., little or no modification of the system other than to replace the heat exchanger). The preliminary tests indicate that the system can be operated in a stable mode. This facility was motivated primarily by the magma energy research program where energy is extracted from magma by heat exchangers similar to the configuration in this report.
Dewatering and Treatment of Septage Using Vertical Flow Constructed Wetlands
Directory of Open Access Journals (Sweden)
Yee Yong Tan
2017-10-01
Full Text Available The vertical flow constructed wetland (VFCW has become an attractive decentralised technology for septage treatment. One of the main purposes of the septage treatment is to reduce the volume of raw septage through dewatering, where the solids content is retained in the wetland bed and the water content is released. The retention of solids forms a layer of sludge deposit at the wetland surface, and the drained water, the so-called leachate, typically contains a lower solids content. This article reports the performance of dewatering and filtration of a pilot-scale VFCW designed for septage treatment. A comparison between two feeding strategies, hydraulic loading rate (HLR and solids loading rate (SLR, is presented. The dewatering efficiency through drainage was found to be dependent on the solids load. The removal of total solids (TS and chemical oxygen demand (COD were excellent as the quality of leachate showed that more than 90% of TS and COD were retained in the system. This study reveals that the feeding based on SLR delivered a more sustainable performance for dewatering and solids removal. The build-up of sludge deposit significantly deteriorated the dewatering efficiency through drainage, but it tended to improve the filtration capacity.
Compartment in vertical flow reactor for ferruginous mine water
Hur, Won; Cheong, Young-Wook; Yim, Gil-Jae; Ji, Sang-Woo; Hong, Ji-Hye
2014-05-01
Mine effluents contain varying concentrations of ferrous ion along with other metal ions. Fe(II) that quickly oxidizes to form precipitates in the presence of oxygen under net alkaline or neutral conditions. Thus, passive treatment methods are designed for the mine water to reside in an open containment area so as to allow simultaneous oxidation and precipitation of Fe(II), such as in a lagoon or an oxidation pond. A vertical flow reactor (VFR) was also suggested to remediate ferruginous mine drainage passing down through an accreting bed of ochre. However, VFR has a limited operation time until the system begins to overflow. It was also demonstrated that two-compartment VFR has a longer operation time than single compartment VFR of same size. In this study, a mathematical model was developed as a part of efforts to explore the operation of VFR, showing dynamic changes in head differences, ochre depth and Fe(II)/Fe(III) concentration in the effluent flow. The analysis shows that Fe(II) oxidation and ochre formation should be balanced with permeability of ochre bed to maximize VFR operation time and minimize residual Fe(II) in the effluent. The model demonstrates that two compartment VFR can have a longer operation time than a single-compartment VFR and that an optimum compartment ratio exists that maximize VFR operation time. Accelerated Fe(II) oxidation significantly affects the optimum ratio of compartment area and reduced residual Fe(II) in the effluent. VFR operation time can be significantly prolonged by increasing the rate of ochre formation not by accelerated Fe(II) oxidation. Taken together, ochre forms largely in the first compartment while overflowed mine water with reduced iron contents is efficiently filtered in the second compartment. These results provide us a better understanding of VFR operation and optimum design criteria for maximum operation time in a two-compartment VFR. Rapid ochre accretion in the first compartment maintains constant hydraulic
Oil flow in the oil well tube annulus of vertical bearing assemblies (leakage)
International Nuclear Information System (INIS)
Piao, Yinghu
1997-01-01
A numerical simulation and experimental flow visualization study was conducted to better understand oil well leakage, particularly in the annular clearance space surrounding the oil well tube. A test rig was developed to simulate the bearing's oil well tube annulus. A major feature of this rig was to allow visual access to the annular clearance space and to the region beneath the rotating runner where strong secondary flow effects are known to exist. The main method for tracing the secondary flow pathlines was a light sheet visualization technique using micro air bubbles as the tracer. The effect of runner speed on the pathlines was studied. The velocity of the oil flow was measured experimentally and the results were compared with numerical data. A numerical technique was developed to trace the micro air bubbles in the oil flow field using a three dimensional CFD code for laminar, axisymmetric flow with a free surface. The buoyancy effects of gravitational and centrifugal forces were considered when determining the pathline of air bubbles. Bubble size, oil viscosity and runner speed were some of the parameters that affect the path of the air bubbles
Biard, Pierre-François; Bouzaza, Abdelkrim; Wolbert, Dominique
2007-04-15
This study investigates the influence of inlet concentration and of flow rate on the degradation rate of two Volatile Fatty Acids (butyric and propionic acids). TiO2-coated nonwoven fiber textile was used as the photocatalyst in an annular plug-flow reactor at laminar flow regime. The kinetic follows a Langmuir-Hinshelwood form. The oxidation rate increased with the flow rate, which emphasizes the influence of the mass transfer. A first design equation is proposed considering that the mass transfer could be neglected. Despite a good accuracy of the model, the determined kinetic constants are dependent on the flow rate which highlights the contribution of the mass transfer rate on the global degradation rate. Thus, a new design equation which includes the mass transfer rate was developed. Using this model, the degradation rate can be determined for any given flow rate. Moreover, it allows the estimation of the contribution of mass transfer and chemical reaction steps at given experimental conditions; and thus providing an interesting tool for reactor optimization or design.
International Nuclear Information System (INIS)
Satake, Masaaki; Yoneda, Kimitoshi; Fujiwara, Kazutoshi; Domae, Masafumi
2011-01-01
Flow accelerated corrosion (FAC) is one of the serious wall thinning problems when power plants are operating. FAC has been studied in water single-phase flow. The methods of evaluation of wall thinning rate in FAC are constructed from the results of these studies. On the other hand, FAC in water-steam two-phase flow has been hardly studied, so that methods of evaluation of wall thinning rate in it flow have not been constructed. In this report, a few researches about FAC in two-phase flow are investigated. From these researches, firstly FAC in two-phase flow is assumed to occur in annular flow. Secondly, liquid film velocity and liquid film thickness are dealt as the important hydrodynamic factors on FAC in the two phase flow. Besides, partition of pH control agent into water-vapor two phase flow is one of the water-chemical factors in the two phase flow. A water-air two phase annular flow is simulated. From the results, liquid film thicknesses in the simulation are under that of experimental results, and shear stresses are over that of experimental results. (author)
Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition
International Nuclear Information System (INIS)
Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei
2014-01-01
Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model
Energy Technology Data Exchange (ETDEWEB)
Augyrond, L
1998-04-01
This work aims at a better understanding of the dynamics of helium two-phase flow in a vertical duct. The case of bubble flow is particularly investigated. The most descriptive parameter of two-phase flow is the void fraction. A sensor to measure this parameter was specially designed and calibrated, it is made of a radioactive source and a semiconductor detector. Sensors based on light attenuation were used to study the behaviour of this two-phase flow. The experimental set-up is described. The different flow types were photographed and video filmed. This visualization has allowed to measure the diameter of bubbles and to study their movements in the fluid. Bubble flow then churn and annular flows were observed but slug flow seems not to exist with helium. A modelling based on a Zuber model matches better the experimental results than a Levy type model. The detailed analysis of the signals given by the optical sensors has allowed to highlight a bubble appearance frequency directly linked to the flowrate. (A.C.) 83 refs.
Investigation on Effect of Flow Direction on Hydrodynamics for vertical Channel Bubbly Flow
Directory of Open Access Journals (Sweden)
M Pang
2016-12-01
Full Text Available In order to fully understand hydrodynamics of the bubbly flow laden with microbubbles, the effect of flow direction on the phase distribution and the liquid–phase turbulence modulation in a vertical channel flow laden with microbubbles was detailedly investigated with a developed numerical method, where the liquid–phase velocity field was solved by direct numerical simulations and the microbubble trajectories were tracked by Newtonian equations of motion. The present investigations show the flow direction has the key influence on the phase distribution and the liquid–phase turbulence modulation; for the bubbly upflow, the overwhelming majority of microbubbles accumulate near the channel wall, the phase distribution display approximately the double–peaked distribution patter, and the liquid–phase turbulence was suppressed; for the bubby downflow, however, the microbubbles are far away from the channel wall to move towards the channel centre, the phase distribution shows roughly the off–center–peaked distribution pattern, and the liquid–phase turbulence was enhanced.
Flow regimes in vertical gas-solid contact systems
Energy Technology Data Exchange (ETDEWEB)
Yerushalmi, J.; Cankurt, N. T.; Geldart, D.; Liss, B.
1976-01-01
The flow characteristics in fluidized beds, i.e., gas-solid systems, was studied to determine the flow regimes, the interaction of gas and solid in the various flow regimes and the dependence of this interaction and of transition between flow regimes on the properties of the gas and solid, on the gas and solid flow rates, and on the containing vessel. Fluidized beds with both coarse and fine particles are considered. Test results using high speed photography to view the operation of a 2-dimensional bed are discussed. (LCL)
The effect of surfactants on upward air-water pipe flow at various inclinations
van Nimwegen, A.T.; Portela, L.; Henkes, R.A.W.M.
2016-01-01
In this work, we extend our previous efforts on the effect of surfactants on air-water flow in a vertical pipe by also considering pipe inclinations between 20° (with respect to horizontal) and vertical. For air-water flow, independent of the inclination, there is a regular annular flow at large
Mixed convection flow and heat transfer in a vertical wavy channel ...
African Journals Online (AJOL)
user
forced convective flow in a fluid saturated porous medium channel bounded by two vertical parallel plates was presented by. Prathap Kumar ... width of the channel) vertical wavy and parallel flat wall. ...... In view of Eqs. (25) to (28) the boundary and interface conditions as defined in Eqs. (20) and (21) can be split as follows,.
Free convection of Walter's fluid flow in a vertical double-passage ...
African Journals Online (AJOL)
user
influence on the velocity, temperature, skin friction and rate of heat transfer. 2. Mathematical formulation. Case 1: Free convection of Walter's fluid in a vertical channel with baffle. Consider a steady two dimensional laminar free convection Walter's fluid flow in an open-ended vertical channel with one wavy wall and another ...
Entropy generation in MHD flow of a uniformly stretched vertical ...
African Journals Online (AJOL)
This paper reports the analytical calculation of the entropy generation due to heat and mass transfer and fluid friction in steady state of a uniformly stretched vertical permeable surface with heat and mass diffusive walls, by solving analytically the mass, momentum, species concentration and energy balance equation, using ...
Vertical cross-spectral phases in neutral atmospheric flow
DEFF Research Database (Denmark)
Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.
2012-01-01
leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases...
Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters
Energy Technology Data Exchange (ETDEWEB)
Becker, Kurt M.; Hernborg, Gunnar; Bode, Manfred; Eriksson, O.
1965-07-01
The present report contains the tables of the burnout data obtained for flow in vertical channels at the Heat Engineering Laboratory of AB Atomenergi in Sweden. The data covers measurements in round ducts, annuli, 3-rod and 7-rod clusters.
Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters
International Nuclear Information System (INIS)
Becker, Kurt M.; Hernborg, Gunnar; Bode, Manfred; Eriksson, O.
1965-01-01
The present report contains the tables of the burnout data obtained for flow in vertical channels at the Heat Engineering Laboratory of AB Atomenergi in Sweden. The data covers measurements in round ducts, annuli, 3-rod and 7-rod clusters
Film behaviour of vertical gas-liquid flow in a large diameter pipe
Zangana, Mohammed Haseeb Sedeeq
2011-01-01
Gas-liquid flow commonly occurs in oil and gas production and processing system. Large diameter vertical pipes can reduce pressure drops and so minimize operating costs. However, there is a need for research on two-phase flow in large diameter pipes to provide confidence to designers of equipments such as deep water risers. In this study a number of experimental campaigns were carried out to measure pressure drop, liquid film thickness and wall shear in 127mm vertical pipe. Total pressur...
Directory of Open Access Journals (Sweden)
Drbáková S.
2013-04-01
Full Text Available The current research of hydrostatic bearings and hydrostatic slide-ways is far from being over. The topic is constantly evolving, creating new geometries of the sliding bearings, developing new types of friction materials and lubricants. The control elements of hydraulic mechanisms that serve to regulation of the hydrostatic bearings tipping are still in progress. Almost every application has different requirements for the bearings, whether in terms of loading capacity, speed rotation, and also the price. All these aspects should be included in the design of hydrostatic thrust bearings. Thanks to great advances in the development of computer technology and software for numerical modelling, we can simulate real movement of viscous fluids. To create a numerical model of hydrostatic thrust bearing, Ansys Fluent 14.0 software package has been applied. The article describes the basic methods of numerical modelling of the given problem and evaluates the pressure field and the loading capacity of annular multi-recess hydrostatic thrust bearing and its dependence on the change in static pressure.
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Adriana; Bannwart, Antonio C. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo
2004-07-01
The use of water-assisted technologies such as core-annular flow to the pipelines of viscous oils has been proposed as an attractive alternative for production and transportation of heavy crudes in both onshore and offshore scenarios. Usually, core-annular flow can be created by injecting a relatively small water flow rate laterally in the pipe, so as to form a thin water annulus surrounding the viscous oil, which is pumped through the center. The reduction in friction losses obtained thanks to lubrication by water is significant, since the pressure drop in a steady state core flow becomes comparable to water flow only. For a complete assessment of core flow technology, however, unwanted effects associated with possible oil adhesion onto the pipe wall should be investigated, since these may cause severe fouling of the wall and pressure drop increase. It has been observed that oil adhesion on metallic surfaces may occur for certain types of crude and oilphilic pipe materials. In this work we present results of pressure drop monitoring during 35 hour-operation of a heavy oil-water core annular flow in a 26.08 mm. i.d. horizontal steel pipe. The oil used is described in terms of its main components and the results of static wet ability tests are also presented for comparison (author)
Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi
2018-01-01
We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.
Energy Technology Data Exchange (ETDEWEB)
Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)
1999-07-25
This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)
Modeling Vertical Plasma Flows in Solar Filament Barbs
Litvinenko, Y.
2003-12-01
Speeds of observed flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a local magnetostatic solution describing the balance between the Lorentz force, gravity, and gas pressure in a barb. Similarly, large-scale filament flows can be treated as adiabatically slow deformations of a force-free magnetic equilibrium that describes the global structure of a filament. This approach reconciles current theoretical models with the puzzling observational result that some of the flows appear to be neither aligned with the magnetic field nor controlled by gravity.
Investigation on countercurrent flow characteristics in vertical tubes
International Nuclear Information System (INIS)
Yan Changqi; Sun Zhongning
2001-01-01
It is found in the experiment that for different air inlet the flooding may be occurred in air inlet or outlet in two-phase countercurrent flow. Since the positions of flooding are difference, the correlation between water flow rate and air flow rate for onset of flooding is difference. This result is of significant meaning for studying the mechanism of onset of flooding. The reason for this difference is analyzed based on two-phase flow characteristics. It is proposed that different correlation should be used to calculate the inlet flooding and outlet flooding
Reduction of vertical transport in two-dimensional stably stratified forced shear flows
Toqué, Nathalie; Lignières, François; Vincent, Alain
2006-04-01
The effect of stable stratification on the vertical transport of passive contaminants in forced, stationary, two-dimensional (2D) and inhomogeneous shear turbulence is investigated numerically. The mean flow consists of several superimposed parallel sheared layers in a stably stratified medium. We find that, as stratification increases, the vertical transport decreases much faster than predicted by mixing length estimates. For the highest stratification, particles vertical dispersion nearly vanishes. The proposed interpretation emphasizes the role of weakly sheared layers where the relative increase of the mean horizontal velocity with respect to the root-mean-square (rms) vertical velocity causes the decrease of the Lagrangian correlation timescale.
International Nuclear Information System (INIS)
Haslinger, K.H.; Martin, M.L.; Higgins, W.H.; Rossano, F.V.
1989-01-01
Instrumentation tubes in pressurized nuclear reactors have experienced wear due to excessive flow-induced vibrations. Experiments to identify the predominant flow excitation mechanism at a particular plant, and to develop a sleeve design to remedy the wear problem are reported. An instrumented flow visualization model enabled simulation of a wide range of individual or combined reactor core flow, cross flow and thimble flow conditions. The instrumentation scheme adopted for these experiments used proximity displacement transducers and a force transducer to measure respectively tube motion and contact/impact forces at the wear region. Extensive testing of the original, in-plant configuration identified the normal core flow as the primary source of excitation. Shielding the In-Core-Instrumentation thimble tube from the normal core flow curtailed vibration amplitudes; however, thimble flow excitation then became more pronounced. Various outlet nozzle configurations were investigated. An internal cavity combined with radial outlet slots became the optimum solution for the problem. The paper presents typical test data in the form of orbital tube motion, spectrum analysis and time history collages. The effectiveness of shielding the instrumentation tube from the flow is demonstrated. (author)
Quantitative experiments on thermal hydraulic characteristics of an annular tube with twisted fins
International Nuclear Information System (INIS)
Ezato, Koichiro; Dairaku, Masayuki; Taniguchi, Masaki; Sato, Kazuyoshi; Suzuki, Satoshi; Akiba, Masato
2003-11-01
Thermal hydraulic experiments measuring critical heat flux (CHF) and pressure drop of an annular tube with twisted fins, ''annular swirl tube'', has been performed to examine its applicability to the ITER divertor cooling structure. The annular swirl tube consists of two concentric circular tubes, the outer and inner tubes. The outer tube with outer and inner diameters (OD and ID) of 21 mm and 15 mm is made of Cu-alloy that is CuCrZr and oe of candidate materials of the ITER divertor cooling tube. The inner tube with OD of 11 mm and ID of 9 mm is made of stainless steal. It has an external swirl fin with twist ratio (y) of three to enhance its heat transfer performance. In this tube, cooling water flows inside of the inner tube first, and then returns into an annulus between the outer and inner tubes with a swirl flow at an end-return of the cooling tube. The CHF experiments show that no degradation of CHF of the annular swirl tube in comparison with the conventional swirl tube whose dimensions are similar to those of the outer tube of the annular swirl tube. A minimum axial velocity of 7.1 m/s is required to remove the incident heat flux of 28MW/m 2 , the ITER design value. Applicability of the JAERI's correlation for the heat transfer to the annular swirl tube is also demonstrated by comparing the experimental results with those of the numerical analysis. The friction factor correlation for the annular flow with the twisted fins is also proposed for the hydrodynamic design of the ITER vertical target. The least pressure drop at the end-return is obtained by using the hemispherical end-plug. Its radius is the same as that of ID of the outer cooling tube. These results show that thermal-hydraulic performance of the annular swirl tube is promising in application to the cooling structure for the ITER vertical target. (author)
Directory of Open Access Journals (Sweden)
Zennure Takci
2015-09-01
Full Text Available Granuloma annulare is a benign, asymptomatic, relatively common, often self-limited chronic granulomatos disorder of the skin that can affect both children and adults. The primary skin lesion usually is grouped papules in an enlarging annular shape, with color ranging from flesh-colored to erythematous. The two most common types of granuloma annulare are localized, which typically is found on the lateral or dorsal surfaces of the hands and feet; and disseminated, which is widespread. Rarely, familial cases of granuloma annulare has been reported. Herein, we report two sisters with annular papules and plaques diagnosed as granuloma annulare with the clinical and pathological findings. [J Contemp Med 2015; 5(3.000: 189-191
Study on particle deposition in vertical square ventilation duct flows by different models
International Nuclear Information System (INIS)
Zhang Jinping; Li Angui
2008-01-01
A proper representation of the air flow in a ventilation duct is crucial for adequate prediction of the deposition velocity of particles. In this paper, the mean turbulent air flow fields are predicted by two different numerical models (the Reynolds stress transport model (RSM) and the realizable k-εmodel). Contours of mean streamwise velocity deduced from the k-ε model are compared with those obtained from the Reynolds stress transport model. Dimensionless deposition velocities of particles in downward and upward ventilation duct flows are also compared based on the flow fields presented by the two different numerical models. Trajectories of the particles are tracked using a one way coupling Lagrangian eddy-particle interaction model. Thousands of individual particles are released in the represented flow, and dimensionless deposition velocities are evaluated for the vertical walls in fully developed smooth vertical downward and upward square duct flows generated by the RSM and realizable k-ε model. The effects of particle diameter, dimensionless relaxation time, flow direction and air speed in vertical upward and downward square duct flows on the particle deposition velocities are discussed. The effects of lift and gravity on the particle deposition velocities are evaluated in vertical flows presented by the RSM. It is shown that the particle deposition velocities based on the RSM and realizable k-εmodel have subtle differences. The flow direction and the lift force significantly affect the particle deposition velocities in vertical duct flows. The simulation results are compared with earlier experimental data and the numerical results for fully developed duct flows. It is shown that the deposition velocities predicted are in agreement with the experimental data and the numerical results
Model for radial gas fraction profiles in vertical pipe flow
International Nuclear Information System (INIS)
Lucas, D.; Krepper, E.; Prasser, H.M.
2001-01-01
A one-dimensional model is presented, which predicts the radial volume fraction profiles from a given bubble size distribution. It bases on the assumption of an equilibrium of the forces acting on a bubble perpendicularly to the flow path (non drag forces). For the prediction of the flow pattern this model could be used within an procedure together with appropriate models for local bubble coalescence and break-up. (orig.)
Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger
DEFF Research Database (Denmark)
Knudsen, Søren; Morrison, GL; Behnia, M
2005-01-01
Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both......The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C...
International Nuclear Information System (INIS)
Aye Myint
2004-10-01
Two-phase annular flow with heat transfer is prevalent in many processes such as industrial and energy reformation processes. Recently, advances in high performance electronic chips and the miniaturisation of electronic circuits in which high heat flux will be created and other compact systems such as Integrated Nuclear Power Device (INPD), the refrigeration/air conditioning, automobile environment control systems have resulted in a great demand for developing efficient heat transfer techniques to accommodate these high heat fluxes. It has been studied by many researchers because of its successful application in many areas, but its influence factor and mechanism of heat transfer remain somewhat unknown yet. In order to understand the heat transfer and flow mechanism in the narrow annular channel, experimental and theoretical study of dryout and post-dryout heat transfer of steam-water two-phase flow in annular channel with narrow gap (1.0 mm and 1.5 mm) have been carried out. The working fluid is deionized water. The range of experimental pressure is 1.0 ∼ 6.OMPa. In correspondence with two different narrow gaps, two kinds of test sections were designed. The test sections were made of specially processed straight stainless steel tubes with linearity error less than 0.01% to form narrow concentric annuli. It also needs a good sealed performance at high pressure and high temperature. The experiments were carried out to investigate the characteristics and occurring conditions of the dryout point. The former Soviet researcher Kutateladse's correlation, based on round tube, was quoted and modified to apply barrow annuli under low flow conditions. At full conditions of the influencing factors, such as geometry of test section, pressure, mass flux, heat flux etc., an empirical correlation was developed to apply to bilaterally heated annuli and it had a good agreement with the experimental data A new analytical model for the dryout point of critical quality in
Mixed convection flow and heat transfer in a vertical wavy channel ...
African Journals Online (AJOL)
Mixed convection flow and heat transfer in a vertical wavy channel filled with porous and fluid layers is studied analytically. The flow in the porous medium is modeled using Darcy-Brinkman equation. The coupled non-linear partial differential equations describing the conservation of mass, momentum and energy are solved ...
Low-Flow Film Boiling Heat Transfer on Vertical Surfaces
DEFF Research Database (Denmark)
Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.
1976-01-01
The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....
Radiative Fluid Flow Between Fixed Vertical Plates With Suction ...
African Journals Online (AJOL)
Radiating MHD free convective slip flow with mass transfer and chemical reaction is presented. The governing particles are solved by perturbation method. The temperature, velocity and concentration profiles are presented graphically. The effects of magnetic, Prandtl, Schmidt, radiation, chemical, wave numbers are ...
Unsteady MHD flow along exponentially accelerated vertical flat ...
African Journals Online (AJOL)
It is noticed that the flow pattern is affected significantly with plate acceleration, Hall current, radiation, porous medium and heat source. The outcomes of the study may find applications in various fields related to the solar physics dealing with the solar cycle, the sunspot development, the structure of rotating magnetic stars ...
Directory of Open Access Journals (Sweden)
Lávička D.
2010-07-01
Full Text Available This paper describes the topic of measurement using a modern laser method (PIV in an annular channel of very small dimensions. The annular channel simulates the flow area around a model of a fuel rod in the VVER nuclear reactor. The annular channel holds spacers which create obstacles to fluid flow. The spacers serve a number of important purposes. In the real nuclear reactor, the spacer holds a fuel rod in the fuel rod bundle. Another important function of the spacer is to influence the flow field characteristics, especially turbulence size, by the shape of the spacer. The value of the turbulence regulates the intensity of heat transfer between the fuel rod and the fluid. Therefore, it is very important to provide a correct description and analysis of the flow field behind the obstacle the spacer generates. The paper further looks into the solution of the same task using numerical simulation. The solution of this task consisted of setting the suitable boundary conditions and of setting the turbulence model for the numerical simulation. The result is a comparison of the flow field characteristics from the experimental measurement and the findings of the numerical simulation. The numerical simulation was carried out using commercial CFD software package, FLUENT.
Local Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow
Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg
2017-01-01
We report velocity measurements in a vertical turbulent convection flow cell that is filled with the eutectic liquid metal alloy gallium-indium-tin by the use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry (UDV). We demonstrate the applicability of LLFV for a thermal convection flow and reproduce a linear dependence of the measured force in the range of micronewtons on the local flow velocity magnitude. Furthermore, the presented experiment is used to explore sca...
Energy Technology Data Exchange (ETDEWEB)
D' Ambros, Alder C.; Vitorassi, Pedro H.; Franco, Admilson T.; Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Matins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Tecnologia de Engenharia de Perfuracao
2008-07-01
The success of oil well drilling process depends on the correct prediction of the velocities and stresses fields inside the gap between the drill string and the rock formation. Using CFD is possible to predict the behavior of the drilling fluid flow along the annular space, from the bottom to the top of the well. Commonly the drilling fluid is modeled as a Herschel-Bulkley fluid. An alternative is to employ a non-linear viscoelastic model, like the one developed by Phan-Thien-Tanner (PTT). In the present work the PTT constitutive equation is used to model the drilling fluid flow along the annular space. Thus, this work investigates the influence of the Deborah number on the laminar flow pattern through the numerical solution of the equations formed by the coupled velocity-pressure-stress fields. The results are analyzed and validated against the analytical solution for the fully developed annular pipe flow. The relation between the Deborah number (De) and the entry length is investigated, along with the influence of high values of Deborah number on the friction factor, stress and velocity fields. (author)
International Nuclear Information System (INIS)
Mimouni, S.; Archambeau, F.; Boucker, M.; Lavieville, J.; Morel, C.
2010-01-01
High-thermal performance PWR (pressurized water reactor) spacer grids require both low pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required. In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation eddy viscosity models (EVM), especially the standard K-ε model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional. But extensive testing and application over the past three decades have revealed a number of shortcomings and deficiencies in eddy viscosity models. In fact, the K-ε model is totally blind to rotation effects and the swirling flows can be regarded as a special case of fluid rotation. This aspect is crucial for the simulation of a hot channel in a fuel assembly. In fact, the mixing vanes of the spacer grids generate a swirl in the coolant water, to enhance the heat transfer from the rods to the coolant in the hot channels and to limit boiling. First, we started to evaluate computational fluid dynamics results against the AGATE-mixing experiment: single-phase liquid water tests, with Laser-Doppler liquid velocity measurements upstream and downstream of mixing blades. The comparison of computed and experimental azimuthal (circular component in a horizontal plane) liquid velocity downstream of a mixing vane for the AGATE-mixing test shows that the rotating flow is qualitatively well reproduced by CFD calculations but azimuthal liquid velocity is underestimated with the K-ε model. Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with a simpler geometry, the ASU-annular channel case. A wall function model dedicated to boiling flows is also proposed.
International Nuclear Information System (INIS)
Takase, Kazuyuki; Akino, Norio
1996-06-01
Thermal-hydraulic characteristics of an annular fuel channel with spacer ribs for high temperature gas-cooled reactors were analyzed numerically by three-dimensional heat transfer computations under a fully developed turbulent flow. The two-equations κ-ε turbulence model was applied to the present turbulent analysis. In particular, the κ-ε turbulence model constants and the turbulent Prandtl number were improved from the previous standard values proposed by Jones and Launder in order to obtain heat transfer predictions with higher accuracy. Consequently, heat transfer coefficients and friction factors in the spacer-ribbed fuel channel were predicted with sufficient accuracy in the range of Reynolds number exceeding 3000. It was clarified quantitatively from the present study that main mechanism for the heat transfer augmentation in the spacer-ribbed fuel channel was combined effects of the turbulence promoter effect by the spacer ribs and the velocity acceleration effect by a reduction in the channel cross-section. (author)
Measurement of bubbly flows in vertical channels using ultrasonic velocity profile monitor
International Nuclear Information System (INIS)
Aritomi, Masanori; Zhou Shirong; Takeda, Yasushi; Nakamura, Hideo; Kukita, Yutaka
1998-01-01
The authors have been developing measurement technique, using the Ultrasonic Doppler effect and applicable for a bubbly flow in vertical channels in order to understand their multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. Our developed measurement system is composed of an ultrasonic velocity profile monitor with a video data processing unit, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. In this paper, our proposed measurement system was applied to bubbly countercurrent flows in a vertical rectangular channel the followings are discussed: (1) the measurement principle, (2) the data processing process, (3) measurement accuracy and (4) further problems. (author)
An experimental study of naturally driven heated air flow in a vertical pipe
Energy Technology Data Exchange (ETDEWEB)
Rahimi, Mostafa; Bayat, Mohammad Mehdi [Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)
2011-01-15
Specifications of warm air flow within a vertical pipe which is induced by the buoyancy effect were investigated in this study. Air from surroundings was directed into a heating chamber connected to a vertical pipe to establish a flow within the pipe. The temperature and the velocity were measured at different points within the stable flow and the mean values of these parameters were computed. Mass flow rate of air was evaluated using ideal gas assumption. In order to investigate the effect of the thermal boundary condition of the pipe, two tests were conducted; once for the pipe exposed to the surroundings and then for the pipe with a thermal insulation. A model for predicting the induced flow rate of warm air was developed and the predictions of the model were compared with the experimental data over the tested range of the parameters. (author)
Directory of Open Access Journals (Sweden)
Wang Ruifei
2017-12-01
Full Text Available The mathematical model of coupled flow and geomechanics for a vertical fractured well in tight gas reservoirs was established. The analytical modeling of unidirectional flow and radial flow was achieved by Laplace transforms and integral transforms. The results show that uncoupled flow would lead to an overestimate in performance of a vertical fractured well, especially in the later stage. The production rate decreases with elastic modulus because porosity and permeability decrease accordingly. Drawdown pressure should be optimized to lower the impact of coupled flow and geomechanics as a result of permeability decreasing. Production rate increases with fracture half-length significantly in the initial stage and becomes stable gradually. This study could provide a theoretical basis for effective development of tight gas reservoirs.
Wang, Ruifei; Gao, Xuhua; Song, Hongqing; Shang, Xinchun
2017-12-01
The mathematical model of coupled flow and geomechanics for a vertical fractured well in tight gas reservoirs was established. The analytical modeling of unidirectional flow and radial flow was achieved by Laplace transforms and integral transforms. The results show that uncoupled flow would lead to an overestimate in performance of a vertical fractured well, especially in the later stage. The production rate decreases with elastic modulus because porosity and permeability decrease accordingly. Drawdown pressure should be optimized to lower the impact of coupled flow and geomechanics as a result of permeability decreasing. Production rate increases with fracture half-length significantly in the initial stage and becomes stable gradually. This study could provide a theoretical basis for effective development of tight gas reservoirs.
Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration
Vignal, Philippe
2015-06-01
In this work, we present a novel isogeometric analysis discretization for the Navier-Stokes- Cahn-Hilliard equation, which uses divergence-conforming spaces. Basis functions generated with this method can have higher-order continuity, and allow to directly discretize the higher- order operators present in the equation. The discretization is implemented in PetIGA-MF, a high-performance framework for discrete differential forms. We present solutions in a two- dimensional annulus, and model spinodal decomposition under shear flow.
A two-fluid model for vertical flow applied to CO2 injection wells
DEFF Research Database (Denmark)
Linga, Gaute; Lund, Halvor
2016-01-01
to thermal stresses and subsequent loss of well integrity, and it is therefore crucial to employ models that can predict this accurately. In this work, we present a model for vertical well flow that includes both two-phase flow and heat conduction. The flow is described by a two-fluid model, where mass...... robust transition from two-phase to single-phase flow than the previous formulation. The model predicts which flow regimes are present downhole, and calculates friction and heat transfer depending on this. Moreover, the flow model is coupled with a heat conduction model for the layers that comprise......Flow of CO2 in wells is associated with substantial variations in thermophysical properties downhole, due to the coupled transient processes involved: complex flow patterns, density changes, phase transitions, and heat transfer to and from surroundings. Large temperature variations can lead...
