WorldWideScience

Sample records for annular array imaging

  1. Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging

    Science.gov (United States)

    Koduru, Jaya Prakash; Rose, Joseph L.

    2009-03-01

    Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.

  2. A flexible annular-array imaging platform for micro-ultrasound.

    Science.gov (United States)

    Qiu, Weibao; Yu, Yanyan; Chabok, Hamid Reza; Liu, Cheng; Tsang, Fu Keung; Zhou, Qifa; Shung, K Kirk; Zheng, Hairong; Sun, Lei

    2013-01-01

    Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging.

  3. Chirp-coded excitation imaging with a high-frequency ultrasound annular array.

    Science.gov (United States)

    Mamou, Jonathan; Ketterling, Jeffrey A; Silverman, Ronald H

    2008-02-01

    High-frequency ultrasound (HFU, > 15 MHz) is an effective means of obtaining fine-resolution images of biological tissues for applications such as opthalmologic, dermatologic, and small animal imaging. HFU has two inherent drawbacks. First, HFU images have a limited depth of field (DOF) because of the short wavelength and the low fixed F-number of conventional HFU transducers. Second, HFU can be used to image only a few millimeters deep into a tissue because attenuation increases with frequency. In this study, a five-element annular array was used in conjunction with a synthetic-focusing algorithm to extend the DOF. The annular array had an aperture of 10 mm, a focal length of 31 mm, and a center frequency of 17 MHz. To increase penetration depth, 8-micros, chirp-coded signals were designed, input into an arbitrary waveform generator, and used to excite each array element. After data acquisition, the received signals were linearly filtered to restore axial resolution and increase the SNR. To compare the chirpcoded imaging method with conventional impulse imaging in terms of resolution, a 25-microm diameter wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. The results demonstrated that chirp-coded excitation did not degrade axial or lateral resolution. A tissue-mimicking phantom containing 10-microm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex vivo ophthalmic images were formed and chirpcoded images showed features that were not visible in conventional impulse images.

  4. Correspondence - Characterization of the effective performance of a high-frequency annular-array-based imaging system using anechoic-pipe phantoms.

    Science.gov (United States)

    Filoux, Erwan; Mamou, Jonathan; Moran, Carmel M; Pye, Stephen D; Ketterling, Jeffrey A

    2012-12-01

    A resolution integral (RI) method based on anechoic- pipe, tissue-mimicking phantoms was used to compare the detection capabilities of high-frequency imaging systems based on a single-element transducer, a state-of-the-art 256-element linear array, or a 5-element annular array. All transducers had a central frequency of 40 MHz with similar conventionally measured axial and lateral resolutions (about 50 and 85 μm, respectively). Using the RI metric, the annular array achieved the highest performance (RI = 60), followed by the linear array (RI = 47), and the single-element transducer (RI = 24). Results showed that the RI metric could be used to efficiently quantify the effective transducer performance and compare the image quality of different systems.

  5. Annular pancreas (image)

    Science.gov (United States)

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  6. Development of high frequency annular array ultrasound transducers

    Science.gov (United States)

    Gottlieb, Emanuel John

    The advantage of ultrasonic annular arrays over conventional single element transducers has been in the ability to transmit focus at multiple points throughout the depth of field, as well as receive dynamic focus. Today, annular, linear and multidimensional array imaging systems are not commercially available at frequencies greater than 20 MHz. The fabrication technology used to develop a high frequency (>50 MHz) annular array transducer is presented. A 9 mum P(VDF-TrFE) film was bonded to gold annuli electrodes on the top layer of a two sided polyimide flexible circuit. Each annulus was separated by a 30 mum kerf and had several electroplated micro vias that connected to electrode traces on the bottom side of the polyimide flexible circuit. The array's performance was evaluated by measuring the electrical impedance, pulse echo response and crosstalk measurement for each element in the array. In order to improve device sensitivity each element was electrically matched to an impedance magnitude of 50 O and 0° phase at resonance. The average round trip insertion loss measured for the array and compensated for diffraction effects was -33.5 dB. The measured average center frequency and bandwidth of an element was 55 MHz and 47 respectively. The measured crosstalk between adjacent elements remained below -29 dB at the center frequency in water. A vertical wire phantom was imaged using a single focus transmit beamformer and dynamic focusing receive beamformer. This image showed a significant improvement in lateral resolution over a range of 9 mm after the dynamic focusing receive algorithm was applied. These results correlated well with predictions from a Field II simulation. After beamforming the minimum lateral resolution (-6 dB) was 108 mum at the focus. Preliminary ultrasound B-mode images of the rabbit eye using this transducer were shown in conjunction with a multi-channel digital beamformer. A feasibility study of designing and fabricating tunable copolymer

  7. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    OpenAIRE

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained. Numerical examples are given in the context of a 10-ring annular array operating at a central frequency of 2.5 MHz in water.

  8. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    DEFF Research Database (Denmark)

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  9. Phased annular array transducers for ultrasonic guided wave applications

    Science.gov (United States)

    Yan, Fei; Borigo, Cody; Liang, Yue; Koduru, Jaya P.; Rose, Joseph L.

    2011-04-01

    Mode and frequency control always plays an important role in ultrasonic guided wave applications. In this paper, theoretical understanding of guided wave excitations of axisymmetric sources on plate structures is established. It is shown that a wave number spectrum can be used to investigate the guided wave excitations of an axisymmetric source. The wave number spectrum is calculated from a Hankel transform of the axial source loading profile. On the basis of the theoretical understanding, phased annular array transducers are developed as a powerful tool for guided wave mode and frequency control. By applying appropriate time delays to phase the multiple elements of an annular array transducer, guided wave mode and frequency tuning can be achieved fully electronically. The phased annular array transducers have been successfully used for various applications. Example applications presented in this paper include phased annular arrays for guided wave beamforming and a novel ultrasonic vibration modal analysis technique for damage detection.

  10. Radiation and reflection acoustical fields of an annular phased array

    Institute of Scientific and Technical Information of China (English)

    LAI Puxiang; ZHANG Bixing; WANG Chenghao

    2007-01-01

    The characteristics of the radiation and reflection acoustical fields of an annular phased array are investigated. The effects of the element number, element radius, interelement spacing, centre frequency, focus position, and other parameters on the radiation acoustical field of the annular phased array is theoretically studied. In experiment, an annular transducer with 8 equal-area elements is designed and fabricated, and a series of experimental measurements are conducted. The radiation acoustical field and its reflection on a liquid-solid interface are theoretically and experimentally studied. The experimental result is in good agreement with the theoretical one.

  11. Theoretical and Experimental Investigation of Ultrasonic Focusing with Annular Phased Array

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bi-Xing; WANG Cheng-Hao; LAI Pu-Xiang

    2006-01-01

    @@ The focused acoustic field generated by an annular array transducer and its reflection field on a solid-liquid interface are investigated theoretically and experimentally. Theoretically, the concise analytic expressions about the radiation and reflection acoustic fields of the annular phased array are obtained by the ray approach method (saddle-point method). In experiment, an annular transducer with 8 equal-area elements is designed and fabricated, and a series of experiments about the radiation acoustic field and its reflection on the liquid-solid interface are carried out. The experimental characteristics of the transducer are in good agreement with the numerical ones. It shows the correctness of the theoretical result and the feasibility of dynamic focusing of the experiment system. With the maximum amplitude and its emergence time of the reflection wave, we can acquire the information and the imaging of the reflection interface by the annular phased array dynamic focusing.

  12. A spacing compensation factor for the optimization of guided wave annular array transducers.

    Science.gov (United States)

    Borigo, Cody; Rose, Joseph L; Yan, Fei

    2013-01-01

    Transducer arrays can be utilized in ultrasonic guided wave applications to achieve preferential excitation of particular points on a dispersion curve. These arrays are designed according to the principles of wave interference and the influence of the wavelength excitation spectrum. This paper develops the relationships between the peak wavelength in the excitation spectra and the element spacing of linear comb and annular arrays. The excitation spectra are developed by applying Fourier and Hankel transforms to the spatial loading distribution functions of the comb and annular arrays, respectively. Although the peak wavelength of excitation of a comb array is typically assumed to be equal to the element spacing, it is shown that this can be an inaccurate assumption for annular arrays. The ratio of element spacing to the peak wavelength in the excitation spectrum is termed the spacing compensation factor, and is dependent on the number of array elements and the inner radius. It is determined that the compensation factor is negligible for comb arrays but is crucial for annular arrays in order to achieve optimal mode selection. Finite element analyses and experimental data are used to verify the calculations and demonstrate the significance of the compensation factor.

  13. Time delay controlled annular array transducers for omnidirectional guided wave mode control in plate like structures

    Science.gov (United States)

    Koduru, Jaya P.; Rose, Joseph L.

    2014-10-01

    Guided waves in plate like structures offer several modes with unique characteristics that can be taken advantage for nondestructive inspection applications. Conditions relating to the structure under inspection like the surrounding media, liquid loading, coatings etc require the use of special modes for successful inspection. Therefore, transducers that can excite mode controlled guided waves are essential for defect detection and discrimination in structures. Array transducers with annular elements can generate omnidirectional guided waves in plate like structures. However, the wave modes excited are limited to a particular wavelength governed by the element spacing. This limitation on the annular array transducers can be overcome by controlling the phase at each element relative to one another. In this work, annular array transducer construction techniques are theoretically examined and the optimum phase delays between the annular elements to excite a desired guided wave mode are calculated. A five element comb type annular array transducer is fabricated utilizing 1-3 type piezocomposite material. The mode control capability of the transducer is experimentally verified by selectively exciting the A0 and S0 guided wave modes in an aluminum plate like structure.

  14. Array of unstable resonators for a laser with an annular gain geometry

    Science.gov (United States)

    Vdovin, Gleb

    2015-06-01

    The application of an array of confocal unstable resonators, formed by spherical mirrors, to a laser with an annular active medium, is considered. The results of numerical simulations show that the proposed design generates high quality output beams in gas and solid-state lasers with low to moderate amplitude of intracavity aberrations.

  15. Phased annular array transducers for omnidirectional guided wave mode control in isotropic plate like structures

    Science.gov (United States)

    Koduru, Jaya P.; Momeni, Sepandarmaz; Rose, Joseph L.

    2013-12-01

    Ultrasonic guided waves are fast emerging as a reliable tool for continuous structural health monitoring. Their multi-modal nature along with their long range propagation characteristics offer several possibilities for interrogating structures. Transducers commonly used to generate guided waves in structures excite multiple modes at any frequency; their complex scattering and reflection from defects and boundaries often complicates the extraction of useful information. Often it is desirable to control the guided wave modes propagating in a structure to take advantage of their unique properties for different applications. Earlier attempts at guided wave mode control involved developing fixed wavelength linear and annular array transducers. Their only disadvantage is that the transducer is limited to a particular wavelength and a change in wavelength necessitates a change in the transducer. In this paper, we propose the development of an annular array transducer that can generate mode controlled omnidirectional guided waves by independently controlling the amplitude and phase of the array elements. A simplified actuator model that approximates the transducer loading on the structure to a constant pressure load under the array elements is assumed and an optimization problem is set up to compute the excitation voltage and phase of the elements. A five element annular array transducer is designed utilizing 1-3 type piezocomposite materials. The theoretical computations are experimentally verified on an aluminum plate like structure by exciting A0 and S0 guided wave modes.

  16. Analysis of annular phased array transducers for ultrasonic guided wave mode control

    Science.gov (United States)

    Kannajosyula, H.; Lissenden, C. J.; Rose, J. L.

    2013-08-01

    Exact and asymptotic analyses of annular phased array transducers (PAT) for elastic guided wave mode selection are presented. For the purpose of analysis, the transducer-substrate interaction is formulated in terms of a three-dimensional analogy to filters as applied one-dimensionally in areas such as signal processing and control theory. This enables the deduction of most of the properties of the annular array purely from the Fourier analysis of any actuating function that represents the loading due to the transducer. A generalized mathematical model of the actuating function due to the annular PAT is constructed. The Fourier spectrum is analyzed for resonances in the wavenumber domain. Formulas for phase and time delays are presented. The phenomena of outgoing and incoming waves are also studied. Numerical analysis of the wavenumber spectrum for the annular PAT with a finite number of elements is performed to further illustrate the results deduced from exact and asymptotic analyses. Finite element simulations are presented to further verify the phenomena predicted through the wavenumber spectrum analysis.

  17. Fourier-Bessel Field Calculation and Tuning of a CW Annular Array

    DEFF Research Database (Denmark)

    Fox, Paul D.; Cheng, Jiqi; Lu, Jian-yu

    2002-01-01

    A 1-D Fourier-Bessel series method for computing and tuning the linear lossless field of flat continuous wave (CW) annular arrays is given and discussed with both numerical simulation and experimental verification. The technique provides a new method for modelling and manipulating the propagated...... field by linking the quantized surface pressure profile to a set of limited diffraction Bessel beams propagating into the medium. In the limit, these become a known set of nondiffracting Bessel beams satisfying the lossless linear wave equation, which allow us to derive a linear matrix formulation...... for the field in terms of the ring pressures on the transducer surface. Tuning (beamforming) of the field then follows by formulating a least squares design with respect to the transducer ring pressures. Results are presented in the context of a 10-ring annular array operating at 2.5 MHz in water....

  18. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals.

    Science.gov (United States)

    Kujawska, Tamara; Secomski, Wojciech; Byra, Michał; Postema, Michiel; Nowicki, Andrzej

    2017-04-01

    A technique using pulsed High Intensity Focused Ultrasound (HIFU) to destroy deep-seated solid tumors is a promising noninvasive therapeutic approach. A main purpose of this study was to design and test a HIFU transducer suitable for preclinical studies of efficacy of tested, anti-cancer drugs, activated by HIFU beams, in the treatment of a variety of solid tumors implanted to various organs of small animals at the depth of the order of 1-2cm under the skin. To allow focusing of the beam, generated by such transducer, within treated tissue at different depths, a spherical, 2-MHz, 29-mm diameter annular phased array transducer was designed and built. To prove its potential for preclinical studies on small animals, multiple thermal lesions were induced in a pork loin ex vivo by heating beams of the same: 6W, or 12W, or 18W acoustic power and 25mm, 30mm, and 35mm focal lengths. Time delay for each annulus was controlled electronically to provide beam focusing within tissue at the depths of 10mm, 15mm, and 20mm. The exposure time required to induce local necrosis was determined at different depths using thermocouples. Location and extent of thermal lesions determined from numerical simulations were compared with those measured using ultrasound and magnetic resonance imaging techniques and verified by a digital caliper after cutting the tested tissue samples. Quantitative analysis of the results showed that the location and extent of necrotic lesions on the magnetic resonance images are consistent with those predicted numerically and measured by caliper. The edges of lesions were clearly outlined although on ultrasound images they were fuzzy. This allows to conclude that the use of the transducer designed offers an effective noninvasive tool not only to induce local necrotic lesions within treated tissue without damaging the surrounding tissue structures but also to test various chemotherapeutics activated by the HIFU beams in preclinical studies on small animals.

  19. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.

    Science.gov (United States)

    Ni, Haibin; Wang, Ming; Shen, Tianyi; Zhou, Jing

    2015-02-24

    Surface plasmons that propagate along cylindrical metal/dielectric interfaces in annular apertures in metal films, called cylindrical surface plasmons (CSPs), exhibit attractive optical characteristics. However, it is challenging to fabricate these nanocoaxial structures. Here, we demonstrate a practical low-cost route to manufacture highly ordered, large-area annular cavity arrays (ACAs) that can support CSPs with great tunability. By employing a sol-gel coassembly method, reactive ion etching and metal sputtering techniques, regular, highly ordered ACAs in square-centimeter-scale with a gap width tunable in the range of several to hundreds of nanometers have been produced with good reproducibility. Ag ACAs with a gap width of 12 nm and a gap height of 635 nm are demonstrated. By finite-difference time-domain simulation, we confirm that the pronounced dips in the reflectance spectra of ACAs are attributable to CSP resonances excited in the annular gaps. By adjusting etching time and Ag film thickness, the CSP dips can be tuned to sweep the entire optical range of 360 to 1800 nm without changing sphere size, which makes them a promising candidate for forming integrated plasmonic sensing arrays. The high tunability of the CSP resonant frequencies together with strong electric field enhancement in the cavities make the ACAs promising candidates for surface plasmon sensors and SERS substrates, as, for example, they have been used in liquid refractive index (RI) sensing, demonstrating a sensitivity of 1505 nm/RIU and a figure of merit of 9. One of the CSP dips of ACAs with a certain geometry size is angle- (0-70 degrees) and polarization-independent and can be used as a narrow-band absorber. Furthermore, the nano annular cavity arrays can be used to construct solar cells, nanolasers and nanoparticle plasmonic tweezers.

  20. Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array.

    Science.gov (United States)

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk

    2012-04-01

    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9×9 μm. The width of the kerf among pillars was ∼5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm(2) with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers, e.g. 1D and 2D arrays.

  1. Regional hyperthermia for deep-seated malignancies using the BSD annular array.

    Science.gov (United States)

    Shimm, D S; Cetas, T C; Oleson, J R; Gross, E R; Buechler, D N; Fletcher, A M; Dean, S E

    1988-01-01

    Forty-four patients were treated using the BSD-1000 Annular Phased Array between April 1983 and December 1986. There were 32 pelvic, nine abdominal, two extremity, and one thoracic sites treated. Mean tumour volume was 646 cc. Thirty-nine patients had concurrent radiation therapy, receiving a mean dose of 38 Gy. Mean average temperature was 41.0 +/- 1.4 degrees C. Most patients experienced local or systemic toxicity, requiring temporary treatment interruption in 33 patients, and termination of treatment in eight. Chronic complications were seen in four, but these were in patients receiving high total radiation doses as well. There were six complete and five partial responses. Among the 32 patients with pelvic tumours, mean tumour volume was 317 cc, mean radiation dose was 42 Gy, and mean average temperature was 41.3 +/- 1.2 degrees C. There were five complete and four partial responses. Achieving tumour temperatures greater than or equal to 42 degrees C with the annular array is difficult, due to both systemic and local toxicity. To improve clinical hyperthermia for thoracic, abdominal, and pelvic tumours, new technologies such as steerable phased array microwave systems; scanned, focused ultrasound; and permanently implantable thermoregulating ferromagnetic seeds, or new approaches such as using drugs to alter blood flow, or combining hyperthermia with antineoplastic drugs or biological agents, will be necessary.

  2. Theory and experiment of Fourier-Bessel field calculation and tuning of a pulsed wave annular array

    DEFF Research Database (Denmark)

    Fox, Paul D.; Jiqi, Cheng; Jian-yu, Lu

    2003-01-01

    A one-dimensional (1D) Fourier-Bessel series method for computing and tuning (beamforming) the linear lossless field of flat pulsed wave annular arrays is developed and supported with both numerical simulation and experimental verification. The technique represents a new method for modeling....... Tuning of the field then also follows by formulating a least-squares design for the transducer surface pressure with respect to a given desired field in space and time. Simulated and experimental results for both field computation and tuning are presented in the context of a 10-ring annular array...

  3. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    Energy Technology Data Exchange (ETDEWEB)

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I., E-mail: fbaida@univ-fcomte.fr [Département d' Optique P.M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche–Comté, 25030 Besançon Cedex (France); Belkhir, Abderrahmane [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou (Algeria)

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  4. Modeling of Focused Acoustic Field of a Concave Multi-annular Phased Array Using Spheroidal Beam Equation

    Institute of Scientific and Technical Information of China (English)

    余立立; 寿文德; 惠春

    2012-01-01

    A theoretical model of focused acoustic field for a multi-annular phased array on concave spherical surface is proposed. In this model, the source boundary conditions of the spheroidal beam equation (SBE) for multi-annular phased elements are studied. Acoustic field calculated by the dynamic focusing model of SBE is compared with numerical results of the O'Neil and Khokhlov-Zabolotskaya-Kuznetsov (KZK) model, respectively. Axia/dynamic focusing and the harmonic effects are presented. The results demonstrate that the dynamic focusing model of SBE is good valid for a concave multi-annular phased array with a large aperture angle in the linear or nonlinear field.

  5. Reflective plasmonic waveplates based on metal-insulator-metal subwavelength rectangular annular arrays

    Science.gov (United States)

    Chen, Zhonghui; Wang, Chinhua; Xu, Fuyang; Lou, Yimin; Cao, Bing; Li, Xiaofeng

    2014-04-01

    We propose and present a quarter-wave plate using metal-insulator-metal (MIM) structure with sub-wavelength rectangular annular arrays (RAA) patterned in the upper Au film. It is found that by manipulating asymmetric width of the annular gaps along two orthogonal directions, the reflected amplitude and phase of the two orthogonal components can be well controlled via the RAA metasurface tuned by the MIM cavity effect, in which the localized surface plasmon resonance dip can be flattened with the cavity length. A quarter-wave plate has been realized through an optimized design at 1.55 μm, in which the phase difference variation of less than 2% of the π/2 between the two orthogonal components can be obtained in an ultra-wide wavelength range of about 130 nm, and the reflectivity is up to ˜90% within the whole working wavelength band. It provides a great potential for applications in advanced nanophotonic devices and integrated photonic systems.

  6. Fresnel phase retrieval method using an annular lens array on an SLM

    Science.gov (United States)

    Loriot, V.; Mendoza-Yero, O.; Pérez-Vizcaíno, J.; Mínguez-Vega, G.; de Nalda, R.; Bañares, L.; Lancis, J.

    2014-10-01

    Wavefront aberrations play a major role when focusing an ultrashort laser pulse to a high-quality focal spot. Here, we report a novel method to measure and correct wavefront aberrations of a 30-fs pulsed laser beam. The method only requires a programmable liquid-crystal spatial light modulator and a camera. Wavefront retrieval is based on pupil segmentation with an annular lens array, which allows us to determine the local phase that minimizes focusing errors due to wavefront aberrations. Our method provides accurate results even when implemented with low dynamic range cameras and polychromatic beams. Finally, the retrieved phase is added to a diffractive lens codified onto the spatial light modulator to experimentally demonstrate near-diffraction-limited femtosecond beam focusing without refractive components.

