Droplet sizes, dynamics and deposition in vertical annular flow
Energy Technology Data Exchange (ETDEWEB)
Lopes, J C.B.; Dukler, A E
1985-10-01
The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.
Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Droplet entrainment correlation in vertical upward co-current annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Sawant, Pravin [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)], E-mail: psawant@purdue.edu; Ishii, Mamoru [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Mori, Michitsugu [Tokyo Electric Power Co., Inc., R and D Center, 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan)], E-mail: michitsugu.mori@tepco.co.jp
2008-06-15
Upward annular two-phase flow in a vertical tube is characterized by the presence of liquid film on the tube wall and entrained droplet laden gas phase flowing through the tube core. Entrainment fraction in annular flow is defined as a fraction of the total liquid flow flowing in the form of droplets through the central gas core. Its prediction is important for the estimation of pressure drop and dryout in annular flow. In the following study, measurements of entrainment fraction have been obtained in vertical upward co-current air-water annular flow covering wide ranges of pressure and flow conditions. Comparison of the experimental data with the existing entrainment fraction prediction correlations revealed their inadequacies in simulating the trends observed under high flow and high pressure conditions. Furthermore, several correlations available in the literature are implicit and require iterative calculations. Analysis of the experimental data showed that the non-dimensional numbers, Weber number (We = {rho}{sub g}
Fully developed MHD natural convection flow in a vertical annular microchannel: An exact solution
Directory of Open Access Journals (Sweden)
Basant K. Jha
2015-07-01
Full Text Available An exact solution of steady fully developed natural convection flow of viscous, incompressible, electrically conducting fluid in a vertical annular micro-channel with the effect of transverse magnetic field in the presence of velocity slip and temperature jump at the annular micro-channel surfaces is obtained. Exact solution is expressed in terms of modified Bessel function of the first and second kind. The solution obtained is graphically represented and the effects of radius ratio (η, Hartmann number (M, rarefaction parameter (βvKn, and fluid–wall interaction parameter (F on the flow are investigated. During the course of numerical computations, it is found that an increase in Hartmann number leads to a decrease in the fluid velocity, volume flow rate and skin friction. Furthermore, it is found that an increase in curvature radius ratio leads to an increase in the volume flow rate.
Prediction of amount of entrained droplets in vertical annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Sawant, Pravin [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)], E-mail: psawant@purdue.edu; Ishii, Mamoru [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)], E-mail: ishii@purdue.edu; Mori, Michitsugu [Tokyo Electric Power Co. Inc., 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan)], E-mail: michitsugu.mori@tepco.co.jp
2009-08-15
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each experiment, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using the liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant [Sawant, P.H., Ishii, M., Mori, M., 2008. Droplet entrainment correlation in vertical upward co-current annular two-phase flow. Nucl. Eng. Des. 238 (6), 1342-1352] for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts [Willetts, I.P., 1987. Non-aqueous annular two-phase flow. D.Phil. Thesis, University of Oxford]. However, comparison of the correlations with the steam-water data available in literature showed significant discrepancies. It is proposed that these discrepancies might have been caused due to the inadequacy of the liquid film extraction method used to measure the entrainment
A two-dimensional parabolic model for vertical annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Fernandez, F.M.; Toledo, A. Alvarez; Paladino, E.E. [Graduate Program in Mechanical Engineering, Universidade Federal de Rio Grande do Norte, Natal, RN (Brazil)], e-mail: emilio@ct.ufrn.br
2010-07-01
This work presents a solution algorithm for predicting hydrodynamic parameters for developing and equilibrium, adiabatic, annular, vertical two-phase flow. It solves mass and momentum transport differential equations for both the core and the liquid film across their entire domains. Thus, the velocity and shear stress distributions from the tube center to the wall are obtained, together with the average film thickness and the pressure gradient, making no use of empirical closure relations nor assuming any known velocity profile to solve the triangular relationship in the liquid film. The model was developed using the Finite Volume Method and an iterative procedure is proposed to solve all flow variables for given phase superficial velocities. The procedure is validated against the analytical solution for laminar flow and experimental data for gas-liquid turbulent flow with entrainment. For the last case, an algebraic turbulence model is used for turbulent viscosity calculation for both, liquid film and gas core. (author)
Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow
Directory of Open Access Journals (Sweden)
Grazia Monni
2013-01-01
Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.
Wall pressure measurements of flooding in vertical countercurrent annular air–water flow
Energy Technology Data Exchange (ETDEWEB)
Choutapalli, I., Vierow, K.
2010-01-01
An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.
Properties of disturbance waves in vertical annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Sawant, Pravin [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)], E-mail: psawant@purdue.edu; Ishii, Mamoru [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Hazuku, Tatsuya; Takamasa, Tomoji [Faculty of Marine Technology, Tokyo University of Marine Science and Technology, Etchujima, Koto-ku, Tokyo 135-8533 (Japan); Mori, Michitsugu [Tokyo Electric Power Co., Inc., 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan)
2008-12-15
Disturbance waves play an important role in interfacial transfer of mass, momentum and energy in annular two-phase flow. In spite of their importance, majority of the experimental data available in literature on disturbance wave properties such as velocity, frequency, wavelength and amplitude are limited to near atmospheric conditions (Azzopardi, B.J., 1997. Drops in annular two-phase flow. International Journal of Multiphase Flow, 23, 1-53). In view of this, air-water annular flow experiments have been conducted at three pressure conditions (1.2, 4.0 and 5.8 bar) in a tubular test section having an inside diameter 9.4 mm. At each pressure condition liquid and gas phase flow rates are varied over a large range so that the effects of density ratio, liquid flow rate and gas flow rate on disturbance wave properties can be studied systematically. A liquid film thickness is measured by two flush mounted ring shaped conductance probes located 38.1 mm apart. Disturbance wave velocity, frequency, amplitude and wavelength are estimated from the liquid film thickness measurements by following the statistical analysis methods. Parametric trends in variations of disturbance wave properties are analyzed using the non-dimensional numbers; liquid phase Reynolds number (Re{sub f}), gas phase Reynolds number (Re{sub g}), Weber number (We) and Strouhal number (Sr). Finally, the existing correlations available for the prediction of disturbance wave velocity and frequency are analyzed and a new, improved correlation is proposed for the prediction of disturbance wave frequency. The new correlation satisfactorily predicted the current data and the data available in literature.
Farhaoui, Asma; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard; Matar, Omar
2016-11-01
We carry out three-dimensional numerical simulations of co/counter current Gas-Liquid annular flows using the parallel code, BLUE, based on a projection method for the resolution of the Navier-Stokes equations and a hybrid Front-Tracking/Level-Set method for the interface advection. Gas-Liquid annular flows and falling films in a pipe are present in a broad range of industrial processes. This configuration consists of an important multiphase flow regime where the liquid occupies the area adjacent to the internal circumference of the pipe and the gas flows in the pipe core. Experimentally, four distinctive flow regimes were identified ('dual-wave', 'thick ripple', 'disturbance wave' and 'regular wave' regimes), that we attempt to simulate. In order to visualize these different regimes, various liquid (water) and gas (air) flow-rates are investigated. EPSRC UK Programme Grant EP/K003976/1.
Energy Technology Data Exchange (ETDEWEB)
Mori, Shoji [Yokohama National University, Yokohama 240-8501 (Japan)], E-mail: morisho@ynu.ac.jp; Tominaga, Akira [Ube National College of Technology, Ube 755-8555 (Japan)], E-mail: tominaga@ube-k.ac.jp; Fukano, Tohru [Kurume Institute of University, Fukuoka 830-0052 (Japan)], E-mail: fukanot@cc.kurume-it.ac.jp
2007-12-15
If a flow obstacle, such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions, a spacer has a cooling effect, and under other conditions, the spacer causes dryout of the cooling water film on the heating surface. The burnout mechanism, which always occurs upstream of a spacer, however, remains unclear. In a previous paper [Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90], we reported that the disturbance wave has a significant effect on dryout and burnout occurrence and that a spacer greatly affects the behavior of the liquid film downstream of the spacer. In the present study, we examined in detail the influences of a spacer on the heat transfer and film thickness characteristics downstream of the spacer by considering the result in steam-water and air-water systems. The main results are summarized as follows: (1)The spacer averages the liquid film in the disturbance wave flow. As a result, dryout tends not to occur downstream of the spacer. This means that large temperature increases do not occur there. However, traces of disturbance waves remain, even if the disturbance waves are averaged by the spacer. (2)There is a high probability that the location at which burnout occurs is upstream of the downstream spacer, irrespective of the spacer spacing. (3)The newly proposed burnout occurrence model can explain the phenomena that burnout does occur upstream of the downstream spacer, even if the liquid film thickness t{sub Fm} is approximately the same before and behind the spacer.
Sayar, Ersin
2017-02-01
The objective of this paper is to investigate the heat transfer to oscillating annular flow of a viscous fluid. The flow media includes stationary stainless steel wool porous domain and glycerol as the working fluid. The effects of actuation frequency and wall heat flux on the temperature field and resultant heat convection coefficient are studied. The temperature values at radial direction are close each other as porous media mixes the glycerol successfully. A correlation with a functional dependence to kinetic Reynolds number is recommended that can be used to acquire the averaged heat transfer for oscillating flows. Present experimental results with glycerol in a porous media are compared to the published experimental works with water. For the limited case of the two working fluids, Nusselt number is normalized well using the Prandtl number (Pr0.67). Results are also compared to non-porous media study and heat transfer is found to increase up to a factor of five in porous media. The recommended correlation is claimed to have a significant role for anticipating heat transfer of oscillating viscous fluid not only at low frequencies but also at low heat fluxes in a porous and permeable solid media.
Energy Technology Data Exchange (ETDEWEB)
Mori, S.; Fukano, T. [Kyushu Univ., Fukuoka (Japan)
2003-07-01
When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow with-in an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow.
Energy Technology Data Exchange (ETDEWEB)
Mori, S.; Fukano, T. E-mail: fukanot@mech.kyushu-u.ac.jp
2003-10-01
When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases, the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper, we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow. The results are summarized as follows: - When the heat flux approaches the burnout condition, the wall temperature on the heating tube fluctuates with a large amplitude. And once the wall temperature exceeds the Leidenfrost temperature, the burnout occurs without exception. - The trigger of dryout of the water film which causes the burnout is not the nucleate boiling but the evaporation of the base film between disturbance waves. - The burnout never occurs at the downstream side of the spacer. This is because the dryout area downstream of the spacer is rewetted easily by the disturbance waves.
Institute of Scientific and Technical Information of China (English)
陈冲; 高璞珍; 谭思超; 余志庭; 陈先兵
2015-01-01
为了研究竖直窄矩形通道内环状流的流动传热特性，建立了窄矩形通道内环状流的数学物理模型，并进行了实验验证。通过数值求解环状流的数学物理模型得到了环状流区域的压降梯度、沸腾传热系数和液膜内的速度分布。结果表明窄矩形通道内的环状流模型能够很好地预测环状流区域的压降梯度和沸腾传热系数，而且环状流液膜内速度在法向的分布是非线性的，在层流边界层区速度梯度较大。热通量和窄矩形通道的尺寸对液膜的流速有很大影响，随热通量的增加和窄矩形通道尺寸的减小液膜的流速逐渐增加，然而质量流速对液膜流速的影响较小，而且随质量流速的增加液膜的速度逐渐减小。%A mathematical model of annular flow in vertical rectangular narrow channel was developed and experimental verification was performed in order to study flow and heat transfer characteristics of annular flow in vertical rectangular narrow channel. Through numerically solving the mathematical model, pressure gradient, boiling heat transfer and liquid film velocity profile in the annular flow region were obtained. The present model could well predict pressure gradient and boiling heat transfer. The liquid film velocity profile of annular flow in the normal direction was not linear, and liquid film velocity gradient was large in the laminar boundary layer. Rectangular narrow channel size and heat flux had significant effect on liquid film velocity profile. Liquid film velocity increased with increasing heat flux and decreased with increasing channel size. The effect of mass flow rate on liquid film velocity was smaller than the effect of heat flux and channel size, and liquid film velocity decreased with increasing mass flow rate.
Energy Technology Data Exchange (ETDEWEB)
Mori, Shoji; Fukano, Tohru [Kyushu Univ., Graduate School of Engineering, Fukuoka (Japan)
2002-07-01
If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)
On the Motion of an Annular Film in Microgravity Gas-Liquid Flow
McQuillen, John B.
2002-01-01
Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.
Energy Technology Data Exchange (ETDEWEB)
Mori, Shoji [Yokohama National University, Yokohama 240-8501 (Japan)]. E-mail: morisho@ynu.ac.jp; Fukano, Tohru [Kurume Institute of University, Fukuoka 830-0052 (Japan)]. E-mail: fukanot@cc.kurume-it.ac.jp
2006-05-15
If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear. In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail.
Directory of Open Access Journals (Sweden)
Sharf Abdusalam M.
2014-03-01
Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.
Droplet entrainment rate in gas-liquid annular flow
Energy Technology Data Exchange (ETDEWEB)
Sawant, P. [Energy Research Inc., Rockville, Maryland (United States); Liu, Y.; Ishii, M. [Purdue Univ., West Lafayette, Indiana (United States); Mori, M. [Tokyo Electric Power Co., Inc., Yokohama (Japan); Chen, S. [Purdue Univ., West Lafayette, Indiana (United States)
2011-07-01
Droplet entrainment and deposition are the two most important physical phenomena in the gas-liquid annular two-phase flow. Modeling of these phenomena is essential for the estimation of dryout margins in the Light Water Reactors (LWRs) and the boilers. In this study, gas-liquid annular two-phase flow experiments are performed in a vertical round tube test section under adiabatic conditions. Air-water and organic fluid Freon-113 are used as the test fluids. The experiments covered a wide range of pressure and flow conditions. Liquid film extraction technique was used for the measurement of droplet entrainment and deposition rates. Additionally, the thickness of liquid film was measured in the air-water experiments using the ring type conductance probes. In this paper, the experimental data on entrainment rate is used to analyze the currently available correlations in the literature. The analysis showed that the existing correlations failed to predict the data at high gas velocity conditions. At high gas velocity, the experimental entrainment rate approaches a maximum limiting value; however, the correlations predicted continuously increasing entrainment rate as the gas velocity increases. (author)
On the mixing enhancement in annular flows
Moradi, H. V.; Floryan, J. M.
2017-02-01
The potential for mixing enhancement associated with the use of axisymmetric ribs in annular flows has been analyzed. The enhancement relies on the use of streamwise vortices produced by the centrifugal instability. Conditions leading to the formation of such vortices have been established for a wide range of geometric parameters of interest using linear stability theory. It has been demonstrated that vortices can be formed only in the presence of ribs with O(1) wavelengths. Slopes of the bounding walls in the case of the long wavelength ribs are too small to create centrifugal forces sufficient for flow destabilization. In the case of short wavelength ribs, the slopes become excessively large, resulting in the stream moving away from the wall and becoming rectilinear and, thus, reducing the magnitude of the centrifugal force field. It has been shown that decreasing the annulus' radius reduces the critical Reynolds number when ribs are placed at the inner cylinder but increases when the ribs are placed at the outer cylinder. The onset of the shear-driven instability has been investigated as the resulting travelling waves may interfere with the formation of vortices. It has been shown that the axisymmetric waves play the critical role for annuli with large radii while the spiral waves play the critical role for annuli with small radii. The ribs always reduce the critical Reynolds number for the travelling waves when compared with the onset conditions for smooth annuli. The conduit geometries giving preference to the formation of vortices while avoiding creation of the travelling waves have been identified. It is demonstrated that predictions of flow characteristics determined through the analysis of sinusoidal ribs provide a good approximation of the flow response to ribs of arbitrary shape.
Inverted annular flow heat transfer in a natural circulation loop
Energy Technology Data Exchange (ETDEWEB)
Ozawa, M.; Umekawa, H.; Shiba, Y.; Yano, T. [Kansai Univ., Osaka (Japan)
1998-07-01
Gravity-feed reflooding experiment was conducted in a natural circulation loop of liquid nitrogen. The cooling curve of high temperature tube wall had a characteristic feature, i.e. initial rapid cooling with steam binding, relatively long-time plateau, gradual decrease with or without flow oscillation, and final drastic decrease during quenching process. Such phenomena had close relationship to the heated wall dynamics and heating power transient. To provide fundamental understanding on the present phenomena, the heat transfer data in inverted annular and dispersed flows were obtained under steady or oscillatory flow condition. The experimental data suggested that the heat transfer coefficient in the inverted annular or dispersed flow regimes is a slightly increasing function of heat flux but significantly depended on the tube diameter. The flow oscillation deteriorated heat transfer slightly in the inverted annular and dispersed flow regimes but significantly in the quenching process.
Displacement of one Newtonian fluid by another: density effects in axial annular flow
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole
1997-01-01
The arbitrary Lagrange-Euler (ALE) finite elementtechnique is used to simulate 3D displacement oftwo immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers....... Comparison with a simple theory for drainage of thin films is performed. It is found that recirculations deform the fluid-fluidinterface significantly in situations dominated by buoyancy forces. Also, a deviation from the concentric annular geometry is shown to induce azimuthal transport of fluid. Finally......, the efficiency of the displacement is analysed for various flow situations....
Experimental Study on Convective Boiling Heat Transfer in Vertical Narrow Gap Annular Tube
Institute of Scientific and Technical Information of China (English)
Li Bin; He Anding; Wang Yueshe; Zhou Fangde
2001-01-01
Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of 1, 1.5 and 2.5 mm, and also the visualization test are carried out to get two-phase flow regime. The data show that the Nusselt numbers for the narrow-gap are higher than those predicted by traditional large channel correlation and boiling heat transfer is enhanced. Based on the data obtained in this investigation, correlations for single-phase, forced convection and flow boiling in annular tube of different gap size has been developed.
Elastic instability in stratified core annular flow.
Bonhomme, Oriane; Morozov, Alexander; Leng, Jacques; Colin, Annie
2011-06-01
We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic--it is caused by the viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation supplemented with a kinematic criterion captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure the rheological properties of dilute polymer solutions that are difficult to assess otherwise.
Elastic instability in stratified core annular flow
Bonhomme, Oriane; Leng, Jacques; Colin, Annie
2010-01-01
We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic -- it is caused by viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure rheological properties of dilute polymer solutions that are difficult to assess otherwise.
The effect of pressure on annular flow pressure drop in a small pipe
Energy Technology Data Exchange (ETDEWEB)
de Bertodano, M.A.L.; Beus, S.G.; Shi, Jian-Feng
1996-09-01
New experimental data was obtained for pressure drop and entrainment for annular up-flow in a vertical pipe. The 9.5 mm. pipe has an L/D ratio of 440 to insure fully developed annular flow. The pressure ranged from 140 kPa to 660 kPa. Therefore the density ratio was varied by a factor of four approximately. This allows the investigation of the effect of pressure on the interfacial shear models. Gas superficial velocities between 25 and 126 m/s were tested. This extends the range of previous data to higher gas velocities. The data were compared with well known models for interfacial shear that represent the state of the art. Good results were obtained when the model by Asali, Hanratty and Andreussi was modified for the effect of pressure. Furthermore an equivalent model was obtained based on the mixing length theory for rough pipes. It correlates the equivalent roughness to the film thickness.
An investigation of flow characteristics and critical heat flux in vertical upward round tube
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Prediction of critical heat flux (CHF) in annular flow is important for the safety of once- through steam generator and the reactor core under accident conditions. The dryout in annular flow occurs at the point where the film is depleted due to entrainment, deposition, and evaporation. The film thickness, film mass flow rate along axial distribution, and CHF are calculated in vertical upward round tube on the basis of a separated flow model of annular flow. The theoretical CHF values are higher than those derived from experimental data, with error being within 30%.
Flow of viscoplastic fluids in eccentric annular geometries
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole
1992-01-01
A classification of flowfields for the flow of a Bingham fluid in general eccentric annular geometries is presented. Simple arguments show that a singularity can exist in the stress gradient on boundaries between zones with yielded and un-yielded fluid respectively. A Finite Element code is used...... to verify this property of the Bingham fluid. An analytical solution for the flowfield in case of small eccentricities is derived....
Characterization of interfacial waves in horizontal core-annular flow
Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.
2016-11-01
In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.
Performance of annular flow sterilizer irradiated by a germicidal lamp
Energy Technology Data Exchange (ETDEWEB)
Sugawara, T.; Yoneya, M.; Ohashi, H. (Akita Univ. (Japan))
1981-10-01
Theoretical and experimental studies were conducted on the UV-inactivation characteristics of Bacillus subtilis spores in an annular-flow sterilizer irradiated by a germicidal lamp located at the center of the inner tube. Experimental results for sterilizer performance in laminar spore-suspension flow were well simulated dynamically and statically by theoretical considerations which incorporated multi-targets with single-hit model for the UV-inactivation kinetic and the diffuse light model for the angle characteristic of lamp, along with due attention to the parabolic velocity distribution and the negligible diffusion of spores. Scale on the outside wall of the inner tube was checked by the use of a cylindrical chemical actinometer. Calculated examples elucidate the reason why careful inspection is needed of UV-inactivation kinetics, angle characteristics of lamp, and fluid mixing to evaluate performance of actual flow UV sterilizers at high extent of inactivation up to the order of 99.999%.
Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core
Ooms, G.; Vuik, C.; Poesio, P.
2007-01-01
A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference betwe
Characterization of annular two-phase gas-liquid flows in microgravity
Bousman, W. Scott; Mcquillen, John B.
1994-01-01
A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.
An analytical model for annular flow boiling heat transfer in microchannel heat sinks
Energy Technology Data Exchange (ETDEWEB)
Megahed, A.; Hassan, I. [Concordia University, Montreal, QC (Canada). Dept. of Mechanical and Industrial Engineering
2009-07-01
An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)
Stability of three-layered core-annular flow
Pillai, Dipin; Pushpavanam, Subramaniam; Sundararajan, T.
2016-11-01
Stability of a three-layered core-annular flow is analyzed using the method of modal linear stability analysis. A temporal analysis shows that the flow becomes unstable to two modes of instability when inertial effects are negligible. An energy budget analysis reveals that these two modes correspond to capillary instability associated with each fluid-fluid interface. With an increase in Reynolds number, the system exhibits additional Reynolds stress modes of instabilities. These modes correspond to the Tollmien-Schlichting type of waves associated with high Reynolds number shear flows, and are considered precursor to transition to turbulence. An investigation of the parameter space reveals that the system may simultaneously show up to 5 distinct modes of instability, viz., the two capillary modes at each interface and three Reynolds stress modes in the bulk of each phase. In addition, a spatio-temporal analysis shows that the Reynolds stress modes are always convectively unstable whereas the capillary modes may undergo a transition from convective to absolute instability with decrease in Weber number. To obtain encapsulated droplets in experiments, the operating parameters must be chosen such that the system lies in the regime of convective instability. MHRD-Govt of India, NSF 0968313.
Sayar, Ersin; Sari, Ugurcan
2016-08-01
Experimental evaluation of the heat transfer in oscillating flow under the constant heat flux and constant amplitude fluid displacement conditions is presented for a vertical annular flow through a stainless steel wool porous media. The analysis is carried out for two different heat fluxes and for five different frequencies. The data is acquired from the measurements both in the initial transient period and in the pseudo-steady (cyclic) period by the system. The physical and mathematical behavior of the resulting Nusselt numbers are analyzed, according to data acquired from the experiments and in accordance with the results of the Buckingham Pi theorem. A cycle and space averaged Nusselt number correlation is suggested as a function of kinetic Reynolds number for oscillating flows. The suggested correlation is useful in predicting heat transfer from oscillating flows through highly porous and permeable solid media at low actuation frequencies and at low heat fluxes applied in the wall. The validity of the Nusselt numbers acquired by correlation is discussed using experimental Nusselt numbers for the selected kinetic Reynolds number interval. The present investigation has possible applications in moderate sized wicked heat pipes, solid matrix compact heat exchangers compromising of metallic foams, filtration equipment, and steam generators.
Friction factor of annular Poiseuille flow in a transitional regime
Directory of Open Access Journals (Sweden)
Takahiro Ishida
2016-12-01
Full Text Available Annular Poiseuille flows in a transitional regime were investigated by direct numerical simulations with an emphasis on turbulent statistics including the friction factor that are affected by the presence of large-scale transitional structures. Five different radius ratios in the range of 0.1–0.8 and several friction Reynolds numbers in the range of 48–150 were analyzed to consider various flow states accompanied by characteristic transitional structures. Three characteristic structures, namely, turbulent–laminar coexistence referred to as “(straight puff,”“helical puff,” and “helical turbulence” were observed. The selection of the structures depends on both the radius ratio and the Reynolds number. The findings indicated that despite the transitional state with a turbulent–laminar coexistence, the helical turbulence resulted in a friction factor that was as high as the fully turbulent value. In contrast, with respect to the occurrence of streamwise-finite transitional structures, such as straight/helical puffs, the friction factor decreased in a stepwise manner toward a laminar level. The turbulent statistics revealed asymmetric distributions with respect to the wall-normal direction wherein the profiles and magnitudes were significantly influenced by the occurrence of transitional structures.
Institute of Scientific and Technical Information of China (English)
邵雪锋; 李祥东; 汪荣顺
2009-01-01
由于考虑了气泡的破裂和聚合,同两流体模型相比,MUSIG模型(多尺寸组模型)能更准确地描述流场内气泡直径.采用MUSIG模型详细分析了不同壁面热流量,液体入口速度,过冷度以及不同管道高度时通道内气泡相界面面积、当地气泡直径、空泡系数等参数沿径向的分布.分析结果表明,MUSIG模型可用来预测泡弹状流型转变区的流动参数,也即该模型拓展了两流体模型的使用范围.%Considering the mechanisms of bubble coalescence and breakage, MUSIG (Multiple-Size-Group) model can supply a more accurate description of the diameter of bubble in the boiling flow of liquid nitrogen comparing with two fluid model. The MUSIG model is applied here to analyze flow boiling of liquid nitrogen in a vertical annular channel, local radial distribution of the mean interfacial area concentration, Sauter diameter and void fraction with different liquid inlet velocity, heat flux , liquid inlet subcooling and height of tube in vertical annular pipe. The numerical results illustrates that the MUSIG model can be used to predict flow parameters in the two phase flow structures from bubbly to slug or churn turbulent boiling flows., which also mean the use of two fluid flow is extended by the MUSIG model.
Flow Pressure Loss through Straight Annular Corrugated Pipes
Sargent, Joseph R.; Kirk, Daniel R.; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul A.; Pitchford, Brian; Weber, Chris; Bulk, Timothy
2016-01-01
Pressure loss through annular corrugated pipes, using fully developed gaseous nitrogen representing purge pipes in spacecraft fairings, was studied to gain insight into a friction factor coefficient for these pipes. Twelve pipes were tested: four Annuflex, four Masterflex and two Titeflex with ¼”, 3/8”, ½” and ¾” inner diameters. Experimental set-up was validated using smooth-pipe and showed good agreement to the Moody diagram. Nitrogen flow rates between 0-200 standard cubic feet per hour were used, producing approximate Reynolds numbers from 300-23,000. Corrugation depth varied from 0.248 = E/D = 0.349 and relative corrugation pitch of 0.192 = P/D = 0.483. Differential pressure per unit length was measured and calculated using 8-9 equidistant pressure taps. A detailed experimental uncertainty analysis, including correlated bias error terms, is presented. Results show larger differential pressure losses than smooth-pipes with similar inner diameters resulting in larger friction factor coefficients.
Rayleigh-Bénard convection in a vertical annular container near the convection threshold.
Wang, Bo-Fu; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun
2014-04-01
The instabilities and transitions of flow in an annular container with a heated bottom, a cooled top, and insulated sidewalls are studied numerically. The instabilities of the static diffusive state and of axisymmetric flows are investigated by linear stability analysis. The onset of convection is independent of the Prandtl number but determined by the geometry of the annulus, i.e., the aspect ratio Γ (outer radius to height) and radius ratio δ (inner radius to outer radius). The stability curves for onset of convection are presented for 0.001≤δ≤0.8 at six fixed aspect ratios: Γ=1, 1.2, 1.6, 1.75, 2.5, and 3.2. The instability of convective flow (secondary instability), which depends on both the annular geometry and the Prandtl number, is studied for axisymmetric convection. Two pairs of geometric control parameters are chosen to perform the secondary instability analysis-Γ=1.2, δ=0.08 and Γ=1.6, δ=0.2-and the Prandtl number ranges from 0.02 to 6.7. The secondary instability exhibits some similarities to that for convection in a cylinder. A hysteresis stability loop is found for Γ=1.2, δ=0.08 and frequent changes of critical mode with Prandtl number are found for Γ=1.6, δ=0.2. The three-dimensional flows beyond the axisymmetry-breaking bifurcations are obtained by direct numerical simulation for Γ=1.2, δ=0.08.
Experimental research on flow instability in vertical narrow annuli
Institute of Scientific and Technical Information of China (English)
WU Geping; QIU Suizheng; SU Guanghui; JIA Dounan
2007-01-01
A narrow annular test section of 1.5mm gap and 1800mm length was designed and manufactured, with good tightness and insulation. Experiments were carried out to investigate characteristics of flow instability of forced-convection in vertical narrow annuli. Using distilled water as work fluid, the experiments were conducted at pressures of 1.0～3.0 MPa, mass flow rates of 3.0～25 kg/h, heating power of 3.0～ 6.5kW and inlet fluid temperature of 20 ℃, 40 ℃ or 60℃. It was found that flow instability occured with fixed inlet condition and heating power when mass flow rate was below a special value. Effects of inlet subcooling, system pressure and mass flow rate on the system behavior were studied and the instability region was given.
Energy Technology Data Exchange (ETDEWEB)
Balcilar, Muhammet; Dalkilic, Ahmet Selim; Bolat, Berna [Yildiz Technical University, Istanbul (Turkmenistan); Wongwises, Somchai [King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)
2011-10-15
The heat transfer characteristics of R134a during downward condensation are investigated experimentally and numerically. While the convective heat transfer coefficient, two-phase multiplier and frictional pressure drop are considered to be the significant variables as output for the analysis, inputs of the computational numerical techniques include the important two-phase flow parameters such as equivalent Reynolds number, Prandtl number, Bond number, Froude number, Lockhart and Martinelli number. Genetic algorithm technique (GA), unconstrained nonlinear minimization algorithm-Nelder-Mead method (NM) and non-linear least squares error method (NLS) are applied for the optimization of these significant variables in this study. Regression analysis gave convincing correlations on the prediction of condensation heat transfer characteristics using {+-}30% deviation band for practical applications. The most suitable coefficients of the proposed correlations are depicted to be compatible with the large number of experimental data by means of the computational numerical methods. Validation process of the proposed correlations is accomplished by means of the comparison between the various correlations reported in the literature.
Experimental investigation of three-dimensional flow structures in annular swirling jets
Percin, M.; Vanierschot, M.; Van Oudheusden, B.W.
2015-01-01
Annular jet flows are of practical interest in view of their occurrence in many industrial applications in the context of bluff-body combustors [1]. They feature different complex flow characteristics despite their simple geometry: a central recirculation zone (CRZ) as a result of flow separation be
Beerens, J.C.; Ooms, G.; Pourquie, M.J.B.M.; Westerweel, J.
2014-01-01
high-viscosity liquid core surrounded by a laminar low-viscosity liquid annular layer through a vertical pipe. The numerical results are compared with theoretical results from linear stability calculations and with experimental data. The comparison is good and the general conclusion of our study is
Hydraulic study of drilling fluid flow in circular and annular tubes
Energy Technology Data Exchange (ETDEWEB)
Scheid, C.M.; Calcada, L.A.; Braga, E.R.; Paraiso, E.C.H. [Universidade Federal Rural do Rio de Janeiro (PPGEQ/UFRRJ), Seropedica, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Dept. de Engenharia Qumica], E-mail: calcada@ufrrj.br; Martins, A. L. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas
2011-10-15
This study investigates the drilling fluid flow behavior of two water-based drilling fluids in circular and annular tubes. The study has four main objectives: 1) to evaluate correlations between the Power Law and the Casson rheological models, 2) to characterize the flow behavior, 3) to evaluate five hydraulic-diameter equations, and 4) to evaluate the correlations of five turbulent flow-friction factors. The experimental fluid flow loop consisted of one positive displacement pump of 25 HP connected to a 500-liter tank agitated by a 3-HP mixer. The fluids passed through six meters long tubes, arranged in three horizontal rows with independent inlets and outlets. The circular tubes had a 1 inch diameter and were configured as two concentric annular tubes. Annular Tube I had an outer diameter of 1 1/4 inch and an inner diameter of 1/2 inch. Annular Tube II had an outer diameter of 2 inches and an inner diameter of 3/4 inch. The results show that, for the fluids in exam, correlations proposed in the literature were inaccurate as far as predicting hydraulic diameter, estimating pressure drop, and defining the flow regime. In general, the performance of those correlations depended on the fluid properties and on the system's geometry. Finally, literature parameters for some of the correlations were estimated for the two drilling fluids studied. These estimations improved the predictive capacity of calculating the friction factor for real drilling fluids applications for both circular and annular tubes. (author)
Energy Technology Data Exchange (ETDEWEB)
Han Huawei [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ont., L1H 7K4 (Canada)]. E-mail: colin.han@uoit.ca; Zhu Zhenfeng [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Sask., S7N 5A9 (Canada)]. E-mail: zhz752@mail.usask.ca; Gabriel, Kamiel [University of Ontario Institute of Technology, Oshawa, Ont., L1H 7K4 (Canada)]. E-mail: kamiel.gabriel@uoit.ca
2006-12-15
Interfacial waves play a very important role in the mass, momentum and energy transport phenomena in annular flow. In this paper, film thickness time-trace measurements for air-water annular flow were collected in a small vertical tube using a parallel wire probe. Using the data, a typical disturbance wave shape was obtained and wave properties (e.g., width, height, speed and roughness) were presented. The liquid mass flux ranged from 100 to 200 kg/m{sup 2} s and the gas mass flux ranged from 18 to 47 kg/m{sup 2} s. Disturbance wave characteristics were defined and the effects of changing the gas flow rate on the wave spacing, wave width, wave peak height and wave base height were studied. An average velocity model for the wave and base regions has been developed to determine the wave velocity. The investigation method could be further extended to annular-mist flow which frequently occurs in boiling water reactors.
Droplets in annular-dispersed gas-liquid pipe-flows
Van 't Westende, J.M.C.
2008-01-01
Annular-dispersed gas-liquid pipe-flows are commonly encountered in many industrial applications, and have already been studied for many decades. However, due to the great complexity of this type of flow, there are still many phenomena that are poorly understood. The aim of this thesis is to shed mo
Yu, Jia-Jia; Wu, Chun-Mei; Li, You-Rong; Chen, Jie-Chao
2016-08-01
A series of three-dimensional numerical simulations on thermal-solutal capillary-buoyancy flow in an annular pool were carried out. The pool was filled with silicon-germanium melt with an initial silicon mass fraction of 1.99%. The Prandtl number and the Lewis number of the working fluid are 6.37 × 10-3 and 2197.8, respectively. Both the radial temperature gradient and the solute concentration gradient were applied to the annular pool. The capillary ratio was assumed to be -1, which means that the solutal and thermal capillary effects were equal and opposite. Results show that the thermal-solutal capillary-buoyancy flow always occurs at this special case with the capillary ratio of -1, and even in a shallow annular pool with an aspect ratio of 0.05. With the increase of the thermal Marangoni number, four kinds of flow patterns appear orderly, including concentric rolls, petal-like, spoke, and rosebud-like patterns. These flow patterns are strongly influenced by the local interaction between the solutal and thermal capillary effects and the vertical solute concentration gradient near the outer cylinder. A small vortex driven by the dominant solutal capillary effect emerges near the inner cylinder, which is different from the flow pattern in a pure fluid. In addition, the critical thermal Marangoni number of the initial three-dimensional flow decreases with the increase of the aspect ratio of the annular pool.
THE PERTURBATION SOLUTIONS OF THE FLOW IN A ROTATING CURVED ANNULAR PIPE
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, the flow in a rotating curved annular pipe isexamined by a perturbation method. A second order perturbation solution is presented. The characteristics of the secondary flow and the axial flow are studied in detail.The study indicates that the loops of the secondary flow are more complex than those in a curved annular pipe without rotation and its numbers depend on the ratio of the Coriolis force to centrifugal force F. As F ≈- 1 , the secondary flow has eight loops and its intensity reaches the minimum value, and the distribution of the axial flow is like that of the Poiseuille flow. The position of the maximum axial velocity is pushed to either outer bend or inner bend, which is also determined by F.
Ooms, G.; Pourquie, M.J.B.M.; Beerens, J.C.
2013-01-01
A numerical study has been made of horizontal core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question how the buoyancy force on the core, caused by a density difference between
Energy Technology Data Exchange (ETDEWEB)
Trabold, T.A.; Kumar, R. [Lockheed Martin Corp., Schenectady, NY (United States)
1999-07-01
In Part 1, detailed measurements were made in a high pressure, adiabatic (boiled at the inlet) annular flow in a narrow, high aspect ratio duct using a gamma densitometer, hot-film anemometer and high-speed video photography. Measurements of void fraction, droplet frequency, velocity, drop size, and interfacial area concentration have been made to support the three field computational capability. An important aspect of this testing is the use of a modeling fluid (R-134a) in a vertical duct which permits visual access in annular flow. This modeling fluid accurately simulates the low liquid-to-vapor density ratio of steam-water flows at high pressures. These measurements have been taken in a narrow duct of hydraulic diameter 4.85 mm, and a cross-section aspect ratio of 22.5. However, the flow displays profiles of various shapes not only in the narrow dimension, but also in the width dimension. In particular, the shape of the droplet profiles depends on the entrained droplet flux from the edges in the vapor core. The average diameter from these profiles compare well with the models developed in the literature. Interfacial area concentration for these low density ratio flows is higher than the highest concentration reported for air-water flows. Video records show that along with the bow-shaped waves, three-dimensional {lambda}-shaped waves appear in annular flows for high flow rates. Part 2 outlines the development of a three-field modeling approach in annular flow and the predictive capability of an analysis code. Models have been developed here or adapted from the literature for the thin film near the wall as well as the droplets in the vapor core, and have been locally applied in a fully developed, two-phase adiabatic boiling annular flow in a duct heated at the inlet at high pressure. Numerical results have been obtained using these models that are required for the closure of the continuity and momentum equations. The two-dimensional predictions are compared with
Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe
Energy Technology Data Exchange (ETDEWEB)
Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)
2015-10-15
The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B{sub 4}C) to have the ability of reactivity control. It has annular vapor space and
Intermittent Flow of Granular Matter in an Annular Geometry
Brzinski, Ted; Daniels, Karen E.
Granular solids can be subjected to a finite stress below which the response is elastic. Above this yield stress, however, the material fails catastrophically, undergoing a rapid plastic deformation. In the case of a monotonically increasing stress the material exhibits a characteristic stick-slip response. We investigate the statistics of this intermittent failure in an annular shear geometry, driven with a linear-ramp torque in order to generate the stick-slip behavior. The apparatus is designed to allow visual access to particle trajectories and inter-particle forces (through the use of photoelastic materials). Additionally, twelve piezoelectric sensors at the outer wall measure acoustic emissions due to the plastic deformation of the material. We vary volume fraction, and use both fixed and deformable boundaries. We measure how the distribution of slip size and duration are related to the bulk properties of the packing, and compare to systems with similar governing statistics.
Annular flow of cement slurries; Escoamento anular de pastas de cimento
Energy Technology Data Exchange (ETDEWEB)
Silva, Maria das Gracas Pena; Martins, Andre Leibsohn; Oliveira, Antonio Augusto J. de [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao
1989-12-31
This paper considers the analysis of laminar, transitory and turbulent flow regimes of cement slurries of various compositions flowing in annular sections. It is an experimental study to evaluate the performance of dozens of equations found in the literature that reflect the rheological behavior of non-Newtonian fluids, the dimensioning of annular sections, the delimitation of the transitory zone and the estimative of friction losses in the turbulent flow regime. A large-scale physical simulator (SHS-Surface Hydraulic Simulator), was designed and constructed at the PETROBRAS Research Center in order to obtain flow parameters. A computer program capable of analysing and drawing conclusions from the behavior of non-Newtonian fluids flowing in different geometries and energetic conditions was also developed. These were considered as essential stages for the development of the project. (author) 17 refs., 9 figs., 18 tabs.
Modeling of annular two-phase flow using a unified CFD approach
Energy Technology Data Exchange (ETDEWEB)
Li, Haipeng, E-mail: haipengl@kth.se; Anglart, Henryk, E-mail: henryk@kth.se
2016-07-15
Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.
Effects of Nonuniform Blade Pitch on the Flow Through an Annular Turbine Nozzle
1995-01-01
This paper discusses flow measurement results both upstream and downstream of a transonic annular gas turbine nozzle with a nonuniform pitch. The downstream measurements are performed in the plane where the leading edge of the rotor blade is located in the gas turbine. The experiments were performed using total pressure probes and wall static pressure taps. The pitch variation modifies the flow field both upstream and downstream of the nozzle, although the experiments show that the effect ...
LDA measurement of the passage flow field in an annular airfoil cascade
Stauter, R. C.; Fleeter, S.
1987-01-01
Models to predict the complex three-dimensional flow through turbomachine blade rows are being developed. To verify these models and direct necessary refinements, it is necessary that predictions be correlated with data obtained in experiments which model the fundamental three-dimensional blade row flow phenomena. This paper describes a series of experiments performed in a large scale, subsonic, annular cascade facility specifically designed to provide such data. In particular, the effect of incidence angle on the three-dimensional passage flow field through an annular cascade of cambered airfoils is investigated and quantified, accomplished by obtaining detailed and expensive LDA data. These data demonstrate and quantify the development of the passage vortices through the airfoil passage and their strong interaction with the endwall boundary layers.
Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence
Morgan, Douglas C.
1996-01-01
A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.
Flow behaviour and transitions in surfactant-laden gas-liquid vertical flows
Zadrazil, Ivan; Chakraborty, Sourojeet; Matar, Omar; Markides, Christos
2016-11-01
The aim of this work is to elucidate the effect of surfactant additives on vertical gas-liquid counter-current pipe flows. Two experimental campaigns were undertaken, one with water and one with a light oil (Exxsol D80) as the liquid phase; in both cases air was used as the gaseous phase. Suitable surfactants were added to the liquid phase up to the critical micelle concentration (CMC); measurements in the absence of additives were also taken, for benchmarking. The experiments were performed in a 32-mm bore and 5-m long vertical pipe, over a range of superficial velocities (liquid: 1 to 7 m/s, gas: 1 to 44 m/s). High-speed axial- and side-view imaging was performed at different lengths along the pipe, together with pressure drop measurements. Flow regime maps were then obtained describing the observed flow behaviour and related phenomena, i.e., downwards/upwards annular flow, flooding, bridging, gas/liquid entrainment, oscillatory film flow, standing waves, climbing films, churn flow and dryout. Comparisons of the air-water and oil-water results will be presented and discussed, along with the role of the surfactants in affecting overall and detailed flow behaviour and transitions; in particular, a possible mechanism underlying the phenomenon of flooding will be presented. EPSRC UK Programme Grant EP/K003976/1.
Energy Technology Data Exchange (ETDEWEB)
Choi, Gil Sik; Jeong, Yong Hun [KAIST, Daejeon (Korea, Republic of); Chang, Soon Heung [Handong Univ., Pohang (Korea, Republic of)
2015-12-15
There is an increasing need to understand the thermal-hydraulic phenomena, including the critical heat flux (CHF), in narrow rectangular channels and consider these in system design. The CHF mechanism under a saturated flow boiling condition involves the depletion of the liquid film of an annular flow. To predict this type of CHF, the previous representative liquid film dryout models (LFD models) were studied, and their shortcomings were reviewed, including the assumption that void fraction or quality is constant at the boundary condition for the onset of annular flow (OAF). A new LFD model was proposed based on the recent constitutive correlations for the droplet deposition rate and entrainment rate. In addition, this LFD model was applied to predict the CHF in vertical narrow rectangular channels that were uniformly heated. The predicted CHF showed good agreement with 284 pieces of experimental data, with a mean absolute error of 18. 1 % and root mean square error of 22.9 %.
Institute of Scientific and Technical Information of China (English)
Wang Zhiyuan; Sun Baojiang
2009-01-01
It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.
The linear and nonlinear stability of thread-annular flow.
Walton, Andrew G
2005-05-15
The surgical technique of thread injection of medical implants is modelled by the axial pressure-gradient-driven flow between concentric cylinders with a moving core. The linear stability of the flow to both axisymmetric and asymmetric perturbations is analysed asymptotically at large Reynolds number, and computationally at finite Reynolds number. The existence of multiple regions of instability is predicted and their dependence upon radius ratio and thread velocity is determined. A discrepancy in critical Reynolds numbers and cut-off velocity is found to exist between experimental results and the predictions of the linear theory. In order to account for this discrepancy, the high Reynolds number, nonlinear stability properties of the flow are analysed and a nonlinear, equilibrium critical layer structure is found, which leads to an enhanced correction to the basic flow. The predictions of the nonlinear theory are found to be in good agreement with the experimental data.
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
The mechanism for transporting liquid from the bottom of the pipe to the top still to be established in the prediction of the film thickness distribution in horizontal annular two-phase flow.To resolve this issue,using five parallel-wire conductance probes,time records of local liquid film thickness at five circumferential positions were collected.The characteristics of circumferential liquid film thickness profiles and its variation with gas and liquid velocities were obtained.The basic features of probability distribution function,probability density function,auto-correlation,cross-correlation and power spectrum density function of the disturbance waves in annular flow were studied respectively.The characterstics of circumferential profiles of disturbance waves and its variation with gas and liquid velocities were presented.
Mixed convection aiding flow in a vertical porous annulus-two temperature model
Salman Ahmed, N. J.; AAAl-Rashed, Abdullah A.; Kamangar, Sarfaraz; Khaleed, H. M. T.; YunusKhan, T. M.; Athani, Abdulgaphur
2016-09-01
The effect of convective heat transfer on mixed convection flow in a vertical porous annulus embedded with fluid saturated porous medium for aiding flow is studied. The inner surface of the annular cylinder is heated with constant temperature whereas the outer surface remains at ambient temperature. The governing partial differential equations are solved using Finite Element Method (FEM). It is assumed that the Darcy law is applicable and thermal nonequilibrium TNE exists between solid and fluid phases of porous medium. The aiding flow behavior of heat transfer with respect to Radius ratioRr, Aspect ratio ArandRadiation parameter Rd for different values of Peclet number Peare investigated.
Experimental research on dryout point of flow boiling in narrow annular channels
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
An experimental research on the dryout point of flow boiling in narrow annular channels under low mass flux with 1.55 mm and 1.05 mm annular gap, respectively, is conducted. Distilled water is used as working fluid and the range of pressure is limited within 2.0～4.0 MPa and that of mass flux is 26.0～69.0 kg·m-2·s-1. The relation of critical heat flux (CHF) and critical qualities with mass flux and pressure are revealed. It is found that the critical qualities decrease with the increasing mass flux and increase with the increasing inlet qualities in externally heated annuli.Under the same conditions, critical qualities in the outer tube are always larger than those in the inner tube. The appearance of dryout point in bilaterally heated narrow annuli can be judged according to the ratio of qo/qi.
Thermal hydraulic analysis of the annular flow helium heater design
Chen, N. C.; Sanders, J. P.
1982-05-01
Core support performance test (CSPT) by use of an existing facility, components flow test loop (CFTL), as part of the high temperature gas cooled reactor (HTGR) application program were conducted. A major objective of the CSPT is to study accelerated corrosion of the core graphite support structure in helium at reactor conditions. Concentration of impurities will be adjusted so that a 6 month test represents the 30 year reactor life. Thermal hydraulic and structural integrity of the graphite specimen, will be studied at high pressure of 7.24 MPa (1050 psi) and high temperature of 1000 deg C in a test vessel. To achieve the required high temperature at the test section, a heater bundle has to be specially designed and properly manufactured. Performance characteristics of the heater which were determined from an analysis based on this design are presented.
Review:Liquid film dryout model for predicting critical heat flux in annular two-phase flow
Institute of Scientific and Technical Information of China (English)
Bo JIAO; Li-min QIU; Jun-liang LU; Zhi-hua GAN
2009-01-01
Gas-liquid two-phase flow and heat transfer can be encountered in numerous fields, such as chemical engineering, refrigeration, nuclear power reactor, metallurgical industry, spaceflight. Its critical heat flux (CHF) is one of the most important factors for the system security of engineering applications. Since annular flow is the most common flow pattern in gas-liquid two-phase flow, predicting CHF of annular two-phase flow is more significant. Many studies have shown that the liquid film dryout model is successful for that prediction, and determining the following parameters will exert predominant effects on the accuracy of this model: onset of annular flow, inception criterion for droplets entrainment, entrainment fraction, droplets deposi-tion and entrainment rates. The main theoretical results achieved on the above five parameters are reviewed; also, limitations in the existing studies and problems for further research are discussed.