Characteristics of low-mass-velocity vertical gas-liquid two-phase flow
International Nuclear Information System (INIS)
Adachi, Hiromichi; Abe, Yutaka; Kimura, Ko-ji
1995-01-01
In the present paper, characteristics of low mass velocity two-phase flow was analyzed based on a concept that pressure energy of two-phase flow is converted into acceleration work, gravitational work and frictional work, and the pressure energy consumption rate should be minimum at the stable two-phase flow condition. Experimental data for vertical upward air-water two-phase flow at atmospheric pressure was used to verify this concept and the turbulent model used in this method is optimized with the data. (author)
Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field
International Nuclear Information System (INIS)
Ishida, T.; Teshima, N.; Sakurai, S.
1992-01-01
The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)
Local Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow
Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg
2018-01-01
We report velocity measurements in a vertical turbulent convection flow cell that is filled with the eutectic liquid metal alloy gallium-indium-tin by the use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry. We demonstrate the applicability of LLFV for a thermal convection flow and reproduce a linear dependence of the measured force in the range of micronewtons on the local flow velocity magnitude. Furthermore, the presented experiment is used to explore scaling laws of the global turbulent transport of heat and momentum in this low-Prandtl-number convection flow. Our results are found to be consistent with theoretical predictions and recent direct numerical simulations.
Downstream wind flow path diversion and its effects on the performance of vertical axis wind turbine
International Nuclear Information System (INIS)
Maganhar, A.L.
2015-01-01
In the present experimental study efforts have been made to analysis path diversion effect of downstream wind flow on performance of vertical axis wind turbine (VAWT). For the blockage of downstream wind flow path at various linear displaced positions, a normal erected flat wall, semi-circular and cylindrical shapes were tested for path diverting geometries. Performance of VAWT in terms of improved rotor speed up to 45% was achieved. (author)
Mathematical modelling of thermal and flow processes in vertical ground heat exchangers
Directory of Open Access Journals (Sweden)
Pater Sebastian
2017-12-01
Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.
Trávníčková, T. (Tereza); Havlica, J. (Jaromír); Kohout, M.
2016-01-01
Mixing of granular systems is one of the most used chemical engineering unit operations. However, detailed description of the dynamics of granular flows through experiments is difficult. Therefore, usage of mathematical modeling increases. In this paper we deal with DEM (Discreet Element Method) simulations of mixing glass beads in a cylindrical vertical bladed mixer. The aim of this work is to describe the influence of blade rake on the development of granular secondary flows for different s...
Experiments on vertical gas-liquid pipe flows using ultrafast X-ray tomography
Energy Technology Data Exchange (ETDEWEB)
Banowski, M.; Beyer, M.; Lucas, D.; Hoppe, D.; Barthel, F. [Helmholtz-Zentrum Dresden-Rossendorf (Germany). Inst. fuer Sicherheitsforschung
2016-12-15
For the qualification and validation of two-phase CFD-models for medium and large-scale industrial applications dedicated experiments providing data with high temporal and spatial resolution are required. Fluid dynamic parameter like gas volume fraction, bubble size distribution, velocity or turbulent kinetic energy should be measured locally. Considering the fact, that the used measurement techniques should not affect the flow characteristics, radiation based tomographic methods are the favourite candidate for such measurements. Here the recently developed ultrafast X-ray tomography, is applied to measure the local and temporal gas volume fraction distribution in a vertical pipe. To obtain the required frame rate a rotating X-ray source by a massless electron beam and a static detector ring are used. Experiments on a vertical pipe are well suited for development and validation of closure models for two-phase flows. While vertical pipe flows are axially symmetrically, the boundary conditions are well defined. The evolution of the flow along the pipe can be investigated as well. This report documents the experiments done for co-current upwards and downwards air-water and steam-water flows as well as for counter-current air-water flows. The details of the setup, measuring technique and data evaluation are given. The report also includes a discussion on selected results obtained and on uncertainties.
International Nuclear Information System (INIS)
Kim Hun; Lim, Hee Chang
2015-01-01
This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4
Free convection of Walter's fluid flow in a vertical double-passage ...
African Journals Online (AJOL)
Free convection of Walter's fluid flow in a vertical double-passage wavy channel with heat source. ... Numerical results are presented graphically for the distribution of velocity and temperature fields for varying physical parameters such as baffle position, Grashof number, wall temperature ratio, viscoelastic parameter and ...
Ying Ouyang; Lihua Cui; Gary Feng; John Read
2015-01-01
Vertical flow constructed wetland (VFCW) is a promising technique for removal of excess nutrients and certain pollutants from wastewaters. The aim of this study was to develop a STELLA (structural thinking, experiential learning laboratory with animation) model for estimating phosphorus (P) removal in an artificial VFCW (i.e., a substrate column with six zones) grown...
De Biase, C.; Carminati, A.; Oswald, S.E.; Thullner, M.
2013-01-01
Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile
DEFF Research Database (Denmark)
Bohorquez, Eliana; Paredes, Diego; Arias, Carlos Alberto
Vertical flow constructed wetlands (VFWC) design and operation takes into account several variables which affect performance its performance. These aspects had been evaluated and documented among others in countries like USA, Denmark, Austria. In contrast, VFCW had not been studied in tropical...
Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment
Meuleman, Arthur F M; Van Logtestijn, Richard; Rijs, Gerard B J; Verhoeven, Jos T A
To estimate the nutrient and organic matter (Biological Oxygen Demand (BODs) and Chemical Oxygen Demand (COD)) removal capacity of a constructed vertical-flow wetland in The Netherlands, a water and nutrient budget study was conducted. Also bacterial water quality enhancement was measured. The
Effects of Unsteady Flow Past An Infinite Vertical Plate With Variable ...
African Journals Online (AJOL)
The effects of unsteady flow past an infinite vertical plate with variable temperature and constant mass flux are investigated. Laplace transform technique is used to obtain velocity and concentration fields. The computation of the results indicates that the velocity profiles increase with increase in Grashof numbers, mass ...
Combined Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow
Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg
2017-11-01
We report experimental studies on turbulent vertical convection flow in the liquid metal alloy gallium-indium-tin. Flow measurements were conducted by a combined use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry (UDV). It is known that the forced convection flow in a duct generates a force on the LLFV magnet system, that grows proportional to the flow velocity. We show that for the slower flow of natural convection LLFV retains this linear dependence in the range of micronewtons. Furthermore experimental results on the scaling of heat and momentum transport with the thermal driving are presented. The results cover a range of Rayleigh numbers 3 ×105 walls scales with Rez Ra0.45 . Additionally a Reynolds number based on the horizontal flow component is scaling as Rex Ra0.67 . These results agree well with numerical simulations and theoretical predictions. This work is funded by the Deutsche Forschungsgemeinschaft under Grant No. GRK 1567.
Obtention of an empirical equation for annular channels
International Nuclear Information System (INIS)
Diaz H, C.; Salinas R, G.A.
1996-01-01
Using a trial circuit, the experimental heat transfer coefficient is determined, in forced convection at one phase only within an annular channel in which water flows ascendantly and for this reason an empirical equation is determined. This work tries to contribute to the understanding of the forced convection phenomena in non tubular geometries like the annular channels. (Author)
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.
1996-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Review of Mixed Convection Flow Regime Map of a Vertical pipe
International Nuclear Information System (INIS)
Chae, Myeong-Seon; Chung, Bum-Jin; Kang, Gyeong-Uk
2015-01-01
In a vertical pipe, the natural convective force due to buoyancy acts upward only, but forced convective force can be either upward or downward. This determines buoyancy-aided and buoyancy-opposed flows depending on the direction of forced flow with respect to the buoyancy forces. Furthermore, depending on the exchange mechanism, the flow condition is classified into laminar and turbulent. In laminar mixed convection, buoyancy-aided flow presents enhanced heat transfer compared to the pure forced convection and buoyancy-opposed flow shows impaired heat transfer as the flow velocity affected by the buoyancy forces. However, in turbulent mixed convection, buoyancy-aided flow shows an impairment of the heat transfer rate for small buoyancy, and a gradational enhancement for large buoyancy. In this study, the existing flow regime map on mixed convection in a vertical pipe was reviewed through an analysis of literatures. Using the investigated data and heat transfer correlations, the flow regime map was reconstructed independently, and compared with the existing one. This study reviewed the limitations of the classical mixed convection flow regime map. Using the existing data and heat transfer correlations by Martinelli and Boelter and Watzinger and Johnson, the flow regime map was reconstructed independently. The results revealed that the existing map used the data selectively among the experimental and theoretical results, and a detailed description for lines forming mixed convection and transition regime were not given. And the information about uncertainty analysis and the evidentiary data were given insufficiently. The flow regime map and investigator commonly used the diameter as the characteristic length for both Re and Gr in place of the height of the heated wall, though the buoyancy forces are proportional to the third power of the height of heated wall
Convective Flow of a Colloidal Suspension in a Vertical Slot Heated from Side Wall
Cherepanov, I. N.; Smorodin, B. L.
2018-02-01
Convective flows and the transport of nanoparticles are numerically investigated in the vertical slot filled with a colloidal suspension and heated from the side. The thermodiffusion and gravitational sedimentation of the nanoparticles are taken into account. Two different regimes of laminar flow are found. The intensity of the first regime is much lower than in molecular liquids (the magnitudes of the convective and diffusion fluxes have the same order). The second regime is more intensive. The transitions between these two regimes are investigated. It is shown that intensive convective flow completely mixes the colloidal suspension to a homogeneous state as a result of the long transient process.
Directory of Open Access Journals (Sweden)
Josué Imbert González
2015-05-01
Full Text Available El trabajo presentado evaluó el comportamiento experimental de la caída de presión en un espacio anular con alambres enrollados insertados para números de Reynolds entre 1500 y 5000. La zona de prueba se seleccionó alejada de la influencia de los efectos de entrada. Anteriormente se realizaron pruebas de visualización del flujo para verificar la presencia de un flujo turbulento en esta gama del número de Reynolds. A partir de los datos experimentales se obtuvieron ecuaciones de correlación del factor de fricción para el flujo turbulento. Las ecuaciones obtenidas se compararon con los datos experimentales. Los resultados indican hasta qué punto las hélices inducen la aparición de turbulencias en un espacio anularPalabras claves: caída de presión, flujo anular, análisis hidrodinámico, visualización de flujo, hélices insertadas.______________________________________________________________________________AbstractThe work presented evaluates the experimental behavior of the pressure drop in an annular space with coiled wires inserted forReynolds numbers between 1500 and 5000. The test zone was selected away from the influence of entrance effects. Previously flow visualization tests were performed to verify the presence of a turbulent flow in this range of Reynolds number. From the experimental data were obtained correlation equations of the friction factor for turbulent flow. The equations obtained were compared with experimental data. The results indicate to what extent the helices induce the occurrence of turbulence in an annular space.Key words: drop pressure, annular flow, hydrodynamic analysis, visualization flow, wire coil inserts.
International Nuclear Information System (INIS)
Cheng, Po-Jen; Chen, Cha'o-Kuang; Lai, Hsin-Yi
2001-01-01
This article investigates the weakly nonlinear stability theory of a thin pseudoplastic liquid film flowing down on a vertical wall. The long-wave perturbation method is employed to solve for generalized nonlinear kinematic equation with free film interface. The normal mode approach is used to compute the linear stability solution for the film flow. The method of multiple scales is then used to obtain the weak nonlinear dynamics of the film flow for stability analysis. It is shown that the necessary condition for the existence of such a solution is governed by the Ginzburg - Landau equation. The modeling results indicate that both subcritical instability and supercritical stability conditions are possible to occur in a pseudoplastic film flow system. The results also reveal that the pseudoplastic liquid film flows are less stable than Newtonian's as traveling down along the vertical wall. The degree of instability in the film flow is further intensified by decreasing the flow index n. [copyright] 2001 American Institute of Physics
Cervania, A.; Knack, I. M. W.
2017-12-01
The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.
Energy Technology Data Exchange (ETDEWEB)
Staron, E. [Institute of Atomic Energy, Otwock-Swierk (Poland)
1996-12-31
Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs.
Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.
2003-12-01
The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.
Annular Pressure Seals and Hydrostatic Bearings
National Research Council Canada - National Science Library
San Andres, Luis
2006-01-01
..., in particular those handling large density fluids. Highlights on the bulk-flow analysis of annular seals are given with details on the performance of two water seals long and short, featuring the advantages of an anti-swirl brake to enhance the seal...
Stability of swirling annular flow
Czech Academy of Sciences Publication Activity Database
Maršík, František; Trávníček, Zdeněk; Novotný, Pavel; Werner, E.
2010-01-01
Roč. 17, č. 3 (2010), s. 267-279 ISSN 1065-3090 R&D Projects: GA AV ČR(CZ) IAA200760801; GA MŠk(CZ) 1M06031 Institutional research plan: CEZ:AV0Z20760514 Keywords : swirling jet * hydrodynamic stability * impinging jet Subject RIV: BK - Fluid Dynamics http://www.begellhouse.com/journals/52b74bd3689ab10b,6bfbd93509947e2e,03fca4e77476857d.html
Directory of Open Access Journals (Sweden)
T Andrade
2016-09-01
Full Text Available In the oil industry the multiphase flow occur throughout the production chain, from reservoir rock until separation units through the production column, risers and pipelines. During the whole process the fluid flows through the horizontal pipes, curves, connections and T joints. Today, technological and economic challenges facing the oil industry is related to heavy oil transportation due to its unfavourable characteristics such as high viscosity and high density that provokes high pressure drop along the flow. The coreflow technique consists in the injection of small amounts of water into the pipe to form a ring of water between the oil and the wall of the pipe which provides the reduction of friction pressure drop along the flow. This paper aim to model and simulate the transient two-phase flow (water-heavy oil in a horizontal pipe and T joint by numerical simulation using the software ANSYS CFX® Release 12.0. Results of pressure and volumetric fraction distribution inside the horizontal pipe and T joint are presented and analysed.
Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement
Arubi, Tesi I. M.; Yeung, Hoi
2012-03-01
The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.
Analysis of thin film flow over a vertical oscillating belt with a second grade fluid
Directory of Open Access Journals (Sweden)
Taza Gul
2015-06-01
Full Text Available An analysis is performed to study the unsteady thin film flow of a second grade fluid over a vertical oscillating belt. The governing equation for velocity field with appropriate boundary conditions is solved analytically using Adomian decomposition method (ADM. Expressions for velocity field have been obtained. Optimal asymptotic method (OHAM has also been used for comparison. The effects of Stocks number, frequency parameter and pressure gradient parameters have been sketched graphically and discussed.
Explicit solutions of a gravity-induced film flow along a convectively heated vertical wall.
Raees, Ammarah; Xu, Hang
2013-01-01
The gravity-driven film flow has been analyzed along a vertical wall subjected to a convective boundary condition. The Boussinesq approximation is applied to simplify the buoyancy term, and similarity transformations are used on the mathematical model of the problem under consideration, to obtain a set of coupled ordinary differential equations. Then the reduced equations are solved explicitly by using homotopy analysis method (HAM). The resulting solutions are investigated for heat transfer effects on velocity and temperature profiles.
Viability of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft
Delagrange, Christopher T.
2012-01-01
Approved for public release; distribution is unlimited The present study is focused on determining a housing design that, when paired with an off-the-shelf cross-flow fan rotor, will generate a trust-to-weight ratio significant enough to allow for vertical take-off. The commercial computational fluid dynamics software, ANSYS CFX, was used to perform a computational analysis of various housing designs until a suitable design was identified to construct for experimentation. Following the ana...
An approximate symbolic solution for convective instability flows in vertical cylindrical tubes
International Nuclear Information System (INIS)
Kirschner, I; Balint, A; Csikja, R; Gyarmati, B; Balogh, A; Meszaros, Cs
2007-01-01
The convective flow in vertical cylindrical tubes is investigated and a new formula for its velocity is derived. The Ostroumov problem is briefly discussed, and the relevant fourth-order ordinary differential equation referring to this problem is solved directly in its complete form and within a frame of an allowed simplification, as well. The result obtained for the velocity function is in good qualitative agreement with earlier simulation calculations
Numerical investigation of flow and scour around a vertical circular cylinder
DEFF Research Database (Denmark)
Baykal, Cüneyt; Sumer, B. Mutlu; Fuhrman, David R.
2015-01-01
(both bed and suspended load), as well as (iv) bed morphology. The influence of vortex shedding and suspended load on the scour are specifically investigated. For the selected geometry and flow conditions, it is found that the equilibrium scour depth is decreased by 50% when the suspended sediment...... transport is not accounted for. Alternatively, the effects of vortex shedding are found to be limited to the very early stage of the scour process. Flow features such as the horseshoe vortex, as well as lee-wake vortices, including their vertical frequency variation, are discussed. Large-scale counter...
Unsteady thin film flow of a fourth grade fluid over a vertical moving and oscillating belt
Directory of Open Access Journals (Sweden)
Taza Gul
2016-09-01
Full Text Available This article studies the unsteady thin film flow of a fourth grade fluid over a moving and oscillating vertical belt. The problem is modeled in terms of non-nonlinear partial differential equations with some physical conditions. Both problems of lift and drainage are studied. Two different techniques namely the adomian decomposition method (ADM and the optimal homotopy asymptotic method (OHAM are used for finding the analytical solutions. These solutions are compared and found in excellent agreement. For the physical analysis of the problem, graphical results are provided and discussed for various embedded flow parameters.
International Nuclear Information System (INIS)
Suh, K.Y.; Todreas, N.E.; Robsenow, W.M.
1987-01-01
An experimental study has been conducted to confirm and validate the predictive models and correlations for low flow frictional pressure loss in vertical rod bundle geometries under natural circulation conditions. An experimental procedure has been developed to measure low magnitude differential pressures under mixed convection conditions in 19 heated rod bare and wire-wrapped assemblies. The proposed model has been found to successfully predict the effects of wire wrapping, power skew, transition from laminar regime, developing and interacting global and local flow redistributions, and rod number on the mixed convection friction loss characteristics of rod bundles
International Nuclear Information System (INIS)
Luebbesmeyer, D.; Leoni, B.
1980-07-01
A new detector for measuring fluid velocities in two-phase flows by means of Noise-Analysis (especially Transient-Cross-Correlation-technique) has been developed. The detector utilizes a light-beam which is modulated by changes in the transparency of the two-phase flow. The results of nine measurements for different flow-regimes of vertical air/water-flows are shown. A main topic of these investigations was to answer the question if it is possible to identify the flow-pattern by looking at the shape of different 'Noise-Analytical-functions' (like APSD, CPSD, CCF etc.). The results prove that light-beam sensors are good detectors for fluid-velocity measurements in different flow regimes and in a wide range of fluid velocities starting with values of about 0.08 m/s up to values of 40 m/s. With respect to flow-pattern identification only the time-signals and the shape of the cross-power-density-function (CPSD) seem to be useful. (Auth.)
Fluctuation of void fraction and pressure drop during vertical two-phase flow with contraction
International Nuclear Information System (INIS)
Morimoto, Yuichiro; Madarame, Haruki; Okamoto, Koji
2003-01-01
Flow pattern and fluctuation of void fraction of two-phase flow through a vertical channel with contraction were examined experimentally. The two-phase fluid consisted of water and nitrogen gas. The pipe diameters were 0.1 [m] and 0.05 [m], which were before and after the contraction, respectively. Superficial gas and liquid velocity were changed form 0.42 to 2.55 [m/s] and from 2.26 to 4.53 [m/s]. Time series data of void fraction were measured using a single-needle void probe and flow pattern at downstream from the contraction was visualized using a high-speed video camera. Intermittent flow was observed at downstream of the contraction. The pulsation can be seen to be caused by wave of bubbles thick and thin. Frequency of fluctuation of the void fraction was almost constant when flow pattern before the contraction was bubble flow. In the case where flow pattern before the contraction was churn flow, the frequency increased with superficial liquid velocity. The frequency was also confirmed with the result of image processing using the movies captured by the high speed video camera. (author)
Annular linear induction pump with an externally supported duct
International Nuclear Information System (INIS)
1980-01-01
An annular linear induction pump of increased efficiency is described, capable of being readily disassembled for repair or replacement of parts, and having one pass flow of the liquid metal through the pump. (U.K.)
Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De
2016-02-02
High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.
Generalized granuloma annulare
Directory of Open Access Journals (Sweden)
Khatri M
1995-01-01
Full Text Available A 35-years-old female patient had generalized pruritic papular lesions, distributed like dermatitis herpetiformis for last 4 years. Histopathologic changes were typical of granuloma annulare with negative results of direct immunofluorescence. The patient did not have association of diabetes mellitus or any other systemic disease. She failed to respond to dapsone therapy and 13-cis-retinoic acid.
Cellular properties of slug flow in vertical co-current gas-liquid flow: slug-churn transition
International Nuclear Information System (INIS)
Lusseyran, Francois
1990-01-01
This research thesis reports the study and description of the structure of a slug flow regime in a co-current vertical cylindrical duct, and the characterization and prediction of its transition towards a slug-churn (de-structured) regime. Flow physical mechanisms highlighted by the measurement of two important dynamics variables (wall friction and thickness of liquid films) are related to hypotheses of cellular models. The author first proposes an overview of slug flow regimes: theoretical steady and one-dimensional analysis, mass assessment equations of cellular models, application to the assessment of the flow rate and of the thickness of the film surrounding the gas slug. In the second part, the author addresses the slug flow regime transition towards the slug-churn regime: assessment of the evolution of flow dynamic properties, use of average wall friction analysis to obtain a relevant transition criterion. The third part presents experimental conditions, and measurement methods: conductometry for thickness measurement, polarography for wall friction measurement, and gas phase detection by using an optic barrier or optic fibres [fr
Directory of Open Access Journals (Sweden)
Shiqian Nie
2017-01-01
Full Text Available The fractional advection-diffusion equation (fADE model is a new approach to describe the vertical distribution of suspended sediment concentration in steady turbulent flow. However, the advantages and parameter definition of the fADE model in describing the sediment suspension distribution are still unclear. To address this knowledge gap, this study first reviews seven models, including the fADE model, for the vertical distribution of suspended sediment concentration in steady turbulent flow. The fADE model, among others, describes both Fickian and non-Fickian diffusive characteristics of suspended sediment, while the other six models assume that the vertical diffusion of suspended sediment follows Fick’s first law. Second, this study explores the sensitivity of the fractional index of the fADE model to the variation of particle sizes and sediment settling velocities, based on experimental data collected from the literatures. Finally, empirical formulas are developed to relate the fractional derivative order to particle size and sediment settling velocity. These formulas offer river engineers a substitutive way to estimate the fractional derivative order in the fADE model.
Counter-current flow in a vertical to horizontal tube with obstructions
Energy Technology Data Exchange (ETDEWEB)
Tye, P.; Matuszkiewicz, A.; Teyssedou, A. [Institut de Genie Nucleaire, Quebec (Canada)] [and others
1995-09-01
This paper presents experimental results on counter-current flow and flooding in an elbow between a vertical and a horizontal run. The experimental technique used allowed not only the flooding limit to be determined, but also the entire partial delivery region to be studied as well. The influence that various size orifices placed in the horizontal run have on both the delivered liquid flow rates and on the flooding limits is also examined. It is observed that both the flooding limits and the delivered liquid flow rates decrease with decreasing orifice size. Further, it is also observed that the mechanisms that govern the partial delivery of the liquid are significantly different when an orifice is present in the horizontal leg as compared to the case when no orifice is present.
Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids
Directory of Open Access Journals (Sweden)
S. Das
2015-06-01
Full Text Available The fully developed mixed convection flow in a vertical channel filled with nanofluids in the presence of a uniform transverse magnetic field has been studied. Closed form solutions for the fluid temperature, velocity and induced magnetic field are obtained for both the buoyancy-aided and -opposed flows. Three different water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. Effects of the pertinent parameters on the nanofluid temperature, velocity, and induced magnetic field as well as the shear stress and the rate of heat transfer at the channel wall are shown in figures and tables followed by a quantitative discussion. It is found that the magnetic field tends to enhance the nanofluid velocity in the channel. The induced magnetic field vanishes in the cental region of the channel. The critical Rayleigh number at onset of instability of flow is strongly dependent on the volume fraction of nanoparticles and the magnetic field.
Phase separation and pressure drop of two-phase flow in vertical manifolds
International Nuclear Information System (INIS)
Zetzmann, K.
1982-01-01
The splitting of a two-phase mass flow in a tube manifold results in a separation between liquid and gas phase. A study is presented of the phase distribution and the related two-phase pressure drop for vertical manifolds in the technically relevant geometry and flow parameter region of an air-water-flow. At the outlet changes in the gas/fluid-radio are observed which are proportional to this ratio at the inlet. The separation characteristic strongly depends on the massflow through the junction. Empirical equations are given to calculate the separation. Measuring the pressure drop at main- and secondary tube of the manifold the additional pressure drop can be obtained. If these results are related with the dynamic pressure at the inlet, two-phase resistance coefficients can be deduced, which may be tested by empirical relations. (orig.) [de
Scrutiny of mixed convection flow of a nanofluid in a vertical channel
Directory of Open Access Journals (Sweden)
M. Fakour
2014-11-01
Full Text Available The laminar fully developed nanofluid flow and heat transfer in a vertical channel are investigated. By means of a new set of similarity variables, the governing equations are reduced to a set of three coupled equations with an unknown constant, which are solved along with the corresponding boundary conditions and the mass flux conservation relation by the homotopy perturbation method (HPM. We have tried to show reliability and performance of the present method compared with the numerical method (Runge–Kutta fourth-rate to solve this problem. The effects of the Grashof number (Gr, Prandtl number (Pr and Reynolds number (Re on the nanofluid flows are then investigated successively. The effects of the Brownian motion parameter (Nb, the thermophoresis parameter (Nt, and the Lewis number (Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.
International Nuclear Information System (INIS)
Tanaka, Hiroaki; Hatano, Shunichi; Maruyama, Shigeo.
1986-01-01
For predicting the fully developed upward flow in a uniformly heated vertical pipe by taking account of the buoyancy force, the k-ε models of turbulence for low Reynolds number flows were adopted. The regime map for forced, mixed and natural convections as well as for laminar and turbulent flows was plotted from the numerical calculations. At the same time, an experiment was carried out at Reynolds numbers of 3000 and 5000 with the Grashof number varied over a wide range by using pressurized nitrogen gas as a test fluid. In agreement with the prediction, buoyancy-induced impairment of heat transfer was measured right in the mixed convection region. Further, from hot-wire measurement, complete laminarization was demonstrated in the mixed convection region at a Reynolds number of 3000. (author)
Energy Technology Data Exchange (ETDEWEB)
Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)
2015-06-15
Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Directory of Open Access Journals (Sweden)
Aaiza Gul
Full Text Available This study investigated heat transfer in magnetohydrodynamic (MHD mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4 was selected as a conventional base fluid. In addition, non-magnetic (Al2O3 aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
National Research Council Canada - National Science Library
Shelley, Michael
2002-01-01
...) constructed vertical subsurface flow wetlands. Both the natural dechlorination in wetland sediments, and the engineered dechlorination in a well using zero-valent metals have major implications for the treatment of Air Force pollutants...
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Energy Technology Data Exchange (ETDEWEB)
Banas, A.O.; Carver, M.B. [Chalk River Laboratories (Canada); Unrau, D. [Univ. of Toronto (Canada)
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
International Nuclear Information System (INIS)
Banas, A.O.; Carver, M.B.; Unrau, D.
1995-01-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the open-quotes standardclose quotes κ-ε transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels
Modelling and critical analysis of bubbly flows of dilute nanofluids in a vertical tube
Energy Technology Data Exchange (ETDEWEB)
Li, Xiangdong; Yuan, Yang [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Tu, Jiyuan, E-mail: jiyuan.tu@rmit.edu.au [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Key Laboratory of Ministry of Education for Advanced Reactor Engineering and Safety, Institute of Nuclear and New Energy Technology, Tsinghua University, PO Box 1021, Beijing 100086 (China)
2016-04-15
Highlights: • The classic two-fluid model needs improvement for nanofluid bubbly flows. • The nanoparticle self-assembly changes the interfacial behaviours of bubbles. • Key job is to reformulate the interfacial transfer terms. - Abstract: The bubbly flows of air–nanofluid and air–water in a vertical tube were numerically simulated using the two-fluid model. Comparison of the numerical results against the experimental data of Park and Chang (2011) demonstrated that the classic two-fluid model, although agreed well with the air–water data, was not applicable to the air–nanofluid bubbly flow. It was suggested that in a bubbly flow system, the existence of interfaces allows the spontaneous formation of a thin layer of nanoparticle assembly at the interfaces, which significantly changes the interfacial behaviours of the air bubbles and the roles of the interfacial forces. As the conservation equations of the classic two-fluid model are still applicable to nanofluids, the mechanisms underlying the modified interfacial behaviours need to be carefully taken into account when modelling air–nanofluid bubbly flows. Thus, one of the key tasks when modelling bubbly flows of air–nanofluid using the two-fluid model is to reformulate the interfacial transfer terms according to the interfacial behaviour modifications induced by nanoparticles.
Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes
Energy Technology Data Exchange (ETDEWEB)
Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.
1996-12-01
The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)
On the One-Dimensional Modeling of Vertical Upward Bubbly Flow
Directory of Open Access Journals (Sweden)
C. Peña-Monferrer
2018-01-01
Full Text Available The one-dimensional two-fluid model approach has been traditionally used in thermal-hydraulics codes for the analysis of transients and accidents in water–cooled nuclear power plants. This paper investigates the performance of RELAP5/MOD3 predicting vertical upward bubbly flow at low velocity conditions. For bubbly flow and vertical pipes, this code applies the drift-velocity approach, showing important discrepancies with the experiments compared. Then, we use a classical formulation of the drag coefficient approach to evaluate the performance of both approaches. This is based on the critical Weber criteria and includes several assumptions for the calculation of the interfacial area and bubble size that are evaluated in this work. A more accurate drag coefficient approach is proposed and implemented in RELAP5/MOD3. Instead of using the Weber criteria, the bubble size distribution is directly considered. This allows the calculation of the interfacial area directly from the definition of Sauter mean diameter of a distribution. The results show that only the proposed approach was able to predict all the flow characteristics, in particular the bubble size and interfacial area concentration. Finally, the computational results are analyzed and validated with cross-section area average measurements of void fraction, dispersed phase velocity, bubble size, and interfacial area concentration.
Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation
Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.
2017-12-01
The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m‑2·s‑1 to 70 kg·m‑2·s‑1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.
Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine
Bachant, Peter; Wosnik, Martin; Gunawan, Budi; Neary, Vincent S.
2016-01-01
The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy?s Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor?s angular velocity and tow carriage speed, respectively. A peak power coefficient...
Stagnation-Point Flow towards a Stretching Vertical Sheet with Slip Effects
Directory of Open Access Journals (Sweden)
Khairy Zaimi
2016-04-01
Full Text Available The effects of partial slip on stagnation-point flow and heat transfer due to a stretching vertical sheet is investigated. Using a similarity transformation, the governing partial differential equations are reduced into a system of nonlinear ordinary differential equations. The resulting equations are solved numerically using a shooting method. The effect of slip and buoyancy parameters on the velocity, temperature, skin friction coefficient and the local Nusselt number are graphically presented and discussed. It is found that dual solutions exist in a certain range of slip and buoyancy parameters. The skin friction coefficient decreases while the Nusselt number increases as the slip parameter increases.
An Analysis of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts
International Nuclear Information System (INIS)
Becker, Kurt M.; Persson, P.
1963-06-01
A method of predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis predicts that the burnout conditions are independent of the L/d-ratio and the inlet temperature, and that the burnout steam quality decreases with increasing surface heat flux and increasing mass velocity. It was also found that the burnout steam quality at low pressures increases with the pressure and reaches a maximum at approximately 70 kg/cm, and thereafter decreases with a further increase of the pressure. The theoretical result compares very well with experimental data from different sources
Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate
Directory of Open Access Journals (Sweden)
S. Das
2015-03-01
Full Text Available An investigation of the hydromagnetic boundary layer flow past a moving vertical plate in nanofluids in the presence of a uniform transverse magnetic field and thermal radiation has been carried out. Three different types of water-based nanofluids containing copper, aluminum oxide and titanium dioxide are taken into consideration. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of nanofluid temperature, velocity, the rate of heat transfer and the shear stress at the plate are presented graphically for several values of the pertinent parameters. The present study finds applications in engineering devices.
The Effect of Gas Kinetics on the Gas-Lift Efficiency for Viscous Oil in Vertical Pipe Flow
Steinbakk, Carina Hoddø
2015-01-01
For heavy oil, artificial lift can be applied to increase and stabilise production flow. How the gas kinetics, i.e. the lift-gas composition will influence this increase is the subject of this thesis and will be described in relation to multiphase flow, pressure drop and pressure-temperature-volume (PVT) -theory. A vertical pipe flow was studied, simulating the pressure drop coupled with the accompanying multiphase flow and PVT-information. The simulations were run in MATLAB, supported by...
Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow
Rolin, Vincent; Porté-Agel, Fernando
2015-04-01
Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.
Chemical Reaction Effect on Transient Free Convective Flow past an Infinite Moving Vertical Cylinder
Directory of Open Access Journals (Sweden)
Ashish Paul
2013-01-01
Full Text Available An analysis is performed to study the heat and mass transfer on the flow past an infinite moving vertical cylinder, in the presence of first-order chemical reaction. The closed-form solutions of the dimensionless governing partial differential equations are obtained in terms of Bessel's functions and modified Bessel's functions by the Laplace transform technique. The transient velocity profiles, temperature profiles, and concentration profiles are studied for various sets of physical parameters, namely, the chemical reaction parameter, Prandtl number, Schmidt number, thermal Grashof number, mass Grashof number, and time. The skin friction, Nusselt number, and Sherwood number are also obtained and presented in graphs. It is observed that in presence of as well as increase in chemical reaction the flow velocity decreases. Also, in presence of destructive chemical reaction the concentration profile and Sherwood number tend to the steady state at large time.
Xue, Kun; Zheng, Yixin; Fan, Baolong; Li, Fangfang; Bai, Chunhua
2013-01-01
This paper investigates the particle scale dynamics of granular convection in vertically vibrated granular beds. The onset of the convection is found to coincide with the noticeable particle transverse migrations from the side walls towards the centre of the bed, which only take place in the wake of the gravity wave front dividing the upward moving particles and the falling ones. The mechanism driving the particle inward flows and thus sustaining the complete convection rolls can be understood in light of a convection model based on void penetration. This stochastic convection model reveals that the underlying driving force is a distinctive differential shear flow field arising from the combined effect of frictional holdback by the walls and the downward pull of gravity. The changes of the convection pattern with inceasing acceleration amplitude, in terms of the convection strength and the thickness of the bottom of the convection rolls, can be accounted for by this model.
Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters
International Nuclear Information System (INIS)
Becker, Kurt M.
1962-01-01
The present report deals with the results of the first phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. Data were obtained in the following ranges of variables. Pressure 2.4 sub 2 ; Mass velocity 144 2 /s; Heated length 1040 BO , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves. The scatter of the data around the curves is less than ± 5 per cent. In the ranges investigated the observed steam quality at burnout, x BO generally decreases with increasing heat flux; increases with increasing pressure and decreases with increasing mass velocity. The mass velocity effect has been explained on the basis of climbing film flow theory. Finally we have found that for engineering purposes the effects of inlet subcooling and channel length are negligible
Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet in a micropolar fluid
Directory of Open Access Journals (Sweden)
Yacob Nor Azizah
2013-01-01
Full Text Available An analysis is carried out for the steady two-dimensional mixed convection flow adjacent to a stretching vertical sheet immersed in an incompressible electrically conducting micropolar fluid. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the leading edge. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically using a finite difference scheme known as the Keller box method. The effects of magnetic and material parameters on the flow and heat transfer characteristics are discussed. It is found that the magnetic field reduces both the skin friction coefficient and the heat transfer rate at the surface for any given K and λ. Conversely, both of them increase as the material parameter increases for fixed values of M and λ.
Synthesis of Struvite using a Vertical Canted Reactor with Continuous Laminar Flow Process
Sutiyono, S.; Edahwati, L.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.
2018-01-01
Struvite is a white crystalline that is chemically known as magnesium ammonium phosphorus hexahydrate (MgNH4PO4·6H2O). It can easily dissolve in acidic conditions and slightly soluble in neutral and alkaline conditions. In industry, struvite forms as a scale deposit on a pipe with hot flow fluid. However, struvite can be used as fertilizer because of its phosphate content. A vertical canted reactor is a promising technology for recovering phosphate levels in wastewater through struvite crystallization. The study was carried out with the vertical canted reactor by mixing an equimolar stock solution of MgCl2, NH4OH, and H3PO4 in 1: 1: 1 ratio. The crystallization process worked with the flow rate of three stock solution entering the reactor in the range of 16-38 ml/min, the temperature in the reactor is worked on 20°, 30°, and 40°C, while the incoming air rate is kept constant at 0.25 liters/min. Moreover, pH was maintained at a constant value of 9. The struvite crystallization process run until the steady state was reached. Then, the result of crystal precipitates was filtered and dried at standard temperature room for 48 hours. After that, struvite crystals were stored for the subsequent analysis by Scanning Electron Microscope (SEM) and XRD (X-Ray Diffraction) method. The use of canted reactor provided the high pure struvite with a prismatic crystal morphology.
Directory of Open Access Journals (Sweden)
Gražina Žibienė
2015-12-01
Full Text Available Different kinds of natural and artificial filter media are able to retain phosphorus in the constructed wetlands. Due to the fact that the constructed wetland needs huge amounts of the filter media, it is very important to find locally available material which distinguishes itself by its ability to retain phosphorus. The materials found in Lithuania were considered and dolomite was chosen. Two dolomite fractions, dolomite powder (1–2 mm and dolomite chippings (2–5 mm, and sand media were used in the laboratory- scale installed for the comparative experiments. The laboratory-scale with dolomite as the filter media was on average by 21% more efficient in total phosphorus removal in comparison with the sand media. Based on the laboratory research pilot–scale vertical flow constructed wetland of 160 m2 was installed and planted with reed Phragmites australis. The dolomite chippings as filter media were chosen in order to avoid the danger of the clogging of constructed wetland. Efficiency of total phosphorus removal in the pilot-scale vertical flow constructed wetland was on average 95.7%, phosphates removal – 94.8% within one year.
Directory of Open Access Journals (Sweden)
P. Sambath
2018-03-01
Full Text Available The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT and wall concentration (VWC. The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank–Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly. Keywords: Chemical reaction, Heat generation/absorption, MHD, Radiation, Vertical cone
Turbulent mixed convection in vertical and inclined flat channels with aiding flows
Energy Technology Data Exchange (ETDEWEB)
Poskas, P.; Vilemas, J.; Adomaitis, J.E.; Bartkus, G.
1995-09-01
This paper presents an experimental study of turbulent mixed convection heat transfer for aiding flows in a vertical ({phi}=90{degrees}), inclined ({phi}=60{degrees},30{degrees}), and horizontal ({phi}=0{degrees}) flat channels with symmetrical heating and a ratio of height h to width b of about 1:10 and with length about 4 m (x/2h about 44). The study covered Re from 4x10{sup 3} to 5x10{sup 4} and Gr{sub q} from 5x10{sup 7}to 3x10{sup 10}. For the upper wall, a region of impaired heat transfer was found for all angular positions (from vertical to horizontal) and for bottom wall the augmentation of heat transfer in comparison to forced convection was revealed in the region of {phi}=0{degrees}-60{degrees}. Different characteristic buoyancy parameters were found for regions of impaired and enhanced heat transfer. General relations are suggested to predict the heat transfer for fully-developed-flow conditions and different angular positions.
Investigation of flow characteristics in the vicinity of a sediment embedded vertical retaining wall
Heydari, Nasser; Diplas, Panayiotis
2017-11-01
Global measurements of turbulent flows at the leading edge a vertical retaining wall were conducted to examine the intricate flow physics behind the local scouring process. Three laboratory setups were considered: one with an immobile, permeable, rough boundary and a fixed channel bank, one with a mobile gravel bed, but a static channel bank, and one with a mobile bed and an erodible bank. The measurements were obtained using stereo particle image velocimetry (SPIV) in a plane perpendicular to the approach flow direction over a granular bed under a clear-water scour condition. Time-averaged flow topology, turbulence statistics, and instantaneous fields associated with the in-plane and out-of-plane velocity components were examined. Investigation of instantaneous streamline topology indicated the intermittent development of vortices within the area under study. It was also demonstrated that, in the presence of a scour hole, streamwise vorticity tends to diffuse along the boundary rather than concentrate close to the wall and bed. Additionally, the results indicated that development of scour hole increases the values of turbulent kinetic energy (TKE) and turbulence intensity near the bed. These, in turn, provide more energy to enhance grain mobility and sustain the transport of sediment particles and consequently deepen the scour hole.
Lateral Mixing Mechanisms in Vertical and Horizontal Interconnected Subchannel Two-Phase Flows
International Nuclear Information System (INIS)
Gencay, Sarman; Teyssedou, Alberto; Tye, Peter
2002-01-01
A lateral mixing model based on equal volume exchange between two laterally interconnected subchannels is presented. The following mixing mechanisms are taken into account in this model: (a) diversion cross flow, caused by the lateral pressure difference between adjacent subchannels; (b) turbulent void diffusion, which is governed by the lateral void fraction difference between the subchannels; (c) void drift, responsible for the tendency of the vapor phase to drift toward unobstructed regions; and (d) buoyancy drift, which takes into account the effect of gravity in horizontal flows. Experimental two-phase air-water data obtained using two test sections having different geometries and orientations are used to determine the diffusion coefficients required by the mixing model. Under the absence of diversion crossflow, i.e., negligible lateral pressure difference between the subchannels, it is observed that the diffusion coefficient increases with increasing average void fraction in the subchannels. Moreover, for vertical flows turbulent void diffusion seems to be considerably affected by the geometry of the subchannels. For horizontal flows under nonsymmetric inlet void fraction conditions, even though the interconnected subchannels have the same geometry, different turbulent void diffusion and void drift coefficients are required to satisfy the conditions of hydrodynamic equilibrium. In the present study this condition is achieved by introducing a new void drift coefficient expressed as a correction term applied to the turbulent void drift term
Vertical axis wind turbine wake in boundary layer flow in a wind tunnel
Rolin, Vincent; Porté-Agel, Fernando
2016-04-01
A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.
DNS of multifluid flows in a vertical channel undergoing topology changes
Lu, Jiacai; Tryggvason, Gretar
2017-11-01
Multifluid flows in a vertical channel are examined by direct numerical simulations, for situations where the topology of the interface separating the different fluids changes. Several bubbles are initially placed in a turbulent channel flow at a sufficiently high void fraction so that the bubbles collide and the liquid film between them becomes very thin. This film is ruptured at a predetermined thickness and the bubbles are allowed to coalesce. For low Weber numbers the bubbles continue to coalesce, eventually forming one large bubble. At high Weber numbers, on the other hand, the large bubbles break up again, sometimes undergoing repeated coalescence and breakup. The evolution of various integral quantities, such as the average flow rate, wall-shear, and interface area are monitored and compared for different governing parameters. Various averages of the flow field and the phase distribution, over planes parallel to the walls, are examined and compared, and the microstructure of bubbles, at statistically steady state, is examined using low order probability functions. Supported by the Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725.
Wallingford, Gregory; Joshi, Nikita; Callagy, Patrice; Stone, Jamie; Brown, Ian; Shen, Sam
2017-11-20
ED overcrowding is an issue that is affecting every emergency department and every hospital. The inability to maintain patient flow into and out of the emergency department paralyzes the ability to provide effective and timely patient care. Many solutions have been proposed on how to mitigate the effects of ED overcrowding. Solutions involve either hospital-wide initiatives or ED-based solutions. In this article, the authors seek to describe and provide metrics for a patient flow methodology that targets ESI 3 patients in a vertical flow model. In the Stanford Emergency Department, a vertical flow model was created from existing ED space by removing fold-down horizontal stretchers and replacing them with multiple chairs that allowed for assessment and medical management in an upright sitting position. The model was launched and sustained through frequent interdisciplinary huddles, detailed inclusion and exclusion criteria, scripted text on how to promote the flow model to patients, and close analytics of metrics. Metrics for success included patient length of stay (LOS) for those triaged to the vertical flow area compared with ESI 3 patients triaged to the traditional emergency department as a comparison group. The secondary outcome is the total number of patients seen in the vertical flow area. This was a 6-month-September 2014, to February 2015-retrospective pre- and postintervention study that examined LOS as a marker for effective launch and implementation of a vertical patient workflow model. The patients triaged to the vertical flow area in the study period tended to be younger than in the control period (43 years versus 52 years, P = 0.00). There was a significant decrease in our primary end point: the total LOS for ESI 3 patients triaged to the vertical flow area (270 minutes versus 384 minutes, P = 0.00). Implementation of a vertical patient flow strategy can decrease LOS for the vertical ESI 3 patients based upon the inclusion and exclusion criteria
International Nuclear Information System (INIS)
Yan Chaoxing; Yan Changqi; Sun Licheng; Wang Yang
2012-01-01
A visualized study of flow patterns was carried out for air-water two-phase flow in two narrow rectangular ducts (40 mm × l.41 mm, 40 mm × 10 mm) and a circular tube with a diameter of 25 mm, respectively. The superficial velocity air and water were in the range of 0.03-24.71 m/s and 0.03-3.73 m/s. All the bubble, slug, churn and annular flows occurred in the three channels. Characteristics of flow patterns in the 40 mm × 10 mm duct are very similar to those in circular tube, but different from the 40 mm × l.41 mm duct. Detailed flow regime maps of the three channels were presented. The experimental results show that the channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. (authors)
Directory of Open Access Journals (Sweden)
Norfifah Bachok
Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
Simulation of two-phase flows in vertical tubes with the CTFD code FLUBOX
International Nuclear Information System (INIS)
Graf, Udo; Papadimitriou, Pavlos
2007-01-01
The computational two-fluid dynamics (CTFD) code FLUBOX is developed at GRS for the multidimensional simulation of two-phase flows. The single-pressure two-fluid model is used as basis of the simulation. A basic mathematical property of the two-fluid model of FLUBOX is the hyperbolic character of the advection. The numerical solution methods of FLUBOX make explicit use of the hyperbolic structure of the coefficient matrices. The simulation of two-phase flow phenomena needs, apart from the conservation equations for each phase, an additional transport equation for the interfacial area concentration. The concentration of the interfacial area is one of the key parameters for the modeling of interfacial friction forces and interfacial transfer terms. A new transport equation for the interfacial area concentration is in development. It describes the dynamic change of the interfacial area concentration due to mass exchange and a force balance at the phase boundary. Results from FLUBOX calculations for different experiments of two-phase flows in vertical tubes are presented as part of the validation
Film stability in a vertical rotating tube with a core-gas flow.
Sarma, G. S. R.; Lu, P. C.; Ostrach, S.
1971-01-01
The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.
Hydromagnetic flow and radiative heat transfer of nanofluid past a vertical plate
Directory of Open Access Journals (Sweden)
B. Ganga
2017-11-01
Full Text Available Hydromagnetic flow of an incompressible viscous nanofluid past a vertical plate in the presence of thermal radiation is investigated both analytically and numerically. The radiative heat flux is described by the Rosseland diffusion approximation in the energy equation. The governing non-linear partial differential equations are converted into a set of ordinary differential equations by suitable similarity transformations. The resulting ordinary differential equations are successfully solved analytically with the help of homotopy analysis method and numerically by the fourth order RungeâKutta method with shooting technique. The effects of various physical parameters are analyzed and discussed in graphical and tabular forms. The effects of some physical parameters such as Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, radiation parameter and magnetic parameter are analyzed on the velocity, temperature and solid volume fraction profiles as well as on the reduced Nusselt number and the local Sherwood number. An excellent agreement is observed between present analytical and numerical results. Keywords: Nanofluid, Hydromagnetic, Homotopy analysis method, Vertical plate and thermal radiation
Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel
Jha, B. K.; Aina, B.
2017-08-01
The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.
Directory of Open Access Journals (Sweden)
Freidooni Mehr N.
2012-01-01
Full Text Available In this paper, the semi-analytical/numerical technique known as the homotopy analysis method (HAM is employed to derive solutions for the laminar axisymmetric mixed convection boundary-layer nanofluid flow past a vertical cylinder. The similarity solutions are employed to transform the parabolic partial differential conservation equations into system of nonlinear, coupled ordinary differential equations, subject to appropriate boundary conditions. A comparison has been done to verify the obtained results with the purely numerical results of Grosan and Pop (2011 with excellent correlation achieved. The effects of nanoparticle volume fraction, curvature parameter and mixed convection or buoyancy parameter on the dimensionless velocity and temperature distributions, skin friction and wall temperature gradients are illustrated graphically. HAM is found to demonstrate excellent potential for simulating nanofluid dynamics problems. Applications of the study include materials processing and also thermal enhancement of energy systems.
Unsteady nonlinear convective Darcy flow of a non-Newtonian fluid over a rotating vertical cone
Madhu Mohana Raju, A. B.; Raju, G. S. S.; Mallikarjuna, B.
2017-11-01
A numerical model on unsteady nonlinear convective flow of a Casson fluid past a vertical rotating cone in a porous medium has been developed. The conservations laws are transformed into non-linear problem using convenient similarity transformations. The resultant equations are solved numerically using Runge-Kutta based shooting technique for the velocity, temperature and concentration distributions, highlighted by physical parameters, Casson fluid parameter, unsteady parameter, non-linear temperature and concentration effects and discussed in detailed with graphical aid. Increasing non-linear temperature and concentration parameters accelerates the tangential velocity while normal and azimuthal velocities are decreased. Temperature and concentration distributions are also decreased as well. This study finds applications in industries like pharmaceutical industries, aerospace technology and polymer production etc.
International Nuclear Information System (INIS)
Siddiqa, Sadia; Hossain, M.A.; Gorla, Rama Subba Reddy
2012-01-01
The problem of magnetohydrodynamic natural convection periodic boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed. Here, magnetic field is considered in the transverse direction and taken as a sinusoidal function of x-bar. In the analysis radiative heat flux is examined by assuming optically thick radiation limit. Attempt is being made to obtain the solutions valid for liquid metals by taking Pr d and the surface temperature parameter, θw, on the numerical values thus obtained for local skin friction coefficient and local Nusselt number coefficient as well as on the streamlines and isotherm lines are shown graphically for large values of X. (authors)
Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)
International Nuclear Information System (INIS)
Becker, Kurt M.; Persson, P.; Nilsson, L.; Eriksson, O.
1963-06-01
The present report deals with the results of the second phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. The following ranges of variables were studied and 809 burnout measurements were obtained. Pressure 5. 3 2 ; Inlet subcooling 56 sub BO 2 ; Mass velocity 100 2 s; Heated length 600 BO , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves, and the scatter around the curves is less than ± 5 per cent. In the ranges investigated, the observed steam quality at burnout, X BO generally decreases with increasing heat flux and mass velocity but increases with increasing pressure. The data have been compared with the empirical correlation by Tong, and excellent agreement was found for pressures higher than 10 kg/cm 2
Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux
Directory of Open Access Journals (Sweden)
Nirmal C. Sacheti
2014-01-01
Full Text Available The developing natural convective flow of a nanofluid in an infinite vertical channel with impermeable bounding walls has been investigated. It is assumed that the nanofluid is dominated by two specific slip mechanisms and that the channel walls are subject to constant heat flux and isothermal temperature, respectively. The governing nonlinear partial differential equations coupling different transport processes have been solved numerically. The variations of velocity, temperature, and nanoparticles concentration have been discussed in relation to a number of physical parameters. It is seen that the approach to the steady-state profiles of velocity and temperature in the present work is different from the ones reported in a previous study corresponding to isothermal wall conditions.
Energy Technology Data Exchange (ETDEWEB)
Ge, Ying; Jiang, Yueping; Jiang, Qinsu; Min, Hang; Fan, Haitian; Zeng, Qiang; Chang, Jie [College of Life Sciences, Zhejiang University, Hangzhou (China); Zhang, Chongbang [School of Life Sciences, Taizhou University, Linhai (China); Yue, Chunlei [Zhejiang Forestry Academy, Hangzhou (China)
2011-03-15
Rhizosphere microorganism is an important bio-component for wastewater treatment in constructed wetlands (CWs). Microbial abundance and enzyme activities in the rhizospheres of nine plant species were investigated in an integrated vertical-flow CW. The abundance of denitrifiers, as well as urease, acid, and alkaline phosphatase activities were positively correlated to plant root biomass. The abundance of bacteria, fungi, actinomycetes, ammonifiers, denitrifiers, and phosphorus decomposers, related to nutrient removal efficiencies in CWs, greatly varied among rhizospheres of different plant species (p < 0.05). Significant differences in rhizosphere enzyme activity among plant species were also observed (p < 0.05), with the exception of catalase activity. The principal component analysis using the data of microbial abundance and enzyme activity showed that Miscanthus floridulus, Acorus calamus, and Reineckia carnea were candidates to be used in CWs to effectively remove nitrogen and phosphorus from wastewater. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
EXPERIMENTAL STUDY OF WAVE FLOWS AROUND THE FINITE LENGTH VERTICAL WALL
Directory of Open Access Journals (Sweden)
Tran Long Giang
2012-10-01
Full Text Available Construction of breakwater structures of modern seaports requires computational models describing interaction of waves with structural elements of ports. The model should be based on numerical hydrodynamic models that contemplate all constituents of interaction between waves and structures, including those at various stages of construction. The above model makes it possible to have construction works performed in accordance with the pre-developed plan. Experimentalresearch of the behaviour of breakwater structures is to be conducted in laboratories. A scaled natural model is to be used for the above purpose to verify the model behaviour. The authors consider the methodology and results of experiments involving models of wave loads produced on vertical breakwater structures at various stages of their construction. On the basis of the experiments conducted by the authors, it is discovered that the value of the total wave force, that the vertical wall is exposed to, increases along with the wall length in the event of a constant wave mode, which is natural. However, the per-meter value of the wave force increases along with the increase in the length of the wall until it reaches the value of the length of a transverse obstacle divided by the length of waves equal to 0.28; thereafter, the wave force goes down. The authors assume that this phenomenon is caused by the change in the nature of interaction between waves and an obstacle and a transition from a diffraction-free flow to a diffraction flow. The authors believe that further researches are necessary to explore the phenomenon.
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.; Neutzler, Jay K.
1997-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Huggenberger, P.; Huber, E.
2014-12-01
Detailed descriptions of the subsurface heterogeneities in coarse fluvial aquifer gravel often lack in concepts to distinguish between the essence and the noise of a permeability structure and the ability to extrapolate site specific hydraulic information at the tens to several hundred meters scale. At this scale the heterogeneity strongly influences the anisotropies of the flow field and the mixing processes in groundwater. However, in many hydrogeological models the complexity of natural systems is oversimplified. Understanding the link between the dynamics of the surface processes of braided-river systems and the resulting subsurface sedimentary structures is the key to characterizing the complexity of horizontal and vertical mixing processes in groundwater. From the different depositional elements of coarse braided-river systems, the largest permeability contrasts can be observed in the scour-fills. Other elements (e.g. different types of gravel sheets) show much smaller variabilities and could be considered as a kind of matrix. Field experiments on the river Tagliamento (Northeast Italy) based on morphological observation and ground-penetrating radar (GPR) surveys, as well as outcrop analyses of gravel pit exposures (Switzerland) allowed us to define the shape, sizes, spatial distribution and preservation potential of scour-fills. In vertical sections (e.g. 2D GPR data, vertical outcrop), the spatial density of remnant erosional bounding surfaces of scours is an indicator for the dynamics of the braided-river system (lateral mobility of the active floodplain, rate of sediment net deposition and spatial distribution of the confluence scours). In case of combined low aggradation rate and low lateral mobility the deposits may be dominated by a complex overprinting of scour-fills. The delineation of the erosional bounding surfaces, that are coherent over the survey area, is based on the identification of angular discontinuities of the reflectors. Fence diagrams
The influence of annular seal clearance to the critical speed of the multistage pump
International Nuclear Information System (INIS)
Wang, J; Shen, H P; Ye, X Y; Hu, J N; Feng, Y N
2013-01-01
In the multistage pump of high head, pressure difference in two ends of annular seal clearance and rotor eccentric would produce the sealing fluid force, the effect of which can be expressed by a damping and stiffness coefficient. It has a great influence on the critical speed of the rotor system. In order to research the influence of the annular seal to the rotor system, this paper used CFD method to conduct the numerical simulation for the flow field of annular seal clearance. The radial and tangential forces were obtained to calculate the annular dynamic coefficients. Also dynamic coefficient were obtained by Matlab. The rotor system was modeled using ANSYS finite software and the critical speed with and without annular seal clearance were calculated. The result shows: annular seal's fluid field is under the comprehensive effect of pressure difference and rotor entrainment. Due to the huge pressure difference in front annular seal, fluid flows under pressure difference; the low pressure difference results in the more obvious effect on the clearance field in back annular seal. The first order critical speed increases greatly with the annular seal clearance; while the average growth rate of the second order critical speed is only 3.2%; the third and fourth critical speed decreases little. Based on the above result, the annular seal has great influence to the first order speed, while has little influence on the rest
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
International Nuclear Information System (INIS)
Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant; Ó Náraigh, Lennon
2016-01-01
We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the
Sambath, P.; Pullepu, Bapuji; Hussain, T.; Ali Shehzad, Sabir
2018-03-01
The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT) and wall concentration (VWC). The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank-Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly.
Apseudo-fluid representation of vertical liquid–coarse solids flow
Directory of Open Access Journals (Sweden)
ZORANA ARSENIJEVIC
2005-05-01
Full Text Available The pseudo–fluid concept has been applied for the prediction of the pressure gradient and voidage in vertical liquid-coarse solids flow. Treating the flowing mixture as a single homogenous fluid, the correlation for the friction coefficient of the suspension–wall was developed, as was the correlation between the true voidage and the apparent (volumetric voidage in the transport tube. Experiments were performed using water and spherical glass particles 1.20, 1.94 and 2.98 mm in diameter in a transport tube of 24 mm in diameter. The loading ratio (Gp/Gf was varied between 0.05 and 1.05 and the fluid superficial velocity was between 0.4 Ut and 4.95 Ut where Ut represents the single particle terminal velocity. The voidage ranged from 0.648 to 0.951 for these ratios. Experimental data for the pressure gradient and voidage from the literature agree well with the proposed correlations.
Pan, Ji-Zheng; Li, Wen-Chao; Ke, Fan; Wang, Lei; Li, Xue-Juan
2009-02-15
In subsurface flow constructed wetlands, artificial aeration plays an important role in enhancing the ability of pollutant removal. Oxygenation capacity of four substrates, limestone, vesuvianite, 500 grade ceramisite and high-strength ceramisite, are tested under three kinds of gas volume [0.19, 0.38, 0.76 m3 x (m2 x h)(-1)] in artificial aeration vertical-flow wetland. When the gas volume is 0.19 m3 x (m2 x h)(-1), the results demonstrate that the oxygen utilization of 500 grade ceramisite and high-strength ceramisite are highest as 14.39% and 14.21%, and the oxygen utilization of limestone and vesuvianite are 11.68% and 13.11% respectively. With the increase of aeration intensity, oxygen transfer efficiency parameter KLa rises accordingly. However, the oxygen utilization of vesuvianite and two other kinds of ceramisite decreases with the increase of aeration intensity. The oxygen utilization of vesuvianite, 500 grad ceramisite and high-strength ceramisite are lower as 7.67%, 10.46% and 10.77% respectively when the aeration intensity is 0.76 m3 x (m2 x h)(-1). On the contrary, the oxygen utilization of limestone get its maximum value of 14.04% as the aeration intensity is 0.38 m3 x (m2 x h)(-1).
Mass flow and particle size monitoring of pulverised fuel vertical spindle mills
Directory of Open Access Journals (Sweden)
Archary Hamresin
2016-06-01
Full Text Available The first step towards condition based maintenance of the milling plant is the implementation of online condition monitoring of the mill. The following paper presents and analyses methods of monitoring the key performance factors of a vertical spindle mill that is suited for implementation on older power stations, i.e. the quantity (mass flow rate and quality (particle fineness of the pulverised fuel produced by the mill. It is shown herein that the mill throughput can be monitored on-line using a simple mill energy balance that successfully predicts the coal throughput within 2.33% as compared to a calibrated coal feeder. A sensitivity analysis reveals that the coal moisture is a critical measurement for this method to be adopted as an on-line mass flow monitoring tool. A laser based particle size analyser tool was tested for use in the power plant environment as an online monitoring solution to measure pulverised fuel fineness. It was revealed that several factors around the set-up and operation of the instrument have an influence on the perceived results. Although the instrument showed good precision and repeatability of results, these factors must be taken into account in order to improve the accuracy of the reported results before the instrument can be commissioned as an on-line monitoring solution.
Bubble Lift-off Diameter and Nucleation Frequency in Vertical Subcooled Boiling Flow
International Nuclear Information System (INIS)
Chu, In Cheol; Lee, S. T.; Cho, Y. I.; Song, C. H.
2010-11-01
A series of experiments was carried out to investigate the bubble nucleation to lift-off phenomena for subcooled boiling flow in a vertical annulus channel. A high speed digital video camera was used to capture the dynamics of bubbles. The bubble lift-off diameter and the bubble nucleation frequency were evaluated in terms of heat flux, mass flux, and degree of subcooling. The fundamental features of the lift-off diameter and the nucleation frequency (i.e., the variations across nucleation sites and the dependence on the flow and heat flux conditions) were addressed based on the present observation. A database for the bubble lift-off diameter was built by gathering and summarizing the data of Prodanovic et al., Situ et al., and the present experiments. We evaluated the predictive capabilities of Unal's model, Situ et al.'s model, and Prodanovic et al.'s correlation against the database. We obtained the best prediction results through modifying the wall superheat correlation in Unal's model. In addition, we suggested a new correlation for a combined parameter of the bubble nucleation frequency and the bubble lift-off diameter
Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear
Mendoza, Victor; Goude, Anders
2017-05-01
The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.
Effects of wall roughness and entry length on void profile in vertical bubbly flow
International Nuclear Information System (INIS)
Takamasa, Tomoji
1988-01-01
An experimental study of upward air-water bubbly two-phase flow in an entry region was performed with various rough wall test tubes. The objective of the work is to clarify the effects of wall roughness and entry length on void profile. The fluid flows in the vertical circular test tube of 25 mm I.D. under nearly atmospheric pressure, at room temperature. The void profile changes from a pattern similar in appearance to the saddle shape which has local void peaks near the wall, into the power law shape whose curve is approximated by a power law formula, with increasing wall roughness and/or entry length. That is, wall roughness and entry length have a similar effect upon void profile. There are two patterns in the power law shape, a pattern with sharp center peak and a pattern with obtuse center peak. As wall roughness and/or entry length increase, the void profile changes from the former pattern to the latter pattern. At enough long entry length (L/D ≅ 150), every void profile has almost the same power law shape independent of wall roughness. Some void profiles are asymmetric to the axis. (author)
Energy Technology Data Exchange (ETDEWEB)
John, K.; Purschke, A.; Schuessler, I. [Mannesmann Seiffert GmbH, Berlin (Germany)
1999-07-01
Because of scarcity of space, the last extension stage of the Berlin-Ruhleben sewage treatment plant was executed with vertical-flow final sedimentation tanks with a square surface. The sedimentation efficiency of these tanks in permanent operation is excellent. In the year past, the operation of such a tank at the limits of its capacity was tested under long-term conditions as a master thesis project with a view to further optimization. Subsequently, this Berlin-type tank was developed further into a multi-cell final sedimentation tank, whose effectiveness was verified by means of flow-technical simulation. (orig.) [German] Im KW Berlin-Ruhleben kamen in der letzten Ausbaustufe infolge sehr begrenzter Bauflaeche vertikal durchstroemte Nachklaerbecken mit quadratischer Oberflaeche zum Einsatz. Diese Becken zeigen im Dauerbetrieb eine hervorragende Klaerwirkung, und im vorigen Jahr wurde im Rahmen einer Diplomarbeit zwecks weiterer Optimierung langfristig unter Betriebsbedingungen die Fahrweise eines solchen Beckens an der Auslegungsgrenze getestet. Unter dem Gesichtspunkt der Kostenreduzierung wurde anschliessend der Typ Berliner Becken zum Mehrzellen-Nachklaerbecken weiterentwickelt und seine Wirksamkeit mittels stroemungstechnischer Simulation ueberprueft. (orig.)
Directory of Open Access Journals (Sweden)
Mohammed Hussein A.
2008-01-01
Full Text Available The problem of the laminar upward mixed convection heat transfer for thermally developing air flow in the entrance region of a vertical circular cylinder under buoyancy effect and wall heat flux boundary condition has been numerically investigated. An implicit finite difference method and the Gauss elimination technique have been used to solve the governing partial differential equations of motion (Navier Stocks equations for two-dimensional model. This investigation covers Reynolds number range from 400 to 1600, heat flux is varied from 70 W/m2 to 400 W/m2. The results present the dimensionless temperature profile, dimensionless velocity profile, dimensionless surface temperature along the cylinder, and the local Nusselt number variation with the dimensionless axial distance Z+. The dimensionless velocity and temperature profile results have revealed that the secondary flow created by natural convection have a significant effect on the heat transfer process. The results have also shown an increase in the Nusselt number values as the heat flux increases. The results have been compared with the available experimental study and with the available analytical solution for pure forced convection in terms of the local Nusselt number. The comparison has shown satisfactory agreement. .
International Nuclear Information System (INIS)
Becker, Kurt M.; Hernborg, G.