  7. An L-Band, Circularly Polarised, Dual-Feed, Cavity-Backed Annular Slot Antenna For Phased-Array Applications

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2006-01-01

    The results of a parametric study for the development of an L-band, circularly polarised, dual-feed, cavity-backed annular slot antenna is presented. The study included detailed numerical simulations and measurements on a prototype with different ground planes, to assess the antenna’s applicability...... as an element in a small phased array antenna....

  8. Nonlinear phased array imaging

    Science.gov (United States)

    Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.

    2016-04-01

    A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.

  9. Dynamics of annular bright field imaging in scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, S.D., E-mail: scott@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Sawada, H.; Okunishi, E.; Kondo, Y. [JEOL Ltd., Tokyo 196-8558 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2010-06-15

    We explore the dynamics of image formation in the so-called annular bright field mode in scanning transmission electron microscopy, whereby an annular detector is used with detector collection range lying within the cone of illumination, i.e. the bright field region. We show that this imaging mode allows us to reliably image both light and heavy columns over a range of thickness and defocus values, and we explain the contrast mechanisms involved. The role of probe and detector aperture sizes is considered, as is the sensitivity of the method to intercolumn spacing and local disorder.

  10. The Characterization of the Radiation Acoustical Fields of an Annular Phased Array%相控环形阵辐射声场特性分析

    Institute of Scientific and Technical Information of China (English)

    段文星; 乔文孝; 车小花

    2013-01-01

    Traditional down hole ultrasonovision and some down hole ultrasonic measurement techniques often use circular piston radiator,its focal length and direction are fixed,so it has the poor adaptability to different diameters and thicknesses of the cased holes.We simulate the radiation acoustical fields of the annular phased array in theory,and analyse the effects of the parameters of the annular phased array and the radiation acoustical fields on the focal length and direction.The above results show:①The array element in the array is designed as iso-area so that the radiation area of the array may be uniform distribution; ②The higher frequency in the array makes the radiation energy radiation along the axis line; ③Relative to the circular piston radiators,the annular phased array can achieve dynamic focusing by adjusting excitation signal phase of each unit,and it can be applied to the requirements of cased hole ultrasound imaging with different internal diametes.%传统的井下超声电视等井下超声测量技术中往往采用圆形活塞辐射器,其焦距和指向性同定,对于不同内径和厚度的套管井适应能力不好.理论模拟相控环形阵辐射器辐射声场的分布,分析相控环形阵辐射器各个参数对辐射声场的焦距和指向性的影响.相控环形阵辐射器阵元尺度的选择采用等面积方案有利于辐射面积在相控环形阵面内的均匀分布;使用相控阵时采用高频更利于辐射能量沿轴线集中辐射;相对于圆形活塞辐射器,相控环形阵辐射器可以在较低的频率下获得较小的焦斑直径,通过调整相位延迟获得不同的焦区范围,适应不同内径套管的超声成像测井要求.

  11. Imaging Properties of Planar Microlens Arrays

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The planar microlens arrays is a two-dimensional array of optical component which is fabricated monolithically available. Imaging properties of planar microlens arrays are described, which provide both image multiplexer and erect, unit magnification images.

  12. Array imaging system for lithography

    Science.gov (United States)

    Kirner, Raoul; Mueller, Kevin; Malaurie, Pauline; Vogler, Uwe; Noell, Wilfried; Scharf, Toralf; Voelkel, Reinhard

    2016-09-01

    We present an integrated array imaging system based on a stack of microlens arrays. The microlens arrays are manufactured by melting resist and reactive ion etching (RIE) technology on 8'' wafers (fused silica) and mounted by wafer-level packaging (WLP)1. The array imaging system is configured for 1X projection (magnification m = +1) of a mask pattern onto a planar wafer. The optical system is based on two symmetric telescopes, thus anti-symmetric wavefront aberrations like coma, distortion, lateral color are minimal. Spherical aberrations are reduced by using microlenses with aspherical lens profiles. In our system design approach, sub-images of individual imaging channels do not overlap to avoid interference. Image superposition is achieved by moving the array imaging system during the exposure time. A tandem Koehler integrator illumination system (MO Exposure Optics) is used for illumination. The angular spectrum of the illumination light underfills the pupils of the imaging channels to avoid crosstalk. We present and discuss results from simulation, mounting and testing of a first prototype of the investigated array imaging system for lithography.

  13. Annular-force-based variable curvature mirror combined with multi-point actuation array to improve the surface figure accuracy: a prototype design

    Science.gov (United States)

    Zhao, Hui; Xie, Xiaopeng; Ren, Guorui; Du, Yunfei; Liu, Meiying; Wei, Jingxuan

    2016-10-01

    In recent years, a novel optical zooming technique has been paid much attention. With the help of optical leveraging effect, it is possible to alter the system focal length dramatically without moving elements involved in by only changing the curvature radius of VCM (variable curvature mirror) slightly. With no doubt, VCM is the key to realize non-moving element optical zooming and it has to provide large enough saggitus variation while still maintaining the high surface figure accuracy to ensure high quality imaging. In our previously published paper, an annular force based VCM has been designed, fabricated and tested. Experiments demonstrate that with the aperture of 100mm and thickness of 2mm, the VCM could generate a large saggitus variation exceeding 30λ (λ=632.8nm). However, the optical quality degrades very fast and this makes such a VCM unsuitable for optical imaging in visible band. Therefore in this manuscript, a multipoint actuation array, which is composed of totally 49 piezoelectric actuators, is embedded into the annular structure to aim to correct the surface figure distortion caused by large saggitus variation. The new structure model has been designed and numerical simulation indicates that the surface figure distortion could be well corrected as long as the degraded surface figure accuracy is better than 1.8λ (λ=632.8nm) (RMS). Based on this, a new prototype VCM is being fabricated and intermediate results are reported here.

  14. Speckle imaging from an array

    Science.gov (United States)

    Riker, Jim F.; Tyler, Glenn A.; Vaughn, Jeff L.

    2016-09-01

    In this paper, we present two analytic theories developed recently to predict the performance of an imaging system composed of a phased array illuminator and a set of receiver subapertures. The receiver need not coincide with the transmitter. The two theories have been documented separately (ref. 1, 2), and the reader can find more details there - the theories present the analytic phased array irradiance on target in the presence of piston errors, and the resulting speckle pattern-induced imaging noise. The principal results presented here are the Signal to Noise Ratios (SNR) for both the radiometric portion of the problem and the speckle imaging portion of the problem.

  15. Selective color imaging using weighted interleaved multiple annular linear diffractive axicons.

    Science.gov (United States)

    Bialic, Emilie; Petiton, Valéry; de Bougrenet de la Tocnaye, Jean-Louis

    2012-07-10

    Annular linear diffractive axicons are optical devices providing chromatic imaging over an extended depth of focus when illuminated by a white light. To improve their low radiometric performance, multiple annular linear diffractive axicons (MALDAs) have been introduced. Their chromatic properties are well known and constrained by dispersion laws. A first attempt to freely combine colors or wavelength bands has been obtained with interleaved MALDAs (I_MALDAs). However, such optics do not provide a full decoupling between wavelength combination and brightness control required in the CIE color space to address any colors. We present here a new category of I_MALDA providing this capability when illuminated by a white source containing tristimulus (red/green/blue) values. We assess both theoretically and experimentally imaging qualities of such optics with respect to two different interleaving techniques and suggest some potential applications, in particular in the field of anticounterfeit and authentication techniques.

  16. Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection

    Science.gov (United States)

    Zeng, Lvming; Liu, Guodong; Yang, Diwu; Ren, Zhong; Huang, Zhen

    2008-12-01

    A near-infrared photoacoustic glucose monitoring system, which is integrated dual-wavelength pulsed laser diode excitation with eight-element planar annular array detection technique, is designed and fabricated during this study. It has the characteristics of nonivasive, inexpensive, portable, accurate location, and high signal-to-noise ratio. In the system, the exciting source is based on two laser diodes with wavelengths of 905 nm and 1550 nm, respectively, with optical pulse energy of 20 μJ and 6 μJ. The laser beam is optically focused and jointly projected to a confocal point with a diameter of 0.7 mm approximately. A 7.5 MHz 8-element annular array transducer with a hollow structure is machined to capture photoacoustic signal in backward mode. The captured signals excitated from blood glucose are processed with a synthetic focusing algorithm to obtain high signal-to-noise ratio and accurate location over a range of axial detection depth. The custom-made transducer with equal area elements is coaxially collimated with the laser source to improve the photoacoustic excite/receive efficiency. In the paper, we introduce the photoacoustic theory, receive/process technique, and design method of the portable noninvasive photoacoustic glucose monitoring system, which can potentially be developed as a powerful diagnosis and treatment tool for diabetes mellitus.

  17. LINEARIZATION OF ANNULAR IMAGE OF PANORAMIC ANNULAR LENS%全景环形透镜环形象的线性化研究

    Institute of Scientific and Technical Information of China (English)

    朱方明; 杨国光; 姚炜勇; 程惠全

    2001-01-01

    全景环形透镜(PAL)独特的成象性能,即环绕光轴360°产生一个环形象且景深为无穷远,使得由PAL组成的观测系统没有活动部件能同时观察透镜周围的景物.但PAL所成的环形象不便于人眼观察和测量,有畸变、失真,为此,本文根据图象坐标变换,实现了一种环形象的线性恢复,即首先将环形象线性化处理,再对其进行插值,实验结果表明线性化效果较好.该图象处理技术可以为发挥PAL的许多潜在应用创造条件.%For the special imaging feature of Panoramic Annular Lens,that forming an annular image circling the axis and having endless depth of field,the observing system made up of PAL can be used to observe object around the lens without moving part.But the annular image formed by PAL is not only unconvenient for observation and measurement,but also has distortion phenominon.According to coordinate convertion of image,a method of linearizing annular image is presented.The results show that the effect of linearization is good.With this method,it can be found basis for potential application of PAL.

  18. Nonlinear Ultrasonic Phased Array Imaging

    Science.gov (United States)

    Potter, J. N.; Croxford, A. J.; Wilcox, P. D.

    2014-10-01

    This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.

  19. Nonlinear ultrasonic phased array imaging

    OpenAIRE

    Potter, J N; Croxford, A.J.; Wilcox, P. D.

    2014-01-01

    This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging t...

  20. Array Imaging of Noisy Materials

    Science.gov (United States)

    Wilcox, P. D.

    2011-06-01

    The ultimate limit on ultrasonic defect detectability is the coherent noise due to material backscatter. A model of such noise in ultrasonic array images is developed based on the single scattering assumption. The implications of the model are discussed and supported with some experimental examples. In the case of a copper specimen, it is shown that an improvement in signal to coherent noise ratio of over 30 dB can be obtained by optimization of imaging parameters.

  1. Nonlinear ultrasonic phased array imaging.

    Science.gov (United States)

    Potter, J N; Croxford, A J; Wilcox, P D

    2014-10-03

    This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.

  2. Gigapixel imaging with microlens arrays

    Science.gov (United States)

    Orth, Antony; Schonbrun, Ethan

    2016-03-01

    A crucial part of the drug discovery process involves imaging the response of thousands of cell cultures to candidate drugs. Quantitative parameters from these "high content screens", such as protein expression and cell morphology, are extracted from fluorescence and brightfield micrographs. Due to the sheer number of cells that need to imaged for adequate statistics, the imaging time itself is a major bottleneck. Automated microscopes image small fields-of-view (FOVs) serially, which are then stitched together to form gigapixel-scale mosaics. We have developed a microscopy architecture that reduces mechanical overhead of traditional large field-of-view by parallelizing the image capture process. Instead of a single objective lens imaging FOVs one by one, we employ a microlens array for continuous photon capture, resulting in a 3-fold throughput increase. In this contribution, we present the design and imaging results of this microscopy architecture in three different contrast modes: multichannel fluorescence, hyperspectral fluorescence and brightfield.

  3. Quantitative ultrasonic phased array imaging

    Science.gov (United States)

    Engle, Brady J.; Schmerr, Lester W., Jr.; Sedov, Alexander

    2014-02-01

    When imaging with ultrasonic phased arrays, what do we actually image? What quantitative information is contained in the image? Ad-hoc delay-and-sum methods such as the synthetic aperture focusing technique (SAFT) and the total focusing method (TFM) fail to answer these questions. We have shown that a new quantitative approach allows the formation of flaw images by explicitly inverting the Thompson-Gray measurement model. To examine the above questions, we have set up a software simulation test bed that considers a 2-D scalar scattering problem of a cylindrical inclusion with the method of separation of variables. It is shown that in SAFT types of imaging the only part of the flaw properly imaged is the front surface specular response of the flaw. Other responses (back surface reflections, creeping waves, etc.) are improperly imaged and form artifacts in the image. In the case of TFM-like imaging the quantity being properly imaged is an angular integration of the front surface reflectivity. The other, improperly imaged responses are also averaged, leading to a reduction in some of the artifacts present. Our results have strong implications for flaw sizing and flaw characterization with delay-and-sum images.

  4. Experimental quantification of annular dark-field images in scanning transmission electron microscopy.

    Science.gov (United States)

    Lebeau, James M; Stemmer, Susanne

    2008-11-01

    This paper reports on a method to obtain atomic resolution Z-contrast (high-angle annular dark-field) images with intensities normalized to the incident beam. The procedure bypasses the built-in signal processing hardware of the microscope to obtain the large dynamic range necessary for consecutive measurements of the incident beam and the intensities in the Z-contrast image. The method is also used to characterize the response of the annular dark-field detector output, including conditions that avoid saturation and result in a linear relationship between the electron flux reaching the detector and its output. We also characterize the uniformity of the detector response across its entire area and determine its size and shape, which are needed as input for image simulations. We present normalized intensity images of a SrTiO(3) single crystal as a function of thickness. Averaged, normalized atom column intensities and the background intensity are extracted from these images. The results from the approach developed here can be used for direct, quantitative comparisons with image simulations without any need for scaling.

  5. Performance evaluation of annular arrays in practice: The measurement of phase and amplitude patterns of radio-frequency deep body applicators

    NARCIS (Netherlands)

    Schneider, C.J.; Kuijer, J.P.A.; Colussi, L.C.; Schepp, C.J.; Dijk, J.D.P. van

    1995-01-01

    An approach to a solution of two major problems in operating Annular Phased Arrays in deep body hyperthermia is presented: an E-field sensor capable of measuring phase and amplitude at 70 MHz and the concept of a power transmission factor to determine the effective amplitude of each applicator. In t

  6. Scanning strategies for imaging arrays

    CERN Document Server

    Kovács, A

    2008-01-01

    Large-format (sub)millimeter wavelength imaging arrays are best operated in scanning observing modes rather than traditional position-switched (chopped) modes. The choice of observing mode is critical for isolating source signals from various types of noise interference, especially for ground-based instrumentation operating under a bright atmosphere. Ideal observing strategies can combat 1/f noise, resist instrumental defects, sensitively recover emission on large scales, and provide an even field coverage -- all under feasible requirements of telescope movement. This work aims to guide the design of observing patterns that maximize scientific returns. It also compares some of the popular choices of observing modes for (sub)millimeter imaging, such as random, Lissajous, billiard, spiral, On-The-Fly (OTF), DREAM, chopped and stare patterns. Many of the conclusions are also applicable other imaging applications and imaging in one dimension (e.g. spectroscopic observations).

  7. Prospects for lithium imaging using annular bright field scanning transmission electron microscopy: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, S.D., E-mail: scott@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Lugg, N.R. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-07-15

    There is strong interest in lithium imaging, particularly because of its significance in battery materials. However, light atoms only scatter electrons weakly and atomic resolution direct imaging of lithium has proven difficult. This paper explores theoretically the conditions under which lithium columns can be expected to be directly visible using annular bright field scanning transmission electron microscopy. A detailed discussion is given of the controllable parameters and the conditions most favourable for lithium imaging. -- Highlights: {yields} Optimum conditions to image Li columns in Li-bearing materials with ABF are explored. {yields} Higher accelerating voltages give better contrast at a given resolution. {yields} Aperture size must compromise between resolution and good coupling to the column. {yields} Samples with small along-column interatomic spacing between Li atoms are best. {yields} The trends observed are consistent with prediction based on the s-state model.

  8. Simulations of astronomical imaging phased arrays.

    Science.gov (United States)

    Saklatvala, George; Withington, Stafford; Hobson, Michael P

    2008-04-01

    We describe a theoretical procedure for analyzing astronomical phased arrays with overlapping beams and apply the procedure to simulate a simple example. We demonstrate the effect of overlapping beams on the number of degrees of freedom of the array and on the ability of the array to recover a source. We show that the best images are obtained using overlapping beams, contrary to common practice, and show how the dynamic range of a phased array directly affects the image quality.

  9. Characterization of the Annular Core Research Reactor (ACRR Neutron Radiography System Imaging Plane

    Directory of Open Access Journals (Sweden)

    Kaiser Krista

    2016-01-01

    Full Text Available The Annular Core Research Reactor (ACRR at Sandia National Laboratories (SNL is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1 available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  10. Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane

    Science.gov (United States)

    Kaiser, Krista; Chantel Nowlen, K.; DePriest, K. Russell

    2016-02-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  11. 环形狭缝腔阵列光学特性的研究∗%Finite difference time domain simulation of optical prop erties of annular cavity arrays

    Institute of Scientific and Technical Information of China (English)

    周静; 王鸣; 倪海彬; 马鑫

    2015-01-01

    Optical properties of two-dimensional periodic annular cavity arrays in hexagonal packing are investigated by finite difference time domain simulation method in this paper. According to simulated reflectance/transmission spectra, electric field distribution and charge distribution, we confirm that multiple cylindrical surface plasmon resonances, which result in reflectance dips, can be excited in annular cavities by linearly polarized light. Mechanism of the cylindrical surface plasmons is investigated. A coaxial waveguide mode TE11 is excited in the annular cavities and a Fabry-Perot resonance is fulfilled along the depth direction of the annular cavities at the resonance wavelengths. While the number of reflectance dips and wavelengths of these dips in reflectance spectra are dependent on the geometric sizes of the annular cavities, the periodicity and polarization of incident light do not affect their reflectance spectra dramatically. Incident light beams with resonant wavelengths are localized in annular cavities with large electric field increasing and dissipate gradually due to metal loss. Reflectance dips can be tuned from 350 to 2000 nm by adjusting geometric size parameters of the annular cavities, such as outer and inner radii of the annular gaps, gap sizes and metal film thickness values. Reflectance dips shift toward longer wavelength with increasing inner and outer radii of the annular gaps, metal film thickness and with reducing the gap distance. In addition, infiltrate liquids in the annular gaps will result in a shift of the resonance wavelengths, which makes the annular cavities good refractive index sensors. A refractive index sensitivity up to 1850 nm/RIU is demonstrated. The refractive index sensitivities of annular cavities can also be tuned by their geometric sizes. Annular cavities with large electric field enhancement and tunable cylindrical surface plasmons can be used as surface enhanced Raman spectra substrates, refractive index sensors

  12. Picometer-scale atom position analysis in annular bright-field STEM imaging.

    Science.gov (United States)

    Gao, Peng; Kumamoto, Akihito; Ishikawa, Ryo; Lugg, Nathan; Shibata, Naoya; Ikuhara, Yuichi

    2017-09-11

    We study the effects of specimen mistilt on the picometer-scale measurement of local structure by combing experiment and simulation in annular bright-field scanning transmission electron microscopy (ABF-STEM). A relative distance measurement method is proposed to separate the tilt effects from the scan noise and sample drift induced image distortion. We find that under a typical experimental condition a small specimen tilt (∼6 mrad) in 25 nm thick SrTiO3 along [001] causes 11.9 pm artificial displacement between O and Sr/TiO columns in ABF image, which is more than 3 times of scan noise and sample drift induced image distortion ∼3.2 pm, suggesting the tilt effect could be dominant for the quantitative analysis of ABF images. The artifact depends on the crystal mistilt angle, specimen thickness, defocus, convergence angle and uncorrected aberration. Our study provides useful insights into detecting and correcting tilt effects during both experiment operation and data analysis to extract the real structure information and avoid mis-interpretations of atomic structure as well as the properties such as oxygen octahedral distortion/shift. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy.

    Science.gov (United States)

    Bauer-Marschallinger, Johannes; Höllinger, Astrid; Jakoby, Bernhard; Burgholzer, Peter; Berer, Thomas

    2017-03-01

    We report on a novel imaging system for large depth of field photoacoustic scanning macroscopy. Instead of commonly used piezoelectric transducers, fiber-optic based ultrasound detection is applied. The optical fibers are shaped into rings and mainly receive ultrasonic signals stemming from the ring symmetry axes. Four concentric fiber-optic rings with varying diameters are used in order to increase the image quality. Imaging artifacts, originating from the off-axis sensitivity of the rings, are reduced by coherence weighting. We discuss the working principle of the system and present experimental results on tissue mimicking phantoms. The lateral resolution is estimated to be below 200 μm at a depth of 1.5 cm and below 230 μm at a depth of 4.5 cm. The minimum detectable pressure is in the order of 3 Pa. The introduced method has the potential to provide larger imaging depths than acoustic resolution photoacoustic microscopy and an imaging resolution similar to that of photoacoustic computed tomography.

  14. Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks

    Energy Technology Data Exchange (ETDEWEB)

    James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

    2009-09-01

    A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

  15. Quantitative annular dark-field imaging of single-layer graphene-II: atomic-resolution image contrast.

    Science.gov (United States)

    Yamashita, Shunsuke; Koshiya, Shogo; Nagai, Takuro; Kikkawa, Jun; Ishizuka, Kazuo; Kimoto, Koji

    2015-12-01

    We have investigated how accurately atomic-resolution annular dark-field (ADF) images match between experiments and simulations to conduct more reliable crystal structure analyses. Quantitative ADF imaging, in which the ADF intensity at each pixel represents the fraction of the incident probe current, allows us to perform direct comparisons with simulations without the use of fitting parameters. Although the conventional comparison suffers from experimental uncertainties such as an amorphous surface layer and specimen thickness, in this study we eliminated such uncertainties by using a single-layer graphene as a specimen. Furthermore, to reduce image distortion and shot noises in experimental images, multiple acquisitions with drift correction were performed, and the atomic ADF contrast was quantitatively acquired. To reproduce the experimental ADF contrast, we used three distribution functions as the effective source distribution in simulations. The optimum distribution function and its full-width at half-maximum were evaluated by measuring the residuals between the experimental and simulated images. It was found that the experimental images could be explained well by a linear combination of a Gaussian function and a Lorentzian function with a longer tail than the Gaussian function.