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by
Institute of Scientific and Technical Information of China (English)
Xinghua HUANG; Li WANG; Feng JIA
2008-01-01
A wavelet-transform based approach for flow regime identification in horizontal tube bundles under vertical upward cross-flow condition was presented. Tests on two-phase flow pattern of R 134a were conducted under low mass velocity and flow boiling conditions over Time series of differential pressure fluctuations were mea-sured and analyzed with discrete wavelet transform. Different time-scale characteristics in bubbly flow, churn flow and annular flow were analyzed. The wavelet energy distributions over scales were found to be appropriate for flow regime identification. Based on the wavelet energy distribution over characteristic scales, a criterion of flow regime identification was proposed. The comparison with experiment results show that it is feasible to use the dis-crete wavelet transform as the tool of flow regime iden-tification in horizontal tube bundles under vertical upward cross-flow condition.
Institute of Scientific and Technical Information of China (English)
TuhongLi; DajunYe; 等
1992-01-01
This paper presents a detalied experimental investigation concerning the influence of blade loading (incidence) on the three -dimensional flow in an annular compressor cascade.The data are acquired at four incidence angles under low Mach number and low Reynolds number conditions.ExPerimental techniques include the oil-film visualization on the profile and the endwall surfaces,the laser-sheet visualization of the flow field inside the blade passae,and the measurement by radial-circumferential traverses using a seven-hloe probe.The behavior and nature of the three-dimensional flow with severs separations inside the blade passage and at the exit are obtained.The distributions of the total pressure loss,static pressure.Velocity and outflow angle are also given.Theses results are valuable for establishing the physical model of the three-dimensional complex flow in axial compressor and for examinig the computational procedures.
Wang, Chengduan; Chen, Wenmei; Li, Jianming; Jiang, Guangming
2002-07-01
A new type of polypropylene tubular membrane apparatus of rotating cross flow was designed to study experimentally the flow field characteristics of the tangential section of the membrane annular gap. The authors designed rotary linear tangential flow tubular membrane separator and its test system for the first time. Through the system, the flow field of rotary linear tangential flow with the advanced Particle Image Velocimetry (PIV) was tested for the first time. A lot of streamlines and vorticity maps of the tangential section of separator in different operation conditions were obtained. The velocity distribution characteristics were analyzed quantitatively: 1. At non-vortex area, no matter how the operation parameters change, the velocity near to rotary tangential flow entrance was higher than the velocity far from entrance at the same radial coordinates. At vortex area, generally the flow velocity of inner vortex was lower than the outer vortex. At the vortex center, the velocity was lowest, the tangential velocity were equal to zero generally. At the vortex center zone, the tangential velocity was less than the axial velocity. 2. Under test operations, the tangential velocity and axial velocity of vortices borders are 1-2 times of average axial velocity of membrane module annular gap. The maximum tangential velocity and axial velocity of ellipse vortices were 2-6 times of average axial velocity of membrane module annular gap. 3. The vortices that are formed on the tangential section, there existed mass transfer between inner and outer parts of fluid. Much fluid of outer vortices got into the inner ones, which was able to prevent membrane tube from particles blocking up very soon.
Transmission of sound through annular ducts of varying cross sections and sheared mean flow
Nayfeh, A. H.; Kaiser, J. E.; Telionis, D. P.
1974-01-01
An asymptotic solution is presented for the transmission and attenuation of acoustic waves in an annular duct of slowly varying cross section which carries a sheared mean flow. The analysis also takes into account the growth of the boundary layer as well as any slow variations in the acoustic liner properties. The problem is reduced to the solution of a first-order ordinary differential equation for the amplitude. The analysis is used to estimate the effects of the variations of the duct cross section and boundary layer growth on the different acoustic modes.
Study on Friction Factor of Developing and Developed Laminar FLow in Annular-Sector Ducts
Institute of Scientific and Technical Information of China (English)
无
1995-01-01
The pressure drops of laminar developing and developed flow in annular-sector ducts with small roud corner have been investigated experimentally.Numerical simulation has been performed to study the effect of the small round corner on the friction factor in the developed region.It has been found that with the increase in corner radius,the value of f Re decreases,In the range of rc/ro from 0.031to 0.12,the decrease in fRe varies from 0.048%to 0.1% for the fie apex angle computed.
Linear stability analysis of axisymmetric flow over a sudden expansion in an annular pipe
Beladi, Behnaz; Kuhlmann, Hendrik Christoph
2016-11-01
A global temporal linear stability analysis is performed of the fully-developed axisymmetric incompressible Newtonian flow in an annular pipe with a sudden radially-inward expansion. The geometry is characterized by the radial expansion ratio (radial step height to the outlet gap width) and the outlet radius ratio (inner-to-outer radius). Stability boundaries have been calculated with finite volumes for an outlet radius ratio of 0 . 1 and expansion ratios from 0 . 25 to 0 . 75 . For expansion ratios less than 0 . 55 the most dangerous mode has an azimuthal wave number m = 3 , whereas m = 2 for larger expansion ratios. An a posteriori analysis of the kinetic energy transferred between the basic state and the critical mode allows to check the energy conservation and to identify the physical instability mechanism. For all expansion ratios considered the basic flow arises as an annular jet between two separation zones which are located immediately after the step. The jet gradually widens downstream before reattaching to the cylinders. The deceleration of the flow associated with the widening of the jet is found to be the primary source of energy for the critical modes.
Energy Technology Data Exchange (ETDEWEB)
Teixeira, Alex F.; Mendes, Jose Ricardo P.; Morooka, Celso K. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo; Estevam, Valdir [PETROBRAS, Rio de Janeiro, RJ (Brazil); Guilherme, Ivan R. [UNESP, Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas. Dept. de Estatistica, Matematica Aplicada e Computacao; Rigo, Jose Eduardo [Centro Federal de Educacao Tecnologica no Espirito Santo (CEFETES), Vitoria, ES (Brazil)
2004-07-01
In this paper the designs of a fuzzy controller for the VASPS (Vertical Annular Separation and Pumping System) liquid level and separation pressure control are presented, as well as a simulation of its work to evaluate the performance of the controller designed. The VASPS is a two-phase subsea separation and pumping system, which is made up of a separation vessel, where the mixture (liquid and gas) enters and suffers the separation process through three levels, the expansion chamber, the helix and the pool. The liquid inside the pool is taken to the platform using a pump that with a choke control the pool liquid level. The pool liquid level control is necessary because if the level exceeds the maximum value allowed, the liquid can invade the space occupied by the helix and hinder the separation process. An the other hand if the level is below the minimum allowed the pump can be damaged. The separation pressure control is important for operational security and efficiency issues, because when we keep the separation pressure near an optimum value we are maximizing its efficiency. With the controller and the simulator, many simulations of the work of system were made to get results that could be used to evaluate if the designed controller solved the problem and if its performance were satisfactory. After, a PID control system was designed to be used as comparison with the results obtained with the fuzzy controller, since the PID is widely used in the industrial environment. (author)
Energy Technology Data Exchange (ETDEWEB)
Wilson, R.J.; Jones, B.G.; Roy, R.P.
1980-02-01
An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.
Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.
Ferrás, L L; Afonso, A M; Alves, M A; Nóbrega, J M; Pinho, F T
2014-04-15
In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed.
Effects of grid spacer with mixing vane on entrainments and depositions in two-phase annular flows
Directory of Open Access Journals (Sweden)
Akimaro Kawahara
2015-06-01
Full Text Available The effects of mixing vanes (MVs attached to a grid spacer on the characteristics of air–water annular flows were experimentally investigated. To know the effects, a grid spacer with or without MV was inserted in a vertical circular pipe of 16-mm internal diameter. For three cases (i.e., no spacer, spacer without MV, and spacer with MV, the liquid film thickness, liquid entrainment fraction, and deposition rate were measured by the constant current method, single liquid film extraction method, and double liquid film extraction method, respectively. The MVs significantly promote the re-deposition of liquid droplets in the gas core flow into the liquid film on the channel walls. The deposition mass transfer coefficient is three times higher for the spacer with MV than for the spacer without MV, even for cases 0.3-m downstream from the spacer. The liquid film thickness becomes thicker upstream and downstream for the spacer with MV, compared with the thickness for the spacer without MV and for the case with no spacer.
Flow regime transition criteria for two-phase flow in a vertical annulus
Energy Technology Data Exchange (ETDEWEB)
Julia, J. Enrique, E-mail: bolivar@emc.uji.es [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I., Campus de Riu Sec, 12071 Castellon (Spain); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)
2011-10-15
Highlights: > Flow regime transition model is presented for two-phase flows in a vertical annulus. > The transition criteria is easy to be implemented in computational codes. > Final equations do not need experimental input. > New developed model shows better predicting capabilities than existing correlations. > New developed model shows good predicting capabilities in boiling flow. - Abstract: In this work, a new flow regime transition model is proposed for two-phase flows in a vertical annulus. Following previous works, the flow regimes considered are bubbly (B), slug (S) or cap-slug (CS), churn (C) and annular (A). The B to CS transition is modeled using the maximum bubble package criteria of small bubbles. The S to C transition takes place for small annulus perimeter flow channels and it is assumed to occur when the mean void fraction over the entire region exceeds that over the slug-bubble section. If the annulus perimeter is larger that the distorted bubble limit the cap-slug flow regime will be considered since in these conditions it is not possible to distinguish between cap and partial-slug bubbles. The CS to C transition is modeled using the maximum bubble package criteria. However, this transition considers the coalescence of cap and spherical bubbles in order to take into account the flow channel geometry. Finally, the C to A transition is modeled assuming two different mechanisms, (a) flow reversal in the liquid film section along large bubbles; (b) destruction on liquid slugs or large waves by entrainment or deformation. In the S to C and C to A flow regime transitions the annulus flow channel is considered as a rectangular flow channel with no side walls. In all the modeled transitions the drift-flux model is used to obtain the final correlations. The final equations for every flow regime transition are easy to be implemented in computational codes and not experimental input is needed. The prediction accuracy of the newly developed model has been
Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe
Energy Technology Data Exchange (ETDEWEB)
Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)
2015-05-15
Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B{sub 4}C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B{sub 4}C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer
Flow regime development analysis in adiabatic upward two-phase flow in a vertical annulus
Energy Technology Data Exchange (ETDEWEB)
Julia, J. Enrique [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I, Campus de Riu Sec, Castellon 12071 (Spain); Ozar, Basar [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Jeong, Jae-Jun [Korea Atomic Energy Research Institute, 150 Dukjin, Yuseong, Daejeon 305-353 (Korea, Republic of); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Ishii, Mamoru, E-mail: ishii@purdue.ed [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)
2011-02-15
In this work radial and axial flow regime development in adiabatic upward air-water two-phase flow in a vertical annulus has been investigated. Local flow regimes have been identified using conductivity probes and neural networks techniques. The inner and outer diameters of the annulus are 19.1 mm and 38.1 mm, respectively. The equivalent hydraulic diameter of the flow channel, D{sub H}, is 19.0 mm and the total length is 4.37 m. The flow regime map includes 1080 local flow regimes identifications in 72 flow conditions within a range of 0.01 m/s <
Energy Technology Data Exchange (ETDEWEB)
Park, Cheol
1998-02-15
Empirical and phenomenological investigations have been performed for countercurrent and cocurrent annular flow critical heat fluxes(CHFs) under low flow conditions. The CHF characteristics on finned surfaces were also examined by experiments and analyses for finned and unfinned geometries. A new form of C{sub w}{sup 2} in the Wallis flooding correlation was proposed for a general use in predicting the flooding limited CHF at tubes, annuli and rectangular channels under zero and very low flow conditions. The suggested correlation showed reasonable predictions compared to the measured CHF with an root-mean-square(RMS) error of 18.8%. A physical model for the prediction of a CHF location at a zero inlet flow condition was improved to take into account entrainment from the liquid film and to extend the applicable range to subcooled inlet flow conditions. The improved model showed reasonable agreements with the Katto data, and provided details of the CHF mechanism due to flooding. It was analytically confirmed that the flooding is a triggering mechanism of a countercurrent annular flow CHF under zero and very low flow conditions. It was also revealed that the heat flux effect such as the nucleation induced entrainment in the liquid film should be considered for the analysis of a flooding limited CHF, especially in small L/D geometry. In addition, an attempt was made to predict CHF values by applying the improved model with predetermined CHF locations. The results showed that the predictions by the improved physical model agreed reasonably with the experimental data. Annular flow hydrodynamic models of Whalley, Levy and Katto, which were developed for high flow conditions, were compared with available low flow CHF data to make out the applicability of the models to low flow conditions. As a result, it was found that Katto model, which improved the fault of Whally and Levy models, could be applied to predict low flow CHF with some improvements although the model
Forced convection to laminar flow of liquid egg yolk in circular and annular ducts
Directory of Open Access Journals (Sweden)
M. Bernardi
2009-06-01
Full Text Available The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Institute of Scientific and Technical Information of China (English)
CAI; Ruixian; GOU; Chenhua
2006-01-01
This paper presents two algebraically explicit analytical solutions for the incompressible unsteady rotational flow of Oldroyd-B type in an annular pipe. The first solution is derived with the common method of separation of variables. The second one is deduced with the method of separation of variables with addition developed in recent years. The first analytical solution is of clear physical meaning and both of them are fairly simple and valuable for the newly developing computational fluid dynamics. They can be used as the benchmark solutions to verify the applicability of the existing numerical computational methods and to inspire new differencing schemes, grid generation ways, etc. Moreover, a steady solution for the generalized second grade rheologic fluid flow is also presented. The correctness of these solutions can be easily proven by substituting them into the original governing equation.
Heat transfer coefficient for flow boiling in an annular mini gap
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2016-01-01
Full Text Available The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface – fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two–phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.
Heat transfer coefficient for flow boiling in an annular mini gap
Hożejowska, Sylwia; Musiał, Tomasz; Piasecka, Magdalena
2016-03-01
The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface - fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two-phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.
Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe
Institute of Scientific and Technical Information of China (English)
TONG Dengke; WANG Ruihe; YANG Heshan
2005-01-01
This paper deals with some unsteady unidirectional transient flows of Oldroyd-B fluid in an annular pipe. The fractional calculus approach in the constitutive relationship model Oldroyd-B fluid is introduced and a generalized Jeffreys model with the fractional calculus has been built. Exact solutions of some unsteady flows of Oldroyd-B fluid in an annular pipe are obtained by using Hankel transform and Laplace transform for fractional calculus. The following four problems have been studied: (1) Poiseuille flow due to a constant pressure gradient; (2) axial Couette flow in an annulus; (3) axial Couette flow in an annulus due to a longitudinal constant shear; (4) Poiseuille flow due to a constant pressure gradient and a longitudinal constant shear. The well-known solutions for Navier-Stokes fluid, as well as those corresponding to a Maxwell fluid and a second grade one, appear as limited cases of our solutions.
Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe
Tong, Dengke; Wang, Ruihe; Yang, Heshan
2005-08-01
This paper deals with some unsteady unidirectional transient flows of Oldroyd-B fluid in an annular pipe. The fractional calculus approach in the constitutive relationship model Oldroyd-B fluid is introduced and a generalized Jeffreys model with the fractional calculus has been built. Exact solutions of some unsteady flows of Oldroyd-B fluid in an annular pipe are obtained by using Hankel transform and Laplace transform for fractional calculus. The following four problems have been studied: (1) Poiseuille flow due to a constant pressure gradient; (2) axial Couette flow in an annulus; (3) axial Couette flow in an annulus due to a longitudinal constant shear; (4) Poiseuille flow due to a constant pressure gradient and a longitudinal constant shear. The well-known solutions for Navier-Stokes fluid, as well as those corresponding to a Maxwell fluid and a second grade one, appear as limited cases of our solutions.
Study of downward annular pipe flow using combined laser-based approaches
An, Jae Sik; Cherdantsev, Andrey; Zadrazil, Ivan; Matar, Omar; Markides, Christos
2016-11-01
In downward annular flow, the liquid phase flows as a film along the pipe wall and the gas flows in the core of the pipe. The liquid free-surface is covered by a complex multiscale system of waves. The interaction dynamics of the interfacial waves with each other and with the gas stream exert a significant influence on the pressure drop, heat transfer and mass interchange between the phases. The complexity of the interface requires the application of measurement techniques with high spatiotemporal resolution. In this work, two approaches based on the principle of laser-induced fluorescence, namely planar LIF and brightness-based LIF, are applied simultaneously to study interfacial phenomena in these flows, while simultaneous LIF and PIV are used to obtain velocity field information in the liquid phase underneath the waves. Sources of measurement bias are then analysed: total internal reflection at the out-of-plane interface; steep longitudinal slopes and transverse wave curvature; presence of gas bubbles in the liquid film. Although each method has its own limitations, a combined technique can provide reliable spatiotemporal measurements of film thickness to accompany the velocity information. Finally, flow development is studied in a moving frame of reference over long lengths. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).
Karimi, Amir
1991-01-01
NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.
Electrically driven convection in a thin annular film undergoing Couette flow
Daya, Z A; Morris, S W; Daya, Zahir A.; Morris, Stephen W.
1998-01-01
We investigate the linear stability of a thin, suspended, annular film of conducting fluid with a voltage difference applied between its inner and outer edges. For a sufficiently large voltage, such a film is unstable to radially-driven electroconvection due to charges which develop on its free surfaces. The film can also be subjected to a Couette shear by rotating its inner edge. This combination is experimentally realized using films of smectic A liquid crystals. In the absence of shear, the convective flow consists of a stationary, azimuthally one-dimensional pattern of symmetric, counter-rotating vortex pairs. When Couette flow is applied, an azimuthally traveling pattern results. When viewed in a co-rotating frame, the traveling pattern consists of pairs of asymmetric vortices. We calculate the neutral stability boundary for arbitrary radius ratio $\\alpha$ and Reynolds number ${R e}$ of the shear flow, and obtain the critical control parameter $R_c (\\alpha, {R e})$ and the critical azimuthal mode number ...
UNSTEADY HEAT TRANSFER IN AN ANNULAR PIPE. PART II: SWIRLING LAMINAR FLOW
Directory of Open Access Journals (Sweden)
Kelvin Ho Choon Seng
2012-02-01
Full Text Available The heat transfer problem in magnetocaloric regenerators during magnetization has been described and investigated for convective heat transfer by means of axial flow in part I of this series. This work will focus on enhancing the unsteady heat transfer using swirling laminar flow generated using axial vanes. The governing parameters for this studyare, the D* ratio (Inner diameter/Outer diameter and the swirl number, S. The study is conducted using dimensional analysis and commercial CFD codes provided by ANSYS CFX. The hydrodynamics and the heat transfer of the model are compared with data from similar cases found in literature and is found to be in the vicinity of good agreement.Keywords- Annular ducts; unsteady heat transfer; magnetic refrigeration/cooling; swirling laminar flow; dimensional analysis.
Flow Stability Model for Fan/Compressors with Annular Duct and Novel Casing Treatment
Institute of Scientific and Technical Information of China (English)
LIU Xiaohua; SUN Dakun; SUN Xiaofeng; WANG Xiaoyu
2012-01-01
A three-dimensional compressible flow stability model is presented in this paper,which focuses on stall inception of multi-stage axial flow compressors with a finite large radius annular duct configuration for the first time.It is shown that under some assumptions,the stability equation can be obtained yielding from a group of homogeneous equations.The stability can be judged by the non-dimensional imaginary part of the resultant complex frequency eigenvalue.Further more,based on the analysis of the unsteady phenomenon caused by casing treatment,the function of casing treatment has been modeled by a wall impedance condition which is included in the stability model through the eigenvalues and the corresponding eigenfunctions of the system.Finally,some experimental investigation and two numerical evaluation cases are conducted to validate this model and emphasis is placed on numerically studying the sensitivity of the setup of different boundary conditions on the stall inception of axial flow fan/compressors.A novel casing treatment which consists ofa backchamber and a perforated plate is suggested,and it is noted that the open area ratio of the casing treatment is less than 10％,and is far smaller than conventional casing treatment with open area ratio of over 50％,which could result in stall margin improvement without obvious efficiency loss of fan/compressors.
Cao, Y.; Faghri, A.; Juhasz, A.
1991-01-01
Latent heat energy storage systems with both annular and countercurrent flows are modeled numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. It is found that the energy storage system with the countercurrent flow is an efficient way to absorb heat energy in a short period for pulsed power load space applications.
Boltenko, E. A.
2016-10-01
The results of the experimental study of the heat-transfer crisis on heat-release surfaces of annular channels with swirl and transit flow are presented. The experiments were carried out using electric heated annular channels with one and (or) two heat-release surfaces. For the organization of transit flow on a convex heat-release surface, four longitudinal ribs were installed uniformly at its perimeter. Swirl flow was realized using a capillary wound tightly (without gaps) on the ribs. The ratio between swirl and transit flows in the annular gap was varied by applying longitudinal ribs of different height. The experiments were carried out using a closed-type circulatory system. The experimental data were obtained in a wide range of regime parameters. Both water heated to the temperature less than the saturation temperature and water-steam mixture were fed at the inlet of the channels. For the measurement of the temperature of the heat-release surfaces, chromel-copel thermocouples were used. It was shown that the presence of swirl flow on a convex heatrelease surface led to a significant decrease in critical heat flows (CHF) compared to a smooth surface. To increase CHF, it was proposed to use the interaction of swirl flows of the heat carrier. The second swirl flow was transit flow, i.e., swirl flow with the step equal to infinity. It was shown that CHF values for a channel with swirl and transit flow in all the studied range of regime parameters was higher than CHF values for both a smooth annular channel and a channel with swirl. The empirical ratios describing the dependence of CHF on convex and concave heat-release surfaces of annular channels with swirl and transit flow on the geometrical characteristics of channels and the regime parameters were obtained. The experiments were carried out at the pressure p = 3.0-16.0 MPa and the mass velocity ρw = 250-3000 kg/(m2s).
Vertical dispersion in vegetated shear flows
Rubol, Simonetta; Battiato, Ilenia; de Barros, Felipe P. J.
2016-10-01
Canopy layers control momentum and solute transport to and from the overlying water surface layer. These transfer mechanisms strongly dependent on canopy geometry, affect the amount of solute in the river, the hydrological retention and availability of dissolved solutes to organisms located in the vegetated layers, and are critical to improve water quality. In this work, we consider steady state transport in a vegetated channel under fully developed flow conditions. Under the hypothesis that the canopy layer can be described as an effective porous medium with prescribed properties, i.e., porosity and permeability, we model solute transport above and within the vegetated layer with an advection-dispersion equation with a spatially variable dispersion coefficient (diffusivity). By means of the Generalized Integral Transform Technique, we derive a semianalytical solution for the concentration field in submerged vegetated aquatic systems. We show that canopy layer's permeability affects the asymmetry of the concentration profile, the effective vertical spreading behavior, and the magnitude of the peak concentration. Due to its analytical features, the model has a low computational cost. The proposed solution successfully reproduces previously published experimental data.
Energy Technology Data Exchange (ETDEWEB)
Saxena, Abhishek, E-mail: asaxena@lke.mavt.ethz.ch [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Zboray, Robert [Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Prasser, Horst-Michael [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)
2016-04-01
High conversion light water reactors (HCLWR) having triangular, tight-lattice fuels bundles could enable improved fuel utilization compared to present day LWRs. However, the efficient cooling of a tight lattice bundle has to be still proven. Major concern is the avoidance of high-quality boiling crisis (film dry-out) by the use of efficient functional spacers. For this reason, we have carried out experiments on adiabatic, air-water annular two-phase flows in a tight-lattice, triangular fuel bundle model using generic spacers. A high-spatial-resolution, non-intrusive measurement technology, cold neutron tomography, has been utilized to resolve the distribution of the liquid film thickness on the virtual fuel pin surfaces. Unsteady CFD simulations have also been performed to replicate and compare with the experiments using the commercial code STAR-CCM+. Large eddies have been resolved on the grid level to capture the dominant unsteady flow features expected to drive the liquid film thickness distribution downstream of a spacer while the subgrid scales have been modeled using the Wall Adapting Local Eddy (WALE) subgrid model. A Volume of Fluid (VOF) method, which directly tracks the interface and does away with closure relationship models for interfacial exchange terms, has also been employed. The present paper shows first comparison of the measurement with the simulation results.
El-Sayegh, Batoul; Kadem, Lyes; di Labbio, Giuseppe; Pressman, Gregg S.; Obasare, Edinrin
2016-11-01
Valvular calcification is frequent with aging and diverse diseases. Mitral annular calcification (MAC) is a degenerative process where the fibrous annulus of the mitral valve degrades. MAC can be found in approximately 40% of people aged over 65. It is associated with increased occurrence of cardiovascular diseases including stroke. This experimental work is aimed to investigate the effects of MAC on the left ventricle (LV) hemodynamics and to develop new clinical parameters. Two patient-specific 3D-printed mitral valves with moderate and severe MACs were placed in a left heart simulator. The velocity fields in the LV were acquired using time-resolved particle image velocimetry (TR-PIV) and compared to normal LV flow. The velocity fields were used to evaluate the temporal evolution of the vorticity fields and viscous energy loss in the LV. The presence of MAC disturbed the flow in the LV leading to markedly increased viscous energy losses. As the severity of MAC increased, the velocity of the inflow jet also increased causing significant perturbations to the normally-occurring vortex in the LV.
Transient mathematical model for the axial annular fluid flow caused by drillpipe motion
Energy Technology Data Exchange (ETDEWEB)
Kimura, Hudson F.; Ramalho, Vanessa A.O.; Negrao, Cezar O.R.; Junqueira, Silvio L.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Dept. Academico de Mecanica. Lab. de Ciencias Termicas]. E-mails: hudsonhfk@yahoo.com.br; vanessinha123@gmail.com; negrao@utfpr.edu.br; silvio@utfpr.edu.br; Martins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Tecnologia de Engenharia de Pocos (TEP)]. E-mail: aleibsohn@petrobras.com.br
2008-07-01
The axial movement of drill pipes is a common operation in oil well drilling. This motion displaces the drilling fluid and causes pressure changes in the borehole. The descending pipe movement increases the pressure at the bottomhole (surge) and its extraction reduces it (swab). If the bottomhole pressure overcomes the formation fracture pressure, circulation loss may take place. On the other hand, if the pressure within the well is smaller than the pore pressure, kicks can occur. In order to maintain the bottomhole pressure within the formation fracture and pore pressures, the drill pipe must be moved slowly and therefore, the task becomes quite time consuming. The current work presents a mathematical model to predict surge and swab pressures in annular spaces. The approach is based on conservation equations of mass and momentum. The fluid flow is considered laminar, one-dimensional, compressible, isothermal and transient. The fluid is regarded as Newtonian with constant compressibility. The viscous effect is lumped and the concept of friction factor is applied. The governing differential equations are non-linear and therefore, they are solved numerically by the finite volume method. A sensitivity analysis of the flow parameters is carried out. For instance, the pressure wave propagation is observed for low compressibility fluids. Pressure oscillation is observed for low aspect ratio ratios. (author)
Directory of Open Access Journals (Sweden)
ABOLGHASEM MEKANIK
2014-04-01
Full Text Available An unsteady program based on a turbulence model called Baseline (BSL komega model was conducted to simulate three turbulent flows with Re numbers of 4×103, 8×103 and 1×104, between two initially concentric cylinders. The effects of principal flow variables, i.e., mean axial velocity and fluid temperature, annular passage configurations, i.e., the gap width and radii of cylinders on the pressure and circumferential velocity of a three dimensional turbulent flow in the annular passage were investigated. The results were validated with the available solutions in the literature and fairly good agreements are seen. By increasing the gap of the annular passage and the axial flow velocity, smaller values for the unsteady pressure and the circumferential velocity amplitudes are produced. For each of the turbulent flows the unsteady pressure amplitude increases with the fluid temperature, as well as the circumferential velocity amplitude. The results of this investigation are favorably used for FIV and FSI calculations in such configurations.
Energy Technology Data Exchange (ETDEWEB)
Moon, S.K.; Chun, S.Y.; Choi, K.Y.; Yang, S.K. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)
2001-07-01
An experimental study on transient critical heat flux (CHF) under flow coast-down has been performed for water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady state CHF. The transient CHF experiments have been performed for three kinds of flow transient modes based on the coast-down data of the Kori 3/4 nuclear power plant reactor coolant pump. Most of the CHFs occurred in the annular-mist flow regime. Thus, it means that the possible CHF mechanism might be the liquid film dryout in the annular-mist flow regime. For flow transient mode with the smallest flow reduction rate, the time-to-CHF is the largest. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to-CHF becomes large as the heat flux decreases. Usually, the critical mass flux is large for slow flow reduction. There is a pressure effect on the ratio of the transient CHF data to steady state CHF data. Some conventional correlations show relatively better CHF prediction results for high system pressure, high quality and slow transient modes than for low system pressure, low quality and fast transient modes. (author)
Directory of Open Access Journals (Sweden)
Gunar Boye
2015-06-01
Full Text Available The axial heat transfer coefficient during flow boiling of n-hexane was measured using infrared thermography to determine the axial wall temperature in three geometrically similar annular gaps with different widths (s = 1.5 mm, s = 1 mm, s = 0.5 mm. During the design and evaluation process, the methods of statistical experimental design were applied. The following factors/parameters were varied: the heat flux q · = 30 − 190 kW / m 2 , the mass flux m · = 30 − 700 kg / m 2 s , the vapor quality x · = 0 . 2 − 0 . 7 , and the subcooled inlet temperature T U = 20 − 60 K . The test sections with gap widths of s = 1.5 mm and s = 1 mm had very similar heat transfer characteristics. The heat transfer coefficient increases significantly in the range of subcooled boiling, and after reaching a maximum at the transition to the saturated flow boiling, it drops almost monotonically with increasing vapor quality. With a gap width of 0.5 mm, however, the heat transfer coefficient in the range of saturated flow boiling first has a downward trend and then increases at higher vapor qualities. For each test section, two correlations between the heat transfer coefficient and the operating parameters have been created. The comparison also shows a clear trend of an increasing heat transfer coefficient with increasing heat flux for test sections s = 1.5 mm and s = 1.0 mm, but with increasing vapor quality, this trend is reversed for test section 0.5 mm.
Paule, A; Lauga, B; Ten-Hage, L; Morchain, J; Duran, R; Paul, E; Rols, J L
2011-11-15
In their natural environment, the structure and functioning of microbial communities from river phototrophic biofilms are driven by biotic and abiotic factors. An understanding of the mechanisms that mediate the community structure, its dynamics and the biological succession processes during phototrophic biofilm development can be gained using laboratory-scale systems operating with controlled parameters. For this purpose, we present the design and description of a new prototype of a rotating annular bioreactor (RAB) (Taylor-Couette type flow, liquid working volume of 5.04 L) specifically adapted for the cultivation and investigation of phototrophic biofilms. The innovation lies in the presence of a modular source of light inside of the system, with the biofilm colonization and development taking place on the stationary outer cylinder (onto 32 removable polyethylene plates). The biofilm cultures were investigated under controlled turbulent flowing conditions and nutrients were provided using a synthetic medium (tap water supplemented with nitrate, phosphate and silica) to favour the biofilm growth. The hydrodynamic features of the water flow were characterized using a tracer method, showing behaviour corresponding to a completely mixed reactor. Shear stress forces on the surface of plates were also quantified by computer simulations and correlated with the rotational speed of the inner cylinder. Two phototrophic biofilm development experiments were performed for periods of 6.7 and 7 weeks with different inoculation procedures and illumination intensities. For both experiments, biofilm biomasses exhibited linear growth kinetics and produced 4.2 and 2.4 mg cm(-)² of ash-free dry matter. Algal and bacterial community structures were assessed by microscopy and T-RFLP, respectively, and the two experiments were different but revealed similar temporal dynamics. Our study confirmed the performance and multipurpose nature of such an innovative photosynthetic bioreactor
Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu
2016-08-01
In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.
Kim, Sangwon
2005-11-01
High pressure (3.4 MPa) injection from a shroud valve can improve natural gas engine efficiency by enhancing fuel-air mixing. Since the fuel jet issuing from the shroud valve has a nearly annular jet flow configuration, it is necessary to analyze the annular jet flow to understand the fuel jet behavior in the mixing process and to improve the shroud design for better mixing. The method of characteristics (MOC) was used as the primary modeling algorithm in this work and Computational Fluid Dynamics (CFD) was used primarily to validate the MOC results. A consistent process for dealing with the coalescence of compression characteristic lines into a shock wave during the MOC computation was developed. By the application of shock polar in the pressure-flow angle plane to the incident shock wave for an axisymmetric underexpanded jet and the comparison with the triple point location found in experimental results, it was found that, in the static pressure ratios of 2--50, a triple point of the jet was located at the point where the flow angle after the incident shock became -5° relative to the axis and this point was situated between the von Neumann and detachment criteria on the incident shock. MOC computations of the jet flow with annular geometry were performed for pressure ratios of 10 and 20 with rannulus = 10--50 units, Deltar = 2 units. In this pressure ratio range, the MOC results did not predict a Mach disc in the core flow of the annular jet, but did indicate the formation of a Mach disc where the jet meets the axis of symmetry. The MOC results display the annular jet configurations clearly. Three types of nozzles for application to gas injectors (convergent-divergent nozzle, conical nozzle, and aerospike nozzle) were designed using the MOC and evaluated in on- and off-design conditions using CFD. The average axial momentum per unit mass was improved by 17 to 24% and the average kinetic energy per unit fuel mass was improved by 30 to 80% compared with a standard
Institute of Scientific and Technical Information of China (English)
LongZhou Xiao; XinPing Long; XueLong Yang
2014-01-01
The performance of an annular jet pump ( AJP ) is determined by its area ratio A ( ratio of cross sectional area of throat and annular nozzle) and flow rate ratio q ( ratio of primary and secondary flow rate, Qs/Qj ) , while the nozzle lip thickness is neglected in the present studies. This paper presents a study on the effect of the thickness on the flow field and performance of an AJP with A = 1�75. With the increasing flow rate ratio and nozzle lip thickness, a small vortex forms at the nozzle lip and keeps on growing. However, as the flow rate ratio or nozzle lip thickness is extremely low, the vortex at the lip vanishes thoroughly. Moreover, the recirculation width varies conversely with the nozzle lip thickness when the flow rate ratio q≤0�13. While the deviation of the recirculation width with different nozzle lip thickness is negligible with q≥0�13. Additionally the existence of nozzle lip hinders the momentum exchange between the primary and secondary flow and leads to a mutation of velocity gradient near the nozzle exit, which shift the recirculation downstream. Finally, based on the numerical results of the streamwise and spanwise vortex distributions in the suction chamber, the characteristics of the mixing process and the main factors accounting for the AJP performance are clarified.
Yu, Jia-Jia; Zhang, Li; Li, You-Rong; Chen, Jie-Chao
2016-04-01
In order to understand the characteristics of thermocapillary flow of a toluene/ n-hexane mixture with the Soret effect in a shallow annular pool, a series of three-dimensional numerical simulations were carried out. The shallow annular pool was heated from the outer cylinder and cooled at the inner cylinder. The initial toluene concentration in the toluene/ n-hexane mixture varied from 0 to 0.4467. Results indicate that the flow undergoes two transitions from the axisymmetric steady flow to the hydrothermal waves, and then to chaos with the increase of the thermocapillary Reynolds number. The critical thermocapillary Reynolds number for the incipience of the oscillatory flow decreases with the increase of the initial solute concentration. When the thermocapillary flow transits to a three-dimensional oscillatory flow, a concentration fluctuation is observed on the free surface, which is similar to the hydrothermal waves. However, compared with that of the temperature, the dimensionless fluctuation amplitude of the concentration is relatively weak. Furthermore, the fundamental oscillation frequency increases linearly with the initial solute concentration, but the wave number of the hydrothermal waves is almost unchangeable.
Stability of core-annular flow of power-law fluids in the presence of interfacial surfactant
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The shear-thinning influence on the core-annular flow stability of two immiscible power-law fluids is considered by making a linear stability analysis.The flow is driven by an axial pressure gradient in a straight pipe with the interface between the two fluids occupied by an insoluble surfactant.Given the basic flow for this core-annular arrangement,the analytical solution is obtained with respect to the power-law fluid model.The linearized equations for the evolution of infinitesimal disturbances are derived and the stability problem is formulated as a generalized matrix eigenvalue problem,which is solved by using the software package Matlab based on the QZ algorithm.The shear-thinning property is found to have marked influence on the power-law fluid core-annular flow stability,which is reflected in various aspects.First,the capillary instability is magnified by the shear-thinning property,which may lead to an essential difference between power-law and Newtonian fluid flows.Especially when the interface is close to the pipe wall,the power-law fluid flow may be unstable while the Newtonian fluid flow is stable.Second,under disturbances to the interface a velocity discontinuity at the interface appears which is destabilizing to the flow.The magnitude of this velocity discontinuity is affected by the power-law index and the flow stability is influenced correspondingly.Besides,the shear-thinning property may induce new stability modes which do not appear in the Newtonian fluid flow.The flow stability shows much dependence on the interface location,the role of which was neglected in most previous studies.The shear-thinning fluid flow is more unstable to long wave disturbances when the interface is close to the pipe wall,while the Newtonian fluid flow is more unstable when the interface is close to the pipe centerline.But this trend is changed by the addition of interfacial surfactant,for which the power-law fluid flow is more stable no matter where the interface is
Vertical flow of a multiphase mixture in a channel
Directory of Open Access Journals (Sweden)
Mehrdad Massoudi
2001-01-01
Full Text Available The flow of a multiphase mixture consisting of a viscous fluid and solid particles between two vertical plates is studied. The theory of interacting continua or mixture theory is used. Constitutive relations for the stress tensor of the granular materials and the interaction force are presented and discussed. The flow of interest is an ideal one where we assume the flow to be steady and fully developed; the mixture is flowing between two long vertical plates. The non-linear boundary value problem is solved numerically, and the results are presented for the dimensionless velocity profiles and the volume fraction as functions of various dimensionless numbers.
Influence of vertical flows in wells on groundwater sampling.
McMillan, Lindsay A; Rivett, Michael O; Tellam, John H; Dumble, Peter; Sharp, Helen
2014-11-15
Pumped groundwater sampling evaluations often assume that horizontal head gradients predominate and the sample comprises an average of water quality variation over the well screen interval weighted towards contributing zones of higher hydraulic conductivity (a permeability-weighted sample). However, the pumping rate used during sampling may not always be sufficient to overcome vertical flows in wells driven by ambient vertical head gradients. Such flows are reported in wells with screens between 3 and 10m in length where lower pumping rates are more likely to be used during sampling. Here, numerical flow and particle transport modeling is used to provide insight into the origin of samples under ambient vertical head gradients and under a range of pumping rates. When vertical gradients are present, sample provenance is sensitive to pump intake position, pumping rate and pumping duration. The sample may not be drawn from the whole screen interval even with extended pumping times. Sample bias is present even when the ambient vertical flow in the wellbore is less than the pumping rate. Knowledge of the maximum ambient vertical flow in the well does, however, allow estimation of the pumping rate that will yield a permeability-weighted sample. This rate may be much greater than that recommended for low-flow sampling. In practice at monitored sites, the sampling bias introduced by ambient vertical flows in wells may often be unrecognized or underestimated when drawing conclusions from sampling results. It follows that care should be taken in the interpretation of sampling data if supporting flow investigations have not been undertaken.
Deev, V. I.; Kharitonov, V. S.; Churkin, A. N.
2017-02-01
Experimental data on heat transfer to supercritical pressure water presented at ISSCWR-5, 6, and 7 international symposiums—which took place in 2011-2015 in Canada, China, and Finland—and data printed in recent periodical scientific publications were analyzed. Results of experiments with annular channels and three- and four-rod bundles of heating elements positioned in square or triangular grids were examined. Methodology used for round pipes was applied at generalization of experimental data and establishing of correlations suitable for engineering analysis of heat exchange coefficient in conditions of strongly changing water properties in the near-critical pressure region. Empiric formulas describing normal heat transfer to supercritical pressure water mowing in annular channels and rod bundles were obtained. As compared to existing recommendations, suggested correlations are distinguished by specified dependency of heat exchange coefficient on density of heat flux and mass flow velocity of water near pseudo-critical temperature. Differences between computed values of heat exchange coefficient and experimental data usually do not exceed ±25%. Detailed statistical analysis of deviations between computed and experimental results at different states of supercritical pressure water flow was carried out. Peculiarities of deteriorated heat exchange were considered and their existence boundaries were defined. Experimental results obtained for these regimes were generalized using criteria by J.D. Jackson that take the influence of thermal acceleration and Archimedes forces on heat exchange processes into account. Satisfactory agreement between experimental data on heat exchange at flowing of water in annular channels and rod bundles and data for round pipes was shown.
Kickhofel, J. L.; Zboray, R.; Damsohn, M.; Kaestner, A.; Lehmann, E. H.; Prasser, H.-M.
2011-09-01
Dryout of the liquid coolant film on fuel pins at the top of boiling water reactor (BWR) cores constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is a limiting factor in the thermal power, and therefore the economy, of BWRs. Ongoing research on multiphase annular flow, specifically the liquid film thickness, is fundamental not only to nuclear reactor safety and operation but also to that of evaporators, condensers, and pipelines in a general industrial context. We have performed cold neutron tomography of adiabatic air water annular flow in a scaled up model of the subchannel geometry found in BWR fuel assemblies today. All imaging has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institut in Switzerland. Neutron tomography is shown to excel in investigating the interactions of air water two phase flows with spacer vanes of different geometry. The high resolution, high contrast measurements provide spatial distributions of the coolant on top of the surfaces of the spacer, including the vanes, and in the subchannel downstream of the spacers.
Energy Technology Data Exchange (ETDEWEB)
Silva, Maria das Gracas Pena; Martins, Andre Leibsohn; Oliveira, Antonio Augusto Junqueira de [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Div. de Explotacao
1988-12-31
The rheological behavior of drilling fluids during annular flow in a physical simulator well (Surface Hydraulic System - SHS)was investigated. Measurement of volumetric flow and pressure drop the 10-meter simulator well was used to assess applicability of the Bingham, power Law, Casson, and Herschell-Bulkley models to the annular flow of water and oil-based fluids under different temperatures. Additionally, under different pre-set deformation ranges, SHS-observed behavior was compared with behavior observed using the traditional Fann VG 35 A viscometer. (author) 8 refs., 21 figs., 15 tabs.
Buddly, slug, and annular two-phase flow in tight-lattice subchannels
Energy Technology Data Exchange (ETDEWEB)
Prasser, Horst-Michael; Bolesch, Charistian; Cramer, Kerstin; Papadopoulos, Petros; Saxena, Abhishek; Zboray, Robert [ETH Zurich, Dept. of Mechanical and Process Engineering (D-MAVT), Zurich (Switzerland); Ito, Daisuke [Kyoto University, Research Reactor Institute, Osaka (Japan)
2016-08-15
An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring subchannels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of 16 × 64 measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.
Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.
1994-01-01
In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.
On the Vertical Structure of Seasonal, Interannual and Intraseasonal Flows
1992-12-01
the Vertical Structure of Seasonal, Interannual and Intraseasonal Flows b, AUTHOR(S) Steven Reino Gilbert,Major -. Pf.IFORI.MINt ORGAN!?ATION NAMW(S...AND INTRASEASONAL FLOWS by Steven Reino Gilbert A dissertation submitted to the faculty of The University of Utah in partial fulffifment of the...requirements for the degree of Doctor of Philosophy Department of Meteorology The University of Utah La ! December 1992 Copyright @ Steven Reino Gilbert 1992
Rashidi, M. M.; Keimanesh, M.; Rajvanshi, S. C.; Wasu, S.
2012-10-01
This study investigates the problem of pulsatile flow of an incompressible Newtonian fluid through annular space bounded by an outer porous cylinder and an inner cylinder of permeable material. The coupled flow has been analyzed by solving Navier-Stokes equations in the free fluid region and Darcy's equation in the porous region. Beaver-Joseph slip-condition has been used at the free fluid-permeable medium interface. The similarity transformation for the governing equations gives a system of nonlinear ordinary differential equations which are analytically solved by the homotopy analysis method (HAM). The analytical solutions have been obtained in the form of a series. An admissible interval for the convergence of the series solutions has been indicated. Graphical results are presented to show the influence of different parameters on velocity profiles, pressure drop, and skin friction. Comparison between the solutions obtained by the HAM and the numerical solution shows good agreement.
Study of secondary-flow patterns in an annular cascade of turbine nozzle blades with vortex design
Rohlik, Harold E; Allen, Hubert W; Herzig, Howard Z
1953-01-01
In order to increase understanding of the origin of losses in a turbine, the secondary-flow components in the boundary layers and the blade wakes of an annular cascade of turbine nozzle blades (vortex design) was investigated. A detailed study was made of the total-pressure contours and, particularly, of the inner-wall loss cores downstream of the blades. The inner-wall loss core associated with a blade of the turbine-nozzle cascade is largely the accumulation of low-momentum fluids originating elsewhere in the cascade. This accumulation is effected by a secondary-flow mechanism which acts to transport the low-momentum fluids across the channels on the walls and radially in the blade wakes and boundary layers. The patterns of secondary flow were determined by use of hydrogen sulfide traces, paint, flow fences, and total pressure surveys. At one flow condition investigated, the radial transport of low-momentum fluid in the blade wake and on the suction surface near the trailing edge accounted for 65 percent of the loss core; 30 percent resulted from flow in the thickened boundary layer on the suction surface and 35 percent from flow in the blade wake.
Heitz, Sylvain A
2016-03-16
The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region. © 2016 IOP Publishing Ltd.
An Experimental Study on 3—D Flow in an Annular Cascade of High Turning Angle Turbine Blades
Institute of Scientific and Technical Information of China (English)
WangWensheng; LiangXizhi; 等
1994-01-01
This paper presents an experimental study of the three-dimensional turbulent flow fields in a lowspeed annular cascade of high turning angle turbine blades.Detailed measurements were performed on the blade surfaces and mid-streamsurface in the passage and at three axial planes downstream of the cascade by using wall static pressure taps,a five-hole probe and a hot-wire anemometer,The test data include static pressure distribution on blade surfaces,total pressure loss cofeeicient,mean flow velocity components.radial flow angle,turbulence intensity and Reynolds shear stress.Analyses of the three-dimensional cascade flow characteristics were made on the noset location of high loss vortices.the variation of pressure gradient inside the cascade passage and the properties of endwall boundary layers total pressure loss distributions,secondary vortex turbulent dissipation and wake decay downtream of the cascade.These experimental results are valuable for revealing the details of the complex vortex flow structure in modern highly loaded axial turbomachines and validating the three-dimensional flow numerical computation codes.
Energy Technology Data Exchange (ETDEWEB)
Yang Dong, E-mail: dyang@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Pan Jie; Wu Yanhua; Chen Tingkuan [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Zhou, Chenn Q. [Department of Mechanical Engineering, Purdue University Calumet, Hammond, IN 46323 (United States)
2011-08-15
Highlights: > A model is developed for the prediction of flow boiling in vertical porous tubes. > The model assumes that the nucleate boiling plays an important role. > The present model can predict most of the experimental values within {+-}20%. > The results indicate the nucleate boiling contribution decreases from 50% to 15%. - Abstract: A semi-analytical model is developed for the prediction of flow boiling heat transfer inside vertical porous coated tubes. The model assumes that the forced convection and nucleate boiling coexist together in the annular flow regime. Conservations of mass, momentum, and energy are used to solve for the liquid film thickness and temperature. The heat flux due to nucleate boiling consists of those inside and outside micro-tunnels. To close the equations, a detailed analysis of various forces acting on the bubble is presented to predict its mean departure diameter. The active nucleation site density of porous layer is determined from the pool boiling correlation by introducing suppression factor. The flow boiling heat transfer coefficients of organic fluid (cumene) with high saturation temperature in a vertical flame-spraying porous coated tube are studied numerically. It is shown that the present model can predict most of the experimental values within {+-}20%. The numerical results also indicate that the nucleate boiling contribution to the overall heat transfer coefficient decreases from 50% to 15% with vapor quality increasing from 0.1 to 0.5.
Eulerian simulation of sedimentation flows in vertical and inclined vessels
Institute of Scientific and Technical Information of China (English)
Wu Chun-Liang; Zhan Jie-Min
2005-01-01
Sedimentation of particles in inclined and vertical vessels in numerically simulated using a finite volume method where the Eulerian multiphase model is applied. The particulate phase as well as the fluid phase is regarded as a continuum while the viscosity and solid stress of the particulate phase are modelled by the kinetic theory of granular flows. The numerical results show an interesting phenomenon of the emergence of two circulation vortices of the sedimentation flow in a vertical vessel but only one in the inclined vessel. Several sensitivity tests are simulated to understand the factors that influence the dual-vortex flow structure in vertical sedimentation. Result show that a larger fluid viscosity makes the two vortex centres much closer to each other and the boundary layer effect at lateral walls is the key factor to induce this phenomenon. In the fluid boundary layer particles settle down more rapidly and drag the local carrier fluid to flow downward near the lateral walls and thus form the dual-vortex flow pattern.