1964-11-01
The present report deals with measurements of the effects of spacers on the burnout conditions in a vertical annulus and a vertical 7-rod cluster. The following ranges of variables were studied and 162 burnout measurements were obtained. Pressure p = 31 kg/cm; Inlet sub-cooling 35 sub 2 ; Mass velocity 94 2 /s; Burnout steam quality 0.10 BO < 0.56. The experimental results showed that the type of spacers employed during the present investigation had negligible effects on the burnout conditions and that the measured burnout heat fluxes could be predicted within ± 5 per cent by means of the correlation by Becker et al for flow in smooth channels
International Nuclear Information System (INIS)
Hoffman, M.A.
1978-12-01
Experiments have been performed to determine the length for convergence or closure of a vertical, hollow annular water jet due to the action of surface tension forces. The data agree well with theoretical predictions up to a velocity of about 3 m/s. At higher velocities, the convergence lengths are less than predicted and this is attributed to the jet acting as an ejector pump and thereby reducing the air pressure inside the annulus to slightly sub-atmospheric values. The stability of such a jet is also discussed in the light of the fact that no hydrodynamic instabilities have been observed to date. Finally the results of a series of experiments on the flow spreading or splitting due to the presence of wedge-shaped obstacles in the path of the annular jet flow are described
Kinetics Analysis of Synthesis Reaction of Struvite With Air-Flow Continous Vertical Reactors
Edahwati, L.; Sutiyono, S.; Muryanto, S.; Jamari, J.; Bayuseno, dan A. P.
2018-01-01
Kinetics reaction is a knowledge about a rate of chemical reaction. The differential of the reaction rate can be determined from the reactant material or the formed material. The reaction mechanism of a reactor may include a stage of reaction occurring sequentially during the process of converting the reactants into products. In the determination of reaction kinetics, the order of reaction and the rate constant reaction must be recognized. This study was carried out using air as a stirrer as a medium in the vertical reactor for crystallization of struvite. Stirring is one of the important aspects in struvite crystallization process. Struvite crystals or magnesium ammonium phosphate hexahydrates (MgNH4PO4·6H2O) is commonly formed in reversible reactions and can be generated as an orthorhombic crystal. Air is selected as a stirrer on the existing flow pattern in the reactor determining the reaction kinetics of the crystal from the solution. The experimental study was conducted by mixing an equimolar solution of 0.03 M NH4OH, MgCl2 and H3PO4 with a ratio of 1: 1: 1. The crystallization process of the mixed solution was observed in an inside reactor at the flow rate ranges of 16-38 ml/min and the temperature of 30°C was selected in the study. The air inlet rate was kept constant at 0.25 liters/min. The pH solution was adjusted to be 8, 9 and 10 by dropping wisely of 1 N KOH solution. The crystallization kinetics was examined until the steady state of the reaction was reached. The precipitates were filtered and dried at a temperature for subsequent material characterization, including Scanning Electron Microscope (SEM) and XRD (X-Ray diffraction) method. The results show that higher flow rate leads to less mass of struvite.
Heat transfer regimes for a flow of water at supercritcal conditions in vertical channels
Deev, V. I.; Kharitonov, V. S.; Churkin, A. N.; Baisov, A. M.
2017-11-01
Heat transfer regimes observed in experiments with water at supercritical conditions flowing in vertical channels of various cross-sections (such as round pipes, annulus, or rod bundles) are analyzed. In accordance with the established practice, the normal and the deteriorated heat transfer regimes were singled out as the basic regimes specific for heat carriers with highly variable properties. At the same time, it has been established that most published experimental data on supercritical pressure water heat transfer along the length of test sections demonstrate combined (or transient) heat transfer regimes. The features can be presented as a superposition of characteristics of the above-mentioned basic regimes. The combined regimes are not stable in certain ranges of water flow conditions in which sudden transitions between the basic regimes can occur. A system of similarity criteria governing heat transfer rate in the vicinity of the critical point is examined. As applicable to cores of water-cooled reactors, due to a small hydraulic diameter of cooling channels, buoyancy forces acting in these channels are negligible as compared with the inertia effects caused by thermal acceleration of the flow and viscous force. This concept yields two integrated criteria whose use in the correction factors for the basic heat transfer equation, which we proposed previously for the normal regimes, adequately (with an error of 20-25%) describes the specific of the heat transfer coefficient in the normal, deteriorated, and combined regimes. A system of equations is proposed for design calculation of heat transfer in channels of nuclear reactors cooled with supercritical pressure water.
A gas flow model for layered landfills with vertical extraction wells.
Feng, Shi-Jin; Zheng, Qi-Teng; Xie, Hai-Jian
2017-08-01
This paper developed a two-dimensional axisymmetric analytical model for layered landfills with vertical wells. The model uses a horizontal layered structure to describe the waste non-homogeneity with depth in gas generation, permeability and temperature. The governing equations in the cylindrical coordinate system were transformed to dimensionless forms and solved using a method of eigenfunction expansion. After verification, the effects of different well boundary conditions and gas extraction systems on recovery efficiency were investigated. A dimensionless double-layer system, consisting of a cover and a waste layer, was also explored. The results show that a constant vacuum pressure boundary condition can be enough to describe a perforated pipe surrounded by drainage gravel with a reasonable value of well radius, such as half the radius of gravel fill. Also, the 7 independent variables (one marked with an asterisk is dimensionless) of a double-layer system can be integrated into 3 dimensionless ones: Cover permeability K v1 ∗ /(Vertical gas permeability of waste K v2 ∗ ×Cover thickness h 1 ∗ ),-Vacuum pressure p w ×P atm K v2 ∗ /(μR g T 2 ×Gas generation rate of waste s 2 ) and ln(Well radius r w ∗ )/(Anisotropy degree of waste k 2 ∗ ). The integration is based on the inherent mechanism of this flow system with certain simplification. The effects of these variables are then quantitatively characterized for a better understanding of gas recovery efficiency. Same recovery efficiency can be achieved with different variable combinations. For example, increasing h 1 ∗ (such as doubling it) has the same effect with decreasing K v1 ∗ (such as halving it). Along with the reduction of variables by half, the integration can facilitate the preliminary design, and is a small but important advance in the consideration of MSW non-homogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Chougule, Prasad; Nielsen, Søren R.K.
2014-01-01
Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has...... been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...
Directory of Open Access Journals (Sweden)
Hyun Ju Jung
2009-12-01
Full Text Available The two-dimensional unsteady flow around a vertical axis turbine for tidal stream energy conversion was investigated using a computational fluid dynamics tool solving the Reynolds-Averaged Navier-Stokes equations. The geometry of the turbine blade section was NACA653-018 airfoil. The computational analysis was done at several different angles of attack and the results were compared with the corresponding experimental data for validation and calibration. Simulations were then carried out for the two-dimensional cross section of a vertical axis turbine. The simulation results demonstrated the usefulness of the method for the typical unsteady flows around vertical axis turbines. The optimum turbine efficiency was achieved for carefully selected combinations of the number of blades and tip speed ratios.
Forte, A.M.; Woodward, R.L.
1997-01-01
Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.
Air–water flow in a vertical pipe : Experimental study of air bubbles in the vicinity of the wall
Descamps, M.N.; Oliemans, R.V.A.; Ooms, G.; Mudde, R.F.
2008-01-01
This study deals with the influence of bubbles on a vertical air–water pipe flow, for gas-lift applications. The effect of changing the bubble size is of particular interest as it has been shown to affect the pressure drop over the pipe. Local measurements on the bubbles characteristics in the wall
Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters
International Nuclear Information System (INIS)
Smirnov, A.; Raitses, Y.; Fisch, N.J.
2002-01-01
Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power
Directory of Open Access Journals (Sweden)
Dong-Hoon Yi
2015-05-01
Full Text Available This paper introduces a novel afocal optical flow sensor (OFS system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.
Energy Technology Data Exchange (ETDEWEB)
Chu, In-Cheol, E-mail: chuic@kaeri.re.kr; Lee, Seung-Jun; Youn, Young Jung; Park, Jong Kuk; Choi, Hae Seob; Euh, Dong-Jin; Song, Chul-Hwa
2017-02-15
Experiments were performed to quantify the local bubble parameters such as void fraction, bubble velocity, interfacial area concentration, and Sauter mean diameter for the subcooled boiling flow of a refrigerant R-134a in a pressurized vertical annulus channel. Optical fiber void probe and double pressure boundary visualization windows were installed at four measurement stations with different elevations, thus enabling the quantification of local bubble parameters and observation of global boiling structure. Using high-resolution traverse systems for the optical fiber void probes and the heating tube, the radial profiles of the bubble parameters and their axial propagation can be evaluated at any elevation of the whole heating region. At this first phase of the experiments, three tests were conducted by varying the pressure, heat flux, mass flux, and local liquid subcooling. The radial profiles of the bubble parameters were obtained at seven elevations. The pressure condition of the present experiments covered the normal operating pressure of PWRs according to the similarity criteria. The present experimental data will be useful for thorough validation and improvement of the CMFD (Computation Multi-Fluid Dynamics) codes and constitutive relations.
Gou, Hongchao; Li, Juan; Cai, Rujian; Song, Shuai; Li, Miao; Yang, Dongxia; Jiang, Zhiyong; Li, Yan; Chu, Pinpin; Li, Chunling
2018-01-01
Haemophilus parasuis infection is of considerable economic importance in the swine industry due to high morbidity and mortality in naive swine populations. Accurate detection and identification of the causative agent are difficult, yet necessary, for disease control. In this study, a simple and rapid method of cross-priming amplification (CPA) with a vertical flow (VF) visualization strip was established to detect H. parasuis. The reaction can specifically identify 15 serovar reference strains and 57 clinically isolated strains of H. parasuis, with a detection limit of 14CFU. The performance of the CPA-VF assay was evaluated and compared with that of species-specific PCR by testing 62 clinical culture-positive specimens of H. parasuis. The entire process, from specimen processing to analysis of the results, can be completed in 2h without a complicated apparatus. The convenience and speed of the CPA-VF assay in this study make it a suitable choice for epidemiological investigation and point-of-care testing (POCT) for H. parasuis infection. Copyright © 2017. Published by Elsevier B.V.
Unsteady convection flow and heat transfer over a vertical stretching surface.
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.
Sun, G; Austin, D
2007-01-01
A laboratory-scale, mass-balance study was carried out on the transformation of nitrogenous pollutants in four vertical flow wetland columns. Landfill leachate containing low organic matter, but a high concentration of ammoniacal-nitrogen, was treated under dissolved oxygen concentrations close to saturation. Influent total nitrogen (TN) comprised ammoniacal-nitrogen with less than 1% nitrate and nitrite, negligible organic nitrogen, and very low BOD. Nitrification occurred in three of the four columns. There was a substantial loss of total nitrogen (52%) in one column, whereas other columns exhibited zero to minor losses (Nitrogen loss under study conditions was unexpected. Two hypotheses are proposed to account for it: (1) either the loss of TN is attributed to nitrogen transformation into a form (provisionally termed alpha-nitrogen) that is undetectable by the analytical methods used; or (2) the loss is caused by microbial denitrification or deammonification. By elimination and stoichiometric mass balance calculations, completely autotrophic nitrogen-removal over nitrite (CANON) deammonification is confirmed as responsible for nitrogen loss in one column. This result reveals that CANON can be native to aerobic engineered wetland systems treating high ammonia, low organic content wastewater.
Pálfy, T G; Gerodolle, M; Gourdon, R; Meyer, D; Troesch, S; Molle, P
2017-06-01
The performance of a vertical flow constructed wetland for combined sewer overflow treatment (CSO CW) has been evaluated. The full-scale site has been monitored for 3 years for major pollutants and for two load events for a range of micropollutants (metals, metalloids and polycyclic aromatic hydrocarbons (PAHs)). Performance were predominantly high (97% for total suspended solids (TSS), 80% for chemical oxygen demand (COD), 72% for NH 4 -N), even if several loads were extremely voluminous, pushing the filter to its limits. Two different filter materials (a 4:1 mixture of sand and zeolite and natural pozzolana) showed similar treatment performance. Furthermore, environmental factors were correlated with COD removal efficiency. The greatest influencers of COD removal efficiency were the inlet dissolved COD concentrations and the duration and potential evapotranspiration during inter-event periods. Furthermore, sludge was analysed for quality and a sludge depth map was created. The map, and calculating the changes in sludge volume, helped to understand solid accumulation dynamics.
A method for bubble volume calculating in vertical two-phase flow
International Nuclear Information System (INIS)
Wang, H Y; Dong, F
2009-01-01
The movement of bubble is a basic subject in gas-liquid two-phase flow research. A method for calculating bubble volume which is one of the most important characters in bubble motion research was proposed. A suit of visualized experimental device was designed and set up. Single bubble rising in stagnant liquid in a rectangular tank was studied using the high-speed video system. Bubbles generated by four orifice with different diameter (1mm, 2mm, 3mm, 4mm) were recorded respectively. Sequences of recorded high-speed images were processed by digital image processing method, such as image noise remove, binary image transform, bubble filling, and so on. then, Several parameters could be obtained from the processed image. Bubble area, equivalent diameter, bubble velocity, bubble acceleration are all indispensable in bubble volume calculating. In order to get the force balance equation, forces that work on bubble along vertical direction, including drag force, virtual mass force, buoyancy, gravity and liquid thrust, were analyzed. Finally, the bubble volume formula could be derived from the force balance equation and bubble parameters. Examples were given to shown the computing process and results. Comparison of the bubble volume calculated by geomettic method and the present method have shown the superiority of the proposed method in this paper.
Air-driven viscous film flow coating the interior of a vertical tube
Ogrosky, H. Reed; Camassa, Roberto; Olander, Jeffrey
2017-11-01
We discuss a model for the flow of a viscous liquid film coating the interior of a vertical tube when the film is driven upwards against gravity by airflow through the center of the tube. The model consists of two components: (i) a nonlinear model, exploiting the slowly-varying liquid-air interface, for the interfacial stresses created by the airflow, and (ii) a long-wave asymptotic model for the air-liquid interface. The stability of small interfacial disturbances is studied analytically, and it is shown that the modeled free surface stresses contribute to both an increased upwards disturbance velocity and a more rapid instability growth than those of a previously developed model. Numerical solutions to the long-wave model exhibit saturated waves whose profiles and velocities show improvement, with respect to the previous model, in matching experiments. The model results are then compared with additional experiments for a slightly modified version of the problem. We gratefully acknowledge funding from NSF DMS-0509423, DMS-0908423, DMS-1009750, DMS-1517879, RTG DMS-0943851, CMG ARC-1025523 and NIEHS 534197-3411.
Yee, Emma H; Lathwal, Shefali; Shah, Pratik P; Sikes, Hadley D
2017-11-22
We report methods for stabilizing cellulose-based immunoassays and using this platform to analyze human saliva. Stabilization treatments of immunoassays for matrix metalloproteinases (MMP)-8 and -9, biomarkers of periodontal disease, were conducted and compared, revealing that anti-MMP-8 and -9 capture antibodies could be stabilized with the addition of a 5% trehalose solution to the test zones, followed by drying in a vacuum oven. After stabilization, the paper devices retained equivalent binding activity to that of freshly prepared tests for 14 days-a time frame that enables US-based clinical testing of this diagnostic assay. A saliva pretreatment method was developed to remove viscous elements without reducing the concentration or binding activity of dissolved proteins. Immunoassays were stored in ziplock bags containing desiccant, and used to detect nanomolar concentrations of MMP-9 in human saliva across the relevant clinical concentration range. These methods and findings facilitate rapid, affordable validation studies of this and other biomarkers that are found in saliva using vertical flow immunoassays.
Fu, Guiping; Huangshen, Linkun; Guo, Zhipeng; Zhou, Qiaohong; Wu, Zhenbin
2017-01-01
The effects of supplementing plant-based carbon sources, fermented tissues of Arundo donax and Pontederia cordata, and a combination of the two plants, on the nitrogen removal efficiency and microbial composition in a vertical flow constructed wetland (VFCW) were examined. The results showed that the addition of the composite carbon source produced the highest removal efficiencies of NH 4 + -N 91.5%, NO 3 - -N 94.5% and TN 92.8% in VFCW. The detected abundance of amoA, nirS, and nxrA genes indicated that ammonia oxidation bacteria and denitrifying bacteria were more abundant than the nitrite oxidation bacteria. Furthermore, the addition of the composite carbon source significantly promoted the growth of the denitrifying bacteria in VFCW. The results indicated that supplementing the system with plant-based carbon sources achieved partial nitrification and denitrification, as well as classic denitrification in VFCWs. The study suggested that multiple nitrogen removal pathways were required to feasibly and efficiently remove nitrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Md. Mamun Molla
2014-01-01
Full Text Available The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.
Besançon, A; Le Corre, K S; Dotro, G; Jefferson, B
2017-01-01
This paper demonstrates that utilising a vertical flow (VF) wetland after a conventional activated sludge (CAS) delivers equivalent or better effluent quality to a membrane bioreactor (MBR) based on a side-by-side pilot trial. The CAS was operated under the solids retention times (SRT) of 6, 12, and 20 days, with the effluent from each pilot plant fed onto a soil aquifer treatment column to better understand their water reuse application potential. Results showed an upgraded CAS + VF system could deliver effluents with median values of 34 mgO 2 .L -1 , 7 mg.L -1 and 1.9 mg.L -1 for organics, solids and ammonia nitrogen, respectively, which were statistically similar to those from the MBR. Water reuse standards were achieved by the upgraded system for most parameters, with the exception of total coliform removal. The upgraded system delivered superior metal removal when compared to the CAS. An economic analysis showed upgrading a CAS with a VF wetland was more favourable than investing in an MBR system for example works of 5000 and 50,000 population equivalents if the VF system was operated at hydraulic loading rates of 0.03 m.d -1 and 0.08 m.d -1 , respectively. This was delivered for a tenth of the carbon footprint of the MBR treatment.
Dynamics of Newtonian annular jets
International Nuclear Information System (INIS)
Paul, D.D.
1978-12-01
The main objectives of this investigation are to identify the significant parameters affecting the dynamics of Newtonian annular jets, and to develop theoretical models for jet break-up and collapse. This study has been motivated by recent developments in laser-fusion reactor designs; one proposed cavity design involves the use of an annular lithium jet to protect the cavity wall from the pellet debris emanating from the microexplosion
Energy Technology Data Exchange (ETDEWEB)
Isa, Sharena Mohamad; Ali, Anati [Department of Mathematical Sciences, Faculty of Science Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia sharena-ina@yahoo.com, anati@utm.my (Malaysia)
2015-10-22
In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.
Ducted fan inlet/exit and rotor tip flow improvements for vertical lift systems
Akturk, Ali
The current research utilized experimental and computational techniques in 5" and 22" diameter ducted fan test systems that have been custom designed and manufactured. Qualitative investigation of flow around the ducted fan was also performed using smoke flow visualizations. Quantitative measurements consisted of 2D and 3D velocity measurements using planar and Stereoscopic Particle Image Velocimetry (PIV and SPIV), high resolution total pressure measurements using Kiel total pressure probes and real time six-component force and torque measurements. The computational techniques used in this thesis included a recently developed radial equilibrium based rotor model(REBRM) and a three dimensional Reynolds-Averaged Navier Stokes (RANS) based CFD model. A radial equilibrium based rotor model (REBRM) developed by the author was effectively integrated into a three-dimensional RANS based computational system. The PIV measurements and computational flow predictions using (REBRM) near the fan inlet plane were in a good agreement at hover and forward flight conditions. The aerodynamic modifications resulting from the fan inlet flow distortions in forward flight regime were clearly captured in 2D PIV results. High resolution total pressure measurements at the downstream of the fan rotor showed that tip leakage, rotor hub separation, and passage flow related total pressure losses were dominant in hover condition. However, the losses were dramatically increased in forward flight because of inlet lip separation and distortion. A novel ducted fan inlet flow conditioning concept named "Double Ducted Fan" (DDF) was developed. The (DDF) concept has a potential to significantly improve the performance and controllability of VTOL UAVs and many other ducted fan based vertical lift systems. The new concept that will significantly reduce the inlet lip separation related performance penalties used a secondary stationary duct system to control "inlet lip separation" occurring especially at
Numerical modelling of isothermal gas-liquid two-phase bubbly flow in vertical pipes
International Nuclear Information System (INIS)
Yamoah, S.
2014-07-01
In order to qualify CFD codes for accurate numerical predictions of transient evolution of flow regimes in a vertical gas-liquid two-phase flow, suitable closure models are needed. The current study focuses on detailed numerical investigation of the interfacial driving force models and assessment of two population balance model approaches viz. the MUltiple-Size-Group (MUSIG) and one-group Interfacial Area Transport Equation (lATE) using the two-fluid modelling approach. Numerical predictions of five primitive variables: gas volume fraction, interfacial area concentration, Sauter mean bubble diameter, gas velocity and liquid velocity; have been validated against experimental data of Monros et al., (2013). Three specific objectives have been completed in this study. Firstly, under the assumption of mono-disperse bubbles, a consistent set of interfacial force models have been investigated. The effect of drag, lift, wall lubrication and turbulent dispersion forces has been assessed. New parameters have been introduced in the wall lubrication force models of Antal et al., (1991) and Frank et al., (2004, 2008) as well as implementing additional drag coefficient models using CFX Expression Language (CEl). The Tomiyama, (1998) lift coefficient model has been modified in this study. In general, the predictions from the sets of interfacial force models yielded satisfactory agreement with the experimental data. A set of Grace drag coefficient model, Tomiyama lift coefficient model, Antal wall force model, and Favre averaged turbulent dispersion force were found to provide the best agreement with the experimental data. Secondly, a model validation study to assess the performance of existing coalescence and breakup models of the MUSIG model in simulating bubbly flow in vertical configuration has been conducted. The breakup model of Luo and Svendsen, (1996) and coalescence model of Prince and Blanch, (1990) have been implemented. Detailed analysis has been performed for the wall
Effect of settling particles on the stability of a particle-laden flow in a vertical plane channel
Boronin, S. A.; Osiptsov, A. N.
2018-03-01
The stability of a viscous particle-laden flow in a vertical plane channel in the presence of the gravity force is studied. The flow is described using a two-fluid "dusty-gas" model with negligibly small volume fraction of fines and two-way coupling of the phases. Two different profiles of the particle number density in the main flow are considered: homogeneous and non-homogeneous in the form of two layers symmetric about the channel axis. The novel element of the linear-stability problem formulation is a particle velocity slip in the main flow caused by the gravity-induced settling of the dispersed phase. The eigenvalue problem for a linearized system of governing equations is solved using the orthonormalization and QZ algorithms. For a uniform particle number density distribution, it is found that there exists a domain in the plane of Froude and Stokes numbers, in which the two-phase flow in a vertical channel is stable for an arbitrary Reynolds number. This stability domain corresponds to relatively small-inertia particles and large velocity-slip in the main flow. In contrast to the flow with a uniform particle number density distribution, the stratified dusty-gas flow in a vertical channel is unstable over a wide range of governing parameters. The instability at small Reynolds numbers is determined by the gravitational mode characterized by small wavenumbers (long-wave instability), while at larger Reynolds numbers the instability is dominated by the shear mode with the time-amplification factor larger than that of the gravitational mode. The results of the study can be used for optimization of a large number of technological processes, including those in riser reactors, pneumatic conveying in pipeline systems, hydraulic fracturing, and well cementing.
Energy Technology Data Exchange (ETDEWEB)
Park, Chang-Seok; Lim, Hee-Chang [Pusan Nat’l Univ., Busan (Korea, Republic of)
2017-01-15
Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.
Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu; Krishna, Reddy Gopi; Hannah, Rosaline; Arathi, Ganesh; Roohi, Riaz
2009-01-01
Aim/Objective: To compare the laterally condensed gutta-percha, vertically compacted thermoplastized gutta-percha (E and Q Plus system) and cold free-flow gutta–percha (GuttaFlow). This is a volumetric analysis using spiral CT, an in vitro study. Materials and Methods: Access cavities were prepared in 60 single rooted anterior teeth; cleaning and shaping was done and obturated with three of the different techniques: group A: cold lateral; group B: vertically compacted thermoplasticized and group C: cold free-flow obturation techniques. Volume analysis was done using spiral computed tomography (CT). The percentage difference was calculated and statistically analyzed using one-way ANOVA and post hoc multiple comparison Tukey HSD tests. Results: There were statistical significant differences between group A (0.183cm3) and group B (0.136cm3); group A (0.183cm3) and group C (0.128cm3). But there was no statistical significance between group B (0.136cm3) and group C (0.128cm3). Conclusion: Within the limitations of this in vitro study it can be concluded that cold free-flow obturation technique showed the highest volume of obturation, followed by the vertically condensed thermoplasticized technique. The least volume of obturation was observed in cold lateral condensation technique. PMID:20543923
[Removal nitrogen of integrated vertical-flow constructed wetland under aeration condition].
Tao, Min; He, Feng; Xu, Dong; Zhou, Qiao-Hong; Liang, Wei; Chen, Shui-Ping; Wu, Zhen-Bin
2011-03-01
Oxygen is an important limit factor of nitrogen removal in constructed wetlands, so it is the key point for improving nitrogen removal efficiency of constructed wetlands that the optimization of oxygen distribution within wetlands. Therefore, oxygen status, nitrogen removal and purification mechanism of integrated vertical-flow constructed wetland (IVCW) under aeration condition in summer and winter have been studied. The results showed that both oxygen levels and aerobic zones were increased in the wetland substrates. The area of oxic zone I (expressing with depth) extended from 22 cm, 17 cm to 53 cm, 44 cm, in summer and winter, respectively. The electric potential (Eh) profiling demonstrated that artificial aeration maintained the pattern of sequential oxic-anoxic-oxic (O-A-O) redox zones within the aerated IVCW in winter, while only two oxic-anoxic (O-A) zones were present inside the non-aerated IVCW in the cold season. The decomposition of organic matter and nitrification were obviously enhanced by artificial aeration since the removal efficiency of COD, TN and NH4(+) -N were increased by 12.2%, 6.9% and 15.1% in winter, respectively. There was no significant accumulation of NO3(-) -N in the effluent with an aeration cycle of 8 h on and 16 h off in this experiment. Moreover, we found that oxic zone I was the main region of pollutants removal in IVCW system, and artificial aeration mainly acted to enhance the purification capacity of this oxic zone in the aerated IVCW. These results suggest that aeration is important for optimization and application of IVCW system.
Hussein, Amjad; Scholz, Miklas
2018-03-01
The release of untreated dye textile wastewater into receiving streams is unacceptable not only for aesthetic reasons and its negative impacts on aquatic life but also because numerous dyes are toxic and carcinogenic to humans. Strategies, as of now, used for treating textile wastewaters have technical and economical restrictions. The greater part of the physico-chemical methods, which are used to treat this kind of wastewater, are costly, produce large amounts of sludge and are wasteful concerning some soluble dyes. In contrast, biological treatments such as constructed wetlands are cheaper than the traditional methods, environmental friendly and do not produce large amounts of sludge. Synthetic wastewater containing Acid Blue 113 (AB113) and Basic Red 46 (BR46) has been added to laboratory-scale vertical-flow construction wetland systems, which have been planted with Phragmites australis (Cav.) Trin. ex Steud. (common reed). The concentrations 7 and 208 mg/l were applied for each dye at the hydraulic contact times of 48 and 96 h. Concerning the low concentrations of BR46 and AB113, the unplanted wetlands are associated with significant (ρ wetlands concerning the removal of dyes. For the high concentrations of AB113, BR46 and a mixture of both of them, wetlands with long contact times were significantly (ρ wetlands that had short contact times in terms of dye, colour and chemical oxygen demand reductions. Regarding nitrate nitrogen (NO 3 -N), the reduction percentage rates of AB113, BR46 and a mixture dye of both of them were between 85 and 100%. For low and high inflow dye concentrations, best removals were generally recorded for spring and summer, respectively.
Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa
2017-01-01
The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.
Directory of Open Access Journals (Sweden)
Pantip Klomjek
2016-09-01
Full Text Available This research aims to investigate the pollutant removal efficiencies in swine wastewater using a vertical subsurface flow constructed wetland (VSF CW planted with two species of Napier grass. The grass productivities were also cultivated and compared in order to provide information for species selection. Twelve treatment units were set up with the VSF CWs planted with Giant Napier grass (Pennisetum purpureum cv. King grass and Dwarf Napier grass (Pennisetum purpureum cv. Mott. with 2 and 5 cm d−1 of hydraulic loading rates (HLR. Comparisons of removal efficiency and grass productivity were analyzed using Duncan's Multiple Range Test and t-test at the significant level 0.05. Both species of Napier grass performed more than 70% of removal efficiency of BOD and TKN. The VSF CW planted with Giant Napier grass at 5 cm d−1 HLR performed the highest BOD removal efficiency of 94 ± 1%, while the 2 cm d−1 HLR removed COD with efficiency of 64 ± 6%. The results also showed the effluent from all treatment units contained averages of BOD, COD, TSS, TKN and pH that followed Thailand's swine wastewater quality standard. Average fresh yields and dry yields were between 4.6 ± 0.4 to 15.2 ± 1.2 and 0.5 ± 0.1 to 2.2 ± 0.1 kg m−2, respectively. The dry yields obtained from four cutting cycles in five months of CW system operation were higher than the ones planted with a traditional method, but declined continuously after each cutting cycle. Both species of Napier grass indicated their suitability to be used in the VSF CW for swine wastewater treatment.
Kinematics and statistics of dense, slow granular flow through vertical channels
Ananda, K. S.; Moka, Sudheshna; Nott, Prabhu R.
We have investigated the flow of dry granular materials through vertical channels in the regime of dense slow flow using video imaging of the particles adjacent to a transparent wall. Using an image processing technique based on particle tracking velocimetry, the video movies were analysed to obtain the velocities of individual particles. Experiments were conducted in two- and three-dimensional channels. In the latter, glass beads and mustard seeds were used as model granular materials, and their translational velocities were measured. In the former, aluminium disks with a dark diametral stripe were used and their translational velocities and spin were measured. Experiments in the three-dimensional channels were conducted for a range of the channel width W, and for smooth and rough sidewalls. As in earlier studies, we find that shearing takes place predominantly in thin layers adjacent to the walls, while the rest of the material appears to move as a plug. However, there are large velocity fluctuations even in the plug, where the macroscopic deformation rate is negligibly small. The thickness of the shear layer, scaled by the particle diameter dp, increases weakly with W/dp. The experimental data for the velocity field are in good agreement with the Cosserat plasticity model proposed recently. We also measured the mean spin of the particles in the two-dimensional channel, and its deviation from half the vorticity. There is a clear, measurable deviation, which too is in qualitative agreement with the Cosserat plasticity model. The statistics of particle velocity and spin fluctuations in the two-dimensional channel were analysed by determining their probability distribution function, and their spatial and temporal correlation. They were all found to be broadly similar to previous observations for three-dimensional channels, but some differences are evident. The spatial correlation of the velocity fluctuations are much stronger in the two-dimensional channel, implying
EXPLOSION OF ANNULAR CHARGE ON DUSTY SURFASE
Directory of Open Access Journals (Sweden)
A. Levin Vladimir
2017-01-01
Full Text Available This problem is related to the safety problem in the area of forest fires. It is well known that is possible to extinguish a fire, for example, by means of a powerful air stream. Such flow arises from the explosive shock wave. To enhance the im- pact of the blast wave can be used an explosive charge of annular shape. The shock wave, produced by the explosion, in- creased during moves to the center and can serve as a means of transportation dust in the seat of the fire. In addition, emerging after the collapse of a converging shock wave strong updraft can raise dust on a greater height and facilitate fire extinguishing, precipitating dust over a large area. This updraft can be dangerous for aircraft that are in the sky above the fire. To determine the width and height of the danger zone performed the numerical simulation of the ring of the explosion and the subsequent movement of dust and gas mixtures. The gas is considered ideal and perfect. The explosion is modeled as an instantaneous increase in the specific internal energy in an annular zone on the value of the specific heat of explosives. The flow is consid- ered as two-dimensional, and axisymmetric. The axis of symmetry perpendicular to the Earth surface. This surface is considered to be absolutely rigid and is considered as the boundary of the computational domain. On this surface is exhibited the condition of no motion. For the numerical method S. K. Godunov is used a movable grid. One system of lines of this grid is moved in accordance with movement of the shock wave. Others lines of this grid are stationary. The calculations were per- formed for different values of the radii of the annular field and for different sizes of rectangular cross-sectional of the annular field. Numerical results show that a very strong flow is occurring near the axis of symmetry and the particles rise high above the surface. These calculations allow us to estimate the sizes of the zone of danger in specific
Directory of Open Access Journals (Sweden)
Isaac Lare Animasaun
2016-06-01
Full Text Available The problem of unsteady convective with thermophoresis, chemical reaction and radiative heat transfer in a micropolar fluid flow past a vertical porous surface moving through binary mixture considering temperature dependent dynamic viscosity and constant vortex viscosity has been investigated theoretically. For proper and correct analysis of fluid flow along vertical surface with a temperature lesser than that of the free stream, Boussinesq approximation and temperature dependent viscosity model were modified and incorporated into the governing equations. The governing equations are converted to systems of ordinary differential equations by applying suitable similarity transformations and solved numerically using fourth-order Runge–Kutta method along with shooting technique. The results of the numerical solution are presented graphically and in tabular forms for different values of parameters. Velocity profile increases with temperature dependent variable fluid viscosity parameter. Increase of suction parameter corresponds to an increase in both temperature and concentration within the thin boundary layer.