  16. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    Application components of ISPA tubes are shown: the CERN-developed anode chip, special windows for gamma and x-ray detection, scintillating crystal and fibre arrays for imaging and tracking of ionizing particles.

  17. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging.

    Science.gov (United States)

    Beyer, Andreas; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-01

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible.

  18. Direct imaging of light elements by annular dark-field aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lotnyk, Andriy, E-mail: andriy.lotnyk@iom-leipzig.de; Poppitz, David; Gerlach, Jürgen W.; Rauschenbach, Bernd [Leibniz Institute of Surface Modification, Permoserstr. 15, D-04318 Leipzig (Germany)

    2014-02-17

    In this report, we show that an annular dark-field detector in an aberration-corrected scanning transmission electron microscope allows the direct observation of light element columns in crystalline lattices. At specific imaging conditions, an enhancement of the intensities of light element columns in the presence of heavy element columns is observed. Experimental results are presented for imaging the nitrogen and carbon atomic columns at the GaN-SiC interface and within the GaN and SiC compounds. The crystal polarity of GaN at the interface is identified. The obtained findings are discussed and are well supported by image simulations.

  19. Passive cavitation imaging with ultrasound arrays.

    Science.gov (United States)

    Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas

    2009-12-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.

  20. Lensless image scanner using multilayered aperture array for noncontact imaging

    Science.gov (United States)

    Kawano, Hiroyuki

    2016-10-01

    We propose a new imaging system of a simple structure that uses a set of layered aperture arrays above a linear image sensor instead of an imaging lens. The image scanner transfers the image information by detecting the scattering rays from the object directly without any collecting power, as if it were an optical stamp. Since the aperture arrays shield the stray rays propagating obliquely, the image information can be read with high resolution even if the object floats within a few millimeters. The aperture arrays with staggered alignment in two lines widen the space with the adjacent pixel without decimating information. We manufactured a prototype model of 300-dpi resolution, whose height is as little as 5 mm. The experimental result shows that ghost images can be restricted sufficiently, and our scanner can clearly read an object within a space of <3.5 mm, meaning that it has a large depth of field of 3.5 mm.

  1. Self imaging in segmented waveguide arrays

    Science.gov (United States)

    Heinrich, Matthias; Szameit, Alexander; Dreisow, Felix; Pertsch, Thomas; Nolte, Stefan; Tünnermann, Andreas; Suran, Eric; Louradour, Frédéric; Bathélémy, Alain; Longhi, Stefano

    2009-02-01

    Self-imaging in integrated optical devices is interesting for many applications including image transmission, optical collimation and even reshaping of ultrashort laser pulses. However, in general this relies on boundary-free light propagation, since interaction with boundaries results in a considerable distortion of the self-imaging effect. This problem can be overcome in waveguide arrays by segmentation of particular lattice sites, yielding phase shifts which result in image reconstruction in one- as well as two-dimensional configurations. Here, we demonstrate the first experimental realization of this concept. For the fabrication of the segmented waveguide arrays we used the femtosecond laser direct-writing technique. The total length of the arrays is 50mm with a waveguide spacing of 16 μm and 20μm in the one- and two-dimensional case, respectively. The length of the segmented area was 2.6mm, while the segmentation period was chosen to be 16 μm. This results in a complete inversion of the global phase of the travelling field inside the array, so that the evolution dynamics are reversed and the input field is imaged onto the sample output facet. Accordingly, segmented integrated optical devices provide a new and attractive opportunity for image transmission in finite systems.

  2. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    On the table, under the scrutiny of some collaboration members, an ISPA tube (upper-left of the table) with some of its application components is shown: they consist of the CERN-developed anode chip, special windows for gamma and x-ray detection, scintillating crystal and fibre arrays for imaging and tracking of ionizing particles.

  3. Astronomical Image Processing with Array Detectors

    CERN Document Server

    Houde, Martin

    2007-01-01

    We address the question of astronomical image processing from data obtained with array detectors. We define and analyze the cases of evenly, regularly, and irregularly sampled maps for idealized (i.e., infinite) and realistic (i.e., finite) detectors. We concentrate on the effect of interpolation on the maps, and the choice of the kernel used to accomplish this task. We show how the normalization intrinsic to the interpolation process must be carefully accounted for when dealing with irregularly sampled grids. We also analyze the effect of missing or dead pixels in the array, and their consequences for the Nyquist sampling criterion.

  4. Extended arrays for nonlinear susceptibility magnitude imaging

    Science.gov (United States)

    Ficko, Bradley W.; Giacometti, Paolo; Diamond, Solomon G.

    2016-01-01

    This study implements nonlinear susceptibility magnitude imaging (SMI) with multifrequency intermodulation and phase encoding. An imaging grid was constructed of cylindrical wells of 3.5-mm diameter and 4.2-mm height on a hexagonal two-dimensional 61-voxel pattern with 5-mm spacing. Patterns of sample wells were filled with 40-μl volumes of Fe3O4 starch-coated magnetic nanoparticles (mNPs) with a hydrodynamic diameter of 100 nm and a concentration of 25 mg/ml. The imaging hardware was configured with three excitation coils and three detection coils in anticipation that a larger imaging system will have arrays of excitation and detection coils. Hexagonal and bar patterns of mNP were successfully imaged (R2 > 0.9) at several orientations. This SMI demonstration extends our prior work to feature a larger coil array, enlarged field-of-view, effective phase encoding scheme, reduced mNP sample size, and more complex imaging patterns to test the feasibility of extending the method beyond the pilot scale. The results presented in this study show that nonlinear SMI holds promise for further development into a practical imaging system for medical applications. PMID:26124044

  5. Hyperthermic therapy of deep seated tumors: comparison of the heating efficiencies of an annular array applicator and a capacitively coupled radiofrequency system.

    Science.gov (United States)

    Egawa, S; Tsukiyama, I; Akine, Y; Kajiura, Y; Ogino, T; Yamashita, K

    1988-03-01

    Among 82 cases of deep seated tumors treated by hyperthermia with an annular array applicator (AA) and/or a capacitively coupled 8 mHz system (CCS) combined with radiation therapy, 13 cases were treated by both devices. The efficiencies of tumor heating were compared in terms of the time required to attain 42 degrees C, the duration of heating time and the thermal dose as determined by a biological iso-effect formula for equivalent minutes at 42.5 degrees C. Temperature profiles and percent of temperature levels greater than 42 degrees C were better in the cases treated by the AA, but higher thermal doses were obtained with the CCS because longer treatment times were tolerated with the CCS than with the AA. Methods are necessary to prevent excess elevation of body temperature in the case of the AA, and to reduce superficial pain where the applicators contact the skin in the case of the CCS.

  6. Multiple annular linear diffractive axicons.

    Science.gov (United States)

    Bialic, Emilie; de la Tocnaye, Jean-Louis de Bougrenet

    2011-04-01

    We propose a chromatic analysis of multiple annular linear diffractive axicons. Large aperture axicons are optical devices providing achromatic nondiffracting beams, with an extended depth of focus, when illuminated by a white light source, due to chromatic foci superimposition. Annular apertures introduce chromatic foci separation, and because chromatic aberrations result in focal segment axial shifts, polychromatic imaging properties are partially lost. We investigate here various design parameters that can be used to achieve color splitting, filtering, and combining using these properties. In order to improve the low-power efficiency of a single annular axicon, we suggest a spatial multiplexing of concentric annular axicons with different sizes and periods we call multiple annular aperture diffractive axicons (MALDAs). These are chosen to maintain focal depths while enabling color imaging with sufficient diffraction efficiency. Illustrations are given for binary phase diffractive axicons, considering technical aspects such as grating design wavelength and phase dependence due to the grating thickness.

  7. Efficient imaging techniques using an ultrasonic array

    Science.gov (United States)

    Moreau, L.; Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2010-03-01

    Over the past few years, ultrasonic phased arrays have shown good potential for non-destructive testing (NDT), thanks to high resolution imaging algorithms that allow the characterization of defects in a structure. Many algorithms are based on the full matrix capture, obtained by firing each element of an ultrasonic array independently, while collecting the data with all elements. Because of the finite sound velocity in the specimen, two consecutive firings must be separated by a minimum time interval. Therefore, more elements in the array require longer data acquisition times. Moreover, if the array has N elements, then the full matrix contains N2 temporal signals to be processed. Because of the limited calculation speed of current computers, a large matrix of data can result in rather long post-processing times. In an industrial context where real-time imaging is desirable, it is crucial to reduce acquisition and/or post-processing times. This paper investigates methods designed to reduce acquisition and post-processing times for the TFM and wavenumber algorithms. To reduce data capture and post-processing, limited transmission cycles are used. Post-processing times is also further reduced by demodulating the data to baseband, which allows reducing the sampling rate of signals. Results are presented so that a compromise can be made between acquisition time, post-processing time and image quality. Possible improvement of images quality, using the effective aperture theory, is discussed. This has been implemented for the TFM but it still has to be developed for the wavenumber algorithm.

  8. Imaging radiometers employing linear thermoelectric arrays

    Science.gov (United States)

    McManus, Timothy J.; Mickelson, Steve

    1999-07-01

    Infrared Solutions, Inc. has developed a family of radiometers which employ silicon microstructure uncooled linear thermoelectric arrays, prepared by Honeywell Technology Center. Included in the family is a handheld imaging radiometer for predictive and preventive maintenance having a frame time of 1.4 sec, a linescanner radiometer for monitoring of industrial web process, an imaging radiometer for monitoring stationary industrial processes such as a die casting, and a linescanner radiometer for monitoring the temperature distribution of railcar wheels on trains moving at speeds up to 80 mph.

  9. Parallel imaging methods for phased array MRI

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Two parallel methods for magnetic resonance imaging (MRI) using radio frequency (RF) phased array surface coils, named spatial local Fourier encoding (SLFE) and spatial RF encoding (SRFE), are presented. The MR signals are acquired from separate channels across the coils, each of which covers a sub-FOV (field-of-view) in a parallel fashion, and the acquired data are combined to form an image of entire FOV. These two parallel encoding techniques can accelerate MR imaging greatly, yet associated artifact may appear, although the SLFE is an effective image reconstruction method which can reduce the localized artifact in some degrees. By the SRFE, RF coil array can be utilized for spatial encoding through a specialized coil design. The images are acquired in a snapshot with a high signal-to-noise ratio (SNR) without the costly gradient system, resulting in great saving of cost. Both mutual induction and aliasing effect of adjacent coils are critical to the success of SRFE. The strategies of inverse source problem and wavelet transform (WT) can be employed to eliminate them. The results simulated by MATLAB are reported.

  10. Multispectral filter array design without training images

    Science.gov (United States)

    Shinoda, Kazuma; Yanagi, Yudai; Hayasaki, Yoshio; Hasegawa, Madoka

    2017-08-01

    Multispectral images (MSIs) have been studied for many applications; however, limitations persist in techniques to capture them due to the complexity of assembling one or more prisms and multiple sensor arrays in order to detect signals. Inspired by the application of color filter arrays to commercial digital RGB cameras, a number of researchers have studied multispectral filter arrays (MSFAs) to solve this problem. Determining the measurement wavelength and pattern of an MSFA is important for improving the quality of the demosaicked image. Some conventional studies for designing MSFAs have used training data and have optimized the measurement wavelengths and the pattern by iteratively minimizing the error between the training data and the demosaicked images. We propose a metric to evaluate an MSFA without MSIs, and optimize the measurement wavelengths and the pattern of the MSFA by minimizing the metric. The proposed metric measures the sampling distance between filters in a spatial-spectral domain and quantifies the dispersion of the sampling points by average nearest-neighbor distance (ANND) under a given arbitrary MSFA. Since the quality of the demosaicked image is assumed to be proportional to the degree of dispersion of the sampling points in the spatial-spectral domain, we optimize the MSFA by minimizing the ANND in a nested simulated annealing process. Experimental results show that the optimized MSFA obtained using our method attained a higher peak signal-to-noise ratio (PSNR) than conventional untrained MSFAs in many cases. In addition, the performance difference between some trained MSFAs and the proposed MSFA was small. We also confirmed the validity of the proposed ANND by a comparison with the mean square error obtained from MSI datasets.

  11. Multispectral filter array design without training images

    Science.gov (United States)

    Shinoda, Kazuma; Yanagi, Yudai; Hayasaki, Yoshio; Hasegawa, Madoka

    2017-06-01

    Multispectral images (MSIs) have been studied for many applications; however, limitations persist in techniques to capture them due to the complexity of assembling one or more prisms and multiple sensor arrays in order to detect signals. Inspired by the application of color filter arrays to commercial digital RGB cameras, a number of researchers have studied multispectral filter arrays (MSFAs) to solve this problem. Determining the measurement wavelength and pattern of an MSFA is important for improving the quality of the demosaicked image. Some conventional studies for designing MSFAs have used training data and have optimized the measurement wavelengths and the pattern by iteratively minimizing the error between the training data and the demosaicked images. We propose a metric to evaluate an MSFA without MSIs, and optimize the measurement wavelengths and the pattern of the MSFA by minimizing the metric. The proposed metric measures the sampling distance between filters in a spatial-spectral domain and quantifies the dispersion of the sampling points by average nearest-neighbor distance (ANND) under a given arbitrary MSFA. Since the quality of the demosaicked image is assumed to be proportional to the degree of dispersion of the sampling points in the spatial-spectral domain, we optimize the MSFA by minimizing the ANND in a nested simulated annealing process. Experimental results show that the optimized MSFA obtained using our method attained a higher peak signal-to-noise ratio (PSNR) than conventional untrained MSFAs in many cases. In addition, the performance difference between some trained MSFAs and the proposed MSFA was small. We also confirmed the validity of the proposed ANND by a comparison with the mean square error obtained from MSI datasets.

  12. Smart pixel imaging with computational-imaging arrays

    Science.gov (United States)

    Fernandez-Cull, Christy; Tyrrell, Brian M.; D'Onofrio, Richard; Bolstad, Andrew; Lin, Joseph; Little, Jeffrey W.; Blackwell, Megan; Renzi, Matthew; Kelly, Mike

    2014-07-01

    Smart pixel imaging with computational-imaging arrays (SPICA) transfers image plane coding typically realized in the optical architecture to the digital domain of the focal plane array, thereby minimizing signal-to-noise losses associated with static filters or apertures and inherent diffraction concerns. MIT Lincoln Laboratory has been developing digitalpixel focal plane array (DFPA) devices for many years. In this work, we leverage legacy designs modified with new features to realize a computational imaging array (CIA) with advanced pixel-processing capabilities. We briefly review the use of DFPAs for on-chip background removal and image plane filtering. We focus on two digital readout integrated circuits (DROICS) as CIAs for two-dimensional (2D) transient target tracking and three-dimensional (3D) transient target estimation using per-pixel coded-apertures or flutter shutters. This paper describes two DROICs - a SWIR pixelprocessing imager (SWIR-PPI) and a Visible CIA (VISCIA). SWIR-PPI is a DROIC with a 1 kHz global frame rate with a maximum per-pixel shuttering rate of 100 MHz, such that each pixel can be modulated by a time-varying, pseudorandom, and duo-binary signal (+1,-1,0). Combining per-pixel time-domain coding and processing enables 3D (x,y,t) target estimation with limited loss of spatial resolution. We evaluate structured and pseudo-random encoding strategies and employ linear inversion and non-linear inversion using total-variation minimization to estimate a 3D data cube from a single 2D temporally-encoded measurement. The VISCIA DROIC, while low-resolution, has a 6 kHz global frame rate and simultaneously encodes eight periodic or aperiodic transient target signatures at a maximum rate of 50 MHz using eight 8-bit counters. By transferring pixel-based image plane coding to the DROIC and utilizing sophisticated processing, our CIAs enable on-chip temporal super-resolution.

  13. Advantage of annular focus generation by sector-vortex array in cavitation-enhanced high-intensity focused ultrasound treatment

    Science.gov (United States)

    Jimbo, Hayato; Takagi, Ryo; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method for cancer treatment. One of the disadvantages of this method is that it has a long total treatment time because of the smallness of the treatment volume by a single exposure. To solve this problem, we have proposed a method of cavitation-enhanced heating, which utilized the heat generated by oscillating the cavitation bubbles, in combination with the method of lateral enlargement of a HIFU focal zone to minimize the surface volume ratio. In a previous study, focal spot scanning at multiple points was employed for the enlargement. This method involves nonlinear propagation and absorption due to the high spatial-peak temporal-peak (SPTP) intensity in addition to the cavitation-enhanced heating. However, it is difficult to predict the size and position of the coagulation volume because they are significantly affected by the nonlinear parameters of the tissue. In this study, a sector vortex method was employed to directly synthesize an annular focal pattern. Since this method can keep the SPTP intensity at a manageably low level, nonlinear propagation and absorption can be minimized. Experimental results demonstrate that the coagulation was generated only in the region where both the cavitation cloud and the heating ultrasound were matched. The proposed method will make the cavitation-enhanced HIFU treatment more accurate and predictable.

  14. Non-integral dimensions ultrasonic phased arrays in a borehole

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bixing; ZHANG Chengguang; Deng Fangqing

    2009-01-01

    The non-integral dimensions ultrasonic phased arrays and their scanning and test-ing methods in a borehole are studied. First, the focusing acoustic fields excited by the 1.25D, 1.5D, and 1.75D phased arrays are analyzed, and then the imaging resolution in the elevation direction and the influence of the dynamic elements are investigated. Second, the focusing and deflexion characteristics of the acoustic fields excited by the annular and segmented annular phased arrays are studied, and they are compared with those excited by the 2D surface array. The application method of the 1.25D, 1.5D, and 1.75D, annular and segmented annular phased arrays in acoustic logging are analyzed and discussed. It provides a theoretical foundation for the application of the ultrasonic phased arrays in acoustic logging.

  15. Image Filtering with Field Programmable Gate Array

    Directory of Open Access Journals (Sweden)

    Arūnas Šlenderis

    2013-05-01

    Full Text Available The research examined the use of field programmable gate arrays (FPGA in image filtering. Experimental and theoretical researches were reviewed. Experiments with Cyclone III family FPGA chip with implemented NIOS II soft processor were considered. Image filtering was achieved with symmetrical and asymmetrical finite impulse response filters with convolution kernel. The system, which was implemented with 3×3 symmetrical filter, which was implemented using the hardware description language, uses 59% of logic elements of the chip and 10 multiplication elements. The system with asymmetrical filter uses the same amount of logic elements and 13 multiplication elements. Both filter systems consume approx. 545 mW of power. The system, which is designed for filter implementation in C language, uses 65% of all logical elements and consumes 729 mW of power.Article in Lithuanian

  16. Modelling of AlAs/GaAs interfacial structures using high-angle annular dark field (HAADF) image simulations.

    Science.gov (United States)

    Robb, Paul D; Finnie, Michael; Craven, Alan J

    2012-07-01

    High angle annular dark field (HAADF) image simulations were performed on a series of AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general types of models were considered-perfect, vicinal/sawtooth and diffusion. These were chosen to demonstrate how HAADF image measurements are influenced by different interfacial structures in the technologically important III-V semiconductor system. For each model, interfacial sharpness was calculated as a function of depth and compared to aberration-corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that the sharpness measured from HAADF imaging changes in a complicated manner with thickness for complex interfacial structures. For vicinal structures, it was revealed that the type of material that the probe projects through first of all has a significant effect on the measured sharpness. An increase in the vicinal angle was also shown to generate a wider interface in the random step model. The Moison diffusion model produced an increase in the interface width with depth which closely matched the experimental results of the AlAs-on-GaAs interface. In contrast, the interface width decreased as a function of depth in the linear diffusion model. Only in the case of the perfect model was it possible to ascertain the underlying structure directly from HAADF image analysis.

  17. Extraction of structural and chemical information from high angle annular dark-field image by an improved peaks finding method.

    Science.gov (United States)

    Yin, Wenhao; Huang, Rong; Qi, Ruijuan; Duan, Chungang

    2016-09-01

    With the development of spherical aberration (Cs) corrected scanning transmission electron microscopy (STEM), high angle annular dark filed (HAADF) imaging technique has been widely applied in the microstructure characterization of various advanced materials with atomic resolution. However, current qualitative interpretation of the HAADF image is not enough to extract all the useful information. Here a modified peaks finding method was proposed to quantify the HAADF-STEM image to extract structural and chemical information. Firstly, an automatic segmentation technique including numerical filters and watershed algorithm was used to define the sub-areas for each atomic column. Then a 2D Gaussian fitting was carried out to determine the atomic column positions precisely, which provides the geometric information at the unit-cell scale. Furthermore, a self-adaptive integration based on the column position and the covariance of statistical Gaussian distribution were performed. The integrated intensities show very high sensitivity on the mean atomic number with improved signal-to-noise (S/N) ratio. Consequently, the polarization map and strain distributions were rebuilt from a HAADF-STEM image of the rhombohedral and tetragonal BiFeO3 interface and a MnO2 monolayer in LaAlO3 /SrMnO3 /SrTiO3 heterostructure was discerned from its neighbor TiO2 layers. Microsc. Res. Tech. 79:820-826, 2016. © 2016 Wiley Periodicals, Inc.

  18. The Solar Imaging Radio Array (SIRA) Mission

    Science.gov (United States)

    Jones, D. L.; MacDowall, R.; Gopalswamy, N.; Kaiser, M.; Reiner, M.; Demaio, L.; Weiler, K.; Kasper, J.; Bale, S.; Howard, R.