Foroughi, Hooman; Abbasi, Alireza; Das, Kausik S; Kawaji, Masahiro
2012-02-01
The immiscible displacement of oil by water in a circular microchannel was investigated. A fused silica microchannel with an inner diameter of 250 μm and a length of 7 cm was initially filled with a viscous silicone oil. Only water then was injected into the channel. We describe our flow observations based on the two-dimensional images captured in the middle of the channel. The water finger displaced the oil and left an oil film on the channel wall. While the oil was being displaced at the core, the flow resistance decreased, which resulted in increases in water flow rate and inertia. Eventually, the water finger reached the channel exit and formed a core-annular flow pattern. The wavelength of the waves formed at the oil-water interface also increased with the increase in inertia. The initially symmetric interfacial waves became asymmetric with time. Also, the water core shifted from the center of the channel and left a thinner oil film on one side of the microchannel. Under all flow rates tested in this study, as long as the water was continuously injected, the water core was stable and no breakup into droplets was observed. We also discuss the flow stability based on nonlinear and linear stability analyses performed on the core-annular flow. Compared to the linear analysis, which ignores the inertia effects, the nonlinear analysis, which includes the inertia effects, predicts longer interfacial wavelengths by a factor of 1/sqrt[1-a(o)/2(We(w) + We(o)a(o)(2)/1-a(o)(2))] where We(w) and We(o) are the Weber numbers of the water and the oil phases, respectively, and a(o) is the unperturbed water core radius made dimensionless by the channel radius.
Foroughi, Hooman; Abbasi, Alireza; Das, Kausik S.; Kawaji, Masahiro
2012-02-01
The immiscible displacement of oil by water in a circular microchannel was investigated. A fused silica microchannel with an inner diameter of 250 μm and a length of 7 cm was initially filled with a viscous silicone oil. Only water then was injected into the channel. We describe our flow observations based on the two-dimensional images captured in the middle of the channel. The water finger displaced the oil and left an oil film on the channel wall. While the oil was being displaced at the core, the flow resistance decreased, which resulted in increases in water flow rate and inertia. Eventually, the water finger reached the channel exit and formed a core-annular flow pattern. The wavelength of the waves formed at the oil-water interface also increased with the increase in inertia. The initially symmetric interfacial waves became asymmetric with time. Also, the water core shifted from the center of the channel and left a thinner oil film on one side of the microchannel. Under all flow rates tested in this study, as long as the water was continuously injected, the water core was stable and no breakup into droplets was observed. We also discuss the flow stability based on nonlinear and linear stability analyses performed on the core-annular flow. Compared to the linear analysis, which ignores the inertia effects, the nonlinear analysis, which includes the inertia effects, predicts longer interfacial wavelengths by a factor of (1)/(1-(ao)/(2)(Wew+Weo(ao2)/(1-ao2))) where Wew and Weo are the Weber numbers of the water and the oil phases, respectively, and ao is the unperturbed water core radius made dimensionless by the channel radius.
Rivulet Flow In Vertical Parallel-Wall Channel
Energy Technology Data Exchange (ETDEWEB)
D. M. McEligot; G. E. Mc Creery; P. Meakin
2006-04-01
In comparison with studies of rivulet flow over external surfaces, rivulet flow confined by two surfaces has received almost no attention. Fully-developed rivulet flow in vertical parallel-wall channels was characterized, both experimentally and analytically for flows intermediate between a lower flow limit of drop flow and an upper limit where the rivulets meander. Although this regime is the most simple rivulet flow regime, it does not appear to have been previously investigated in detail. Experiments were performed that measured rivulet widths for aperture spacing ranging from 0.152 mm to 0.914 mm. The results were compared with a simple steadystate analytical model for laminar flow. The model divides the rivulet cross-section into an inner region, which is dominated by viscous and gravitational forces and where essentially all flow is assumed to occur, and an outer region, dominated by capillary forces, where the geometry is determined by the contact angle between the fluid and the wall. Calculations using the model provided excellent agreement with data for inner rivulet widths and good agreement with measurements of outer rivulet widths.
VERTICAL CONVECTION IN NEUTRINO-DOMINATED ACCRETION FLOWS
Energy Technology Data Exchange (ETDEWEB)
Liu, Tong; Gu, Wei-Min; Li, Ang [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Kawanaka, Norita, E-mail: tongliu@xmu.edu.cn, E-mail: norita@astron.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2015-05-20
We present the effects of vertical convection on the structure and luminosity of the neutrino-dominated accretion flow (NDAF) around a stellar-mass black hole in spherical coordinates. We find that the convective energy transfer can suppress the radial advection in the NDAF and that the density, temperature, and opening angle are slightly changed. As a result, the neutrino and annihilation luminosities are increased, which allows the energy requirement of gamma-ray bursts to be achieved.
Two-phase slug flow in vertical and inclined tubes
Institute of Scientific and Technical Information of China (English)
无
1996-01-01
Gas-liquid slug flow is investigated experimentally in vertical and inclined tubes.The non-invasive measuremnts of the gas-liquid slug flow are taken by using the EKTAPRO 1000 High Speed Motion Analyzer.The information on the velocity of the Talyor bubble,the size distribution of the dispersed bubbles in the liquid slugs and some characteristics of the liquid film around the Taylor bubble are obtained.The experimental results are in good agreement with the available data.
Directory of Open Access Journals (Sweden)
Tridibesh Das
2015-01-01
Full Text Available In this paper, a numerical study on flow characteristics in configurations of sudden expansion with central restriction and fence viewed as annular flow dump combustor has been carried out for Reynolds number (Re ranging from 50 to 200, percentage of central restriction (CR from 10% to 40% and aspect ratio (AR from 2 to 6 with a fixed fence subtended angle (FSA of 10 degree and with a fixed distance of fence from throat respectively. The effect of each variable on streamline contour and velocity profile has been studied in detail. Results have been compared with the configuration of sudden expansion with central restriction only. From the study it is concluded that the configuration of sudden expansion with central restriction and fence with higher flow Reynolds number, higher central restriction and higher aspect ratio offers more benefit in terms of the mixing possibility compared to the case of sudden expansion with central restriction only.
Goldman, Louis J.
1993-01-01
An advanced laser anemometer (LA) was used to measure the axial and tangential velocity components in an annular cascade of turbine stator vanes operating at transonic flow conditions. The vanes tested were based on a previous redesign of the first-stage stator in a two-stage turbine for a high-bypass-ratio engine. The vanes produced 75 deg of flow turning. Tests were conducted on a 0.771-scale model of the engine-sized stator. The advanced LA fringe system employed an extremely small 50-micron diameter probe volume. Window correction optics were used to ensure that the laser beams did not uncross in passing through the curved optical access port. Experimental LA measurements of velocity and turbulence were obtained at the mean radius upstream of, within, and downstream of the stator vane row at an exit critical velocity ratio of 1.050 at the hub. Static pressures were also measured on the vane surface. The measurements are compared, where possible, with calculations from a three-dimensional inviscid flow analysis. Comparisons were also made with the results obtained previously when these same vanes were tested at the design exit critical velocity ratio of 0.896 at the hub. The data are presented in both graphical and tabulated form so that they can be readily compared against other turbomachinery computations.
Institute of Scientific and Technical Information of China (English)
Xue-Wei Sun; Jie Peng; Ke-Qin Zhu
2012-01-01
The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number.The interface between the two fluids is populated with an insoluble surfactant.The analytic solution for the growth rate of perturbation is obtained with long wave approximation.We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability.The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number.For a clean interface,the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall.The converse is true when the interface is close to the pipe centerline.For shear-thickening fluids,the situation is reversed.When the interface is close to the pipe centerline,the capillary instability can be restrained due to the influence of surfactant.A parameter set can be found under which the flow is linearly stable.
Debris flow runup on vertical barriers and adverse slopes
Iverson, Richard M.; George, David L.; Logan, Matthew
2016-12-01
Runup of debris flows against obstacles in their paths is a complex process that involves profound flow deceleration and redirection. We investigate the dynamics and predictability of runup by comparing results from large-scale laboratory experiments, four simple analytical models, and a depth-integrated numerical model (D-Claw). The experiments and numerical simulations reveal the important influence of unsteady, multidimensional flow on runup, and the analytical models highlight key aspects of the underlying physics. Runup against a vertical barrier normal to the flow path is dominated by rapid development of a shock, or jump in flow height, associated with abrupt deceleration of the flow front. By contrast, runup on sloping obstacles is initially dominated by a smooth flux of mass and momentum from the flow body to the flow front, which precedes shock development and commonly increases the runup height. D-Claw simulations that account for the emergence of shocks show that predicted runup heights vary systematically with the adverse slope angle and also with the Froude number and degree of liquefaction (or effective basal friction) of incoming flows. They additionally clarify the strengths and limitations of simplified analytical models. Numerical simulations based on a priori knowledge of the evolving dynamics of incoming flows yield quite accurate runup predictions. Less predictive accuracy is attained in ab initio simulations that compute runup based solely on knowledge of static debris properties in a distant debris flow source area. Nevertheless, the paucity of inputs required in ab initio simulations enhances their prospective value in runup forecasting.
Zhang, P.; Fu, X.
2009-10-01
Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.
Vertical Distribution of Tidal Flow Reynolds Stress in Shallow Sea
Institute of Scientific and Technical Information of China (English)
SONG Zhi-yao; NI Zhi-hui; LU Guo-nian
2009-01-01
Based on the results of the tidal flow Reynolds stresses of the field observations,indoor experiments,and numerical models,the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper.Having been well verified with the field data and experimental data,the proposed distribution of Reynolds stress is also compared with numerical model results,and a good agreement is obtained,showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration,upward when the tidal flow is of deceleration.Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress,turbulent generation,transmission,and so on.The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit,but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.
Flow Structure Around the Intake of a Vertical Pump
Institute of Scientific and Technical Information of China (English)
Akihiro WADA
2006-01-01
The flow structure around the intake of a vertical pump is investigated experimentally and numerically in order to obtain a guideline in designing the optimum shape of the intake of vertical pumps, in which their installation area is demanded to be minimum without losing the high performance. We concentrate our attention on the expansion ratio of the intake as a representative characteristic of the shape of the pumps and investigate the effect of the expansion ratio on pump performance. It is concluded that the optimum expansion ratio ranges in 1.1～1.2 if we take into consideration that the area needed for the installation of the pump should be minimum.
De Biase, C.; Reger, D.; Schmidt, A.; Jechalke, S.; Reiche, N.; Martínez-Lavanchy, P.M.; Rosell, M.; Van Afferden, M.; Maier, U.; Oswald, S.E.; Thullner, M.
2011-01-01
Vertical flow filters and vertical flow constructed wetlands are established wastewater treatment systems and have also been proposed for the treatment of contaminated groundwater. This study investigates the removal processes of volatile organic compounds in a pilot-scale vertical flow filter. The
Institute of Scientific and Technical Information of China (English)
胡志华; 杨燕华; 刘磊; 周芳德
2006-01-01
The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are analyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed.
Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.
2013-11-01
This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.
VERTICAL FLOW OF GAS-LIQUID-SOLID PARTICLES SYSTEM
幡手, 泰雄; 野村, 博; 碇, 醇; ハタテ, ヤスオ; ノムラ, ヒロシ; イカリ, アツシ; HATATE, Yasuo; Nomura, Hiroshi; IKARI, Atsushi
1983-01-01
It is significant to know the hydrodynamic characteristics of the system in the design and scale-up of reactors containing gas-liquid-solid particles system. As a fundamental study of such a three-phase flow, the gas holdup and the pressure drop were measured in the vertical tubes, through which various mixtures of air, water, and fine glass-sphere, particles were passed. Three kinds of glass particles were used the average sizes of which were 30, 60 and 90 μm. Two kinds of tubes, 15 an...
Magnetohydrodynamics stagnation point flow towards a stretching vertical sheet
Ishak, A.; Nazar, R.; Pop, I.
2006-03-01
The analysis of steady two-dimensional stagnation point flow of an incompressible viscous and electrically conducting fluid, subject to a transverse uniform magnetic field, over a vertical stretching sheet is investigated when the sheet is stretched in its own plane with a velocity and a temperature proportional to the distance from the stagnation point. It is shown that the basic partial differential equations reduce to similarity equations. This is followed by a direct numerical solution of the resulting boundary value problem using a very efficient finite-difference method. Discussions are made to trace among them the physically realistic solution. Tables 5, Figs 13, Refs 17.
Energy Technology Data Exchange (ETDEWEB)
Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Chang, Soon Heung; Jeong, Yong Hoon
2016-07-15
A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.
Patterns, Instabilities, Colors, and Flows in Vertical Foam Films
Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek
2015-03-01
Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.
Unsteady Viscous Dissipative Dusty Nanofluid Flow Over a Vertical Plate
Directory of Open Access Journals (Sweden)
D.R.V.S.R.K. Sastry
2016-10-01
Full Text Available The flow past an infinite vertical isothermal plate started impulsively in its own plane in a viscous incompressible two-phase nanofluid has been considered by taking into account the viscous dissipative heat. Two nano particles Copper (Cu and Alumina (Al2O3 are submerged in a base fluid, Water (H20. The coupled non-linear partial differential equations which govern the flow are solved for nanofluid and dust particle phases by finite difference method. The velocity and temperature fields have been shown graphically for various parameters. Here Grashof number, (Gr being positive (cooling of the plate for dusty air. Also the effects of Eckert number on heat transfer and skin friction coefficient for various parameters are represented graphically. It is observed that dusty nanofluid enhances both skin friction and heat transfer rate in the case of cooling.
Directory of Open Access Journals (Sweden)
Nili-Ahmadabadi M.
2012-01-01
Full Text Available This paper will present the results of the experimental investigation of heat transfer in a non-annular channel between rotor and stator similar to a real generator. Numerous experiments and numerical studies have examined flow and heat transfer characteristics of a fluid in an annulus with a rotating inner cylinder. In the current study, turbulent flow region and heat transfer characteristics have been studied in the air gap between the rotor and stator of a generator. The test rig has been built in a way which shows a very good agreement with the geometry of a real generator. The boundary condition supplies a non-homogenous heat flux through the passing air channel. The experimental devices and data acquisition method are carefully described in the paper. Surface-mounted thermocouples are located on the both stator and rotor surfaces and one slip ring transfers the collected temperature from rotor to the instrument display. The rotational speed of rotor is fixed at three under: 300rpm, 900 rpm and 1500 rpm. Based on these speeds and hydraulic diameter of the air gap, the Reynolds number has been considered in the range: 4000
Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands
Energy Technology Data Exchange (ETDEWEB)
Tietz, Alexandra [Institute of Sanitary Engineering and Water Pollution Control, BOKU - University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna (Austria)]. E-mail: alexandra.tietz@boku.ac.at; Kirschner, Alexander [Clinical Institute for Hygiene and Medical Microbiology, Department for Water Hygiene - Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna (Austria); Langergraber, Guenter [Institute of Sanitary Engineering and Water Pollution Control, BOKU - University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna (Austria); Sleytr, Kirsten [Institute of Sanitary Engineering and Water Pollution Control, BOKU - University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna (Austria); Haberl, Raimund [Institute of Sanitary Engineering and Water Pollution Control, BOKU - University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna (Austria)
2007-07-15
In this study a quantitative description of the microbial biocoenosis in subsurface vertical flow constructed wetlands fed with municipal wastewater was carried out. Three different methods (substrate induced respiration, ATP measurement and fumigation-extraction) were applied to measure the microbial biomass at different depths of planted and unplanted systems. Additionally, bacterial biomass was determined by epifluorescence microscopy and productivity was measured via {sup 14}C leucine incorporation into bacterial biomass. All methods showed that > 50% of microbial biomass and bacterial activity could be found in the first cm and about 95% in the first 10 cm of the filter layer. Bacterial biomass in the first 10 cm of the filter body accounted only for 16-19% of the total microbial biomass. Whether fungi or methodical uncertainties are mainly responsible for the difference between microbial and bacterial biomass remains to be examined. A comparison between the purification performance of planted and unplanted pilot-scale subsurface vertical flow constructed wetlands (PSCWs) showed no significant difference with the exception of the reduction of enterococci. The microbial biomass in all depths of the filter body was also not different in planted and unplanted systems. Compared with data from soils the microbial biomass in the PSCWs was high, although the specific surface area of the used sandy filter material available for biofilm growth was lower, especially in the beginning of the set-up of the PSCWs, due to missing clay and silt fraction.
Directory of Open Access Journals (Sweden)
Alekseenko Sergey
2016-01-01
Full Text Available Initial stage of downward flow of gas-sheared liquid film in a vertical rectangular duct was studied using brightness-based laser-induced fluorescence technique. Measurements were resolved along both longitudinal and transverse coordinates and time. The initial high-frequency waves which are formed at the inlet were found to be two-dimensional. These waves are promptly broken into localised horseshoe-shaped waves which merge downstream to form large-scale quasi-2D disturbance waves. Peculiarities of three-dimensional evolution of waves of different types were studied in a wide range of flow parameters.
Experimental study of flow patterns and pressure drops of heavy oil-water-gas vertical flow
Institute of Scientific and Technical Information of China (English)
LIU Xi-mao; ZHONG Hai-quan; LI Ying-chuan; LIU Zhong-neng; WANG Qi
2014-01-01
A stainless steel apparatus of 18.5 m high and 0.05 m in inner diameter is developed, with the heavy oil from Lukeqin Xinjiang oil field as the test medium, to carry out the orthogonal experiments for the interactions between heavy oil-water and heavy oil-water-gas. With the aid of observation windows, the pressure drop signal can be collected and the general multiple flow patterns of heavy oil-water-gas can be observed, including the bubble, slug, churn and annular ones. Compared with the conventional oil, the bubble flows are identified in three specific flow patterns which are the dispersed bubble (DB), the bubble gas-bubble heavy oil go(B-B), and the bubble gas-intermittent heavy oilgo(B-I). The slug flows are identified in two specific flow patterns which are the intermittent gas-bubble heavy oilgo(I-B)and the intermittent gas-intermittent heavy oilgo(I-I). Compared with the observa- tions in the heavy oil-water experiment, it is found that the conventional models can not accurately predict the pressure gradient. And it is not water but heavy oil and water mixed phase that is in contact with the tube wall. So, based on the principle of the energy con- servation and the kinematic wave theory, a new method is proposed to calculate the frictional pressure gradient. Furthermore, with the new friction gradient calculation method and a due consideration of the flow characteristics of the heavy oil-water-gas high speed flow, a new model is built to predict the heavy oil-water-gas pressure gradient. The predictions are compared with the experiment data and the field data. The accuracy of the predictions shows the rationality and the applicability of the new model.
Hood, Renee R; DeVoe, Don L
2015-11-18
Liposomes represent a leading class of nanoparticles for drug delivery. While a variety of techniques for liposome synthesis have been reported that take advantage of microfluidic flow elements to achieve precise control over the size and polydispersity of nanoscale liposomes, with important implications for nanomedicine applications, these methods suffer from extremely limited throughput, making them impractical for large-scale nanoparticle synthesis. High aspect ratio microfluidic vertical flow focusing is investigated here as a new approach to overcoming the throughput limits of established microfluidic nanoparticle synthesis techniques. Here the vertical flow focusing technique is utilized to generate populations of small, unilamellar, and nearly monodisperse liposomal nanoparticles with exceptionally high production rates and remarkable sample homogeneity. By leveraging this platform, liposomes with modal diameters ranging from 80 to 200 nm are prepared at production rates as high as 1.6 mg min(-1) in a simple flow-through process.
Generation of Turbulent Inflow Conditions for Pipe Flow via an Annular Ribbed Turbulator
Moallemi, Nima; Brinkerhoff, Joshua
2016-11-01
The generation of turbulent inflow conditions adds significant computational expense to direct numerical simulations (DNS) of turbulent pipe flows. Typical approaches involve introducing boxes of isotropic turbulence to the velocity field at the inlet of the pipe. In the present study, an alternative method is proposed that incurs a lower computational cost and allows the anisotropy observed in pipe turbulence to be physically captured. The method is based on a periodic DNS of a ribbed turbulator upstream of the inlet boundary of the pipe. The Reynolds number based on the bulk velocity and pipe diameter is 5300 and the blockage ratio (BR) is 0.06 based on the rib height and pipe diameter. The pitch ratio is defined as the ratio of rib streamwise spacing to rib height and is varied between 1.7 and 5.0. The generation of turbulent flow structures downstream of the ribbed turbulator are identified and discussed. Suitability of this method for accurate representation of turbulent inflow conditions is assessed through comparison of the turbulent mean properties, fluctuations, Reynolds stress profiles, and spectra with published pipe flow DNS studies. The DNS results achieve excellent agreement with the numerical and experimental data available in the literature.
Directory of Open Access Journals (Sweden)
Mosdorf Romuald
2015-06-01
Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.
Institute of Scientific and Technical Information of China (English)
龙桐; 翟志刚; 司廷; 罗喜胜
2014-01-01
A vertical annular coaxial diaphragm-less shock tube is designed based on the prin-cipal proposed by Hosseini and Takayama and modified in order to conveniently install the initial interface in the test section and visualize the flow field for the investigation of the Richtmyer-Meshkov (RM)instability.Parametric study is carried out both experimentally and numerically to explore the characteristics of the annular coaxial cylindrical converging shock wave.The varia-tion of pressure behind the shock shows the feasibility and reliability of this shock tube to generate the annular coaxial cylindrical converging shock wave.The pressure variations with time at differ-ent positions in the test section are acquired from the experiment and numerical simulation,and the converging effect of the shock wave is emphasized.After the validation of the converging shock wave,the experiment of RM instability induced by this converging shock wave is con-cerned.For this purpose,a regular octagon air/SF6 interface (the distance from each vertex to the center is 20mm)is generated in the test section by using eight thin wires to restrict the soap films.In this way,the initial interface shape,which is crucial to RM instability study,can be precisely controlled.The influence of the thin wires on the interface evolution is also assessed by numerical simulation and the results indicate that the thin wires have limited effect on the inter-face development at the very early stage.Moreover,because the height of the interface generated is only 5mm,the influence of the gravity can be neglected and the regular octagon soap interface can be treated as two dimensional.For visualizing the flow field,a continuous laser sheet combined with the high-speed camera is employed and the evolution of the regular octagon air/SF6 interface accelerated by the annular coaxial converging shock wave and its reflected shock wave is captured through the Mie scatting light from the droplets of the soap film
Flow characteristics of annular flow at a micro-T-junction%T 形微通道内环状气液两相流相分离
Institute of Scientific and Technical Information of China (English)
周云龙; 刘博; 孙科
2013-01-01
Using air as gas working fluid and with liquids of different surface tensions (pure water, 0.01% SDS solution,0.5% SDS solution,ethanol) as working fluids,a visualization experiment was conducted to study the split of annular flow through a T-junction with a rectangular cross section (100μm×800 μm). The results showed that the liquid preferentially enters the side branch. Liquid taken off mainly concentrated in 0.25—0.65 and gas taken off mainly concentrated in 0.1—0.8. The rate of increase of liquid taken off become bigger with increase of gas taken off. It was found that the liquid taken off of annular flow decreases with an increase of superficial liquid velocity at a certain superficial gas velocity. When the superficial liquid velocity is certain,there is very little effect of inlet gas flow rate on the liquid taken off. We also found that the decrease in liquid surface tension make the liquid taken off increase. When the present data were compared to those from other diameter junctions,it is seen that the phase split characteristics of the annular flow is very dependent on pipe size.% 以氮气为气相工作介质，以不同表面张力的液体（纯水、0.01%SDS 溶液、0.5%SDS 溶液、乙醇）为液相工作介质，对矩形截面为100μm×800μm 的 T 形微通道内的气液环状流进行了相分离可视化实验。实验结果表明：环状流液相在侧支管中采出占优势。液相采出分率主要集中在0.25～0.65之间；气相采出分率在0.1～0.8，液相采出分率的增长幅度随着气相采出分率增加而变大。当气相表观速度一定时，液相采出分率随着两相流液体速度的增加而降低；当液体表观速度一定时，气体速度变化对液相采出分率影响不大；当两相的表观速度一定时，液相采出分率随着液体的表面张力降低而减小。所得实验数据与其它尺寸的数据进行比较，发现管径尺寸对环状流相分离有较大影响。
An experimental study on counter current flow limitation in annular narrow gaps with large diameter
Energy Technology Data Exchange (ETDEWEB)
Park, Rae Joon; Jeong, Ji Whan; Lee, Sung Jin; Cho, Young Ro; Ha, Kwang Sun; Kim, Sang Baik; Kim, Hee Dong [Korea Atomic Energy Research Institute, Taejeon (Korea)
2002-04-01
The present study intends to carry out CCFL experiment with the same gap size as the CHFG facility and suggest an empirical correlation in order to provide basic information useful to development of an empirical critical-power correlation. The present facility consists of water accumulator tank, test section, DC pump, air regulator, valves and sensors. Air and water are used as working fluids. The experiments are carried out at the atmospheric pressure. Differential pressure between the gap ends, liquid and gas phase flow rates, temperature, lower plenum pressure are measured.Measured values are expressed in terms of Wallis' parameter using gap size as a characteristic length. There is a big difference between the present experimental results and the Koizumi et al.'s results, but the present experimental results are very similar to the Richter et al.'s results. The present results agree well with the Osakabe and Kawasaki's results. In comparison of present experiments with the Koizumi et al.'s experiments, gap thickness is similar, but the diameter of the present is bigger than that of Koizumi et al.'s experiments. In comparison of present experiments with the Richter et al.'s experiments, diameter is similar, but the gap thickness of the present is smaller than that of Richter et al.'s experiments. It is judged from these results that correlation development on CCFL to consider gap thickness is reasonable at similar condition of diameter.The developed correlation will be used to develop the CHFG model. 36 refs., 26 figs., 7 tabs. (Author)
Kraft, R. E.
1996-01-01
The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the
Wei, Hsien-Hung; Halpern, David; Grotberg, James B
2005-05-15
This paper analyzes the effect of surfactant on the linear stability of an annular film in a capillary undergoing a time-periodic pressure gradient force. The annular film is thin compared to the radius of the tube. An asymptotic analysis yields a coupled set of equations with time-periodic coefficients for the perturbed fluid-fluid interface and the interfacial surfactant concentration. Wei and Rumschitzki (submitted for publication) previously showed that the interaction between a surfactant and a steady base flow could induce a more severe instability than a stationary base state. The present work demonstrates that time-periodic base flows can modify the features of the steady-flow-based instability, depending on surface tension, surfactant activity, and oscillatory frequency. For an oscillatory base flow (with zero mean), the growth rate decreases monotonically as the frequency increases. In the low-frequency limit, the growth rate approaches a maximum corresponding to the growth rate of a steady base flow having the same amplitude. In the high-frequency limit, the growth rate reaches a minimum corresponding to the growth rate in the limit of a stationary base state. The underlying mechanisms are explained in detail, and extension to other time-periodic forms is further exploited.
Kang, Yungmo
2005-10-04
An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.
Energy Technology Data Exchange (ETDEWEB)
Augyrond, L
1998-04-01
This work aims at a better understanding of the dynamics of helium two-phase flow in a vertical duct. The case of bubble flow is particularly investigated. The most descriptive parameter of two-phase flow is the void fraction. A sensor to measure this parameter was specially designed and calibrated, it is made of a radioactive source and a semiconductor detector. Sensors based on light attenuation were used to study the behaviour of this two-phase flow. The experimental set-up is described. The different flow types were photographed and video filmed. This visualization has allowed to measure the diameter of bubbles and to study their movements in the fluid. Bubble flow then churn and annular flows were observed but slug flow seems not to exist with helium. A modelling based on a Zuber model matches better the experimental results than a Levy type model. The detailed analysis of the signals given by the optical sensors has allowed to highlight a bubble appearance frequency directly linked to the flowrate. (A.C.) 83 refs.
Overtopping Flow Impact on a Vertical Wall on a Dike Crest
Chen, X.; Hofland, B.; Altomare, C.; Uijttewaal, J.S.W.
2014-01-01
In this paper the impact process and mechanism of overtopping flow on a vertical wall on a dike crest are investigated by means of a series of physical model tests. A double-peaked force was recognized in a time series of an overtoping flow. Four stages were summarized for the whole overtopping flow
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
［1］Nusselt,W.,Die Oberflchenkondensation des Wasserdampfes,VDI,1916,60: 541-546.［2］Sparrow,E.M.,Gregg,J.L.,A boundary layer treatment of laminar-film condensation,ASME J.Heat Transfer,1959,81: 13-18.［3］Mayhew,Y.R.,Griffiths,D.J.,Philips,J.W.,Effect of vapour drag on laminar film condensation on a vertical surface,Proc.I Mech.E,1965,180: 280-287.［4］Memory,S.B.,Rose,J.W.,Free convection laminar film condensation on a horizontal tube with variable wall temperature,Int.J.Heat Mass Transfer,1991,34: 2775-2778.［5］Suzuki,K.,Hagiwara,Y.,Izumi,H.,A numerical study of forced-convective filmwise condensation in a vertical tube,JSME Int.J.,Ser.II,1990,33(1): 134-140.［6］Shah,M.M.,A general correlation for heat transfer during film condensation inside pipes,Int.J.Heat Mass Transfer,1979,22: 547-556.［7］Reay,D.A.,Compact heat exchangers: a review of current equipment and R&D in the field,Heat Recovery System & CHP,1994,14(5): 459-479.［8］Srinivasan,V.,Shah,R.K.,Condensation in compact heat exchangers,J.Enhanced Heat Transfer,1997,4(4): 237-256.［9］Wadekar,V.V.,Improving industrial heat transfer-compact and non-so-compact heat exchangers,J.Enhanced Heat Transfer,1998,5(1): 53-69.［10］Rohsenow,W.M.,Film Condensation,Applied Mechanics Reviews,1970,23: 487-496.［11］Wang Buxuan,Yu Yufeng,Condensation heat transfer on the external surface of a small-diameter vertical tube (in Chinese),in Collected Papers of Bu-xuan Wang,Beijing: Tsinghua University Press,1992.［12］Henstock,W.H.,Hodgson,T.J.,The interfacial drag and height of the wall layer in annular flows,AIChE J.,1976,22: 990-1000.［13］Wang Buxuan,Du Xiaoze,Study on laminar film-wise condensation for vapor flow in an inclined small/mini-diameter tube,Int.J.Heat Mass Transfer,2000,43(10): 1859-1868.［14］Wang Buxuan,Du Xiaoze,Experimental research on flow condensation heat transfer in mini-diameter tube (in Chinese with English abstract),Chinese J.Engineering Thermophysics,2000
Caballero-Miranda, C. I.; Alva-Valdivia, L. M.; González-Rangel, J. A.; Gogitchaishvili, A.; Urrutia-Fucugauchi, J.; Kontny, A.
2016-02-01
The within-flow vertical variation of anisotropy of the magnetic susceptibility (AMS) of three basaltic flow profiles from the Xitle volcano were investigated in relation to the lava flow-induced shear strain. Rock magnetic properties and opaque microscopy studies have shown that the magnetic mineralogy is dominated by Ti-poor magnetite with subtle vertical variations in grain size distribution: PSD grains dominate in a thin bottommost zone, and from base to top from PSD-MD to PSD-SD grains are found. The vertical variation of AMS principal direction patterns permitted identification of two to three main lava zones, some subdivided into subzones. The lower zone is very similar in all profiles with the magnetic foliation dipping toward the flow source, whereas the upper zone has magnetic foliation dipping toward the flow direction or alternates between dipping against and toward the flow direction. The K1 (maximum AMS axis) directions tend to be mostly parallel to the flow direction in both zones. The middle zone shows AMS axes diverging among profiles. We present heterogeneous strain ellipse distribution models for different flow velocities assuming similar viscosity to explain the AMS directions and related parameters of each zone. Irregular vertical foliations and transverse to flow lineation of a few samples at the bottommost and topmost part of profiles suggest SD inverse fabric, levels of intense friction, or degassing effects in AMS orientations.
Vertical, Bubbly, Cross-Flow Characteristics over Tube Bundles
Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.
2005-12-01
Two-phase flow over tube bundles is commonly observed in shell and tube-type heat exchangers. However, only limited amount of data concerning flow pattern and void fraction exists due to the flow complexity and the difficulties in measurement. The detailed flow structure in tube bundles needs to be understood for reliable and effective design. Therefore, the objective of this study was to clarify the two-phase structure of cross-flow in tube bundles by PIV. Experiments were conducted using two types of models, namely in-line and staggered arrays with a pitch-to-diameter ratio of 1.5. Each test section contains 20 rows of five 15 mm O.D. tubes in each row. The experiment’s data were obtained under very low void fraction (αtube bundles were described in terms of the velocity vector field, turbulence intensity and void fraction.
Energy Technology Data Exchange (ETDEWEB)
Silva, Maria das Gracas Pena [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao
1989-12-31
The determination of the transition zone between the laminar and turbulent flow regimes of particular importance in optimizing the hydraulics of drilling operations. The principal advantage which laminar flow in the annular space has in drilling operations in the avoidance of wall enlargement (wash-outs), maintaining formation integrity as much as possible. On the other hand, a lower-energy regime such as laminar flow does not provide the same cuttings-carrying capacity as that obtained when the drilling fluid is in turbulent flow. However, to be able to optimize the hydraulics it is necessary to have determined, among other parameters, the transition zone, in order to maximize the drilling rate while obtaining the hole clear of cuttings and maintaining the hole diameter constant over the whole of the section drilled. This paper presents, based on experimental results obtained on the SHS physical simulator, the transition zone expressed through the critical Reynolds numbers and those for low stable turbulence of various drilling fluids tested over the temperature range of 25-80 deg C. (author) 20 refs., 7 figs., 4 tabs.
Institute of Scientific and Technical Information of China (English)
靳冬欢; 刘文广; 陈星; 陆启生; 赵伊君
2011-01-01
环柱型化学激光器中使用的分流管道的总管为环形弯曲管道,支管分布在内侧圆弧或外侧圆弧上,结构与线形分流管道有较大差别.应用计算流体力学方法,对上述各分流管道进行了三维的数值模拟及对比分析.结果表明,线形分流管道总管内的总压高于支管分布在外侧圆弧上的环形管道,但低于支管分布在内侧圆弧上的环形管道;无论是支管分流,抑或环形管道内的二次流现象都会使总管截面上产生径向速度,使得流体流动呈现明显的三维特征;分流管道各支管流量沿主流流动方向基本上是上升的,这与总管的总压分布趋势相反,而与总管的静压分布趋势相似;比较而言,支管分布在外侧圆弧上的环形分流管道的支管流量波动幅度最小,在均匀分配气流方面最具优势,线形分流管道居中,支管分布在内侧圆弧上的环形分流管道最差.%Distribution flow pipeline used in cylindrical chemical laser is composed of an annular general pipeline and a limited quantity of branch pipelines that are connected with the inner or outer circular arc of general pipeline. Its structure and flow field characteristics differ from thooe of linear distribution flow pipeline used in conventional chemical laser. Flow field characteristics of above-mentioned three kinds of distribution flow pipelines were analyzed contrastively based on three-dimension computational fluid dynamics methods. The numerical simulation results clemonstrate that total pressuue of general pipeline in linear distribution flow pipeline is higher than that in outer-circular-arc annular pipeline, but lower than that in inner-circular-arc annular pipeline. Both distribution flows of branch pipelines and secondary flows produced in annular general pipeline can excite radial velocity on the section plane of general pipeline. These phenomena enable the ges flow of general pipeline to have remarkable three
Vertical flows and structures excited by magnetic activity in the Galactic center region
Kakiuchi, Kensuke; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji
2016-01-01
The vertical flow structure in the galactic center region remains poorly understood. We analyzed the MHD simulation data by Suzuki et al. (2015) for better understanding. As a result, we found the fast downflows with a speed of ~100 km/s near the foot-points of magnetic loops. These downflows are flowing along a magnetic field line and accelerated by the gravity. The direction of the fast flows is changed by the magnetic loop geometry, as it moves. As a result, not only vertical motions but also azimuthal and radial motions are excited. This feature could be relevant to the observed high velocity dispersion in the position-velocity diagram.
Vertically aligned carbon nanotubes for sensing unidirectional fluid flow
Energy Technology Data Exchange (ETDEWEB)
Kiani, Keivan, E-mail: k_kiani@kntu.ac.ir
2015-05-15
From applied mechanics points of view, potential application of ensembles of single-walled carbon nanotubes (SWCNTs) as fluid flow sensors is aimed to be examined. To this end, useful nonlocal analytical and numerical models are developed. The deflection of the ensemble of SWCNTs at the tip is introduced as a measure of its sensitivity. The influences of the length and radius of the SWCNT, intertube distance, fluid flow velocity, and distance of the ensemble from the leading edge of the rigid base on the deflection field of the ensemble are comprehensively examined. The obtained results display how calibration of an ensemble of SWCNTs can be methodically carried out in accordance with the characteristics of the ensemble and the external fluid flow.
MHD Stagnation Flow of a Newtonian Fluid towards a Uniformly Heated and Moving Vertical Plate
Directory of Open Access Journals (Sweden)
Mehmet Şirin Demir
2016-01-01
Full Text Available Stagnation flow of an electrically conducting incompressible viscous fluid towards a moving vertical plate in the presence of a constant magnetic field is investigated. By using the appropriate transformations for the velocity components and temperature, the partial differential equations governing flow and heat transfer are reduced to a set of nonlinear ordinary differential equations. These equations are solved approximately using a numerical technique for the following two problems: (i two-dimensional stagnation-point flow on a moving vertical plate, (ii axisymmetric stagnation-point flow on a moving vertical plate. The effects of non-dimensional parameters on the velocity components, wall shear stresses, temperature and heat transfer are examined carefully.
Institute of Scientific and Technical Information of China (English)
杨佳; 刘寿康
2012-01-01
对目前广泛应用于乳化炸药混装车上的水环输送乳胶基质的减阻机理进行了理论分析,分别推导出层流同心水环、湍流同心水环的速度分布与流量计算公式,并得到了从层流到湍流的转捩判据.此外,优化了水环润滑装置结构参数,提出了稳定水环输送的相关措施.%The mechanism of drag reduction by core-annular flow in transportation of emulsion matrix was widely used in the existing mixing-loading truck for emulsion explosive. After theoretical analysis, formulas were deduced respectively to calculate the velocity distribution, flow rate of annular water flow in laminar and turbulent flows. The criterion of transition from laminar flow to turbulent flow was obtained. Furthermore, the optimized parameters and some stabilizing measures are also proposed for core-annular flow device.
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Adriana; Bannwart, Antonio C. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo
2004-07-01
The use of water-assisted technologies such as core-annular flow to the pipelines of viscous oils has been proposed as an attractive alternative for production and transportation of heavy crudes in both onshore and offshore scenarios. Usually, core-annular flow can be created by injecting a relatively small water flow rate laterally in the pipe, so as to form a thin water annulus surrounding the viscous oil, which is pumped through the center. The reduction in friction losses obtained thanks to lubrication by water is significant, since the pressure drop in a steady state core flow becomes comparable to water flow only. For a complete assessment of core flow technology, however, unwanted effects associated with possible oil adhesion onto the pipe wall should be investigated, since these may cause severe fouling of the wall and pressure drop increase. It has been observed that oil adhesion on metallic surfaces may occur for certain types of crude and oilphilic pipe materials. In this work we present results of pressure drop monitoring during 35 hour-operation of a heavy oil-water core annular flow in a 26.08 mm. i.d. horizontal steel pipe. The oil used is described in terms of its main components and the results of static wet ability tests are also presented for comparison (author)
Effect of Annular Slit Geometry on Characteristics of Spiral Jet
Institute of Scientific and Technical Information of China (English)
Shigeru Matsuo; Kwon-Hee Lee; Shinsuke Oda; Toshiaki Setoguchi; Heuy-Dong Kim
2003-01-01
A spiral flow using an annular slit connected to a conical cylinder does not need special device to generate a tangential velocity component of the flow and differs from swirling flows. Pressurized fluid is supplied to an annular chamber and injected into the convergent nozzle through the annular slit. The annular jet develops into the spiral flow. In the present study, a spiral jet discharged out of nozzle exit was obtained by using a convergent nozzle and an annular slit set in nozzle inlet, and the effect of annular slit geometry on characteristics of the spiral jet was investigated by using a Laser Doppler Velocimeter (LDV) experimentally. Furthermore, velocity distributions of the spiral jet were compared with those of a normal jet.
Energy Technology Data Exchange (ETDEWEB)
Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)
1999-07-25
This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)
Low-Flow Film Boiling Heat Transfer on Vertical Surfaces
DEFF Research Database (Denmark)
Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.
1976-01-01
The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....
Investigation on Liquid Holdup in Vertical Zero Net-Liquid Flow
Institute of Scientific and Technical Information of China (English)
刘磊; StuartL.Scott
2001-01-01
Zero net-liquid flow (ZNLF) is a special case of upward gas-liquid two-phase flow. It is a phenomenon observed as a gas-liquid mixture flows in a conduit but the net liquid flow rate is zero. Investigation on the liquid holdup of ZNLF is conducted in a vertical ten-meter tube with diameter of 76 mm, both for Newtonian and nonNewtonian fluids. The gas phase is air. The Newtonian fluid is water and the non-Newtonian fluids are water-based guar gel solutions. The correlations developed for predicting liquid holdup on the basis of Lockhart-Martinelli parameter are not suitable to ZNLF. A constitutive correlation for the liquid holdup of vertical ZNLF was put forward by using the mass balance. It is found that the liquid holdup in ZNLF is dependent on both the gas flow rate and the flow distribution coefficient.
Investigation on Liquid Holdup in Vertical Zero Net-Liquid Flow
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Zero net-liquid flow (ZNLF) is a special case of upward gas-liquid two-phase flow. It is a phenomenon observed as a gas-liquid mixture flows in a conduit but the net liquid flow rate is zero. Investigation on the liquid holdup of ZNLF is conducted in a vertical ten-meter tube with diameter of 76 mm, both for Newtonian and non Newtonian fluids. The gas phase is air. The Newtonian fluid is water and the non-Newtonian fluids are water-based guar gel solutions. The correlations developed for predicting liquid holdup on the basis of Lockhart-Martinelli parameter are not suitable to ZNLF. A constitutive correlation for the liquid holdup of vertical ZNLF was put forward by using the mass balance. It is found that the liquid holdup in ZNLF is dependent on both the gas flow rate and the flow distribution coefficient.
Directory of Open Access Journals (Sweden)
Drbáková S.
2013-04-01
Full Text Available The current research of hydrostatic bearings and hydrostatic slide-ways is far from being over. The topic is constantly evolving, creating new geometries of the sliding bearings, developing new types of friction materials and lubricants. The control elements of hydraulic mechanisms that serve to regulation of the hydrostatic bearings tipping are still in progress. Almost every application has different requirements for the bearings, whether in terms of loading capacity, speed rotation, and also the price. All these aspects should be included in the design of hydrostatic thrust bearings. Thanks to great advances in the development of computer technology and software for numerical modelling, we can simulate real movement of viscous fluids. To create a numerical model of hydrostatic thrust bearing, Ansys Fluent 14.0 software package has been applied. The article describes the basic methods of numerical modelling of the given problem and evaluates the pressure field and the loading capacity of annular multi-recess hydrostatic thrust bearing and its dependence on the change in static pressure.
Directory of Open Access Journals (Sweden)
Lávička D.
2010-07-01
Full Text Available This paper describes the topic of measurement using a modern laser method (PIV in an annular channel of very small dimensions. The annular channel simulates the flow area around a model of a fuel rod in the VVER nuclear reactor. The annular channel holds spacers which create obstacles to fluid flow. The spacers serve a number of important purposes. In the real nuclear reactor, the spacer holds a fuel rod in the fuel rod bundle. Another important function of the spacer is to influence the flow field characteristics, especially turbulence size, by the shape of the spacer. The value of the turbulence regulates the intensity of heat transfer between the fuel rod and the fluid. Therefore, it is very important to provide a correct description and analysis of the flow field behind the obstacle the spacer generates. The paper further looks into the solution of the same task using numerical simulation. The solution of this task consisted of setting the suitable boundary conditions and of setting the turbulence model for the numerical simulation. The result is a comparison of the flow field characteristics from the experimental measurement and the findings of the numerical simulation. The numerical simulation was carried out using commercial CFD software package, FLUENT.
Directory of Open Access Journals (Sweden)
E. Dellwik
2009-08-01
Full Text Available An analysis of flow angles from a fetch-limited beech forest site with clearings is presented. Flow angles and vertical velocities from two types of sonic anemometers as well as a ground based remote sensing lidar were analysed. Instead of using rotations, where zero-flow angles were assumed for neutral flow, the data from the instruments were interpreted in relation to the terrain.
Uncertainties regarding flow distortion and limited sampling time (statistical uncertainty were evaluated and found to be significant. Especially for one of the sonic anemometers, relatively small changes in the flow distortion correction could change the sign of mean vertical velocities taken during stable atmospheric stratification relative to the neutral flow. Despite the uncertainties, it was possible to some extent to relate both positive and negative mean flow angles to features in the terrain.
Conical and linear scans with a remote sensing lidar were evaluated for estimation of vertical velocities and flow angles. The results of the vertical conical scans were promising, and yielded negative flow angles for a sector where the forest is fetch-limited. However, more data and analysis is needed for a complete evaluation of the technique. The horizontal linear scans showed the variability of the mean wind speed field. A vertical velocity was calculated from different focusing distances, but this estimate yielded unrealistically high vertical velocities, due to neglect of the transversal wind component.
The vertical advection term was calculated using the measured mean flow angles at the mast and profile measurements of carbon dioxide, but it is not recommended to use in relation with the flux measurement as the vertical velocity measured at the mast is most likely not representative for the whole forest.
Jong, Valerie Siaw Wee; Tang, Fu Ee
2016-01-01
Individual septic tanks are the most common means of on-site sanitation in Malaysia, but they result in a significant volume of septage. A two-staged vertical flow constructed wetlands (VFCWs) system for the treatment of septage was constructed and studied in Sarawak, Malaysia. Raw septage was treated in the first stage wetlands, and the resulting percolate was fed onto the second stage wetlands for further treatment. Here, the effects of a batch loading regime on the contaminant removal efficiency at the second stage wetlands, which included palm kernel shell within their filter substrate, are presented. The batch loading regime with pond:rest (P:R) period of 1:1, 2:2 and 3:3 (day:day) was studied. The improvement of the effluent redox condition was evident with P:R = 3:3, resulting in excellent organic matters (chemical oxygen demand and biochemical oxygen demand) and nitrogen reduction. The bed operated with P:R = 1:1 experienced constant clogging, with a water layer observed on the bed surface. For the P:R = 3:3 regime, the dissolved oxygen profile was not found to decay drastically after 24 hours of ponding, suggesting that the biodegradation mainly occurred during the first day. The study results indicate that a suitable application regime with an adequate rest period is important in VFCWs to ensure efficient operation.
Directory of Open Access Journals (Sweden)
Emi Tamechika
2012-10-01
Full Text Available A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.
RESONANCE RESPONSE OF ELECTRORHEOLOGICAL FLUIDS IN VERTICAL OSCILLATION SQUEEZE FLOW
Institute of Scientific and Technical Information of China (English)
Sun Jiu-xun; Cai Ling-cang; Wu Qiang; Jing Fu-qian
2000-01-01
The resonance effect of microcrystalline cellulose/castor oil electrorheological (ER) suspensions was studied in a compressed oscillatory squeeze flow under external electric fields. The resonance frequency first increases linearly with increasing external field, and then shift to high-field plateau. The amplitudes of resonance peak increase sharply with the applied fields in the range of 0.17-1.67kV/mm. The phase difference of the.reduced displacement relative to the excitation force inverses in the case of resonance. A viscoelasticity model of the ER suspensions, which offers both the equivalent stiffness and the viscous damping, should be responsible for the appearance of resonance. The influence of the electric field on the resonance frequency and the resonance hump is consistent qualitatively with the interpretation of our proposed model. Storage modulus G′ was presented for the purpose of investigating this influence.
Research Advances on flow field of annular centrifugal extraction%环隙式离心萃取器流场研究进展
Institute of Scientific and Technical Information of China (English)
潘九海; 甘仁武; 张艳红; 白志山
2012-01-01
围绕工业应用,人们在环隙流场稳定性、水力学特性等方面做了大量研究,而对环隙的流场流动机理、泰勒涡流场结构等方面的研究较少,随着线性和非线性理论、计算流体力学和流动可视化技术的飞速发展,对环隙流场流动机理、涡流场的结构进行详细直观描述有了可能,主要从环隙流场可视化、环隙流场数值模拟2个方面对该研究进行了系统的分析总结,并为将来的研究工作提出了几点意见.%Around the industrial application of annular centrifugal extractor ( ACE) , the flow instabilities, hydrodynamic characteristics and mass transfer performance of ACE has been extensively studied. But relatively scanty information is available on the detailed quantitative flow pattern and the structure of vortex. With the rapid development of linear and nonlinear theory, Computational Fluid Dynamics and flow visualization technology, more and more information was provided for the research of flow regime and vortex cell- The published literature has been critically analysed and presented in this paper,some specific recommendations have been made for future work.
Energy Technology Data Exchange (ETDEWEB)
Lee, Juhyung; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jo, Daeseong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-10-15
Subcooled flow boiling in a vertical rectangular channel was experimentally investigated to enhance the understanding of the CHF and the effect of the two-phase flow instability on it under low pressure conditions, especially for downward flow which was adopted for Jordan Research and Training Reactor (JRTR) and Kijang research reactor (KJRR) to achieve easier fuel and irradiation rig loading. In addition, visual observations of subcoold flow boiling was conducted by using high-speed video (HSV) for a clear understanding of both phenomena. We concluded that flow excursion (which is static instability) could be induced due to the OPDF (which is dynamic instability) when a system has no resistibility to the pressure drop perturbation, which is caused by the coalescence of facing bubbles on opposing heated surfaces. In more stable system with throttling applied, flow rate could be maintained and stable CHF could be reached. The static flow instability (FI) and critical heat flux (CHF) for subcooled flow boiling in a vertical narrow channels under low pressure condition are fairly crucial phenomena relative to thermal-hydraulic design and safety analysis for pool-type research reactors. It has been recommended that RRs and MTRs be designed to have sufficient margins for CHF and the onset of FI as well, since unstable flow could leads to premature CHF under very low wall heat flux in comparison to stable CHF. Even the fact and previous studies, however, the understanding of relationship among FI, premature CHF and stable CHF is not sufficient to date.