Effect of annular secondary conductor in a linear electromagnetic ...
Indian Academy of Sciences (India)
with a solid cylinder. Force density variation with supply frequency and current are also reported. Numerical simulations using finite element model are ... Linear electromagnetic stirrer; finite element analysis; and annular ring. ... flows through the coil of the primary and generates an eddy current in the secondary conductor.
International Nuclear Information System (INIS)
Mohammed, Hussein A.
2008-01-01
Laminar mixed convection heat transfer for assisted and opposed air flows in the entrance region of a vertical circular tube with the using of a uniform wall heat flux boundary condition has been experimentally investigated. The experimental setup was designed for determining the effect of flow direction and the effect of tube inclination on the surface temperature, local and average Nusselt numbers with Reynolds number ranged from 400 to 1600 and Grashof number from 2.0 x 10 5 to 6.2 x 10 6 . It was found that the circumferential surface temperature along the dimensionless tube length for opposed flow would be higher than that both of assisted flow and horizontal tube [Mohammed HA, Salman YK. Experimental investigation of combined convection heat transfer for thermally developing flow in a horizontal circular cylinder. Appl Therm Eng 2007;27(8-9):1522-33] due to the stronger free convective currents within the cross-section. The Nusselt number values would be lower for opposed flow than that for assisted flow. It was inferred that the behaviour of Nu x for opposed flow to be strongly dependent on the combination of Re and Gr numbers. Empirical equations expressing the average Nusselt numbers in terms of Grashof and Reynolds numbers were proposed for both assisted and opposed flow cases. The average heat transfer results were compared with previous literature and showed similar trend and satisfactory agreement
B R Sharma*, Nabajyoti Dutta
2016-01-01
In the present study, the effects of chemical reaction and thermal radiation on unsteady MHD flow of a viscous, electrically conducting and incompressible fluid mixture past a moving vertical cylinder is studied. The fluid is a gray, absorbing-emitting but non scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing dimensionless coupled non-linear partial differential equations are solved numerically using finite di...
Research on Annular Frictional Pressure Loss of Hydraulic-Fracturing in Buckling Coiled Tubing
Liu, Bin; Cai, Meng; Li, Junliang; Xu, Yongquan; Wang, Peng
2018-01-01
Compared with conventional hydraulic fracturing, coiled tubing (CT) annular delivery sand fracturing technology is a new method to enhance the recovery ratio of low permeability reservoir. Friction pressure loss through CT has been a concern in fracturing. The small diameter of CT limits the cross-sectional area open to flow, therefore, to meet large discharge capacity, annular delivery sand technology has been gradually developed in oilfield. Friction pressure is useful for determining the required pump horsepower and fracturing construction design programs. Coiled tubing can buckle when the axial compressive load acting on the tubing is greater than critical buckling load, then the geometry shape of annular will change. Annular friction pressure loss elevates dramatically with increasing of discharge capacity, especially eccentricity and CT buckling. Despite the frequency occurrence of CT buckling in oilfield operations, traditionally annular flow frictional pressure loss considered concentric and eccentric annuli, not discussing the effects of for discharge capacity and sand ratio varying degree of CT buckling. The measured data shows that the factors mentioned above cannot be ignored in the prediction of annular pressure loss. It is necessary to carry out analysis of annulus flow pressure drop loss in coiled tubing annular with the methods of theoretical analysis and numerical simulation. Coiled tubing buckling has great influence on pressure loss of fracturing fluid. Therefore, the correlations have been developed for turbulent flow of Newtonian fluids and Two-phase flow (sand-liquid), and that improve the friction pressure loss estimation in coiled tubing operations involving a considerable level of buckling. Quartz sand evidently increases pressure loss in buckling annular, rising as high as 40%-60% more than fresh water. Meanwhile, annulus flow wetted perimeter increases with decreasing helical buckling pitch of coiled tubing, therefore, the annulus flow
International Nuclear Information System (INIS)
Belyaev, A.V.; Smorodin, B.L.
2010-01-01
We use the Langevin law of magnetization to study the linear stability of a convective flow in a flat vertical layer of ferrofluid subject to a transverse temperature gradient and a uniform magnetic field. The stability of the flow against planar, spiral and three-dimensional perturbations is examined, and the stability boundaries and characteristics of critical disturbances are determined. The competition between the monotonic mode and two types of wave modes is analyzed taking into account the properties of the fluid (magnetic susceptibility and Prandtl number) and the magnetic field strength. The domain of parameters where the oscillatory thermomagnetic wave instability exists is found.
International Nuclear Information System (INIS)
Lee, Wu Sang; Kim, Dae Hyun; Min, Jae Hong; Chung Jin Taek
2007-01-01
Endwall losses contribute significantly to the overall losses in modern turbomachinery, especially when aerodynamic airfoil load and pressure ratio are increased. Hence, reducing the extend and intensity of the secondary flow structures helps to enhance overall efficiency. From the large range of viable approaches, a promising combination positioning and height of endwall contouring was chosen. The objective of this study is to document the three-dimensional flow in a turbine cascade in terms of streamwise vorticity, total pressure loss distribution and static pressure distribution on the endwall and blade surface and to propose an appropriate positioning and height of the endwall contouring which show best secondary, overall loss reduction among the simulated endwall. The flow through the gas turbine were numerically analyzed using three dimensional Navier-Stroke equations with a commercial CFD code ANSYS CFX-10. The result shows that the overall loss is reduced near the flat endwall rather than contoured endwall, and the case of contoured endwall installed at 30% from leading edge with height of 25% for span showed best performance
Astuti, A. D.; Lindu, M.; Yanidar, R.; Faruq, M.
2018-01-01
As environmental regulation has become stricter in recent years, there is an increasing concern about the issue of wastewater treatment in urban areas. Senior High School as center of student activity has a potential source to generated domestic wastewater from toilet, bathroom and canteen. Canteen wastewater contains high-organic content that to be treated before discharged. Based on previous research the subsurface constructed wetland-multilayer filtration with vertical flow is an attractive alternative to provide efficient treatment of canteen wastewater. The effluent concentration complied with regulation according to [9]. Due to limited land, addition of preliminary treatment such as the presence of biofilter was found to improve the performance. The aim of this study was to design combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using vetiveria zizanioides (akar wangi) treating canteen wastewater. Vetiveria zizanioides (akar wangi) is used because from previous research, subsurface constructed wetland-multilayer filtration (SCW-MLF) with vertical flow type using vetiveria zizanioides (akar wangi) can be an alternative canteen wastewater treatment that is uncomplicated in technology, low cost in operational and have a beautiful landscape view, besides no odors or insects were presented during the operation.
Directory of Open Access Journals (Sweden)
Yan Zhu
2016-05-01
Full Text Available Due to the high nonlinearity of the three-dimensional (3-D unsaturated-saturated water flow equation, using a fully 3-D numerical model is computationally expensive for large scale applications. A new unsaturated-saturated water flow model is developed in this paper based on the vertical/horizontal splitting (VHS concept to split the 3-D unsaturated-saturated Richards’ equation into a two-dimensional (2-D horizontal equation and a one-dimensional (1-D vertical equation. The horizontal plane of average head gradient in the triangular prism element is derived to split the 3-D equation into the 2-D equation. The lateral flow in the horizontal plane of average head gradient represented by the 2-D equation is then calculated by the water balance method. The 1-D vertical equation is discretized by the finite difference method. The two equations are solved simultaneously by coupling them into a unified nonlinear system with a single matrix. Three synthetic cases are used to evaluate the developed model code by comparing the modeling results with those of Hydrus1D, SWMS2D and FEFLOW. We further apply the model to regional-scale modeling to simulate groundwater table fluctuations for assessing the model applicability in complex conditions. The proposed modeling method is found to be accurate with respect to measurements.
Impedance void-meter and neural networks for vertical two-phase flows
International Nuclear Information System (INIS)
Mi, Y.; Li, M.; Xiao, Z.; Tsoukalas, L.H.; Ishii, M.
1998-01-01
Most two-phase flow measurements, including void fraction measurements, depend on correct flow regime identification. There are two steps towards successful identification of flow regimes: one is to develop a non-intrusive instrument to demonstrate area-averaged void fluctuations, the other to develop a non-linear mapping approach to perform objective identification of flow regimes. A non-intrusive impedance void-meter provides input signals to a neural mapping approach used to identify flow regimes. After training, both supervised and self-organizing neural network learning paradigms performed flow regime identification successfully. The methodology presented holds considerable promise for multiphase flow diagnostic and measurement applications. (author)
International Nuclear Information System (INIS)
Singh, K.D.
2013-01-01
An exact solution of the magnetohydrodynamic (MHD) convective flow of a viscoelastic fluid through a porous medium filled in a vertical channel is obtained. One of the plates of the channel is subjected to a slip-flow condition and the other to a no-slip condition. The pressure gradient in the channel varies periodically with time. The entire system rotates in unison about an axis perpendicular to the planes of the channel plates. The fluid is electrically conducting and a magnetic field of uniform strength is applied along the axis of rotation. The non-uniform temperature difference of the plates is high enough to induce heat radiation. A closed form solution of the equations governing the flow is obtained. The effects of rotation, Hall current, slip-flow parameter, viscoelastic parameter, Grashof number, Reynolds number, permeability of the porous medium etc. are shown graphically on the velocity and skin friction and discussed in detail. (author)
YBa2Cu3O7-δ thin films deposited by MOCVD vertical reactor with a flow guide
International Nuclear Information System (INIS)
Sujiono, E.H.; Negeri Makassar; Sani, R.A.; Saragi, T.; Arifin, P.; Barmawi, M.
2001-01-01
The effect of a flow guide in a vertical MOCVD reactor on the deposition uniformity and growth rate of thin YBCO films has been studied. Without the flow guide the growth rates are low, have a poor uniformity and the film composition is not stoichiometric. The growth rate of the films grown using a reactor with the flow guide was approximately twice that without the flow guide. Using this flow guide the growth rates were 0.4-0.7 μm/h for growth temperatures varying between 600 and 750 C, and the crystalline quality as well as the surface morphology of YBCO films on MgO substrates is improved. For films grown at temperatures above 650 C the composition of Y:Ba:Cu is 1:2:3, as confirmed by EDAX spectra. Films deposited without and with the flow guide at 700 C have critical temperatures around 85 and 88 K, respectively. The reduction in ΔT c (T c,zero -T c,onset ) also shows an improvement of the superconducting properties of YBCO thin films deposited with a flow guide. (orig.)
Directory of Open Access Journals (Sweden)
M. Abdulkadir
2013-12-01
Full Text Available This paper presents the results of comparison of experimental and CFD studies of slug flow in a vertical 90° bend using validated models. For the experimental part, Electrical Capacitance Tomography (ECT, Wire Mesh Tomography (WMS, and high-speed videos were used to monitor an air-silicone oil mixture flowing in a vertical 90o bend. The ECT probes were mounted before the bend whilst the WMS was positioned either immediately upstream or immediately downstream of the bend. The downstream pipe was maintained horizontal whilst the upstream pipe was maintained vertical. The bend (R/D = 2.3 was made of transparent acrylic resin. Parallel to the experiments, simulations were carried out for same experiment set-up using the commercial software package Star-CD and Star-CCM+. The condition was simulated with the Volume of Fluid (VOF model. The simulation predictions were validated against the experimental data. A reasonably good agreement was observed for the results of the experiment and CFD.
Akbarzadeh, Pooria
2018-02-01
In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modeling. In order to solve the governing equations, the assumption of long-wavelength approximation is utilized. This hypothesis emphasizes that the wavelength of the peristaltic wall motion is large in comparison with the radius of the human vessel, which is widely acceptable in biological investigations. The analytical perturbation method is employed to solve the governing equations. Consequently, analytical expressions for the velocity profile, shear stress, temperature field, and biofluid flow rate are obtained. In addition, the effects of the governing parameters such as the third-grade non-Newtonian parameter, Grashof Number, Eckert number, and porosity, on the results are examined.
Directory of Open Access Journals (Sweden)
G.S. Seth
2014-06-01
Full Text Available An investigation of the effects of Hall current and rotation on unsteady hydromagnetic natural convection flow with heat and mass transfer of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving vertical plate embedded in a fluid saturated porous medium, when temperature of the plate has a temporarily ramped profile, is carried out. Exact solution of the governing equations is obtained in closed form by Laplace transform technique. Exact solution is also obtained in case of unit Schmidt number. Expressions for skin friction due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically whereas those of skin friction are presented in tabular form for various values of pertinent flow parameters.
Fluid flow and heat transfer on a falling liquid film with surfactant from a heated vertical surface
International Nuclear Information System (INIS)
Kang, B. H.; Kim, K. H.; Lee, D. Y.
2007-01-01
The addition of surface active agent to a falling liquid film affects the flow characteristics of the falling film. In this study, the flow and heat transfer characteristics for a falling liquid film have been investigated by addition of the surfactant. The falling liquid film was formed on a vertical flat plate. Contact angle of a liquid droplet above a plate surface can be substantially reduced with an increase in the surfactant concentration. The results obtained indicate that not only the wetted area of falling liquid film is increased but also the film thickness is decreased as the surfactant concentration is increased. It is also found that heat transfer rate is significantly increased while the heat transfer coefficient is almost constant value with an increase in the surfactant concentration at a given mass flow rate
Subcutaneous granuloma annulare: radiologic appearance
International Nuclear Information System (INIS)
Kransdorf, M.J.; Murphey, M.D.; Temple, H.T.
1998-01-01
Objective. Granuloma annulare is an uncommon benign inflammatory dermatosis characterized by the formation of dermal papules with a tendency to form rings. There are several clinically distinct forms. The subcutaneous form is the most frequently encountered by radiologists, with the lesion presenting as a superficial mass. There are only a few scattered reports of the imaging appearance of this entity in the literature. We report the radiologic appearance of five cases of subcutaneous granuloma annulare. Design and patients. The radiologic images of five patients (three male, two female) with subcutaneous granuloma annulare were retrospectively studied. Mean patient age was 6.4 years (range, 2-13 years). The lesions occurred in the lower leg (two), foot, forearm, and hand. MR images were available for all lesions, gadolinium-enhanced imaging in three cases, radiographs in four, and bone scintigraphy in one. Results. Radiographs showed unmineralized nodular masses localized to the subcutaneous adipose tissue. The size range, in greatest dimension on imaging studies, was 1-4 cm. MR images show a mass with relatively decreased signal intensity on all pulse sequences, with variable but generally relatively well defined margins. There was extensive diffuse enhancement following gadolinium administration. Conclusion. The radiologic appearance of subcutaneous granuloma annulare is characteristic, typically demonstrating a nodular soft-tissue mass involving the subcutaneous adipose tissue. MR images show a mass with relatively decreased signal intensity on all pulse sequences and variable but generally well defined margins. There is extensive diffuse enhancement following gadolinium administration. Radiographs show a soft-tissue mass or soft-tissue swelling without evidence of bone involvement or mineralization. This radiologic appearance in a young individual is highly suggestive of subcutaneous granuloma annulare. (orig.)
International Nuclear Information System (INIS)
Strait, E.J.; Lao, L.L.; Luxon, J.L.; Reis, E.E.
1991-01-01
An attached poloidal current, which flows in a circuit lying partly in the vacuum vessel wall and partly in the scrape-off layer of the plasma, is observed during vertical instabilities in the DIII-D tokamak. A direct measurement of the current, using Rogowski loops on several protective tiles at locations where the plasma contacts the wall, is in good agreement with the value determined from MHD equilibrium reconstructions using measured values of magnetic field and flux. This attached current, which can reach transient peaks of several hundred kilo-amperes, interacts with the toroidal magnetic field to create a large vertical force on the vacuum vessel. The predicted motion of the vessel resulting from the measured currents agrees well with the observed displacement of the vacuum vessel. (author). 14 refs, 5 figs
Energy Technology Data Exchange (ETDEWEB)
Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)
1999-07-25
In this study, the stability of annular leakage-flow-induced vibrations was investigated theoretically and experimentally for a translationally and rotationally coupled two-degree-of-freedom system. The critical flow rate was both theoretically and experimentally obtained as a function of the passage increment ratio and the eccentricity of the passage. A good agreement between the theoretical and experimental results was obtained. It was discovered both theoretically and from the experiments that instability will occur in the case of a divergent passage: the eccentricity of the passage lowers the stability of the systems. (author)
Effect of viscous dissipation on mixed convection flow in a vertical ...
African Journals Online (AJOL)
papers on mixed convection in a parallel-plate vertical channel are available in the literature. Aung and Worku (1986) ..... in electric circuit analysis. This method constructs ... which implies that the concept of differential transform method is derived from Taylor series expansion, although this method is not able to evaluate the ...
Energy Technology Data Exchange (ETDEWEB)
Lok, Y.Y. [Center for Academic Services, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)
2006-12-15
The unsteady mixed convection boundary-layer flow of a micro-polar fluid near the region of the stagnation point on a double-infinite vertical flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase or sudden decrease in the surface temperature from the uniform ambient temperature. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. This method may present well-behaved solutions for the transient (small time) solution and those of the steady-state flow (large time) solution. It was found that there is a smooth transition from the small-time solution (initial unsteady-state flow) to the large-time solution (final steady-state flow). Further, it is shown that for both assisting and opposing cases and a fixed value of the Prandtl number, the reduced steady-state skin friction and the steady-state heat transfer from the wall (or Nusselt number) decrease with the increase of the material parameter. On the other hand, it is shown that with the increase of the Prandtl number and a fixed value of the material parameter, the reduced steady-state skin friction decreases when the flow is assisting and it increases when the flow is opposing. (author)
Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh
2018-03-01
The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.
Directory of Open Access Journals (Sweden)
Prasad K.V.
2017-02-01
Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.
Park, Chang Seok; Lim, Hee Chang
2015-11-01
In general, the heated surface generates a Marangoni flow inside a droplet yielding a coffee stain effect in the end. This study aims to visualize and control the Marangoni flow by using periodic vertical vibration. While the droplet is evaporating, the variation of contact angle and internal volume of droplet was observed by using the combination of a continuous light and a DSLR still camera. Regarding the internal velocity, the PIV(Particle Image Velocimetry) system was applied to visualize the internal Marangoni flow. In order to estimate the temperature gradient inside and surface tension on the droplet, a commercial software Comsol Multiphysics was used. In the result, the internal velocity increases with the increase of the plate temperature and both flow directions of Marangoni and gravitational flow are opposite so that there seems to be a possibility to control the coffee stain effect. In addition, the Marangoni flow was controlled at relatively lower range of frequency 30 ~ 50Hz. Work supported by Korea government Ministry of Trade, Industry and Energy KETEP grant No. 20134030200290, Ministry of Education NRF grant No. NRF2013R1A1A2005347.
Directory of Open Access Journals (Sweden)
X. Liang
2017-03-01
established with special consideration of the coupled unsaturated–saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace–finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant in unconfined aquifers affected from above by the unsaturated flow process.
Annular MHD Physics for Turbojet Energy Bypass
Schneider, Steven J.
2011-01-01
The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).
Directory of Open Access Journals (Sweden)
Wilson Treger Zydowicz Sousa
2011-04-01
Full Text Available Vertical flow constructed wetlands, planted with and without Spartina alterniflora, were tested for the treatment of mariculture wastewater. Wetlands with and without the emergent macrophyte produced reductions of 89 and 71% for inorganic solids, 82 and 96% for organic solids, 51 and 63% for total nitrogen, 82 and 92% for ammoniacal nitrogen, 64 and 59% for orthophosphate, and 81 and 89% for turbidity, respectively. Wetlands with S. alterniflora showed denitrification tendencies, while wetlands without S. alterniflora had higher oxygen levels leading to nitrification. The results suggest the fundamental role of oxygen controlling the purification processes as well as the potential of constructed wetlands to treat mariculture effluents.
Khan, Arshad; ul Karim, Faizan; Khan, Ilyas; Ali, Farhad; Khan, Dolat
2018-03-01
The present paper aims to report irreversibility analysis in unsteady flow of viscous fluid over a vertical flat plate with ramped wall temperature and arbitrary wall shear stress in the presence of thermal radiation. The equations which governing the problem are solved by the method of Laplace transform. The expression for Bejan number and volumetric entropy generation rate are calculated. The effects of different embedded parameters on the Bejan number and the entropy generation number are elaborated by graphs. It is noted that entropy production in thermal system can be minimized by decreasing thermal radiation. It is also observed that heat transfer increases the entropy of the system.
Directory of Open Access Journals (Sweden)
Farhad Ali
Full Text Available Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.
Thermal and solutal stratification on MHD nanofluid flow over a porous vertical plate
Directory of Open Access Journals (Sweden)
R. Kandasamy
2018-03-01
Full Text Available Nanoparticles have the highest credibility to develop the thermal properties compared to conventional particle fluid suspension. Thermal and solutal stratification on heat and mass transfer induced due to a nanofluid over a porous vertical plate is analyzed. The transport equations engaged in the study include the effect of Brownian motion and thermophoresis particle deposition. The nonlinear governing equations and their related boundary conditions are initially looked into dimensionless forms by similarity variables. The resulting equations are solved numerically utilizing the fourth-fifth order Runge–Kutta–Fehlberg method with shooting technique (MAPLE 18. It is investigated that the temperature of the nanofluid and the concentration fraction decelerate with increase in thermal and solutal stratification. Keywords: Thermal and solutal stratification, Nanofluid, Magnetic field, Nanoparticle volume fraction, Porous vertical plate
Chemical reaction in MHD flow past a vertical plate with mass ...
African Journals Online (AJOL)
Chemical reaction plays an important role in MHD flow. It has industrial applications, such as design of chemical processing equipments, food processing and cooling towers etc. In the present paper, chemical reaction effect on a viscous, incompressible and electrically conducting fluid with unsteady MHD flow past an ...
Lavrova, Silviya; Koumanova, Bogdana
2010-03-01
Landfill leachate taken from a landfill situated in the north-western region of Bulgaria has been treated in a laboratory scale vertical flow constructed wetland (VF-CW) at different flow rates (40, 60 and 82 ml min(-1)) and recirculation ratios (time of water running through wetland to time of quiet water - 1:1; 1:2; 1:3). Young Phragmites australis was planted on the top layer of the reactor. The low flow rate (40 ml min(-1)) and recirculation ratio of 1:3 allowed removal efficiencies of 96% for COD (in 8 days), 92% for BOD(5) (in 3 days), 100% for ammonia (in 5 days) and 100% for total phosphorus (in 2 days). At the highest flow rate studied (82 ml min(-1)) and shorter quiet period (recirculation ratio 1:1) the water needs longer period of treatment (2 days more according to COD). The results of this study indicate that both flow rate and recirculation ratio should be taken into account for proper design of VF-CW. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Voutsinas, A; Shakouchi, T; Tsujimoto, K; Ando, T
2009-01-01
The present study deals with the effect of the bubble size, from small bubble scale to normal scale (d b =0.25∼2.6 mm), on the flow passing through a rectangular cylinder in an upward gas-liquid bubbly flow. Extensive visualization experiments are conducted and a digital camera and a high-speed camera analyzed the flow, while PIV analysis by the volume cross-correlation method is conducted to observe the differences in the flow pattern. In order to further understand the effect of bubble size, the pressure distribution along the pipe and the cylinder surface are measured. From the results taken, the drag force is calculated and compared to the case of single phase-flow. Furthermore, the fluctuation phenomena generating from the Karman vortex street downstream the cylinder are investigated, and how the intensity and frequency are affected by the bubble size and gas fraction is presented. The experiments are conducted under two different Reynolds number Re, and volumetric gas fraction ranging from α v =0∼5%, giving valuable information regarding the changes that occur due to bubble size differences and the relation it has with volumetric gas fraction.
Mixed convection flow due to a vertical plate in the presence of heat source and chemical reaction
Directory of Open Access Journals (Sweden)
Rajeswari Seshadri
2016-06-01
Full Text Available In this paper, the hydromagnetic heat and mass transfer by mixed convection flow due to a vertical flat plate is considered for analysis. The governing equations are solved both analytically and numerically. The analytical solutions are obtained using the Homotopy Analysis Method (HAM while the numerical solutions are computed using Keller–Box method (K–B. Convergence of the Homotopy solutions for the governing non-dimensional equations are derived. A detailed error analysis is done to compute the average squared residual errors for flow, temperature and concentration. The optimal values of the convergence control parameter are computed for velocity and temperature. This study includes the effects of various parameters such as magnetic parameter, Grashof number, chemical reaction parameter, heat source parameter and Biot number on skin friction, heat and mass transfer rates as well on velocity, temperature and concentration profiles. Comparison of the HAM and K–B methods shows a very good agreement.
Gul, Taza; Islam, Saeed; Shah, Rehan Ali; Khan, Ilyas; Khalid, Asma; Shafie, Sharidan
2014-01-01
This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM) and Optimal Homotopy Asymptotic Method (OHAM). The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed.
Directory of Open Access Journals (Sweden)
Asma Khalid
2015-01-01
Full Text Available The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.
Directory of Open Access Journals (Sweden)
REDHA ALOUAOUI
2015-06-01
Full Text Available In this paper, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical flat plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation as well as the skin friction coefficient and the both local Nusselt and Sherwood numbers are significantly influenced by Magnetic parameter, material parameter and thermal radiation parameter.
Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin
2017-08-01
Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.
Directory of Open Access Journals (Sweden)
Taza Gul
Full Text Available This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM and Optimal Homotopy Asymptotic Method (OHAM. The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed.
Gul, Taza; Islam, Saeed; Shah, Rehan Ali; Khan, Ilyas; Khalid, Asma; Shafie, Sharidan
2014-01-01
This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM) and Optimal Homotopy Asymptotic Method (OHAM). The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed. PMID:25383797
Analytical modeling of inverted annular film boiling
International Nuclear Information System (INIS)
Analytis, G.T.; Yadigaroglu, G.
1987-01-01
By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate closure relations are solved numerically. Successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. Generally, the model predicts correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate; for some cases, however, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required. The importance of the initial conditions at the quench front is also discussed. (orig.)
Analytical modeling of inverted annular film boiling
International Nuclear Information System (INIS)
Analytis, G.T.; Yadigaroglu, G.
1985-01-01
By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate constitutive relations are solved numerically and successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. The model predicts generally correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate, through, for some cases, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required
Annular pulse column development studies
International Nuclear Information System (INIS)
Benedict, G.E.
1980-01-01
The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other
International Nuclear Information System (INIS)
Kondo, Koichi; Yoshida, Kenji; Okawa, Tomio; Kataoka, Isao
2004-01-01
Experiment and numerical calculation were carried out for upward, turbulent bubbly two-phase flow in a vertical pipe with an axisymmetric sudden expansion, which is one of the typical multi-dimensional channel geometries. The void fraction, the liquid velocity and turbulent intensity along the flow direction below and the above the sudden expansion point were measured for various turbulent flow conditions by using a point-electrode resistivity probe and a hot-film anemometry probe. They showed quite complicated behaviors depending upon flow rates of gas and liquid phases and bubble size. In particular, the geometry of sudden expansion affected on the bubble behaviors in multi-dimensional two-phase flow, such as the bubble-stagnation, the bubble-deformation, the enhancement and suppression effects due to the two-phase turbulence etc. Through the measurements, fundamental parameters of the two-phase flow were clarified for the sudden expansion channel. Moreover, a three-dimensional one-way bubble tracking simulation of a single bubble behavior in turbulent flow field along the downstream of the sudden expansion was also demonstrated where equation of motion of bubble was solved by assuming appropriate constitutive models and turbulence model. Based on the trajectories of large number of bubbles, the void fraction distribution was predicted in this calculation. It concretely revealed that the lift force and the two-phase turbulence model were the most important parameters in determining the multi-dimensional void fraction distribution and the calculation should be considered by using the measured experimental data. (author)
Vaughan, Garrett
Open channel raceway bioreactors are a low-cost system used to grow algae for biofuel production. Microalgae have many promises when it comes to renewable energy applications, but many economic hurdles must be overcome to achieve an economic fuel source that is competitive with petroleum-based fuels. One way to make algae more competitive is to improve vertical mixing in algae raceway bioreactors. Previous studies show that mixing may be increased by the addition of mechanisms such as airfoils. The circulation created helps move the algae from the bottom to top surface for necessary photosynthetic exchange. This improvement in light utilization allowed a certain study to achieve 2.2-2.4 times the amount of biomass relative to bioreactors without airfoils. This idea of increasing mixing in open channel raceways has been the focus of the Utah State University (USU) raceway hydraulics group. Computational Fluid Dynamics (CFD), Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV) are all methods used at USU to computationally and experimentally quantify mixing in an open channel raceway. They have also been used to observe the effects of using delta wings (DW) in increasing vertical mixing in the raceway. These efforts showed great potential in the DW in increasing vertical mixing in the open channel bioreactor. However, this research begged the question, does the DW help increase algae growth? Three algae growth experiments comparing growth in a raceway with and without DW were completed. These experiments were successful, yielding an average 27.1% increase in the biomass. The DW appears to be a promising method of increasing algae biomass production. The next important step was to quantify vertical mixing and understand flow patterns due to two DWs side-by-side. Raceway channels are wider as they increase in size; and arrays of DWs will need to be installed to achieve quality mixing throughout the bioreactor. Quality mixing was attained for
Average void fraction measurement in a two-phase vertical flow
International Nuclear Information System (INIS)
Mello, R.E.F. de; Behar, M.R.; Martines, E.W.
1975-01-01
The utilization of the radioactive tracer technique to measure the void fraction in a two phase flow air-water is presented. The radioactive tracer used was a salt of Br-82. The water flow rate varied between 0,4 and 2,0 m 3 /h, and the air flow rate between 0,2 and 1,0 m 3 /h. The resulting measured void fraction were between 0,05 and 0,32. These void fraction values were compared with those ones calculated with the measured flow rates and by use of empirical formulas, using different methods. After a convenient choice of the radioactive isotope, the measurements didn't present any special problem. The results have shown a good accordance with the values calculated by the formulas of R. Roumy, but was not possible yet to conclude, about the convenience of application and the grade of confidence of this method
The influence of flow obstructions on flooding phenomena in vertical channels
International Nuclear Information System (INIS)
Celata, G.P.; Cumo, M.; Farello, G.E.; Setaro, T.
1988-01-01
Flooding phenomenon limits the stability of a liquid film falling downwards along the walls of a channel inside which an upwards gas flow takes place. As known, this entrainment effect can completely prevent the liquid fall from its natural flow. A local reduction of the flow channel cross section, due for instance to an obstruction, will affect the flooding parameters, depending on the position at which the obstruction is located and on the obstruction flow cross section. The present work deals with an air-water experiment carried out with a transparent circular duct test section, inside which it is possible to insert orifices having several diameters, to test the influence of the obstruction on flooding parameters. Predictions by the correlations available in literature are compared and a method to evaluate the influence of the obstruction is proposed
Mixed convective low flow pressure drop in vertical rod assemblies - II. Experimental validation
International Nuclear Information System (INIS)
Suh, K.Y.; Todreas, N.E.; Rohsenow, W.M.
1987-01-01
A predictive theory has been developed for the rod bundle frictional pressure drop characteristics under natural circulation conditions on the basis of the intra-assembly and intra-subchannel flow redistribution due to buoyancy for a wide spectrum of radial power profiles and for the geometric arrangements of practical design interest. Both the individual subchannel correlations and overall bundle design correlation have been formulated as the products of the buoyancy multipliers and the isothermal friction factors at the same Reynolds numbers. Two types of subchannel friction factors have been obtained: the standard one to be used with spatial average density and the modified one to be used with bulk mean density. A correlating procedure has been proposed to assess the local, global and skew buoyancy effects. The effects of interacting subchannel flows, developing mixed convective flow, wire wrapping, radial power skew and transition from laminar flow regime have been taken into account
Vertical downward subcooled bubbly flow modelling with RELAP5/MOD3.2.2 gamma
International Nuclear Information System (INIS)
Ristevski, R.; Parzer, I.; Markov, Z.