    2004-12-01

    The Solar Imaging Radio Array will be proposed to NASA as a Medium Explorer (MIDEX) mission by a team of investigators at GSFC, JPL, NRL, MIT, and UC Berkeley. The main science goal of the mission is imaging and tracking of solar radio bursts, particularly those associated with coronal mass ejections, and understanding their evolution and influence on Earth's magnetosphere. Related goals are mapping the 3-dimensional morphology of the interplanetary magnetic field and improving the prediction of geomagnetic storms. A number of topics in galactic and extragalactic astrophysics will also be addressed by SIRA. The mission concept is a free-flying array of about 16 small, inexpensive satellites forming an aperture synthesis interferometer in space. By observing from above the ionosphere, and far from terrestrial radio interference, SIRA will cover frequencies between a few tens of kHz up to 15 MHz. This wide spectral window is essentially unexplored with high angular resolution. Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  19. Dark Field Imaging of Plasmonic Resonator Arrays

    Science.gov (United States)

    Aydinli, Atilla; Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun

    2012-02-01

    We present critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moir'e surfaces. The critical coupling condition depends on the superperiod of Moir'e surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with FDTD simulations.

  20. Numerical simulations of annular wire-array z-pinches in (x,y), (r,{theta}), and (r,z) geometries

    Energy Technology Data Exchange (ETDEWEB)

    Marder, B.M.; Sanford, T.W.L.; Allshouse, G.O.

    1997-12-01

    The Total Immersion PIC (TIP) code has been used in several two-dimensional geometries to understand better the measured dynamics of annular, aluminum wire-array z-pinches. The areas investigated include the formation of the plasma sheath from current-induced individual wire explosions, the effects of wire number and symmetry on the implosion dynamics, and the dependence of the Rayleigh-Taylor instability growth on initial sheath thickness. A qualitative change in the dynamics with increasing wire number was observed, corresponding to a transition between a z-pinch composed of non-merging, self-pinching individual wires, and one characterized by the rapid formation and subsequent implosion of a continuous plasma sheath. A sharp increase in radiated power with increasing wire number has been observed experimentally near this calculated transition. Although two-dimensional codes have correctly simulated observed power pulse durations, there are indications that three dimensional effects are important in understanding the actual mechanism by which these pulse lengths are produced.

  1. Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays.

    Science.gov (United States)

    Lei, Chengxin; Chen, Leyi; Tang, Zhixiong; Li, Daoyong; Cheng, Zhenzhi; Tang, Shaolong; Du, Youwei

    2016-02-15

    The properties of optics and magneto-optical Faraday effects in a metal-dielectric tri-layer structure with subwavelength rectangular annular arrays are investigated. It is noteworthy that we obtained the strongly enhanced Faraday rotation of the desired sign along with high transmittance by optimizing the parameters of the nanostructure in the visible spectral ranges. In this system, we obtained two extraordinary optical transmission (EOT) resonant peaks with enhanced Faraday rotations, whose signs are opposite, which may provide the possibility of designing multi-channel magneto-optical devices. Study results show that the maximum of the figure of merit (FOM) of the structure can be obtained between two EOT resonant peaks accompanied by an enhanced Faraday rotation. The positions of the maximum value of the FOM and resonant peaks of transmission along with a large Faraday rotation can be tailored by simply adjusting the geometric parameters of our models. These research findings are of great importance for future applications of magneto-optical devices.

  2. NICHE: The Non-Imaging CHErenkov Array

    CERN Document Server

    Bergman, Douglas

    2012-01-01

    The accurate measurement of the Cosmic Ray (CR) nuclear composition around and above the Knee (~ 10^15.5 eV) has been difficult due to uncertainties inherent to the measurement techniques and/or dependence on hadronic Monte Carlo simulation models required to interpret the data. Measurement of the Cherenkov air shower signal, calibrated with air fluorescence measurements, offers a methodology to provide an accurate measurement of the nuclear composition evolution over a large energy range. NICHE will use an array of widely-spaced, non-imaging Cherenkov counters to measure the amplitude and time-spread of the air shower Cherenkov signal to extract CR nuclear composition measurements and to cross-calibrate the Cherenkov energy and composition measurements with TA/TALE fluorescence and surface detector measurements.

  3. Diamond-based 1-D imaging arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lansley, S.P.; Williams, O.A.; Ye, H. [Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Rizvi, N.; Whitfield, M.D.; Jackman, R.B. [Exitech Limited, Hanborough Park, Long Hanborough, Oxford OX8 8LH (United Kingdom); McKeag, R.D. [Centronic Ltd., Centronic House, King Henry' s Drive, New Addington, Croydon CR9 OBG (United Kingdom)

    2002-10-16

    Diamond has shown great promise for the fabrication of high sensitivity, low dark current, fast and visible-blind deep UV photodetectors. In addition to careful choice of substrate material, defect passivation treatments applied to the diamond after growth have been found to considerably enhance the detector characteristics achieved. In this paper we report on the first purposefully designed 1-D CVD diamond imaging array for the detection of nanosecond 193 nm excimer laser pulses using this approach. It is shown to perform extremely well, giving less than 2% pixel-to-pixel variation in signal response, and is fast enough to avoid any sign of charge build up during prolonged operation. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  4. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    Science.gov (United States)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  5. Imaging properties of bright-field and annular-dark-field scanning confocal electron microscopy: II. Point spread function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuishi, K., E-mail: Mitsuishi.Kazutaka@nims.go.jp [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Hashimoto, A.; Takeguchi, M. [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Shimojo, M. [Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Ishizuka, K. [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); HREM Research Inc., 14-48 Matsukazedai, Higashimatsuyama, Saitama 355-0055 (Japan)

    2012-01-15

    The imaging properties of bright field and annular dark field scanning confocal electron microscopy (BF-SCEM and ADF-SCEM) are discussed based on their point spread functions (PSFs) in comparison with multislice simulations. Although the PSFs of BF-SCEM and ADF-SCEM show similar hourglass shapes, their numerical distributions are quite different: BF-SCEM PSF is always positive and shows a center of symmetry whereas the ADF-SCEM PSF is complex and has Hermitian symmetry. These PSF properties explain the large elongation effect in BF-SCEM for laterally extended object and almost no-elongation in ADF-SCEM, illustrating the importance of the numerical analysis of PSFs. The Hermitian symmetry of the ADF-SCEM PSF results in an interesting 'edge enhancement effect' at the interface. Simulation using the PSF and the multislice method verified this effect at GaAs surfaces and InAs interfaces embedded in GaAs. This unique feature of ADF-SCEM can potentially be useful for depth sectioning. It is also pointed out that a PSF imaging model cannot be applicable for BF-SCEM of a phase object, when the system is symmetric and aberration free. -- Highlights: Black-Right-Pointing-Pointer The properties of scanning confocal electron microscopy (SCEM) are discussed by PSF. Black-Right-Pointing-Pointer The PSFs of BF- and ADF-SCEM show similar shapes, but values are quite different. Black-Right-Pointing-Pointer This explains the large elongation effect in BF and no-elongation in ADF. Black-Right-Pointing-Pointer The ADF-SCEM PSF shows 'edge enhancement effect' that is useful for depth sectioning.

  6. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  7. Optimized Optomechanical Micro-Cantilever Array for Uncooled Infrared Imaging

    Institute of Scientific and Technical Information of China (English)

    DONG Feng-Liang; ZHANG Qing-Chuan; CHEN Da-Peng; MIAO Zheng-Yu; XIONG Zhi-Ming; GUO Zhe-Ying; LI Chao-Bo; JIAO Bin-Bin; WU Xiao-Ping

    2007-01-01

    We present a new substrate-free bimaterial cantilever array made of SiNx and Au for an uncooled microoptomechanical infrared imaging device.Each cantilever element has an optimized deformation magnification structure.A 160×160 array with a 120μm×120μm pitch is fabricared and an optical readout is used to collectively measure deflections of all microcantilevers in the array.Tharmal images of room-temperature objects with higher spatial resolution have been obtained and the noise-equivalent temperature difference of the fabricated focal plane arrays is giyen statistically and is measured to be about 270mK.

  8. Imaging performance of annular apertures. III - Apodization and modulation transfer functions

    Science.gov (United States)

    Tschunko, H. F. A.

    1979-01-01

    Apodization functions with decreasing transmission and their opposite, functions with increasing transmission, are investigated for various central obstruction ratios. The resultant modulation transfer functions are presented for various transmission functions and central obstruction ratios. Conclusions applicable to the improvement of imaging performance are discussed.

  9. Multilayer Array Transducer for Nonlinear Ultrasound Imaging

    Science.gov (United States)

    Owen, Neil R.; Kaczkowski, Peter J.; Li, Tong; Gross, Dan; Postlewait, Steven M.; Curra, Francesco P.

    2011-09-01

    The properties of nonlinear acoustic wave propagation are known to be able to improve the resolution of ultrasound imaging, and could be used to dynamically estimate the physical properties of tissue. However, transducers capable of launching a wave that becomes nonlinear through propagation do not typically have the necessary bandwidth to detect the higher harmonics. Here we present the design and characterization of a novel multilayer transducer for high intensity transmit and broadband receive. The transmit layer was made from a narrow-band, high-power piezoceramic (PZT), with nominal frequency of 2.0 MHz, that was diced into an array of 32 elements. Each element was 0.300 mm wide and 6.3 mm in elevation, and with a pitch of 0.400 mm the overall aperture width was 12.7 mm. A quarter-wave matching layer was attached to the PZT substrate to improve transmit efficiency and bandwidth. The overlaid receive layer was made from polyvinylidene fluoride (PVDF) that had gold metalization on one side. A custom two-sided flex circuit routed electrical connections to the PZT elements and patterned the PVDF elements; the PZT and PVDF elements had identical apertures. A low viscosity and electrically nonconductive epoxy was used for all adhesion layers. Characterization of electrical parameters and acoustic output were performed per standard methods, where transmit and receive events were driven by a software-controlled ultrasound engine. Echo data, collected from ex vivo tissue and digitized at 45 MS/s, exhibited frequency content up to the 4th harmonic of the 2 MHz transmit frequency.

  10. Study of ultrasonic phased array inspection imaging technology for NDT

    Institute of Scientific and Technical Information of China (English)

    Shan Baohua; Duan Zhongdong; Ou Jinping

    2006-01-01

    A research about the ultrasonic phased array imaging principle from A-scan signal to B-scan image for nondestructive testing (NDT) was conducted in this paper, the ultrasonic phased array inspection imaging system used in industrial field was developed and the experiment was performed on the steel testing block by the system with 64 elements, 5MHz phased array transducer.Experimental results show that the flaws could be accurately detected and the flaws size could be estimated from the B-scan images, and the B-scan images could clearly show the location of the flaws, but the quality of Bscan images needs to be enhanced by digital signal processing and controlling dynamic focusing for improving the image resolution.

  11. In-vivo Convex Array Vector Flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Brandt, Andreas Hjelm; Nielsen, Michael Bachmann

    2014-01-01

    In-vivo VFI scans obtained from the abdomen of a human volunteer using a convex array transducers and trans- verse oscillation vector flow imaging (VFI) are presented. A 3 MHz BK Medical 8820e (Herlev, Denmark) 192-element convex array probe is used with the SARUS experimental ultrasound scanner....

  12. Vision communications based on LED array and imaging sensor

    Science.gov (United States)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  13. Photoacoustic imaging using acoustic reflectors to enhance planar arrays.

    Science.gov (United States)

    Ellwood, Robert; Zhang, Edward; Beard, Paul; Cox, Ben

    2014-12-01

    Planar sensor arrays have advantages when used for photoacoustic imaging: they do not require the imaging target to be enclosed, and they are easier to manufacture than curved arrays. However, planar arrays have a limited view of the acoustic field due to their finite size; therefore, not all of the acoustic waves emitted from a photoacoustic source can be recorded. This loss of data results in artifacts in the reconstructed photoacoustic image. A detection array configuration which combines a planar Fabry–Pérot sensor with perpendicular acoustic reflectors is described and experimentally implemented. This retains the detection advantages of the planar sensor while increasing the effective detection aperture in order to improve the reconstructed photoacoustic image.

  14. Rad Hard Imaging Array with Picosecond Timing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For a wide range of remote sensing applications, there is a critical need to develop imaging arrays that simultaneously achieve high spatial resolution, high...

  15. Optical design of microlens array for CMOS image sensors

    Science.gov (United States)

    Zhang, Rongzhu; Lai, Liping

    2016-10-01

    The optical crosstalk between the pixel units can influence the image quality of CMOS image sensor. In the meantime, the duty ratio of CMOS is low because of its pixel structure. These two factors cause the low detection sensitivity of CMOS. In order to reduce the optical crosstalk and improve the fill factor of CMOS image sensor, a microlens array has been designed and integrated with CMOS. The initial parameters of the microlens array have been calculated according to the structure of a CMOS. Then the parameters have been optimized by using ZEMAX and the microlens arrays with different substrate thicknesses have been compared. The results show that in order to obtain the best imaging quality, when the effect of optical crosstalk for CMOS is the minimum, the best distance between microlens array and CMOS is about 19.3 μm. When incident light successively passes through microlens array and the distance, obtaining the minimum facula is around 0.347 um in the active area. In addition, when the incident angle of the light is 0o 22o, the microlens array has obvious inhibitory effect on the optical crosstalk. And the anti-crosstalk distance between microlens array and CMOS is 0 μm 162 μm.

  16. Partial-aperture array imaging in acoustic waveguides

    Science.gov (United States)

    Tsogka, Chrysoula; Mitsoudis, Dimitrios A.; Papadimitropoulos, Symeon

    2016-12-01

    We consider the problem of imaging extended reflectors in waveguides using partial-aperture array, i.e. an array that does not span the whole depth of the waveguide. For this imaging, we employ a method that back-propagates a weighted modal projection of the usual array response matrix. The challenge in this setup is to correctly define this projection matrix in order to maintain good energy concentration properties for the imaging method, which were obtained previously by Tsogka et al (2013 SIAM J. Imaging Sci. 6 2714-39) for the full-aperture case. In this paper we propose a way of achieving this and study the properties of the resulting imaging method.

  17. Sparse acoustic imaging with a spherical array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Xenaki, Angeliki

    2015-01-01

    proposes a plane wave expansion method based on measurements with a spherical microphone array, and solved in the framework provided by Compressed Sensing. The proposed methodology results in a sparse solution, i.e. few non-zero coefficients, and it is suitable for both source localization and sound field...

  18. What atomic resolution annular dark field imaging can tell us about gold nanoparticles on TiO{sub 2} (1 1 0)

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, S.D., E-mail: scott@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2009-11-15

    Annular dark field scanning transmission electron microscopy imaging was recently applied to a catalyst consisting of gold nanoparticles on TiO{sub 2} (1 1 0), showing directly that the gold atoms in small nanoparticles preferentially attach to specific sites on the TiO{sub 2} (1 1 0) surface. Here, through simulation, a parameter exploration of the imaging conditions which maximise the visibility of such nanoparticles is presented. Aberration correction, finite source size and profile imaging are all considered while trying to extracting the maximum amount of information from a given sample. Comment is made on the role of the thermal vibration of the atoms in the nanoparticle, the magnitude of which is generally not known a priori but which affects the visibility of the nanoparticles in this imaging mode.

  19. Colorimetric Sensor Arrays System Based on FPGA for Image Recognition

    Institute of Scientific and Technical Information of China (English)

    Rui Chen; Jian-Hua Xu; Ya-Dong Jiang

    2009-01-01

    A FPGA-based image recognition system is designed for colorimetric sensor array in order to recognize a wide range of volatile organic compounds. The gas molecule is detected by the responsive sensor array and the responsive image is obtained. The image is decomposed to RGB color components using CMOS image sensor. An embedded image recognition archi- tecture based on Xilinx Spartan-3 FPGA is designed to implement the algorithms of image recognition. The algorithm of color coherence vector is discussed in detail[X1] compared with the algorithm of color histograms, and experimental results demonstrate that both of the two algorithms could be analyzed effectively to represent different volatile organic compounds according to their different responsive images in this system.

  20. Innovative LuYAP:Ce array for PET imaging

    Science.gov (United States)

    Cinti, M. N.; Scafe, R.; Bennati, P.; Lo Meo, S.; Frantellizzi, V.; Pellegrini, R.; De Vincentis, G.; Sacco, D.; Fabbri, A.; Pani, R.

    2017-03-01

    We present an imaging characterization of a 10 × 10 LuYAP array (2 × 2 × 10 mm3 pixels) with an innovative dielectric coating insulation (0.015 mm thick), in view of its possible use in a gamma camera for imaging positron emission tomography (PET) or in similar applications, e.g. as γ -prompt detector in hadron therapy. The particular assembly of this array was realized in order to obtain a packing fraction of 98%, improving detection efficiency and light collection. For imaging purpose, the array has been coupled with a selected Hamamatsu H10966-100 Multi Anode Photomultiplier read out by a customized 64 independent channels electronics. This tube presents a superbialkali photocathode with 38% of quantum efficiency, permitting to enhance energy resolution and consequently image quality. A pixel identification of about 0.5 mm at 662 keV was obtained, highlighting the potentiality of this detector in PET applications.

  1. Guided wave phased array beamforming and imaging in composite plates.

    Science.gov (United States)

    Yu, Lingyu; Tian, Zhenhua

    2016-05-01

    This paper describes phased array beamforming using guided waves in anisotropic composite plates. A generic phased array algorithm is presented, in which direction dependent guided wave parameters and the energy skew effect are considered. This beamforming at an angular direction is achieved based on the classic delay-and-sum principle by applying phase delays to signals received at array elements and adding up the delayed signals. The phase delays are determined with the goal to maximize the array output at the desired direction and minimize it otherwise. For array characterization, the beam pattern of rectangular grid arrays in composite plates is derived. In addition to the beam pattern, the beamforming factor in terms of wavenumber distribution is defined to provide intrinsic explanations for phased array beamforming. The beamforming and damage detection in a composite plate are demonstrated using rectangular grid arrays made by a non-contact scanning laser Doppler vibrometer. Detection images of the composite plate with multiple surface defects at various directions are obtained. The results show that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  2. Fundamental Imaging Limits of Radio Telescope Arrays

    CERN Document Server

    Wijnholds, Stefan J; 10.1109/JSTSP.2008.2004216

    2010-01-01

    The fidelity of radio astronomical images is generally assessed by practical experience, i.e. using rules of thumb, although some aspects and cases have been treated rigorously. In this paper we present a mathematical framework capable of describing the fundamental limits of radio astronomical imaging problems. Although the data model assumes a single snapshot observation, i.e. variations in time and frequency are not considered, this framework is sufficiently general to allow extension to synthesis observations. Using tools from statistical signal processing and linear algebra, we discuss the tractability of the imaging and deconvolution problem, the redistribution of noise in the map by the imaging and deconvolution process, the covariance of the image values due to propagation of calibration errors and thermal noise and the upper limit on the number of sources tractable by self calibration. The combination of covariance of the image values and the number of tractable sources determines the effective noise ...

  3. ARRAY PULSED EDDY CURRENT IMAGING SYSTEM USED TO DETECT CORROSION

    Institute of Scientific and Technical Information of China (English)

    Yang Binfeng; Luo Feilu; Cao Xiongheng; Xu Xiaojie

    2005-01-01

    A theory model is established to describe the voltage-current response function. The peak amplitude and the zero-crossing time of the transient signal is extracted as the imaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The test results show that this system has the advantage of fast scanning speed, different imaging mode and quantitative detection, it has a broad application in the aviation nondestructive testing.

  4. Pyroelectric sensor arrays for detection and thermal imaging

    Science.gov (United States)

    Holden, Anthony J.

    2013-06-01

    Penetration of uncooled (room temperature operation) thermal detector arrays into high volume commercial products depends on very low cost technology linked to high volume production. A series of innovative and revolutionary developments is now allowing arrays based on bulk pyroelectric ceramic material to enter the consumer marketplace providing everything from sophisticated security and people monitoring devices to hand held thermal imagers and visual IR thermometers for preventative maintenance and building inspection. Although uncooled resistive microbolometer detector technology has captured market share in higher cost thermal imager products we describe a pyroelectric ceramic technology which does not need micro electro-mechanical systems (MEMS) technology and vacuum packaging to give good performance. This is a breakthrough for very low cost sensors and imagers. Recent developments in a variety of products based on pyroelectric ceramic arrays are described and their performance and applicability compared and contrasted with competing technologies.

  5. Pupil geometry and pupil re-imaging in telescope arrays

    Science.gov (United States)

    Traub, Wesley A.

    1990-01-01

    This paper considers the issues of lateral and longitudinal pupil geometry in ground-based telescope arrays, such as IOTA. In particular, it is considered whether or not pupil re-imaging is required before beam combination. By considering the paths of rays through the system, an expression is derived for the optical path errors in the combined wavefront as a function of array dimensions, telescope magnification factor, viewing angle, and field-of-view. By examining this expression for the two cases of pupil-plane and image-plane combination, operational limits can be found for any array. As a particular example, it is shown that for IOTA no pupil re-imaging optics will be needed.

  6. In-vivo evaluation of convex array synthetic aperture imaging

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Gammelmark, Kim Løkke; Jensen, Jørgen Arendt

    2007-01-01

    This paper presents an in-vivo study of synthetic transmit aperture (STA) imaging in comparison to conventional imaging, evaluating whether STA imaging is feasible in-vivo, and whether the image quality obtained is comparable to traditional scanned imaging in terms of penetration depth, spatial...... resolution, contrast resolution, and artifacts. Acquisition was performed using our research scanner RASMUS and a 5.5 MHz convex array transducer. STA imaging was acquired using circular wave emulation by 33-element subapertures and a 20 us linear FM signal as excitation pulse. For conventional imaging a 64...... element aperture was used in transmit and receive with a 1.5 cycle sinusoid excitation pulse. Conventional and STA images were acquired interleaved ensuring that the exact same anatomical location was scanned. Image sequences were recorded in real-time and processed off-line. Seven male volunteers were...