Directory of Open Access Journals (Sweden)
DIPAK SARMA
2012-12-01
Full Text Available A steady two dimensional MHD convective flow of an incompressible viscous and electrically conducting fluid past a continuously moving porous vertical plate with Soret and Dufour effects is analyzed. A magnetic field of uniform strength is assumed to be applied transversely to the direction of the main flow. The solutions for thevelocity field, temperature and concentrations are performed for a wide range of the governing flow parameters viz the Soret number, Prandtl number, Schmidt number, Grashof number for heat transfer, Dufour number, Solutal Grashof number and Hartmann number. The effects of these flow parameters on the velocity, temperature, concentration, skin friction coefficient and Sherwood number are discussed graphically.
Energy Technology Data Exchange (ETDEWEB)
D' Ambros, Alder C.; Vitorassi, Pedro H.; Franco, Admilson T.; Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Matins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Tecnologia de Engenharia de Perfuracao
2008-07-01
The success of oil well drilling process depends on the correct prediction of the velocities and stresses fields inside the gap between the drill string and the rock formation. Using CFD is possible to predict the behavior of the drilling fluid flow along the annular space, from the bottom to the top of the well. Commonly the drilling fluid is modeled as a Herschel-Bulkley fluid. An alternative is to employ a non-linear viscoelastic model, like the one developed by Phan-Thien-Tanner (PTT). In the present work the PTT constitutive equation is used to model the drilling fluid flow along the annular space. Thus, this work investigates the influence of the Deborah number on the laminar flow pattern through the numerical solution of the equations formed by the coupled velocity-pressure-stress fields. The results are analyzed and validated against the analytical solution for the fully developed annular pipe flow. The relation between the Deborah number (De) and the entry length is investigated, along with the influence of high values of Deborah number on the friction factor, stress and velocity fields. (author)
Convective MHD Oscillatory Flow past a Uniformly Moving Infinite Vertical Plate
Directory of Open Access Journals (Sweden)
N. Ahmed
1992-01-01
Full Text Available The convective magnetohydrodynamic flow past a uniformly moving infinite vertical plate, with the magnetic field and the suction velocity applied normal to the plate has been analysed. Presence of heat source or sink has also been considered. The findings are expected to throw light on some problems of defence applications in the areas of aeronautical designs and also flow and heat transfer problems of a chemically reacting fluid.
The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf
2008-01-01
E. Richardson, 2008, Field verification of a CFD model for wave transformation and breaking in the surf zone, J. Waterw. Port Coastal Engrg., 134(2...The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf Dr. Thomas C. Lippmann Center for Coastal...wave- and tidally-driven shallow water flows in the shallow depths of the inner shelf and surf zone. OBJECTIVES 1. Theoretical investigations of
Characterization of Chlorinated Ethene Degradation in a Vertical Flow Constructed Wetland
2007-03-01
pathway for chlorinated volatiles in phytoremediation applications. Although transpiration of chlorinated solvents has been confirmed in studies ... case study publications and conference presentations providing support for the use of constructed wetlands for the treatment of chlorinated solvent...groundwater. This study characterized and evaluated the concentration of chlorinated ethenes within a vertical flow constructed wetland, fed with PCE
On possible flow back in vertical screw conveyors for cohesionless granular materials
Rademacher, F.J.C.
1981-01-01
Conditions for which back flow will be initiated in vertical screw conveyors conveying cohesionless granular material are theoretically established. Use is made of existing knowledge of the performance characteristics of such conveyors. Provided the conveyor is operated at not too low an angular spe
Vertical flow constructed wetland (VFCW) is a promising engineering technique for removal of excess nutrients and certain pollutants from wastewater and stormwater. The aim of this study was to develop a STELLA (Structural Thinking, Experiential Learning Laboratory with Animation) model for estimati...
De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M.
2011-01-01
Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical rea
Subcutaneous granuloma annulare
Directory of Open Access Journals (Sweden)
Dhar Sandipan
1994-01-01
Full Text Available Two cases of subcutaneos granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules; histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult hood, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.
Subcutaneous granuloma annulare
Directory of Open Access Journals (Sweden)
Dhar Sandipan
1993-01-01
Full Text Available Two cases of subcutaneous granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules, histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult age, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.
Mixed Convection Opposing Flow in a Vertical Porous Annulus-Two Temperature Model
Al-Rashed, Abdullah A. AA; J, Salman Ahmed N.; Khaleed, H. M. T.; Yunus Khan, T. M.; NazimAhamed, K. S.
2016-09-01
The opposing flow in a porous medium refers to a condition when the forcing velocity flows in opposite direction to thermal buoyancy obstructing the buoyant force. The present research refers to the effect of opposing flow in a vertical porous annulus embedded with fluid saturated porous medium. The thermal non-equilibrium approach with Darcy modal is considered. The boundary conditions are such that the inner radius is heated with constant temperature Tw the outer radius is maintained at constant temperature Tc. The coupled nonlinear partial differential equations such as momentum equation, energy equation for fluid and energy equation for solid are solved using the finite element method. The opposing flow variation of average Nusselt number with respect to radius ratio Rr, Aspect ratioAr and Radiation parameter Rd for different values of Peclet number Pe are investigated. It is found that the flow behavior is quite different from that of aiding flow.
Study on the heat transfer of cross flow in vertical upward tubes
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A special device was designed to measure temperature difference in this study of heat transfer of water and oil cross flow inside vertical upward tubes. A new heat transfer correlation was obtained for cross flow. The experimental results showed that the dependence of heat transfer on Reynolds is much smaller in a narrow space than that in a wide space. It was found that the heat transfer correlation of cross flow in a narrow space is obviously different from that in a wide space, and that the heat transfer correlation obtained in a wide space may not be applicable to the cross-flow heat transfer in a narrow space. Further, the single-phase heat transfer capability of water cross flow was compared with that of oil cross flow. The experimental results showed that the average heat transfer coefficient of water is about 2～3 times that ofoil when they have the same superficial velocity.
Nitrogen removal in a combined system: vertical vegetated bed over horizontal flow sand bed.
Kantawanichkul, S; Neamkam, P; Shutes, R B
2001-01-01
Pig farm wastewater creates various problems in many areas throughout Thailand. Constructed wetland systems are an appropriate, low cost treatment option for tropical countries such as Thailand. In this study, a combined system (a vertical flow bed planted with Cyperus flabelliformis over a horizontal flow sand bed without plants) was used to treat settled pig farm wastewater. This system is suitable for using in farms where land is limited. The average COD and nitrogen loading rate of the vegetated vertical flow bed were 105 g/m2 x d and 11 g/m2 x d respectively. The wastewater was fed intermittently at intervals of 4 hours with a hydraulic loading rate of 3.7 cm/d. The recirculation of the effluent increased total nitrogen (TN) removal efficiency from 71% to 85%. The chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) removal efficiencies were 95% and 98%. Nitrification was significant in vertical flow Cyperus bed, and the concentration of nitrate increased by a factor of 140. The horizontal flow sand bed enhanced COD removal and nitrate reduction was 60%. Plant uptake of nitrogen was 1.1 g N/m2 x d or dry biomass production was 2.8 kg/m2 over 100 days.
Numerical investigation of flow and scour around a vertical circular cylinder
DEFF Research Database (Denmark)
Baykal, Cüneyt; Sumer, B. Mutlu; Fuhrman, David R.;
2015-01-01
transport is not accounted for. Alternatively, the effects of vortex shedding are found to be limited to the very early stage of the scour process. Flow features such as the horseshoe vortex, as well as lee-wake vortices, including their vertical frequency variation, are discussed. Large-scale counter...... (both bed and suspended load), as well as (iv) bed morphology. The influence of vortex shedding and suspended load on the scour are specifically investigated. For the selected geometry and flow conditions, it is found that the equilibrium scour depth is decreased by 50% when the suspended sediment......-rotating streamwise phase-averaged vortices in the lee wake are likewise demonstrated via numerical flow visualization. These features are linked to scour around a vertical pile in a steady current....
LAMINAR FLOW AND HEAT TRANSFER IN MICRO－ANNULAR CHANNEL IN SLIP FLOW REGIME%滑移流区内微环缝槽道中的层流流动与换热
Institute of Scientific and Technical Information of China (English)
朱恂; 辛明道
2001-01-01
In this article, the momentum and energy equations with the boundary conditions of slip velocity and temperature jump are solved for the hydraulic and thermalfully developed laminar flow of the incompressible fluid in micro-annular channel. A theoretical analysis is conducted for flow and heat transfer characteristics in this micro channel on the condition of one wall heated alonewith uniform heat flux and two walls heated with different heat flux in slipflow regime. The influences of the Kn number, the ratio of inner diameter toouter diameter and the heat flux ratio on the flow and heat transfercharacteristics are discussed, respectively. The results show that the frictioncoefficient and Nusselt number in the micro-annular channel are smaller thanthat in the macrochannel, and decrease with the increase of Kn number.%本文针对微环缝槽道采用速度滑移和温度跳跃边界条件求解了不可压缩气体的N-S方程和能量方程，理论分析了微环缝槽道在单侧或双侧不同热流密度加热条件下的流动与层流换热特性，讨论了Kn数、内外径比对流动阻力及换热特性的影响。结果表明：滑移流区微环缝通道内的流阻和Nusselt数明显低于连续流区；且随着Kn数的增加，流阻和Nusselt数均减小；但其随内外径比r*的变化趋势与连续流区相似。
Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration
Vignal, Philippe
2015-06-01
In this work, we present a novel isogeometric analysis discretization for the Navier-Stokes- Cahn-Hilliard equation, which uses divergence-conforming spaces. Basis functions generated with this method can have higher-order continuity, and allow to directly discretize the higher- order operators present in the equation. The discretization is implemented in PetIGA-MF, a high-performance framework for discrete differential forms. We present solutions in a two- dimensional annulus, and model spinodal decomposition under shear flow.
Energy Technology Data Exchange (ETDEWEB)
Staron, E. [Institute of Atomic Energy, Otwock-Swierk (Poland)
1996-12-31
Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs.
Energy Technology Data Exchange (ETDEWEB)
Hadjadj, A.; Maamir, S.; Zeghmati, B.; Rondot, D. [Institut Universitaire de Technologie, 90 - Belfort (France)
1997-12-31
The results of an experimental study of fluid flow and heat transfer engendered within the annular gap between two concentric vertical cylinders are presented. The cylinders are equipped by three sinusoidal protuberances, two on the external surface of the inner cylinder and another one with small amplitude on the internal surface of the external cylinder. The experiments results, which included flow visualisation of the incense smoke and the measure of temperature by infrared thermography method are in good agreement with the theoretical results. (authors) 3 refs.
Rarefied flow and heat transfer characteristics over a vertical stretched surface
Directory of Open Access Journals (Sweden)
Wael Al-Kouz
2016-08-01
Full Text Available Similarity solution for the steady-state two-dimensional laminar natural convection heat transfer for a rarefied flow over a linearly vertical stretched surface is being proposed. Similarity conditions are obtained for the boundary layer equations for the vertical flat plate subjected to power law for the temperature variations. It is found that the similarity solution exists for linear temperature variation and linear stretching surface. The study shows that there are three different parameters affecting the flow and heat transfer characteristics for the rarefied flow over a vertical linearly stretched surface. These parameters represent the effects of the velocity slip (K1, temperature jump (K2, and the Prandtl number (Pr. The effects of these parameters are presented. It is found that the velocity slip parameter affects both the hydrodynamic and thermal behaviors of such flows. Correlations for the skin friction as well as Nusselt number are being proposed in terms of Grashof number (Grx, the slip velocity parameter (K1, and the temperature jump parameter (K2.
Parameters in Multiphase Flowing of Natural Gas NGH Slurry via Vertical Pipe
Directory of Open Access Journals (Sweden)
Dai Maolin
2016-01-01
Full Text Available In recent years, the pipeline flowing of natural gas hydrate (hereinafter NGH slurry has been a promising technique of multiphase flowing via pipe and that of crushed hydrate mixture slurry is also a key technique in solid fluidization mining method of nondiagenetic NGH reservoir below the seabed. In this paper, by using similarity rules, a small-scale simulation model was established to shorten the calculation time. The correctness of the simulation model has been verified through comparison with experiment. Thereby, the distribution of velocity and volume fraction of each phase in the vertical pipe was obtained, and the prototype of vertical pipe was analyzed. By study on the pipe resistance, the pressure drop of slurry, when flowing in vertical pipe, could be calculated as ΔP=ρgh+0.23Cρv1.8. In the end, by adjusting volume fraction of particles in the mixture slurry, the relationship between the solid particles’ volume fraction and piezometric pressure drop was obtained. When the optimal flow velocity of the slurry is 2 m/s and the ratio of NGH volume fraction to that of sand is 4 : 1, the optimal particle volume fraction ranges from 20% to 40%.
Directory of Open Access Journals (Sweden)
Sin Wei Wong
2013-01-01
Full Text Available An analysis is carried out to study the steady two-dimensional stagnation-point flow of an incompressible viscous fluid towards a stretching vertical sheet. It is assumed that the sheet is stretched nonlinearly, with prescribed surface heat flux. This problem is governed by three parameters: buoyancy, velocity exponent, and velocity ratio. Both assisting and opposing buoyant flows are considered. The governing partial differential equations are transformed into a system of ordinary differential equations and solved numerically by finite difference Keller-box method. The flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Dual solutions are found in the opposing buoyant flows, while the solution is unique for the assisting buoyant flows.
Sediment particle entrainment in an obstructed annular
Energy Technology Data Exchange (ETDEWEB)
Loureiro, Bruno Venturini; Siqueira, Renato do Nascimento [Faculdade do Centro Leste (UCL), Serra, ES (Brazil). Lab. de Fenomenos de Transporte], e-mail: brunovl@ucl.br, e-mail: renatons@ucl.br
2006-07-01
Flow in an annular region with internal cylinder rotation is a classic problem in fluid mechanics and has been widely studied. Besides its importance as a fundamental problem, flow in annular regions has several practical applications. This project was motivated by an application of this kind of flow to the drilling of oil and gas wells. In this work, an erosion apparatus was constructed in order to study the effect of the internal cylinder rotation on particle entrainment in an obstructed annular space and bed package as well. The study also analyzed the influence of height of the particles bed on the process performance. The experiment was designed so that the internal cylinder rotation could be measured by an encoder. The fluid temperature was measured by a thermocouple and the experiments were carried out at the temperature of 25 deg C. The study revealed that the particle entrainment for the height of the bed that is close to the center of the cylinders is negligible and the internal cylinder rotation provokes the movement and packing of the bed. For lower height of the bed, with same dimension of the annular gap, the particle entrainment process was satisfactory and the bed compaction was smaller than in the previous case, leading to a more efficient cleaning process in the annular space. (author)
Banerjee, Ayan Kumar; Bhattacharya, Amitabh; Balasubramanian, Sridhar
2016-11-01
Laboratory experiments, with a rotating cylindrical annulus and thermal gradient in both radial and vertical directions (so that radial temperature difference decreases with the elevation), were conducted to study the convection dynamics and heat transport. Temperature data captured using thermocouples, combined with ANSYS Fluent simulation hinted at the co-existence of thermal plume and baroclinicity (inclined isotherms). Presence of columnar plume structure parallel to the rotation axis was found, which had a phase velocity and aided in vertical heat transport. Nusselt number (Nu) plotted as a function of Taylor number (Ta) showed the effect of rotation on heat transport in such systems, where the interplay of plumes and baroclinic waves control the scalar transport. Laser based PIV imaging at a single vertical plane also showed evidence of such flow structures.
Performance of a novel vertical-flow settler: a comparative study.
Zhang, Zhong-guo; Chen, Zhao-yang; Li, Yan-zhong; Fan, Jing-hua; Fan, Bin; Luan, Zhao-kun; Lu, Dao-qiang
2006-01-01
By increasing particle concentration and G value (root-mean-square velocity gradient) to enhance flocculation, a novel vertical-flow settler was designed to increase sedimentation effectiveness, and to simultaneously improve operational stabilization. Due to the gradual decrease in upward flow-rate of raw water, a flocs blanket would form and suspend in the middle section of the settler, not at the bottom as in a conventional clarifier. Enough large flocs, resulted from flocculation or filtration, would continuously settle out of the flocs blanket, and simultaneously, the flocs in raw water or those forming above the blanket would ceaselessly enter the flocs blanket. As a result, the flocs concentration in the blanket could keep a dynamic balance. The hydrodynamic shear in the blanket was improved by flow separation, which was induced by the abrupt change in flow channel. Due to the floes blanket and improved hydrodynamic shear, flocculation would be enhanced, which was helpful for removing fine particles in raw water. A comparative study showed that the novel vertical-flow settler had a much better performance in the removal of the particles in raw water than a conventional one, when they treated kaolin suspensions of different concentrations (500, 100 and 50 mg/L, respectively) coagulated by polyaluminum chloride(PAC1) at the up-flow rates of I and 2 mm/s, respectively.
Performance of a novel vertical-flow settler: a comparative study
Institute of Scientific and Technical Information of China (English)
ZHANG Zhong-guo; CHEN Zhao-yang; LI Yan-zhong; FAN Jing-hua; FAN Bin; LUAN Zhao-kun; LU Dao-qiang
2006-01-01
By increasing particle concentration and G value (root-mean-square velocity gradient) to enhance flocculation, a novel vertical-flow settler was designed to increase sedimentation effectiveness, and to simultaneously improve operational stabilization.Due to the gradual decrease in upward flow-rate of raw water, a flocs blanket would form and suspend in the middle section of the settler, not at the bottom as in a conventional clarifier. Enough large flocs, resulted from flocculation or filtration, would continuously settle out of the flocs blanket, and simultaneously, the flocs in raw water or those forming above the blanket would ceaselessly enter the flocs blanket. As a result, the flocs concentration in the blanket could keep a dynamic balance. The hydrodynamic shear in the blanket was improved by flow separation, which was induced by the abrupt change in flow channel. Due to the flocs blanket and improved hydrodynamic shear, flocculation would be enhanced, which was helpful for removing fine particles in raw water. A comparative study showed that the novel vertical-flow settler had a much better performance in the removal of the particles in raw water than a conventional one, when they treated kaolin suspensions of different concentrations (500, 100 and 50 mg/L, respectively)coagulated by polyaluminum chloride(PACl) at the up-flow rates of 1 and 2 mm/s, respectively.
Dynamic characteristics of an eccentric finite-length large gap annular flow%偏心有限长大间隙环流的动特性研究
Institute of Scientific and Technical Information of China (English)
孙启国
2011-01-01
Based on a 3D mechanical model for a large gap annular flow developed by authors, the zero-order perturbation equations of 3D non-linear partial differential equations for the motion of an eccentric rotor in a finite-length large gap annular flow were derived here. The zero-order perturbation equations were also 3D non-linear partial differential equations, and there was a little difficulty to get their solutions. Therefore, a simplified numerical method based on the results of a finite-length concentric large gap annular flow analyzed by authors before, was put forward in order to analyze the dynamic coefficients of the eccentric rotor in the finite-length large gap annular flow. Comparing with the existing numerical results and testing ones, it was shown that this method is sufficient and accurate. Numerical results showed that the dynamic coefficients of the eccentric rotor in the finite-length large gap annular flow have no features that the main terms are equal, the coupled terms are equal and opposite, comparing with those of the concentric rotor in the finite-length large gap annular flow; all main terms of the dynamic coefficients increase exponentially with increase in eccentricity rate, this means that the dynamic coefficients of an eccentric rotor in a finite-length large gap annular flow increase greatly with a large eccentricity.%基于所建立的大间隙环流中转子运动的三维力学模型,用摄动法推导了有限长大间隙环流流场非线性控制方程的零阶摄动方程组.该方程组是一个复杂的三维非线性偏微分方程组,其求解有一定的困难.为此,提出了一种简化数值方法.该简化方法是采用作者以前获得的同心有限长大间隙环流的动特性系数来计算三维偏心有限长大间隙环流的动特性系数.与已有的数值计算结果和实验结果比较,该简化方法具有较好的实用性和精度.数值计算结果表明与同心有限长大间隙环流相比,偏心有
Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...
Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement
Arubi, Tesi I. M.; Yeung, Hoi
2012-03-01
The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.
Energy Technology Data Exchange (ETDEWEB)
Wang, R. Y.; Perissol, C.; Baldy, V.; Bonin, G.; Korboulewsky, N.
2009-07-01
The rhizosphere is the most active zone in treatment wetlands where take place physicochemical and biological processes between the substrate, plants, microorganisms, and contaminants. Microorganisms play the key role in the mineralisation of organic matter. substrate respiration and phosphatase activities (acid and alkaline) were chosen as indicators of microbial activities, and studied in a vertical-flow wetland system receiving sewage sludge with high organic loads under the Mediterranean climate. (Author)
Institute of Scientific and Technical Information of China (English)
Sohail Nadeem; Safia Akram
2011-01-01
In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical expression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.
NATURAL CONVECTION IN MHD TRANSIENT FLOW PAST AN ACCELERATED VERTICAL PLATE WITH HEAT SINK
Directory of Open Access Journals (Sweden)
N. AHMED
2014-09-01
Full Text Available The problem of an MHD heat and mass transfer flow past an accelerated infinite vertical plate in a porous medium in presence of chemical reaction, thermal diffusion and first order heat sink is studied. A magnetic field of uniform strength is assumed to be applied normal to the field directed to the fluid region. The resulting system of equations governing the fluid motion is solved by adopting Laplace Transform technique in closed form. The effects of the physical parameters involved in the problem on the flow and the transport characteristics are studied graphs.
Indian Academy of Sciences (India)
Rudra Kanta Deka; Ashish Paul
2013-10-01
An analysis is performed to study the unsteady, incompressible, one-dimensional, free convective flow over an infinite moving vertical cylinder under combined buoyancy effects of heat and mass transfer with thermal and mass stratifications. Laplace transform technique is adopted for finding solutions for velocity, temperature and concentration with unit Prandtl and Schmidt numbers. Solutions of unsteady state for larger times are compared with the solutions of steady state. Velocity, temperature and concentration profiles are analysed for various sets of physical parameters. Skin friction, Nusselt number and Sherwood number are shown graphically. It has been found that the thermal as well as mass stratification affects the flow appreciably.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.
Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu
2003-01-01
Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.
Directory of Open Access Journals (Sweden)
Josué Imbert González
2015-05-01
Full Text Available El trabajo presentado evaluó el comportamiento experimental de la caída de presión en un espacio anular con alambres enrollados insertados para números de Reynolds entre 1500 y 5000. La zona de prueba se seleccionó alejada de la influencia de los efectos de entrada. Anteriormente se realizaron pruebas de visualización del flujo para verificar la presencia de un flujo turbulento en esta gama del número de Reynolds. A partir de los datos experimentales se obtuvieron ecuaciones de correlación del factor de fricción para el flujo turbulento. Las ecuaciones obtenidas se compararon con los datos experimentales. Los resultados indican hasta qué punto las hélices inducen la aparición de turbulencias en un espacio anularPalabras claves: caída de presión, flujo anular, análisis hidrodinámico, visualización de flujo, hélices insertadas.______________________________________________________________________________AbstractThe work presented evaluates the experimental behavior of the pressure drop in an annular space with coiled wires inserted forReynolds numbers between 1500 and 5000. The test zone was selected away from the influence of entrance effects. Previously flow visualization tests were performed to verify the presence of a turbulent flow in this range of Reynolds number. From the experimental data were obtained correlation equations of the friction factor for turbulent flow. The equations obtained were compared with experimental data. The results indicate to what extent the helices induce the occurrence of turbulence in an annular space.Key words: drop pressure, annular flow, hydrodynamic analysis, visualization flow, wire coil inserts.
Numerical evaluation of turbulence models for dense to dilute gas-solid flows in vertical conveyor
Institute of Scientific and Technical Information of China (English)
Salar Azizi; Dariush Mowla; Goodarz Ahmadi
2012-01-01
A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas-solid flows in vertical pneumatic conveyor.An axisymmetric 2-dimensional,vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain,same to that used for experimentation in the literature.The chosen particles are spherical,of diameter 1.91 mm and density 2500 kg/m3.Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles.Flow regimes transition and pressure drop were predicted.Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe.It was found that the voidage has a minimum,and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime.Slug length and pressure fluctuation reduction were predicted with increasing gas velocity,too.It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.
Two-phase distribution in the vertical flow line of a domestic wet central heating system
Directory of Open Access Journals (Sweden)
Ge Y.T.
2013-04-01
Full Text Available The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.
Two-phase distribution in the vertical flow line of a domestic wet central heating system
Fsadni, A.-M.; Ge, Y. T.
2013-04-01
The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.
Multiphase flow of gas-liquid and gas coal slurry mixtures in vertical tubes
Energy Technology Data Exchange (ETDEWEB)
Javdani, K; Schwalbe, S; Fishcher, J
1977-01-01
This research was done as a support study for the SYNTHOIL process and other coal liquefaction processes being developed to produce clean liquid fuels from coal. The objective of this work is to obtain experimental data on flow characteristics for upward flow of gas-liquid-solid mixtures in vertical tubes simulating conditions in the SYNTHOIL process. Study of the transport phenomena of multiphase mixtures is of importance to many chemical engineering operations in general and to some other coal conversion processes in particular. A brief review of the application of this work to existing processes is presented. The first part of the program was devoted to the study of the flow characteristics of two-phase gas--liquid systems, and the second was devoted to the flow characteristics of gas--slurry mixtures.
Magnetohydrodynamic stagnation point flow towards a stretching vertical sheet in a micropolar fluid
Ishak, A.; Nazar, R.; Pop, I.
2007-03-01
The analysis of steady two-dimensional stagnation point flow of an incompressible micropolar and electrically conducting fluid subject to a transverse uniform magnetic field towards a stretching vertical sheet is investigated when the sheet is stretched in its own plane with a velocity and a temperature proportional to the distance from the stagnation point. The governing system of partial differential equations is transformed to ordinary differential equations, which then are solved numerically using a finite difference scheme known as the Keller-box method. The velocity, microrotation and temperature distributions as well as the skin friction coefficient and the local Nusselt number are obtained for various parameters. Both the assisting and the opposing buoyant flows are considered. It is found that dual solutions exist for the opposing flow, for some regions of the buoyancy parameter, while for the assisting flow the solution is unique. Tables 3, Figs 14, Refs 26.
CFD Simulation of Annular Centrifugal Extractors
Directory of Open Access Journals (Sweden)
S. Vedantam
2012-01-01
Full Text Available Annular centrifugal extractors (ACE, also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of centrifugal field. For the development of rational and reliable design procedures, it is important to understand the flow patterns in the mixer and settler zones. Computational Fluid Dynamics (CFD has played a major role in the constant evolution and improvements of this device. During the past thirty years, a large number of investigators have undertaken CFD simulations. All these publications have been carefully and critically analyzed and a coherent picture of the present status has been presented in this review paper. Initially, review of the single phase studies in the annular region has been presented, followed by the separator region. In continuation, the two-phase CFD simulations involving liquid-liquid and gas-liquid flow in the annular as well as separator regions have been reviewed. Suggestions have been made for the future work for bridging the existing knowledge gaps. In particular, emphasis has been given to the application of CFD simulations for the design of this equipment.
De Biase, Cecilia; Carminati, Andrea; Oswald, Sascha E; Thullner, Martin
2013-11-01
Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile losses to the atmosphere. Especially for (potentially) toxic VOCs, the latter needs to be minimized to limit atmospheric emissions. In this study, numerical simulation was used to investigate quantitatively the removal of volatile organic compounds in two pilot-scale water treatment systems: an unplanted vertical flow filter and a planted one, which could also be called a vertical flow constructed wetland, both used for the treatment of contaminated groundwater. These systems were intermittently loaded with contaminated water containing benzene and MTBE as main VOCs. The highly dynamic but permanently unsaturated conditions in the porous medium facilitated aerobic biodegradation but could lead to volatile emissions of the contaminants. Experimental data from porous material analyses, flow rate measurements, solute tracer and gas tracer test, as well as contaminant concentration measurements at the boundaries of the systems were used to constrain a numerical reactive transport modeling approach. Numerical simulations considered unsaturated water flow, transport of species in the aqueous and the gas phase as well as aerobic degradation processes, which made it possible to quantify the rates of biodegradation and volatile emissions and calculating their contribution to total contaminant removal. A range of degradation rates was determined using experimental results of both systems under two operation modes and validated by field data obtained at different operation modes applied to the filters. For both filters, simulations and experimental data point to high biodegradation rates, if the flow filters have had time to build up their removal capacity. For this case volatile
Energy Technology Data Exchange (ETDEWEB)
Massara, S.; Schmitt, D.; Bretault, A.; Lemasson, D.; Darmet, G.; Verwaerde, D. [EDF R and D, 1, Avenue du General de Gaulle, 92141 Clamart (France); Struwe, D.; Pfrang, W.; Ponomarev, A. [Karlsruher Institut fuer Technologie KIT, Institut fuer Neutronenphysik und Reaktortechnik INR, Hermann-von-Helmholtz-Platz 1, Gebaude 521, 76344 Eggenstein-Leopoldshafen (Germany)
2012-07-01
In the framework of a substantial improvement on FBR core safety connected to the development of a new Gen IV reactor type, heterogeneous core with innovative features are being carefully analyzed in France since 2009. At EDF R and D, the main goal is to understand whether a strong reduction of the Na-void worth - possibly attempting a negative value - allows a significant improvement of the core behavior during an unprotected loss of flow accident. Also, the physical behavior of such a core is of interest, before and beyond the (possible) onset of Na boiling. Hence, a cutting-edge heterogeneous design, featuring an annular shape, a Na-plena with a B{sub 4}C plate and a stepwise modulation of fissile core heights, was developed at EDF by means of the SDDS methodology, with a total Na-void worth of -1 $. The behavior of such a core during the primary phase of a severe accident, initiated by an unprotected loss of flow, is analyzed by means of the SAS-SFR code. This study is carried-out at KIT and EDF, in the framework of a scientific collaboration on innovative FBR severe accident analyses. The results show that the reduction of the Na-void worth is very effective, but is not sufficient alone to avoid Na-boiling and, hence, to prevent the core from entering into the primary phase of a severe accident. Nevertheless, the grace time up to boiling onset is greatly enhanced in comparison to a more traditional homogeneous core design, and only an extremely low fraction of the fuel (<0.1%) enters into melting at the end of this phase. A sensitivity analysis shows that, due to the inherent neutronic characteristics of such a core, the gagging scheme plays a major role on the core behavior: indeed, an improved 4-zones gagging scheme, associated with an enhanced control rod drive line expansion feed-back effect, finally prevents the core from entering into sodium boiling. This major conclusion highlights both the progress already accomplished and the need for more detailed
Effects of chemical reactions on MHD micropolar fluid flow past a vertical plate in slip-flow regime
Institute of Scientific and Technical Information of China (English)
R.C.Chaudhary; Abhay Kumar Jha
2008-01-01
Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order.A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time.The free stream velocity follows an exponentially increasing or decreasing small perturbation law.Using the approximate method,the expressions for the velocity microrotation,temperature,and concentration are obtained.Futher,the results of the skin friction coefficient,the couple stress coefficient,and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.
Void fraction and flow regime in adiabatic upward two-phase flow in large diameter vertical pipes
Energy Technology Data Exchange (ETDEWEB)
Schlegel, J.P.; Sawant, P.; Paranjape, S.; Ozar, B.; Hibiki, T. [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Ishii, M., E-mail: ishii@purdue.ed [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)
2009-12-15
In pipes with very large diameters, slug bubbles cannot exist. For this reason, the characteristics of two-phase flow in large pipes are much different than those in small pipes. Knowledge of these characteristics is essential for the prediction of the flow in new nuclear reactor designs which include a large chimney to promote natural circulation. Two of the key parameters in the prediction of the flow are the void fraction and flow regime. Void fraction measurements were made in a vertical tube with diameter of 0.15 m and length of 4.4 m. Superficial gas and liquid velocities ranged from 0.1 to 5.1 m/s and from 0.01 to 2.0 m/s, respectively. The measured void fractions ranged from 0.02 to 0.83. Electrical impedance void meters at four axial locations were used to measure the void fraction. This data was verified through comparison with previous data sets and models. The temporal variation in the void fraction signal was used to characterize the flow regime through use of the Cumulative Probability Density Function (CPDF). The CPDF of the signal was used with a Kohonen Self-Organized Map (SOM) to classify the flow regimes at each measurement port. The three flow regimes used were termed bubbly, cap-bubbly, and churn flow. The resulting flow regime maps matched well with the maps developed previously through other methods. Further, the flow regime maps matched well with the criteria which were proposed based on criteria.
Numerical Simulation of Turbulent Bubbly Flow in a Vertical Square Duct
Vanka, Pratap; Kumar, Purushotam; Jin, Kai
2016-11-01
We numerically investigate the dynamics of a large number of gas bubbles in a turbulent liquid flow in a confined vertical square duct, a problem of interest to many industrial equipment. The fluid flow is simulated by Direct Numerical Simulations and the motions of the bubbles are resolved by an accurate Volume of Fluid (VOF) technique. The flow is considered periodic in the streamwise direction with an imposed pressure gradient. The surface tension force is incorporated through a Sharp Surface Force (SSF) method that is observed to generate only very small spurious velocities at the interface. The algorithm has been programmed on a multiple-GPU computer in a data parallel mode. The turbulence driven secondary flows are first ensured to agree with previous DNS/LES by other researchers. A very fine grid with 192 x 192 x 768 control volumes is used to resolve the liquid flow as well as 864 bubbles using 12 grid points across each bubble in all directions. The computations are carried out to 1.5 million time steps. It is seen that the bubbles preferentially migrate to walls, starting from a uniform layout. We present instantaneous and time mean velocities, turbulence statistics and compare them with unladen flow as well as with a bubbly flow in a planar channel.
Deb, Arnab; Chakrabarti, Sandip K
2016-01-01
We study time evolution of rotating, axisymmetric, two dimensional inviscid accretion flows around black holes using a grid based finite difference method. We do not use reflection symmetry on the equatorial plane in order to inspect if the disk along with the centrifugal barrier oscillated vertically. In the inviscid limit, we find that the CENtrifugal pressure supported BOundary Layer (CENBOL) is oscillating vertically, more so, when the specific angular momentum is higher. As a result, the rate of outflow produced from the CENBOL, also oscillates. Indeed, the outflow rates in the upper half and the lower half are found to be anti-correlated. We repeat the exercise for a series of specific angular momentum {\\lambda} of the flow in order to demonstrate effects of the centrifugal force on this interesting behaviour. We find that, as predicted in theoretical models of disks in vertical equilibrium, the CENBOL is produced only when the centrifugal force is significant and more specifically, when {\\lambda} > 1.5...
Annular Pressure Seals and Hydrostatic Bearings
2006-11-01
affecting the rotordynamics of liquid turbopumps, in particular those handling large density fluids. Highlights on the bulk-flow analysis of annular seals... rotordynamic stability. Hydrostatic bearings rely on external fluid pressurization to generate load support and large centering stiffnesses, even in...SEALS IN PUMP APPLICATIONS Seal rotordynamic characteristic have a primary influence on the stability response of high-performance turbomachinery [1
Characteristics of the entrained droplets in gas-liquid two-phase annular flow%气液两相环状流中夹带液滴特性研究
Institute of Scientific and Technical Information of China (English)
樊文娟; 彭颖
2016-01-01
气液两相环状流中液体薄膜沿着管壁流动而速度较大的气核在管中心流动，通常速度较大的气核会夹带部分液滴。液滴夹带来源于沿着管壁流动的液体层的雾化速率和液滴沉积速率之间的平衡过程。目前大多数环状两相流的研究主要集中在对主要夹带现象的分析上。文中主要从夹带液滴直径、液滴速度分布和夹带分数3个方面进行夹带液滴特性研究。%The liquid film flows along the pipe wall and the gas nucleus of higher speed flows in the center of the pipe flow in the gas-liquid two-phase annular flow,usually the high speed gas nucleus entrains some droplets. The droplet entrainment is derived from a balance between the rate of atomization of the liquid layer flowing along the pipe wall and the rate of deposition of droplets. When gas flow rate is low,gravity sedimentation controls the deposition rate,and when the gas phase is at high flow velocity,droplet turbulence controls the deposition rate. At present,most of the annular two-phase flow research focuses on the analysis of the main entrainment phenomenon. This article mainly discussed the entrained droplets from the gas liquid interface,because the entrained droplets play an important role in a lot of flow parameters. Therefore, this article made the droplet entrainment characteristics research mainly from the three aspects,namely droplet diameter, droplet velocity distribution and entrainment fraction.
Vertical velocity of mantle flow of East Asia and adjacent areas
Institute of Scientific and Technical Information of China (English)
CHENG Xianqiong; ZHU Jieshou; CAI Xuelin
2007-01-01
Based on the high-resolution body wave tomo- graphic image and relevant geophysical data, we calculated the form and the vertical and tangential velocities of mantle flow. We obtained the pattern of mantle convection for East Asia and the West Pacific. Some important results and under- standings are gained from the images of the vertical velocity of mantle flow for East Asia and the West Pacific. There is an upwelling plume beneath East Asia and West Pacific, which is the earth's deep origin for the huge rift valley there. We have especially outlined the tectonic features of the South China Sea, which is of the "工" type in the upper mantle shield type in the middle and divergent in the lower; the Siberian clod downwelling dives from the surface to near Core and mantle bounary (CMB), which is convergent in the upper mantle and divergent in the lower mantle; the Tethyan subduction region, centered in the Qinghai-Tibet plateau, is visible from 300 to 2 000 km, which is also convergent in the upper mantle and divergent in the lower mantle. The three regions of mantle convection beneath East Asia and the West Pacific are in accordance with the West Pacific, Ancient Asia and the Tethyan structure regions. The mantle upwelling orig- inates from the core-mantle boundary and mostly occurs in the middle mantle and the lower part of the upper mantle. The velocities of the vertical mantle flow are about 1-4 cm per year and the tangential velocities are 1-10 cm per year. The mantle flow has an effect on controlling the movement of plates and the distributions of ocean ridges, subduction zones and collision zones. The mantle upwelling regions are clearly related with the locations ofhotspots on the earth's surface.
Counter-current flow in a vertical to horizontal tube with obstructions
Energy Technology Data Exchange (ETDEWEB)
Tye, P.; Matuszkiewicz, A.; Teyssedou, A. [Institut de Genie Nucleaire, Quebec (Canada)] [and others
1995-09-01
This paper presents experimental results on counter-current flow and flooding in an elbow between a vertical and a horizontal run. The experimental technique used allowed not only the flooding limit to be determined, but also the entire partial delivery region to be studied as well. The influence that various size orifices placed in the horizontal run have on both the delivered liquid flow rates and on the flooding limits is also examined. It is observed that both the flooding limits and the delivered liquid flow rates decrease with decreasing orifice size. Further, it is also observed that the mechanisms that govern the partial delivery of the liquid are significantly different when an orifice is present in the horizontal leg as compared to the case when no orifice is present.
Flow patterns of natural convection in an air-filled vertical cavity
Wakitani, Shunichi
1998-08-01
Flow patterns of two-dimensional natural convection in a vertical air-filled tall cavity with differentially heated sidewalls are investigated. Numerical simulations based on a finite difference method are carried out for a wide range of Rayleigh numbers and aspect ratios from the onset of the steady multicellular flow, through the reverse transition to the unicellular pattern, to the unsteady multicellular flow. For aspect ratios (height/width) from 10 to 24, the various cellular structures characterized by the number of secondary cells are clarified from the simulations by means of gradually increasing Rayleigh number to 106. Unsteady multicellular solutions are found in some region of Rayleigh numbers less than those at which the reverse transition has occurred.
Institute of Scientific and Technical Information of China (English)
H. P. RANI; G. J. REDDY; C. N. KIM
2013-01-01
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.
Scrutiny of mixed convection flow of a nanofluid in a vertical channel
Directory of Open Access Journals (Sweden)
M. Fakour
2014-11-01
Full Text Available The laminar fully developed nanofluid flow and heat transfer in a vertical channel are investigated. By means of a new set of similarity variables, the governing equations are reduced to a set of three coupled equations with an unknown constant, which are solved along with the corresponding boundary conditions and the mass flux conservation relation by the homotopy perturbation method (HPM. We have tried to show reliability and performance of the present method compared with the numerical method (Runge–Kutta fourth-rate to solve this problem. The effects of the Grashof number (Gr, Prandtl number (Pr and Reynolds number (Re on the nanofluid flows are then investigated successively. The effects of the Brownian motion parameter (Nb, the thermophoresis parameter (Nt, and the Lewis number (Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.
Oscillatory Flow in a Vertical Channel Filled with Porous Medium with Radiation and Dissipation
Directory of Open Access Journals (Sweden)
Paresh VYAS
2013-01-01
Full Text Available The present discussion is an analytical study of oscillatory flow of a viscous incompressible Newtonian fluid in an infinite vertical parallel plate channel filled with porous medium. It is also assumed that the flow is fully developed and the fluid is dissipative, gray, absorbing-emitting radiation and non-scattering. The radiative heat flux in the energy equation follows Rosseland approximation. It is considered that both the plates are stationary and temperature of one of the plates oscillates about a non-zero mean temperature. Approximate solutions to the coupled non-linear partial differential equations governing the flow have been found using the double perturbation technique. The effect of various parameters on the transient velocity, the transient temperature, the amplitude and phase of the skin friction and the rate of heat transfer have been analysed and shown in the form of graphs and tables.
Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids
Directory of Open Access Journals (Sweden)
S. Das
2015-06-01
Full Text Available The fully developed mixed convection flow in a vertical channel filled with nanofluids in the presence of a uniform transverse magnetic field has been studied. Closed form solutions for the fluid temperature, velocity and induced magnetic field are obtained for both the buoyancy-aided and -opposed flows. Three different water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. Effects of the pertinent parameters on the nanofluid temperature, velocity, and induced magnetic field as well as the shear stress and the rate of heat transfer at the channel wall are shown in figures and tables followed by a quantitative discussion. It is found that the magnetic field tends to enhance the nanofluid velocity in the channel. The induced magnetic field vanishes in the cental region of the channel. The critical Rayleigh number at onset of instability of flow is strongly dependent on the volume fraction of nanoparticles and the magnetic field.
Two-phase flow and boiling heat transfer in two vertical narrow annuli
Energy Technology Data Exchange (ETDEWEB)
Peng Changhong [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China)]. E-mail: pxm321@163.com; Guo Yun [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Qiu Suizheng [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Jia Dounan [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Nie Changhua [Nuclear Power Institute of China, Chengdu 610041 (China)
2005-07-01
Experimental study associated with two-phase flow and heat transfer during flow boiling in two vertical narrow annuli has been conducted. The parameters examined were: mass flux from 38.8 to 163.1 kg/m{sup 2} s; heat flux from 4.9 to 50.7 kW/m{sup 2} for inside tube and from 4.2 to 78.8 kW/m{sup 2} for outside tube; equilibrium mass quality from 0.02 to 0.88; system pressure from 1.5 to 6.0 MPa. It was found that the boiling heat transfer was strongly influenced by heat flux, while the effect of mass velocity and mass quality were not very significant. This suggested that the boiling heat transfer was mainly via nucleate boiling. The data were used to develop a new correlation for boiling heat transfer in the narrow annuli. In the two-phase flow study, the comparison with the correlation of Chisholm [Chisholm, D., 1967. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat Mass Transfer 10, 1767-1778] and Mishima and Hibiki [Mishima, K., Hibiki, T., 1996. Some characteristics of air-water two-phase flow in small diameter vertical tubes. Int. J. Multiphase Flow 22, 703-712] indicated that the existing correlations could not predict the two-phase multiplier in the narrow annuli well. Based on the experimental data, a new correlation was developed.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Directory of Open Access Journals (Sweden)
Aaiza Gul
Full Text Available This study investigated heat transfer in magnetohydrodynamic (MHD mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4 was selected as a conventional base fluid. In addition, non-magnetic (Al2O3 aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
Energy Technology Data Exchange (ETDEWEB)
Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)
2015-06-15
Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
Modelling and critical analysis of bubbly flows of dilute nanofluids in a vertical tube
Energy Technology Data Exchange (ETDEWEB)
Li, Xiangdong; Yuan, Yang [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Tu, Jiyuan, E-mail: jiyuan.tu@rmit.edu.au [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Key Laboratory of Ministry of Education for Advanced Reactor Engineering and Safety, Institute of Nuclear and New Energy Technology, Tsinghua University, PO Box 1021, Beijing 100086 (China)
2016-04-15
Highlights: • The classic two-fluid model needs improvement for nanofluid bubbly flows. • The nanoparticle self-assembly changes the interfacial behaviours of bubbles. • Key job is to reformulate the interfacial transfer terms. - Abstract: The bubbly flows of air–nanofluid and air–water in a vertical tube were numerically simulated using the two-fluid model. Comparison of the numerical results against the experimental data of Park and Chang (2011) demonstrated that the classic two-fluid model, although agreed well with the air–water data, was not applicable to the air–nanofluid bubbly flow. It was suggested that in a bubbly flow system, the existence of interfaces allows the spontaneous formation of a thin layer of nanoparticle assembly at the interfaces, which significantly changes the interfacial behaviours of the air bubbles and the roles of the interfacial forces. As the conservation equations of the classic two-fluid model are still applicable to nanofluids, the mechanisms underlying the modified interfacial behaviours need to be carefully taken into account when modelling air–nanofluid bubbly flows. Thus, one of the key tasks when modelling bubbly flows of air–nanofluid using the two-fluid model is to reformulate the interfacial transfer terms according to the interfacial behaviour modifications induced by nanoparticles.
Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes
Energy Technology Data Exchange (ETDEWEB)
Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.
1996-12-01
The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)
Heat transfer coefficient determination for flow boiling in vertical and horizontal minichannels
Directory of Open Access Journals (Sweden)
Piasecka Magdalena
2014-03-01
Full Text Available The paper presents the results of boiling heat transfer research during FC-72 laminar flow along a minichannel of 1 mm depth, positioned vertically and horizontally, with an enhanced heating surface. One glass pane allows to determine the temperature of the heating wall by liquid crystal thermography. Calculations are aimed at the evaluation of one- and two-dimensional heat transfer approaches to determine the local heat transfer coefficient. In the one-dimensional approach only the direction of the flow in the channel is considered. In the two-dimensional approach the inverse problem in the heating wall and the direct problem in the glass barrier were solved by the finite element method with Trefftz functions as shape functions (FEMT. The developed flow boiling area was studied. Heat transfer coefficient values obtained for the horizontal minichannel were higher than those obtained for the vertical one. When the heat flux supplied to heating wall grows, the share of gas-phase increases leading to the heat transfer coefficient decreases. The same courses of the experiment were observed for the two applied methods, but the results obtained in the one-dimensional approach are considerably higher than in the two-dimensional one. One-dimensional approach seems to be less sensitive to measurement errors.
Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands.
Saeed, Tanveer; Sun, Guangzhi
2011-05-01
This paper provides a comparative evaluation of the kinetic models that were developed to describe the biodegradation of nitrogen and organics removal in wetland systems. Reaction kinetics that were considered in the model development included first order kinetics, Monod and multiple Monod kinetics; these kinetics were combined with continuous-stirred tank reactor (CSTR) or plug flow pattern to produce equations to link inlet and outlet concentrations of each key pollutants across a single wetland. Using three statistical parameters, a critical evaluation of five potential models was made for vertical and horizontal flow wetlands. The results recommended the models that were developed based on Monod models, for predicting the removal of nitrogen and organics in a vertical and horizontal flow wetland system. No clear correlation was observed between influent BOD/COD values and kinetic coefficients of BOD(5) in VF and HF wetlands, illustrating that the removal of biodegradable organics was insensitive to the nature of organic matter. Higher effluent COD/TN values coincided with greater denitrification kinetic coefficients, signifying the dependency of denitrification on the availability of COD in VF wetland systems. In contrast, the trend was opposite in HF wetlands, indicating that availability of NO(3)-N was the main limiting step for nitrogen removal. Overall, the results suggested the possible application of the developed alternative predictive models, for understanding the complex biodegradation routes of nitrogen and organics removal in VF and HF wetland systems.
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Energy Technology Data Exchange (ETDEWEB)
Banas, A.O.; Carver, M.B. [Chalk River Laboratories (Canada); Unrau, D. [Univ. of Toronto (Canada)
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Mixed Convection Flow Adjacent to a Stretching Vertical Sheet in a Nanofluid
Directory of Open Access Journals (Sweden)
Nor Azizah Yacob
2013-01-01
Full Text Available The characteristics of fluid flow and heat transfer over a stretching vertical sheet immersed in a nanofluid are investigated numerically in this paper. Three different types of nanoparticles, namely, copper Cu, alumina Al2O3, and titania TiO2, are considered, using water as the base fluid. It is found that nanofluid with titania nanoparticles has better enhancement on the heat transfer rate compared to copper and alumina nanoparticles. For a particular nanoparticle, increasing the nanoparticle fraction is to reduce the skin friction coefficient and the heat transfer rate at the surface.