2000-01-01
The presented paper will consider the correlation for void fraction distribution in the subcooled boiling flow regime of downward liquid flow at low velocities. More specifically, it will focus on the choice of the most appropriate heat and mass transfer correlation. The experimental findings and theoretical consideration of these processes and phenomena will be compared with RELAP5/MOD3.2.2 Gamma predictions. (author)
Liu, Lin; Liu, Chaoxiang; Zheng, Jiayu; Huang, Xu; Wang, Zhen; Liu, Yuhong; Zhu, Gefu
2013-05-01
This paper investigated the efficiency of two vertical flow constructed wetlands characterized by volcanic (CW1) and zeolite (CW2) respectively, at removing three common antibiotics (ciprofloxacin HCl, oxytetracycline HCl, and sulfamethazine) and tetracycline resistance (tet) genes (tetM, tetO, and tetW) from swine wastewater. The result indicated that the two systems could significantly reduce the wastewater antibiotics content, and elimination rates were in the following sequence: oxytetracycline HCl>ciprofloxacin HCl>sulfamethazine. The zeolite-medium system was superior to that of the volcanic-medium system vis-à-vis removal, perhaps because of the differing pH values and average pore sizes of the respective media. A higher concentration of antibiotics accumulated in the soil than in the media and vegetation, indicating that soil plays the main role in antibiotics removal from wastewater in vertical flow constructed wetlands. The characteristics of the wetland medium may also affect the antibiotic resistance gene removal capability of the system; the total absolute abundances of three tet genes and of 16S rRNA were reduced by 50% in CW1, and by almost one order of magnitude in CW2. However, the relative abundances of target tet genes tended to increase following CW1 treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Huang, Zhujian; Zhang, Xianning; Cui, Lihua; Yu, Guangwei
2016-09-15
In this work, three hybrid vertical down-flow constructed wetland (HVDF-CW) systems with different compound substrates were fed with domestic sewage and their pollutants removal performance under different hydraulic loading and step-feeding ratio was investigated. The results showed that the hydraulic loading and step-feeding ratio were two crucial factors determining the removal efficiency of most pollutants, while substrate types only significantly affected the removal of COD and NH4(+)-N. Generally, the lower the hydraulic loading, the better removal efficiency of all contaminants, except for TN. By contrast, the increase of step-feeding ratio would slightly reduce the removal rate of ammonium and TP but obviously promoted the TN removal. Therefore, the optimal operation of this CWs could be achieved with low hydraulic loading combined with 50% of step-feeding ratio when TN removal is the priority, whereas medium or low hydraulic loading without step-feeding would be suitable when TN removal is not taken into consideration. The obtained results in this study can provide us with a guideline for design and optimization of hybrid vertical flow constructed wetland systems to improve the pollutants removal from domestic sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
T. Vogt
2012-02-01
Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone
On the use of nuclear magnetic resonance to characterize vertical two-phase bubbly flows
International Nuclear Information System (INIS)
Lemonnier, H.; Jullien, P.
2011-01-01
Research highlights: → We provide a complete theory of the PGSE measurement in single and two-phase flow. → Friction velocity can be directly determinated from measured velocity distributions. → Fast determination of moments shorten PGSE process with small loss of accuracy. → Turbulent diffusion measurements agree well with known trends and existing models. → We think NMR can be a tool to benchmark thermal anemometry in two-phase flow. - Abstract: Since the pioneering work of who showed that NMR can be used to measure accurately the mean liquid velocity and void fraction in two-phase pipe flow, it has been shown that NMR signal can also characterize the turbulent eddy diffusivity and velocity fluctuations. In this paper we provide an in depth validation of these statements together with a clarification of the nature of the mean velocity that is actually measured by NMR PFGSE sequence. The analysis shows that the velocity gradient at the wall is finely space-resolved and allows the determination of the friction velocity in single-phase flows. Next turbulent diffusion measurements in two-phase flows are presented, analyzed and compared to existing data and models. It is believed that NMR velocity measurement is sufficiently understood that it can be utilized to benchmark thermal anemometry in two-phase flows. Theoretical results presented in this paper also show how this can be undertaken.
Directory of Open Access Journals (Sweden)
Qinglei Jiang
2011-01-01
Full Text Available The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The objective was to obtain a transient response of rotor systems under the influence of fluid-induced forces generated by annular seal flow. This method overcomes some shortcomings of the traditional FSI method by improving the data transfer process between two domains. Calculated results were in good agreement with the experimental results. The annular seal was shown to have a supportive effect on rotor systems. Furthermore, decreasing the seal clearance would enhance this supportive effect. In the transient process, vibration amplitude and critical speed largely changed when the acceleration of the rotor system increased.
Read, T. O.; Bour, O.; Selker, J. S.; Le Borgne, T.; Bense, V.; Hochreutener, R.; Lavenant, N.
2013-12-01
In highly heterogeneous media, fracture network connectivity and hydraulic properties can be estimated using methods such as packer- or cross-borehole pumping-tests. Typically, measurements of hydraulic head or vertical flow in such tests are made either at a single location over time, or at a series of depths by installing a number of packers or raising or lowering a probe. We show how this often encountered monitoring problem, with current solutions sacrificing either one of temporal or spatial information, can be addressed using Distributed Temperature Sensing (DTS). Here, we electrically heat the conductive cladding materials of cables deployed in boreholes to determine the vertical flow profile. We present results from heated fiber optic cables deployed in three boreholes in a fractured rock aquifer at the much studied experimental site near Ploemeur, France, allowing detailed comparisons with alternative methods (e.g. Le Borgne et al., 2007). When submerged in water and electrically heated, the cable very rapidly reaches a steady state temperature (less than 60 seconds). The steady state temperature of the heated cable, measured using the DTS method, is then a function of the velocity of the fluid in the borehole. We find that such cables are sensitive to a wide range of fluid velocities, and thus suitable for measuring both ambient and pumped flow profiles at the Ploemeur site. The cables are then used to monitor the flow profiles during all possible configurations of: ambient flow, cross-borehole- (pumping one borehole, and observing in another), and dipole-tests (pumping one borehole, re-injection in another). Such flow data acquired using DTS may then be used for tomographic flow inversions, for instance using the approach developed by Klepikova et al., (submitted). Using the heated fiber optic method, we are able to observe the flow response during such tests in high spatial detail, and are also able to capture temporal flow dynamics occurring at the
Iron melt flow in thin-walled sections using vertically parted moulds
DEFF Research Database (Denmark)
Larsen, Per; Tiedje, Niels
2004-01-01
gating systems are used small changes in the casting conditions can change the flow patterns radically. Flow in thin walled sections is not only important in thin walled part. This is illustrated with a brake disc as example. 3 different layouts have been made. The filling sequences have been recorded......Reducing the fuel consumption of vehicles can be done in many ways. A general way of doing it, is to reduce the weight as it is applicable together with all other means of saving fuel. Even though iron castings have been used in cars from the first car ever build, a big potential still exist...... for optimizing iron cast parts. To do so thin walled parts have to be used. I.e. flow in thin walled sections becomes important. Flow in plates with thicknesses from 2 to 4 mm have been investigated. It is shown that the main flow path can be changed even in such small thicknesses and that when conventional...
Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models
International Nuclear Information System (INIS)
Min, June Kee; Park, Il Seouk
2014-01-01
Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors
International Nuclear Information System (INIS)
Adesanya, S.O.; Oluwadare, E.O.; Falade, J.A.; Makinde, O.D.
2015-01-01
In this paper, the free convective flow of magnetohydrodynamic fluid through a channel with time periodic boundary condition is investigated by taking the effects of Joule dissipation into consideration. Based on simplifying assumptions, the coupled governing equations are reduced to a set of nonlinear boundary valued problem. Approximate solutions are obtained by using semi-analytical Adomian decomposition method. The effect of pertinent parameters on the fluid velocity, temperature distribution, Nusselt number and skin friction are presented graphically and discussed. The result of the computation shows that an increase in the magnetic field intensity has significant influence on the fluid flow. - Highlights: • The influence of magnetic field on the free convective fluid flow is considered. • The coupled equations are solved by using Adomian decomposition method. • The Adomian series solution agreed with previously obtained result. • Magnetic field decreases the velocity maximum but enhances temperature field
Transition to chaos of a vertical collapsible tube conveying air flow
International Nuclear Information System (INIS)
Flores, F Castillo; Cros, A
2009-01-01
'Sky dancers', the large collapsible tubes used as advertising, are studied in this work through a simple experimental device. Our study is devoted to the nonlinear dynamics of this system and to its transition to chaos. Firstly, we have shown that after a collapse occurs, the air fills the tube at a different speed rate from the flow velocity. Secondly, the temporal intermittency is studied as the flow rate is increased. A statistical analysis shows that the chaotic times maintain roughly the same value by increasing air speed. On the other hand, laminar times become shorter, until the system reaches a completely chaotic state.
Thermohydraulic analysis of smooth and finned annular ducts
International Nuclear Information System (INIS)
Braga, C.V.M.
1987-01-01
The present work is concerned with the turbulent heat transfer and pressure drop in smooth and finned annular ducts overage heat transfer coefficients have been obtained by means of the heat exchanger theory. In addition, friction factors have also been determined. The experiments were performed by utilizing four double-pipe heat exchangers. The flowing fluids, in the heat exchangers, were air and water. The average heat transfer coefficients, for air flowing in the annular section, were determined by measuring the overall heat transfer coefficients of the heat exchangers. In order to attain fully developed conditions, the heat exchangers had a starting length of 30 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the inner surface, the outer surface being insulated. The heat transfer coefficients and friction factors are presented in dimensionaless forms, as functions of the Reynolds number of the flow. The results for the smooth and finned annular ducts were compared. The purpose of such comparison was to study the influence of the fins on the pressure drop and heat transfer rate. In the case of the finned nular ducts, it is shown that the fin efficiency has some fluence on the heat transfer rates. The, a two-dimensional at transfer analysis was performed in order to obtain the n efficiency and the annular region efficiency. It is also shown that the overall thermal performance of finned surfaces epends mainly on the Nusselt number and on the region eficiency. These parameters are presented as functions of the Reynolds number of the flow and the geometry of the problem. (author) [pt
3-D laser anemometer measurements in an annular seal
Morrison, G. L.; Tatterson, G. B.; Johnson, M. C.
1988-01-01
The flow field inside an annular seal with a 0.00127 m clearance was measured using a 3-D laser Doppler anemometer system. Through the use of this system, the mean velocity vector and the entire Reynolds stress tensor distributions were measured for the entire length of the seal (0.0373 m). The seal was operated at a Reynolds number of 27,000 and a Taylor number of 6,600.
Validation of a Human Exhalation Flow Simulation in a Room with Vertical Ventilation
DEFF Research Database (Denmark)
Olmedo, Inés; Nielsen, Peter V.; Adana, M. Ruiz de
2012-01-01
be designed to have high ventilation effectiveness. Furthermore, personalized ventilation may reduce the risk of cross-infection. Personalized ventilation can be used especially in hospital wards, aircraft cabins and, in general, where people are located at defined positions. Analyses of the flow...
Carrillo-Rivera, J. J.; Cardona, A.; Moss, D.
1996-11-01
Fractured volcanics exert a control on groundwater flow in the San Luis Potosi (SLP) valley. The chemical composition and temperature of water pumped from boreholes partially penetrating the fractured volcanics indicate that the produced water originates from an upward vertical flow. Most of the thermal groundwater has been detected in areas related to regional faults and lineaments. Intensive and uncontrolled pumping from the upper {1}/{4} of the aquifer (total depth > 1500 m) causes the rise of water from a deep regional flow system that mixes with the shallower waters. The deep waters contain high fluoride concentrations that contaminate the mixture and cause substantial health related effects. The recharge controls on the regional flow system require further research; however, hydrogeochemical evidence supports the view that the origin of this recharge is limited to the western bounding Sierra Madre Occidental. Higher levels of dissolved Na +, Li +, F - (and SO 4-2) derived from Tertiary volcanics have been introduced into the exploited region; the concentrations indicate lengthy and deep circulation flow. Li + concentration was used as an indicator of groundwater residence time, and therefore of the length of the groundwater flow path. Hydrogeochemical interpretation indicates the presence of three flow systems: a shallow local one controlled by a clay layer that subcrops most of the valley floor, an intermediate system in which water infiltrates just beyond the boundary of the clay layer, and a deep regional system which originates outside the surface catchment. The local and intermediate systems circulate through materials with comparatively low hydraulic conductivity. Low Cl - concentrations suggest rapid flow in the regional system. Concentrations of Li + and F - can be used to calculate percentages of waters in mixtures of regional and intermediate flows. Concentrations of Na +, Ca 2+ and SO 4-2 appear to be controlled by water-rock reactions
International Nuclear Information System (INIS)
Chen Yuzhou; Chen Haiyan
2000-01-01
In CIAE a great number of film boiling experimental data have been obtained at steady state by using directly heated hot patch technique, covering the range of pressure 0.1-6MPa and mass flux of 23-1462 (23-500 mainly) kg/m 2 s. It is observed that in dispersed flow film boiling significant thermal nonequilibrium exists, and the heat transfer coefficients exhibit strongly history-dependent nature. Based on the experimental results a mechanistic model and a tabular method are proposed, and the assessment of RELAP5/MOD2.5 is made. (author)
Directory of Open Access Journals (Sweden)
V. I. Solonin
2014-01-01
Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in
International Nuclear Information System (INIS)
Oulaid, Othmane; Benhamou, Brahim; Galanis, Nicolas
2010-01-01
This paper, deals with a numerical study of the effects of buoyancy forces on an upward, steady state, laminar flow of humid air in a vertical parallel-plate channel. The plates are wetted by a thin liquid water film and maintained at a constant temperature which is lower than that of the air entering the channel. A 2D fully elliptical model, associated with the Boussinesq assumption, is used to take into account axial diffusion. The solution of this mathematical model is based on the finite volume method and the velocity-pressure coupling is handled by the SIMPLER algorithm. Numerical results show that buoyancy forces have a significant effect on the hydrodynamic, thermal and mass fraction fields. Additionally, these forces induce flow reversal for high air temperatures and mass fractions at the channel entrance. It is established that heat transfer associated with phase change is, sometimes, more significant than sensible heat transfer. Furthermore, this importance depends on the mass fraction gradient. The conditions for the existence of flow reversal are presented in charts and analytical expressions specifying the critical thermal Grashof number as a function of the Reynolds number for different values of the solutal Grashof number and different aspect ratios of the channel.
Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe
Energy Technology Data Exchange (ETDEWEB)
Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J., E-mail: nana.adoo@usask.ca [University of Saskatchewan, Department of Mechanical Engineering, Saskatoon, SK (Canada); Wang, D.F. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)
2015-07-01
An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)
International Nuclear Information System (INIS)
Becker, Kurt M.; Hernborg, Gunnar; Bode, Manfred
1962-01-01
The present report contains the experimental results from the fourth and last phase of an investigation concerning frictional pressure gradients for flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 12.99 mm inner diameter. Data were obtained for pressures between 6 and 10 ata, steam qualities between 0 and 0.70, mass flow rates between 0.04 and 0.164 kg/sec. Only one value of 65 W/cm 2 were used for the surface heat flux. The results are in excellent agreement with our earlier data for flow in 9. 93, 7. 76 and 3. 94 mm inner diameter ducts previously presented, and our conclusions given in those reports have been verified. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use. χ 2 = 1 + 2600*(x/p) 0.96 This equation correlates our data within an accuracy of ± 15 per cent. Considering the data from all four ducts investigated, we have found that the following equation correlates the data with a discrepancy less than ± 20 per cent: χ 2 = 1 + 2500*(x/p) 0.96 and we conclude that for engineering purposes, the effect of diameter is of no significance
Directory of Open Access Journals (Sweden)
Le Tuyen Quang
2014-06-01
Full Text Available In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR. First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flowdriven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.
Kurylyk, Barret; Masaki, Masaki; Quinton, William L.; McKenzie, Jeffrey M.; Voss, Clifford I.
2016-01-01
Recent climate change has reduced the spatial extent and thickness of permafrost in many discontinuous permafrost regions. Rapid permafrost thaw is producing distinct landscape changes in the Taiga Plains of the Northwest Territories, Canada. As permafrost bodies underlying forested peat plateaus shrink, the landscape slowly transitions into unforested wetlands. The expansion of wetlands has enhanced the hydrologic connectivity of many watersheds via new surface and near-surface flow paths, and increased streamflow has been observed. Furthermore, the decrease in forested peat plateaus results in a net loss of boreal forest and associated ecosystems. This study investigates fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012. Measured climate data are first used to drive surface energy balance simulations for the wetland and peat plateau. Near-surface soil temperatures simulated in the surface energy balance model are then applied as the upper boundary condition to a three-dimensional model of subsurface water flow and coupled energy transport with freeze-thaw. Simulation results demonstrate that lateral heat transfer, which is not considered in many permafrost models, can influence permafrost thaw rates. Furthermore, the simulations indicate that landscape evolution arising from permafrost thaw acts as a positive feedback mechanism that increases the energy absorbed at the land surface and produces additional permafrost thaw. The modeling results also demonstrate that flow rates in local groundwater flow systems may be enhanced by the degradation of isolated permafrost bodies.
Cold flow simulation of an internal combustion engine with vertical valves using layering approach
Martinas, G.; Cupsa, O. S.; Stan, L. C.; Arsenie, A.
2015-11-01
Complying with emission requirements and fuel consumption efficiency are the points which drive any development of internal combustion engine. Refinement of the process of combustion and mixture formation, together with in-cylinder flow refinement, is a requirement, valves and piston bowl and intake exhaust port design optimization is essential. In order to reduce the time for design optimization cycle it is used Computational Fluid Dynamics (CFD). Being time consuming and highly costly caring out of experiment using flow bench testing this methods start to become less utilized. Air motion inside the intake manifold is one of the important factors, which govern the engine performance and emission of multi-cylinder diesel engines. Any cold flow study on IC is targeting the process of identifying and improving the fluid flow inside the ports and the combustion chamber. This is only the base for an optimization process targeting to increase the volume of air accessing the combustion space and to increase the turbulence of the air at the end of the compression stage. One of the first conclusions will be that the valve diameter is a fine tradeoff between the need for a bigger diameter involving a greater mass of air filling the cylinder, and the need of a smaller diameter in order to reduce the blind zone. Here there is room for optimization studies. The relative pressure indicates a suction effect coming from the moving piston. The more the shape of the inlet port is smoother and the diameter of the piston is bigger, the aerodynamic resistance of the geometry will be smaller so that the difference of inlet port pressure and the pressure near to piston face will be smaller. Here again there is enough room for more optimization studies.
Assessment of Turbulence Models for Isothermal Vertical-upward Bubbly Flows
Energy Technology Data Exchange (ETDEWEB)
Nguyen, V. T.; Yun, B. J.; Song, C. H. [University of Science and Technology, Daejeon (Korea, Republic of); Bae, B. U.; Euh, D. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-10-15
EAGLE (Elaborated Analysis of Gas-Liquid Evolution) code was developed by KAERI for a multi-dimensional analysis of two-phase flow with the implementations of non-drag force, turbulence models, and the interfacial area transport equation. The code structure was based on the two-fluid model and the Simplified Marker And Cell (SMAC) algorithm was modified to be available for an isothermal bubbly two-phase flow simulation. In the Euler/Eulerian approach simulating bubbly flow, the influence of the bubbles on the turbulence of the liquid has to be modeled correctly since the liquid turbulence strongly influences the models describing bubble coalescence and bubble breakup in any interfacial area transport equation. In the present paper, two common concepts for modeling the influence of bubbles on liquid turbulence quantities implemented in k-{epsilon} turbulence model are described and analyzed. Simulation were done using EAGLE code and compared with gas volume fraction distributions and turbulence parameters obtained from experimental data of Hibiki et al (2001)
Assessment of Turbulence Models for Isothermal Vertical-upward Bubbly Flows
International Nuclear Information System (INIS)
Nguyen, V. T.; Yun, B. J.; Song, C. H.; Bae, B. U.; Euh, D. J.
2010-01-01
EAGLE (Elaborated Analysis of Gas-Liquid Evolution) code was developed by KAERI for a multi-dimensional analysis of two-phase flow with the implementations of non-drag force, turbulence models, and the interfacial area transport equation. The code structure was based on the two-fluid model and the Simplified Marker And Cell (SMAC) algorithm was modified to be available for an isothermal bubbly two-phase flow simulation. In the Euler/Eulerian approach simulating bubbly flow, the influence of the bubbles on the turbulence of the liquid has to be modeled correctly since the liquid turbulence strongly influences the models describing bubble coalescence and bubble breakup in any interfacial area transport equation. In the present paper, two common concepts for modeling the influence of bubbles on liquid turbulence quantities implemented in k-ε turbulence model are described and analyzed. Simulation were done using EAGLE code and compared with gas volume fraction distributions and turbulence parameters obtained from experimental data of Hibiki et al (2001)
Directory of Open Access Journals (Sweden)
B. Mahanthesh
Full Text Available Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering MaxwellâGarnetts (MG and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism. Keywords: Induced magnetic field, Nanoliquids, Heat source/sink, Series expansion method, Chemical reaction, Thermal radiation
Muñoz-Cobo, José; Chiva, Sergio; El Aziz Essa, Mohamed; Mendes, Santos
2012-08-01
Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous experiments small amounts of 1-butanol were added to the water. These amounts range from 9 to 75 ppm and change the surface tension. This study is interesting because in real cases the surface tension of the water diminishes with temperature, and with this kind of experiments we can study indirectly the effect of changing the temperature on the void fraction distribution. The following axial and radial distributions were measured in all these experiments: void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter and turbulence intensity. The range of values of the gas superficial velocities in these experiments covered the range from bubbly flow to the transition to cap/slug flow. Also with transition flow conditions we distinguish two groups of bubbles in the experiments, the small spherical bubbles and the cap/slug bubbles. Special interest was devoted to the transition region from bubbly to cap/slug flow; the goal was to understand the physical phenomena that take place during this transition A set of numerical simulations of some of these experiments for bubbly flow conditions has been performed by coupling a Lagrangian code, that tracks the three dimensional motion of the individual bubbles in cylindrical coordinates inside the field of the carrier liquid, to an Eulerian model that computes the magnitudes of continuous phase and to a 3D random walk model that takes on account the fluctuation in the velocity field of the
Flow measurement behind a pair of vertical-axis wind turbines
Parker, Colin M.; Hummels, Raymond; Leftwich, Megan C.
2017-11-01
The wake from a pair of vertical-axis wind turbines (VAWTs) is measured using particle imaging velocimetry (PIV). The VAWT models are mounted in a low-speed wind tunnel and driven using a motor control system. The rotation of the turbines is synced using a proportional controller that allows the turbine's rotational position to be set relative to each other. The rotation of the turbines is also synced with the PIV system for taking phase averaged results. The VAWTs are tested for both co- and counter-rotating cases over a range of relative phase offsets. Time averaged and phase averaged results are measured at the horizontal mid-plane in the near wake. The time-averaged results compare the bulk wake profiles from the pair of turbines. Phase averaged results look at the vortex interactions in the near wake of the turbines. By changing the phase relation between the turbines we can see the impact of the structure interactions in both the phase and time averaged results.
Directory of Open Access Journals (Sweden)
N. Vedavathi
2015-03-01
Full Text Available This paper deals with the effects of heat and mass transfer on two-dimensional unsteady MHD free convection flow past a vertical porous plate in a porous medium in the presence of thermal radiation under the influence of Dufour and Soret effects. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are then solved numerically using shooting method along with Runge–Kutta fourth order integration scheme. The numerical results are displayed graphically showing the effects of various parameters entering into the problem. Finally, the local values of the skin-friction coefficient, Nusselt number and Sherwood number are also shown in tabular form.
Arivoli, A; Mohanraj, R; Seenivasan, R
2015-09-01
The paper production is material intensive and generates enormous quantity of wastewater containing organic pollutants and heavy metals. Present study demonstrates the feasibility of constructed wetlands (CWs) to treat the heavy metals from pulp and paper industry effluent by using vertical flow constructed wetlands planted with commonly available macrophytes such as Typha angustifolia, Erianthus arundinaceus, and Phragmites australis. Results indicate that the removal efficiencies of the planted CWs for iron, copper, manganese, zinc, nickel, and cadmium were 74, 80, 60, 70, 71, and 70 %, respectively. On the other hand, the removal efficiency of the unplanted system was significantly lower ranging between 31 and 55 %. Among the macrophytes, T. angustifolia and E. arundinaceus exhibited comparatively higher bioconcentration factor (10(2) to 10(3)) than P. australis.
Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.
2017-07-01
The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.
DEFF Research Database (Denmark)
Dan, Truong Hoang; Quang, Le Nhat; Chiem, Nguyen Huu
2011-01-01
Treatment of various types of wastewaters is an urgent problem in densely populated areas of many tropical countries. We studied the potential of using Sesbania sesban, an N2-fixing shrub, in constructed wetland systems for the treatment of high-strength wastewater. A replicated horizontal...... subsurface flow system and a saturated vertical downflow system was established with planted and unplanted beds to assess the effects of system design and presence of plants on treatment performance. The systems were loaded with a mixture of domestic and pig farm wastewater at three hydraulic loading rates...... of 80, 160 and 320mmd-1. The S. sesban plants grew very well in the constructed wetland systems and produced 17.2-20.2kgdry matterm-2year-1 with a high nitrogen content. Mass removal rates and removal rate constants increased with loading rate, but at 320mmd-1 the effluent quality was unacceptable...
Xu, Defu; Gu, Jiaru; Li, Yingxue; Zhang, Yu; Howard, Alan; Guan, Yidong; Li, Jiuhai; Xu, Hui
2016-01-01
The response of purifying capability, enzyme activity, nitrification potentials, and total number of bacteria in the rhizosphere in December to wetland plants, substrates, and earthworms was investigated in integrated vertical flow constructed wetlands (IVFCW). The removal efficiency of total nitrogen (TN), NH4-N, chemical oxygen demand (COD), and total phosphorus (TP) was increased when earthworms were added into IVFCW. A significantly average removal efficiency of N in IVFCW that employed river sand as substrate and in IVFCW that employed a mixture of river sand and Qing sand as substrate was not found. However, the average removal efficiency of P was higher in IVFCW with a mixture of river sand and Qing sand as substrate than in IVFCW with river sand as substrate. Invertase activity in December was higher in IVFCW that used a mixture of river sand and Qing sand as substrate than in IVFCW which used only river sand as substrate. However, urease activity, nitrification potential, and total number of bacteria in December was higher in IVFCW that employed river sand as substrate than in IVFCW with a mixture of river sand and Qing sand as substrate. The addition of earthworms into the integrated vertical flow constructed wetland increased the above-ground biomass, enzyme activity (catalase, urease, and invertase), nitrification potentials, and total number of bacteria in December. The above-ground biomass of wetland plants was significantly positively correlated with urease and nitrification potentials (p earthworms into IVFCW increased enzyme activity and nitrification potentials in December, which resulted in improving purifying capability.
Influence of test tube material on subcooled flow boiling critical heat flux in short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Shiotsu, Masahiro; Noda, Nobuaki
2007-01-01
The steady state subcooled flow boiling critical heat flux (CHF) for the flow velocities (u=4.0 to 13.3 m/s), the inlet subcoolings (ΔT sub,in =48.6 to 154.7 K), the inlet pressure (P in =735.2 to 969.0 kPa) and the increasing heat input (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured with the experimental water loop. The 304 Stainless Steel (SUS304) test tube of inner diameter (d=6 mm), heated length (L=66 mm) and L/d=11 with the inner surface of rough finished (Surface roughness, Ra=3.18 μm), the Cupro Nickel (Cu-Ni 30%) test tube of d=6 mm, L=60 mm and L/d=10 with Ra=0.18 μm and the Platinum (Pt) test tubes of d=3 and 6 mm, L=66.5 and 69.6 mm, and L/d=22.2 and 11.6 respectively with Ra=0.45 μm are used in this work. The CHF data for the SUS304, Cu-Ni 30% and Pt test tubes were compared with SUS304 ones for the wide ranges of d and L/d previously obtained and the values calculated by the authors' published steady state CHF correlations against outlet and inlet subcoolings. The influence of the test tube material on CHF is investigated into details and the dominant mechanism of subcooled flow boiling critical heat flux is discussed. (author)
Influence of Test Tube Material on Subcooled Flow Boiling Critical Heat Flux in Short Vertical Tube
International Nuclear Information System (INIS)
Koichi Hata; Masahiro Shiotsu; Nobuaki Noda
2006-01-01
The steady state subcooled flow boiling critical heat flux (CHF) for the flow velocities (u = 4.0 to 13.3 m/s), the inlet subcooling (ΔT sub,in = 48.6 to 154.7 K), the inlet pressure (P in = 735.2 to 969.0 kPa) and the increasing heat input (Q 0 exp(t/t), t = 10, 20 and 33.3 s) are systematically measured with the experimental water loop. The 304 Stainless Steel (SUS304) test tubes of inner diameters (d = 6 mm), heated lengths (L = 66 mm) and L/d = 11 with the inner surface of rough finished (Surface roughness, R a = 3.18 μm), the Cupro Nickel (Cu-Ni 30%) test tubes of d = 6 mm, L = 60 mm and L/d = 10 with R a = 0.18 μm and the Platinum (Pt) test tubes of d = 3 and 6 mm, L = 66.5 and 69.6 mm, and L/d 22.2 and 11.6 respectively with R a = 0.45 μm are used in this work. The CHF data for the SUS304, Cu-Ni 30% and Pt test tubes were compared with SUS304 ones for the wide ranges of d and L/d previously obtained and the values calculated by the authors' published steady state CHF correlations against outlet and inlet subcooling. The influence of the test tube material on CHF is investigated into details and the dominant mechanism of subcooled flow boiling critical heat flux is discussed. (authors)
Iron Melt Flow in Thin Walled Sections Cast in Vertically Parted Green Sand Moulds
DEFF Research Database (Denmark)
Larsen, Per; Andersen, Uffa; Rasmussen, Niels
consumption and pollution of passenger cars, trucks etc. The engine design can be optimized for higher efficiency, the wind resistance can be reduced, combinations of combustion engines and electrical power can be used etc. But no matter which approach is taken, parts have to be used for building the vehicles...... will be initiated by the hammer effect when the melt reaches the dead end of the runner. Pressure shock waves can also be initiated when the last air pocket in a partly filled runner is closed. The pressure shock waves result in disintegrating melt surfaces. Flow in thin walled sections is not only important when...
An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube
Energy Technology Data Exchange (ETDEWEB)
Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)
1995-09-01
Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.
Scour and deposition due to flow around a V-array of vertical cylinders
Beninati, M. L.; Markovic, U.; Riley, D.; Krane, M.; Fontaine, A.
2012-12-01
The goal of this study was to evaluate sediment scour and deposition around a V-array of cylinders (two cylinders upstream and a vertex cylinder downstream) modeling the flow disturbance due to MHK turbines. Scour and deposition can expose foundations, affect neighboring devices, and alter the local flow field. Multiple slices of sediment topography were recorded after three hours of live bed conditions with an HR Wallingford 2D Sediment Bed Profiler with a low-powered laser distance sensor. These experiments were conducted in a scaled test section in the hydraulic flume facility (1.22-m-wide, 0.3-m-deep, and 9.75-m-long) at Bucknell University. Cylinders were placed in varying V-arrays where the two upstream elements were separated by 3, 4, and 5 diameters and for each separation the vertex device was placed downstream by 3, 4 and 5 diameters. All cylinders had a submergence ratio of 0.56. The scour rates were found by taping 0.318 cm wide color strips along the axis which were uncovered over time as the scour hole increased in depth. From the obtained topography, scour hole dimensions and deposition spread were found. Results show that the streamwise length of the scour hole, along the axis of the upstream cylinders, was proportional to increasing separation between the upstream and downstream cylinders. This relationship persisted until a critical separation distance, at which point two separate scours holes form.
Ryan, Kevin J.; Coletti, Filippo; Elkins, Christopher J.; Dabiri, John O.; Eaton, John K.
2016-03-01
Three-dimensional, three-component mean velocity fields have been measured around and downstream of a scale model vertical axis wind turbine (VAWT) operated at tip speed ratios (TSRs) of 1.25 and 2.5, in addition to a non-rotating case. The five-bladed turbine model has an aspect ratio (height/diameter) of 1 and is operated in a water tunnel at a Reynolds number based on turbine diameter of 11,600. Velocity fields are acquired using magnetic resonance velocimetry (MRV) at an isotropic resolution of 1/50 of the turbine diameter. Mean flow reversal is observed immediately behind the turbine for cases with rotation. The turbine wake is highly three-dimensional and asymmetric throughout the investigated region, which extends up to 7 diameters downstream. A vortex pair, generated at the upwind-turning side of the turbine, plays a dominant role in wake dynamics by entraining faster fluid from the freestream and aiding in wake recovery. The higher TSR case shows a larger region of reverse flow and greater asymmetry in the near wake of the turbine, but faster wake recovery due to the increase in vortex pair strength with increasing TSR. The present measurement technique also provides detailed information about flow in the vicinity of the turbine blades and within the turbine rotor. The details of the flow field around VAWTs and in their wakes can inform the design of high-density VAWT wind farms, where wake interaction between turbines is a principal consideration.
Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Annuli (Part I)
International Nuclear Information System (INIS)
Becker, Kurt M.; Hernborg, G.