  7. Time multiplexed pinhole array based lensless three-dimensional imager

    Science.gov (United States)

    Schwarz, Ariel; Wang, Jingang; Shemer, Amir; Zalevsky, Zeev; Javidi, Bahram

    2016-06-01

    We present an overview of multi variable coded aperture (MVCA) for lensless three-dimensional integral imaging (3D II) systems. The new configuration is based on a time multiplexing method using a variable pinholes array design. The system provides higher resolution 3D images with improved light intensity and signal to noise ratio as compared to single pinhole system. The MVCA 3D II system configuration can be designed to achieve high light intensity for practical use as micro lenslets arrays. This new configuration preserves the advantages of pinhole optics while solving the resolution limitation problem and the long exposure time of such systems. The three dimensional images are obtained with improved resolution, signal to noise ratio and sensitivity efficiency. This integral imaging lensless system is characterized by large depth of focus, simplicity and low cost. In this paper we present numerical simulations as well as experimental results that validate the proposed lensless imaging configuration.

  8. Log-converting processor element for CCD linear imaging arrays.

    Science.gov (United States)

    Chang, S H; Boyd, J T

    1983-11-15

    A photosensor element suitable for incorporation into charge-coupled device (CCD) imaging arrays in which the charge injected into the CCD is proportional to the logarithm of incident light intensity is presented. The photosensor element consists of a photodiode directly coupled to a two-stage MOSFET common source amplifier. This element occupies an area of 25 x 100 microm and is arranged so that it could be incorporated into a linear CCD imaging array having a period of 25 microm. A logarithmic response is measured over a 68.6-dB range of incident light intensity with a sensitivity of 55 mV/decade of light intensity.

  9. High-frequency ultrasonic arrays for ocular imaging

    Science.gov (United States)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  10. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  11. Strain Mapping in Metals Using Ultrasonic Array Speckle Images

    Science.gov (United States)

    Bowler, A. I.; Drinkwater, B. W.; Wilcox, P. D.

    2009-03-01

    The full-field non-destructive measurement of internal displacement and strain fields is of interest in many engineering applications. This paper describes an approach to measuring internal displacements and strains in metals which uses the correlation of ultrasonic speckle images of the internal structure of the material. This has the key advantage over optical surface displacement and strain measurement techniques in that internal information can be obtained. Experiments are described which use a 1-D ultrasonic array to map 2-D displacement fields for uniform translation and uniaxial tension of a metallic bar. The full matrix of transmit-receive signals from the array was post-processed to generate speckle images using a Fourier-domain imaging algorithm. Block-search cross-correlation was used to find the displacements of small sub-images corresponding to regions within the bar. Potential applications include characterising crack networks and creep damage detection.

  12. VERITAS The Very Energetic Radiation Imaging Telescope Array System

    CERN Document Server

    Weekes, T C; Biller, S D; Breslin, A C; Buckley, J H; Carter-Lewis, D A; Catanese, M; Cawley, M F; Dingus, B L; Fazio, G G; Fegan, D J; Finley, J; Fishman, G; Gaidos, J A; Gillanders, G H; Gorham, P W; Grindlay, J E; Hillas, A M; Huchra, J P; Kaaret, P E; Kertzman, M P; Kieda, D B; Krennrich, F; Lamb, R C; Lang, M J; Marscher, A P; Matz, S; McKay, T; Müller, D; Ong, R; Purcell, W; Rose, J; Sembroski, G H; Seward, F D; Slane, P O; Swordy, S P; Tümer, T O; Ulmer, M P; Urban, M; Wilkes, B J

    1997-01-01

    A next generation atmospheric Cherenkov observatory is described based on the Whipple Observatory $\\gamma$-ray telescope. A total of nine such imaging telescopes will be deployed in an array that will permit the maximum versatility and give high sensitivity in the 50 GeV - 50 TeV band (with maximum sensitivity from 100 GeV to 10 TeV).

  13. Imaging for Borehole Wall by a Cylindrical Linear Phased Array

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bi-Xing; SHI Fang-Fang; WU Xian-Mei; GONG Jun-Jie; ZHANG Cheng-Guang

    2010-01-01

    @@ A new ultrasonic cylindrical linear phased array (CLPA) transducer is designed and fabricated for the borehole wall imaging in petroleum logging based on the previous theoretical researches.First,the CLPA transducer,which is made up of numbers of the piezoelectric elements distributed on the surface of a cylinder uniformly,is designed and fabricated.

  14. Ultra Low Surface Brightness Imaging with the Dragonfly Telephoto Array

    CERN Document Server

    Abraham, Roberto G

    2014-01-01

    We describe the Dragonfly Telephoto Array, a robotic imaging system optimized for the detection of extended ultra low surface brightness structures. The array consists of eight Canon 400mm f/2.8 telephoto lenses coupled to eight science-grade commercial CCD cameras. The lenses are mounted on a common framework and are co-aligned to image simultaneously the same position on the sky. The system provides an imaging capability equivalent to a 0.4m aperture f/1.0 refractor with a 2.6 deg X 1.9 deg field of view. The system has no obstructions in the light path, optimized baffling, and internal optical surfaces coated with a new generation of anti-reflection coatings based on sub-wavelength nanostructures. As a result, the array's point spread function has a factor of ~10 less scattered light at large radii than well-baffled reflecting telescopes. The Dragonfly Telephoto Array is capable of imaging extended structures to surface brightness levels below 30 mag/arcsec^2 in 10h integrations (without binning or foregro...

  15. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ISPA tube is a position-sensitive photon detector. It belongs to the family of hybrid photon detectors (HPD), recently developed by CERN and INFN with leading photodetector firms. HPDs confront in a vacuum envelope a photocathode and a silicon detector. This can be a single diode or a pixelized detector. The electrons generated by the photocathode are efficiently detected by the silicon anode by applying a high-voltage difference between them. ISPA tube can be used in high-energy applications as well as bio-medical and imaging applications.

  16. Adaptive optics scanning ophthalmoscopy with annular pupils.

    Science.gov (United States)

    Sulai, Yusufu N; Dubra, Alfredo

    2012-07-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

  17. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhigang; Cheng, Teng; Qiu, Kang; Zhang, Qingchuan, E-mail: zhangqc@ustc.edu.cn, E-mail: wgchu@nanoctr.cn; Wu, Xiaoping [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027 (China); Dong, Fengliang; Chu, Weiguo, E-mail: zhangqc@ustc.edu.cn, E-mail: wgchu@nanoctr.cn [Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190 (China)

    2014-10-15

    Pixelated micropolarizer array (PMA) is a novel concept for real-time visible imaging polarimetry. A 320 × 240 aluminum PMA fabricated by electron beam lithography is described in this paper. The period, duty ratio, and depth of the grating are 140 nm, 0.5, and 100 nm, respectively. The units are standard square structures and the metal nanowires of the grating are collimating and uniformly thick. The extinction ratio of 75 and the maximum polarization transmittance of 78.8% demonstrate that the PMA is suitable for polarization imaging. When the PMA is applied to real-time polarization imaging, the degree of linear polarization image and the angle of linear polarization image are calculated from a single frame image. The polarized target object is highlighted from the unpolarized background, and the surface contour of the target object can be reflected by the polarization angle.

  18. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry.

    Science.gov (United States)

    Zhang, Zhigang; Dong, Fengliang; Cheng, Teng; Qiu, Kang; Zhang, Qingchuan; Chu, Weiguo; Wu, Xiaoping

    2014-10-01

    Pixelated micropolarizer array (PMA) is a novel concept for real-time visible imaging polarimetry. A 320 × 240 aluminum PMA fabricated by electron beam lithography is described in this paper. The period, duty ratio, and depth of the grating are 140 nm, 0.5, and 100 nm, respectively. The units are standard square structures and the metal nanowires of the grating are collimating and uniformly thick. The extinction ratio of 75 and the maximum polarization transmittance of 78.8% demonstrate that the PMA is suitable for polarization imaging. When the PMA is applied to real-time polarization imaging, the degree of linear polarization image and the angle of linear polarization image are calculated from a single frame image. The polarized target object is highlighted from the unpolarized background, and the surface contour of the target object can be reflected by the polarization angle.

  19. The Solar Radio Imaging Array (SIRA) microsatellite mission

    Science.gov (United States)

    MacDowall, R.; Gopalswamy, N.; Kaiser, M.

    2003-04-01

    SIRA, the Solar Imaging Radio Array, will be a constellation of about 16 microsats designed to image radio sources in the solar corona and heliosphere using aperture synthesis techniques. These images will permit the mapping and tracking of CME-driven shocks (type II radio bursts) and solar flare electrons (type III radio bursts) as a function of time from near the sun to 1 AU. Two dimensional imaging of the CME-driven shock front is important for determination of space weather effects of CMEs, whereas imaging of the ubiquitous type III bursts will permit the derivation of density maps in the outer corona and solar wind. This will be the first mission to image the heliosphere (and the celestial sphere) with good angular resolution at frequencies below the ionospheric cutoff (~10 MHz). In this presentation, we highlight the ways in which SIRA is complementary to LOFAR and FASR.

  20. Detectors based on silicon photomultiplier arrays for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Llosa, G.; Barrio, J.; Cabello, J.; Lacasta, C.; Oliver, J. F. [Instituto de Fisica Corpuscular - IFIC-CSIC/UVEG, Valencia (Spain); Rafecas, M. [Instituto de Fisica Corpuscular - IFIC-CSIC/UVEG, Valencia (Spain); Departamento de Fisica Atomica, Molecular Y Nuclear, Universitat de Valencia, Valencia (Spain); Stankova, V.; Solaz, C. [Instituto de Fisica Corpuscular - IFIC-CSIC/UVEG, Valencia (Spain); Bisogni, M. G.; Del Guerra, A. [Universite di Pisa, INFN Pisa, Pisa (Italy)

    2011-07-01

    Silicon photomultipliers (SiPMs) have experienced a fast development and are now employed in different research fields. The availability of 2D arrays that provide information of the interaction position in the detector has had a high interest for medical imaging. Continuous crystals combined with segmented photodetectors can provide higher efficiency than pixellated crystals and very high spatial resolution. The IRIS group at IFIC is working on the development of detector heads based on continuous crystals coupled to SiPM arrays for different applications, including a small animal PET scanner in collaboration with the Univ. of Pisa and INFN Pisa, and a Compton telescope for dose monitoring in hadron therapy. (authors)

  1. Distributed image reconstruction for very large arrays in radio astronomy

    CERN Document Server

    Ferrari, André; Flamary, Rémi; Richard, Cédric

    2015-01-01

    Current and future radio interferometric arrays such as LOFAR and SKA are characterized by a paradox. Their large number of receptors (up to millions) allow theoretically unprecedented high imaging resolution. In the same time, the ultra massive amounts of samples makes the data transfer and computational loads (correlation and calibration) order of magnitudes too high to allow any currently existing image reconstruction algorithm to achieve, or even approach, the theoretical resolution. We investigate here decentralized and distributed image reconstruction strategies which select, transfer and process only a fraction of the total data. The loss in MSE incurred by the proposed approach is evaluated theoretically and numerically on simple test cases.

  2. Subcutaneous granuloma annulare

    Directory of Open Access Journals (Sweden)

    Dhar Sandipan

    1994-01-01

    Full Text Available Two cases of subcutaneos granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules; histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult hood, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.

  3. Subcutaneous granuloma annulare

    Directory of Open Access Journals (Sweden)

    Dhar Sandipan

    1993-01-01

    Full Text Available Two cases of subcutaneous granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules, histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult age, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.

  4. Two-dimensional pixel array image sensor for protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Beuville, E.; Beche, J.-F.; Cork, C. [and others

    1996-07-01

    A 2D pixel array image sensor module has been designed for time resolved Protein Crystallography. This smart pixels detector significantly enhances time resolved Laue Protein crystallography by two to three orders of magnitude compared to existing sensors like films or phosphor screens coupled to CCDs. The resolution in time and dynamic range of this type of detector will allow one to study the evolution of structural changes that occur within the protein as a function of time. This detector will also considerably accelerate data collection in static Laue or monochromatic crystallography and make better use of the intense beam delivered by synchrotron light sources. The event driven pixel array detectors, based on the column Architecture, can provide multiparameter information (energy discrimination, time), with sparse and frameless readout without significant dead time. The prototype module consists of a 16x16 pixel diode array bump-bonded to the integrated circuit. The detection area is 150x150 square microns.

  5. Discrete scintillator coupled mercuric iodide photodetector arrays for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tornai, M.P.; Levin, C.S.; Hoffman, E.J. [UCLA School of Medicine, Los Angeles, CA (United States)

    1996-12-31

    Multi-element (4x4) imaging arrays with high resolution collimators, size matched to discrete CsI(Tl) scintillator arrays and mercuric iodide photodetector arrays (HgI{sub 2} PDA) are under development as prototypes for larger 16 x 16 element arrays. The compact nature of the arrays allows detector positioning in proximity to the breast to eliminate activity not in the line-of-sight of the collimator, thus reducing image background. Short collimators, size matched to {le}1.5 x 1.5 mm{sup 2} scintillators show a factor of 2 and 3.4 improvement in spatial resolution and efficiency, respectively, compared to high resolution collimated gamma cameras for the anticipated compressed breast geometries. Monte Carlo simulations, confirmed by measurements, demonstrated that scintillator length played a greater role in efficiency and photofraction for 140 keV gammas than cross sectional area, which affects intrinsic spatial resolution. Simulations also demonstrated that an increase in the ratio of scintillator area to length corresponds to an improvement in light collection. Electronic noise was below 40 e{sup -} RMS indicating that detector resolution was not noise limited. The high quantum efficiency and spectral match of prototype unity gain HgI{sub 2} PDAs coupled to 1 x 1 x 2.5 mm{sup 3} and 2 x 2 x 4 mm{sup 3} CsI(Tl) scintillators demonstrated energy resolutions of 9.4% and 8.8% FWHM at 140 keV, respectively, without the spectral tailing observed in standard high-Z, compound semi-conductor detectors. Line spread function measurements matched the scintillator size and pitch, and small, complex phantoms were easily imaged.

  6. Eosinophilic annular erythema.

    Science.gov (United States)

    Sempau, Leticia; Larralde, Margarita; Luna, Paula Carolina; Casas, Jose; Staiger, Hernan

    2012-03-15

    Eosinophilic annular erythema is a rare benign recurrent disease, originally described in children, characterized by the recurrent appearance of persistent non-pruritic, urticarial annular lesions. Histologically a perivascular infiltrate composed of lymphocytes and abundant eosinophils in the dermis is exhibited. We report the case of a 15-year-old boy who presented with a 4-year history of recurrent flares of erythematous annular plaques on the trunk and extremities. The lesions resolved spontaneously after 3-5 weeks with no accompanying signs. A biopsy showed a mainly perivascular lymphocytic infiltrate with numerous eosinophils in the dermis.

  7. Contact CMOS imaging of gaseous oxygen sensor array.

    Science.gov (United States)

    Daivasagaya, Daisy S; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-10-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3](2+)) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.

  8. Least-Squares Estimation of Imaging Parameters for an Ultrasonic Array Using Known Geometric Image Features

    NARCIS (Netherlands)

    Hunter, A.J.; Drinkwater, B.W.; Wilcox, P.D.

    2011-01-01

    Ultrasonic array images are adversely affected by errors in the assumed or measured imaging parameters. For non-destructive testing and evaluation, this can result in reduced defect detection and characterization performance. In this paper, an autofocus algorithm is presented for estimating and corr

  9. Solar Imaging Radio Array (SIRA): Radio Aperture Synthesis from Space

    Science.gov (United States)

    MacDowall, R.; Kaiser, M.; Gopalswamy, N.

    2003-05-01

    SIRA, the Solar Imaging Radio Array, will be a constellation of about 16 microsats designed to image radio sources in the solar corona and heliosphere using aperture synthesis techniques. These images will permit the mapping and tracking of CME-driven shocks (type II radio bursts) and solar flare electrons (type III radio bursts) as a function of time from near the sun to 1 AU. Two dimensional imaging of the CME-driven shock front is important for determination of space weather effects of CMEs, whereas imaging of the ubiquitous type III bursts will permit the derivation of density maps in the outer corona and solar wind. This will be the first mission to image the heliosphere (and the celestial sphere) with good angular resolution at frequencies below the ionospheric cutoff ( 10 MHz). The radio images are intrinsically complementary to white-light coronograph data, such as those of SDO, and can play a valuable role in the NASA Living with a Star program.

  10. Imaging Array SPR Biosensor Immunoassays for Sulfamethoxazole and Sulfamethazine

    Institute of Scientific and Technical Information of China (English)

    Hui LI; Da Fu CUI; Jin Qing LIANG; HaoYuan CAI; Yu Jie WANG

    2006-01-01

    A homemade array surface plasmon resonance (SPR)-based imaging biosensor was used to develop sensitive and fast immunoassays to determine sulfamethoxazole (SMOZ) and sulfamethazine (SMT) in buffer. Two conjugations of sulfonamide-bovine serum albumin (BSA)were separately immobilized on two different rows of the array chip with one row as reference.The immobilization was carried out in the instrument to monitor the quantity of the conjugations immobilized. The antibody mixed with the sulfonamide in the buffer was injected over the surface of the chip to get a relative response which was inversely proportional to the concentration of the sulfonamide in the PBS buffer. Two calibration curves were constructed and the limit of detection for sufamethoxazole in buffer was 3.5 ng/mL and for sulfamethazine 0.6 ng/mL. The stability and specificity of the antibody were also studied. The monoclonal antibody did not bind with BSA.

  11. The Very Energetic Radiation Imaging Telescope Array System (VERITAS)

    CERN Document Server

    Bradbury, S M; Breslin, A C; Buckley, J H; Carter-Lewis, D A; Catanese, M; Criswell, S; Dingus, B L; Fegan, D J; Finley, J P; Gaidos, J A; Grindlay, J; Hillas, A M; Harris, K; Hermann, G; Kaaret, P E; Kieda, D B; Knapp, J; Krennrich, F; Le Bohec, S; Lessard, R W; Lloyd-Evans, J; McKernan, B; Müller, D; Ong, R; Quenby, J J; Quinn, J; Rochester, G D; Rose, H J; Salamon, M B; Sembroski, G H; Sumner, T J; Swordy, S P; Vasilev, V; Weekes, T C

    1999-01-01

    We give an overview of the current status and scientific goals of VERITAS, a proposed hexagonal array of seven 10 m aperture imaging Cherenkov telescopes. The selected site is Montosa Canyon (1390 m a.s.l.) at the Whipple Observatory, Arizona. Each telescope, of 12 m focal length, will initially be equipped with a 499 element photomultiplier camera covering a 3.5 degree field of view. A central station will initiate the readout of 500 MHz FADCs upon receipt of multiple telescope triggers. The minimum detectable flux sensitivity will be 0.5% of the Crab Nebula flux at 200 GeV. Detailed simulations of the array's performance are presented elsewhere at this meeting. VERITAS will operate primarily as a gamma-ray observatory in the 50 GeV to 50 TeV range for the study of active galaxies, supernova remnants, pulsars and gamma-ray bursts.

  12. High-resolution imaging methods in array signal processing

    DEFF Research Database (Denmark)

    Xenaki, Angeliki

    The purpose of this study is to develop methods in array signal processing which achieve accurate signal reconstruction from limited observations resulting in high-resolution imaging. The focus is on underwater acoustic applications and sonar signal processing both in active (transmit and receive...... in active sonar signal processing for detection and imaging of submerged oil contamination in sea water from a deep-water oil leak. The submerged oil _eld is modeled as a uid medium exhibiting spatial perturbations in the acoustic parameters from their mean ambient values which cause weak scattering......) and passive (only receive) mode. The study addresses the limitations of existing methods and shows that, in many cases, the proposed methods overcome these limitations and outperform traditional methods for acoustic imaging. The project comprises two parts; The first part deals with computational methods...

  13. Image quality evaluation of linear plastic scintillating fiber array detector for X-ray imaging

    Institute of Scientific and Technical Information of China (English)

    Mohammad Mehdi NASSERI; MA Qing-Li; YIN Ze-Jie

    2004-01-01

    It is important to assess image quality, in order to ensure that the imaging system is performing optimally and also identify the weak points in an imaging system. Three parameters mostly leading to image degradation are contrast, spatial resolution and noise. There is always a trade-off between spatial resolution and signal to noise ratio,but in scintillating fiber array detectors spatial resolution is not as important as signal to noise ratio, so we paid more attention to contrast and SNR of the system. By using GEANT4 Monte Carlo detector simulation toolkit, some effective parameters of the linear plastic scintillating fiber (PSF) array as an imaging detector were investigated. Finally we show that it is possible to use this kind of detector to take CT and DR (Digital Radiography) image under certain conditions.

  14. Array imaging of localized objects in homogeneous and heterogeneous media

    Science.gov (United States)

    Chai, Anwei; Moscoso, Miguel; Papanicolaou, George

    2016-10-01

    We present a comprehensive study of the resolution and stability properties of sparse promoting optimization theories applied to narrow band array imaging of localized scatterers. We consider homogeneous and heterogeneous media, and multiple and single scattering situations. When the media is homogeneous with strong multiple scattering between scatterers, we give a non-iterative formulation to find the locations and reflectivities of the scatterers from a nonlinear inverse problem in two steps, using either single or multiple illuminations. We further introduce an approach that uses the top singular vectors of the response matrix as optimal illuminations, which improves the robustness of sparse promoting optimization with respect to additive noise. When multiple scattering is negligible, the optimization problem becomes linear and can be reduced to a hybrid-{{\\ell }}1 method when optimal illuminations are used. When the media is random, and the interaction with the unknown inhomogeneities can be primarily modeled by wavefront distortions, we address the statistical stability of these methods. We analyze the fluctuations of the images obtained with the hybrid-{{\\ell }}1 method, and we show that it is stable with respect to different realizations of the random medium provided the imaging array is large enough. We compare the performance of the hybrid-{{\\ell }}1 method in random media to the widely used Kirchhoff migration and the multiple signal classification methods.