Thermal Marangoni Convection of Two-phase Dusty Fluid Flow along a Vertical Wavy Surface
Directory of Open Access Journals (Sweden)
S. Siddiqa
2017-01-01
Full Text Available The paper considers the influence of thermal Marangoni convection on boundary layer flow of two-phase dusty fluid along a vertical wavy surface. The dimensionless boundary layer equations for two-phase problem are reduced to a convenient form by primitive variable transformations (PVF and then integrated numerically by employing the implicit finite difference method along with the Thomas Algorithm. The effect of thermal Marangoni convection, dusty water and sinusoidal waveform are discussed in detail in terms of local heat transfer rate, skin friction coefficient, velocity and temperature distributions. This investigation reveals the fact that the water-particle mixture reduces the rate of heat transfer, significantly.
Nonlinear Nanofluid Flow over Heated Vertical Surface with Sinusoidal Wall Temperature Variations
Directory of Open Access Journals (Sweden)
S. S. Motsa
2014-01-01
Full Text Available The nonlinear density temperature variations in two-dimensional nanofluid flow over heated vertical surface with a sinusoidal wall temperature are investigated. The model includes the effects of Brownian motion and thermophoresis. Using the boundary layer approximation, the two-dimensional momentum, heat, and mass transfer equations are transferred to nonlinear partial differential equations form and solved numerically using a new method called spectral local linearisation method. The effects of the governing parameters on the fluid properties and on the heat and nanomass transfer coefficients are determined and shown graphically.
Directory of Open Access Journals (Sweden)
Chandrakala P.
2014-02-01
Full Text Available The effects of thermal radiation on a flow past an impulsively started infinite vertical plate in the presence of a magnetic field have been studied. The fluid considered is a gray, absorbing-emitting radiation but non-scattering medium. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable and fast converging implicit scheme. The effects of velocity and temperature for different parameters such as the thermal radiation, magnetic field, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the velocity decreases in the presence of thermal radiation or a magnetic field
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
An experimental investigation was performed on Marangoni effect of cracked liquid film of aqueous Na2SO4 flowing over a vertical heated plate by using a sensitive infrared imaging technique. The results show that the thermal and solutal Marangoni effects, which result from the non-uniform distributions of surface temperature and concentration of the film, respectively, occur in the streamwise and transverse directions of the film, generating different influences on the film heat transfer. Taking account of the Marangoni number (Ma) and the solution concentration (c0), a correlation of the Nusselt number (Nu) for the cracked liquid film is proposed.
Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate
Directory of Open Access Journals (Sweden)
S. Das
2015-03-01
Full Text Available An investigation of the hydromagnetic boundary layer flow past a moving vertical plate in nanofluids in the presence of a uniform transverse magnetic field and thermal radiation has been carried out. Three different types of water-based nanofluids containing copper, aluminum oxide and titanium dioxide are taken into consideration. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of nanofluid temperature, velocity, the rate of heat transfer and the shear stress at the plate are presented graphically for several values of the pertinent parameters. The present study finds applications in engineering devices.
Ding, Yi; Wang, Wei; Song, Xin-Shan; Wang, Gang; Wang, Yu-Hui
2014-12-01
The objective of present study was to assess the simultaneous removal of organics and nitrogen by four lab-scale vertical subsurface flow constructed wetlands (V-SFCWs). The emergent plants employed were Canna indica. Five-month experiments showed that the planted and aerated system largely reduced the COD by 95%, NH4 by 88% and total inorganic nitrogen (TIN) by 83%. It outperformed the unplanted or simple aerated system and was much better than non-aerated system. The study provided a strong evidence to support widespread research and application of spray aeration as a low-cost and energy-efficient aeration technology in V-SFCWs.
Thin film flow in MHD third grade fluid on a vertical belt with temperature dependent viscosity.
Directory of Open Access Journals (Sweden)
Taza Gul
Full Text Available In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM. In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM. The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.
Thin film flow in MHD third grade fluid on a vertical belt with temperature dependent viscosity.
Gul, Taza; Islam, Saed; Shah, Rehan Ali; Khan, Ilyas; Shafie, Sharidan
2014-01-01
In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD) third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM). In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM). The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.
Directory of Open Access Journals (Sweden)
Hanafi Abdalla S.
2008-01-01
Full Text Available This paper presents experimental and numerical studies for the case of turbulent forced and mixed convection flow of water through narrow vertical rectangular channel. The channel is composed of two parallel plates which are heated at a uniform heat flux, whereas, the other two sides of the channel are thermally insulated. The plates are of 64 mm in width, 800 mm in height, and separated from each other at a narrow gap of 2.7 mm. The Nusselt number distribution along the flow direction normalized by the Nusselt number for the case of turbulent forced convection flow is obtained experimentally with a comparison with the numerical results obtained from a commercial computer code. The quantitative determination of the nor- malized Nusselt number with respect to the dimension-less number Z = (Gr/Re21/8Pr0.5 is presented with a comparison with previous experimental results. Qualitative results are presented for the normalized temperature and velocity profiles in the transverse direction with a comparison between the forced and mixed convection flow for both the cases of upward and downward flow directions. The effect of the axial locations and the parameter Gr/Re on the variation of the normalized temperature profiles in the transverse direction for both the regions of forced and mixed convection and for both of the upward and downward flow directions are obtained. The normalized velocity profiles in the transverse directions are also determined at different inlet velocity and heat fluxes for the previous cases. It is found that the normalized Nusselt number is greater than one in the mixed convection region for both the cases of upward and downward flow and correlated well with the dimension-less parameter Z for both of the forced and mixed convection regions. The temperature profiles increase with increasing the axial location along the flow direction or the parameter Gr/Re for both of the forced and mixed convection regions, but this increase is
Banerjee, Ayan Kumar; Bhattacharya, Amitabh; Balasubramanian, Sridhar
2016-01-01
Laboratory experiments were conducted to study heat transport characteristics in a nonhomogeneously heated fluid annulus subjected to rotation along the vertical axis (z). The nonhomogeneous heating was obtained by imposing radial and vertical temperature gradient ({\\Delta}T). The parameter range for this study was Rayleigh number, Ra=2.43x10^8-3.66x10^8, and Taylor number, Ta=6.45x10^8-27x10^8. The working fluid was water with a Prandtl number, Pr=7. Heat transport was measured for varying rotation rates ({\\Omega}) for fixed values of {\\Delta}T. The Nusselt number, Nu, plotted as a function of Ta distinctly showed the effect of rotation on heat transport. In general, Nu was found to have a larger value for non-rotating convection. This could mean an interplay of columnar plumes and baroclinic wave in our system as also evident from temperature measurements. Laser based imaging at a single vertical plane also showed evidence of such flow structure.
Modeling of Air Temperature for Heat Exchange due to Vertical Turbulence and Horizontal Air Flow
Institute of Scientific and Technical Information of China (English)
ZHANG Lei; MENG Qing-lin
2009-01-01
In order to calculate the air temperature of the near surface layer in urban environment,the Sur-face layer air was divided into several layers in the vertical direction,and some energy bakmce equations were de-veloped for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was tak-en into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area (with a horizontal scale of less than 500 m) and a large area (with ahorizontal scale of more than 1000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus con-cluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.
Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet in a micropolar fluid
Directory of Open Access Journals (Sweden)
Yacob Nor Azizah
2013-01-01
Full Text Available An analysis is carried out for the steady two-dimensional mixed convection flow adjacent to a stretching vertical sheet immersed in an incompressible electrically conducting micropolar fluid. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the leading edge. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically using a finite difference scheme known as the Keller box method. The effects of magnetic and material parameters on the flow and heat transfer characteristics are discussed. It is found that the magnetic field reduces both the skin friction coefficient and the heat transfer rate at the surface for any given K and λ. Conversely, both of them increase as the material parameter increases for fixed values of M and λ.
Design of a vertical annulus with MHD flow using entropy generation analysis
Directory of Open Access Journals (Sweden)
Mahian Omid
2013-01-01
Full Text Available Optimal design of a heat exchanger is one of the concerns of energy conversion engineers. In the present work, the mixed convection flow between two vertical concentric pipes with constant heat flux at the boundaries and MHD flow effects is considered. To determine the optimal design for such a heat exchanger, at first, the momentum and energy equations are simplified and solved analytically. Next, using entropy generation analysis and cost analysis, the operational costs due to entropy generation are estimated. It is concluded that with an increase in the Hartmann number, the energy costs increase. In addition, for two small deviations from the base radius ratio 2(=P including 9.1=P and 1.2=P , the changes in the energy cost are calculated. It is found that for 9.1=P the energy cost increases by 17.5% while for P = 2.1 the energy cost is reduced by 13.6 %.
Directory of Open Access Journals (Sweden)
P. LOGANATHAN,
2010-11-01
Full Text Available The numerical study of effects of thermal conductivity on unsteady MHD free convective flow over an isothermal semi infinite vertical plate is presented. It is assumed that the thermal conductivity of the fluid as a linear function of temperature. A magnetic field is applied transversely to the direction of the flow. The boundary layer equations of continuity, momentum and energy equations are transformed into non-linear coupled equations and then solved using implicit finite-difference method of Crank-Nicholson type. A parametric study is performed to illustrate the influence of thermal conductivity, magnetic parameter and Prandtl number on the velocity and temperature profiles. In addition, the local and average skin friction, Nusselt number at the plate are shown graphically for both air and water. An analysis of the results obtained shows that the flowfield is influenced appreciably by the strength of magnetic field, thermal conductivity at the wall of the plate.
Radiation and chemical reaction effects on MHD flow along a moving vertical porous plate
Directory of Open Access Journals (Sweden)
Ramana Reddy G.V.
2016-02-01
Full Text Available This paper presents an analysis of the effects of magnetohydrodynamic force and buoyancy on convective heat and mass transfer flow past a moving vertical porous plate in the presence of thermal radiation and chemical reaction. The governing partial differential equations are reduced to a system of self-similar equations using the similarity transformations. The resultant equations are then solved numerically using the fourth order Runge-Kutta method along with the shooting technique. The results are obtained for the velocity, temperature, concentration, skin-friction, Nusselt number and Sherwood number. The effects of various parameters on flow variables are illustrated graphically, and the physical aspects of the problem are discussed.
Generalized granuloma annulare
Directory of Open Access Journals (Sweden)
Khatri M
1995-01-01
Full Text Available A 35-years-old female patient had generalized pruritic papular lesions, distributed like dermatitis herpetiformis for last 4 years. Histopathologic changes were typical of granuloma annulare with negative results of direct immunofluorescence. The patient did not have association of diabetes mellitus or any other systemic disease. She failed to respond to dapsone therapy and 13-cis-retinoic acid.
Domingos, Sergio S; Dallas, Stewart; Skillman, Lucy; Felstead, Stephanie; Ho, Goen
2011-01-01
Nitrogen removal performance and the ammonia-oxidising bacterial (AOB) community were assessed in the batch loaded 1.3 ha saturated surface vertical flow wetland at CSBP Ltd, a fertiliser and chemical manufacturer located in Kwinana, Western Australia. From September 2008 to October 2009 water quality was monitored and sediment samples collected for bacterial analyses. During the period of study the wetland received an average inflow of 1,109 m3/day with NH3-N = 40 mg/L and NO3-N = 23 mg/L. Effluent NH3-N and NO3-N were on average 31 and 25 mg/L, respectively. The overall NH3-N removal rate for the period was 1.2 g/m2/day indicating the nitrifying capacity of the wetland. The structure of the AOB community was analysed using group specific primers for the ammonia monooxygenase gene (amoA) by terminal restriction fragment length polymorphism and by clone libraries to identify key members. The majority of sequences obtained were most similar to Nitrosomonas sp. while Nitrosospira sp. was less frequent. Another two vertical flow wetlands, 0.8 ha each, were commissioned at CSBP in July 2009, since then the wetland in this study has received nitrified effluent from these two new cells.
[Study on optimization gradation of substrates in vertical flow constructed wetlands].
Wu, Jun-mei; Zhang, Xiang-ling; Wang, Rong; Xu, Dong; He, Feng; Wu, Zhen-bin
2010-05-01
Bio-ceramic, anthracite, zeolite, steel slag and vermiculite were used as substrate according to different kinds of gradation to treat wastewater in vertical-flow constructed wetlands simulation systems. The results show that the removal ability of COD by graded substrates according to particle size are better than single substrates, and average removal efficiency by graded bio-ceramic is up to 72.91%. The removal rate of TN by graded zeolite, which reaches 91.23%, is higher than single zeolite. No significant difference (p nitrogen removal between single and combined use of bio-ceramic and zeolite. The pH values in effluents of all columns filled with steel slag and anthracite are within normal limits, but phosphorus removal of all columns filled with steel slag and anthracite are lower than that filled with single substrates, except for the column filled with anthracite, vermiculite and steel slag from up to down. No difference between planted and unplanted systems can be observed. The present results probably provide a basis for vertical-flow constructed wetland design, among which based on the characteristic of wastewater proper selection of high-efficiency graded substrates, e.g., graded bio-ceramic, graded zeolite, graded anthracite, combined use of bio-ceramic, zeolite and anthracite, is a guarantee of better performance at a high hydraulic loading rate.
Eulerian-Lagrangian Simulations of Bubbly Flows in A Vertical Square Duct
Liu, Rui; Vanka, Surya P.; Thomas, Brian G.
2013-11-01
We report results of Eulerian-Lagrangian simulations of developing upward and downward bubbly flows in a vertical square duct with a bulk Reynolds number of 5000. The continuous fluid is simulated with DNS, solving the Navier-Stokes equations by a second-order accurate finite volume fractional step method. Bubbles of sizes comparable to the Kolmogorov scale are injected at the duct entrance with a mean bulk volume fraction below 10-2. A two-way coupling approach is adopted for the interaction between the continuous fluid phase and dispersed bubble phase. The bubbles are tracked by a Lagrangian method including drag and lift forces due to buoyancy and Saffman lift. A in-house code, CU-FLOW, implemented on Graphic Processing Unit (GPU) is used for simulations in this work. The preferential distributions of bubbles and their impact on local turbulence structures and their effects on turbulent kinetic energy budgets are studied. Results between an upward flow and a downward flow with the bubbles are compared. Work Supported by Continuous Casting Consortium at UIUC.
Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems.
Hu, Yun; He, Feng; Ma, Lin; Zhang, Yi; Wu, Zhenbin
2016-05-01
Microbial nitrogen (N) removal pathways in planted (Canna indica L.) and unplanted integrated vertical-flow constructed wetland systems (IVCWs) were investigated. Results of, molecular biological and isotope pairing experiments showed that nitrifying, anammox, and denitrifying bacteria were distributed in both down-flow and up-flow columns of the IVCWs. Further, the N transforming bacteria in the planted IVCWs were significantly higher than that in the unplanted ones (p<0.05). Moreover, the potential nitrification, anammox, and denitrification rates were highest (18.90, 11.75, and 7.84nmolNg(-1)h(-1), respectively) in the down-flow column of the planted IVCWs. Significant correlations between these potential rates and the absolute abundance of N transformation genes further confirmed the existence of simultaneous nitrification, anammox, and denitrification (SNAD) processes in the IVCWs. The anammox process was the major N removal pathway (55.6-60.0%) in the IVCWs. The results will further our understanding of the microbial N removal mechanisms in IVCWs.
Effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system.
Kantawanichkul, Suwasa; Boontakhum, Walaya
2012-01-01
In this study, the effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system was investigated. The experimental unit was composed of four circular concrete tanks (1 m diameter and 80 cm deep), filled with gravel (1-2 cm) and planted with Cyperus alternifolius L. Synthetic wastewater with average chemical oxygen demand (COD) and ammonia nitrogen of 1,151 and 339 mg/L was fed into each tank. Different feeding and resting periods were applied: continuous flow (tank 1), 4 hrs on and 4 hrs off (tank 2), 1 hr on and 3 hrs off (tank 3) and 15 minutes on and 3 hrs 45 minutes off (tank 4). All four tanks were under the same hydraulic loading rate of 5 cm/day. After 165 days the reduction of total Kjeldahl nitrogen and ammonia nitrogen and the increase of nitrate nitrogen were greatest in tank 4, which had the shortest feeding period, while the continuous flow produced the lowest results. Effluent tanks 2 and 3 experienced similar levels of nitrification, both higher than that of tank 1. Thus supporting the idea that rapid dosing periods provide better aerobic conditions resulting in enhanced nitrification within the bed. Tank 4 had the highest removal rates for COD, and the continuous flow had the lowest. Tank 2 also exhibited a higher COD removal rate than tank 3, demonstrating that short dosing periods provide better within-bed oxidation and therefore offer higher removal efficiency.
Forced flow heat transfer from a round wire in a vertically- mounted pipe to supercritical hydrogen
Horie, Y.; Shiotsu, M.; Shirai, Y.; Higa, D.; Shigeta, H.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.
2015-12-01
Forced flow heat transfer of hydrogen from a round wire in a vertically-mounted pipe was measured at pressure of 1.5 MPa and temperature of 21 K by applying electrical current to give an exponential heat input (Q=Q0exp(t/τ),τ=10 s) to the round wire. Two round wire heaters, which were made of Pt-Co alloy, with a diameter of 1.2 mm and lengths of 54.5 and 120 mm were set on the central axis of a flow channel made of FRP with inner diameter of 5.7 and 8.0 mm, respectively. Supercritical hydrogen flowed upward in the channel. Flow velocities were varied from 1 to 12.5 m/s. The heat transfer coefficients of supercritical hydrogen were compared with the conventional correlation presented by Shiotsu et al. It was confirmed that the heat transfer coefficients for a round wire were expressed well by the correlation using the hydraulic equivalent diameter.
Suslov, Sergey A; Bozhko, Alexandra A; Sidorov, Alexander S; Putin, Gennady F
2012-07-01
Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement with theoretical predictions.
Boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid
Othman, Noor Adila; Yacob, Nor Azizah; Bachok, Norfifah; Ramli, Nazirah; Ishak, Anuar
2015-10-01
A steady mixed convection boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid is investigated. The velocity of the external flow is assumed to vary linearly with the distance from the stagnation-point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically using the Keller box method with the help of MATLAB software. The effects of physical parameters such as the suction/injection parameter, Brownian motion parameter, thermophoresis parameter and Lewis number on the heat and mass transfer rate at the surface as well as the temperature and concentration profiles are analyzed and discussed. Both assisting and opposing flows are considered. It is found that, increasing the thermophoresis parameter, Brownian motion parameter and Lewis number are to decrease the heat transfer rate at the surface, but on the other hand increase the mass transfer rate at the surface for both assisting and opposing flows. In addition, increasing suction parameter tends to increase the heat transfer rate at the surface. However, the opposite behavior occurs for the effect of mass transfer rate at the surface.
Turbulent Flow Characteristics and Dynamics Response of a Vertical-Axis Spiral Rotor
Directory of Open Access Journals (Sweden)
Yuli Wang
2013-05-01
Full Text Available The concept of a vertical-axis spiral wind rotor is proposed and implemented in the interest of adapting it to air flows from all directions and improving the rotor’s performance. A comparative study is performed between the proposed rotor and conventional Savonius rotor. Turbulent flow features near the rotor blades are simulated with Spalart-Allmaras turbulence model. The torque coefficient of the proposed rotor is satisfactory in terms of its magnitude and variation through the rotational cycle. Along the height of the rotor, distinct spatial turbulent flow patterns vary with the upstream air velocity. Subsequent experiments involving a disk generator gives an in-depth understanding of the dynamic response of the proposed rotor under different operation conditions. The optimal tip-speed ratio of the spiral rotor is 0.4–0.5, as is shown in both simulation and experiment. Under normal and relative-motion flow conditions, and within the range of upstream air velocity from 1 to 12 m/s, the output voltage of the generator was monitored and statistically analyzed. It was found that normal air velocity fluctuations lead to a non-synchronous correspondence between upstream air velocity and output voltage. In contrast, the spiral rotor’s performance when operating from the back of a moving truck was significantly different to its performance under the natural conditions.
Surfactant effect on the bubble motions and bubbly flow structures in a vertical channel
Energy Technology Data Exchange (ETDEWEB)
Takagi, Shu; Ogasawara, Toshiyuki; Fukuta, Masato; Matsumoto, Yoichiro [Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)], E-mail: takagi@mach.t.u-tokyo.ac.jp
2009-12-15
It is well known that a small amount of surfactant can drastically change the motion of a single bubble and this causes a dramatic change of the whole bubbly flow structure. In our previous studies using upward vertical channel flows, it was shown that surfactant influences the shear-induced lift and the lateral migration of a bubble, which causes bubble accumulation and clustering near the wall. In this paper, the dependence of surfactant concentration on the motions of a 1 mm bubble rising through the laminar shear flow is investigated using 1-, 3-Pentanol and Triton X-100. The results are compared with the numerical ones, which show quantitative agreement on the lift and drag forces. Furthermore, we analyze the experimental data for the condition of bubble clustering in upward channel flows with the consideration of contaminant level in tap water. The results indicate that lower contaminant level and higher shear rate cause the significant bubble migration toward the wall, which leads to the formation of bubble clusters. (invited paper)
Takagi, Shu; Ogasawara, Toshiyuki; Fukuta, Masato; Matsumoto, Yoichiro
2009-12-01
It is well known that a small amount of surfactant can drastically change the motion of a single bubble and this causes a dramatic change of the whole bubbly flow structure. In our previous studies using upward vertical channel flows, it was shown that surfactant influences the shear-induced lift and the lateral migration of a bubble, which causes bubble accumulation and clustering near the wall. In this paper, the dependence of surfactant concentration on the motions of a 1 mm bubble rising through the laminar shear flow is investigated using 1-, 3-Pentanol and Triton X-100. The results are compared with the numerical ones, which show quantitative agreement on the lift and drag forces. Furthermore, we analyze the experimental data for the condition of bubble clustering in upward channel flows with the consideration of contaminant level in tap water. The results indicate that lower contaminant level and higher shear rate cause the significant bubble migration toward the wall, which leads to the formation of bubble clusters.
In-Situ Measurement of Vertical Bypass Flow Using a Drain Gauge
Payne, W. L.; Brooks, E. S.; Sanchez-Murillo, R.
2012-12-01
With widespread technological advances in precision fertilizer application in agricultural production there is an increasing need to better understand the subsurface transport and vertical leaching of nitrate fertilizers. Optimizing fertilizer application reduces cost to the grower and improves downstream water supplies. In-situ measurement of nitrate flux is difficult and expensive. In this experiment nitrate transport was measured using a passive capillary drain gauge developed by Decagon Devices in Pullman, WA. The drain gauge measures water flux from a 30 cm diameter soil core 60 cm in length. In this study the drain gauge was installed 0.9 m to 1.5 m below the soil surface in a no-till field in cereal grain production. A potassium bromide tracer was applied using a rainfall simulator over a 5 day period to the drain gage roughly one year following installation of the drain gauge and approximately 3 months after being seeded to spring wheat. Bromide tracer movement was compared to measurements of stable oxygen/hydrogen isotopes, and nitrate in the leachate and from soil water extracted within the soil profile using suction lysimeters. Significant preferential flow occurred during the experiment. Vertical leaching initiated at the 1.5 m depth at a time when the wetting front had just reached the 0.3 cm depth. By the time the wetting front had reached a 1.5 m depth, 18 kg/ha of nitrogen fertilizer had leached beyond the root zone. Once the wetting front reached 1.5 m bromide and stable isotope data indicated that 60% of the total flow occurred through macropore flow. Stable isotope measurements responded similarly to the electrical conductivity and nitrate measurements suggesting their potential use as a groundwater tracer. The nitrate leaching observed in the drain gauge would not have been accounted for if soil moisture measurements alone were used to indicate potential nitrate transport.
Dynamics of bouncing droplets in annular cavities
Lentz, Zachary Louis; Jalali, Mir Abbas; Alam, Mohammad-Reza
2014-11-01
In a cylindrical bath of silicon oil, vertically excited by a frequency of 45 Hz, we trace the motion of bouncing droplets as they fill an annular region. We compute the mean tangential and radial velocity components of the droplets and show that the maximum tangential velocity is larger than the maximum radial velocity by one order of magnitude. Velocity dispersions have almost equal levels in the radial and tangential directions, and their mean values are 1/4 times smaller than the mean tangential velocity. These results show that bouncing droplets undergo random motions within annular cavities determined by the interference patterns of self-induced circumferential waves. We derive analytical relations between the velocity dispersion and the wavelength of surface waves, and calculate the mean tangential velocity of droplets using the random kicks that they experience at the boundaries of the cavity by inward and outward traveling waves.
Directory of Open Access Journals (Sweden)
Norfifah Bachok
Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
Film stability in a vertical rotating tube with a core-gas flow.
Sarma, G. S. R.; Lu, P. C.; Ostrach, S.
1971-01-01
The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.
Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail
Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.
2016-01-01
This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.
Vertically localised equilibrium solutions in large-eddy simulations of homogeneous shear flow
Sekimoto, Atsushi
2016-01-01
Unstable equilibrium solutions in a homogeneous shear flow with sinuous symmetry are numerically found in large-eddy simulations (LES) with no kinetic viscosity. The small-scale properties are determined by the mixing length scale $l_S$ used to define eddy viscosity, and the large-scale motion is induced by the mean shear at the integral scale, which is limited by the spanwise box dimension $L_z$. The fraction $ R_S= L_z/l_S$, which plays the role of a Reynolds number, is used as a numerical continuation parameter. It is shown that equilibrium solutions appear by a subcritical-type bifurcation as $R_S$ increases, and that they resemble those in plane Couette flow with the same symmetry. The vortical structures of both lower- and upper-branch solutions become spontaneously localised in the vertical direction. The lower-branch solution is an edge state at low $R_S$, and takes the form of a thin critical layer as $R_S$ increases, as in the asymptotic theory of generic shear flow at high-Reynolds numbers. On the ...
Institute of Scientific and Technical Information of China (English)
王斯民; 文键; 李亚梅; 杨辉著; 厉彦忠
2013-01-01
Multiple size group (MUSIG) model combined with a three-dimensional two-fluid model were em-ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu-tion patterns of void fraction in the wall-heated tube were analyzed. It was found that the average void fraction in-creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub-cooled temperature. The local void fraction exhibited a U-shape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient against experimental measurements, which demonstrated the accuracy of the numerical model.
Unsteady natural convection flow of nanofluids past a semi-infinite isothermal vertical plate
Tippa, Sowmya; Narahari, Marneni; Pendyala, Rajashekhar
2016-11-01
Numerical analysis is performed to investigate the unsteady natural convection flow of a nanofluid past a semi-infinite isothermal vertical plate. Five different types of water based nanofluids are considered in this investigation where Silver (Ag), Copper (Cu), Copper Oxide (CuO), Alumina (Al2O3) and Titanium Oxide (TiO2) are the nanoparticles. The governing non-dimensional partial differential equations are solved by employing an implicit finite-difference method of Crank-Nicolson type. Numerical results are computed for different values of pertinent parameters. The results for nanofluid temperature, velocity, local Skin friction and Nusselt number, average Skin friction and Nusselt number are discussed through graphs. The present numerical results for local Nusselt number have been compared with the well-established pure fluid correlation results for the limiting case and the comparison shows that the results are in excellent agreement.
Vertical rotation effect on turbulence characteristics in an open channel flow
Institute of Scientific and Technical Information of China (English)
Zou Li-Yong; Bai Jing-Song; Li Bu-Yang; Tan Duo-Wang; Li Ping; Liu Cang-Li
2008-01-01
This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reγ=194 and the rotation number Nγ=0-0.12. When Nγ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nγ is larger than 0.06,all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface.Evident change of near-surface streak structures of the velocity fluctuations are revealed.
Directory of Open Access Journals (Sweden)
Freidooni Mehr N.
2012-01-01
Full Text Available In this paper, the semi-analytical/numerical technique known as the homotopy analysis method (HAM is employed to derive solutions for the laminar axisymmetric mixed convection boundary-layer nanofluid flow past a vertical cylinder. The similarity solutions are employed to transform the parabolic partial differential conservation equations into system of nonlinear, coupled ordinary differential equations, subject to appropriate boundary conditions. A comparison has been done to verify the obtained results with the purely numerical results of Grosan and Pop (2011 with excellent correlation achieved. The effects of nanoparticle volume fraction, curvature parameter and mixed convection or buoyancy parameter on the dimensionless velocity and temperature distributions, skin friction and wall temperature gradients are illustrated graphically. HAM is found to demonstrate excellent potential for simulating nanofluid dynamics problems. Applications of the study include materials processing and also thermal enhancement of energy systems.
Directory of Open Access Journals (Sweden)
R. Muthucumaraswamy
2010-12-01
Full Text Available An analysis is performed to study the unsteady flow past an exponentially accelerated infinite vertical plate with variable temperature and uniform mass diffusion, in the presence of a homogeneous chemical reaction of first-order. The plate temperature is raised linearly with time and the concentration level near the plate is raised uniformly. The dimensionless governing equations are solved using the Laplace transform. The velocity profiles are studied for different physical parameters such as the chemical reaction parameter, thermal Grashof number, mass Grashof number, a, and time. It is observed that the velocity increases with increasing values of a or t. But the trend is just the reverse in the chemical reaction parameter.
Jia, W. L.; Zhang, J.; Wang, Q.
2016-08-01
The impacts of feeding strategy (intermittently or continuously) on contaminant removal performance and microbial community structure in vertical flow constructed wetlands (VFCWs) were evaluated. The results showed that intermittent feeding strategy improved the removal of COD, TP and ammonium in VFCWs, although TN removal was weakened correspondingly The bacterial diversity decreased with the increase of substratum depth in all CWs. The intermittent feeding favored the growth of microorganisms due to the enhancement of oxygen content in the substratum. The feeding strategy had little impact on the microbial community in the surface substratum. However, in the bottom substratum, the impacts were of great significance. The microbial community structure similarity between the CWs with different feeding strategies was low.
UNSTEADY FREE CONVECTIVE FLOW PAST A MOVING VERTICAL POROUS PLATE WITH NEWTONIAN HEATING
Directory of Open Access Journals (Sweden)
SANKAR KUMAR GUCHHAIT
2012-07-01
Full Text Available The unsteady free convective flow past a vertical porous plate with Newtonian heating has been studied. The governing equations have been solved numerically by Crank-Nicolson implicit finite-difference scheme. The variations of velocity and fluid temperature are presented graphically. It is found that the fluid velocity decreases with an increase in Prandtl number. Both the fluid velocity and the fluid temperature increase with an increase in suction parameter. An increase in Grashof number leads to rise in the fluid velocity. Further, it is observed that the shear stress and the rate of heat transfer at the plate increase with an increase in either Prandtlnumber or suction parameter or time.
Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux
Directory of Open Access Journals (Sweden)
Nirmal C. Sacheti
2014-01-01
Full Text Available The developing natural convective flow of a nanofluid in an infinite vertical channel with impermeable bounding walls has been investigated. It is assumed that the nanofluid is dominated by two specific slip mechanisms and that the channel walls are subject to constant heat flux and isothermal temperature, respectively. The governing nonlinear partial differential equations coupling different transport processes have been solved numerically. The variations of velocity, temperature, and nanoparticles concentration have been discussed in relation to a number of physical parameters. It is seen that the approach to the steady-state profiles of velocity and temperature in the present work is different from the ones reported in a previous study corresponding to isothermal wall conditions.
Myszograj, Sylwia; Bydałek, Franciszek
2016-12-01
The article describes the results of the research, purpose of which was to evaluate influence of the temperature on the effectiveness of nitrification and denitrification in the sewage treatment system consisting of vertical flow constructed wetland and polishing pond. During the analysed period, the efficiency of removing total nitrogen was low and amounted to 12.7%. In the polishing pond in the summer period, content of total nitrogen in treated sewages was further decreased by nearly 50%. In the winter period, the polishing pond fulfilled mainly retention role and thus did not improve effectiveness of the whole system. Temperature coefficients, calculated on the basis of single first-order kinetics, for nitrification process in the filter bed (N-NH4+) and denitrification process in the polishing pond (N-NO3-) amounted to 1.039 and 1.089, respectively.
Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane
Directory of Open Access Journals (Sweden)
H. K. Mondal
1994-01-01
Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.
Experimental study on flow boiling heat transfer of LNG in a vertical smooth tube
Chen, Dongsheng; Shi, Yumei
2013-10-01
An experimental apparatus is set up in this work to study the upward flow boiling heat transfer characteristics of LNG (liquefied natural gas) in vertical smooth tubes with inner diameters of 8 mm and 14 mm. The experiments were performed at various inlet pressures from 0.3 to 0.7 MPa. The results were obtained over the mass flux range from 16 to 200 kg m-2 s-1 and heat fluxes ranging from 8.0 to 32 kW m-2. The influences of quality, heat flux and mass flux, tube diameter on the heat transfer characteristic are examined and discussed. The comparisons of the experimental heat transfer coefficients with the predicted values from the existing correlations are analyzed. The correlation by Zou et al. [16] shows the best accuracy with the RMS deviation of 31.7% in comparison with the experimental data.
Model for natural convective flow of visco-elastic nanofluid past an isothermal vertical plate
Mustafa, M.; Mushtaq, Ammar
2015-09-01
The present article addresses the classical problem of the natural convection flow past a vertical plate by considering visco-elastic nanofluid. The mathematical model is constructed by following the constitutive equations of the upper-convected Maxwell (UCM) fluid. The novel aspects of Brownian motion and thermophoresis are taken into account. The recently proposed condition of passively controlled wall nanoparticle volume fraction is used. The shooting approach combined with the fourth-fifth-order Runge-Kutta integration procedure is utilized for computing the numerical solutions. The results are in agreement with the available studies in limiting sense. Our results indicate that the velocity profile is parabolic and it decreases with an increment in the visco-elastic parameter.
DEFF Research Database (Denmark)
Konnerup, Dennis; Trang, Ngo Thuy Diem; Brix, Hans
2011-01-01
Common practice of aquaculture in Vietnam and other countries in South East Asia involves frequent discharge of polluted water into rivers which results in eutrophication and degradation of receiving water bodies. There is therefore a need to develop improved aquaculture systems which have a more...... efficient use of water and less environmental impact. The aim of this study was to assess the suitability of using constructed wetlands (CWs) for the treatment of fishpond water in a recirculating aquaculture system in the Mekong Delta of Vietnam. Water from a fishpond stocked with Nile tilapia (Oreochromis...... in the outlets. The ornamental Canna×generalis planted in the CWs grew faster and took up more N and P in the vertical flow CWs. The aquaculture fish had a feed conversion ratio of 1.53 based on feed dry weight, and 31% and 34% of N and P input, respectively, were incorporated into fish biomass. Only minor...
Unsteady MHD free convective Couette flow between vertical porous plates with thermal radiation
Directory of Open Access Journals (Sweden)
Basant K. Jha
2015-10-01
Full Text Available This study investigates the unsteady MHD free convective Couette flow of viscous incompressible electrically conducting fluid between two infinite vertical porous plates in the presence of transverse magnetic field and thermal radiation. Solutions for time dependent energy and momentum equations are obtained by the implicit finite difference method. To check the accuracy of the numerical solutions, steady state solutions for energy and momentum equations are obtained by using the perturbation method. The effect of various parameters controlling the physical situation is discussed with the aid of line graphs. Significant results from this study are that both velocity and temperature increase with the increase in thermal radiation parameter and time. A series of numerical experiments show that steady state velocity and temperature occur when the dimensionless time approaches the values of Prandtl number of the fluid. During the course of numerical computation, an excellent agreement was found between unsteady and steady state solutions at large value of time.
Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine
Energy Technology Data Exchange (ETDEWEB)
Roy, S.; Saha, U.K. [Indian Institute of Technology Guwahati, Dept. of Mechanical Engineering, Guwahati (India)
2012-07-01
An unsteady computational investigation of the static torque characteristics of a drag based vertical axis wind turbine (VAWT) has been carried out using the finite volume based computational fluid dynamics (CFD) software package Fluent 6.3. A comparative study among the various turbulence models was conducted in order to predict the flow over the turbine at static condition and the results are validated with the available experimental results. CFD simulations were carried out at different turbine angular positions between 0 deg.-360 deg. in steps of 15 deg.. Results have shown that due to high static pressure on the returning blade of the turbine, the net static torque is negative at angular positions of 105 deg.-150 deg.. The realizable k-{epsilon} turbulent model has shown a better simulation capability over the other turbulent models for the analysis of static torque characteristics of the drag based VAWT. (Author)
Energy Technology Data Exchange (ETDEWEB)
Ge, Ying; Jiang, Yueping; Jiang, Qinsu; Min, Hang; Fan, Haitian; Zeng, Qiang; Chang, Jie [College of Life Sciences, Zhejiang University, Hangzhou (China); Zhang, Chongbang [School of Life Sciences, Taizhou University, Linhai (China); Yue, Chunlei [Zhejiang Forestry Academy, Hangzhou (China)
2011-03-15
Rhizosphere microorganism is an important bio-component for wastewater treatment in constructed wetlands (CWs). Microbial abundance and enzyme activities in the rhizospheres of nine plant species were investigated in an integrated vertical-flow CW. The abundance of denitrifiers, as well as urease, acid, and alkaline phosphatase activities were positively correlated to plant root biomass. The abundance of bacteria, fungi, actinomycetes, ammonifiers, denitrifiers, and phosphorus decomposers, related to nutrient removal efficiencies in CWs, greatly varied among rhizospheres of different plant species (p < 0.05). Significant differences in rhizosphere enzyme activity among plant species were also observed (p < 0.05), with the exception of catalase activity. The principal component analysis using the data of microbial abundance and enzyme activity showed that Miscanthus floridulus, Acorus calamus, and Reineckia carnea were candidates to be used in CWs to effectively remove nitrogen and phosphorus from wastewater. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Cassiani, G.; Gallotti, L.; Ventura, V.; Andreotti, G.
2003-04-01
The identification of flow and transport characteristics in the vadose zone is a fundamental step towards understanding the dynamics of contaminated sites and the resulting risk of groundwater pollution. Borehole radar has gained popularity for the monitoring of moisture content changes, thanks to its apparent simplicity and its high resolution characteristics. However, cross-hole radar requires closely spaced (a few meters), plastic-cased boreholes, that are rarely available as a standard feature in sites of practical interest. Unlike cross-hole applications, Vertical Radar Profiles (VRP) require only one borehole, with practical and financial benefits. High-resolution, time-lapse VRPs have been acquired at a crude oil contaminated site in Trecate, Northern Italy, on a few existing boreholes originally developed for remediation via bioventing. The dynamic water table conditions, with yearly oscillations of roughly 5 m from 6 to 11 m bgl, offers a good opportunity to observe via VRP a field scale drainage-imbibition process. Arrival time inversion has been carried out using a regularized tomographic algorithm, in order to overcome the noise introduced by first arrival picking. Interpretation of the vertical profiles in terms of moisture content has been based on standard models (Topp et al., 1980; Roth et al., 1990). The sedimentary sequence manifests itself as a cyclic pattern in moisture content over most of the profiles. We performed preliminary Richards' equation simulations with time varying later table boundary conditions, in order to estimate the unsaturated flow parameters, and the results have been compared with laboratory evidence from cores.
Flow condensation in tube filled with annular metal foam%内壁填充环状金属泡沫的管内流动凝结换热
Institute of Scientific and Technical Information of China (English)
徐会金; 屈治国; 杜艳平; 何雅玲; 陶文铨; 卢天健
2011-01-01
通过采用在圆管内壁填充环状金属泡沫的方法强化管内对流凝结换热,实验研究了制冷剂R134a在内壁填充环状金属泡沫管内的流动凝结的压降和换热,克服了完全填充金属泡沫管流动阻力大的缺点.用于计算传热系数的管壁温度通过热电偶测量得到.综合分析了质量流速和两相流体干度对流动凝结压降及传热系数的影响.研究结果表明内壁填充环状金属泡沫管压降远大于光管,压降随质量流速和干度的增加而迅速增大且呈非线性.通过壁面温度分布和温度波动对内壁填充环状金属泡沫管内的两相流型进行判别.发现影响该类强化管凝结换热的两种主要流型:分层流和环状流.内壁填充环状金属泡沫管的凝结传热系数大于光管,且随着质量流速和干度的增加传热系数增大,该类强化管流动凝结传热系数是光管的2倍左右.%The tube with internally sintered annular metal foam layer is used to enhance the flow condensation heat transfer. The pressure drop and heat transfer of flow condensation for refrigerant R134a in the tube partially filled with annular metal foam are experimentally investigated to overcome the disadvantage of large pressure drop for tubes fully filled with metal foam. The tube wall temperatures are measured with thermal couples to determine the heat transfer coefficient. The effects of mass flux and vapor quality of two-phase fluid on the pressure drop and heat transfer coefficient are analyzed accordingly. It is found that the pressure drop of tubes partially filled with metal-foam is much higher than that of smooth tubes and the pressure drop increases non-linearly and greatly as the mass flux and vapor quality increase. The flow regime is predicted by monitoring the distribution and fluctuation of crosssection temperatures, from which the stratified wavy flow and annular flow are detected. It is also revealed that the flow condensation heat
Characteristics of critical heat flux under rolling condition for flow boiling in vertical tube
Energy Technology Data Exchange (ETDEWEB)
Hwang, Jin-Seok, E-mail: hjscd@snu.ac.kr [Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Yeon-Gun, E-mail: yeongun2@snu.ac.kr [Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742 (Korea, Republic of); Park, Goon-Cherl, E-mail: parkgc@snu.ac.kr [Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742 (Korea, Republic of)
2012-11-15
Highlights: Black-Right-Pointing-Pointer Experiment was conducted on CHF under rolling condition in vertical tube. Black-Right-Pointing-Pointer CHF loop was mounted on rolling device to achieve rolling conditions. Black-Right-Pointing-Pointer Trends of CHF ratio as mass flux and pressure were studied. Black-Right-Pointing-Pointer Trends of CHF ratio under rolling motion was suggested using hypothetical CHF mechanism. - Abstract: This paper presents the characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube under rolling motion in a marine reactor. It is important to predict CHF of marine reactor under rolling motion in order to consider the safety margin of the reactor. MArine Reactor Moving Simulator (MARMS) test was conducted to measure the CHF of R-134a flowing upward in a uniformly heated vertical tube under rolling motion. A CHF loop mounted on rolling equipment, which can periodically roll from side to side through rotating by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass flux ranges from 285 kg/m{sup 2} s to 1300 kg/m{sup 2} s, inlet subcoolings from 3 to 38 Degree-Sign C and outlet pressures from 1.3 to 2.4 bar, respectively. Amplitudes of rolling range from 15 Degree-Sign to 40 Degree-Sign and period from 6 to 12 s. Fluid-to-fluid (FTF) scaling was applied to convert the test matrix of MARMS from water to R-134a equivalent conditions. CHF ratios (ratio of the CHF under rolling condition to the stationary CHF) as mass flux and pressure in rolling motion are quite different from those of other existing transient CHF experiments. For the mass fluxes below 500 kg/m{sup 2} s (region of relative low mass flux) at 13, 16 bar, CHF ratios seem smaller than unit but in region (region of relative high mass flux) where mass fluxes are above 500 kg/m{sup 2} s, it was found that the ratios increased. Moreover, rolling CHFs tend to enhance
Maréchal, Jean-Christophe
2010-01-01
A steady-state analytical solution is given describing the temperature distribution in a homogeneous massif perturbed by cold water flow through a discrete vertical fracture. A relation is derived to express the flow rate in the fracture as a function of the temperature measured in the surrounding rock. These mathematical results can be useful for tunnel drilling as it approaches a vertical cold water bearing structure that induces a thermal anomaly in the surrounding massif. During the tunnel drilling, by monitoring this anomaly along the tunnel axis one can quantify the flow rate in the discontinuity ahead before intersecting the fracture. The cases of the Simplon, Mont Blanc and Gotthard tunnels (Alps) are handled with this approach which shows very good agreement between observed temperatures and the theoretical trend. The flow rates before drilling of the tunnel predicted with the theoretical solution are similar in the Mont Blanc and Simplon cases, as well as the flow rates observed during the drilling....
Institute of Scientific and Technical Information of China (English)
颜应文; 宋双文; 胡好生; 王倚阳; 雷雨冰; 赵坚行; 林志勇
2011-01-01
在任意曲线坐标系下对折流燃烧室两相喷雾燃烧流场进行数值模拟,采用偏微分方程法生成三维贴体网格,采用k-ε双方程模型模拟湍流黏性,分别采用EBU(eddy break-up)-Arrhenius燃烧模型、EDC(eddy díssipation concept)燃烧模型以及二阶矩(second-order-moment,简称SOM)燃烧模型模拟化学反应速率,在非交错网格下,采用欧拉-拉格朗日方法模拟气液两相喷雾燃烧过程,气液之间相互耦合采用PSIC(particle-source-in-cell)算法求解.数值分析不同湍流燃烧模型对折流燃烧室两相喷雾燃烧流场的影响,计算结果与试验数据比较,表明采用不同湍流燃烧模型所得的两相喷雾燃烧流场有所不同,其中SOM燃烧模型和EBU燃烧模型都能较好地数值模拟折流燃烧室两相喷雾燃烧过程.%In arbitrary curvilinear coordinates, numerical investigations of three-dimensional two-phase spray combustion flow fields for a slinger annular combustor were carried out. Three-dimensional body-fitted grids were generated by TTM (Thompson-Thames-Martin) method, k-ε model was used to simulate the turbulent viscosity; EBU (eddy break-up)Arrhenius combustion model, EDC (eddy dissipation concept) combustion model and SOM (second-order-moment) combustion model were applied to predict turbulent combustion rate. The gas and liquid phases were treated with Eulerian-Lagrangian method and the gasliquid coupling was calculated with PSIC (particle-source-in-cell) arithmetic. The effects of different combustion models on two-phase spray combustion flow fields were studied. The numerical results are in good agreement with the experimental data. It shows that all of the combustion models are used to simulate the combustion process in slinger annular combustor, but the SOM combustion model and EBU combustion model are better than EDC combustion model for simulation of two-phase spray combustion flow fields in the slinger annular combustor.
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant
2016-04-01
We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the
An Investigation on the Void Fraction for upward Gas-Liquid Slug Flow in Vertical Pipe
Institute of Scientific and Technical Information of China (English)
夏国栋; 周芳德; 胡明胜
2001-01-01
In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall.
Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space
Directory of Open Access Journals (Sweden)
Sarafraz M.M.
2012-01-01
Full Text Available The subcooled flow boiling heat-transfer characteristics of water and ethanol solutions in a vertical annulus have been investigated up to heat flux 132kW/m2. The variations in the effects of heat flux and fluid velocity, and concentration of ethanol on the observed heat-transfer coefficients over a range of ethanol concentrations implied an enhanced contribution of nucleate boiling heat transfer in flow boiling, where both forced convection and nucleate boiling heat transfer occurred. Increasing the ethanol concentration led to a significant deterioration in the observed heat-transfer coefficient because of a mixture effect, that resulted in a local rise in the saturation temperature of ethanol/water solution at the vapor-liquid interface. The reduction in the heat-transfer coefficient with increasing ethanol concentration is also attributed to changes in the fluid properties (for example, viscosity and heat capacity of tested solutions with different ethanol content. The experimental data were compared with some well-established existing correlations. Results of comparisons indicate existing correlations are unable to obtain the acceptable values. Therefore a modified correlation based on Gnielinski correlation has been proposed that predicts the heat transfer coefficient for ethanol/water solution with uncertainty about 8% that is the least in comparison to other well-known existing correlations.
Radiation effects on an unsteady MHD natural convective flow of a nanofluid past a vertical plate
Directory of Open Access Journals (Sweden)
Parasuraman Loganathan
2015-01-01
Full Text Available Numerical analysis is carried out on an unsteady MHD natural convective boundary layer flow of a nanofluid past an isothermal vertical plate in the presence of thermal radiation. The governing partial differential equations are solved numerically by an efficient, iterative, tri-diagonal, semi-implicit finite-difference method. In particular, we investigate the effects of radiation, magnetic field and nanoparticle volume fraction on the flow and heat transfer characteristics. The nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver with nanoparticle volume fraction range less than or equal to 0.04 are considered. The numerical results indicate that in the presence of radiation and magnetic field, an increase in the nanoparticle volume fraction will decrease the velocity boundary layer thickness while increasing the thickness of the thermal boundary layer. Meanwhile, an increase in the magnetic field or nanoparticle volume fraction decreases the average skin-friction at the plate. Excellent validation of the present results has been achieved with the published results in the literature in the absence of the nanoparticle volume fraction.
Hydrodynamic effect on the three-dimensional flow past a vertical porous plate
Directory of Open Access Journals (Sweden)
M. Guria
2005-01-01
Full Text Available The study of unsteady hydrodynamic free convective flow of a viscous incompressible fluid past a vertical porous plate in the presence of a variable suction has been made. Approximate solutions have been derived for the velocity and temperature fields, shear stress, and rate of heat transfer using perturbation technique. It is observed that main fluid velocity decreases with increase in Prandtl number, while it increases with increase in suction parameter. The cross-velocity decreases near the plate and increases away from the plate with increase in suction parameter. On the other hand, it increases near the plate and decreases away from the plate with increase in frequency parameter. The amplitude and the tangent of phase shift of the shear stress due to main flow decrease with increase in either Prandtl number, Grashof number, or frequency parameter. It is seen that the temperature decreases with increase in either suction parameter, Prandtl number, or frequency parameter. It is also seen that the amplitude of the rate of heat transfer increases and the tangent of phase shift of rate of heat transfer decreases with increase in Prandtl number.