1962-12-01
The present report deals with measurements of burnout conditions for flow of boiling water in an annulus with an inner diameter of 9.92 mm, an outer diameter of 17 - 42 mm and a heated length of 608 mm. Data were obtained in respect of external heating only, internal heating only and dual uniform and non-uniform heating. The following ranges of variables were studied and 978 burnout measurements were obtained. Pressure 8.5 2 ; Inlet subcooling 60 sub i 2 ; Outer surface heat flux 0 o 2 ; Mass velocity 71 2 /sec; The results are presented in diagrams where the burnout steam qualities, x BO , were plotted against the pressure with the surface heat fluxes as parameters. The data have been correlated by curves. The scatter of the data around the curves is less than ± 5 per cent. In the case of equal heat fluxes on both walls of the annulus, burnout always occurred on the inner wall, and the data compared rather well with round duct data. When the annulus was heated internally only, the data showed very low burnout values in comparison with the results for dual heating and round ducts. This disagreement was explained by considering the climbing film flow model and by the fact that only a fraction of the channel perimeter was heated. For external heating the data are somewhat lower than corresponding round duct data, but rather high in comparison with internal heating. The climbing film flow model was also used to interpret this observation. For dual non-uniform heating it was found that the outer surface may be overloaded from 30 to 70 per cent compared with the inner surface without reducing the margin of safety in respect of burnout for the annulus. It was further observed that when the heat flux fox the wall on which burnout occurs is increased, the burnout steam quality for the channel decreases. If, however, the heat flux for the opposite wall is increased, the burnout steam quality also increases. It was also observed that the highest burnout values are obtained
Soliton bunching in annular Josephson junctions
DEFF Research Database (Denmark)
Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter
1996-01-01
By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used...
analysis of flow in a concentric annulus using finite element method
African Journals Online (AJOL)
user
Annular flow is a flow regime of two-phase gas-liquid. It is characterized by the presence of liquid fluid flowing on an annulus shaped channel. Annular flow is important in drilling and production in deviated and horizontal wells [2]. Concentric annular flows of fluids in pipes have had a number of engineering applications.
Wibowo, Andreas; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi; Situmorang, Marcelinus Risky Clinton
2018-02-01
The main purpose of this study is to investigate the best configuration between guide vanes and cross flow vertical axis wind turbine with variation of several parameters including guide vanes tilt angle and the number of turbine and guide vane blades. The experimental test were conducted under various wind speed and directions for testing cross flow wind turbine, consisted of 8, 12 and 16 blades. Two types of guide vane were developed in this study, employing 20° and 60° tilt angle. Both of the two types of guide vane had three variations of blade numbers which had same blade numbers variations as the turbines. The result showed that the configurations between 60° guide vane with 16 blade numbers and turbine with 16 blade numbers had the best configurations. The result also showed that for certain configuration, guide vane was able to increase the power generated by the turbine significantly by 271.39% compared to the baseline configuration without using of guide vane.
Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
Directory of Open Access Journals (Sweden)
Mohammed J Uddin
Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
Measurements of Burnout Conditions for Flow of Boiling Water in Vertical 3-Rod and 7-Rod Clusters
International Nuclear Information System (INIS)
Becker, Kurt M.; Hernborg, G.; Flinta, J.E.
1964-08-01
The present report deals with measurements of burnout conditions for flow of boiling water in vertical 3-rod and 7-rod clusters. Data were obtained,in respect of heating the rods only, as well as for simultaneous uniform and non-uniform heating of the rods and the shroud. Totally, 520 runs were performed. In the case of equal heat fluxes on all surfaces of the channels, burnout always occurred on the rods, and the data were low by a factor of about 1.3 compared with round duct data. When only the rods were heated, the data showed very low burnout values in comparison with the results for total uniform heating and round ducts. This disagreement was explained by considering the climbing film flow model and the fact that only a fraction of the channel perimeter was heated. For simultaneous and non-uniform heating of the rods and the shroud it was found that the shroud could be overloaded up to 50 per cent without reducing the margin of safety in respect of burnout for the rod cluster. Finally, a correlation for predicting burnout conditions in round ducts, annuli and rod clusters has been presented. This correlation predicts the burnout heat fluxes for the present measurements and previously obtained annuli measurements within ± 5 per cent
Liu, Rong; Chen, Xue; Ding, Zijing
2018-01-01
We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.
Air-water flow in a vertical pipe: experimental study of air bubbles in the vicinity of the wall
Descamps, M. N.; Oliemans, R. V. A.; Ooms, G.; Mudde, R. F.
2008-08-01
This study deals with the influence of bubbles on a vertical air-water pipe flow, for gas-lift applications. The effect of changing the bubble size is of particular interest as it has been shown to affect the pressure drop over the pipe. Local measurements on the bubbles characteristics in the wall region were performed, using standard techniques, such as high-speed video recording and optical fibre probe, and more specific techniques, such as two-phase hot film anemometry for the wall shear stress and conductivity measurement for the thickness of the liquid film at the wall. The injection of macroscopic air bubbles in a pipe flow was shown to increase the wall shear stress. Bubbles travelling close to the wall create a periodic perturbation. The injection of small bubbles amplifies this effect, because they tend to move in the wall region; hence, more bubbles are travelling close to the wall. A simple analysis based on a two-fluid set of equations emphasised the importance of the local gas fraction fluctuations on the wall shear stress.
Fuchs, Valerie J; Mihelcic, James R; Gierke, John S
2011-02-01
Life cycle assessment (LCA) is used to compare the environmental impacts of vertical flow constructed wetlands (VFCW) and horizontal flow constructed wetlands (HFCW). The LCAs include greenhouse gas (N(2)O, CO(2) and CH(4)) emissions. Baseline constructed wetland designs are compared to different treatment performance scenarios and to conventional wastewater treatment at the materials acquisition, assembly and operation life stages. The LCAs suggest that constructed wetlands have less environmental impact, in terms of resource consumption and greenhouse gas emissions. The VFCW is a less impactful configuration for removing total nitrogen from domestic wastewater. Both wetland designs have negligible impacts on respiratory organics, radiation and ozone. Gaseous emissions, often not included in wastewater LCAs because of lack of data or lack of agreement on impacts, have the largest impact on climate change. Nitrous oxide accounts for the increase in impact on respiratory inorganic, and the combined acidification/eutrophication category. The LCAs were used to assess the importance of nitrogen removal and recycling, and the potential for optimizing nitrogen removal in constructed wetlands. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fabrication and flow characterization of vertically aligned carbon-nanotube/polymer membranes
Castellano, Richard; Meshot, Eric; Fornasiero, Francesco; Shan, Jerry
2017-11-01
Membranes with well-controlled nanopores are of interest for applications as diverse as chemical separations, water purification, and ``green'' power generation. In particular, membranes incorporating carbon nanotubes (CNTs) as through-pores have been shown to pass fluids at rates orders-of-magnitude faster than predicted by continuum theory. However, cost-effective and scalable solutions for fabricating such membranes are still an area of research. We describe a solution-based fabrication technique for creating polymer composite membranes from bulk nanotubes using electric-field alignment and electrophoretic concentration. We then focus on flow characterization of membranes with single-wall nanotube (SWNT) pores. We demonstrate membrane quality by size-exclusion testing and showing that the flowrate of different gasses scales as the square root of molecular weight. The gas flowrates and moisture-vapor-transmission rates are compared with theoretical predictions and with composite membranes -fabricated from CVD-grown SWNT arrays. Funded by DTRA Grant BA12PHM123.
Stability of viscous film flow coating the interior of a vertical tube with a porous wall
Liu, Rong; Ding, Zijing
2017-05-01
The stability of the gravity-driven flow of a viscous film coating the inside of a tube with a porous wall is studied theoretically. We used Darcy's law to describe the motion of fluids in a porous medium. The Beaver-Joseph condition is used to describe the discontinuity of velocity at the porous-fluid interface. We derived an evolution equation for the film thickness using a long-wave approximation. The effect of velocity slip at the porous wall is identified by a parameter β . We examine the effect of β on the temporal stability, the absolute-convective instability (AI-CI), and the nonlinear evolution of the interface deformation. The results of the temporal stability reveal that the effect of velocity slip at the porous wall is destabilizing. The parameter β plays an important role in determining the AI-CI behavior and the nonlinear evolution of the interface. The presence of the porous wall promotes the absolute instability and the formation of the plug in the tube.
Pang, Mingjun; Wei, Jinjia; Yu, Bo
2011-10-01
Since the bubbly flow has extensive applications in the space field, it is very necessary to comprehend the dependence of hydrodynamic characteristics on gravity. In this paper, the dependence of the microbubble distribution and the liquid turbulence modulation by the microbubbles on gravity was investigated in detail with the Euler-Lagrange method. The liquid Navier-Stokes equation was solved using direct numerical simulations (DNS), and the microbubble motion was tracked with Newtonian motion equation considering drag force, shear lift force, added mass force, pressure gradient force, and wall lift force. The coupling between the gas and the liquid phases regarded the interphase force as a momentum source term in the momentum equation of the liquid. The results showed that the phase profile and the turbulence modulation by the microbubbles strongly depend on the magnitude of gravity. When the influence of gravity is relatively weak, the microbubbles approximately uniformly disperse in the wide central region of the channel, and the average statistics of the liquid turbulence are almost not influenced due to the addition of the microbubbles. However, when the influence of gravity is comparatively important, the majority of the microbubbles accumulate near the wall of the channel, and the injection of the microbubbles modifies the profiles of the liquid average statistics.
Directory of Open Access Journals (Sweden)
Sidra Aman
2017-01-01
Full Text Available Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs and multiple walls carbon nanotubes (MWCNTs in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil. Xue [Phys. B Condens. Matter 368, 302–307 (2005] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.
Energy Technology Data Exchange (ETDEWEB)
Capecelatro, Jesse, E-mail: jcaps@illinois.edu [Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2307 (United States); Desjardins, Olivier [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853 (United States); Fox, Rodney O. [Department of Chemical and Biological Engineering, Center for Multiphase Flow Research, Iowa State University, Ames, Iowa 50011-2230 (United States); Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, Grande Vois des Vignes, 92295 Chatenay Malabry (France)
2016-03-15
Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Majumder, S.K.; Bentzen, Thomas Ruby
2013-01-01
Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (e.g. oil-gas industry). In spite of the common occurrence of these TPFs, the understanding of them is limited compared to single-phase flows. Various studies on TPF focus on developing empirical correlations...... (CFD) and comparing this directly with experimental measurements and empirical relationships found in literature. A vertical tube of 3.4 m with an internal diameter of 0.1905 m was used. The two-phase CFD model was implemented in Star CCM+ using the volume of fluid (VOF) model. A relatively good...... is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours of the system. The focus of this study is the analysis of the TPF (slug flow) for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction using computational fluid dynamics...
Energy Technology Data Exchange (ETDEWEB)
Vieira, Fernando Fabris; Bannwart, Antonio C. [Universidade Estadual de Campinas, SP (Brazil)
2003-07-01
The E and P activity has a great importance in the oil industry. First, it assesses hydrocarbon reserves that can be recovered in order to provide the highest revenues. Second, it supplies the forecast oil and gas production through adequate lift and transportation methods. These flows become rather difficult and requires high investments for heavy oils, which can be understood as having density larger than 934 kg/m{sup 3} (API grade smaller than about 20) and viscosity higher than 100 cP at reservoir conditions. In this work, the flow of a heavy crude oil and air mixture was made viable by injecting water in the pipe, in order to lubricate the flow and reduce pressure drop, as in the core flow technique. The main objective is to observe the three-phase flow patterns formed in the vertical pipe at different mixture compositions, for application in artificial lift. The oil flow rate was measured through a mass flow meter. Water and gas flow rates were given by rotameters. A high-speed VHS camera (1000 frames/s) attached to the pipeline was used to record the experiments for the determination of the final patterns. These are described and represented in flow maps. (author)
A burnout correlation for flow of boiling water in vertical rod bundles
International Nuclear Information System (INIS)
Becker, Kurt M.
1967-04-01
The rod bundle burnout correlation described in the present report is a development from our earlier published rod bundle correlation for low pressures. The correlation is based on the Becker round duct correlation and is written on the form x BO 0.68*η*η L *X RD where x RD is the burnout steam quality in a round duc at corresponding flow conditions, η is the ratio of heated to total perimeter and η l is a correction factor, which is a function of q/A only. It is demonstrated that this equation combined with the heat balance equation q/A = G/(4L/D H )*(Δh SUB + X BO *H fg ) predicts the burnout heat fluxes for 312 measurements obtained in our laboratory within a scatter of ±7. 5 per cent and with an RMS error of 3.8 per cent. The measurements were obtained in the following ranges of variables. Number of rods n 1, 3, 6 and 7; Rod diameter d i 10.05 - 13.80 mm; Shroud diameter d o 17. 42 - 71. 0 mm; Rod clearance s 3.7 - 8.8 mm; Heated length L 608 - 4440 mm; Pressure p 20-71 kg/cm 2 , Inlet sub-cooling Δt sub 3 - 240 deg C; Mass velocity G 80-1,500 kg/m 2 ; Burnout heat flux q/A 74-314 W/cm 2 ; Burnout steam quality x BO 0. 1 - 0.55. The correlation shows that the burnout conditions in wide ranges of variables are independent of the inlet sub-cooling and the heated length, and that the effects of mass velocity and pressure are the same in rod bundles and in round tubes. It is also demonstrated that the effects of a radial heat flux variation within the rod bundle can be handled by the correlation by modifying the η-value for the bundle. The rod bundle data presented by Janssen and Kervinen, Hench, Obertelli, Matzner, Haslam, Edwards and Obertelli and Hench and Boehm were also analysed in terms of the measured and predicted burnout heat fluxes. These data covered bundles consisting of 3, 4, 6, 7, 9. 19 and 36 rods and it was found that a very good agreement existed between the present correlation and the measurements
Garfi, Marianna; Corbella Vidal, Clara; Puigagut Juárez, Jaume
2013-01-01
The objective of the present work was to determine the optimal redox gradient that can be obtained in sub-surface flow constructed wetlands (SSF CWs) to maximize the energy production with microbial fuel cells (MFCs). To this aim, a pilot plant based on SSF CW was evaluated for vertical redox profiles. Key operational and design parameters surveyed that influences redox conditions in SSF CW were the presence of plants (Phragmites australis) and the flow regime (continuous and discontinuous fl...
Musakaev, N. G.; Borodin, S. L.
2016-05-01
The mathematical model of the two-phase flow in a vertical well with an electric centrifugal pump located in the permafrost region is presented. The comparison of the calculation's results with experimental data, the results of numerical experiments by determining the flow structure, the temperature distribution in a well, influence of the temperature distribution on paraffin deposition and change in time of the radius of thawing in the frozen ground are presented.
Paegle, J.; Kalnay, E.; Baker, W. E.
1981-01-01
The global scale structure of atmospheric flow is best documented on time scales longer than a few days. Theoretical and observational studies of ultralong waves have emphasized forcing due to global scale variations of topography and surface heat flux, possibly interacting with baroclinically unstable or vertically refracting basic flows. Analyses of SOP-1 data in terms of global scale spherical harmonics is documented with emphasis upon weekly transitions.
Vahidkhah, Koohyar; Azadani, Ali N
2017-06-14
Leaflet thrombosis following transcatheter aortic valve replacement (TAVR) and Valve-in-Valve (ViV) procedures has been increasingly recognized. This study aimed to investigate the effect of positioning of the transcatheter aortic valve (TAV) in ViV setting on the flow dynamics aspect of post-ViV thrombosis by quantifying the blood stasis in the intra-annular and supra-annular settings. To that end, two idealized computational models, representing ViV intra-annular and supra-annular positioning of a TAV were developed in a patient-specific geometry. Three-dimensional flow fields were then obtained via fluid-solid interaction modeling to study the difference in blood residence time (BRT) on the TAV leaflets in the two settings. At the end of diastole, a strip of high BRT (⩾1.2s) region was observed on the TAV leaflets in the ViV intra-annular positioning at the fixed boundary where the leaflets are attached to the frame. Such a high BRT region was absent on the TAV leaflets in the supra-annular positioning. The maximum value of BRT on the surface of non-, right, and left coronary leaflets of the TAV in the supra-annular positioning were 53%, 11%, and 27% smaller compared to the intra-annular positioning, respectively. It was concluded that the geometric confinement of TAV by the leaflets of the failed bioprosthetic valve in ViV intra-annular positioning increases the BRT on the leaflets and may act as a permissive factor in valvular thrombosis. The absence of such a geometric confinement in the ViV supra-annular positioning leads to smaller BRT and subsequently less likelihood of leaflet thrombosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Dev Krishan Singh
2015-01-01
Full Text Available An analysis of an unsteady MHD convective flow of an electrically conducting viscous incompressible fluid through porous medium filled in a vertical porous channel is carried out. The two porous plates are subjected to a constant injection and suction velocity as shown in Fig. 1a, b. The temperature of the plate at y*= + 9 2 is assumed to be varying in space and time as T*(y*, z*, t* = T1 (y* + (T2 - T1COS (πz*d -ω*t*. A magnetic field of uniform strength is applied perpendicular to the plates of the channel. The temperature difference between the plates is high enough to induce the heat due to radiation. It is also assumed that the conducting fluid is opticallythin gray gas, absorbing/ emitting radiation and non-scattering. The Hall current effects have also been taken into account. Exact solution of the partial differential equations governing the flow under the prescribed boundary conditions has been obtained for the velocity and the temperature fields. The primary and secondary velocities, temperature and the skin-friction and Nusselt number for the rate of heat transfer in terms of their amplitudes and phase angles have been shown graphically to observe the effects of suction parameter λ, Grashof number Gr, Hartmann number M, Hall parameter H, the permeability of the porous medium K, Prandtl number Pr, radiation parameter N, pressure gradient A and the frequency of oscillation ω. The final results are then discussed in detail in the last section of the paper with the help of figures.
Directory of Open Access Journals (Sweden)
Qiaoling Xu
2016-09-01
Full Text Available In this study, enzyme activities and their relationships to organics purification were investigated in three different vertical flow constructed wetlands, namely system A (planting Pennisetum sinese Roxb, system B (planting Pennisetum purpureum Schum., and system C (no plant. These three wetland systems were fed with simulation domestic sewage at an influent flow rate of 20 cm/day. The results showed that the final removal efficiency of Chemical Oxygen Demand (COD in these three systems was 87%, 85% and 63%, respectively. Planting Pennisetum sinese Roxb and Pennisetum purpureum Schum. could improve the amount of adsorption and interception for organic matter in the substrate, and the amount of interception of organic matter in planting the Pennisetum sinese Roxb system was higher than that in planting the Pennisetum purpureum Schum. system. The activities of enzymes (urease, phosphatase and cellulase in systems A and B were higher than those in system C, and these enzyme activities in the top layer (0–30 cm were significantly higher than in the other layers. The correlations between the activities of urease, phosphatase, cellulase and the COD removal rates were R = 0.815, 0.961 and 0.973, respectively. It suggests that using Pennisetum sinese Roxb and Pennisetum purpureum Schum. as wetland plants could promote organics removal, and the activities of urease, phosphatase and cellulase in those three systems were important indicators for COD purification from wastewater. In addition, 0–30 cm was the main function layer. This study could provide a theoretical basis for COD removal in the wetland system and supply new plant materials for selection.
Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar; Castro-Faccetti, Claudia Fernanda
2016-01-01
Constructed wetlands have become an attractive alternative for wastewater treatment. However, there is not a globally accepted mathematical model to predict their performance. In this study, the VS2DTI software was used to predict the effluent biochemical oxygen demand (BOD) and total nitrogen (TN) in a pilot-scale vertical flow constructed wetland (VFCW) treating domestic wastewater. After a 5-week adaptation period, the pilot system was monitored for another 6 weeks. Experiments were conducted at hydraulic retention times (HRTs) in the range of 2-4 days with Typha latifolia as the vegetation. The raw wastewater concentrations ranged between 144-430 and 122-283 mg L(-1) for BOD5 and TN, respectively. A first-order kinetic model coupled with the advection/dispersion and Richards' equations was proposed to predict the removal rates of BOD5 and TN from domestic wastewater. Two main physical processes were modeled in this study, porous material water flow and solute transport through the different layers of the VFCW to simulate the constructed wetland (CW) conditions. The model was calibrated based on the BOD5 and TN degradation constants. The model indicated that most of BOD and TN (88 and 92%, respectively) were removed through biological activity followed by adsorption. It was also observed that the evapotranspiration was seen to have a smaller impact. An additional data series of effluent BOD and TN was used for model validation. The residual analysis of the calibrated model showed a relatively random pattern, indicating a decent fit. Thus, the VS2DTI was found to be a useful tool for CW simulation.
Yim, G J; Cheong, Y W; Hong, J H; Hur, W
2014-10-01
A vertical flow reactor (VFR) has been suggested for remediation of ferruginous mine drainage that passes down through an accreting bed of ochre. However, a VFR has a limited operation time until the system begins to overflow. In this study, a mathematical model was developed as a part of the effort to explore the operation of a VFR, showing dynamic changes in the head differences, ochre depths, and Fe(II)/Fe(III) concentrations in the effluent flow. The analysis showed that VFR operation time extended from 148.5 days to 163 days in an equally divided and to 168.4 days in asymmetrically (0.72:0.28) divided two-compartment VFR, suggesting that an optimum compartment ratio exists that maximizes the VFR operation time. A constant head filtration in the first compartment maximized filtration efficiency and thus prolonged VFR longevity in the two-compartment VFR. Fe(II) oxidation and ochre formation should be balanced with the permeability of the ochre bed to maximize the VFR operation time and minimize the residual Fe(II) in the effluent. Accelerated Fe(II) oxidation affected the optimum ratio of the compartment area and reduced the residual Fe(II) in the effluent. The VFR operation time can be prolonged significantly from 764 days to 3620 days by increasing the rate of ochre formation, much more than by accelerating the Fe(II) oxidation. During the prolonged VFR operation, ochre formed largely in the first compartment, while overflowing mine water with reduced iron content was effectively filtered in the second compartment. These results not only provide a better understanding of VFR operation but also suggest the direction of evolution of two-compartment VFR toward a compact and highly efficient facility integrated with an aerated cascade and with automatic coagulant feeding. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mustapha, Hassana Ibrahim; van Bruggen, J J A; Lens, P N L
2018-01-02
This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF-CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF-CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF-CW and then the Cynodon dactylon-planted VSF-CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF-CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09-16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF < 1), meaning that Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF-CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.
Directory of Open Access Journals (Sweden)
C. Sulochana
2016-02-01
Full Text Available We analyzed the momentum and heat transfer characteristics of unsteady MHD flow of a dusty nanofluid over a vertical stretching surface in presence of volume fraction of dust and nano particles with non uniform heat source/sink. We considered two types of nanofluids namely Ag-water and Cu-water embedded with conducting dust particles. The governing equations are transformed in to nonlinear ordinary differential equations by using similarity transformation and solved numerically using Shooting technique. The effects of non-dimensional governing parameters on velocity and temperature profiles for fluid and dust phases are discussed and presented through graphs. Also, the skin friction coefficient and Nusselt number are discussed and presented for two dusty nanofluids separately in tabular form. Results indicate that an increase in the volume fraction of dust particles enhances the heat transfer in Cu-water nanofluid compared with Ag-water nanofluid and a raise in the volume fraction of nano particles shows uniform heat transfer in both Cu-water and Ag-water nanofluids.
Dong, Huiyu; Qiang, Zhimin; Li, Tinggang; Jin, Hui; Chen, Weidong
2012-01-01
Three lab-scale vertical-flow constructed wetlands (VFCWs), including the non-aerated (NA), intermittently aerated (IA) and continuously aerated (CA) ones, were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water. Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA, which significantly favored the removal of organic matter and NH(4+)-N. The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN). Although the removal efficiencies of COD(Cr), NH(4+)-N and TN in the three VFCWs all decreased with an increase in HLR, artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings. The maximal removal efficiencies of COD(Cr), NH(4+)-N and total phosphorus (TP) (i.e., 81%, 87% and 37%, respectively) were observed in CA at 19 cm/day HLR, while the maximal TN removal (i.e., 57%) was achieved in IA. Although the improvement of artificial aeration on TP removal was limited, this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted river water, particularly at a high HLR.
Li, Juan; Liu, Xinchun; Yu, Zhisheng; Yi, Xin; Ju, Yiwen; Huang, Jing; Liu, Ruyin
2014-01-01
This study evaluated the performance of soil and coal cinder used as substrate in vertical-flow constructed wetlands for removal of fluoride and arsenic. Two duplicate pilot-scale artificial wetlands were set up, planted respectively with cannas, calamus and no plant as blank, fed with a synthetic sewage solution. Laboratory (batch) incubation experiments were also carried out separately to ascertain the fluoride and arsenic adsorption capacity of the two materials (i.e. soil and coal cinder). The results showed that both soil and coal cinder had quite high fluoride and arsenic adsorption capacity. The wetlands were operated for two months. The concentrations of fluoride and arsenic in the effluent of the blank wetlands were obviously higher than in the other wetlands planted with cannas and calamus. Fluoride and arsenic accumulation in the wetlands body at the end of the operation period was in range of 14.07-37.24% and 32.43-90.04%, respectively, as compared with the unused media.
Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C
2013-12-01
Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE. Copyright © 2013 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Silviya Lavrova
2017-06-01
Full Text Available The landfill leachate treatment efficiency in a vertical-flow wetland system with and without planted Phragmites australis was investigated. The BOD/COD ratio of the landfill leachate was 0.38. Water samples were taken daily for determination of the COD, BOD, [NH4-N], [NO2-N], [NO3-N] and orthophosphates values. High COD and BOD removal efficiencies and discharge limits in both laboratory systems were achieved. Complete elimination of the ammonium nitrogen from the leachate in the nonvegetated wetland for 13 and 14 days was obtained at a recirculation ratio of 1:1 and 1:2, respectively, and for 9 and 7 days - in the vegetated wetland, at the same recirculation ratios. The initial nitrite nitrogen concentration in the landfill leachate was 17.2 ± 1.1 mg/L, which is 430 times over the discharge limit for these ions. After landfill leachate treatment in the nonvegetated wetland system at the recirculation ratios 1:1 and 1:2, nitrites removal efficiencies of 98.8% and 92.5%, respectively, were achieved. In the vegetated wetland system at the same recirculation ratios, nitrites removal efficiencies of 96.5% and 76.2%, respectively were achieved. Nitrates removal was not observed. The results show that the orthophosphates were assimilated better from the Phragmites australis at longer water resting period.
Locke, Andrea; Deutz, Nicolaas; Coté, Gerard
2018-02-01
Research toward development of point-of-care (POC) technologies is emerging as a means for diagnosis and monitoring of patients outside the hospital. These POC devices typically utilize assays capable of detecting low level biomarkers indicative of specific diseases. L-citrulline, an α-amino acid produced in the intestinal mucosa cells, is one such biomarker typically found circulating within the plasma at physiological concentrations of 40 μM. Researchers have found that intestinal enterocyte malfunction causes its level to be significantly lowered, establishing it as a potential diagnostic biomarker for gut function. Our research group has proposed the development of a surface enhanced Raman spectroscopy (SERS) based assay, using vertical flow paper fluidics, for citrulline detection. The assay consists of a fluorescently active, Raman reporter labeled aptamer conjugated on gold nanoparticles. The aptamer changes its confirmation on binding to its target, which in turn changes the distance between the Raman active molecule and the nanoparticle surface. These particles were embedded within a portable chip consisting of cellulose-based paper. After the chips were loaded with different concentrations of free L-citrulline in phosphate buffer, time was given for the assay to interact with the sample. A handheld Raman spectrometer (638 nm; Ocean Optics) was used to measure the SERS intensity. Results showed decrease in intensity with increasing concentration of L-citrulline (0-50μM).
Kumar, Manoj; Singh, Rajesh
2017-05-01
The present study demonstrated the understating of municipal wastewater treatment in five types of CWs operated under semi continuous vertical flow mode. All CWs treatment conditions show the significantly lower pollutants concentrations. The average NH 4 + -N, TN, NO 2 - -N, NO 3 - -N, SO 4 2- , and PO 4 3- removal efficiency in the ISs-CWs were 83.60%, 82.43%, 15.61%, 48.93%, 80.45%, and 78.94% respectively. The average NO 2 - -N removal efficiency shows that highest nitrite accumulation occurred in the Cont-CWs followed by C-CWs. The lowest increase in the biomass (127.5%) was observed in the Eichhornia crassipes planted in the ISs-CWs. The ISs filtration barrier created in the constructed wetlands was sufficient enough to remove all the pollutants. Principal components EFA 2D deformation plots show the distribution of the various nitrogenous species in the constructed wetlands along different components. Copyright © 2017 Elsevier Ltd. All rights reserved.
Convective flow, heat and mass transfer of Ostwald-de Waele fluid over a vertical stretching sheet
Directory of Open Access Journals (Sweden)
K. Vajravelu
2017-01-01
Full Text Available In this paper we study the combined buoyancy (due to thermal and species diffusion effects on the flow, heat and mass transfer of a viscous, incompressible, Ostwald-de Waele fluid over a vertical stretching surface in the presence of a chemical reaction. The effects of variable thermal conductivity and the variable mass diffusivity are also considered. A similarity transformation is used to convert the partial differential equations into coupled nonlinear ordinary differential equations. Numerical solutions are obtained by the Keller-box method. The influences of sundry parameters on the velocity, temperature and the concentration fields are presented in figures and discussed in detail. The values of the skin friction coefficient, Nusselt number and the surface mass transfer for various values of the governing parameters are presented in tables. One of the interesting observations is that the influence of the buoyancy parameters increases the velocity. However, quite the opposite is true with the temperature and the mass concentration, for all values of the power law index and the reaction rate parameter. The results obtained reveal many interesting behaviors that warrant a further study of the non-Newtonian fluid phenomena, especially shear thinning phenomena. Shear thinning reduces the wall shear stress.
Gross, Amit; Alfiya, Yuval; Sklarz, Menachem; Maimon, Adi; Friedler, Eran
2014-01-01
Reuse of greywater (GW) has raised environmental and public health concerns. Specifically, these concerns relate to onsite treatment operated by non-professionals; systems must therefore be reliable, simple to use and also economically feasible if they are to be widely used. The aims of this study were to: (a) investigate GW treatment efficiency using 20 full-scale recirculating vertical flow constructed wetlands (RVFCWs) operated in households in arid and Mediterranean regions; and (b) study the long-term effects of irrigation with treated GW on soil properties. RVFCW systems were installed and monitored routinely over 3 years. Raw, treated and disinfected treated GW samples were analyzed for various physicochemical and microbial parameters. Native soil plots and nearby freshwater (FW) and treated GW irrigated soil plots were sampled twice a year - at the end of the winter and at the end of the summer. Soil samples were analyzed for various physicochemical and microbial parameters. Overall, the RVFCW proved to be a robust and reliable GW treatment system. The treated GW quality met strict Israeli regulations for urban irrigation. Results also suggest that irrigation with sufficiently treated GW has no adverse effects on soil properties. Yet, continued monitoring to follow longer term trends is recommended.
Zhou, Xu; Wang, Xuezhen; Zhang, Hai; Wu, Haiming
2017-10-01
Recently, vertical flow constructed wetlands (VFCWs) with intermittent aeration have been proven as an efficient technology to enhance removal efficiency of organics and nitrogen for wastewater treatment. However, the low denitrification effect in VFCWs was a problem for treating low carbon source wastewater. In this study, intermittent aeration and biochar, produced by biomass pyrolysis, was used to promote the nitrogen removal in VFCWs for low C/N domestic wastewater. Four systems, including non-aerated with non-biochar VFCW, non-aerated with biochar VFCW, aerated with non-biochar VFCW and aerated with biochar VFCW, were conducted for comparing their treatment performances. The results showed that much higher removal of COD (94.9%), NH 4 + -N (99.1%), TN (52.7%) and lower N 2 O emission (60.54μg·m -2 ·h -1 ) was obtained in aerated VFCW with biochar addition. The results suggested that adding biochar to intermittent aerated VFCWs could be an effective and appropriate strategy for low C/N wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Determination of hydraulic resistance of rough annular channels by resistance of rough pipes
Korsun, A. S.; Pisarevsky, M. I.; Fedoseev, V. N.; Kreps, M. V.
2017-11-01
According to the current calculation recommendations for turbulent flow, coefficient of hydraulic resistance of a smooth annular channel with an equivalent hydraulic diameter dh is assumed to be equal to the coefficient of hydraulic resistance of a pipe with a diameter dh multiplied by a conversion factor. The value of this conversion factor, depending on the Reynolds number and the ratio of the inner diameter of the annular channel to the outer diameter, varies from 1 to 1.07. That is, a smooth annular channel and a smooth pipe with the same hydraulic diameters have practically the same hydraulic resistance coefficients. In this paper, experiments were conducted to test the feasibility of such an approach to channels with rough walls. According to measurements of water flow and pressure gradient, the coefficients of hydraulic resistance of a rough annular channel and a pipe with hydraulic diameters dh = 6 mm were calculated and compared. A trapezoidal artificial roughness was applied to the surfaces, which are flowing with a liquid. The experiments were carried out on a water circuit in the Reynolds number range from 103 to 105 in the regime of full roughness. The obtained experimental results were compared with calculations of coefficients of hydraulic resistance of pipes with artificial roughness according to the existing recommendations. Conclusions are drawn on the possibility of determining the hydraulic resistance of rough annular channels through the resistance of rough pipes.