  15. Solar Imaging Radio Array (SIRA): a multispacecraft mission

    Science.gov (United States)

    MacDowall, R. J.; Bale, S. D.; Demaio, L.; Gopalswamy, N.; Jones, D. L.; Kaiser, M. L.; Kasper, J. C.; Reiner, M. J.; Weiler, K. W.

    2005-01-01

    The Solar Imaging Radio Array (SIRA) is a mission to perform aperture synthesis imaging of low frequency solar, magnetospheric, and astrophysical radio bursts. The primary science targets are coronal mass ejections (CMEs), which drive shock waves that may produce radio emission. A space-based interferometer is required, because the frequencies of observation (SIRA will require a 12 to 16 microsatellite constellation to establish a sufficient number of baselines with separations on the order of kilometers. The microsats will be located quasi-randomly on a spherical shell, initially of diameter 10 km or less. The baseline microsat, as presented here, is 3-axis stabilized with a body-mounted, earth-directed high gain antenna and an articulated solar array; this design was developed by the Integrated Mission Design Center (IMDC) at NASA Goddard Space Flight Center (GSFC). A retrograde orbit at a distance of ~500,000 km from Earth was selected as the preferred orbit because the 8 Mbps downlink requirement is easy to meet, while keeping the constellation sufficiently distant from terrestrial radio interference. Also, the retrograde orbit permits imaging of terrestrial magnetospheric radio sources from varied perspectives. The SIRA mission serves as a pathfinder for space-based satellite constellations and for spacecraft interferometry at shorter wavelengths. It will be proposed to the NASA MIDEX proposal opportunity in mid-2005.

  16. An application of ultrasonic phased array imaging in electron beam welding inspection

    Institute of Scientific and Technical Information of China (English)

    周琦; 刘方军; 李志军; 李旭东; 齐铂金

    2002-01-01

    The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.

  17. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Science.gov (United States)

    Ohara, Yoshikazu; Oshiumi, Taro; Nakajima, Hiromichi; Yamanaka, Kazushi; Wu, Xiaoyang; Uchimoto, Tetsuya; Takagi, Toshiyuki; Tsuji, Toshihiro; Mihara, Tsuyoshi

    2017-06-01

    To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA) combining an ultrasonic phased array (PA) with a surface acoustic wave (SAW). SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs). The fatigue crack was visualized with a high signal-to-noise ratio (SNR) and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs) of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  18. Polarization in a snap: imaging polarimetry with micropolarizer arrays

    Science.gov (United States)

    Vorobiev, Dmitry; Ninkov, Zoran; Gartley, Michael

    2014-05-01

    Polarization, flux, and the spectral energy distribution of light are the fundamental parameters that we measure in order to infer properties of the sources of electromagnetic radiation, such as intensity, temperature, chemical composition and physical geometry. Recently, the fabrication of microgrid polarizer arrays (MPAs) facilitated the development of a new class of division-of-focal plane polarimeters. These devices are capable of measuring the degree and angle of polarization across a scene with a single exposure. We present the design of the Rochester Institute of Technology Polarization Imaging Camera (RITPIC), a snapshot polarimeter for visible and near-infrared remote sensing applications. RITPIC is a compact, light-weight and mechanically robust imaging polarimeter that is deployable on terrestrial, naval, airborne and space-based platforms. RITPIC is developed using commercially available components and is capable of fast cadence imaging polarimetry of a wide variety of scenes. We derive the expected performance of RITPIC using the first high resolution 3D finite-difference time-domain (FDTD) models of these hybrid focal planes and simulated observations of synthetic scenes rendered with the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. Furthermore, we explore applications in remote sensing for which RITPIC, and devices like it, provide unique advantages.

  19. Imaging Protoplanetary Disks with a Square Kilometer Array

    CERN Document Server

    Wilner, D J

    2004-01-01

    The recent detections of extrasolar giant planets has revealed a surprising diversity of planetary system architectures, with many very unlike our Solar System. Understanding the origin of this diversity requires multi-wavelength studies of the structure and evolution of the protoplanetary disks that surround young stars. Radio astronomy and the Square Kilometer Array will play a unique role in these studies by imaging thermal dust emission in a representative sample of protoplanetary disks at unprecedented sub-AU scales in the innermost regions, including the ``habitable zone'' that lies within a few AU of the central stars. Radio observations will probe the evolution of dust grains up to centimeter-sized ``pebbles'', the critical first step in assembling giant planet cores and terrestrial planets, through the wavelength dependence of dust emissivity, which provides a diagnostic of particle size. High resolution images of dust emission will show directly mass concentrations and features in disk surface densi...

  20. Relation of tricuspid annular displacement and tissue Doppler imaging velocities with duration of weaning in mechanically ventilated patients with acute pulmonary edema

    Directory of Open Access Journals (Sweden)

    Dragoumanis Christos K

    2010-05-01

    Full Text Available Abstract Background Liberation from the ventilator is a difficult task, whereas early echocardiographic indices of weaning readiness are still lacking. The aim of this study was to test whether tricuspid annular plane systolic excursion (TAPSE and right ventricular (RV systolic (Sm and diastolic (Em & Am tissue Doppler imaging (TDI velocities are related with duration of weaning in mechanically ventilated patients with acute respiratory failure due to acute pulmonary edema (APE. Methods Detailed quantification of left and right ventricular systolic and diastolic function was performed at admission to the Intensive Care Unit by Doppler echocardiography, in a cohort of 32 mechanically ventilated patients with APE. TAPSE and RV TDI velocities were compared between patients with and without prolonged weaning (≥ or Results Patients with prolonged weaning (n = 12 had decreased TAPSE (14.59 ± 1.56 vs 19.13 ± 2.59 mm, Sm (8.68 ± 0.94 vs 11.62 ± 1.77 cm/sec and Em/Am ratio (0.98 ± 0.80 vs 2.62 ± 0.67, p 2 = 0.53, beta slope = 0.76, p 2 = 0.52, beta = 0.75, p 2 = 0.57, beta = 0.32, p Conclusions We suggest that in mechanically ventilated patients with APE, low TAPSE and RV TDI velocities upon admission are associated with delayed liberation from mechanical ventilation, probably due to more severe LV heart failure.

  1. Image restoration for indirectly far-field image using microlenses array integrated with LCD

    Science.gov (United States)

    Yang, Fugui; Wang, Anting; Lei, Dong; Zhe, Cui; Ming, Hai

    2010-10-01

    Image restoration for constructing high-spatial-resolution images in an imaging system which realizes indirectly far-filed imaging by integrating the microlenses array with LCD is reported. We have investigated the indirectly far-field imaging condition where adjacent sampling points contribute the detected signal. Experimental setup with microlens of 500 μm diameter and 8 mm focal length is built to prove this condition by studying performance of image restoration using modified point spread function (PSF). Since any one iterative method is not optimal for all image deblurring problems, some deblurring algorithms including direct deconvolution and iterative deconvolution are applied to our imaging system and we compared the effectiveness of these iterative procedures to choose right one for our use.

  2. Prototype imaging Cd-Zn-Te array detector

    Energy Technology Data Exchange (ETDEWEB)

    Bloser, P.F.; Narita, T.; Grindlay, J.E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Shah, K. [Radiation Monitoring Devices, Inc., Watertown, MA (United States)

    1998-12-31

    The authors describe initial results of their program to develop and test Cd-Zn-Te (CZT) detectors with a pixellated array readout. Their primary interest is in the development of relatively thick CZT detectors for use in astrophysical coded aperture telescopes with response extending over the energy range {approximately}10--600 keV. The coded aperture imaging configuration requires only relatively large area pixels (1--3 mm), whereas the desired high energy response requires detector thicknesses of at least 3--5 mm. They have developed a prototype detector employing a 10 x 10 x 5 mm CZT substrate and 4 x 4 pixel (1.5 mm each) readout with gold metal contacts for the pixels and continuous gold contact for the bias on the opposite detector face. This MSM contact configuration was fabricated by RMD and tested at Harvard for uniformity, efficiency and spatial as well as spectral resolution. The authors have developed an ASIC readout (IDE-VA-1) and analysis system and report results, including {approximately}4% (FWHM) energy resolution at 60 keV. A prototype design for a full imaging detector array is discussed.

  3. Low Frequency Solar Imaging Using the Murchison Widefield Array

    Science.gov (United States)

    Crowley, M.; Oberoi, D.; Lonsdale, C.; Benkevitch, L. V.; Kozarev, K. A.; Morgan, J.; McCauley, P.; Cairns, I.

    2016-12-01

    Low radio frequency solar emissions show well defined and diverse structures in their dynamic spectra (frequency-time plane) during periods of solar activity. In fact, the different dynamic spectrum morphologies of these emissions led to the original classifications for solar radio emission. Though they have served as a work horse through the decades and have provided the basis for much of our current understanding, conventional dynamic spectra show the sum of all solar emissions, and do not contain information on the spatial location of the emission. Simultaneously tracking the often rapid evolution of solar emissions along the four dimensions of frequency, time and the two spatial dimensions has been a difficult challenge for radio interferometers. However, the imaging characteristics and system architecture of modern instruments, like the Murchison Widefield Array (MWA), are well suited for solar radio imaging. The MWA provides a spectroscopic imaging capability - the ability to make an independent image for every time and frequency pixel in the dynamic spectrum - with high angular, time and frequency resolutions of a few arcmin, 0.5 s and 40 kHz, respectively. The resulting 4D data cube allows us to extract the dynamic spectra corresponding to any specific resolution element on the solar disc and hence to disentangle the emissions coming from different parts of the Sun. Here we present the first examples of these spatially resolved dynamic spectra from the MWA and an exploration of this novel analysis tool.

  4. Ultrasonic Imaging Using a Flexible Array: Improvements to the Maximum Contrast Autofocus Algorithm

    Science.gov (United States)

    Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2009-03-01

    In previous work, we have presented the maximum contrast autofocus algorithm for estimating unknown imaging parameters, e.g., for imaging through complicated surfaces using a flexible ultrasonic array. This paper details recent improvements to the algorithm. The algorithm operates by maximizing the image contrast metric with respect to the imaging parameters. For a flexible array, the relative positions of the array elements are parameterized using a cubic spline function and the spline control points are estimated by iterative maximisation of the image contrast via simulated annealing. The resultant spline gives an estimate of the array geometry and the profile of the surface that it has conformed to, allowing the generation of a well-focused image. A pre-processing step is introduced to obtain an initial estimate of the array geometry, reducing the time taken for the algorithm to convergence. Experimental results are demonstrated using a flexible array prototype.

  5. An LED-array-based range imaging system used for enhancing three-dimensional imaging

    Science.gov (United States)

    Wang, Huanqin; Xu, Jun; He, Deyong; Zhao, Tianpeng; Wang, Anting; Ming, Hai; Kong, Deyi

    2010-11-01

    An LED-array-based range imaging system is proposed for three-dimensional (3-D) shape measurement. The range image is obtained by time-division electronic scanning of the LED Time-of-Flight (TOF) range finders in array, and no complex mechanical scanning is needed. By combining with a low cost CCD/CMOS sensor for capturing the twodimensional (2-D) image, the proposed range imaging system can be used to accomplish a high quality 3-D imaging. A sophisticated co-lens optical path is designed to assure the natural registration between the range image and 2-D image. Experimental tests for evaluation of the imaging system performance are described. It was found that the 3-D images can be acquired at a rate of 10 frames per second with a depth resolution better than 5mm in the range of 50 - 1000mm, which is sufficient for many practical applications, including the obstacle detection in robotics, machine automation, 3-D vision, virtual reality games and 3-D video.

  6. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp [Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Ito, N. [Department of Intelligent System Engineering, Ube National College of Technology, Ube, Yamaguchi 755-8555 (Japan); Nagayama, Y. [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yoshinaga, T. [Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-0811 (Japan); Yamaguchi, S. [Department of Pure and Applied Physics, Kansai University, Suita, Osaka 564-8680 (Japan); Yoshikawa, M.; Kohagura, J. [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugito, S. [Equipment Development Center, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Kogi, Y. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  7. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    Science.gov (United States)

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  8. ISGRI: a CdTe array imager for INTEGRAL

    Science.gov (United States)

    Lebrun, Francois; Blondel, Claire; Fondeur, Irene; Goldwurm, Andrea; Laurent, Phillipe; Leray, Jean P.

    1996-10-01

    The INTEGRAL soft gamma-ray imager (ISGRI) is a large and thin CdTe array. Operating at room temperature, this gamma camera covers the lower part (below 200 keV) of the energy domain (20 keV - 10 MeV) of the imager on board the INTEGRAL Satellite (IBIS). The ASIC's front-end electronics features particularly a low noise preamplifier, allowing a threshold below 20 keV and a pulse rise-time measurement which permits a charge loss correction. The charge loss correction and its performances are presented as well as the results of various studies on CdTe thermal behavior and radiation hardness. At higher energy (above 200 keV) ISGRI will operate in conjunction with PICsIT, the IBIS CsI gamma camera. A selection among the events in coincidence performed on the basis of the Compton scattering properties reduces strongly the background. This allows an improvement of the sensitivity and permits short term imaging and spectral studies (high energy pulsars) which otherwise would not have fit within the IBIS telemetry allocation.

  9. Matrix phased array (MPA) imaging technology for resistance spot welds

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jeong K.; Gleeson, Sean T. [Edison Welding Institute, 1250 Arthur E. Adams Drive, Columbus, OH 43221 (United States)

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  10. MAGPIS: A Multi-Array Galactic Plane Imaging Survey

    CERN Document Server

    Helfand, D J; White, R L; Fallon, A; Tuttle, S; Helfand, David J.; Becker, Robert H.; White, Richard L.; Fallon, Adam; Tuttle, Sarah

    2006-01-01

    We present the Multi-Array Galactic Plane Imaging Survey (MAGPIS), which maps portions of the first Galactic quadrant with an angular resolution, sensitivity and dynamic range that surpasses existing radio images of the Milky Way by more than an order of magnitude. The source detection threshold at 20 cm is in the range 1--2 mJy over the 85% of the survey region (5 deg < l < 32 deg, |b| < 0.8 deg) not covered by bright extended emission. We catalog over 3000 discrete sources (diameters mostly <30 arcsec) and present an atlas of ~400 diffuse emission regions. New and archival data at 90 cm for the whole survey area are also presented. Comparison of our catalogs and images with the MSX mid-infrared data allow us to provide preliminary discrimination between thermal and non-thermal sources. We identify 49 high-probability supernova remnant candidates, increasing by a factor of seven the number of known remnants with diameters smaller than 5 arcmin in the survey region; several are pulsar wind nebula ...

  11. Ultrafast laser parallel microdrilling using multiple annular beams generated by a spatial light modulator

    Science.gov (United States)

    Kuang, Zheng; Perrie, Walter; Edwardson, Stuart P.; Fearon, Eamonn; Dearden, Geoff

    2014-03-01

    Ultrafast laser parallel microdrilling using diffractive multiple annular beam patterns is demonstrated in this paper. The annular beam was generated by diffractive axicon computer generated holograms (CGHs) using a spatial light modulator. The diameter of the annular beam can be easily adjusted by varying the radius of the smallest ring in the axicon. Multiple annular beams with arbitrary arrangement and multiple annular beam arrays were generated by superimposing an axicon CGH onto a grating and lenses algorithm calculated multi-beam CGH and a binary Dammann grating CGH, respectively. Microholes were drilled through a 0.03 mm thick stainless steel foil using the multiple annular beams. By avoiding huge laser output attenuation and mechanical annular scanning, the processing is ˜200 times faster than the normal single beam processing.

  12. Photonic Heterodyne Pixel for Imaging Arrays at Microwave and MM-Wave Frequencies

    Directory of Open Access Journals (Sweden)

    Á. R. Criado

    2012-01-01

    Full Text Available The use of photonic heterodyne receivers based on semiconductor optical amplifiers to be used in imaging arrays at several GHz frequencies is evaluated. With this objective, a imaging array based on such photonic pixels has been fabricated and characterized. Each of the receiving optoelectronic pixels is composed of an antipodal linear tapered slot antenna (LTSA that sends the received RF signal directly to the electrical port of a semiconductor opticalamplifier (SOA acting as the optoelectronic mixer. Both the local oscillator (LO and the intermediate frequency (IF signals are directly distributed to/from the array pixels using fiber optics, that allows for remote LO generation and IF processing to recover the image. The results shown in this work demonstrate that the performances of the optoelectronic imaging array are similar to a reference all-electronic array, revealing the possibility of using this photonic architecture in future high-density, scalable, compact imaging arrays in microwave and millimeter wave ranges.

  13. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    Science.gov (United States)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  14. Photon-Counting Arrays for Time-Resolved Imaging

    Directory of Open Access Journals (Sweden)

    I. Michel Antolovic

    2016-06-01

    Full Text Available The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach.

  15. Generalized granuloma annulare

    Directory of Open Access Journals (Sweden)

    Khatri M

    1995-01-01

    Full Text Available A 35-years-old female patient had generalized pruritic papular lesions, distributed like dermatitis herpetiformis for last 4 years. Histopathologic changes were typical of granuloma annulare with negative results of direct immunofluorescence. The patient did not have association of diabetes mellitus or any other systemic disease. She failed to respond to dapsone therapy and 13-cis-retinoic acid.

  16. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging.

    Science.gov (United States)

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-12-01

    One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T.

  17. Solar Imaging Radio Array (SIRA): Imaging solar, magnetospheric, and astrophysical sources at < 15 MHz

    Science.gov (United States)

    Howard, R.; MacDowall, R.; Gopalswamy, N.; Kaiser, M. L.; Reiner, M. J.; Bale, S.; Jones, D.; Kasper, J.; Weiler, K.

    2004-12-01

    The Solar Imaging Radio Array (SIRA) is a mission to perform aperture synthesis imaging of low frequency solar, magnetospheric, and astrophysical radio bursts. The primary science targets are coronal mass ejections (CMEs), which drive radio emission producing shock waves. A space-based interferometer is required, because the frequencies of observation (SIRA mission serves as a lower frequency counterpart to LWA, LOFAR, and similar ground-based radio imaging arrays. SIRA will require 12 to 16 microsatellites to establish a sufficient number of baselines with separations on the order of kilometers. The microsat constellation consists of microsats located quasi-randomly on a spherical shell, initially of radius 5 km or less. The baseline microsat is 3-axis stabilized with body-mounted solar arrays and an articulated, earth pointing high gain antenna. A retrograde orbit at 500,000 km from Earth was selected as the preferred orbit because it reduces the downlink requirement while keeping the microsats sufficiently distant from terrestrial radio interference. Also, the retrograde orbit permits imaging of terrestrial magnetospheric radio sources from varied perspectives. The SIRA mission serves as a pathfinder for space-based satellite constellations and for spacecraft interferometry at shorter wavelengths. It will be proposed to the NASA MIDEX proposal opportunity in mid-2005.

  18. Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array

    CERN Document Server

    Kong, Weijie; Cao, Penfei; Cheng, Lin; Gong, Li; Zhao, Xining; Yang, Lili

    2012-01-01

    We propose a near-infrared super resolution imaging system without a lens or a mirror but with an array of metallic nanoshell particle chain. The imaging array can plasmonically transfer the near-field components of dipole sources in the incoherent and coherent manners and the super resolution images can be reconstructed in the output plane. By tunning the parameters of the metallic nanoshell particle, the plasmon resonance band of the isolate nanoshell particle red-shifts to the near-infrared region. The near-infrared super resolution images are obtained subsequently. We calculate the field intensity distribution at the different planes of imaging process using the finite element method and find that the array has super resolution imaging capability at near-infrared wavelengths. We also show that the image formation highly depends on the coherence of the dipole sources and the image-array distance.

  19. Scanning array radar system for bridge subsurface imaging

    Science.gov (United States)

    Lai, Chieh-Ping; Ren, Yu-Jiun; Yu, Tzu Yang

    2012-04-01

    Early damage detection of bridge has been an important issue for modern civil engineering technique. Existing bridge inspection techniques used by State Department of Transportation (DOT) and County DOT include visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, and ultrasonics; other NDE techniques include ground penetrating radar (GPR), radiography, and some experimental types of sensors. Radar technology like GPR has been widely used for the bridge structure detection with a good penetration depth using microwave energy. The system to be presented in this paper is a different type of microwave sensing technology. It is focus on the subsurface detection and trying to find out detail information at subsurface (10 cm) with high resolution radar imaging from a flexible standoff distance. Our radar operating frequency is from 8-12 GHz, which is different from most of the current GPR systems. Scanning array antenna system is designed for adjustable beamwidth, preferable scanning area, and low sidelobe level. From the theoretical analysis and experimental results, it is found that the proposed technique can successfully capture the presence of the near-surface anomaly. This system is part of our Multi- Modal Remote Sensing System (MRSS) and provides good imaging correlations with other MRSS sensors.

  20. A Broadband and High Gain Tapered Slot Antenna for W-Band Imaging Array Applications

    Directory of Open Access Journals (Sweden)

    Dong Sik Woo

    2014-01-01

    Full Text Available A broadband and high gain tapered slot antenna (TSA by utilizing a broadband microstrip- (MS- to-coplanar stripline (CPS balun has been developed for millimeter-wave imaging systems and sensors. This antenna exhibits ultrawideband performance for frequency ranges from 70 to over 110 GHz with the high antenna gain, low sidelobe levels, and narrow beamwidth. The validity of this antenna as imaging arrays is also demonstrated by analyzing mutual couplings and 4-element linear array. This antenna can be applied to mm-wave phased array, imaging array for plasma diagnostics applications.

  1. Two-dimensional catheter arrays for real-time intracardiac volumetric imaging

    Science.gov (United States)

    Light, Edward D.; Fiering, Jason O.; Lee, Warren; Wolf, Patrick D.; Smith, Stephen W.

    1999-06-01

    We have previously described 2D arrays of several thousand elements operating up to 5.0 MHz for transthoracic cardiac imaging. Lately, there has been interest in developing catheter based intracardiac imaging systems to aid in the precise tracking of anatomical features for improved diagnoses and therapies. We have constructed several arrays for real time intracardiac volumetric imaging based upon two different designs; a 10 X 10 equals 100 element 5.0 MHz forward looking 2D array, and a 13 X 11 equals 143 element 5.0 MHz 2D array for side scanning applications.