Unsteady Hydromagnetic Flow past a Moving Vertical Plate with Convective Surface Boundary Condition
Directory of Open Access Journals (Sweden)
Gauri Shanker Seth
2016-01-01
Full Text Available Investigation of unsteady MHD natural convection flow through a fluid-saturated porous medium of a viscous, incompressible, electrically-conducting and optically-thin radiating fluid past an impulsively moving semi-infinite vertical plate with convective surface boundary condition is carried out. With the aim to replicate practical situations, the heat transfer and thermal expansion coefficients are chosen to be constant and a new set of non-dimensional quantities and parameters are introduced to represent the governing equations along with initial and boundary conditions in dimensionless form. Solution of the initial boundary-value problem (IBVP is obtained by an efficient implicit finite-difference scheme of the Crank-Nicolson type which is one of the most popular schemes to solve IBVPs. The numerical values of fluid velocity and fluid temperature are depicted graphically whereas those of the shear stress at the wall, wall temperature and the wall heat transfer are presented in tabular form for various values of the pertinent flow parameters. A comparison with previously published papers is made for validation of the numerical code and the results are found to be in good agreement.
Natural convective boundary layer flow of a nano-fluid past a convectively heated vertical plate
Energy Technology Data Exchange (ETDEWEB)
Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States); Khan, W.A. [Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi 75350 (Pakistan)
2012-03-15
Natural convective flow of a nano-fluid over a convectively heated vertical plate is investigated using a similarity analysis of the transport equations followed by their numerical computations. The transport model employed includes the effect of Brownian motion and thermophoresis. The analysis shows that velocity, temperature and solid volume fraction of the nano-fluid profiles in the respective boundary layers depend, besides the Prandtl and Lewis numbers, on four additional dimensionless parameters, namely a Brownian motion parameter Nb, a thermophoresis parameter Nt, a buoyancy-ratio parameter Nr and convective parameter Nc. In addition to the study of these parameters on the boundary layer flow characteristics (velocity, temperature, solid volume fraction of the nano-fluid, skin friction, and heat transfer), correlations for the Nusselt and Sherwood numbers have been developed based on a regression analysis of the data. These linear regression models provide a highly accurate (with a maximum standard error of 0.004) representation of the numerical data and can be conveniently used in engineering practice. (authors)
Phase Split of Slug-Annular Flow at Micro Impacting Junctions%冲击型微小三通内弹环状流的相分配特性
Institute of Scientific and Technical Information of China (English)
陈锦芳; 余康华; 李选友; 汪双凤
2014-01-01
本文在入口条件为弹环状流的条件下,考察了氮气-水两相流在水力直径为0.5 mm的水平等径冲击型三通中的相分配特性.根据入口与两个分支夹角的不同,冲击型三通分为T型冲击三通和Y型冲击三通.结果发现:相分配受入口流型的影响因冲击角而异.对于T型三通,入口流型对相分配的影响较小;而对于Y型三通,随着入口条件从靠近弹状流区域过渡到靠近环状流区域,相分配往等干度分配线靠近.变动冲击角对气液两相流的相分配有一定的影响,影响程度因入口条件而异.%The present work studies the phase splitting characteristics of water-nitrogen slug-annular flow at equal-sided impacting junctions with diameter of 0.5 mm.Impacting junctions may be divided into T-shaped junction and Y-shaped junction according to the different impacting angles between the inlet and either branch.The test results show that the effect of inlet flow patterns on phase split depends on the impacting angles.For the case of the impacting T-shaped junction,the effect of inlet flow patterns on phase split is small.However,for the case of impacting Y-shaped junctions,the phase splitting curve moves towards the equal splitting line as the inlet flow pattern shifts from the zone close to slug flow to the zone close to annular flow.In addition,the impacting angles have influence on phase split,but the influence is dependent on inlet flow conditions.
Nordmann, R.
The fluid-structure interactions in rotor dynamics and the identification of rotor dynamic coefficients of annular seals are studied. The different fluid forces acting in the neck ring, the interstage seals, the balance pistons, the impellers and the oil film bearings of pumps are reviewed. These forces can have a large influence on the bending vibrations of a pump rotor. Theoretical and experimental models of fluid elements and of rotordynamics are presented. Simulations of the rotordynamic behavior show that the fluid forces of most elements can be described by linear-force relations. A theoretical model and an indentification procedure are presented to determine the dynamic coefficients of seals. The identified parameters confirm the assumptions in modeling and point out that the stiffness and damping characteristics of seals are significant for the stability behavior of pumps.
[Disseminated granuloma annulare].
Kansky, A
1975-09-01
A case of generalized granuloma annulare in a 55 year old man is reported. The disease appeared five years before the first admission to the hospital. A large number of bluish-red or skin-colour papules were scattered mainly around the earlobes, buttocks and on the extremities. Some of the lesions were lined up in rings or plaques. Small depigmented and brownish scars were present. Two biopsies revealed characteristic foci of complete collagen degeneration accompanied by a palisading infiltrate in the upper dermis. Treatment with tuberculostatics and antimalarics was without improvement. The lesions cleared after a course of prednison, but reappeared when the drug was discontinued.
DEFF Research Database (Denmark)
Chougule, Prasad; Nielsen, Søren R.K.
2014-01-01
been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade......Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...
Institute of Scientific and Technical Information of China (English)
GU Hanyang; YU Yiqi; CHENG Xu; LIU Xiaojing
2008-01-01
Investigations on the thermal-hydraulic behavior in the SCWR fuel assembly have obtained a significant attention in the international SCWR community. However, there is still a lack of understanding of the heat transfer behavior of supercritical fluids. In this paper, the numerical analysis is carried out to study the thermal-hydraulic behaviour in vertical sub-channels cooled by supercritical water. Remarkable differences in characteristics of secondary flow are found, especially in square lattice, between the upward flow and downward flow. The turbulence mixing across sub-channel gap for downward flow is much stronger than that for upward flow in wide lattice when the bulk temperature is lower than pseudo-critical point temperature. For downward flow, heat transfer deterioration phenomenon is suppressed with respect to the case of upward flow at the same conditions.
Air–water flow in a vertical pipe: experimental study of air bubbles in the vicinity of the wall
Descamps, M.N.; Oliemans, R.V.A.; Ooms, G.; Mudde, R.F.
2008-01-01
This study deals with the influence of bubbles on a vertical air–water pipe flow, for gas-lift applications. The effect of changing the bubble size is of particular interest as it has been shown to affect the pressure drop over the pipe. Local measurements on the bubbles characteristics in the wall
Institute of Scientific and Technical Information of China (English)
黄娜; 周云龙; 高聚
2015-01-01
A numerical simulation based on the volume of fluid (VOF) method was used to study vapor–liquid flow in a 190 mm vertical tube under high pressure, and the flow pattern maps of the two-phase convection flow were investigated under pressure of 5.07, 10.13 and 17.23 MPa, respectively. The results of flow under high pressure were compared with that of normal pressure. The results show that the flow pattern maps under high pressure in large-diameter vertical pipes are not consistent with the Hewitt and Roberts flow pattern maps. No wispy annular is presented under high pressure in large-diameter vertical pipes, and the bubbly zone and churn zone are enlarged. The slug zone becomes particularly small with little change happened to the annular zone. The simulation results show that the interfacial wave amplitude of the vapor-liquid churn flow decreases with the increase of pressure in large-diameter vertical pipes, and the interface stability is enhanced at the same time. The pipe central area has the highest velocity, which fluctuates at the boundary area and reduces to zero on the pipe wall. Moreover, the disorder degree of the oscillatory velocity field near the pipe wall decreases under high pressure. Mechanisms were analyzed following the simulation results dicussed.%采用流体体积模型(VOF)对高压环境下190 mm大管径垂直管内水蒸汽-水混合流动进行数值研究。数值计算得到了5.07，10.13与17.23 MPa高压下大管径垂直管内汽液流型分布图及搅混流态的相分布图和速度场分布，并与常压下的计算结果进行对比，以研究压力环境带来的影响。数值结果表明，高压环境下大管径垂直管内的流型图与Hewitt和Roberts流型图的吻合度较差。高压环境下大管径垂直管内没有出现雾状流；泡状流和搅混流的发生区域扩大；弹状流的发生区域被压缩得很小；环状流的变化最小。随着压力的增大，大管径垂直管内汽液搅混流中
Directory of Open Access Journals (Sweden)
Adriane B. S. Serapião
2013-01-01
Full Text Available This paper focuses on the use of artificial intelligence (AI techniques to identify flow patterns acquired and recorded from experimental data of vertical upward three-phase pipe flow of heavy oil, air, and water at several different combinations, in which water is injected to work as the continuous phase (water-assisted flow. We investigate the use of data mining algorithms with rule and tree methods for classifying real data generated by a laboratory scale apparatus. The data presented in this paper represent different heavy oil flow conditions in a real production pipe.
Multiple annular linear diffractive axicons.
Bialic, Emilie; de la Tocnaye, Jean-Louis de Bougrenet
2011-04-01
We propose a chromatic analysis of multiple annular linear diffractive axicons. Large aperture axicons are optical devices providing achromatic nondiffracting beams, with an extended depth of focus, when illuminated by a white light source, due to chromatic foci superimposition. Annular apertures introduce chromatic foci separation, and because chromatic aberrations result in focal segment axial shifts, polychromatic imaging properties are partially lost. We investigate here various design parameters that can be used to achieve color splitting, filtering, and combining using these properties. In order to improve the low-power efficiency of a single annular axicon, we suggest a spatial multiplexing of concentric annular axicons with different sizes and periods we call multiple annular aperture diffractive axicons (MALDAs). These are chosen to maintain focal depths while enabling color imaging with sufficient diffraction efficiency. Illustrations are given for binary phase diffractive axicons, considering technical aspects such as grating design wavelength and phase dependence due to the grating thickness.
Gas-solid turbulent flow and heat transfer with collision effect in a vertical pipe
Energy Technology Data Exchange (ETDEWEB)
Saffar-Avval, M.; Basirat Tabrizi, H.; Ramezani, P. [Department of Mechanical Engineering, Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran); Mansoori, Z. [Energy Research Center, Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran)
2007-01-15
A turbulent gas-solid suspension upward flow in a vertical pipe is simulated numerically using Eulerian-Lagrangian approach. Particle-particle and particle-wall collisions are simulated based on deterministic approach. The influence of particle collisions on the particle concentration, mean temperature and fluctuating velocities are investigated. Numerical results are presented for different values of loading ratios. The profiles of particle concentration, mean velocity and temperature are shown to be flatter by considering inter-particle collisions, while this effect on the gas mean velocity and temperature is not significant. It is demonstrated that the effect of inter-particle collisions have a dramatic influence on the particle fluctuation velocity. It is shown that the profiles of particle concentration and particle velocity are flattened due to inter-particle collisions and this effect becomes more pronounced with increasing loading ratio. Also, the attenuation of turbulence by inter-particle collisions in the core region of the pipe is increased by increasing loading ratio. (author)
A novel effective micromixer having horizontal and vertical weaving flow motion
Yoo, Won-Sul; Go, Jung Sang; Park, Seonghun; Park, Sang-Hu
2012-03-01
The need for small-scale product-related biotechnology (BT) is rapidly increasing. An important product among these is high-performance biochips. In these devices, many microchannels are used for separation, filtering and mixing of various materials; therefore, for compactness, these reactions should be carried out in the small space of microfluidic systems. However, there is no turbulence that can induce materials to be mixed or reacted in the microchannel, especially with low Reynolds number laminar flow. Hence, it is difficult to sufficiently mix different materials. To address this problem, we propose the HVW (horizontal and vertical weaving) micromixer having crossed barriers inside of a microchannel, for effective mixing and reacting different materials. From CFD analysis, we have evaluated the mixing mechanism and efficiency of the HVW mixer. In this work, it is shown that the HVW mixer has the maximum mixing efficiency of 89.9% with a short mixing distance of 450 µm at a Reynolds number of 5 with the barrier angle of 30°, when water and water combined with Rhodamine B figment were used as fluids.
Besançon, A; Le Corre, K S; Dotro, G; Jefferson, B
2017-01-01
This paper demonstrates that utilising a vertical flow (VF) wetland after a conventional activated sludge (CAS) delivers equivalent or better effluent quality to a membrane bioreactor (MBR) based on a side-by-side pilot trial. The CAS was operated under the solids retention times (SRT) of 6, 12, and 20 days, with the effluent from each pilot plant fed onto a soil aquifer treatment column to better understand their water reuse application potential. Results showed an upgraded CAS + VF system could deliver effluents with median values of 34 mgO2.L((-1)), 7 mg.L(-1) and 1.9 mg.L(-1) for organics, solids and ammonia nitrogen, respectively, which were statistically similar to those from the MBR. Water reuse standards were achieved by the upgraded system for most parameters, with the exception of total coliform removal. The upgraded system delivered superior metal removal when compared to the CAS. An economic analysis showed upgrading a CAS with a VF wetland was more favourable than investing in an MBR system for example works of 5000 and 50,000 population equivalents if the VF system was operated at hydraulic loading rates of 0.03 m.d(-1) and 0.08 m.d(-1), respectively. This was delivered for a tenth of the carbon footprint of the MBR treatment.
Sun, G; Austin, D
2007-01-01
A laboratory-scale, mass-balance study was carried out on the transformation of nitrogenous pollutants in four vertical flow wetland columns. Landfill leachate containing low organic matter, but a high concentration of ammoniacal-nitrogen, was treated under dissolved oxygen concentrations close to saturation. Influent total nitrogen (TN) comprised ammoniacal-nitrogen with less than 1% nitrate and nitrite, negligible organic nitrogen, and very low BOD. Nitrification occurred in three of the four columns. There was a substantial loss of total nitrogen (52%) in one column, whereas other columns exhibited zero to minor losses (< 12%). Nitrogen loss under study conditions was unexpected. Two hypotheses are proposed to account for it: (1) either the loss of TN is attributed to nitrogen transformation into a form (provisionally termed alpha-nitrogen) that is undetectable by the analytical methods used; or (2) the loss is caused by microbial denitrification or deammonification. By elimination and stoichiometric mass balance calculations, completely autotrophic nitrogen-removal over nitrite (CANON) deammonification is confirmed as responsible for nitrogen loss in one column. This result reveals that CANON can be native to aerobic engineered wetland systems treating high ammonia, low organic content wastewater.
Directory of Open Access Journals (Sweden)
Md. Mamun Molla
2014-01-01
Full Text Available The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.
Unsteady convection flow and heat transfer over a vertical stretching surface.
Directory of Open Access Journals (Sweden)
Wenli Cai
Full Text Available This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.
Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il Dan
2015-05-13
This paper introduces a novel afocal optical flow sensor (OFS) system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length) system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.
Directory of Open Access Journals (Sweden)
Dong-Hoon Yi
2015-05-01
Full Text Available This paper introduces a novel afocal optical flow sensor (OFS system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.
Wang, Jian; Li, Huai-zheng; Zhen, Bao-chong; Liu, Zhen-dong
2016-03-15
One-stage vertical subsurface flow constructed wetlands (CWs) were used to treat effluent from grit chamber in municipal wastewater treatment plant. The CW was divided into aerobic zone and anoxic zone by means of raising the effluent level and installing a perforated pipe. Two parameters (the ratio of aeration time and nonaeration time, aeration cycle) were optimized in the experiment to enhance nitrogen removal efficiency. The results suggested that the removal rates of COD and NH₄⁺-N increased while TN showed a trend of first increasing and then decreasing with the increasing ratio. When the ratio was 3:1, the C/N value in the anoxic zone was 4. 8. And the TN effluent concentration was 15.8 mg · L⁻¹ with the highest removal rate (62.1%), which was increased by 12.7% compared with continuous aeration. As the extension of the aeration cycle, the DO effluent concentration as well as the removal rates of COD and NH: -N declined gradually. The TN removal rate reached the maximum (65.5%) when the aeration cycle was 6h. However, the TN removal rate dropped rapidly when the cycle exceeded the hydraulic retention time in the anoxic zone.
Unsteady convection flow and heat transfer over a vertical stretching surface.
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.
Kantawanichkul, Suwasa; Sattayapanich, Somsiri; van Dien, Frank
2013-01-01
The aim of this study was to investigate the efficiency of wastewater treatment by vertical flow constructed wetland systems under different hydraulic loading rates (HLR). The comparison of two types of plants, Cyperus alternifolius (Umbrella sedge) and Vetiveria zizanioides (Vetiver grass), was also conducted. In this study, six circular concrete tanks (diameter 0.8 m) were filled with fine sand and gravel to the depth of 1.23 m. Three tanks were planted with Umbrella sedge and the other three tanks were planted with Vetiver grass. Settled domestic wastewater from Chiang Mai University (chemical oxygen demand (COD), NH4(+)-N and suspended solids (SS) of 127.1, 27.4 and 29.5 mg/L on average, respectively) was intermittently applied for 45 min and rested for 3 h 15 min. The HLR of each tank was controlled at 20, 29 and 40 cm/d. It was found that the removal efficiency of the Umbrella sedge systems was higher than the Vetiver grass systems for every parameter, and the lowest HLR provided the maximum treatment efficiency. The removal efficiency of COD and nitrogen in terms of total Kjeldahl nitrogen (TKN) was 76 and 65% at 20 cm/d HLR for Umbrella sedge compared to only 67 and 56% for Vetiver grass. Nitrogen accumulation in plant biomass was also higher in Umbrella sedge than in Vetiver grass in every HLR. Umbrella sedge was thus proved to be a suitable constructed wetland plant in tropical climates.
Cottin, N; Merlin, G
2008-10-01
Removal of three polycyclic aromatic hydrocarbons or PAHs (fluoranthene, pyrene and benzo(k)fluoranthene) from two types of PAH-contaminated effluents was investigated using four laboratory columns filled with two different organic media: a green compost and a layer coming from the first stage of vertical flow constructed wetlands. Synthetic runoff polluted by polycyclic aromatic hydrocarbons were fed through the columns during a period of two months. After a period of hydrodynamic stabilisation, the results showed a great adsorption of PAHs (>95%) on the solid media due to their large adsorption capacities. Leaching of these compounds by water was monitored. The concentrations of PAHs in leaching samples indicated that PAHs were strongly adsorbed on organic substrates and that lixiviation was limited. Fluoranthene metabolites were also investigated. Accumulation of metabolites was transitory and located in the first few cm of the media, as was observed for PAH concentrations. A toxicity test of leachates based on the inhibition of the bioluminescence of luminescent bacteria Vibrio fischeri indicated a low inhibition which can be enhanced by metal traces.
Institute of Scientific and Technical Information of China (English)
朱雷; 金宁德; 高忠科; 杜萌; 王振亚
2012-01-01
Based on the conductance fluctuation signals measured from vertical upward oil-gas-water three-phase flow experiment, time frequency representation and surrogate data method were used to investigate dynamical characteristics of oil-in-water type bubble and slug flows. The results indicate that oil-in-water type bubble flow will turn to deterministic motion with the increase of oil phase fraction f o and superficial gas velocity U sg under fixed flowrate of oil-water mixture Q mix . The dynamics of oil-in-water type slug flow becomes more complex with the increase of U sg under fixed flowrate of oil-water mixture. The change of f o leads to irregular influence on the dynamics of slug flow. These interesting findings suggest that the surrogate data method can be a faithful tool for characterizing dynamic characteristics of oil-in-water type bubble and slug flows.
Institute of Scientific and Technical Information of China (English)
吴修广; 沈永明; 郑永红
2004-01-01
A numerical model for shallow water flow has been developed based on the unsteady Reynolds-averaged NavierStokes equations with the hydrodynamic pressure instead of hydrostatic pressure assumption. The equations are transformed into the σ-coordinate system and the eddy viscosity is calculated with the standard k - e turbulence model. The control volume method is used to discrete the equations, and the boundary conditions at the bed for shallow water models only include vertical diffusion terms expressed with wall functions. And the semi-implicit method for pressure linked equation arithmetic is adopted to solve the equations. The model is applied to the 2D vertical plane flow of a curent over two steep-sided trenches for which experiment data are available for comparison and good agreement is obtained. And the model is used to predicting the flow in a channel with a steep-sided submerged breakwater at the bottom, and the streamline is drawn.
Directory of Open Access Journals (Sweden)
Krupička Jan
2014-06-01
Full Text Available Principles of gamma-ray-based measurement are summarized and their application is demonstrated on an operation of the radiometric facility installed in the test loop for slurry flows at the Institute of Hydrodynamics. The facility is able to measure vertical profiles of chord-averaged concentrations and concentration maps in the pipe cross section. A methodology of measurement is proposed including detection and quantification of random and systematic errors. Experimental results are discussed in the light of the proposed methodology. Experimentally determined vertical profiles of concentration are presented for slurry flows of four different fractions of glass beads. The tomographic application of the radiometric device is demonstrated on a measured concentration map and a suitable image reconstruction method is tested. High reliability of measured concentration distributions is proved except for regions near the pipe wall. The radiometric method is shown to be a useful tool for measurement of concentration distribution in slurry flow through a pipe.
MHD mixed convection flow of power law non-Newtonian fluids over an isothermal vertical wavy plate
Mirzaei Nejad, Mehrzad; Javaherdeh, K.; Moslemi, M.
2015-09-01
Mixed convection flow of electrically conducting power law fluids along a vertical wavy surface in the presence of a transverse magnetic field is studied numerically. Prandtl coordinate transformation together with the spline alternating direction implicit method is employed to solve the boundary layer equations. The influences of both flow structure and dominant convection mode on the overall parameters of flow and heat transfer are well discussed. Also, the role of magnetic field in controlling the boundary layers is investigated. The variation of Nusselt number and skin friction coefficient are studied as functions of wavy geometry, magnetic field, buoyancy force and material parameters. Results reveal the interrelation of the contributing factors.
Directory of Open Access Journals (Sweden)
S. Das
2015-01-01
Full Text Available The problem of unsteady free convection flow past an infinite vertical plate with heat and mass fluxes in the presence of thermal radiation is studied. The dimensionless coupled linear partial differential equations governing the flow are solved by employing the Laplace transform technique. Exact solutions have been obtained for the fluid velocity, temperature and mass concentration for the cases of both uniform heat flux (UHF and uniform wall temperature (UWT. The numerical results for the fluid velocity, temperature and mass concentration are presented graphically for various pertinent flow parameters and discussed in detail.
Xu, Bin; Shi, Yumei; Chen, Dongsheng
2014-03-01
This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.
Directory of Open Access Journals (Sweden)
S.S.Das, U.K.Tripathy, J.K.Das
2010-05-01
Full Text Available This paper theoretically analyzes the unsteady hydromagnetic free convective flow of a viscous incompressible electrically conducting fluid past an infinite vertical porous plate through a porous medium in presence of constant suction and heat source. Approximate solutions are obtained for velocity field, temperature field, skin friction and rate of heat transfer using multi-parameter perturbation technique. The effects of the flow parameters on the flow field are analyzed with the aid of figures and tables. The problem has some relevance in the geophysical and astrophysical studies.
Energy Technology Data Exchange (ETDEWEB)
Isa, Sharena Mohamad; Ali, Anati [Department of Mathematical Sciences, Faculty of Science Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia sharena-ina@yahoo.com, anati@utm.my (Malaysia)
2015-10-22
In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.
Ducted fan inlet/exit and rotor tip flow improvements for vertical lift systems
Akturk, Ali
The current research utilized experimental and computational techniques in 5" and 22" diameter ducted fan test systems that have been custom designed and manufactured. Qualitative investigation of flow around the ducted fan was also performed using smoke flow visualizations. Quantitative measurements consisted of 2D and 3D velocity measurements using planar and Stereoscopic Particle Image Velocimetry (PIV and SPIV), high resolution total pressure measurements using Kiel total pressure probes and real time six-component force and torque measurements. The computational techniques used in this thesis included a recently developed radial equilibrium based rotor model(REBRM) and a three dimensional Reynolds-Averaged Navier Stokes (RANS) based CFD model. A radial equilibrium based rotor model (REBRM) developed by the author was effectively integrated into a three-dimensional RANS based computational system. The PIV measurements and computational flow predictions using (REBRM) near the fan inlet plane were in a good agreement at hover and forward flight conditions. The aerodynamic modifications resulting from the fan inlet flow distortions in forward flight regime were clearly captured in 2D PIV results. High resolution total pressure measurements at the downstream of the fan rotor showed that tip leakage, rotor hub separation, and passage flow related total pressure losses were dominant in hover condition. However, the losses were dramatically increased in forward flight because of inlet lip separation and distortion. A novel ducted fan inlet flow conditioning concept named "Double Ducted Fan" (DDF) was developed. The (DDF) concept has a potential to significantly improve the performance and controllability of VTOL UAVs and many other ducted fan based vertical lift systems. The new concept that will significantly reduce the inlet lip separation related performance penalties used a secondary stationary duct system to control "inlet lip separation" occurring especially at
An Annular Gap Acceleration Model for γ-ray Emission of Pulsars
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both negative and positive charges will flow out freely from the surface of the star. An annular free flow model for γ-ray emission of pulsars is suggested. It is emphasized that:(1) Two kinds of acceleration regions (annular and core) need to be taken into account. The annular acceleration region is defined by the magnetic field lines that cross the null charge surface within the light cylinder. (2) If the potential drop in the annular region of a pulsar is high enough (normally the case for young pulsars), charges in both the annular and the core regions could be accelerated and produce primary gamma-rays. Secondary pairs are generated in both regions and stream outwards to power the broadband radiations. (3) The potential drop grows more rapidly in the annular region than in the core region. The annular acceleration process is a key process for producing the observed wide emission beams. (4)The advantages of both the polar cap and outer gap models are retained in this model. The geometric properties of the γ-ray emission from the annular flow are analogous to that presented in a previous work by Qiao et al., which match the observations well. (5) Since charges with different signs leave the pulsar through the annular and the core regions respectively, the current closure problem can be partially solved.
FORCES ON PARTICLES AND THEIR EFFECTS ON VERTICAL SEDIMENT SORTING IN SOLID-LIQUID TWO-PHASE FLOWS
Institute of Scientific and Technical Information of China (English)
NI Jinren; MENG Xiaogang
2001-01-01
Vertical motion of particles was simulated by the Lagrangian method in one-dimensional solid-liquid two-phase flow. The conventional equation was modified by inserting a particle-particle interaction term,which was identified by Bagnold's experimental results. Effects of various forces have been examined under different particle concentrations. The results showed that the vertical sorting patterns are primarily determined by the joint action of inter-particle force and effective gravitational force, whereas the pace towards the steady sorting pattern was affected by Basset force and additional mass force.
Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application.
Asuman Korkusuz, E; Beklioğlu, Meryem; Demirer, Göksel N
2007-08-01
Research was conducted at Middle East Technical University (METU), Ankara, Turkey in 2000 to determine whether a reed bed filled with an economical Turkish fill media that has high phosphorus (P) sorption capacity, could be implemented and operated successfully under field conditions. In batch-scale P-sorption experiments, the P-sorption capacity of the blast furnace granulated slag (BFGS) of KARDEMIR Iron and Steel Ltd., Co., Turkey, was found to be higher compared to other candidate filter materials due to its higher Ca content and porous structure. In this regard, a vertical subsurface flow constructed wetland (CW) (30 m(2)), planted with Phragmites australis was implemented at METU to treat primarily treated domestic wastewater, at a hydraulic rate of 100 mm d(-1), intermittently. The layers of the filtration media constituted of sand, BFGS, and gravel. According to the first year monitoring study, average influent and effluent total phosphorus (TP) concentrations were 6.61+/-1.78 mg L(-1) and 3.18+/-1.82 mg L(-1); respectively. After 12 months, slag samples were taken from the reed bed and P-extraction experiments were performed to elucidate the dominant P-retention mechanisms. Main pools for P-retention were the loosely-bounded and Ca-bounded P due to the material's basic conditions (average pH>7.7) and higher Ca content. This study indicated the potential use of the slag reed bed with higher P-removal capacity for secondary and tertiary treatment under the field conditions. However, the P-sorption isotherms obtained under the laboratory conditions could not be used favorably to determine the longevity of the reed bed in terms of P-retention.
Performance of a vertical subsurface flow constructed wetland under different operational conditions
Directory of Open Access Journals (Sweden)
Sara G. Abdelhakeem
2016-09-01
Full Text Available The performance of a vertical subsurface flow constructed wetland (VSSFCW for sewage effluent treatment was studied in an eight month experiment under different operational conditions including: vegetation (the presence or absence of common reeds “Phragmites australis”, media type (gravel or vermiculite, and mode of sewage feeding (continuous or batch. Plants had a significant effect (P < 0.05 on the removal efficiency and mass removal rate of all pollutants, except phosphorous. The average removal efficiencies of chemical oxygen demand (COD, biological oxygen demand (BOD, total suspended solids (TSS, ammonium (NH4 and total-P (TP were 75%, 84%, 75%, 32% and 22% for the planted beds compared to 29%, 37%, 42%, 26% and 17%, respectively, for the unplanted beds. The VSSFCW was ineffective in removing nitrate (NO3. The effect of either media type or feeding mode system on the removal efficiency of COD and BOD was insignificant. Vermiculite media significantly (P < 0.05 increased the efficiency of the wetland in removing NH4, TP and dissolved phosphorous (DP when compared with gravel particularly in the planted beds. The batch mode was more effective in removing TSS and NH4 compared to the continuous mode. Volumetric rate constant (kV was different for various pollutants and significantly increased due to the presence of plants. Media type had no significant effect on the values of kV for COD, BOD and TSS, while kV for NH4 and TP under vermiculite in the planted beds and kV for P in the unplanted beds were significantly higher than those under gravel.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Livestock wastewater has been a major contributor to Chinese cultural eutrophication of surface waters. Constructed wetlands are under study as a best management practice to treat wastewater from dairy and swine operations, but the removal efficiency of pollutants is relatively low. Enhancing the treatment efficiency of livestock wastewater by effluent recirculation was investigated in a pilot-scale vertical-flow constructed wetland. The wetland system was composed of downflow and upflow stages, on which narrow-leafPhragmites communis and common reed Phragmites Typhia are planted, respectively; each stage has a dimension of4 m2 (2 m × 2 m). Wastewater from facultative pond was fed into the system intermittently at a flow rate of 0.4 m3/d. Recirculation rates of 0, 25%, 50%, 100% and 150% were adopted to evaluate the effect of the recirculation rate on pollutants removal. It shows that with effluent recirculation the average removal efficiencies of NH4-N, biological oxygen demand (BOD5) and suspended solids(SS)obviously increase to 61.7%, 81.3%, and 77.1%, respectively, in comparison with the values of 35.6%, 50.2%, and 49.3% without effluent recirculation. But the improvement of TP removal is slight, only from 42.3% to 48.9%. The variations of NH4-N, dissolved oxygen(DO) and oxidation-reduction potential(ORP) of inflow and outflow reveal that the adoption of effluent recirculation is beneficial to the formation of oxide environment in wetland. The exponential relationships with excellent correlation coefficients (R2 ＞0.93)are found between the removal rates of NH4-N and BOD5 and the recirculation rates. With recirculation the pH value of the outflow decreases as the alkalinity is consumed by gradually enhanced nitrification process. When recirculation rate is kept constant 100%, the ambient temperature appears to affect NH4-N removal, but does not have significant influence on BOD5 removal.
Akimoto, Hiromichi; Hara, Yutaka; Kawamura, Takafumi; Nakamura, Takuju; Lee, Yeon-Seung
2013-12-01
In a vertical axis wind turbine (VAWT), turbine blades are subjected to the curved flow field caused by the revolution of turbine. However, performance prediction of VAWT is usually based on the fluid dynamic coefficients obtained in wind tunnel measurements of the two-dimensional static wing. The difference of fluid dynamic coefficients in the curved flow and straight flow deteriorates the accuracy of performance prediction. To find the correlation between the two conditions of curved and straight flow, the authors propose a conformal mapping method on complex plane. It provides bidirectional mapping between the two flow fields. For example, the flow around a symmetric wing in the curved flow is mapped to that around a curved (cambered) wing in the straight flow. Although the shape of mapped wing section is different from the original one, its aerodynamic coefficients show a good correlation to those of the original in the rotating condition. With the proposed method, we can reproduce the local flow field around a rotating blade from the flow data around the mapped static wing in the straight flow condition.
Directory of Open Access Journals (Sweden)
Jha B.K.
2015-02-01
Full Text Available This paper investigates the role of induced magnetic field on a transient natural convection flow of an electrically conducting, incompressible and viscous fluid in a vertical channel formed by two infinite vertical parallel plates. The transient flow formation inside the channel is due to sudden asymmetric heating of channel walls. The time dependent momentum, energy and magnetic induction equations are solved semi-analytically using the Laplace transform technique along with the Riemann-sum approximation method. The solutions obtained are validated by comparisons with the closed form solutions obtained for the steady states which have been derived separately and also by the implicit finite difference method. Graphical results for the temperature, velocity, induced magnetic field, current density, and skin-friction based on the semi-analytical solutions are presented and discussed.
Directory of Open Access Journals (Sweden)
Isaac Lare Animasaun
2016-06-01
Full Text Available The problem of unsteady convective with thermophoresis, chemical reaction and radiative heat transfer in a micropolar fluid flow past a vertical porous surface moving through binary mixture considering temperature dependent dynamic viscosity and constant vortex viscosity has been investigated theoretically. For proper and correct analysis of fluid flow along vertical surface with a temperature lesser than that of the free stream, Boussinesq approximation and temperature dependent viscosity model were modified and incorporated into the governing equations. The governing equations are converted to systems of ordinary differential equations by applying suitable similarity transformations and solved numerically using fourth-order Runge–Kutta method along with shooting technique. The results of the numerical solution are presented graphically and in tabular forms for different values of parameters. Velocity profile increases with temperature dependent variable fluid viscosity parameter. Increase of suction parameter corresponds to an increase in both temperature and concentration within the thin boundary layer.
Annular Hybrid Rocket Motor Project
National Aeronautics and Space Administration — Engineers at SpaceDev have conducted a preliminary design and analysis of a proprietary annular design concept for a hybrid motor. A U.S. Patent application has been...
Directory of Open Access Journals (Sweden)
Azeem SHAHZAD
2013-02-01
Full Text Available In this article, we study the power law model of steady state, viscous, incompressible MHD flow over a vertically stretching sheet. Furthermore, heat transfer is also addressed by using the convective boundary conditions. The coupled partial differential equations are transformed into ordinary differential equations (ODEs using similarity transformations. The transformed highly non-linear ODEs are solved by using the Homotopy Analysis Method (HAM. The influence of different parameters on the velocity and temperature fields are analyzed and discussed.
Double-diffusive natural convective boundary-layer flow of a nano-fluid past a vertical plate
Energy Technology Data Exchange (ETDEWEB)
Kuznetsov, A.V. [Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910 (United States); Nield, D.A. [Department of Engineering Science, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)
2011-05-15
The double-diffusive natural convective boundary-layer flow of a nano-fluid past a vertical plate is studied analytically. The model used for the binary nano-fluid incorporates the effects of Brownian motion and thermophoresis. In addition the thermal energy equations include regular diffusion and cross-diffusion terms. A similarity solution is presented. Numerical calculations were performed in order to obtain correlation formulas giving the reduced Nusselt number as a function of the various relevant parameters. (authors)
Krupička, Jan; Matoušek, Václav
2014-01-01
Principles of gamma-ray-based measurement are summarized and their application is demonstrated on an operation of the radiometric facility installed in the test loop for slurry flows at the Institute of Hydrodynamics. The facility is able to measure vertical profiles of chord-averaged concentrations and concentration maps in the pipe cross section. A methodology of measurement is proposed including detection and quantification of random and systematic errors. Experimental results are disc...
Annular Elastolytic Giant Cell Granuloma
Directory of Open Access Journals (Sweden)
Khandpur Sujay
2001-01-01
Full Text Available The clinical and histopathological features of annular elastolytic giant cell granuloma in a 42â€"year-old female patient are described. The condition presented as annular erythematous plaques over sun- exposed skin sparing the face. Histopathology revealed dense granulomatous infiltrate consisting of numerous giant cells and lymphohistiocytes without any palisading arrangement or necrobiosis. The features differentiating it from other similar granulomatous disorders are discussed.
Manufacture of annular cermet articles
Forsberg, Charles W.; Sikka, Vinod K.
2004-11-02
A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.
HEAT AND MASS TRANSFER FOR VISCO-ELASTIC MHD BOUNDARY LAYER FLOW PAST A VERTICAL FLAT PLATE
Directory of Open Access Journals (Sweden)
Rita Choudhury
2012-07-01
Full Text Available The two-dimensional free convection flow of visco-elastic and electrically conducting fluid past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations are reduced to ordinary differential equation by introducing appropriate co-ordinate transformation. The analytical expressions for the velocity, temperature and species concentration fields have been obtained. The corresponding expressions for the non-dimensional rates of heat transfer and mass transfer have beenobtained. The velocity profile and the shearing stress have been illustrated graphically, for various values of flow parameters involved in the solution to observe the effect of visco-elastic parameter.
Directory of Open Access Journals (Sweden)
Dr.Abhay Kumar Jha
2012-07-01
Full Text Available The objective of this paper is to study heat and mass transfer on an unsteady two dimensional hydromagnetic laminar mixed convective boundary layer flow of an incompressible fluid past a semi-infinite vertical plate with heat source/ sink. The plate moves with constant velocity in the direction of fluid flow while the free stream velocity follows an exponentially increasing small perturbation law. The dimensionless governing equations are solved analytically using two terms harmonic and non-harmonic functions .the results obtainedand discussed with help of graphs and tables to observe the effect of various parameter concerned in the problem under investigation.
Directory of Open Access Journals (Sweden)
Yan Zhu
2016-05-01
Full Text Available Due to the high nonlinearity of the three-dimensional (3-D unsaturated-saturated water flow equation, using a fully 3-D numerical model is computationally expensive for large scale applications. A new unsaturated-saturated water flow model is developed in this paper based on the vertical/horizontal splitting (VHS concept to split the 3-D unsaturated-saturated Richards’ equation into a two-dimensional (2-D horizontal equation and a one-dimensional (1-D vertical equation. The horizontal plane of average head gradient in the triangular prism element is derived to split the 3-D equation into the 2-D equation. The lateral flow in the horizontal plane of average head gradient represented by the 2-D equation is then calculated by the water balance method. The 1-D vertical equation is discretized by the finite difference method. The two equations are solved simultaneously by coupling them into a unified nonlinear system with a single matrix. Three synthetic cases are used to evaluate the developed model code by comparing the modeling results with those of Hydrus1D, SWMS2D and FEFLOW. We further apply the model to regional-scale modeling to simulate groundwater table fluctuations for assessing the model applicability in complex conditions. The proposed modeling method is found to be accurate with respect to measurements.
Energy Technology Data Exchange (ETDEWEB)
Little, David A.; Schilp, Reinhard; Ross, Christopher W.
2016-03-22
A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the air flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).
Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying
2016-11-01
The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.
Institute of Scientific and Technical Information of China (English)
R. TRˆIMBIT¸AS¸; T.GROSAN; I.POP
2015-01-01
An analysis is carried out to investigate the steady mixed convection bound-ary layer flow of a water based nanofluid past a vertical semi-infinite flat plate. Using an appropriate similarity transformation, the governing partial differential equations are transformed into the coupled, nonlinear ordinary (similar) differential equations, which are then solved numerically for the Prandtl number Pr = 6.2. The skin friction coeﬃ-cient, the local Nusselt number, and the velocity and temperature profiles are presented graphically and discussed. Effects of the solid volume fractionφand the mixed convection parameterλon the fluid flow and heat transfer characteristics are thoroughly examined. Different from an assisting flow, it is found that the solutions for an opposing flow are non-unique. In order to establish which solution branch is stable and physically realizable in practice, a stability analysis is performed.
Energy Technology Data Exchange (ETDEWEB)
Li, D. [Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2 (Canada); Labropulu, F. [Luther College e Mathematics, University of Regina, Regina, SK S4S 0A2 (Canada); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)
2011-09-15
An analysis of the steady mixed convection flow of a viscoelastic fluid stagnating orthogonally on a heated or cooled vertical flat plate has been studied. Using similarity variables, the governing equations are transformed into a system of two coupled non-linear ordinary differential equations. The resulting equations are then solved numerically using the spectral method. It is observed that the skin friction coefficient and the local heat transfer are decreasing when the Weissenberg number We is increasing in both assisting and opposing flow cases. On the other hand, the skin friction is decreasing and the local heat transfer is increasing when the Prandtl number Pr is increasing in the case of assisting flow. In the case of opposing flow, the skin friction and the local heat transfer are increasing as Pr is increasing. (authors)
Explicit wave action conservation for water waves on vertically sheared flows
Quinn, B. E.; Toledo, Y.; Shrira, V. I.
2017-04-01
This paper addresses a major shortcoming of the current generation of wave models, namely their inability to describe wave propagation upon ambient currents with vertical shear. The wave action conservation equation (WAE) for linear waves propagating in horizontally inhomogeneous vertically-sheared currents is derived following Voronovich (1976). The resulting WAE specifies conservation of a certain depth-averaged quantity, the wave action, a product of the wave amplitude squared, eigenfunctions and functions of the eigenvalues of the boundary value problem for water waves upon a vertically sheared current. The formulation of the WAE is made explicit using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature; the adopted approximations are shown to be sufficient for most of the conceivable applications. In the limit of vanishing current shear, the new formulation reduces to that of Bretherton and Garrett (1968) without shear and the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal might lead to significant errors in wave amplitude. The new WAE which takes into account the vertical shear can be better coupled to modern circulation models which resolve the three-dimensional structure of the uppermost layer of the ocean.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this companion paper, flow patterns in the upstream and downstream tubes of a sudden-expansion cross-section (SECS) in a vertical straight pipe were presented. The effect of SECS on flow patterns upstream and downstream was analyzed by comparing with flow patterns in uniform cross-section vertical tubes. It is found the effect is great. There exist great instabilities of two-phase flow in the neighboring areas of the SECS both downstream and upstream.
Directory of Open Access Journals (Sweden)
S. S. Das, S. Parija, R. K. Padhy, M. Sahu
2012-01-01
Full Text Available This paper investigates the natural convection unsteady magnetohydrodynamic mass transfer flow of a viscous incompressible electrically conducting fluid past an infinite vertical porous flat plate in presence of constant suction and heat sink. Using multi parameter perturbation technique, the governing equations of the flow field are solved and approximate solutions are obtained. The effects of the flow parameters on the velocity, temperature, concentration distribution and also on the skin friction and rate of heat transfer are discussed with the help of figures and table. It is observed that a growing magnetic parameter or Schmidt number or heat sink parameter leads to retard the transient velocity of the flow field at all points, while the Grashof numbers for heat and mass transfer show the reverse effect. It is further found that a growing Prandtl number or heat sink parameter decreases the transient temperature of the flow field at all points while the heat source parameter reverses the effect. The concentration distribution of the flow field suffers a decrease in boundary layer thickness in presence of heavier diffusive species (growing Sc at all points of the flow field. The effect of increasing Prandtl number Pr is to decrease the magnitude of skin-friction and to increase the rate of heat transfer at the wall for MHD flow, while the effect of increasing magnetic parameter M is to decrease their values at all points.
Bhuvankar, Pramod; Dabiri, Sadegh
2016-11-01
Two-phase flow is an effective means for heat removal due to the enhanced convective effect caused by bubbly flow and the usually high latent heat of vaporization of the liquid phase. We present a numerical study of the effect of flow patterns around a single bubble rising in shear flow near a vertical wall, on the wall-to-liquid heat transfer. The Navier-Stokes equations are solved in a frame of reference moving with the bubble, by using the front tracking method for interface tracking. Our simulations reveal an enhancement of heat transfer downstream of the bubble, and a less pronounced diminishment of heat transfer upstream of the bubble. We observe that in the range of 5 Archimedes number. The heat transfer enhancement is attributed to flow reversal happening in a confined region of the shear flow, in the presence of a bubble. The analytical solution of 2 - D inviscid shear flow over a cylinder near a wall is used to identify two parameters of flow reversal namely 'reversal height' and 'reversal width'. These parameters are then used to qualitatively explain what we observe in 3 - D simulations.
Energy Technology Data Exchange (ETDEWEB)
Little, David A.; McQuiggan, Gerard; Wasdell, David L.
2016-10-25
A midframe portion (213) of a gas turbine engine (210) is presented, and includes a compressor section (212) configured to discharge an air flow (211) directed in a radial direction from an outlet of the compressor section (212). Additionally, the midframe portion (213) includes a manifold (214) to directly couple the air flow (211) from the compressor section (212) outlet to an inlet of a respective combustor head (218) of the midframe portion (213).
Theoretical and experimental studies of churn flow in vertical tubes. Final technical report
Energy Technology Data Exchange (ETDEWEB)
1986-01-27
The pattern known as churn flow is a highly unsteady pattern with stochastic features and is extremely complex. However, calculations show that for many geothermal wells the condition of churn flow consists over much of the length of the two phase zone. Furthermore, it frequently exists at the surface so that design of separation equipment and surface piping depends on the accurate modelling of this type of flow. It has been the long term purpose of this project to develop physically based models for churn flow which can be used as a basis for predicting holdup, frictional loss and heat transfer rates for this flow pattern in geothermal systems. To achieve this end, it was necessary to develop new methods for measuring the time dependent characteristics of the flow and thus be able to uncover the basic physics of the flow. Models can then be developed based on this understanding which characterizes the flow and equations for holdup, friction and heat transfer evolved.
Modeling and control of water disinfection process in annular photoreactors
Keesman, K.J.; Vries, D.; Mourik, van S.; Zwart, H.
2007-01-01
Abstract¿ As an alternative or addition to complex physical modeling, in this paper transfer function models of the disinfection process in annular photoreactors under different flow conditions are derived. These transfer function models allow an analytical evaluation of the system dynamics and the
Modelling of water disinfection process in annular photoreactors
Keesman, K.J.; Parasoglou, M.; Vries, D.
2006-01-01
As an alternative or addition to complex physical modelling, in this paper transfer function models of the disinfection process in annular photoreactors under different flow conditions are derived. These transfer function models allow an analytical evaluation of the system dynamics and the control s
Modeling and control of water disinfection process in annular photoreactors
Keesman, K.J.; Vries, D.; Mourik, van S.; Zwart, H.J.; Tzafestas, S.
2007-01-01
As an alternative or addition to complex physical modeling, in this paper transfer function models of the disinfection process in annular photoreactors under different flow conditions are derived. These transfer function models allow an analytical evaluation of the system dynamics and the control st
Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.
2016-09-01
A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.
Directory of Open Access Journals (Sweden)
G.S. Seth
2014-06-01
Full Text Available An investigation of the effects of Hall current and rotation on unsteady hydromagnetic natural convection flow with heat and mass transfer of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving vertical plate embedded in a fluid saturated porous medium, when temperature of the plate has a temporarily ramped profile, is carried out. Exact solution of the governing equations is obtained in closed form by Laplace transform technique. Exact solution is also obtained in case of unit Schmidt number. Expressions for skin friction due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically whereas those of skin friction are presented in tabular form for various values of pertinent flow parameters.
Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.
2014-12-01
Forced convection heat transfer from a PtCo wire with a length of 120 mm and a diameter of 1.2 mm that was inserted into a vertically-mounted pipe with a diameter of 8.0 mm to liquid hydrogen flowing upward was measured with a quasi-steady increase of a heat generation rate for wide ranges of flow rate under saturated conditions. The pressures were varied from 0.4 MPa to 1.1 MPa. The non-boiling heat transfer characteristic agrees with that predicted by Dittus-Boelter correlation. The critical heat fluxes are higher for higher flow rates and lower pressures. Effect of Weber number on the CHF was clarified and a CHF correlation that can describe the experimental data is derived based on our correlation for a pipe.
Tatsumoto, Hideki; Shirai, Yasuyuki; Shiotsu, Masahiro; Naruo, Yoshihiro; Kobayashi, Hiroaki; Inatani, Yoshifumi
The transient heat transfer from a Pt-Co wire heater inserted into a vertically mounted pipe, through which forced flow subcooled liquid hydrogen was passed, is measured by increasing the exponential heat input with various time periods at a pressure of 0.7 MPa and an inlet temperature of 21 K. The flow velocities range from 0.8 to 5.5 m/s. For shorter periods, the non-boiling heat transfer becomes higher than that given by the Dittus-Boelter equation due to the transient conductive heat transfer contribution. In addition, the transient critical heat flux (CHF) becomes higher than the steady-state CHF. The effect of the flow velocity and period on the transient CHF heat flux is also clarified.
Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.
2016-06-01
An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.
Directory of Open Access Journals (Sweden)
A. K. Acharya
2014-01-01
Full Text Available Free convective magnetohydrodynamics (MHD flow of a viscous incompressible and electrically conducting fluid past a hot vertical porous plate embedded in a porous medium in the presence of heat source has been studied in this paper. The temperature of the plate varies both in space and time. The main objective of this paper is to study the effect of porosity of the medium coupled with the variation of plate temperature with regard to space and in time. The effect of pertinent parameters characterizing the flow has been presented through the graphs. It is important to record that the presence of porous media has no significant contribution to the flow characteristics and viscous dissipation compensates for the heating and cooling of the plate due to convective current.
Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.
2017-02-01
An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.