Numerical and experimental study of an annular pulse tube used in the pulse tube cooler
Pang, Xiaomin; Chen, Yanyan; Wang, Xiaotao; Dai, Wei; Luo, Ercang
2017-12-01
Multi-stage pulse tube coolers normally use a U-type configuration. For compactness, it is attractive to build a completely co-axial multi-stage pulse tube cooler. In this way, an annular shape pulse tube is inevitable. Although there are a few reports about previous annular pulse tubes, a detailed study and comparison with a circular pulse tube is lacking. In this paper, a numeric model based on CFD software is carried out to compare the annular pulse tube and circular pulse tube used in a single stage in-line type pulse tube cooler with about 10 W of cooling power at 77 K. The length and cross sectional area of the two pulse tubes are kept the same. Simulation results show that the enthalpy flow in the annular pulse tube is lower by 1.6 W (about 11% of the enthalpy flow) compared to that in circular pulse tube. Flow and temperature distribution characteristics are also analyzed in detail. Experiments are then conducted for comparison with an in-line type pulse tube cooler. With the same acoustic power input, the pulse tube cooler with a circular pulse tube obtains 7.88 W of cooling power at 77 K, while using an annular pulse tube leads to a cooling power of 7.01 W, a decrease of 0.9 W (11.4%) on the cooling performance. The study sets the basis for building a completely co-axial two-stage pulse tube cooler.
Zhao, An; Jin, Ning-de; Ren, Ying-yu; Zhu, Lei; Yang, Xia
2016-01-01
In this article we apply an approach to identify the oil-gas-water three-phase flow patterns in vertical upwards 20 mm inner-diameter pipe based on the conductance fluctuating signals. We use the approach to analyse the signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and extracting their scaling properties. We find that the magnitude series relates to nonlinear properties of the original time series, whereas the sign series relates to the linear properties. The research shows that the oil-gas-water three-phase flows (slug flow, churn flow, bubble flow) can be classified by a combination of scaling exponents of magnitude and sign series. This study provides a new way of characterising linear and nonlinear properties embedded in oil-gas-water three-phase flows.
Divergent Field Annular Ion Engine Project
National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In this...
Divergent Field Annular Ion Engine, Phase I
National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In this...
Annular Hybrid Rocket Motor, Phase I
National Aeronautics and Space Administration — Engineers at SpaceDev have conducted a preliminary design and analysis of a proprietary annular design concept for a hybrid motor. A U.S. Patent application has been...
Adaptive optics scanning ophthalmoscopy with annular pupils
Sulai, Yusufu N.; Dubra, Alfredo
2012-01-01
Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections. PMID:22808435
Fabrication of Sintered Annular Fuel Pellet
International Nuclear Information System (INIS)
Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho; Kim, Keon Sik; Kang, Ki Won; Song, Kun Woo
2010-01-01
A dual cooled annular fuel has been seriously considered as a favorable option for uprating the power density of a Pressurized Water Reactor fuel assembly. An annular fuel has a geometrically inherent advantage such as an increased heat transfer area and a thin pellet thickness. It results in a lot of advantages from the point of a fuel safety and its economy. In order to actualize the dual cooled fuel, an essential element is the annular pellet with precisely controlled diametric tolerance. However, the unique shape of annular fuel pellet causes challenging difficulties to satisfy a diametric tolerance specification. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional doubleacting press. Thus, a sintered pellet usually undergoes a centerless grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a centerless grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications for the inner diameter in an as-fabricated pellet. In the present study, we are trying to find a way to minimize the diametric tolerance of the sintered annular pellet without inner surface grinding. This paper deals with a new approach that we have tried to reduce the diametric tolerance of the sintered annular pellet
Development of annular coupled structure
International Nuclear Information System (INIS)
Kageyama, T.; Morozumi, Y.; Yoshino, K.; Yamazaki, Y.
1992-01-01
A π/2-mode standing-wave linac of an Annular Coupled Structure (ACS) has been developed for the 1-GeV proton linac of the Japanese Hadron Project (JHP). This ACS has four coupling slots between accelerating and coupling cells in order to overcome difficulties in putting the ACS to practical use. Two prototypes of a four-slot ACS (f = 1296 MHz, β = v/c = 0.8) have been constructed and tested: one with a staggered slot-orientation from cell to cell; and the other with a uniform one. The staggered configuration gives a larger coupling constant and a larger shunt impedance than the uniform one with the same size of coupling slot. Both models have been conditioned up to the design input RF power. The four-slot ACS gives a distortion-free accelerating field around the beam axis, while a Side-Coupled Structure cavity gives an accelerating field mixed with a TE111-like mode. (Author) 7 figs., 2 tabs., 9 refs
Study and optimization of an annular photocatalytic slurry reactor.
Camera-Roda, Giovanni; Santarelli, Francesco; Panico, Mauro
2009-05-01
The experimental results obtained for the photocatalytic degradation of a model organic dye in an annular slurry reactor are analyzed with the aid of a mathematical model. The model is used also to study the effects on the performances of many operative conditions: flow rate, photocatalyst concentration, power of the lamp, size of the photocatalytic particles, dimensions of the reactor. The investigation demonstrates that the rate of the process is often limited by the radiant energy transfer and that some simple rules can be followed in order to optimize different yields and the observed rate of reaction.
Prigent, S; Paing, J; Andres, Y; Chazarenc, F
2013-01-01
Upgrades to enhance nitrogen removal were tested in a 2 year old pilot vertical flow constructed wetland in spring and summer periods. The effects of a saturated layer and of recirculation were tested in particular. Two pilots (L = 2 m, W = 1.25 m, H = 1.2 m), filled with expanded schist (Mayennite(®)), were designed with hydraulic saturated layers of 20 and 40 cm at the bottom. Each pilot was fed with raw domestic wastewater under field conditions according to a hydraulic load of 15-38 cm d(-1) (i.e. 158-401 g COD (chemical oxygen demand) m(-2) d(-1)) and to recirculation rates ranging from 0% up to 150%. The initial load during the first 2 years of operation resulted in an incomplete mineralized accumulated sludge leading to total suspended solids (TSS), COD and biochemical oxygen demand (BOD5) release. A 40 cm hydraulic saturated layer enabled an increase of 5-10% total nitrogen (TN) removal compared to a 20 cm saturated layer. Recirculation allowed the dilution of raw wastewater and enhanced nitrification in a single stage. A design of 1.8 m² pe(-1) (48 cm d(-1), 191 g COD m(-2) d(-1)) with a 40 cm saturated layer and 100% recirculation enabled the French standard D4 (35 mg TSS L(-1), 125 mg COD L(-1), 25 mg BOD5 L(-1)), nitrogen concentrations below 20 mg TKN (total Kjeldahl nitrogen) L(-1) and 50 mg TN L(-1), to be met.
Directory of Open Access Journals (Sweden)
Line A.
2006-11-01
Full Text Available Le modèle présenté ici permet la pré-détermination du gradient de pression, du taux global de gaz, et de grandeurs caractéristiques de l'intermittence, dans un écoulement à poches et bouchons en conduite verticale. L'écriture des lois de conservation en moyenne phasique conditionnelle conduit à la définition d'une cellule moyenne équivalente. La fermeture du modèle est assurée par des lois de contrainte de cisaillement film-paroi, film-poche, bouchon-paroi, par une loi d'arrachage du gaz au culot de la poche, une loi de glissement du gaz dans les bouchons et par une loi de la vitesse moyenne de propagation des fronts de poches. Le calibrage et la qualification du modèle s'appuient sur deux banques de données, dont l'une a été obtenue avec des fluides pétroliers dans des conditions proches des situations industrielles (boucle diphasique de Boussens. The model described here can be used to predetermine the pressure gradient, the overall gas rate and the characteristic intermittence magnitudes in pocket and slug flow in a vertical pipe. The way governing equations in the conditional phase average are written defines an equivalent average cell. The model is closed by film/wall, film/pocket and slug/wall shear-stress laws, by a pulloff law for the gas at the bottom of the pocket, a slippage law for the gas in the slugs, and a mean propagation velocity law for the pocket fronts. The calibration and qualification of the model are based on two data banks, one of which contains data on petroleum fluids under conditions close to industrial situations (two-phase loop at Boussens.
Tang, Xian-qiang; Li, Jin-zhong; Li, Xue-Ju; Liu, Xue-gong; Huang, Sui-liang
2008-04-01
Shale and T. latifolia were used as subsurface vertical-flow constructed wetland substrate and vegetation for eutrophic Jin River water treatment, and investigate the effect of intermittent aeration on nitrogen and phosphorus removal. In this study, hydraulic loading rate was equal to 800 mm/d, and ratio of air and water was 5:1. During the entire running period, maximal monthly mean ammonia-nitrogen (NH4+ -N), total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal rates were observed in August 2006. In contrast to the non-aerated wetland, aeration enhanced ammonia-nitrogen, total nitrogen, soluble reactive phosphorus and total phosphorus removal: 10.1%, 4.7%, 10.2% and 8.8% for aeration in the middle, and 25.1%, 10.0%, 7.7% and 7.4% for aeration at the bottom of the substrate, respectively. However, aeration failed to improve the nitrate-nitrogen removal. During the whole experimental period, monthly mean NO3(-) -N removal rates were much lower for aerated constructed wetlands (regarding aeration in the middle and at the bottom) than those for non-aerated system. After finishing the experiment, aboveground plant biomass (stems and leaves) of T. latifolia was harvested, and its weight and nutrient content (total nitrogen and total phosphorus) were measured. Analysis of aboveground plant biomass indicated that intermittent aeration restrained the increase in biomass but stimulated assimilation of nitrogen and phosphorus into stems and leaves. Additional total nitrogen removal of 11.6 g x m(-2) and 12.6 g x m(-2) by aboveground T. latifolia biomass for intermittent artificial aeration in the middle and at the bottom of the wetland substrate, respectively, was observed.
Zhang, Xinwen; Hu, Zhen; Ngo, Huu Hao; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Xie, Huijun
2018-03-01
Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH 4 + -N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H 2 S, NH 3 , greenhouse gas (N 2 O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H 2 S, NH 3 and N 2 O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Loewenberg, M.F.
2007-05-15
A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations
Directory of Open Access Journals (Sweden)
Shivaiah S.
2012-01-01
Full Text Available The objective of this paper is to analyze the effect of chemical reaction on unsteady magneto hydrodynamic free convective fluid flow past a vertical porous plate in the presence of suction or injection. The governing equations of the flow field are solved numerically by a finite element method. The effects of the various parameters on the velocity, temperature and concentration profiles are presented graphically and values of skin-friction coefficient, Nusselt number and Sherwood number for various values of physical parameters are presented through tables.
Ferdows, M.
2017-03-10
A steady two-dimensional free convective flow of a viscous incompressible fluid along a vertical stretching sheet with the effect of magnetic field, radiation and variable thermal conductivity in porous media is analyzed. The nonlinear partial differential equations, governing the flow field under consideration, have been transformed by a similarity transformation into a systemof nonlinear ordinary differential equations and then solved numerically. Resulting non-dimensional velocity and temperature profiles are then presented graphically for different values of the parameters. Finally, the effects of the pertinent parameters, which are of physical and engineering interest, are examined both in graphical and tabular form.
Gnaneswara Reddy, Machireddy
2017-12-01
The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.
Directory of Open Access Journals (Sweden)
Asterios Pantokratoras
2008-01-01
Full Text Available Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis, and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD Lorentz forces. In addition, some exact solutions are presented specifically for water in the temperature range of 0∘C≤≤8∘C, where water density is nearly parabolic. Except for their use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the presented exact solutions with EMHD forces have use in flow separation control in aeronautics and hydronautics, whereas the MHD results have applications in process metallurgy and fusion technology. These analytical solutions are valid for flows with strong suction.
Oscillation Characteristics of Thermocapillary Convection in An Open Annular Pool
Duan, Li; Kang, Qi; Zhang, Di
2016-07-01
Temperature oscillation characteristics and free surface deformation are essential phenomena in fluids with free surface. We report experimental oscillatory behaviors for hydrothermal wave instability in thermocapillary-driven flow in an open annular pool of silicone oil. The annular pool is heated from the inner cylindrical wall with the radius 4mm and cooled at the outer wall with radius 20mm, and the depth of the silicone oil layer is in the range of 0.8mm-3mm.Temperature difference between the two sidewalls was increased gradually, and the flow will become unstable via a super critical temperature difference. In the present paper we used T-type thermocouple measuring the single-point temperature inside the liquid layer and captured the tiny micrometer wave signal through a high-precision laser displacement sensor. The critical temperature difference and critical Ma number of onset of oscillation have been obtained. We discussed the critical temperature difference and critical Marangoni number varies with the change of the depth of liquid layer, and the relationship between the temperature oscillation and surface oscillation has been discussed. Experimental results show that temperature oscillation and surface oscillation start almost at the same time with similar spectrum characteristic.
What causes Mars' annular polar vortices?
Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.
2017-01-01
A distinctive feature of the Martian atmosphere is that the winter polar vortices exhibit annuli of high potential vorticity (PV) with a local minimum near the pole. These annuli are seen in observations, reanalyses, and free-running general circulation model simulations of Mars, but are not generally a feature of Earth's polar vortices, where there is a monotonic increase in magnitude of PV with latitude. The creation and maintenance of the annular polar vortices on Mars are not well understood. Here we use simulations with a Martian general circulation model to the show that annular vortices are related to another distinctive, and possibly unique in the solar system, feature of the Martian atmosphere: the condensation of the predominant atmospheric gas species (CO2) in polar winter regions. The latent heat associated with CO2 condensation leads to destruction of PV in the polar lower atmosphere, inducing the formation of an annular PV structure.
Aceclofenac-induced erythema annulare centrifugum
Directory of Open Access Journals (Sweden)
Dilip Meena
2018-01-01
Full Text Available Erythema annulare centrifugum (EAC is characterised by slowly enlarging annular erythematous lesions and is thought to represent a clinical reaction pattern to infections, medications, and rarely, underlying malignancy. Causative drugs include chloroquine, cimetidine, gold sodium thiomalate, amitriptyline, finasteride, etizolam etc. We present a case of 40-year-old woman who presented to us with a 10 days history of nonpruritic, peripherally growing annular erythematous eruption. She had a history of recent onset of joint pain, for which she was taking aceclofenac 90 mg once a day for 5 days prior to the onset of the rash. This was confirmed on biopsy as EAC. The rash promptly subsided after stopping the drug. We report this case as there was no previous report of aceclofenac induced EAC.
Subaperture stitching tolerancing for annular ring geometry.
Smith, Greg A; Burge, James H
2015-09-20
Subaperture stitching is an economical way to extend small-region, high-resolution interferometric metrology to cover large-aperture optics. Starting from system geometry and measurement noise knowledge, this work derives an analytical expression for how noise in an annular ring of subapertures leads to large-scale errors in the computed stitched surface. These errors scale as sin(πp/M)(-2) where p is the number of sine periods around the annular full-aperture and M is the number of subaperture measurements. Understanding how low-spatial-frequency surface errors arise from subaperture noise is necessary for tolerancing systems which use subaperture stitching.
Directory of Open Access Journals (Sweden)
J. K. Cuzzone
2018-05-01
Full Text Available Paleoclimate proxies are being used in conjunction with ice sheet modeling experiments to determine how the Greenland ice sheet responded to past changes, particularly during the last deglaciation. Although these comparisons have been a critical component in our understanding of the Greenland ice sheet sensitivity to past warming, they often rely on modeling experiments that favor minimizing computational expense over increased model physics. Over Paleoclimate timescales, simulating the thermal structure of the ice sheet has large implications on the modeled ice viscosity, which can feedback onto the basal sliding and ice flow. To accurately capture the thermal field, models often require a high number of vertical layers. This is not the case for the stress balance computation, however, where a high vertical resolution is not necessary. Consequently, since stress balance and thermal equations are generally performed on the same mesh, more time is spent on the stress balance computation than is otherwise necessary. For these reasons, running a higher-order ice sheet model (e.g., Blatter-Pattyn over timescales equivalent to the paleoclimate record has not been possible without incurring a large computational expense. To mitigate this issue, we propose a method that can be implemented within ice sheet models, whereby the vertical interpolation along the z axis relies on higher-order polynomials, rather than the traditional linear interpolation. This method is tested within the Ice Sheet System Model (ISSM using quadratic and cubic finite elements for the vertical interpolation on an idealized case and a realistic Greenland configuration. A transient experiment for the ice thickness evolution of a single-dome ice sheet demonstrates improved accuracy using the higher-order vertical interpolation compared to models using the linear vertical interpolation, despite having fewer degrees of freedom. This method is also shown to improve a model's ability
Optimal Thrust Vectoring for an Annular Aerospike Nozzle, Phase I
National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...
Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project
National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...
Optimal Thrust Vectoring for an Annular Aerospike Nozzle, Phase II
National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...
International Nuclear Information System (INIS)
Reinaldy Nazar
2016-01-01
Results of several researches have shown that nano fluids have better thermal characteristics than conventional fluid (water). In this regard, ideas for using nano fluids as an alternative heat transfer fluid in the reactor coolant system have been well developed. Meanwhile the natural convection in a vertical annulus pipe is one of the important mechanisms of heat transfer and is found at the TRIGA research reactor, the new generation nuclear power plants and other energy conversion devices. On the other hand, the heat transfer characteristics of nano fluids in a vertical annulus pipe has not been known. Therefore, it is important to do research continuously to analyze the heat transfer nano fluids in a vertical annulus pipe. This study has carried out numerical analysis by using computer code of CFD (computational of fluids dynamic) on natural convection heat transfer characteristics of nano fluids flow of Al 2 O 3 -water 2 % volume in the vertical annulus pipe. The results showed an increase in heat transfer performance (Nusselt numbers - NU) by 20.5 % - 35 %. In natural convection mode with Rayleigh numbers 2.471 e +09 ≤ Ra ≤ 1.955 e +13 obtained empirical correlations for water is N U = 1.065 (R a (D H /x)) 0.179 and empirical correlations for Al 2 O 3 -water nano fluids is N U = 14.869 (R a (D H /x)) 0.115 .(author)
Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques;
2015-01-01
A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.
Rigorous derivation of the effective model describing a non-isothermal fluid flow in a vertical pipe filled with porous medium
Beneš, Michal; Pažanin, Igor
2017-11-01
This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe's ends. Starting from the dimensionless Darcy-Brinkman-Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman-Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.
Directory of Open Access Journals (Sweden)
Abbas Wael
2017-01-01
Full Text Available The effects of Hall current and Joule heating on flow and heat transfer of a nanofluid along a vertical cone in the presence of thermal radiation is considered. The flow is subjected to a uniform strong transverse magnetic field normal to the cone surface. Similarity transformations are used to convert the non-linear boundary- layer equations for momentum and energy equations to a system of non-linear ordinary differential equations which are then solved numerically with appropriate boundary conditions. The solutions are presented in terms of local skin friction, local Nusselt number, velocity, and temperature profiles for values of magnetic parameter, Hall parameter, Eckert number, radiation parameter, and nanoparticle volume fraction. Comparison of the numerical results made with previously published results under the special cases, the results are found to be in an excellent agreement. It is also found that, nanoparticle volume fraction parameter and types of nanofluid play an important role to significantly determine the flow behavior.
Effect of annular secondary conductor in a linear electromagnetic ...
Indian Academy of Sciences (India)
This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder.
Annular beam with segmented phase gradients
Directory of Open Access Journals (Sweden)
Shubo Cheng
2016-08-01
Full Text Available An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owing to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.
Common pass decentered annular ring resonator
Energy Technology Data Exchange (ETDEWEB)
Holmes, D. A.; Waite, T. R.
1985-04-30
An optical resonator having an annular cylindrical gain region for use in a chemical laser or the like in which two ring-shaped mirrors having substantially conical reflecting surfaces are spaced apart along a common axis of revolution of the respective conical surfaces. A central conical mirror reflects incident light directed along said axis radially outwardly to the reflecting surface of a first one of the ring-shaped mirrors. The radial light rays are reflected by the first ring mirror to the second ring mirror within an annular cylindrical volume concentric with said common axis and forming a gain region. Light rays impinging on the second ring mirror are reflected to diametrically opposite points on the same conical mirror surfaces and back to the first ring mirror through the same annular cylindrical volume. The return rays are then reflected by the conical mirror surface of the first ring mirror back to the central conical mirror. The mirror surfaces are angled such that the return rays are reflected back along the common axis by the central mirror in a concentric annular cylindrical volume. A scraper mirror having a central opening centered on said axis and an offset opening reflects all but the rays passing through the two openings in an output beam. The rays passing through the second opening are reflected back through the first opening to provide feedback.
Direct numerical simulation of supercritical annular electroconvection
Tsai, Peichun Amy; Daya, Zahir A.; Deyirmenjian, Vatche B.; Morris, Stephen W.
2007-01-01
We use direct numerical simulation to study electrically driven convection in an annular thin film. The simulation models a laboratory experiment that consists of a weakly conducting, submicron thick liquid crystal film suspended between two concentric electrodes. The film is driven to convect by
Granuloma annulare displaying pseudorosettes in Borelia infection.
Fernandez-Flores, A; Ruzic-Sabljic, E
2008-12-01
In 2003, pseudorosettes were described as highly suspicious of infection by Borrelia burgdorferi sensu lato in the appropriate clinical context. Nevertheless, such a pattern has been described in the literature in other non-infectious conditions. On the other hand, granuloma annulare (GA) has been recently closely associated with infection by Borrelia. We investigated how frequently pseudorosettes can be detected in common GA cases confirmed for Borrelia by PCR. We studied 13 biopsies of non-interstitial GA and 2 biopsies of interstitial GA from patients without clinical suspicion of borrelial infection. We also performed immunohistochemical studies in all the biopsies, using the CD-68 antibody. Molecular studies with PCR were performed with beta-globin PCR (human DNA). Borrelial DNA was confirmed by amplifying the OspA gene and intergenic rrf-rrl region. We found histiocytic pseudorosettes in 13 biopsies (86.66%). Human DNA was successfully amplified from 8 of 13 paraffin-embedded skin samples. From these we amplified borrelial DNA in 5 of 8 samples. Out of the 8 cases in which human DNA was amplified, a correlation between pseudorosettes and the molecular tests (Borrelia DNA) was confirmed in 5 instances. a) Pseudorosettes are not an unusual finding in common granuloma annulare; b) Borrelia is present in (most) cases of granuloma annulare; and c) Pseudorosettes seem to be a good morphological sign predictive of infection with Borrelia in granuloma annulare.
Gao, Zhong-Ke; Yang, Yu-Xuan; Cai, Qing; Zhang, Shan-Shan; Jin, Ning-De
2016-06-01
Exploring the dynamical behaviors of high water cut and low velocity oil-water flows remains a contemporary and challenging problem of significant importance. This challenge stimulates us to design a high-speed cycle motivation conductance sensor to capture spatial local flow information. We systematically carry out experiments and acquire the multi-channel measurements from different oil-water flow patterns. Then we develop a novel multivariate weighted recurrence network for uncovering the flow behaviors from multi-channel measurements. In particular, we exploit graph energy and weighted clustering coefficient in combination with multivariate time-frequency analysis to characterize the derived complex networks. The results indicate that the network measures are very sensitive to the flow transitions and allow uncovering local dynamical behaviors associated with water cut and flow velocity. These properties render our method particularly useful for quantitatively characterizing dynamical behaviors governing the transition and evolution of different oil-water flow patterns.
Directory of Open Access Journals (Sweden)
K. Ganesh Kumar
2018-03-01
Full Text Available A study on magnetohydrodynamic mixed convection flow of Casson fluid over a vertical plate has been modelled in the presence of Cross diffusion effect and nonlinear thermal radiation. The governing partial differential equations are remodelled into ordinary differential equations by using similarity transformation. The accompanied differential equations are resolved numerically by using Runge–Kutta–Fehlberg forth-fifth order along with shooting method (RKF45 Method. The results of various physical parameters on velocity and temperature profiles are given diagrammatically. The numerical values of the local skin friction coefficient, local Nusselt number and local Sherwood number also are shown in a tabular form. It is found that, effect of Dufour and Soret parameter increases the temperature and concentration component correspondingly. Keywords: Casson fluid, Nonlinear thermal radiation, Magnetic field, Cross diffusion effect, Vertical surface
International Nuclear Information System (INIS)
Li, R.
2012-01-01
The aim of this research dissertation is at studying natural and mixed convections of fluid flows, and to develop and validate numerical schemes for interface tracking in order to treat incompressible and immiscible fluid flows, later. In a first step, an original numerical method, based on Finite Volume discretizations, is developed for modeling low Mach number flows with large temperature gaps. Three physical applications on air flowing through vertical heated parallel plates were investigated. We showed that the optimum spacing corresponding to the peak heat flux transferred from an array of isothermal parallel plates cooled by mixed convection is smaller than those for natural or forced convections when the pressure drop at the outlet keeps constant. We also proved that mixed convection flows resulting from an imposed flow rate may exhibit unexpected physical solutions; alternative model based on prescribed total pressure at inlet and fixed pressure at outlet sections gives more realistic results. For channels heated by heat flux on one wall only, surface radiation tends to suppress the onset of re-circulations at the outlet and to unify the walls temperature. In a second step, the mathematical model coupling the incompressible Navier-Stokes equations and the Level-Set method for interface tracking is derived. Improvements in fluid volume conservation by using high order discretization (ENO-WENO) schemes for the transport equation and variants of the signed distance equation are discussed. (author)
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Majumder, S.
Gas-liquid two-phase flows are presented everywhere in industrial processes (i.e. gas-oil pipelines). In spite of the common occurrence of these two-phase flows, their understanding is limited compared to single-phase flows. Different studies on two-phase flow have focus on developing empirical...... correlations based on large sets of experiment data for void fraction [1,2] and pressure drop [3,4] which have proven to be accurate for the specific condition that their where developed for. Currently, dozens of void fraction and pressure drop correlations for different flow patterns are available...... in the literature but none of them is enough robust and suitable for different conditions (i.e. flow patterns, gas-liquid combinations, pipe inclination angles, etc.). This clearly represents a drawback and more research in required on this field....
Lavanya, B.
2017-07-01
The present paper analyses a solution for the transient free flow on a viscous and incompressible fluid between two vertical walls as a result of heta and mass transfer. The perturbation technique ahs been used to find the solutions for the velocity and temperature fields by solving the governing partial differential equations. The temperature of the one plate is assumed to be fluctuating. The effcets of the various parametrs entering into the problem, on the velocity and the temprature are depivted graphically. The impact of various parameters (Da, Rv, Pr, R and S) on velocity and temperature fields are shown graphically. The expressions for skin friction at both walls are also obtained.
Mishra, Mrinalini; Kei, Chi-Chung; Yu, Yu-Hsuan; Liu, Wei-Szu; Perng, Tsong-Pyng
2017-06-01
Uniform tantalum oxide thin films, with a growth rate of 0.6 Å/cycle, were fabricated on vertically aligned, 10 cm-long, silicon substrates using an innovative atomic layer deposition (ALD) design. The ALD system, with a reaction chamber depth of 13.3 cm and 18 vertical enclosed channels (inner diameter 1.3 cm), was coupled with a shower-head type precursor conduit plate bearing 6 radial channels. This design enabled deposition on 6 silicon substrates at a time. The degrees of non-uniformity of deposits along the length of the silicon wafer and across different positions in the ALD chamber were found to be 1.77%-6.21% and 3.27%-5.45%, respectively. A further advantage of the design is that the conduit plate may be modified and the number of channels increased to process 18 substrates simultaneously, thus moving toward efficient and expedited ALD systems.
Energy Technology Data Exchange (ETDEWEB)
Ahsan R. Choudhuri
2003-06-01
A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.
Vaughan, Garrett
2013-01-01
Open channel raceway bioreactors are a low-cost system used to grow algae for biofuel production. Microalgae have many promises when it comes to renewable energy applications, but many economic hurdles must be overcome to achieve an economic fuel source that is competitive with petroleum-based fuels. One way to make algae more competitive is to improve vertical mixing in algae raceway bioreactors. Previous studies show that mixing may be increased by the addition of mechanisms such as airf...
Energy Technology Data Exchange (ETDEWEB)
Das, S.S. [Department of Physics, K B D A V College, Nirakarpur, Khurda-752 019 (Orissa) (India); Tripathy, R.K. [Department of Physics, D R Nayapalli College, Bhubaneswar-751 012 (Orissa) (India); Padhy, R.K. [Department of Physics, D A V Public School, Chandrasekharpur, Bhubaneswar-751 021 (Orissa) (India); Sahu, M. [Department of Physics, Jupiter +2 Women’s Science College, IRC Village, Bhubaneswar-751 015 (Orissa) (India)
2012-07-01
This paper theoretically investigates the combined natural convection and mass transfer effects on unsteady flow of a viscous incompressible fluid past an infinite vertical porous plate embedded in a porous medium with heat source. The governing equations of the flow field are solved analytically for velocity, temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter perturbation technique and the effects of the flow parameters such as permeability parameter Kp, Grashof number for heat and mass transfer Gr, Gc; heat source parameter S, Schmidt number Sc, Prandtl number Pr etc. on the flow field are analyzed and discussed with the help of figures and tables. The permeability parameter Kp is reported to accelerate the transient velocity of the flow field at all points for small values of Kp (£1) and for higher values the effect reverses. The effect of increasing Grashof numbers for heat and mass transfer or heat source parameter is to enhance the transient velocity of the flow field at all points while a growing Schmidt number retards its effect at all points. A growing permeability parameter or heat source parameter increases the transient temperature of the flow field at all points, while a growing Prandtl number shows reverse effect. The effect of increasing Schmidt number is to decrease the concentration boundary layer thickness of the flow field at all points. Further, a growing permeability parameter enhances the skin friction at the wall and a growing Prandtl number shows reverse effect. The effect of increasing Prandtl number or permeability parameter leads to increase the magnitude of the rate of heat transfer at the wall.
Czech Academy of Sciences Publication Activity Database
Krupička, Jan; Matoušek, Václav
2014-01-01
Roč. 62, č. 2 (2014), s. 126-132 ISSN 0042-790X R&D Projects: GA ČR GA103/09/0383 Institutional support: RVO:67985874 Keywords : two-phase flow * gamma radiometry * computational tomography * slurry flow experiment Subject RIV: BK - Fluid Dynamics Impact factor: 1.486, year: 2014
International Nuclear Information System (INIS)
Hwang, D.H.; Yoo, Y.J.; Kim, K.K.
1998-08-01
A linear model, named ALFS, is developed for the analysis of two-phase flow instabilities caused by density wave oscillation and flow excursion in a vertical boiling channel with constant pressure drop conditions. The ALFS code can take into account the effect of the phase velocity difference and the thermally non-equilibrium phenomena, and the neutral boundary of the two-phase flow instability was analyzed by D-partition method. Three representative two-phase flow models ( i.e. HEM, DEM, and DNEM) were examined to investigate the effects on the stability analysis. As the results, it reveals that HEM shows the most conservative prediction of heat flux at the onset of flow instability. three linear models, Ishiis DEM, Sahas DNEM, and ALFS model, were applied to Sahas experimental data of density wave oscillation, and as the result, the mean and standard deviation of the predicted-to-measured heat flux at the onset of instability were calculated as 0.93/0.162, 0.79/0.112, and 0.95/0.143, respectively. For the long test section, however, ALFS model tends to predict the heat fluxes about 30 % lower than the measured values. (author). 14 refs
Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.
Mahajan, Virendra N; Aftab, Maham
2010-11-20
The theory of wavefront analysis of a noncircular wavefront is given and applied for a systematic comparison of the use of annular and Zernike circle polynomials for the analysis of an annular wavefront. It is shown that, unlike the annular coefficients, the circle coefficients generally change as the number of polynomials used in the expansion changes. Although the wavefront fit with a certain number of circle polynomials is identically the same as that with the corresponding annular polynomials, the piston circle coefficient does not represent the mean value of the aberration function, and the sum of the squares of the other coefficients does not yield its variance. The interferometer setting errors of tip, tilt, and defocus from a four-circle-polynomial expansion are the same as those from the annular-polynomial expansion. However, if these errors are obtained from, say, an 11-circle-polynomial expansion, and are removed from the aberration function, wrong polishing will result by zeroing out the residual aberration function. If the common practice of defining the center of an interferogram and drawing a circle around it is followed, then the circle coefficients of a noncircular interferogram do not yield a correct representation of the aberration function. Moreover, in this case, some of the higher-order coefficients of aberrations that are nonexistent in the aberration function are also nonzero. Finally, the circle coefficients, however obtained, do not represent coefficients of the balanced aberrations for an annular pupil. The various results are illustrated analytically and numerically by considering an annular Seidel aberration function.