  2. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy.

    Science.gov (United States)

    Johnson, Jared M; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo

    2017-01-01

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga2O3 and SrTiO3, we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra "ripples" at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20-40mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials.

  3. a Study Into the Effects of AN Austenitic Weld on Ultrasonic Array Imaging Performance

    Science.gov (United States)

    Hunter, A. J.; Drinkwater, B. W.; Zhang, J.; Wilcox, P. D.

    2011-06-01

    An industrial application of ultrasonic array imaging is the inspection of austenitic welds with high inhomogeneity and anisotropy. These result in attenuation and perturbation of the signals that adversely affects imaging performance. Here, the effects of perturbations introduced by an austenitic weld on array imaging performance are investigated experimentally. It is shown that three major factors contribute to the degradation of image quality: timing errors, phase errors, and multi-path propagation and scattering.

  4. Optimization of element length for imaging small volumetric reflectors with linear ultrasonic arrays

    OpenAIRE

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2016-01-01

    A 3D ultrasonic simulation study is presented, aimed at understanding the effect of element length for imaging small volumetric flaws with linear arrays in ultrasonically noisy materials. The geometry of a linear array can be described by the width, pitch and total number of the elements along with the length perpendicular to imaging plane. This paper is concerned with the latter parameter, which tends to be ignored in array optimization studies and is often chosen arbitrarily for industrial ...

  5. Design of optical system with three-dimensional image visualization using an array of microlenses

    Science.gov (United States)

    Santalina, I. Yu; Toropova, A. P.

    2016-08-01

    The algorithm of calculation of the optical imaging system of a three-dimensional image based on the method of integral photography was given in this article. The algorithm is easy to use and allows the calculate schemes with different microlens arrays, a CCD array of the camera and the projector.

  6. MAGPIS: A MULTI-ARRAY GALACTIC PLANE IMAGING SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Helfand, D J; Becker, R H; White, R L; Fallon, A; Tuttle, S

    2005-11-10

    We present the Multi-Array Galactic Plane Imaging Survey (MAGPIS), which maps portions of the first Galactic quadrant with an angular resolution, sensitivity and dynamic range that surpasses existing radio images of the Milky Way by more than an order of magnitude. The source detection threshold at 20 cm is in the range 1-2 mJy over the 85% of the survey region (5{sup o} < l < 32{sup o}, |b| < 0.8{sup o}) not covered by bright extended emission; the angular resolution is {approx} 6''. We catalog over 3000 discrete sources (diameters mostly < 30'') and present an atlas of {approx} 400 diffuse emission regions. New and archival data at 90 cm for the whole survey area are also presented. Comparison of our catalogs and images with the MSX mid-infrared data allow us to provide preliminary discrimination between thermal and non-thermal sources. We identify 49 high-probability supernova remnant candidates, increasing by a factor of seven the number of known remnants with diameters smaller than 50 in the survey region; several are pulsar wind nebula candidates and/or very small diameter remnants (D < 45''). We report the tentative identification of several hundred H II regions based on a comparison with the mid-IR data; they range in size from unresolved ultra-compact sources to large complexes of diffuse emission on scales of half a degree. In several of the latter regions, cospatial nonthermal emission illustrates the interplay between stellar death and birth. We comment briefly on plans for followup observations and our extension of the survey; when complemented by data from ongoing X-ray and mid-IR observations, we expect MAGPIS to provide an important contribution to our understanding of the birth and death of massive stars in the Milky Way.

  7. Novel fabrication technique of hybrid structure lens array for 3D images

    Science.gov (United States)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Won, Yong Hyub

    2016-03-01

    Tunable liquid lens arrays can produce three dimensional images by using electrowetting principle that alters surface tensions by applying voltage. This method has advantages of fast response time and low power consumption. However, it is challenging to fabricate a high fill factor liquid lens array and operate three dimensional images which demand high diopter. This study describes a hybrid structure lens array which has not only a liquid lens array but a solid lens array. A concave-shape lens array is unavoidable when using only the liquid lens array and some voltages are needed to make the lens flat. By placing the solid lens array on the liquid lens array, initial diopter can be positive. To fabricate the hybrid structure lens array, a conventional lithographic process in semiconductor manufacturing is needed. A negative photoresist SU-8 was used as chamber master molds. PDMS and UV adhesive replica molding are done sequentially. Two immiscible liquids, DI water and dodecane, are injected in the fabricated chamber, followed by sealing. The fabricated structure has a 20 by 20 pattern of cylindrical shaped circle array and the aperture size of each lens is 1mm. The thickness of the overall hybrid structure is about 2.8mm. Hybrid structure lens array has many advantages. Solid lens array has almost 100% fill factor and allow high efficiency. Diopter can be increased by more than 200 and negative diopter can be shifted to the positive region. This experiment showed several properties of the hybrid structure and demonstrated its superiority.

  8. 2D aperture synthesis for Lamb wave imaging using co-arrays

    Science.gov (United States)

    Ambrozinski, Lukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2014-03-01

    2D ultrasonic arrays in Lamb wave based SHM systems can operate in the phased array (PA) or synthetic focusing (SF) mode. In the real-time PA approach, multiple electronically delayed signals excite transmitting elements to form the desired wave-front, whereas receiving elements are used to sense scattered waves. Due to that, the PA mode requires multi channeled hardware and multiple excitations at numerous azimuths to scan the inspected region of interest. To the contrary, the SF mode, assumes a single element excitation of subsequent transmitters and off-line processing of the acquired data. In the simplest implementation of the SF technique, a single multiplexed input and output channels are required, which results in significant hardware simplification. Performance of a 2D imaging array depends on many parameters, such as, its topology, number of its transducers and their spacing in terms of wavelength as well as the type of weighting function (apodization). Moreover, it is possible to use sparse arrays, which means that not all array elements are used for transmitting and/ or receiving. In this paper the co-array concept is applied to facilitate the synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum co-array is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual elements' locations in the sub-arrays used for imaging. The coarray framework will be presented here using two different array topologies, aID uniform linear array and a cross-shaped array that will result in a square coarray. The approach will be discussed in terms of array patterns and beam patterns of the resulting imaging systems. Both, theoretical and experimental results will be given.

  9. Phased array beamforming and imaging in composite laminates using guided waves

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-04-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple simulated defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple simulated defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  10. 2D sparse array transducer optimization for 3D ultrasound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Hoon; Park, Kwan Kyu [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

  11. Toward Long Distance, Sub-diffraction Imaging Using Coherent Camera Arrays

    CERN Document Server

    Holloway, Jason; Sharma, Manoj Kumar; Matsuda, Nathan; Horstmeyer, Roarke; Cossairt, Oliver; Veeraraghavan, Ashok

    2015-01-01

    In this work, we propose using camera arrays coupled with coherent illumination as an effective method of improving spatial resolution in long distance images by a factor of ten and beyond. Recent advances in ptychography have demonstrated that one can image beyond the diffraction limit of the objective lens in a microscope. We demonstrate a similar imaging system to image beyond the diffraction limit in long range imaging. We emulate a camera array with a single camera attached to an X-Y translation stage. We show that an appropriate phase retrieval based reconstruction algorithm can be used to effectively recover the lost high resolution details from the multiple low resolution acquired images. We analyze the effects of noise, required degree of image overlap, and the effect of increasing synthetic aperture size on the reconstructed image quality. We show that coherent camera arrays have the potential to greatly improve imaging performance. Our simulations show resolution gains of 10x and more are achievabl...

  12. Reference-free nonuniformity compensation for IR imaging arrays

    Science.gov (United States)

    Narendra, P. M.

    1980-01-01

    Multi-detector IR imaging focal plane arrays possess large detector-to-detector dark current (offset) and responsivity (gain) variations which can completely mask the useful thermal signatures in IR scenes. Conventional detector compensation techniques require uniform temperature references of constant radiance over the entire field of view and a mechanical/electro-optical shutter. This detracts from the mechanical simplicity of multi-detector staring focal planes (which require no scanning). This paper describes a real-time offset and responsivity (gain) compensation technique which dispenses with temperature references and shutters in staring focal planes. The technique makes use of the IR scene itself for calibration and continuously updates the compensation coefficients without interrupting the field of view with a shutter or a temperature reference. The results of real-time simulations of this technique with a number of sensors are presented. Real-time hardware implementation considerations suggest that the technique can be implemented with the addition of very little hardware to a conventional compensation technique requiring temperature references. The technique is also suitable for multi-detector scanning focal planes and for the removal of shading in TV sensors as well.

  13. Prototype Imaging Cd-Zn-Te Array Detector

    CERN Document Server

    Bloser, P F; Grindlay, J E; Shah, K

    1998-01-01

    We describe initial results of our program to develop and test Cd-Zn-Te (CZT) detectors with a pixellated array readout. Our primary interest is in the development of relatively thick CZT detectors for use in astrophysical coded aperture telescopes with response extending over the energy range $\\sim 10-600$ keV. The coded aperture imaging configuration requires only relatively large area pixels (1-3 mm), whereas the desired high energy response requires detector thicknesses of at least 3-5 mm. We have developed a prototype detector employing a 10 x 10 x 5 mm CZT substrate and 4 x 4 pixel (1.5 mm each) readout with gold metal contacts for the pixels and continuous gold contact for the bias on the opposite detector face. This MSM contact configuration was fabricated by RMD and tested at Harvard for uniformity, efficiency and spatial as well as spectral resolution. We have developed an ASIC readout (IDE-VA-1) and analysis system and report results, including $\\sim 4$% (FWHM) energy resolution at 60 keV. A protot...

  14. Annular beam with segmented phase gradients

    Directory of Open Access Journals (Sweden)

    Shubo Cheng

    2016-08-01

    Full Text Available An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owing to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.

  15. Annular beam with segmented phase gradients

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shubo; Wu, Liang [School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Tao, Shaohua, E-mail: eshtao@csu.edu.cn [School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China)

    2016-08-15

    An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owing to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.

  16. Ka-band Dielectric Waveguide Antenna Array for Millimeter Wave Active Imaging System

    Science.gov (United States)

    Fang, Weihai; Fei, Peng; Nian, Feng; Yang, Yujie; Feng, Keming

    2014-11-01

    Ka-band compact dielectric waveguide antenna array for active imaging system is given. Antenna array with WR28 metal waveguide direct feeding is specially designed with small size, high gain, good radiation pattern, easy realization, low insertion loss and low mutual coupling. One practical antenna array for 3-D active imaging system is shown with theoretic analysis and experimental results. The mutual coupling of transmitting and receiving units is less than -30dB, the gain from 26.5GHz to 40GHz is (12-16) dB. The results in this paper provide guidelines for the designing of millimeter wave dielectric waveguide antenna array.

  17. Strategies for Ultrasound Imaging Using Two-Dimensional Arrays

    Science.gov (United States)

    Velichko, A.; Wilcox, P. D.

    2010-02-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. This has clear benefits as real defects and engineering structures are three-dimensional. This paper describes different approaches to optimize 2D array design. Results are shown that illustrate the application of the proposed techniques to modeling and experimental data.

  18. [Disseminated granuloma annulare].

    Science.gov (United States)

    Kansky, A

    1975-09-01

    A case of generalized granuloma annulare in a 55 year old man is reported. The disease appeared five years before the first admission to the hospital. A large number of bluish-red or skin-colour papules were scattered mainly around the earlobes, buttocks and on the extremities. Some of the lesions were lined up in rings or plaques. Small depigmented and brownish scars were present. Two biopsies revealed characteristic foci of complete collagen degeneration accompanied by a palisading infiltrate in the upper dermis. Treatment with tuberculostatics and antimalarics was without improvement. The lesions cleared after a course of prednison, but reappeared when the drug was discontinued.

  19. Annular recuperator design

    Science.gov (United States)

    Kang, Yungmo

    2005-10-04

    An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.

  20. Multi-channel microstrip transceiver arrays using harmonics for high field MR imaging in humans.

    Science.gov (United States)

    Wu, Bing; Wang, Chunsheng; Lu, Jonathan; Pang, Yong; Nelson, Sarah J; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-02-01

    Radio-frequency (RF) transceiver array design using primary and higher order harmonics for in vivo parallel magnetic resonance imaging imaging (MRI) and spectroscopic imaging is proposed. The improved electromagnetic decoupling performance, unique magnetic field distributions and high-frequency operation capabilities of higher-order harmonics of resonators would benefit transceiver arrays for parallel MRI, especially for ultrahigh field parallel MRI. To demonstrate this technique, microstrip transceiver arrays using first and second harmonic resonators were developed for human head parallel imaging at 7T. Phantom and human head images were acquired and evaluated using the GRAPPA reconstruction algorithm. The higher-order harmonic transceiver array design technique was also assessed numerically using FDTD simulation. Compared with regular primary-resonance transceiver designs, the proposed higher-order harmonic technique provided an improved g-factor and increased decoupling among resonant elements without using dedicated decoupling circuits, which would potentially lead to a better parallel imaging performance and ultimately faster and higher quality imaging. The proposed technique is particularly suitable for densely spaced transceiver array design where the increased mutual inductance among the elements becomes problematic. In addition, it also provides a simple approach to readily upgrade the channels of a conventional primary resonator microstrip array to a larger number for faster imaging.

  1. Implementation of total focusing method for phased array ultrasonic imaging on FPGA

    Science.gov (United States)

    Guo, JianQiang; Li, Xi; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2015-02-01

    This paper describes a multi-FPGA imaging system dedicated for the real-time imaging using the Total Focusing Method (TFM) and Full Matrix Capture (FMC). The system was entirely described using Verilog HDL language and implemented on Altera Stratix IV GX FPGA development board. The whole algorithm process is to: establish a coordinate system of image and divide it into grids; calculate the complete acoustic distance of array element between transmitting array element and receiving array element, and transform it into index value; then index the sound pressure values from ROM and superimpose sound pressure values to get pixel value of one focus point; and calculate the pixel values of all focus points to get the final imaging. The imaging result shows that this algorithm has high SNR of defect imaging. And FPGA with parallel processing capability can provide high speed performance, so this system can provide the imaging interface, with complete function and good performance.

  2. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    Science.gov (United States)

    Ambroziński, Łukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2015-03-01

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  3. Sparse Multi-Static Arrays for Near-Field Millimeter-Wave Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.

    2013-12-31

    This paper describes a novel design technique for sparse multi-static linear arrays. The methods described allow the development of densely sampled linear arrays suitable for high-resolution near-field imaging that require dramatically fewer antenna and switch elements than the previous state of the art. The techniques used are related to sparse array techniques used in radio astronomy applications, but differ significantly in design due to the transmit-receive nature of the arrays, and the application to linear arrays that achieve dense uniform sampling suitable for high-resolution near-field imaging. As many as 3 to 5 or more samples per antenna can be obtained, compared to 1 sample per antenna for the current state of the art. This could dramatically reduce cost and improve performance over current active millimeter-wave imaging systems.

  4. Compensated individually addressable array technology for human breast imaging

    Science.gov (United States)

    Lewis, D. Kent

    2003-01-01

    A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.

  5. Comparison of blind imaging performance of Fizeau and Michelson type arrays for a partially resolved object

    NARCIS (Netherlands)

    Van der Avoort, C.; Den Herder, J.-W.; Braat, J.

    2005-01-01

    This paper compares two well-known types of interferometer arrays for optical aperture synthesis. An analytical model for both types describes the expected output, in terms of photon counts. The goal is to characterize the performance of both types of array for blind imaging of a wide-field or exten

  6. Volumetric Ultrasound Imaging with Row-Column Addressed 2-D Arrays Using Spatial Matched Filter Beamforming

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann;

    2015-01-01

    For 3-D ultrasound imaging with row-column addressed 2-D arrays, the two orthogonal 1-D transmit and receive arrays are both used for one-way focusing in the lateral and elevation directions separately and since they are not in the same plane, the two-way focusing is the same as one-way focusing....

  7. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed...

  8. Portal Annular Pancreas

    Science.gov (United States)

    Harnoss, Jonathan M.; Harnoss, Julian C.; Diener, Markus K.; Contin, Pietro; Ulrich, Alexis B.; Büchler, Markus W.; Schmitz-Winnenthal, Friedrich H.

    2014-01-01

    Abstract Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF). On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered. In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery). Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option. PMID:25207658

  9. Low Power X-Ray Photon Resolving Imaging Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The solid-state detector array is the primary technology to implement the current generation of space borne high-energy astronomy missions that are managed by NASA...

  10. First Results On The Imaging Capabilities Of A DROID Array In The UV/Visible

    Science.gov (United States)

    Hijmering, R. A.; Verhoeve, P.; Martin, D. D. E.; Venn, R.

    2009-12-01

    Within the SCAM project of the European Space Agency the next step in the development of a cryogenic optical photon counting imaging spectrometer would be to increase the field of view using DROIDs (Distributed Read-Out Imaging Detector). We present the results of the first system test using an array of 60 360×33.5 μm2 DROIDs in a 3×20 format for optical photon detection. This is an increase in area by a factor of 5.5 compared to the successful S-Cam 3 detector. The responsivity of the DROID array tested is too low for actual use on the telescope. However the spatial resolution of ˜35 μm is just above the size of a virtual pixel and imaging capabilities of the array can be demonstrated. With increasing responsivity this will improve, yielding a DROID array which can be used as an astronomical optical photon counting imaging spectrometer.

  11. MEMS switch integrated radio frequency coils and arrays for magnetic resonance imaging

    Science.gov (United States)

    Bulumulla, S. B.; Park, K. J.; Fiveland, E.; Iannotti, J.; Robb, F.

    2017-02-01

    Surface coils are widely used in magnetic resonance imaging and spectroscopy. While smaller diameter coils produce higher signal to noise ratio (SNR) closer to the coil, imaging larger fields of view or greater distance into the sample requires a larger overall size array or, in the case of a channel count limited system, larger diameter coils. In this work, we consider reconfiguring the geometry of coils and coil arrays such that the same coil or coil array may be used in multiple field of view imaging. A custom designed microelectromechanical systems switch, compatible with magnetic resonance imaging, is used to switch in/out conductive sections and components to reconfigure coils. The switch does not degrade the SNR and can be opened/closed in 10 μ s, leading to rapid reconfiguration. Results from a single coil, configurable between small/large configurations, and a two-coil phased array, configurable between spine/torso modes, are presented.

  12. High Performance Dual Band Photodetector Arrays for MWIR/LWIR Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hyperspectral imaging arrays offer far more data and the ability to discriminate objects being observed. Continued difficulties with applying HgCdTe materials,...

  13. Design, Analysis and Implementation of An Area-Efficient Beam-Steerable Sub-Terahertz Imaging Receiver Array Architecture

    OpenAIRE

    Caster II, Francis

    2014-01-01

    Multi-pixel passive imaging arrays are presently fabricated in expensive processes with low integration levels. Imaging arrays designed in inexpensive processes with higher levels of integration would result in cheaper larger arrays. The objective of this work is twofold: 1) to develop a highly integrated silicon-based passive imaging receiver integrating the entire receiver frontend from antenna to detector; and 2) to develop a highly scalable architecture for use in focal plane arrays of ar...

  14. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed...... in the frequency-wavenumber domain. The sources of cross-talk are identified and predicted theoretically. The nearest neighbor cross-talk is 23.9±3.7 dB when the array is used as a 1-D array with the rows functioning as both transmitters and receivers. In the row–column configuration, with the columns transmitting...

  15. Algorithm-structured computer arrays and networks architectures and processes for images, percepts, models, information

    CERN Document Server

    Uhr, Leonard

    1984-01-01

    Computer Science and Applied Mathematics: Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Percepts, Models, Information examines the parallel-array, pipeline, and other network multi-computers.This book describes and explores arrays and networks, those built, being designed, or proposed. The problems of developing higher-level languages for systems and designing algorithm, program, data flow, and computer structure are also discussed. This text likewise describes several sequences of successively more general attempts to combine the power of arrays wi

  16. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Classen, I. G. J., E-mail: I.G.J.Classen@differ.nl; Bogomolov, A. V. [FOM-Institute DIFFER, Dutch Institute for Fundamental Energy Research, 3430 BE Nieuwegein (Netherlands); Domier, C. W.; Luhmann, N. C. [Department of Applied Science, University of California at Davis, Davis, California 95616 (United States); Suttrop, W.; Boom, J. E. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Donné, A. J. H. [FOM-Institute DIFFER, Dutch Institute for Fundamental Energy Research, 3430 BE Nieuwegein (Netherlands); Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2014-11-15

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments.

  17. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    Directory of Open Access Journals (Sweden)

    Nashiren Farzilah Mailah

    2011-11-01

    Full Text Available This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  18. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    Science.gov (United States)

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  19. A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.

    Science.gov (United States)

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  20. Optimization of element length for imaging small volumetric reflectors with linear ultrasonic arrays

    Science.gov (United States)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2016-02-01

    A 3D ultrasonic simulation study is presented, aimed at understanding the effect of element length for imaging small volumetric flaws with linear arrays in ultrasonically noisy materials. The geometry of a linear array can be described by the width, pitch and total number of the elements along with the length perpendicular to imaging plane. This paper is concerned with the latter parameter, which tends to be ignored in array optimization studies and is often chosen arbitrarily for industrial array inspections. A 3D analytical model based on imaging a point target is described, validated and used to make calculations of relative Signal-to-Noise Ratio (SNR) as a function of element length. SNR is found to be highly sensitive to element length with a 12dB variation observed over the length range investigated. It is then demonstrated that the optimal length can be predicted directly from the Point Spread Function (PSF) of the imaging system as well as the natural focal point of the array element from 2D beam profiles perpendicular to the imaging plane. This result suggests that the optimal length for any imaging position can be predicted without the need for a full 3D model and is independent of element pitch and the number of elements. Array element design guidelines are then described with respect to wavelength and extensions of these results are discussed for application to realistically-sized defects and coarse-grained materials.