The Instability of Void Fraction Waves in Vertical Gas—Liquid Two—Phase Flow
Institute of Scientific and Technical Information of China (English)
BaojiangSUN; DachunYAN; 等
1999-01-01
The measuring and analyzing results of void fraction waves in different flow regimes show that the propagating velocity of void fraction waves depends on flow regimes and mean void fraction.The disturbance at some frequencies can enhance the void fraction wave velocity.Non-linear analysis show that the instability process of bubble flow is a chaotic process.Before the bubbly flow transits to cap-bubbly flow the growth rate of void fraction waves becomes the maximum value when the disturbance frequency is around the main frequency of void fraction waves.
Directory of Open Access Journals (Sweden)
R. N. Barik
2013-09-01
Full Text Available An analysis is made to study the effects of diffusion-thermo and chemical reaction on fully developed laminar MHD flow of electrically conducting viscous incompressible fluid in a vertical channel formed by two vertical parallel plates was taken into consideration with uniform temperature and concentration. The analytical solution by Laplace transform technique of partial differential equations is used to obtain the expressions for the velocity, temperature and concentration. It is interesting to note that during the course of computation, the transient solution at large time coincides with steady state solution derived separately and the diffusion-thermo effect creates an anomalous situation in temperature and velocity profiles for small Prandtl numbers. The study is restricted to only destructive reaction and non-conducting case cannot be derived as a particular case still it is quite interesting and more realistic than the earlier one.
Comparison of heat-pulse flow measurements and vertical gradients in a fractured limestone aquifer
Energy Technology Data Exchange (ETDEWEB)
Dearborn, L.L.; Calkin, S.F.; Andolsek, R.H. [ABB Environmental Services, Inc., Portland, ME (United States); Allison, W.S. [Lockheed Martin Energy Systems, Inc., Oliver Springs, TN (United States)
1996-11-01
Establishing a site-specific relationship between heat-pulse flowmeter (HPFM) data and corresponding vertical gradient data may allow prediction of potential vertical gradients through BPFM logging alone. Vertical gradient and corresponding BPFM rates were determined for 117 test intervals in a fractured limestone bedrock aquifer. From these data, it appears that HPFM data can be used in place of more labor intensive borehole packer testing to provide estimates of vertical gradients in this type of hydrogeologic system. Groundwater conditions in the fractured bedrock were investigated through testing of 66 open boreholes, as part of the hazardous waste remedial investigation at the former Loring Air Force Base (LAFB) in northern Maine, USA. Borehole geophysical logging tools, including BPFM and acoustic televiewer (ATV), in conjunction with air hammer drilling logs, were used to target specific fracture(s) to test using conventional straddle packers. HPFM and head data from 41 boreholes met general requirements for comparison purposes, and a linear correlation trend was identified.
Explicit wave action conservation for water waves on vertically sheared flows
Quinn, Brenda; Toledo, Yaron; Shrira, Victor
2016-04-01
Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical
Park, Chang Seok; Lim, Hee Chang
2015-11-01
In general, the heated surface generates a Marangoni flow inside a droplet yielding a coffee stain effect in the end. This study aims to visualize and control the Marangoni flow by using periodic vertical vibration. While the droplet is evaporating, the variation of contact angle and internal volume of droplet was observed by using the combination of a continuous light and a DSLR still camera. Regarding the internal velocity, the PIV(Particle Image Velocimetry) system was applied to visualize the internal Marangoni flow. In order to estimate the temperature gradient inside and surface tension on the droplet, a commercial software Comsol Multiphysics was used. In the result, the internal velocity increases with the increase of the plate temperature and both flow directions of Marangoni and gravitational flow are opposite so that there seems to be a possibility to control the coffee stain effect. In addition, the Marangoni flow was controlled at relatively lower range of frequency 30 ~ 50Hz. Work supported by Korea government Ministry of Trade, Industry and Energy KETEP grant No. 20134030200290, Ministry of Education NRF grant No. NRF2013R1A1A2005347.
Directory of Open Access Journals (Sweden)
Prasad K.V.
2017-02-01
Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.
Energy Technology Data Exchange (ETDEWEB)
Lok, Y.Y. [Center for Academic Services, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)
2006-12-15
The unsteady mixed convection boundary-layer flow of a micro-polar fluid near the region of the stagnation point on a double-infinite vertical flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase or sudden decrease in the surface temperature from the uniform ambient temperature. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. This method may present well-behaved solutions for the transient (small time) solution and those of the steady-state flow (large time) solution. It was found that there is a smooth transition from the small-time solution (initial unsteady-state flow) to the large-time solution (final steady-state flow). Further, it is shown that for both assisting and opposing cases and a fixed value of the Prandtl number, the reduced steady-state skin friction and the steady-state heat transfer from the wall (or Nusselt number) decrease with the increase of the material parameter. On the other hand, it is shown that with the increase of the Prandtl number and a fixed value of the material parameter, the reduced steady-state skin friction decreases when the flow is assisting and it increases when the flow is opposing. (author)
Directory of Open Access Journals (Sweden)
m Das
2014-01-01
Full Text Available The unsteady flow and heat transfer of a viscous incompressible, electrically conducting dusty fluid past vertical plate under the influence of a transverse magnetic field is studied with a view to examine the combined effects of suction, heat absorption and ramped wall temperature. The temperature of the wall is assumed to have a temporarily ramped profile which goes on increasing up to a certain time limit and then becomes constant. To investigate the effect of rampedness in wall temperature, the solution for the flow past an isothermal wall is also obtained. The governing partial differential equations are solved using Laplace transformation technique in which the inversion is obtained numerically using Matlab. To validate the results of numerical inversion a comparison between the numerical and analytical values of fluid and particle temperatures and Nusselt number is also presented. The effects of pertinent flow parameters affecting the flow and heat transfer are investigated with the help of graphs and tables. It is found that the increase in suction, heat absorption and particle concentration contribute in thinning the thermal and momentum boundary layers and the velocity and temperature for both the fluid and particle phases are higher in the case of a flow past an isothermal plate than that of a flow past a plate with ramped temperature.
Institute of Scientific and Technical Information of China (English)
LIN Zhe; ZHU Linhang; CUI Baoling; LI Yi; RUAN Xiaodong
2014-01-01
Gate valve has various placements in the practical usages.Due to the effect of gravity,particle trajectories and erosions are distinct between placements.Thus in this study,gas-solid flow properties and erosion in gate valve for horizontal placement and vertical placement are discussed and compared by using Euler-Lagrange simulation method.The structure of a gate valve and a simplified structure are investigated.The simulation procedure is validated in our published paper by comparing with the experiment data of a pipe and an elbow.The results show that for all investigated open degrees and Stokes numbers (St),there are little difference of gas flow properties and flow coefficients between two placements.It is also found that the trajectories of particles for two placements are mostly identical when St << 1,making the erosion independent of placement.With the increase of St,the distinction of trajectories between placements becomes more obvious,leading to an increasing difference of the erosion distributions.Besides,the total erosion ratio of surface T for horizontal placement is two orders of magnitudes larger than that for vertical placement when the particle diameter is 250μm.
Vertical Axis Wind Turbine flows using a Vortex Particle-Mesh method: from near to very far wakes
Backaert, Stephane; Chatelain, Philippe; Winckelmans, Gregoire; Kern, Stefan; Maeder, Thierry; von Terzi, Dominic; van Rees, Wim; Koumoutsakos, Petros
2012-11-01
A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. The vorticity-velocity formulation of the NS equations is treated in a hybrid way: particles handle advection while the mesh is used to evaluate the differential operators and for the fast Poisson solvers (here a Fourier-based solver which simultaneously allows for unbounded directions and inlet/outlet boundaries). Both discretizations communicate through high order interpolation. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed, with a relatively fine resolution (128 and 160 grid points per blade) and for computational domains extending up to 6 D and 14 D downstream of the rotor. The wake complex development is captured in details, from the blades to the near wake coherent vortices, to the transitional ones, to the fully developed turbulent far wake. Mean flow statistics in planes (horizontal, vertical and cross) are also presented. A case with a realistic turbulent wind inflow is also considered. The physics are more complex than for HAWT flows. Computational resources provided by a PRACE award.
Zhou, J. X.; Shen, X.; Yin, Y. J.; Guo, Z.; Wang, H.
2015-06-01
In this paper, Gas-liquid two phase flow mathematic models of incompressible fluid were proposed to explore the feature of fluid under certain centrifugal force in vertical centrifugal casting (VCC). Modified projection-level-set method was introduced to solve the mathematic models. To validate the simulation results, two methods were used in this study. In the first method, the simulation result of basic VCC flow process was compared with its analytic solution. The relationship between the numerical solution and deterministic analytic solution was presented to verify the correctness of numerical algorithms. In the second method, systematic water simulation experiments were developed. In this initial experiment, special experimental vertical centrifugal device and casting shapes were designed to describe typical mold-filling processes in VCC. High speed camera system and data collection devices were used to capture flow shape during the mold-filling process. Moreover, fluid characteristic at different rotation speed (from 40rpm, 60rpmand 80rpm) was discussed to provide comparative resource for simulation results. As compared with the simulation results, the proposed mathematical models could be proven and the experimental design could help us advance the accuracy of simulation and further studies for VCC.
Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime-An experimental study
Energy Technology Data Exchange (ETDEWEB)
Mayor, T.S.; Ferreira, V.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal); Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal)], E-mail: jmc@fe.up.pt
2008-08-15
An experimental study on free-bubbling gas-liquid (air-water) vertical slug flow was developed using a non-intrusive image analysis technique. The flow pattern in the near-wake of the bubbles and in the main liquid between bubbles was turbulent. A single correlation for the bubble-to-bubble interaction is proposed, relating the trailing bubble velocity to the length of the liquid slug ahead of the bubble. The proposed correlation is shown to be independent of column diameter, column vertical coordinate, superficial liquid and gas velocities and the velocity and length of the leading bubble. Frequency distribution curves, averages, modes and standard deviations are reported, for distributions of bubble velocity, bubble length and liquid slug length, for each experimental condition studied. Good agreement was found between theoretical predictions and experimental results regarding the upward velocity of undisturbed bubbles, in a 0.032 m internal diameter column. A considerable discrepancy was found, though, for a 0.052 m internal diameter column. The acquired experimental data are crucial for the development and validation of a robust slug flow simulator.
Annular lipoatrophy of the ankles.
Dimson, Otobia G; Esterly, Nancy B
2006-02-01
Lipoatrophic panniculitis likely represents a group of disorders characterized by an inflammatory panniculitis followed by lipoatrophy. It occurs locally in a variety of settings and has been reported in the literature under various terms, including annular atrophic connective tissue panniculitis of the ankles, annular and semicircular lipoatrophy, abdominal lipoatrophy, and connective tissue panniculitis. Herein, a case of annular lipoatrophy of the ankles is described in a 6-year-old girl with autoimmune thyroid disease. Histologically, a mixed lobular panniculitis with lipophages was present. This pattern resembles that seen in lipoatrophic panniculitis. After a single, acute episode of an inflammatory process with subsequent lipoatrophy, her skin lesions have stabilized for 2 years requiring no treatment.
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant
2015-01-01
We consider the genesis and dynamics of interfacial instability in gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of three main flow parameters (density contrast between liquid and gas, film thickness, pressure drop applied to drive the gas stream) on the interfacial dynamics. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable internal mode for low density contrast. The same linear stability approach provides a quantitative prediction for the onset of (partial) liquid flow reversal in terms of the gas and liquid flow rates. ...
An Eulerian-Lagrangian open source solver for bubbly flow in vertical pipes
Energy Technology Data Exchange (ETDEWEB)
Pena-Monferrer, C.; Munoz-Cobo, J. L.; Monros-Andreu, G.; Martinez-Cuenca, R.; Chiva, S.
2014-07-01
Air-water two-phase flow is present in natural and industrial processes of different nature as nuclear reactors. An accurate local prediction of the boiling flow could support safety and operation analyses of nuclear reactors. An Eulerian-Lagrangian approach is investigated in this contribution as it can be used as a virtual facility to investigate the two-phase flow phenomena. A solver based on the PISO algorithm coupled with the Lagrangian equation of motion have been implemented for computing incompressible bubbly flows. (Author)
Directory of Open Access Journals (Sweden)
Farhad Ali
Full Text Available Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.
Directory of Open Access Journals (Sweden)
Hemant Poonia
2015-06-01
Full Text Available In this paper the effects of Hall current on MHD free convection flow in a vertical rotating channel filled with porous medium have been studied. A uniform magnetic field is applied in the direction normal to the plates. The entire system rotates about an axis normal to the planes of the plates with uniform angular velocity ' . The temperature of one of the plates varies periodically and the temperature difference of the plates is high enough to induce radiative heat transfer. The effects of various parameters on the velocity and temperature field are shown graphically. Also the results on Skin Frication and Nusselt Number are shown in tables.
Directory of Open Access Journals (Sweden)
Kazi Humayun Kabir
2015-01-01
Full Text Available An analysis is presented to investigate the influences of viscous and pressure stress work on MHD natural convection flow along a uniformly heated vertical wavy surface. The governing equations are first modified and then transformed into dimensionless non-similar equations by using set of suitable transformations. The transformed boundary layer equations are solved numerically using the implicit finite difference method, known as Keller-box scheme. Numerical results for the velocity profiles, temperature profiles, skin friction coefficient, the rate of heat transfers, streamlines and isotherms are shown graphically. Some results of skin friction, rate of heat transfer are presented in tabular form for selected values of physical parameters.
Shu, Jian-Jun
2014-01-01
The paper considers heat transfer characteristics of thin film flow over a hot horizontal flat plate resulting from a cold vertical jet of liquid falling onto the surface. A numerical solution of high accuracy is obtained for large Reynolds numbers using the modified Keller box method. For the flat plate, solutions for axisymmetric jets are obtained. In a parallel approximation theory an advanced polynomial approximation for the velocity and temperature distribution is employed and results are good agreement with those obtained using a simple Pohlhausen polynomial and the numerical solutions.
Institute of Scientific and Technical Information of China (English)
ABD ELMABOUD Y; MEKHEIMER Kh S; MOHAMED Mohamed S
2015-01-01
An analysis has been achieved to study the natural convection of a non-Newtonian fluid (namely a Carreau fluid) in a vertical channel with rhythmically contracting walls. The Navier-Stokes and the energy equations are reduced to a system of non- linear PDE by using the long wavelength approximation. The optimal homotopy analysis method (OHAM) is introduced to obtain the exact solutions for velocity and temperature fields. The convergence of the obtained OHAM solution is discussed explicitly. Numerical calculations are carried out for the pressure rise and the features of the flow and temperature characteristics are analyzed by plotting graphs and discussed in detail.
Directory of Open Access Journals (Sweden)
Dr. G. Prabhakara Rao,
2015-04-01
Full Text Available We consider a two-dimensional MHD natural convection flow of an incompressible viscous and electrically conducting fluid through porous medium past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by the ordinary differential equations by introducing appropriate coordinate transformations. We solve that ordinary differential equations and find the velocity profiles, temperature profile, the skin friction and nusselt number. The effects of Grashof number (Gr, Hartmann number (M and Prandtl number (Pr, Darcy parameter (D-1 on velocity profiles and temperature profiles are shown graphically.
Directory of Open Access Journals (Sweden)
Chandrakala P.
2014-05-01
Full Text Available A numerical technique is employed to derive a solution to the transient natural convection flow of an incompressible viscous fluid past an impulsively started infinite isothermal vertical plate with uniform mass diffusion in the presence of a magnetic field and homogeneous chemical reaction of first order. The governing equations are solved using implicit finite-difference method. The effects of velocity, temperature and concentration for different parameters such as the magnetic field parameter, chemical reaction parameter, Prandtl number, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the fluid velocity decreases with increasing the chemical reaction parameter and the magnetic field parameter.
Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger
DEFF Research Database (Denmark)
Knudsen, Søren; Morrison, GL; Behnia, M
2005-01-01
initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C...
Eosinophilic annular erythema in childhood - Case report*
Abarzúa, Alvaro; Giesen, Laura; Silva, Sergio; González, Sergio
2016-01-01
Eosinophilic annular erythema is a rare, benign, recurrent disease, clinically characterized by persistent, annular, erythematous lesions, revealing histopathologically perivascular infiltrates with abundant eosinophils. This report describes an unusual case of eosinophilic annular erythema in a 3-year-old female, requiring sustained doses of hydroxychloroquine to be adequately controlled. PMID:27579748
Directory of Open Access Journals (Sweden)
Gauri Shanker Seth
2015-01-01
Full Text Available An investigation of unsteady hydromagnetic natural convection flow of a viscous, incompressible, electrically conducting and heat absorbing fluid past an impulsively moving vertical plate with Newtonian heating embedded in a porous medium in a rotating system is carried out. The governing partial differential equations are first subjected to Laplace transformation and then inverted numerically using INVLAP routine of Matlab. The governing partial differential equations are also solved numerically by Crank-Nicolson implicit finite difference scheme and a comparison has been provided between the two solutions. The numerical solution for fluid velocity and fluid temperature are depicted graphically whereas the numerical values of skin friction and Nusselt number are presented in tabular form for various values of pertinent flow parameters. Present solution in special case is compared with previously obtained solution and is found to be in excellent agreement.
Directory of Open Access Journals (Sweden)
C.V. Ramana Kumari
1995-10-01
Full Text Available A two-dimensional unsteady flow of a viscous incompressible dissipative fluid past an infinite, vertical porous plate with variable suction, is studied. Approximate solutions to the coupled non linear equations governing the flow are derived and expressions for the fluctuating parts of the velocity, the transient velocity, temperature and concentration, the amplitude and the phase of the skin-friction, and the rate of heat transfer, are derived. The effects of w(Omega(frequency, Gr (Grashof number, Gc (modified Grashof number, Sc (Schmidt number, P (Prandtl number and A (variable suction parameter, on the above physical quantities are calculated numerically and presented in figures and table. Problems of this nature find place in ablative cooling, transpiration and film cooling of rocket and jet engines.
Energy Technology Data Exchange (ETDEWEB)
Soundalgekar, V.M. (Indian Inst. of Technology, Bombay); Shende, S.R. (Walchand Coll. of Engineering, Sangli, India)
1980-01-01
A two-dimensional unsteady flow of a viscous, incompressible, electrically conducting fluid past an infinite vertical porous plate has been carried out under the following conditions: (1) constant suction at the plate; (2) the wall temperature oscillating in time about a non-zero mean; (3) constant free-stream; and (4) transversely applied uniform magnetic field. Approximate solutions to coupled non-linear equations governing the flow have been derived for the transient velocity, the transient temperature, the amplitude and phase of the skin friction and the rate of heat transfer. The velocity and the temperature have been shown on graphs and the numerical values of the amplitude and phase are entered in tables. It has been observed that the amplitude of the skin friction and the rate of heat transfer decrease due to the application of the transverse magnetic field, but increase due to increasing the Grashof number.
Directory of Open Access Journals (Sweden)
V. Srinivasa Rao
2013-01-01
Full Text Available The objectives of the present study are to investigate the radiation effects on unsteady heat and mass transfer flow of a chemically reacting fluid past a semi-infinite vertical plate with viscous dissipation. The method of solution is applied using Finite element technique. Numerical results for the velocity, the temperature and the concentration are shown graphically for various flow parameters. The expressions for the skin-frication, Nusselt number and Sherwood number are obtained. The result shows that increased cooling (Gr>0 of the plate and the Eckert number leads to a rise in the velocity. Also, an increase in the Eckert number leads to an increase in the temperature, whereas increase in radiation lead to a decrease in the temperature distribution when the plate is being cooled.
Directory of Open Access Journals (Sweden)
S. Sivasankaran
2013-03-01
Full Text Available This paper analyzes the influence of thermal radiation on the problem of unsteady magneto-convection flow of an electrically conducting fluid past a semi-infinite vertical porous plate embedded in a porous medium with time dependent suction. Perturbation technique is applied to transform the non-linear coupled governing partial differential equations in dimensionless form into a system of ordinary differential equations. The resulting equations are solved analytically and the solutions for the velocity and temperature fields are obtained. For different values of the flow parameters, the values for Nusselt number and skin-friction co-efficient are calculated. It is observed that the increase in the radiation parameter implies the decrease in the boundary layer thickness and enhances the rate of heat transfer. The velocity decreases as the existence of magnetic field becomes stronger.
Hanus, Robert; Zych, Marcin; Petryka, Leszek; Mosorov, Volodymyr; Hanus, Paweł
2015-05-01
The paper presents idea and an application of the gamma-absorption method to a two-phase flow investigation in a vertical pipeline, where the flow of solid particles transported by water was examined by a set of two 241Am radioactive sources and probes with NaI(Tl) scintillation crystals. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. For advanced analysis of electrical signals obtained from detectors the phase of cross-spectral density function has been applied. Results of the average solid-phase velocity measurements were compared with one obtained by application of the classical cross-correlation. It was found that the combined uncertainties of the velocity of solid particles evaluation in the presented experiment did not exceed 0.6% in phase method and 3.2% in cross-correlation method.
Directory of Open Access Journals (Sweden)
Hanus Robert
2015-01-01
Full Text Available The paper presents idea and an application of the gamma-absorption method to a two-phase flow investigation in a vertical pipeline, where the flow of solid particles transported by water was examined by a set of two 241Am radioactive sources and probes with NaI(Tl scintillation crystals. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. For advanced analysis of electrical signals obtained from detectors the phase of cross-spectral density function has been applied. Results of the average solid-phase velocity measurements were compared with one obtained by application of the classical cross-correlation. It was found that the combined uncertainties of the velocity of solid particles evaluation in the presented experiment did not exceed 0.6% in phase method and 3.2% in cross-correlation method.
Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas
2014-01-01
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
Directory of Open Access Journals (Sweden)
Asma Khalid
2015-01-01
Full Text Available The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.
Directory of Open Access Journals (Sweden)
V. Rajesh
2016-01-01
Full Text Available In this paper, the problem of nanofluid flow and heat transfer due to the impulsive motion of a semi-infinite vertical plate in its own plane in the presence of magnetic field is analyzed by the implicit finite-difference numerical method. A range of nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver with nanoparticle volume fraction range less than or equal to 0.04 are considered. The Tiwari-Das nanofluid model is employed. The velocity and temperature profiles as well as the skin friction coefficient and Nusselt number are examined for different parameters such as nanoparticle volume fraction, nanofluid type, magnetic parameter and thermal Grashof number. The present simulations are relevant to magnetic nanomaterials thermal flow processing in the chemical and metallurgical industries.
Natural convection flow of a nano-fluid over a vertical plate with uniform surface heat flux
Energy Technology Data Exchange (ETDEWEB)
Khan, W.A. [Department of Engineering Sciences, National University of Sciences and Technology, Karachi 75350 (Pakistan); Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States)
2011-07-15
Natural convective flow of a nano-fluid over a vertical plate with a constant surface heat flux is investigated numerically, following a similarity analysis of the transport equations. The transport model employed includes the effect of Brownian motion and thermophoresis. The analysis shows that velocity, temperature and concentration profiles in the respective boundary layers depend, besides the Prandtl and Lewis numbers, on three additional dimensionless parameters, namely a Brownian motion parameter Nb, a thermophoresis parameter Nt, a buoyancy ratio parameter Nr. In addition to the study of these parameters on the boundary layer flow characteristics (velocity, temperature, nano-particle concentration, skin friction, and heat transfer), correlations for the Nusselt and Sherwood numbers have been developed based on a regression analysis of the data. These correlations predict the numerical results with a maximum error of 5.5% for the reduced Nusselt number and 3.2% for the reduced Sherwood number. (authors)
Directory of Open Access Journals (Sweden)
Muhim Chutia
2015-01-01
Full Text Available A numerical study on steady laminar magnetohydrodynamics (MHD mixed convection flow of an electrically conducting fluid in a vertical square duct under the action of transverse magnetic field has been investigated. The walls are assumed as perfectly electrically insulated. In this study both force and free convection flows are considered. The viscous dissipation and Joule heat are also considered in the energy equation and walls of the duct are kept at constant temperature. The enclosure is heated by uniform volumetric heat density. The governing equations of momentum, induction and energy are first transformed into dimensionless equations by using dimensionless quantities, then these are solved employing finite difference method for velocity, induced magnetic field and temperature distribution. The computed results for velocity, induced magnetic field and temperature distribution are presented graphically for different dimensionless parameters Hartmaan number M, Prandtl number Pr, Grashof number Gr and magnetic Reynolds number Rm.
Iron melt flow in thin-walled sections using vertically parted moulds
DEFF Research Database (Denmark)
Larsen, Per; Tiedje, Niels
2004-01-01
Reducing the fuel consumption of vehicles can be done in many ways. A general way of doing it, is to reduce the weight as it is applicable together with all other means of saving fuel. Even though iron castings have been used in cars from the first car ever build, a big potential still exist...... for optimizing iron cast parts. To do so thin walled parts have to be used. I.e. flow in thin walled sections becomes important. Flow in plates with thicknesses from 2 to 4 mm have been investigated. It is shown that the main flow path can be changed even in such small thicknesses and that when conventional...
Vaughan, Garrett
Open channel raceway bioreactors are a low-cost system used to grow algae for biofuel production. Microalgae have many promises when it comes to renewable energy applications, but many economic hurdles must be overcome to achieve an economic fuel source that is competitive with petroleum-based fuels. One way to make algae more competitive is to improve vertical mixing in algae raceway bioreactors. Previous studies show that mixing may be increased by the addition of mechanisms such as airfoils. The circulation created helps move the algae from the bottom to top surface for necessary photosynthetic exchange. This improvement in light utilization allowed a certain study to achieve 2.2-2.4 times the amount of biomass relative to bioreactors without airfoils. This idea of increasing mixing in open channel raceways has been the focus of the Utah State University (USU) raceway hydraulics group. Computational Fluid Dynamics (CFD), Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV) are all methods used at USU to computationally and experimentally quantify mixing in an open channel raceway. They have also been used to observe the effects of using delta wings (DW) in increasing vertical mixing in the raceway. These efforts showed great potential in the DW in increasing vertical mixing in the open channel bioreactor. However, this research begged the question, does the DW help increase algae growth? Three algae growth experiments comparing growth in a raceway with and without DW were completed. These experiments were successful, yielding an average 27.1% increase in the biomass. The DW appears to be a promising method of increasing algae biomass production. The next important step was to quantify vertical mixing and understand flow patterns due to two DWs side-by-side. Raceway channels are wider as they increase in size; and arrays of DWs will need to be installed to achieve quality mixing throughout the bioreactor. Quality mixing was attained for
Benign concentric annular macular dystrophy
Directory of Open Access Journals (Sweden)
Luísa Salles de Moura Mendonça
2015-06-01
Full Text Available The purpose of the authors is to show clinical findings of a patient with benign concentric annular macular dystrophy, which is an unusual condition, and part of the "bull’s eye" maculopathy differential diagnosis. An ophthalmologic examination with color perception, fluorescein angiography, and ocular electrophysiology was performed.
Huang, Zhujian; Zhang, Xianning; Cui, Lihua; Yu, Guangwei
2016-09-15
In this work, three hybrid vertical down-flow constructed wetland (HVDF-CW) systems with different compound substrates were fed with domestic sewage and their pollutants removal performance under different hydraulic loading and step-feeding ratio was investigated. The results showed that the hydraulic loading and step-feeding ratio were two crucial factors determining the removal efficiency of most pollutants, while substrate types only significantly affected the removal of COD and NH4(+)-N. Generally, the lower the hydraulic loading, the better removal efficiency of all contaminants, except for TN. By contrast, the increase of step-feeding ratio would slightly reduce the removal rate of ammonium and TP but obviously promoted the TN removal. Therefore, the optimal operation of this CWs could be achieved with low hydraulic loading combined with 50% of step-feeding ratio when TN removal is the priority, whereas medium or low hydraulic loading without step-feeding would be suitable when TN removal is not taken into consideration. The obtained results in this study can provide us with a guideline for design and optimization of hybrid vertical flow constructed wetland systems to improve the pollutants removal from domestic sewage.
Energy Technology Data Exchange (ETDEWEB)
Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)
1999-07-25
In this study, the stability of annular leakage-flow-induced vibrations was investigated theoretically and experimentally for a translationally and rotationally coupled two-degree-of-freedom system. The critical flow rate was both theoretically and experimentally obtained as a function of the passage increment ratio and the eccentricity of the passage. A good agreement between the theoretical and experimental results was obtained. It was discovered both theoretically and from the experiments that instability will occur in the case of a divergent passage: the eccentricity of the passage lowers the stability of the systems. (author)
Directory of Open Access Journals (Sweden)
T. Vogt
2012-02-01
Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone
Growth of Bubble layer and Onset of Flow Instability in a vertical Narrow rectangular channel
Energy Technology Data Exchange (ETDEWEB)
Lee, Juhyung; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2015-05-15
Even numerous studies have been constantly conducted to date, however the prediction of OFI is still questionable for wide range of conditions especially for low mass flux condition in narrow rectangular channel as reported in the previous works. In addition, the understanding of subcooled flow boiling structures at OFI is not sufficient due to lack of studies with visualization. In this regards, OFI experiment for downward and upward flow boiling in a narrow rectangular channel are newly conducted while visualizing boiling structure. Image processing method is adopted to quantify bubble layer thickness, which is turned out to be important factor to understand the OFI. Experimental studies on OFI in a narrow rectangular channel having gap size of 2.35 mm was conducted not only for downward flow but also upward flow condition. Flow boiling structures are visualized using HSV method and also quantized bubble boundary layers are obtained by using image processing method. Based on observation and analysis, the merging of facing vapor layers on opposite boiling surfaces is the key phenomena triggering OFI for both upward and downward flow.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts.DOC in stream flow is mainly originated from soil-water solutions of watershed.Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems.This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland,i.e.,a dishing wetland and a forest wetland together,in the Sanjiang Plain.Northeast China.The results indicate that DOC concentrations in soil-water solutions decreased and then increased with increasing soil depth in the annular wetland.In the upper soil layers of 0-10 cm and 10-20 cm,DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R2=0.3122 and R2=0.443).The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions.The concentrations of total organic carbon (TOC),total carbon (TC) and Fe(Ⅱ),DOC mobility and continuous vertical and lateral flow affected the distribution variations of DOC in soil-water solutious.The correlation coefficients between DOC concentrations and TOC,TC and Fe(Ⅱ) were 0.974,0.813 and 0.753 respectively.These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments.However,the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale.These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports,which would bring negative environmental impacts in watersheds of the Sanjiang Plain.
Characteristics of drift-flux models for the 3' diameter vertical-upward air-water flow condition
Energy Technology Data Exchange (ETDEWEB)
Nguyen, V. T.; Euh, D. J.; Song, C. H. [KAERI, Daejeon (Korea, Republic of)
2009-07-01
One of the more complex aspects of two-phase flow calculations is the determination of the void fraction. An accurate estimation of this parameter is important for understanding and predicting the behavior of systems during a wide variety of transient conditions. The drift-flux models are based on correlations to compute the void fraction distribution and slip in a two-phase flow needed to obtain the relative velocity between the phases. Thus, the accuracy of the correlation has a decisive role in determining the correct transport of the two-phases in the system. In this paper, the assessment of 7 correlations based on the Zuber-Findlay model has been done by using the experimental data which were performed on the 3' diameter vertical-upward air-water test facility in KAERI. The void fraction was measured by using the impedance void meter which has a good dynamic resolution to get the values directly without any further data treatment. A total of 28 flow conditions have been performed at 2 bar and 3 bar inlet pressure conditions with temperature of 30 .deg. C, superficial liquid and gas velocity range of 0.5-2.8 m/s and 0.044-1.025 m/s. Some physical phenomena relevant to inlet flow condition and pressure effect were investigated. The results of assessment show a good predictive capability of Bestion model, which is currently used in the system code CATHARE.
Hua, G F; Zhao, Z W; Kong, J; Guo, R; Zeng, Y T; Zhao, L F; Zhu, Q D
2014-11-01
The aim of this study was to evaluate the effects of plant roots (Typha angustifolia roots) on the hydraulic performance during the clogging process from the perspective of time and space distributions in mesocosm vertical flow-constructed wetlands with coarse sand matrix. For this purpose, a pair of lab-scale experiments was conducted to compare planted and unplanted systems by measuring the effective porosity and hydraulic conductivity of the substrate within different operation periods. Furthermore, the flow pattern of the clogging process in the planted and unplanted wetland systems were evaluated by their hydraulic performance (e.g., mean residence time, short circuiting, volumetric efficiency, number of continuously stirred tank reactors, and hydraulic efficiency factor) in salt tracer experiments. The results showed that the flow conditions would change in different clogging stages, which indicated that plants played different roles related to time and space. In the early clogging stages, plant roots restricted the flow of water, while in the middle and later clogging stages, especially the later stage, growing roots opened new pore spaces in the substrate. The roots played an important role in affecting the hydraulic performance in the upper layer (0-30 cm) where the sand matrix had a larger root volume fraction. Finally, the causes of the controversy over plant roots' effects on clogging were discussed. The results helped further understand the effects of plant roots on hydraulic performance during the clogging process.
Directory of Open Access Journals (Sweden)
Dinarvand Saeed
2015-01-01
Full Text Available This article deals with the study of the steady axisymmetric mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder with prescribed external flow and surface temperature. By means of similarity transformation, the governing partial differential equations are reduced into highly non-linear ordinary differential equations. The resulting non-linear system has been solved analytically using an efficient technique namely homotopy analysis method (HAM. Expressions for velocity and temperature fields are developed in series form. In this study, three different types of nanoparticles are considered, namely alumina (, titania (, and copper ( with water as the base fluid. For copper-water nanofluid, graphical results are presented to describe the influence of the nanoparticle volume fraction on the velocity and temperature fields for the forced and mixed convection flows. Moreover, the features of the flow and heat transfer characteristics are analyzed and discussed for foregoing nanofluids. It is found that the skin friction coefficient and the heat transfer rate at the surface are highest for copper-water nanofluid compared to the alumina-water and titania-water nanofluids.
PIV measurement of the vertical cross-flow structure over tube bundles
Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.
Shell and tube heat exchangers are among the most commonly used types of heat exchangers. Shell-side cross-flow in tube bundles has received considerable attention and has been investigated extensively. However, the microscopic flow structure including velocity distribution, wake, and turbulent structure in the tube bundles needs to be determined for more effective designs. Therefore, in this study, in order to clarify the detailed structure of cross-flow in tube bundles with particle image velocimetry (PIV), experiments were conducted using two types of model; in-line and staggered bundles with a pitch-to-diameter ratio of 1.5, containing 20 rows of five 15 mm O.D. tubes in each row. The velocity data in the whole flow field were measured successfully by adjusting the refractive index of the working fluid to that of the tube material. The flow features were characterized in different tube bundles with regards to the velocity vector field, vortex structure, and turbulent intensity.
Design and analysis of 19 pin annular fuel rod cluster for pressure tube type boiling water reactor
Energy Technology Data Exchange (ETDEWEB)
Deokule, A.P., E-mail: abhijit.deokule1986@gmail.com [Homi Bhabha National Institute, Trombay 400 085, Mumbai (India); Vishnoi, A.K.; Dasgupta, A.; Umasankari, K.; Chandraker, D.K.; Vijayan, P.K. [Bhabha Atomic Research Centre, Trombay 400 085, Mumbai (India)
2014-09-15
Highlights: • Development of 19 pin annular fuel rod cluster. • Reactor physics study of designed annular fuel rod cluster. • Thermal hydraulic study of annular fuel rod cluster. - Abstract: An assessment of 33 pin annular fuel rod cluster has been carried out previously for possible use in a pressure tube type boiling water reactor. Despite the benefits such as negative coolant void reactivity and larger heat transfer area, the 33 pin annular fuel rod cluster is having lower discharge burn up as compared to solid fuel rod cluster when all other parameters are kept the same. The power rating of this design cannot be increased beyond 20% of the corresponding solid fuel rod cluster. The limitation on the power is not due to physics parameters rather it comes from the thermal hydraulics side. In order to increase power rating of the annular fuel cluster, keeping same pressure tube diameter, the pin diameter was increased, achieving larger inside flow area. However, this reduces the number of annular fuel rods. In spite of this, the power of the annular fuel cluster can be increased by 30% compared to the solid fuel rod cluster. This makes the nineteen pin annular fuel rod cluster a suitable option to extract more power without any major changes in the existing design of the fuel. In the present study reactor physics and thermal hydraulic analysis carried out with different annular fuel rod cluster geometry is reported in detail.
Energy Technology Data Exchange (ETDEWEB)
Adesanya, S.O., E-mail: adesanyas@run.edu.ng [Department of Mathematical Sciences, College of Natural Sciences, Redeemer’s University (Nigeria); Oluwadare, E.O. [Department of Mathematical Sciences, College of Natural Sciences, Redeemer’s University (Nigeria); Falade, J.A., E-mail: faladej@run.edu.ng [Department of Physical Sciences, College of Natural Sciences, Redeemer’s University (Nigeria); Makinde, O.D., E-mail: makinded@gmail.com [Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395 (South Africa)
2015-12-15
In this paper, the free convective flow of magnetohydrodynamic fluid through a channel with time periodic boundary condition is investigated by taking the effects of Joule dissipation into consideration. Based on simplifying assumptions, the coupled governing equations are reduced to a set of nonlinear boundary valued problem. Approximate solutions are obtained by using semi-analytical Adomian decomposition method. The effect of pertinent parameters on the fluid velocity, temperature distribution, Nusselt number and skin friction are presented graphically and discussed. The result of the computation shows that an increase in the magnetic field intensity has significant influence on the fluid flow. - Highlights: • The influence of magnetic field on the free convective fluid flow is considered. • The coupled equations are solved by using Adomian decomposition method. • The Adomian series solution agreed with previously obtained result. • Magnetic field decreases the velocity maximum but enhances temperature field.
Iron Melt Flow in Thin Walled Sections Cast in Vertically Parted Green Sand Moulds
DEFF Research Database (Denmark)
Larsen, Per; Andersen, Uffa; Rasmussen, Niels
. At this type of gating system it is very difficult to avoid pressure shock waves. The pressure shock waves can be initiated at two different stages of the filling. If the gating system contains a dead end and the cross sections are completely filled behind the melt front, a pressure shock wave...... will be initiated by the hammer effect when the melt reaches the dead end of the runner. Pressure shock waves can also be initiated when the last air pocket in a partly filled runner is closed. The pressure shock waves result in disintegrating melt surfaces. Flow in thin walled sections is not only important when...... the initial filling and obtaining a balanced filling. When calm flow is wanted, normally the runners are designed to give low velocities. But to secure calm flow, pressure shock waves also have to be avoided. When pressure shocks are avoided and runners with good control over the melt are used, relatively...
Energy Technology Data Exchange (ETDEWEB)
Xu, W. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Fiflis, P., E-mail: fiflis1@illinois.edu [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Szott, M.; Kalathiparambil, K.; Jung, S.; Christenson, M.; Haehnlein, I.; Kapat, A. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Andruczyk, D. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); PPPL (United States); Curreli, D.; Ruzic, D.N. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States)
2015-08-15
Flowing liquid metal PFCs may offer a solution to the issues faced by solid divertor materials in tokamak plasmas. The Liquid–Metal Infused Trenches (LiMIT) concept of Illinois Ruzic et al. (2011) is a liquid metal plasma facing structure which employs thermoelectric magnetohydrodynamic (TEMHD) effects to self-propel lithium through a series of trenches. The combination of an incident heat flux and a magnetic field provide the driving mechanism. Tests have yielded experimental lithium velocities under different magnetic fields, which agree well with theoretical predictions Xu et al. (2013). The thermoelectric force is expected to overcome gravity and be able to drive lithium flow along an arbitrary direction and the strong surface tension of liquid lithium is believed to maintain the surface when Li flows in open trenches. This paper discusses the behavior of the LiMIT structure when inclined to an arbitrary angle with respect to the horizontal.
Kukkonen, I. T.; Rath, V.; Kivekäs, L.; Šafanda, J.; Čermak, V.
2012-04-01
Detailed geothermal studies of deep drill holes provide insights to heat transfer processes in the crust, and allow separation of different factors involved, such as palaeoclimatic and structural conductive effects as well as advective fluid flow effects. We present high resolution geothermal results of the 2,516 m deep Outokumpu Deep Drill Hole in eastern Finland drilled in 2004-2005 into a Palaeoproterozoic formation with metasedimentary rocks, ophiolite-derived altered ultramafic rocks and pegmatitic granite. The down-hole temperatures have been logged five times after end of drilling and extend to day 948 after drilling. The hole is completely cored (79% core coverage) and thermal conductivity measurements were done at 1 m intervals. The geothermal results on temperature gradient, thermal conductivity and heat flow density yield an exceptionally detailed data set and indicate a significant vertical variation in gradient and heat flow density. Heat flow density increases from about 28-32 mW m-2 in the uppermost 1000 m to 40-45 mW m-2 at depths exceeding 2000 m. The estimated undisturbed surface heat flow value is 42 mWm-2. We present results on forward and inverse transient conductive models which suggest that the vertical variation in heat flow can mostly be attributed to a palaeoclimatic effect due to ground surface temperature (GST) variations during the last 100,000 years. The modelling suggests that the average GST was about -3…-4°C during the Weichselian glaciation. Holocene GST values are within ±2 degree from the present average GST in Outokumpu (5°C). The topographic hydraulic heads and hydraulic conductivity of crystalline rocks are low which suggests that advective heat transfer in the formation is not significant. The slow replacement of fresh flushing water by saline formation fluids is observed in the hole, but it does not generate significant thermal disturbances in the logs. On the other hand, free sluggish thermal convection is present in
Annular MHD Physics for Turbojet Energy Bypass
Schneider, Steven J.
2011-01-01
The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).
CFD Calculations of the Air Flow Along a Cold Vertical Wall with an Obstacle
DEFF Research Database (Denmark)
Svidt, Kjeld; Heiselberg, Per
This paper deals with the ability of Computational Fluid Dynamics to predict downdraught at a plane wall and at a wall with large obstacles. Quite simple boundary conditions were used in this study. Predictions of the main flow characteristics and the velocity levels in the occupied zone showed...
Porte, Elze; Masen, Marc; Vriend, Nathalie; de Boer, Andre
2015-11-01
When large storage silo's containing granular material are discharged, a loud sound emits from the silo. The noise causes disturbances for people working on site and for nearby residential areas. Insufficient knowledge exists to solve the problem efficiently and adequately. An experimental study using a scaled silo setup shows that the particle flow dynamics and system characteristics are both actors in determining the occurrence of the sound and its frequency. The extensive use of frequency analysis provides new insights into the complexity of the related parameters. The particle flow and tube characteristics are manipulated by changing the outflow rate, bulk material, wall material, wall pressure and tube dimensions. Frequency analysis of the recorded sound shows that the frequency depends on both the externally forced parameter changes and internal changes during flow. The latter indicates that during the flow, characteristic properties such as the packing fraction and sound speed change. As a result, the frequency changes as well. However, the external parameters that are manipulated as an initial condition are equally important in describing the frequency response.
Modelling Vertical Variation of Turbulent Flow Across a Surf Zone Using SWASH
Zijlema, M.
2014-01-01
This paper presents the application of the open source non-hydrostatic wave-flow model SWASH to propagation of irregular waves in a barred surf zone, and the model results are discussed by comparing against an extensive laboratory data set. This study focus not only on wave transformation in the sur
Bubble shape and breakage events in a vertical pipe at the boiler flow line
Directory of Open Access Journals (Sweden)
Fsadni Andrew
2014-03-01
Full Text Available The theoretical and experimental aspects concerning the typical bubble shape at the flow line of a standard domestic central heating system are investigated. This is done in support of the on-going research on two-phase flows in domestic central heating systems. Bubble nucleation and detachment at the primary heat exchanger wall of a domestic central heating boiler results in a bubbly two-phase flow in the system pipe work. Bubbly flow results in undesired cold spots at higher points in the system, consequently diminishing system performance. An experimental analysis was done on the bubble shape at the exit of the boiler through the application of photographic techniques. The results are presented in terms of the measured bubble aspect ratios at some principal system operating conditions. The dimensionless Eotvos and bubble Reynolds number were calculated and tabulated with the measured mean diameters. The data was subsequently correlated to the bubble shape regime diagram. Results suggest that most bubbles are quasi-spherical in shape with a noticeable elongation at lower bulk fluid Reynolds numbers.
Bubble shape and breakage events in a vertical pipe at the boiler flow line
Fsadni, Andrew; Ge, Yunting
2014-03-01
The theoretical and experimental aspects concerning the typical bubble shape at the flow line of a standard domestic central heating system are investigated. This is done in support of the on-going research on two-phase flows in domestic central heating systems. Bubble nucleation and detachment at the primary heat exchanger wall of a domestic central heating boiler results in a bubbly two-phase flow in the system pipe work. Bubbly flow results in undesired cold spots at higher points in the system, consequently diminishing system performance. An experimental analysis was done on the bubble shape at the exit of the boiler through the application of photographic techniques. The results are presented in terms of the measured bubble aspect ratios at some principal system operating conditions. The dimensionless Eotvos and bubble Reynolds number were calculated and tabulated with the measured mean diameters. The data was subsequently correlated to the bubble shape regime diagram. Results suggest that most bubbles are quasi-spherical in shape with a noticeable elongation at lower bulk fluid Reynolds numbers.
Carrillo-Rivera, J. J.; Cardona, A.; Moss, D.
1996-11-01
Fractured volcanics exert a control on groundwater flow in the San Luis Potosi (SLP) valley. The chemical composition and temperature of water pumped from boreholes partially penetrating the fractured volcanics indicate that the produced water originates from an upward vertical flow. Most of the thermal groundwater has been detected in areas related to regional faults and lineaments. Intensive and uncontrolled pumping from the upper {1}/{4} of the aquifer (total depth > 1500 m) causes the rise of water from a deep regional flow system that mixes with the shallower waters. The deep waters contain high fluoride concentrations that contaminate the mixture and cause substantial health related effects. The recharge controls on the regional flow system require further research; however, hydrogeochemical evidence supports the view that the origin of this recharge is limited to the western bounding Sierra Madre Occidental. Higher levels of dissolved Na +, Li +, F - (and SO 4-2) derived from Tertiary volcanics have been introduced into the exploited region; the concentrations indicate lengthy and deep circulation flow. Li + concentration was used as an indicator of groundwater residence time, and therefore of the length of the groundwater flow path. Hydrogeochemical interpretation indicates the presence of three flow systems: a shallow local one controlled by a clay layer that subcrops most of the valley floor, an intermediate system in which water infiltrates just beyond the boundary of the clay layer, and a deep regional system which originates outside the surface catchment. The local and intermediate systems circulate through materials with comparatively low hydraulic conductivity. Low Cl - concentrations suggest rapid flow in the regional system. Concentrations of Li + and F - can be used to calculate percentages of waters in mixtures of regional and intermediate flows. Concentrations of Na +, Ca 2+ and SO 4-2 appear to be controlled by water-rock reactions
Institute of Scientific and Technical Information of China (English)
杨芳芳; 吉洪湖; 郑妹; 张勃; 胡娅萍
2012-01-01
航空发动机火焰筒的大孔包括主燃孔和掺混孔,将多斜孔壁冷却方式应用到真实环形燃烧室的火焰筒壁上,运用CFD软件,通过数值模拟的方式,计算研究整个燃烧室的温度分布,特别考虑了火焰筒壁温的分布,对近壁区的流场进行计算研究.研究分析表明:内外环壁热侧大部分区域温度都保持在1 000 K～1 100K,在材料的长期许用温度范围内;同时针对外环壁主燃孔和掺混孔附近的局部高温点,提出冷却方案,改善了近壁区的流场分布,对改善高温点起到了很好的效果,最大幅度降低达13.2％,壁面温度更加均匀,对降低热应力水平,延长火焰筒使用寿命有利.%The big holes of Aero- engine combustor liner include primary holes and dilution holes,this paper applied the effusion- cooling method into the real annular flame tube. With the help of the CFD software , numerical simulation was carried out to investigate on the temperature distribution of the whole combustor, especially of the liners, including flow fields of near wall regions. The result shows that the temperature of most regions of outer and inner liners on the hot side is from 1 000 K to 1 100 K,which is in the material's long- term allowable temperature range. And cooling scheme was put forward considered on hot spots behind the primary holes and dilution holes on the outer liner, which changed the flow of the near wall regions,and effectively improved the hot spots. The most decreasing range of the highest temperature is 13.2% ,and more uniform wall temperature makes thermal stress level reduced and the service life of flame tubes extended.
Directory of Open Access Journals (Sweden)
Hossein Tamim
2013-07-01
Full Text Available In this study, the steady laminar mixed convection boundary layer flow of a nanofluid near the stagnation-point on a vertical plate with prescribed surface temperature is investigated. Here, both assisting and opposing flows are considered and studied. Using appropriate transformations, the system of partial differential equations is transformed into an ordinary differential system of two equations, which is solved numerically by shooting method, coupled with Runge-Kutta scheme. Three different types of nanoparticles, namely copper Cu, alumina Al2O3 and titania TiO2 with water as the base fluid are considered. Numerical results are obtained for the skin-friction coefficient and Nusselt number as well as for the velocity and temperature profiles for some values of the governing parameters, namely, the nanoparticle volume fraction parameter &Phiand mixed convection parameter &lambda It is found that the highest rate of heat transfer occurs in the mixed convection with assisting flow while the lowest one occurs in the mixed convection with opposing flow. Moreover, the skin friction coefficient and the heat transfer rate at the surface are highest for copper–water nanofluid compared to the alumina–water and titania–water nanofluids.
Directory of Open Access Journals (Sweden)
V. I. Solonin
2014-01-01
Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in
Numerical solutions for a flow with mixed convection in a vertical geometry
Torczynski, J. R.
The K-12 Aerospace Heat Transfer Committee of the American Society of Mechanical Engineers recently specified a computational benchmark problem involving steady incompressible laminar flow with mixed convection using the Boussinesq approximation in a two-dimensional backstep geometry. FIDAP v6.0 (Fluid Dynamics International) and NEKTON v2.85 (Nektonics, Fluent) are capable of simulating situations with this type of coupled fluid flow and heat transfer. FIDAP uses conventional finite elements and has both steady and transient solvers, whereas NEKTON uses spectral elements with a transient solver (for large problems). Numerical solutions to the benchmark problem are obtained with both of these codes, and grid-refinement studies are performed to verify that grid-independence is achieved. The grid-independent solutions from both codes are found to be in excellent agreement with each other and with results in the archival literature regarding velocity and temperature profiles and the locations of separation and reattachment points.
Mixed Convection Flow of Couple Stress Fluid in a Vertical Channel with Radiation and Soret Effects
Directory of Open Access Journals (Sweden)
Kaladhar Kolla
2016-01-01
Full Text Available The radiation and thermal diffusion effects on mixed convection flow of couple stress fluid through a channel are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the Spectral Quasi-linearization Method (QLM. The results, which are discussed with the aid of the dimensionless parameters entering the problem, are seen to depend sensitively on the parameters.
Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.
2015-12-01
Transient heat transfers from Pt-Co wire heaters inserted into vertically-mounted pipes, through which forced flow subcooled liquid hydrogen was passed, were measured by increasing the exponential heat input with various time periods at a pressure of 0.7 MPa and inlet temperature of 21 K. The flow velocities ranged from 0.3 to 7 m/s. The Pt-Co wire heaters had a diameter of 1.2 mm and lengths of 60 mm, 120 mm and 200 mm and were inserted into the pipes with diameters of 5.7mm, 8.0 mm, and 5.0 mm, respectively, which were made of Fiber reinforced plastic due to thermal insulation. With increase in the heat flux to the onset of nucleate boiling, surface temperature increased along the curve predicted by the Dittus-Boelter correlation for longer period, where it can be almost regarded as steady-state. For shorter period, the heat transfer became higher than the Dittus-Boelter correlation. In nucleate boiling regime, the heat flux steeply increased to the transient CHF (critical heat flux) heat flux, which became higher for shorter period. Effect of flow velocity, period, and heated geometry on the transient CHF heat flux was clarified.
Directory of Open Access Journals (Sweden)
Le Tuyen Quang
2014-06-01
Full Text Available In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR. First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flowdriven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.
Vertical dipole above a dielectric or metallic half-space - energy flow considerations
Berman, P R; Khitrova, G
2014-01-01
The emission pattern from a classical dipole located above and oriented perpendicular to a metallic or dielectric half space is calculated for a dipole driven at constant amplitude. This is a problem considered originally by Sommerfeld and analyzed subsequently by numerous authors. In contrast to most previous treatments, however, we focus on the energy flow in the metal or dielectric. It is shown that the radial Poynting vector in the metal points inwards when the frequency of the dipole is below the surface plasmon resonance frequency. In this case, energy actually flows of the interface at small radii. The Joule heating in the metal is also calculated and it is shown explicitly that Poynting's theorem holds for a cylindrical surface in the metal. When the metal is replaced by a dielectric having permittivity less than that of the medium in which the dipole is immersed, it is found that energy flows out of the interface for sufficiently large radii. In all cases it is assumed that the imaginary part of the ...
Yu, Qiao-Gang; Chen, Ying-Xu; Zhang, Qiu-Ling; Liang, Xin-Qiang; Li, Hua; Zhang, Zhi-Jian
2007-04-01
Using a multi-layer soil column device, the effect of new nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen leaching was studied for understanding the nitrogen vertical transformation and lowering the nitrogen leaching losses. The results indicate that, within 60 days of experiment, the regular urea added with 1% of DMPP can effectively inhibit the ammonium oxidation in the soil, and improve the concentration of NH4(+) -N in soil solution over the 20 cm tilth profile, while decline the concentrations of NO3(-) -N and N2(-) -N. No obvious difference is found on NH4(+) -N concentrations collected from deep layer soil solution under 20 cm between regular urea and the urea added with 1% of DMPP. There is also no significant difference for the NH4(+) -N and NO3(-) -N in the soil solution of deep layer under 40 cm among the treatments of urea by adding with 1% of DMPP within 60 days. So DMPP could be used as an effective nitrification inhibitor to control ammonium oxidation, decline the nitrate leaching losses, minimize the underground water pollution risk and be beneficial for the ecological environment.
Indian Academy of Sciences (India)
NIRMAL CHAND PEDDISETTY
2016-10-01
An analysis of thermal stratification in a transient free convection of nanofluids past an isothermal vertical plate is performed. Nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver having volume fraction of the nanoparticles less than or equal to 0.04 with water as the base fluid are considered. The governing boundary layer equations are solved numerically. Thermal stratification effects and volume fraction of the nanoparticles on the velocity and temperature are represented graphically. It is observed that an increase in the thermal stratification parameter decreases the velocity and temperature profiles of nanofluids. An increase in the volume fraction of the nanoparticles enhances the temperature and reduces the velocity of nanofluids. Also, the influence of thermal stratification parameter and the volume fraction of the nanoparticles of local as well as average skin friction and the rate of heat transfer of nanofluids are discussed and represented graphically.The results are found to be in good agreement with the existing results in literature.
Whalen, Edward A.
2016-01-01
This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.
Directory of Open Access Journals (Sweden)
Qinglei Jiang
2011-01-01
Full Text Available The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The objective was to obtain a transient response of rotor systems under the influence of fluid-induced forces generated by annular seal flow. This method overcomes some shortcomings of the traditional FSI method by improving the data transfer process between two domains. Calculated results were in good agreement with the experimental results. The annular seal was shown to have a supportive effect on rotor systems. Furthermore, decreasing the seal clearance would enhance this supportive effect. In the transient process, vibration amplitude and critical speed largely changed when the acceleration of the rotor system increased.
DEFF Research Database (Denmark)
Dan, Truong Hoang; Quang, Le Nhat; Chiem, Nguyen Huu;
2011-01-01
controls. Direct plant uptake constituted only up to 8% of the total-N removal and 2% of the P removal at the lowest loading rate, and was quantitatively of low importance compared to other removal processes. The significant effects of plants were therefore related more to their indirect effects...... subsurface flow system and a saturated vertical downflow system was established with planted and unplanted beds to assess the effects of system design and presence of plants on treatment performance. The systems were loaded with a mixture of domestic and pig farm wastewater at three hydraulic loading rates...... of 80, 160 and 320mmd-1. The S. sesban plants grew very well in the constructed wetland systems and produced 17.2-20.2kgdry matterm-2year-1 with a high nitrogen content. Mass removal rates and removal rate constants increased with loading rate, but at 320mmd-1 the effluent quality was unacceptable...
Arivoli, A; Mohanraj, R; Seenivasan, R
2015-09-01
The paper production is material intensive and generates enormous quantity of wastewater containing organic pollutants and heavy metals. Present study demonstrates the feasibility of constructed wetlands (CWs) to treat the heavy metals from pulp and paper industry effluent by using vertical flow constructed wetlands planted with commonly available macrophytes such as Typha angustifolia, Erianthus arundinaceus, and Phragmites australis. Results indicate that the removal efficiencies of the planted CWs for iron, copper, manganese, zinc, nickel, and cadmium were 74, 80, 60, 70, 71, and 70 %, respectively. On the other hand, the removal efficiency of the unplanted system was significantly lower ranging between 31 and 55 %. Among the macrophytes, T. angustifolia and E. arundinaceus exhibited comparatively higher bioconcentration factor (10(2) to 10(3)) than P. australis.
Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.
2017-03-01
The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.
Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid
2014-01-01
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables.
Institute of Scientific and Technical Information of China (English)
A. A. AFIFY; N. S. ELGAZERY
2013-01-01
A numerical study of a non-Darcy mixed convective heat and mass transfer flow over a vertical surface embedded in a porous medium under the effects of double dispersion, melting, and thermal radiation is investigated. The set of governing boundary layer equations and the boundary conditions is transformed into a set of coupled nonlinear ordinary differential equations with the relevant boundary conditions. The transformed equations are solved numerically by using the Chebyshev pseudospectral method. Com-parisons of the present results with the existing results in the literature are made, and good agreement is found. Numerical results for the velocity, temperature, concentration profiles, and local Nusselt and Sherwood numbers are discussed for various values of phys-ical parameters.
Rashidi, Mohammad M.; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J.; Freidoonimehr, Navid
2014-01-01
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables. PMID:25343360
Directory of Open Access Journals (Sweden)
Manjunatha S.
2015-12-01
Full Text Available An unsteady two-dimensional stagnation-point mixed convection flow of a viscous, incompressible dusty fluid towards a vertical stretching sheet has been examined. The stretching velocity and the free stream velocity are assumed to vary linearly with the distance from the stagnation point. The problem is analyzed using similarity solutions. The similarity ordinary differential equations were then solved numerical by using the RKF-45 method. The effects of various physical parameters on the velocity profile and skin-friction coefficient are also discussed in this paper. Some important findings reported in this work reveal that the effect of radiation has a significant impact on controlling the rate of heat transfer in the boundary layer region.
A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits
Mastin, Larry G.; Ghiorso, Mark S.
2000-01-01
This report presents a model that calculates flow properties (pressure, vesicularity, and some 35 other parameters) as a function of vertical position within a volcanic conduit during a steady-state eruption. The model idealizes the magma-gas mixture as a single homogeneousfluid and calculates gas exsolution under the assumption of equilibrium conditions. These are the same assumptions on which classic conduit models (e.g. Wilson and Head, 1981) have been based. They are most appropriate when applied to eruptions of rapidly ascending magma (basaltic lava-fountain eruptions, and Plinian or sub-Plinian eruptions of intermediate or silicic magmas) that contains abundant nucleation sites (microlites, for example) for bubble growth.
Cui, Lihua; Zhu, Xizhen; Luo, Shiming; Liu, Yihu
2003-04-01
Vertical-flow constructed wetlands (VFCWs) system not only has a higher hydraulic loading rate (54-64 cm.d-1), but also has a good removal efficiency for organics, ammonia nitrogen (AN) and total phosphorus (TP). The removal efficiencies of COD, BOD5, AN, and TP for septic tank effluent were 76-87%, 82-92%, 75-85% and 77-91%, respectively, and the average effluent concentrations of COD, BOD5, AN, and TP in the treated effluent were less than 60, 20, 25 and 2.0 mg.L-1, respectively. A comparison of planted and unplanted columns showed that plantation of Cyperus alternifolius could increase the removal rates of AN, TN, and TP by 2-3%, 4-6%, and 10-14%, respectively.
Directory of Open Access Journals (Sweden)
Cyrille Goarant
2013-06-01
Full Text Available Background : Leptospirosis is a growing public health concern in many tropical and subtropical countries. However, its diagnosis is difficult because of non-specific symptoms and concurrent other endemic febrile diseases. In many regions, the laboratory diagnosis is not available due to a lack of preparedness and simple diagnostic assay or difficult access to reference laboratories. Yet, an early antibiotic treatment is decisive to the outcome. The need for Rapid Diagnostic Tests (RDTs for bedside diagnosis of leptospirosis has been recognized. We developed a vertical flow immunochromatography strip RDT detecting anti-Leptospira human IgM and evaluated it in patients from New Caledonia, France, and French West Indies. Methodology/Principal Findings : Whole killed Leptospira fainei cells were used as antigen for the test line and purified human IgM as the control line. The mobile phase was made of gold particles conjugated with goat anti-human IgM. Standards for Reporting of Diagnostic Accuracy criteria were used to assess the performance of this RDT. The Microscopic Agglutination Test (MAT was used as the gold standard with a cut-off titer of ≥400. The sensitivity was 89.8% and the specificity 93.7%. Positive and negative Likelihood Ratios of 14.18 and 0.108 respectively, and a Diagnostic Odds Ratio of 130.737 confirmed its usefulness. This RDT had satisfactory reproducibility, repeatability, thermal tolerance and shelf-life. The comparison with MAT evidenced the earliness of the RDT to detect seroconversion. When compared with other RDT, the Vertical Flow RDT developed displayed good diagnostic performances.This RDT might be used as a point of care diagnostic tool in limited resources countries. An evaluation in field conditions and in other epidemiological contexts should be considered to assess its validity over a wider range of serogroups or when facing different endemic pathogens. It might prove useful in endemic contexts or outbreak
Muñoz-Cobo, José; Chiva, Sergio; El Aziz Essa, Mohamed; Mendes, Santos
2012-08-01
Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous experiments small amounts of 1-butanol were added to the water. These amounts range from 9 to 75 ppm and change the surface tension. This study is interesting because in real cases the surface tension of the water diminishes with temperature, and with this kind of experiments we can study indirectly the effect of changing the temperature on the void fraction distribution. The following axial and radial distributions were measured in all these experiments: void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter and turbulence intensity. The range of values of the gas superficial velocities in these experiments covered the range from bubbly flow to the transition to cap/slug flow. Also with transition flow conditions we distinguish two groups of bubbles in the experiments, the small spherical bubbles and the cap/slug bubbles. Special interest was devoted to the transition region from bubbly to cap/slug flow; the goal was to understand the physical phenomena that take place during this transition A set of numerical simulations of some of these experiments for bubbly flow conditions has been performed by coupling a Lagrangian code, that tracks the three dimensional motion of the individual bubbles in cylindrical coordinates inside the field of the carrier liquid, to an Eulerian model that computes the magnitudes of continuous phase and to a 3D random walk model that takes on account the fluctuation in the velocity field of the
Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model
2014-09-19
induced turbulence of the underlying flow and the modification of the turbulent quantities by the dispersed bubbles. Due to the lack of realisable data...is modelled with the coefficient CVM taking the standard value of 0.5. Other forces which mainly act in the lateral direc- tion, like the lift, wall... values were used for αG = 0.033 and the mean gas velocity, in accordance with the case 4 from Hosokawa and Tomiyama (2009). The domain was 160D long in
An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube
Energy Technology Data Exchange (ETDEWEB)
Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)
1995-09-01
Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.
Non-Darcian Flow Toward a Finite-Diameter Vertical Well in a Confined Aquifer
Institute of Scientific and Technical Information of China (English)
WEN Zhang; HUANG Guan-Hua; ZHAN Hong-Bin
2008-01-01
Non-Darcian radial flow toward a finite-diameter,fully penetrating well in a confined aquifer was analyzed on the basis of the Izbash equation with consideration of the wellbore storage effect.We derived semi-analytical solutions of drawdown by using the Boltzmann transform,and obtained approximate analytical solutions of the drawdown at early and late times.MATLAB programs were developed to facilitate computation of the semi-analytical solutions.The turbulence factor v which was directly related to the pumping rate appeared to have negligible influence upon the wellbore well function at early times,but imposed significant influence at intermediate and late times.However,the turbulence factor v imposed non-negligible influence upon the aquifer well function during the entire pumping period,provided that the observation point was not sufficiently close to the wellbore.Sensitivity analysis indicated that the power index n in the Izbash equation had less influence on the type curves at the face of the pumping wellbore,but had much greater influence upon the well function in the aquifer.As the n values increased,the drawdown in the aquifer decreased at early times and increased at late times.The Boltzmann transformation could only be used in an approximate sense for radial non-Darcian flow problems.This approximation would provide accurate solutions at early times,and introduce small but consistent discrepancies at intermediate and late times for the wellbore well function.
Free surface flow impact on a vertical wall: a numerical assessment
Pugliese Carratelli, Eugenio; Viccione, Giacomo; Bovolin, Vittorio
2016-10-01
The sudden impact of a free surface flow upon a solid wall is a common occurrence in many situations in nature and technology. The design of marine structures is probably the most obvious example, but also river and dam hydraulics as well as the necessity of understanding flood and debris flow-induced damage have led to theoretical and experimental work on the mechanism of fluid slamming loads. This is therefore a very old and rich research field, which has not yet reached full maturity, so that semi-empirical methods in design practice are still the rule in many sectors. Up-to-date CFD technology with both Eulerian and Lagrangian approaches is employed to investigate highly non-stationary fluid impact on a solid wall. The development of the pressure wave produced by the impact is examined as it propagates and interacts with the fluid boundaries, as well as the subsequent build-up of high-pressure gradients of high fluid velocities. The geometry and the velocity field of the problem considered are very simple, but the results seem to provide new insight, in particular, into the connection between phenomena with different timescales.
Institute of Scientific and Technical Information of China (English)
郑志皋; 陶乐仁; 黄理浩
2014-01-01
A single-side heating apparatus is set up to study the flow boiling and heat transfer in vertical narrow rectangular channel,experiment research on flow boiling and heat transfer characteristics in a vertical narrow rectangular channel with the section of 250mm ×5 mm is carried out.According to the experimental analysis:(1 )With the increase of dryness,the local heat transfer coefficient firstly increases then decreases ,there is a maximum,which is saturated nucleate boiling region ,the steam quality is close to zero,also it is close to the onset of boiling.Accordingly flow mode of fluid is from single phase,bubble,slug, churn to annular flow.(2)For flow boiling heat transfer,nuclear boiling heat transfer is significantly affected by heat flux,but liquid film evaporation is nearly not.So it is assumed that heat transfer is caused by the change of heat flux.(3 )The change of inlet temperature has influence on single-phase flow heat transfer coefficient,but flow boiling heat transfer coefficient has great re-lationship with flow pattern and generated bubbles,and not inlet temperature.%建立单面加热垂直矩形窄通道流动沸腾换热试验装置，针对截面250mm ×3．5mm的窄缝通道，对水流动沸腾换热特性进行试验研究。通过试验分析可知：（1）随着干度的增加，局部换热系数先增加后减小，有一个最大值，此时处于饱和核沸腾区域，其蒸汽干度也接近于0，同时也接近于沸腾起始点。相应地流体从单相流-泡状-块状流-搅拌-环状流转变。（2）在流动沸腾换热中，热流密度对核态沸腾换热有明显影响，而对流动沸腾液膜蒸发的影响甚小，所以可以认为由热流密度的变化而引起的换热变化，主要表现在核态沸腾。（3）入口温度的变化对单相流动的换热系数有影响，而沸腾换热系数与流型及汽泡的产生及扰动有极大关系，入口温度对流动沸腾局部换热系数基本没有影响。
EFFECT OF SURFACTANT ON TWO-PHASE FLOW PATTERNS OF WATER-GAS IN CAPILLARY TUBES
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Flow patterns of liquid-gas two-phase flow were experimentally investigated. The experiments were carried out in both vertical and horizontal capillary tubes having inner diameters of 1.60 mm. The working liquid was the mixture of water and Sodium Dodecyl Benzoyl Sulfate (SDBS). The working gas was Nitrogen. For the water/SDBS mixture-gas flow in the vertical capillary tube, flow-pattern transitions occurred at lower flow velocities than those for the water-gas flow in the same tube. For the water/SDBS mixture-gas flow in the horizontal capillary tube, surface tension had little effect on the bubbly-intermittent transition and had only slight effect on the plug-slug and slug-annular transitions. However, surface tension had significant effect on the wavy stratified flow regime. The wavy stratified flow regime of water/SDBS mixture-gas flow expanded compared with that of water-gas.
Hydraulic forces caused by annular pressure seals in centrifugal pumps
Iino, T.; Kaneko, H.
1980-01-01
The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.
Directory of Open Access Journals (Sweden)
Muthucumaraswamy R.
2016-02-01
Full Text Available The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.
Kizito, Simon; Lv, Tao; Wu, Shubiao; Ajmal, Zeeshan; Luo, Hongzhen; Dong, Renjie
2017-03-15
Three types of vertical flow constructed wetland columns (VFCWs), packed with corn cob biochar (CB-CW), wood biochar (WB-CW) and gravel (G-CW) under tidal flow operations, were comparatively evaluated to investigate anaerobic digested effluent treatment performance and mechanisms. It was demonstrated that CB-CW and WB-CW provide significantly higher removal efficiencies for organic matter (>59%), NH4(+)-N (>76%), TN (>37%) and phosphorus (>71%), compared with G-CW (22%-49%). The higher pollutants removal ability of biochar-packed VFCWs was mainly attribute to the higher adsorption ability and microbial cultivation in the porous biochar media. Moreover, increasing the flooded/drained ratio from 4/8h to 8/4h of the tidal operation further improved around 10% of the removal of both organics and NH4(+)-N for biochar-packed VFCWs. The phosphorus removal was dependent on the media adsorption capacities through the whole experiment. However, the NH4(+)-N biodegradation by microbial communities was demonstrated to become the dominant removal mechanism in the long term treatment, which compensated the decreased adsorption capacities of the media. The study supported that the use of biochar would increase the treatment performance and elongate the lifespan of CWs under tidal operation.
Institute of Scientific and Technical Information of China (English)
ZHAO Lianfang; ZHU Wei; TONG Wei
2009-01-01
The accumulation of organic matter in substratum pores is regarded as an important factor causing clogging in the subsurface flow constructed wetlands.In this study,the developing process of clogging separately caused by biofilm growth and organic particles accumulation instead of total organic matter accumulation was investigated in two groups of lab-scale vertical flow constructed wetlands (VFCWs) fed with glucose (dissolved organic matter) and starch (particulate organic matter) influent.Results showed that the growth of biofilms within the substratum pores certainly caused remarkable reduction of effective porosity,especially for the strong organic wastewater,whereas its influence on infiltration rate was negligible.It was implied that the most important contribution of biofilm growth to clogging is accelerating the occurrence of clogging.In comparison with biofilm growth,particles accumulation within pores could rapidly reduce infiltration rate besides effective porosity and the clogging occurred in the upper 0-15 cm layer.With approximately equal amount of accumulated organic matter,the effective porosity of the clogged layer in starch-fed systems was far less than that of glucose-fed systems,which indicated that composition and accumulation mode of the accumulated organic matter played an important role in causing clogging besides the amount.According to the results,some related methods to prevent and recover the clogging phenomenon were suggested.
Adrados, B; Sánchez, O; Arias, C A; Becares, E; Garrido, L; Mas, J; Brix, H; Morató, J
2014-05-15
The prokaryotic microbial communities (Bacteria and Archaea) of three different systems operating in Denmark for the treatment of domestic wastewater (horizontal flow constructed wetlands (HFCW), vertical flow constructed wetlands (VFCW) and biofilters (BF)) was analysed using endpoint PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE). Further sequencing of the most representative bacterial bands revealed that diverse and distinct bacterial communities were found in each system unit, being γ-Proteobacteria and Bacteroidetes present mainly in all of them, while Firmicutes was observed in HFCW and BF. Members of the Actinobacteria group, although found in HFCW and VFCW, seemed to be more abundant in BF units. Finally, some representatives of α, β and δ-Proteobacteria, Acidobacteria and Chloroflexi were also retrieved from some samples. On the other hand, a lower archaeal diversity was found in comparison with the bacterial population. Cluster analysis of the DGGE bacterial band patterns showed that community structure was related to the design of the treatment system and the organic matter load, while no clear relation was established between the microbial assemblage and the wastewater influent.
A Study of Three Dimensional Bubble Velocities at Co-current Gas-liquid Vertical Upward Bubbly Flows
Kuntoro, Hadiyan Yusuf; Deendarlianto,
2015-01-01
Recently, experimental series of co-current gas-liquid upward bubbly flows in a 6 m-height and 54.8 mm i.d. vertical titanium pipe had been conducted at the TOPFLOW thermal hydraulic test facility, Helmholtz-Zentrum Dresden-Rossendorf, Germany. The experiments were initially performed to develop a high quality database of two-phase flows as well as to validate new CFD models. An ultrafast dual-layer electron beam X-ray tomography, named ROFEX, was used as measurement system with high spatial and temporal resolutions. The gathered cross sectional grey value image results from the tomography scanning were reconstructed, segmented and evaluated to acquire gas bubble parameters for instance bubble position, size and holdup. To assign the correct paired bubbles from both measurement layers, a bubble pair algorithm was implemented on the basis of the highest probability values of bubbles in position, volume and velocity. Hereinafter, the individual characteristics of bubbles were calculated include instantaneous th...
Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
Directory of Open Access Journals (Sweden)
Mohammed J Uddin
Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
A Reconfigurable Radiation Pattern Annular Slot Antenna
Aziz, NA; Radhi, A; Nilavalan, R
2016-01-01
This paper contemplate a theoretical analysis of a pattern reconfigurable antenna using annular slot antenna operating in low frequency. A shorting pin is inserted to allow the annular slot antenna to have an omnidirectional radiation pattern like a monopole antenna. The reconfigurable antenna consists of numerous metal cylinders arranged around the annular slot antenna. By controlling pin diodes associated with the metal cylinders, the antenna is capable of working up in different dire...
Numerical investigation on fluid flow past transversely oscillating vertical rectangular cylinder
Kannan, Jeevananthan; Prakash, K. Arul
2016-11-01
In the present study, the rectangular cylinder was forced to vibrate for various flow configurations such as the AR (Aspect Ratio) ranging from 0.2 to 1 and Reynolds number based on (depth of the cylinder) as 100, 150, 200. The frequency ratio (excitation frequency, fe / natural shedding frequency, fns) chosen for the study was 0.5, 0.75, 1.0, 1.5 and 2.0. The vibrating amplitude 0.1, 0.2 and 0.3 of cylinder depth were also considered. For the slender aspect ratios (ARvortex formation length. The separated shear layers were incessantly swiveling behind the cylinder dispense the vortices in the downstream of the wake as inline shedding packets. Three dimensional Studies are also established for the selected cases. The influence of the cylinder vibration on the wake patterns, phase plane, lift, drag force etc. are presented and discussed. This Investigation has been sponsored by ARDB-Aerodynamics Panel, Grant No: (DARO /08/ 1031663/M/I Dated 08/08/2012), India.
Energy Technology Data Exchange (ETDEWEB)
Sporn, Michael; Hurtado, Antonio [Technische Univ. Dresden (Germany)
2015-12-15
TRACE is used to calculate the thermal-hydraulic sequence in nuclear power plants for accident analysis. In some postulated accidents, countercurrent flow limitation (CCFL) phenomena can occur. This phenomenon is calculated by means of empirical relationships in TRACE. Usually, not all empirical relationships used in TRACE are accessible to the user who develops the computational model for accident analysis, but in the case of CCFL, the user must specify the parameters of the empirical relationship. Additional preliminary work is needed for fitting the parameters so that experimental data matches the computational calculations and the accident analysis can be performed. Furthermore, uncertainties in measurement errors from experimental data lead to user-based variations in the parameters of the empirical relationship for CCFL. Therefore, an alternative procedure in which accident analysis is performed with consideration of the uncertainties in the empirical relationships is presented. The uncertainty was quantified by means of a stochastic linear regression model for the Wallis correlation and the Bankoff correlation. An uncertainty analysis was subsequently performed to demonstrate the influence of uncertainty in certain cases of CCFL.
Directory of Open Access Journals (Sweden)
M.V.D.N.S.Madhavi
2017-03-01
Full Text Available We analysed in this paper the problem of MHD mixed convection flow from a vertical plate embedded in a saturated porous medium in the presence of melting, thermal dispersion, radiation and heat absorption or generation effects for aiding and opposing external flows. Similarity solution for the governing equations is obtained for the flow equations in steady state. The equations are numerically solved by Runge-Kutta fourth order method coupled with shooting technique. The effect of melting and heat absorption or generation under different parametric conditions on velocity, temperature and heat transfer was analyzed for both aiding and opposing flows
Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said
2017-01-01
Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.
Impulsively started, steady and pulsated annular inflows
Abdel-Raouf, Emad; Sharif, Muhammad A. R.; Baker, John
2017-04-01
A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies.
Directory of Open Access Journals (Sweden)
A. Barzegar
2009-01-01
Full Text Available Transient thermal behavior of a vertical storage tank of a domestic solar heating system with a mantle heat exchanger has been investigated numerically in the charging mode. It is assumed that the tank is initially filled with uniform cold water. At an instant of time, the hot fluid from collector outlet is uniformly injected in the upper section of the mantle heat exchanger and after heat transfer with the fluid inside the tank, withdrawn from the bottom part of the heat exchanger. The conservation equations in the cylindrical coordinate and in axis-symmetric condition have been used according to the geometry under investigation. Governing equations have been discretized by employing the finite volume method and the SIMPLER algorithm has been used for coupling between momentum and pressure equations. The Low Reynolds Number (LRN k −ω model is utilized for treating turbulence in the fluid. First, the transient thermal behavior of heat storage tank and the process of formation of thermal stratification in the heat storage tank were investigated. Then, the influence of Rayleigh number in the heat storage tank, Reynolds number in the mantle heat exchanger and vertical positioning of mantle on the flow and thermal fields and the formation of the thermal stratification was investigated. It is found that for higher values of Rayleigh number, a more suitable thermal stratification is established inside the tank. Also it is noticed that increasing the incoming fluid velocity through the mantle heat exchanger causes a faster formation of the thermal stratification. A superior thermal performance was achieved when the mantle heat exchanger is positioned at the middle height of the storage tank.
Energy Technology Data Exchange (ETDEWEB)
Vieira, Fernando Fabris; Bannwart, Antonio C. [Universidade Estadual de Campinas, SP (Brazil)
2003-07-01
The E and P activity has a great importance in the oil industry. First, it assesses hydrocarbon reserves that can be recovered in order to provide the highest revenues. Second, it supplies the forecast oil and gas production through adequate lift and transportation methods. These flows become rather difficult and requires high investments for heavy oils, which can be understood as having density larger than 934 kg/m{sup 3} (API grade smaller than about 20) and viscosity higher than 100 cP at reservoir conditions. In this work, the flow of a heavy crude oil and air mixture was made viable by injecting water in the pipe, in order to lubricate the flow and reduce pressure drop, as in the core flow technique. The main objective is to observe the three-phase flow patterns formed in the vertical pipe at different mixture compositions, for application in artificial lift. The oil flow rate was measured through a mass flow meter. Water and gas flow rates were given by rotameters. A high-speed VHS camera (1000 frames/s) attached to the pipeline was used to record the experiments for the determination of the final patterns. These are described and represented in flow maps. (author)
Technological Design and Parametric Analysis of Annular Aerated Drilling%环空充气钻井工艺设计及参数分析
Institute of Scientific and Technical Information of China (English)
窦亮彬; 李根生; 沈忠厚; 吴春方; 刘文旭
2013-01-01
The gas phase distribution of traditional parasitic tube aerated drilling tool is uneven in annulus. Therefore, a new type of parasitic tube aerated drilling tool with even distribution of annular gas was designed. According to heat transfer theory, thermodynamic theory and the theory of vertical gas liquid two-phase pipe flow, the optimization analysis of the parameters of the annular aeration technology was conducted considering the variation of injection gas physical property with shaft temperature and pressure. The findings show that annular pressure first decreases with the increase of gas injection rate and then gradually increases. The gas flowrate slightly larger than that at the critical point is taken as the gas injection rate. The variation amplitude of annular pressure in the static control zone is noticeably greater than wellhead back pressure variation. The annular pressure becomes sensitive. In the friction control zone with the variation of wellhead back pressure, the variation amplitude of annular pressure is relatively small, getting milder and thus is easier to regulate.%针对传统寄生管充气钻井工具在环空中形成的气相分布不均匀的弊端,设计了一种新型环形气体均布寄生管充气钻井工具.根据传热学、热力学和垂直气液两相管流理论,考虑注入气体物性随井筒温度压力变化,对环空充气工艺参数进行优化分析.分析结果表明,环空压力随注气量增大先急剧降低后逐渐升高,注气量通常选择在稍大于临界点处对应的气体流量；在静压控制区环空压力变化幅度明显大于井口回压变化,环空压力变化敏感；在摩擦控制区随井口回压变化,环空压力变化幅度较小,更加缓和,易于调节.
Directory of Open Access Journals (Sweden)
Garg B.P.
2015-02-01
Full Text Available An analysis of an oscillatory magnetohydrodynamic (MHD convective flow of a second order (viscoelastic, incompressible, and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is presented. The two porous plates with slip-flow condition and the no-slip condition are subjected respectively to a constant injection and suction velocity. The pressure gradient in the channel varies periodically with time. A magnetic field of uniform strength is applied in the direction perpendicular to the planes of the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature of the plate with no-slip condition is non-uniform and oscillates periodically with time and the temperature difference of the two plates is assumed high enough to induce heat radiation. The entire system rotates in unison about the axis perpendicular to the planes of the plates. Adopting complex variable notations, a closed form solution of the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters of the problem. The velocity, temperature and the skin-friction in terms of its amplitude and phase angle have been shown graphically to observe the effects of the viscoelastic parameter γ, rotation parameter Ω, suction parameter λ , Grashof number Gr, Hartmann number M, the pressure A, Prandtl number Pr, radiation parameter N and the frequency of oscillation ω .
Institute of Scientific and Technical Information of China (English)
赵刚; 李芳; 臧东阳
2014-01-01
With a focus on the problem of bionic jet drag reduction , a bionic jet surface model is presented by using the jet flow of shark cheeks as the prototype .Based on the orthogonal test design method , this paper goes into detail about numerical simulations by making a comparison between bodies of revolution of a bionic annular jet flow sur -face ( BRBAJFS ) and smooth bodies of revolution with the SST k-ωturbulence model .The results prove that BRBAJFS has obvious drag-reduction and energy-saving effects .The highest energy saving efficiency can be 262 and the corresponding rate of drag reduction is 27.74%.The jet velocity has the most important impact on energy saving efficiency and it has a linear relation with the energy saving efficiency , i.e., the energy saving efficiency will decrease with an increase in the jet velocity .Furthermore, the position of the jet hole has the greatest impact on the total resistance .When the jet hole is far away from the bottom of the bodies of revolution , the drag reduction effi-ciency will increase and BRBAJFS decreases the viscous friction resistance by decreasing the velocity gradient of the wall and increasing the area of counterblows .There can also be a decrease in the pressure drag resulting from the jet fluid complementing the bottom of the bodies of revolution fluid .%针对仿生射流表面减阻问题，以鲨鱼鳃部射流为原型，建立仿生射流表面模型，采用正交试验设计法，利用SST k-ω湍流模型对仿生环形射流表面旋成体与光滑旋成体进行数值模拟。结果表明：旋成体环形射流表面具有减阻节能效果，最高节能效率达262，此时的减阻率为27．74％；射流速度对节能效率影响最大，射流速度与节能效率呈线性关系，随着射流速度增大，节能效率减小，射流孔位置对总阻力的影响最大，随着射流孔远离旋成体底部，减阻率增大。旋成体环形射流表面通过减小壁面的速度梯
Energy Technology Data Exchange (ETDEWEB)
Pourbashiri, M.; Sedighi, M. [Iran University, Tehran (Iran, Islamic Republic of)
2016-04-15
Recently, Variable gutter technique has been introduced as a novel method in order to reduce waste materials in closed-die forging processes. In this paper, the capability of this method is investigated for a family of forged parts that the vertical flow of material is the last stage of forming process. As a case study, using the variable gutter technique, the amount of waste material is decreased about 50% for a sample forged part with a local rising. The results of FVM simulations and experiments confirmed the effectiveness of the variable gutter technique in such forging processes. The vertical flow of material in the die cavity (h parameter), as a criterion, for different gutter width and thickness dimensions was examined by FVM simulations. The results shown that the gutter thickness has more effect on vertical flow of material than the gutter width. By decreasing the gutter thickness and increasing the gutter width, the amount of vertical flow of material is increased about 120% and 29%, respectively. Finally, A/H ratio (A = Max width of sectional area of a forged part, H = Max height of a forged part) is proposed as shape complexity factor of a forged part. The results of FVM simulations are indicated that for the ratio of A/H > 2, the variable gutter thickness technique is more effective and can be successfully used to reduce the amount of waste materials.
Confocal Annular Josephson Tunnel Junctions
Monaco, Roberto
2016-09-01
The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.
Soliton bunching in annular Josephson junctions
DEFF Research Database (Denmark)
Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter
1996-01-01
By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used...
Gervin, L; Brix, H
2001-01-01
Lake Utterslev is situated in a densely built-up area of Copenhagen, and is heavily eutrophicated from combined sewer overflows. At the same time the lake suffers from lack of water. Therefore, a 5,000 m2 vertical flow wetland system was constructed in 1998 to reduce the phosphorus discharge from combined sewer overflows without reducing the water supply to the lake. During dry periods the constructed wetland is used to remove phosphorus from the lake water. The system is designed as a 90 m diameter circular bed with a bed depth of c. 2 m. The system is isolated from the surroundings by a polyethylene membrane. The bed medium consists of a mixture of gravel and crushed marble, which has a high binding capacity for phosphorus. The bed is located within the natural littoral zone of the lake and is planted with common reed (Phragmites australis). The constructed wetland is intermittently loaded with combined sewer overflow water or lake water and, after percolation through the bed medium, the water is collected in a network of drainage pipes at the bottom of the bed and pumped to the lake. The fully automated loading cycle results in alternating wet and dry periods. During the initial two years of operation, the phosphorus removal for combined sewer overflows has been consistently high (94-99% of inflow concentrations). When loaded with lake water, the phosphorus removal has been high during summer (71-97%) and lower during winter (53-75%) partly because of lower inlet concentrations. Effluent phosphorus concentrations are consistently low (0.03-0.04 mg/L). Ammonium nitrogen is nitrified in the constructed wetland, and total suspended solids and COD are generally reduced to concentrations below 5 mg/L and 25 mg/L, respectively. The study documents that a subsurface flow constructed wetland system can be designed and operated to effectively remove phosphorus and other pollutants from combined sewer overflows and eutrophicated lake water.
Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar; Castro-Faccetti, Claudia Fernanda
2016-01-01
Constructed wetlands have become an attractive alternative for wastewater treatment. However, there is not a globally accepted mathematical model to predict their performance. In this study, the VS2DTI software was used to predict the effluent biochemical oxygen demand (BOD) and total nitrogen (TN) in a pilot-scale vertical flow constructed wetland (VFCW) treating domestic wastewater. After a 5-week adaptation period, the pilot system was monitored for another 6 weeks. Experiments were conducted at hydraulic retention times (HRTs) in the range of 2-4 days with Typha latifolia as the vegetation. The raw wastewater concentrations ranged between 144-430 and 122-283 mg L(-1) for BOD5 and TN, respectively. A first-order kinetic model coupled with the advection/dispersion and Richards' equations was proposed to predict the removal rates of BOD5 and TN from domestic wastewater. Two main physical processes were modeled in this study, porous material water flow and solute transport through the different layers of the VFCW to simulate the constructed wetland (CW) conditions. The model was calibrated based on the BOD5 and TN degradation constants. The model indicated that most of BOD and TN (88 and 92%, respectively) were removed through biological activity followed by adsorption. It was also observed that the evapotranspiration was seen to have a smaller impact. An additional data series of effluent BOD and TN was used for model validation. The residual analysis of the calibrated model showed a relatively random pattern, indicating a decent fit. Thus, the VS2DTI was found to be a useful tool for CW simulation.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
For a vertical insulating wall,a product function of heat flow and strength with power weight is introduced as the complex optimization objective to compromise between insulating performance and mechanical performance.Under the global constraints of fixed external dimensions and safety requirements,the constructal optimization of the wall is carried out by taking the complex function maximization as the objective.It is shown that the maximum of the complex-objective function and its corresponding optimal internal structure design under a certain environmental condition can be obtained by allowing the internal structure of the wall to vary(evolve)freely.The validity,effectivity and applicability of the complex function are proved by the results and the power weight parameter in the range from 0.4 to 4 can compromise between the requirements of insulating and strength simultaneously and preferably.The constructal optimization with coequal attention to heat flow and strength and the corresponding results are discussed in detail.The optimal structure design and the corresponding performance analyses under various environmental conditions of application are presented.When the change of environment is greater and the total Rayleigh number is bigger,the insulating wall with large number of cavities should be employed.When the total Rayleigh number is small,the better performance can be obtained by reasonably employing the insulating wall with small number of cavities.The complex function has better selfadaptability,and the results in the recent literature are special cases of this paper.
Directory of Open Access Journals (Sweden)
Qiaoling Xu
2016-09-01
Full Text Available In this study, enzyme activities and their relationships to organics purification were investigated in three different vertical flow constructed wetlands, namely system A (planting Pennisetum sinese Roxb, system B (planting Pennisetum purpureum Schum., and system C (no plant. These three wetland systems were fed with simulation domestic sewage at an influent flow rate of 20 cm/day. The results showed that the final removal efficiency of Chemical Oxygen Demand (COD in these three systems was 87%, 85% and 63%, respectively. Planting Pennisetum sinese Roxb and Pennisetum purpureum Schum. could improve the amount of adsorption and interception for organic matter in the substrate, and the amount of interception of organic matter in planting the Pennisetum sinese Roxb system was higher than that in planting the Pennisetum purpureum Schum. system. The activities of enzymes (urease, phosphatase and cellulase in systems A and B were higher than those in system C, and these enzyme activities in the top layer (0–30 cm were significantly higher than in the other layers. The correlations between the activities of urease, phosphatase, cellulase and the COD removal rates were R = 0.815, 0.961 and 0.973, respectively. It suggests that using Pennisetum sinese Roxb and Pennisetum purpureum Schum. as wetland plants could promote organics removal, and the activities of urease, phosphatase and cellulase in those three systems were important indicators for COD purification from wastewater. In addition, 0–30 cm was the main function layer. This study could provide a theoretical basis for COD removal in the wetland system and supply new plant materials for selection.
Kumar, Manoj; Singh, Rajesh
2017-05-01
The present study demonstrated the understating of municipal wastewater treatment in five types of CWs operated under semi continuous vertical flow mode. All CWs treatment conditions show the significantly lower pollutants concentrations. The average NH4(+)-N, TN, NO2(-)-N, NO3(-)-N, SO4(2-), and PO4(3-) removal efficiency in the ISs-CWs were 83.60%, 82.43%, 15.61%, 48.93%, 80.45%, and 78.94% respectively. The average NO2(-)-N removal efficiency shows that highest nitrite accumulation occurred in the Cont-CWs followed by C-CWs. The lowest increase in the biomass (127.5%) was observed in the Eichhornia crassipes planted in the ISs-CWs. The ISs filtration barrier created in the constructed wetlands was sufficient enough to remove all the pollutants. Principal components EFA 2D deformation plots show the distribution of the various nitrogenous species in the constructed wetlands along different components.
A, Dan; Fujii, Daiki; Soda, Satoshi; Machimura, Takashi; Ike, Michihiko
2017-02-01
Lab-scale vertical flow constructed wetlands (CWs) were used to remove phenol, bisphenol A (BPA), and 4-tert-butylphenol (4-t-BP) from synthetic young and old leachate. Removal percentages of phenolic compounds from the CWs were in the following order: phenol (88-100%)>4-t-BP (18-100%)≥BPA (9-99%). In all CWs, phenol was removed almost completely from leachate. Results show that BPA and 4-t-BP were removed more efficiently from CWs planted with Phragmites australis than from unplanted CWs, from old leachate containing lower amounts of acetate and propionate as easily degradable carbon sources than from young leachate, and in the dry season mode with long retention time than in the wet season mode with short retention time. Adsorption by initial removal and subsequent biodegradation processes might be major removal processes for these phenolic compounds. The presence of plant is beneficial for enrichment of BPA-degrading and 4-t-BP-degrading bacteria and for the carbon source utilization potential of microbes in CWs.
Directory of Open Access Journals (Sweden)
C. Sulochana
2016-02-01
Full Text Available We analyzed the momentum and heat transfer characteristics of unsteady MHD flow of a dusty nanofluid over a vertical stretching surface in presence of volume fraction of dust and nano particles with non uniform heat source/sink. We considered two types of nanofluids namely Ag-water and Cu-water embedded with conducting dust particles. The governing equations are transformed in to nonlinear ordinary differential equations by using similarity transformation and solved numerically using Shooting technique. The effects of non-dimensional governing parameters on velocity and temperature profiles for fluid and dust phases are discussed and presented through graphs. Also, the skin friction coefficient and Nusselt number are discussed and presented for two dusty nanofluids separately in tabular form. Results indicate that an increase in the volume fraction of dust particles enhances the heat transfer in Cu-water nanofluid compared with Ag-water nanofluid and a raise in the volume fraction of nano particles shows uniform heat transfer in both Cu-water and Ag-water nanofluids.
Li, Juan; Liu, Xinchun; Yu, Zhisheng; Yi, Xin; Ju, Yiwen; Huang, Jing; Liu, Ruyin
2014-01-01
This study evaluated the performance of soil and coal cinder used as substrate in vertical-flow constructed wetlands for removal of fluoride and arsenic. Two duplicate pilot-scale artificial wetlands were set up, planted respectively with cannas, calamus and no plant as blank, fed with a synthetic sewage solution. Laboratory (batch) incubation experiments were also carried out separately to ascertain the fluoride and arsenic adsorption capacity of the two materials (i.e. soil and coal cinder). The results showed that both soil and coal cinder had quite high fluoride and arsenic adsorption capacity. The wetlands were operated for two months. The concentrations of fluoride and arsenic in the effluent of the blank wetlands were obviously higher than in the other wetlands planted with cannas and calamus. Fluoride and arsenic accumulation in the wetlands body at the end of the operation period was in range of 14.07-37.24% and 32.43-90.04%, respectively, as compared with the unused media.
Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.
Institute of Scientific and Technical Information of China (English)
Huiyu Dong; Zhimin Qiang; Tinggang Li; Hui Jin; Weidong Chen
2012-01-01
Three lab-scale vertical-flow constructed wetlands (VFCWs),including the non-aerated (NA),intermittently aerated (IA) and continuously aerated (CA) ones,were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water.Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA,which significantly favored the removal of organic matter and NH4+-N.The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN).Although the removal efficiencies of CODcr,NH4+-N and TN in the three VFCWs all decreased with an increase in HLR,artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings.The maximal removal efficiencies of CODcr,NH4+-N and total phosphorus (TP) (i.e.,81％,87％ and 37％,respectively) were observed in CA at 19 cm/day HLR,while the maximal TN removal (i.e.,57％) was achieved in IA.Although the improvement of artificial aeration on TP removal was limited,this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted eiver water,particularly at a high HLR.
Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.
2017-01-01
This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically. PMID:28294186
Convective flow, heat and mass transfer of Ostwald-de Waele fluid over a vertical stretching sheet
Directory of Open Access Journals (Sweden)
K. Vajravelu
2017-01-01
Full Text Available In this paper we study the combined buoyancy (due to thermal and species diffusion effects on the flow, heat and mass transfer of a viscous, incompressible, Ostwald-de Waele fluid over a vertical stretching surface in the presence of a chemical reaction. The effects of variable thermal conductivity and the variable mass diffusivity are also considered. A similarity transformation is used to convert the partial differential equations into coupled nonlinear ordinary differential equations. Numerical solutions are obtained by the Keller-box method. The influences of sundry parameters on the velocity, temperature and the concentration fields are presented in figures and discussed in detail. The values of the skin friction coefficient, Nusselt number and the surface mass transfer for various values of the governing parameters are presented in tables. One of the interesting observations is that the influence of the buoyancy parameters increases the velocity. However, quite the opposite is true with the temperature and the mass concentration, for all values of the power law index and the reaction rate parameter. The results obtained reveal many interesting behaviors that warrant a further study of the non-Newtonian fluid phenomena, especially shear thinning phenomena. Shear thinning reduces the wall shear stress.
Directory of Open Access Journals (Sweden)
Hari R. Kataria
2016-03-01
Full Text Available Analytic expression for unsteady free convective hydromagnetic boundary layer Casson fluid flow past an oscillating vertical plate embedded through porous medium in the presence of uniform transverse magnetic field, thermal radiation and chemical reaction is obtained. Both isothermal and ramped wall temperatures are taken into account. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of Casson fluid velocity, temperature and concentration at the plate are presented graphically for several values of the pertinent parameters. Effect of governing parameters on Skin friction, Nusselt number and Sherwood number is also discussed. Casson parameter γ is inversely proportional to the yield stress and it is observed that for the large value of Casson parameter, the fluid is close to the Newtonian fluid where the velocity is less than the Non-Newtonian fluid. It is seen that velocity increases and Temperature decreases with increase in thermal radiation R. Radiation parameter R signifies the relative contribution of conduction heat transfer to thermal radiation transfer. Concentration decreases tendency with chemical reaction parameter R′.
Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.
2017-03-01
This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.
Directory of Open Access Journals (Sweden)
V. Ramachandra Prasad
2011-01-01
Full Text Available A numerical solution of the unsteady radiative free convection flow of an incompressible viscous fluid past an impulsively started vertical plate with variable heat and mass flux is presented here. This type of problem finds application in many technological and engineering fields such as rocket propulsion systems, spacecraft re-entry aerothermodynamics, cosmical flight aerodynamics, plasma physics, glass production and furnace engineering. The fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing non-linear, coupled equations are solved using an implicit finite difference scheme. Numerical results for the velocity, temperature, concentration, the local and average skinfriction, the Nusselt and Sherwood number are shown graphically, for different values of Prandtl number, Schmidt number, thermal Grashof number, mass Grashof number, radiation parameter, heat flux exponent and the mass flux exponent. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer. The local and average skin-friction increases with the increase in radiation parameter. For increasing values of radiation parameter the local as well as average Nusselt number increases.