  1. X-ray imaging sensor arrays on foil using solution processed organic photodiodes and organic transistors

    Science.gov (United States)

    Kumar, Abhishek; Moet, Date; van der Steen, Jan-Laurens; Tripathi, Ashutosh; Rodriguez, Francisco G.; Maas, Joris; Simon, Matthias; Reutten, Walter; Douglas, Alexander; Raaijmakers, Rob; Malinowski, Pawel E.; Myny, Kris; Shafique, Umar; Andriessen, Ronn; Heremans, Paul; Gelinck, Gerwin

    2014-05-01

    We demonstrate organic imaging sensor arrays fabricated on flexible plastic foil with the solution processing route for both photodiodes and thin film transistors. We used the photovoltaic P3HT:PCBM blend for fabricating the photodiodes using spin coating and pentacene as semiconductor material for the TFTs. Photodiodes fabricated with P3HT:PCBM absorb in the green part of the visible spectrum which matches with the typical scintillator output wavelength. The arrays consist of 32x32 pixels with variation in pixel resolution of 200μmx200μm, 300μmx300μm and of 1mmx1mm. The accurate reproducibility of shadow images of the objects demonstrates the potential of these arrays for imaging purposes. We also demonstrate that the crosstalk is relatively insignificant despite the fact that the active photodiode forms a continuous layer in the array. Since both photodiodes and TFTs are made of organic material, they are processed at low temperatures below 150°C on foil which means that these imaging sensors can be flexible, light weight and low cost when compared to conventional amorphous silicon based imaging sensors on rigid substrates. In combination with a scintillator on top of the arrays, we show the potential of these arrays for the X-ray imaging applications.

  2. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays

    Directory of Open Access Journals (Sweden)

    Dolmatov Dmitry

    2017-01-01

    Full Text Available Constantly increasing demand for high-performance materials and systems in aerospace industry requires advanced methods of nondestructive testing. One of the most promising methods is ultrasonic imaging by using matrix phased arrays. This technique allows to create three-dimensional ultrasonic imaging with high lateral resolution. Further progress in matrix phased array ultrasonic testing is determined by the development of fast imaging algorithms. In this article imaging algorithm based on frequency domain calculations is proposed. This approach is computationally efficient in comparison with time domain algorithms. Performance of the proposed algorithm was tested via computer simulations for planar specimen with flat bottom holes.

  3. Progress in two-dimensional arrays for real-time volumetric imaging.

    Science.gov (United States)

    Light, E D; Davidsen, R E; Fiering, J O; Hruschka, T A; Smith, S W

    1998-01-01

    The design, fabrication, and evaluation of two dimensional array transducers for real-time volumetric imaging are described. The transducers we have previously described operated at frequencies below 3 MHz and were unwieldy to the operator because of the interconnect schemes used in connecting to the transducer handle. Several new transducers have been developed using new connection technology. A 40 x 40 = 1,600 element, 3.5 MHz array was fabricated with 256 transmit and 256 receive elements. A 60 x 60 = 3,600 element 5.0 MHz array was constructed with 248 transmit and 256 receive elements. An 80 x 80 = 6,400 element, 2.5 MHz array was fabricated with 256 transmit and 208receive elements. 2-D transducer arrays were also developed for volumetric scanning in an intra cardiac catheter, a 10 x 10 = 100 element 5.0 MHz forward-looking array and an 11 x 13 = 143 element 5.0 MHz side-scanning array. The-6dB fractional bandwidths for the different arrays varied from 50% to 63%, and the 50 omega insertion loss for all the transducers was about-64 dB. The transducers were used to generate real-time volumetric images in phantoms and in vivo using the Duke University real time volumetric imaging system, which is capable of generating multiple planes at any desired angle and depth within the pyramidal volume.

  4. Polarization-independent waveguiding with annular photonic crystals.

    Science.gov (United States)

    Cicek, Ahmet; Ulug, Bulent

    2009-09-28

    A linear waveguide in an annular photonic crystal composed of a square array of annular dielectric rods in air is demonstrated to guide transverse electric and transverse magnetic modes simultaneously. Overlapping of the guided bands in the full band gap of the photonic crystal is shown to be achieved through an appropriate set of geometric parameters. Results of Finite-Difference Time-Domain simulations to demonstrate polarization-independent waveguiding with low loss and wavelength-order confinement are presented. Transmission through a 90 degrees bend is also demonstrated.

  5. Applications of array processors in the analysis of remote sensing images

    Science.gov (United States)

    Ramapriyan, H. K.; Strong, J. P.

    1984-01-01

    The architectures, programming characteristics, and ranges of application of past, present, and planned array processors for the digital processing of remote-sensing images are compared. Such functions as radiometric and geometric corrections, principal-components analysis, cluster coding, histogram generation, grey-level mapping, convolution, classification, and mensuration and modeling operations are considered, and both pipeline-type and single-instruction/multiple-data-stream (SIMD) arrays are evaluated. Numerical results are presented in a table, and it is found that the pipeline-type arrays normally used with minicomputers increase their speed significantly at low cost, while even further gains are provided by the more expensive SIMD arrays. Most image-processing operations become I/O-limited when SIMD arrays are used with current I/O devices.

  6. Ultrasonic measurement models for imaging with phased arrays

    Science.gov (United States)

    Schmerr, Lester W., Jr.; Engle, Brady J.; Sedov, Alexander; Li, Xiongbing

    2014-02-01

    Ultrasonic imaging measurement models (IMMs) are developed that generate images of flaws by inversion of ultrasonic measurement models. These IMMs are generalizations of the synthetic aperture focusing technique (SAFT) and the total focusing method (TFM). A special case when the flaw is small is shown to generalize physical optics far field inverse scattering (POFFIS) images. The ultrasonic IMMs provide a rational basis for generating and understanding the ultrasonic images produced by delay-and-sum imaging methods.

  7. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    Science.gov (United States)

    Solis, S. E.; Tomasi, D.; Rodríguez, A. O.

    2008-08-01

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  8. The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging

    Science.gov (United States)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2014-12-01

    The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.

  9. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    Energy Technology Data Exchange (ETDEWEB)

    Ambroziński, Łukasz, E-mail: ambrozin@agh.edu.pl; Stepinski, Tadeusz, E-mail: ambrozin@agh.edu.pl; Uhl, Tadeusz, E-mail: ambrozin@agh.edu.pl [AGH University of Science and technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2015-03-31

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  10. LOFAR tied-array imaging and spectroscopy of solar S bursts

    CERN Document Server

    Morosan, D E; Zucca, P; O'Flannagain, A; Fallows, R; Reid, H; Magdalenic, J; Mann, G; Bisi, M M; Kerdraon, A; Konovalenko, A A; MacKinnon, A L; Rucker, H O; Thide, B; Vocks, C; Alexov, A; Anderson, J; Asgekar, A; Avruch, I M; Bentum, M J; Bernardi, G; Bonafede, A; Breitling, F; Broderick, J W; Brouw, W N; Butcher, H R; Ciardi, B; de Geus, E; Eisloffel, J; Falcke, H; Frieswijk, W; Garrett, M A; Griessmeier, J; Gunst, A W; Hessels, J W T; Hoeft, M; Karastergiou, A; Kondratiev, V I; Kuper, G; van Leeuwen, J; McKay-Bukowski, D; McKean, J P; Munk, H; Orru, E; Paas, H; Pizzo, R; Polatidis, A G; Scaife, A M M; Sluman, J; Tasse, C; Toribio, M C; Vermeulen, R; Zarka, P

    2015-01-01

    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, Low Frequency Array (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were ob...

  11. Silicon Geiger-mode avalanche photodiode arrays for photon-starved imaging

    Science.gov (United States)

    Aull, Brian F.

    2015-05-01

    Geiger-mode avalanche photodiodes (GMAPDs) are capable of detecting single photons. They can be operated to directly trigger all-digital circuits, so that detection events are digitally counted or time stamped in each pixel. An imager based on an array of GMAPDs therefore has zero readout noise, enabling quantum-limited sensitivity for photon-starved imaging applications. In this review, we discuss devices developed for 3D imaging, wavefront sensing, and passive imaging.

  12. Development of macropore arrays in silicon and related technologies for X-ray imaging applications

    OpenAIRE

    Badel, Xavier

    2003-01-01

    Digital devices have started to replace photographic film inX-ray imaging applications. As compared to photographic films,these devices are more convenient to obtain images and tohandle, treat and store these images. The goal of the presentstudy is to develop macropore arrays and related silicontechnologies in order to fabricate X-ray imaging detectors formedical applications, and in particular for dentistry. Althougha few detectors are already available on the market, theirperformances, such...

  13. [High resolution MR imaging of the hip using pelvic phased-array coil].

    Science.gov (United States)

    Niitsu, M; Mishima, H; Itai, Y

    1997-01-01

    A pelvic phased-array coil was applied to obtain high resolution MR images of the hip. Three-mm-thick fast spinecho images were obtained in seven hips. Images with a pelvic coil enhanced delineation of acetabular labrum and articular cartilage more clearly than those with a body coil or flexible-surface coil. The use of a pelvic coil in imaging of the hip may be of diagnostic value because of its superior delineation.

  14. Correlation-based imaging technique using ultrasonic transmit-receive array for Non-Destructive Evaluation.

    Science.gov (United States)

    Quaegebeur, Nicolas; Masson, Patrice

    2012-12-01

    This paper describes a novel array post-processing method for Non-Destructive Evaluation (NDE) using phased-array ultrasonic probes. The approach uses the capture and processing of the full matrix of all transmit-receive time-domain signals from a transducer array as in the case of the Total Focusing Method (TFM), referred as the standard of imaging algorithms. The proposed technique is based on correlation of measured signals with theoretical propagated signals computed over a given grid of points. In that case, real-time imaging can be simply implemented using discrete signal product. The advantage of the present technique is to take into account transducer directivity, dynamics and complex propagation patterns, such that the number of required array elements for a given imaging performance can be greatly reduced. Numerical and experimental application to contact inspection of isotropic structure is presented and real-time implementation issues are discussed.

  15. Burn imaging with a whole field laser Doppler perfusion imager based on a CMOS imaging array

    NARCIS (Netherlands)

    van Herpt, Heleen; Draijer, Matthijs; Hondebrink, Erwin; Nieuwenhuis, Marianne; Beerthuizen, Gerard; van Leeuwen, Ton; Steenbergen, Wiendelt

    2010-01-01

    Laser Doppler perfusion imaging (LDPI) has been proven to be a useful tool in predicting the burn wound outcome in an early stage. A major disadvantage of scanning beam LDPI devices is their slow scanning speed, leading to patient discomfort and imaging artifacts. We have developed the Twente Optica

  16. Burn imaging with a whole field laser Doppler perfusion imager based on a CMOS imaging array

    NARCIS (Netherlands)

    van Herpt, Heleen; Draijer, Matthijs; Hondebrink, Erwin; Nieuwenhuis, Marianne; Beerthuizen, Gerard; van Leeuwen, Ton; van Leeuwen, Ton; Steenbergen, Wiendelt

    2010-01-01

    Laser Doppler perfusion imaging (LDPI) has been proven to be a useful tool in predicting the burn wound outcome in an early stage. A major disadvantage of scanning beam LDPI devices is their slow scanning speed, leading to patient discomfort and imaging artifacts. We have developed the Twente

  17. Delta-Doped Back-Illuminated CMOS Imaging Arrays: Progress and Prospects

    Science.gov (United States)

    Hoenk, Michael E.; Jones, Todd J.; Dickie, Matthew R.; Greer, Frank; Cunningham, Thomas J.; Blazejewski, Edward; Nikzad, Shouleh

    2009-01-01

    In this paper, we report the latest results on our development of delta-doped, thinned, back-illuminated CMOS imaging arrays. As with charge-coupled devices, thinning and back-illumination are essential to the development of high performance CMOS imaging arrays. Problems with back surface passivation have emerged as critical to the prospects for incorporating CMOS imaging arrays into high performance scientific instruments, just as they did for CCDs over twenty years ago. In the early 1990's, JPL developed delta-doped CCDs, in which low temperature molecular beam epitaxy was used to form an ideal passivation layer on the silicon back surface. Comprising only a few nanometers of highly-doped epitaxial silicon, delta-doping achieves the stability and uniformity that are essential for high performance imaging and spectroscopy. Delta-doped CCDs were shown to have high, stable, and uniform quantum efficiency across the entire spectral range from the extreme ultraviolet through the near infrared. JPL has recently bump-bonded thinned, delta-doped CMOS imaging arrays to a CMOS readout, and demonstrated imaging. Delta-doped CMOS devices exhibit the high quantum efficiency that has become the standard for scientific-grade CCDs. Together with new circuit designs for low-noise readout currently under development, delta-doping expands the potential scientific applications of CMOS imaging arrays, and brings within reach important new capabilities, such as fast, high-sensitivity imaging with parallel readout and real-time signal processing. It remains to demonstrate manufacturability of delta-doped CMOS imaging arrays. To that end, JPL has acquired a new silicon MBE and ancillary equipment for delta-doping wafers up to 200mm in diameter, and is now developing processes for high-throughput, high yield delta-doping of fully-processed wafers with CCD and CMOS imaging devices.

  18. Application of Uncooled Monolithic Thermoelectric Linear Arrays to Imaging Radiometers

    Science.gov (United States)

    Kruse, Paul W.

    Introduction Identification of Incipient Failure of Railcar Wheels Technical Description of the Model IR 1000 Imaging Radiometer Performance of the Model IR 1000 Imaging Radiometer Initial Application Summary Imaging Radiometer for Predictive and Preventive Maintenance Description Operation Specifications Summary References INDEX CONTENTS OF VOLUMES IN THIS SERIES

  19. Optimum linear array for aperture synthesis imaging based on redundant spacing calibration

    Science.gov (United States)

    Liu, Li; He, Yuntao; Zhang, Jianguo; Jia, Huayu; Ma, Jun

    2014-05-01

    Aperture synthesis imaging has been proved to be attractive in surveillance and detection applications. Such an imaging process is inevitably subject to aberrations introduced by instrument defects and/or turbulent media. Redundant spacing calibration (RSC) technique allows continuous calibration of these errors at any electromagnetic wavelength. However, it is based on specially designed array, in which just enough redundancy is included to permit the successful implementation of RSC. A new design criterion for linear RSC array is described, which introduces coverage efficiency and redundancy efficiency factors, aiming to find the perfect configurations, which have as complete uv-plane coverage as possible while containing required redundancy. Optimum linear arrays for N (number of subapertures) up to 10 are listed based on simulated annealing algorithm. The comparisons with existing linear RSC arrays with equivalent subaperture number are implemented. Results show that the optimized arrays have better performance of both optical transfer function, point spread function, and object reconstruction with reasonable value of the matrix condition number. After that, linear arrays are used to construct two-dimensional (2-D) pseudo-Y-shaped RSC arrays, which give a way to design 2-D RSC arrays without exhaustive searches.

  20. Waveguide piezoelectric micromachined ultrasonic transducer array for short-range pulse-echo imaging

    Science.gov (United States)

    Lu, Y.; Tang, H.; Wang, Q.; Fung, S.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-05-01

    This paper presents an 8 × 24 element, 100 μm-pitch, 20 MHz ultrasound imager based on a piezoelectric micromachined ultrasonic transducer (PMUT) array having integrated acoustic waveguides. The 70 μm diameter, 220 μm long waveguides function both to direct acoustic waves and to confine acoustic energy, and also to provide mechanical protection for the PMUT array used for surface-imaging applications such as an ultrasonic fingerprint sensor. The imager consists of a PMUT array bonded with a CMOS ASIC using wafer-level conductive eutectic bonding. This construction allows each PMUT in the array to have a dedicated front-end receive amplifier, which together with on-chip analog multiplexing enables individual pixel read-out with high signal-to-noise ratio through minimized parasitic capacitance between the PMUT and the front-end amplifier. Finite element method simulations demonstrate that the waveguides preserve the pressure amplitude of acoustic pulses over distances of 600 μm. Moreover, the waveguide design demonstrated here enables pixel-by-pixel readout of the ultrasound image due to improved directivity of the PMUT by directing acoustic waves and creating a pressure field with greater spatial uniformity at the end of the waveguide. Pulse-echo imaging experiments conducted using a one-dimensional steel grating demonstrate the array's ability to form a two-dimensional image of a target.

  1. UWB Antennas and MIMO Antenna Arrays Development for Near-Field Imaging

    NARCIS (Netherlands)

    Yang, Y.

    2011-01-01

    UWB radar is the most promising radar system for the future. In addition, by combining the UWB and array signal processing, one can obtain 3-D images of the objects for classification and identification, which is very useful in many applications. To achieve high-resolution real-time 3-D imaging rada

  2. I vivo three-dimensional photoacoustic imaging based on a clinicall matrix array ultrasound probe

    NARCIS (Netherlands)

    Wang, Y.; Erpelding, T.N.; Jankovic, L.; Guo, Z.; Robert, J.L.; David, G.; Wang, L.V.

    2011-01-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3D) volumetric imaging system based on a two-dimensional (2D) matrix array ultrasound probe. A wavelength-tunable dye laser pumpedby a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imag

  3. Real-time B-scan ultrasonic imaging using a digital phased array system for NDE

    Science.gov (United States)

    Dunki-Jacobs, Robert; Thomas, Lewis

    A demonstration is presented of the ability to produce real-time images of metals on the basis of a phased-array ultrasound system. Attention is given to the critical role played by a beam-former. It is established that the present imaging system's resolution approaches the theoretical capabilities of the given aperture size and wavelength.

  4. UWB Antennas and MIMO Antenna Arrays Development for Near-Field Imaging

    NARCIS (Netherlands)

    Yang, Y.

    2011-01-01

    UWB radar is the most promising radar system for the future. In addition, by combining the UWB and array signal processing, one can obtain 3-D images of the objects for classification and identification, which is very useful in many applications. To achieve high-resolution real-time 3-D imaging

  5. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  6. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  7. Comparison Between Eight- and Sixteen-Channel TEM Transceive Arrays for Body Imaging at 7 Tesla

    Science.gov (United States)

    Snyder, CJ; DelaBarre, L; Moeller, S; Tian, J; Akgun, C; Van De Moortele, P-F; Bolan, PJ; Ugurbil, K; Vaughan, JT; Metzger, GJ

    2011-01-01

    Eight- and sixteen-channel transceive stripline/TEM body arrays were compared at 7 tesla (297 MHz) both in simulation and experimentally. Despite previous demonstrations of similar arrays for use in body applications, a quantitative comparison of the two configurations has not been undertaken to date. Results were obtained on a male pelvis for assessing transmit, SNR and parallel imaging performance and to evaluate local power deposition versus transmit B1 (B1+). All measurements and simulations were conducted after performing local B1+ phase shimming in the region of the prostate. Despite the additional challenges of decoupling immediately adjacent coils, the sixteen-channel array demonstrated improved or nearly equivalent performance to the eight-channel array based on the evaluation criteria. Experimentally, transmit performance and SNR were 22% higher for the sixteen-channel array while significantly increased reduction factors were achievable in the left-right direction for parallel imaging. Finite-difference time-domain simulations demonstrated similar results with respect to transmit and parallel imaging performance, however a higher transmit efficiency advantage of 33% was predicted. Simulations at both 3T and 7T verified the expected parallel imaging improvements with increasing field strength and showed that, for a specific B1+ shimming strategy employed, the sixteen-channel array exhibited lower local and global SAR for a given B1+. PMID:22102483

  8. Implementation of a Direct-Imaging and FX Correlator for the BEST-2 Array

    CERN Document Server

    Foster, Griffin; Magro, Alessio; Price, Danny C; Adami, Kristian Zarb

    2014-01-01

    A new digital backend has been developed for the BEST-2 array at Radiotelescopi di Medicina, INAF-IRA, Italy which allows concurrent operation of an FX correlator, and a direct-imaging correlator and beamformer. This backend serves as a platform for testing some of the spatial Fourier transform concepts which have been proposed for use in computing correlations on regularly gridded arrays. While spatial Fourier transform-based beamformers have been implemented previously, this is to our knowledge, the first time a direct-imaging correlator has been deployed on a radio astronomy array. Concurrent observations with the FX and direct-imaging correlator allows for direct comparison between the two architectures. Additionally, we show the potential of the direct-imaging correlator for time-domain astronomy, by passing a subset of beams though a pulsar and transient detection pipeline. These results provide a timely verification for spatial Fourier transform-based instruments that are currently in commissioning. Th...

  9. Real object pickup method of integral imaging using offset lens array.

    Science.gov (United States)

    Yim, Junkyu; Choi, Ki-Hong; Min, Sung-Wook

    2017-05-01

    We propose the pickup system of integral imaging using the offset lens array (OLA), which is a useful optical component for both the pickup and display processes. The main purpose of our system is resolving the pseudoscopic image problem of integral imaging. Also, the flipped image of integral imaging that has the wrong perspective information can be removed by adding an external barrier in the display process. In this paper, the above properties are explained in detail, and the experimental results to verify the feasibility of the proposed system are presented. We are certain that our system can also be applied to other various pickup systems based on integral imaging.

  10. Annular Hybrid Rocket Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Engineers at SpaceDev have conducted a preliminary design and analysis of a proprietary annular design concept for a hybrid motor. A U.S. Patent application has been...

  11. Characteristics of stereo images from detectors in focal plane array.

    Science.gov (United States)

    Son, Jung-Young; Yeom, Seokwon; Chun, Joo-Hwan; Guschin, Vladmir P; Lee, Dong-Su

    2011-07-01

    The equivalent ray geometry of two horizontally aligned detectors at the focal plane of the main antenna in a millimeter wave imaging system is analyzed to reveal the reason why the images from the detectors are fused as an image with a depth sense. Scanning the main antenna in both horizontal and vertical directions makes each detector perform as a camera, and the two detectors can work like a stereo camera in the millimeter wave range. However, the stereo camera geometry is different from that of the stereo camera used in the visual spectral range because the detectors' viewing directions are diverging to each other and they are a certain distance apart. The depth sense is mainly induced by the distance between detectors. The images obtained from the detectors in the millimeter imaging system are perceived with a good depth sense. The disparities responsible for the depth sense are identified in the images.

  12. Annular Elastolytic Giant Cell Granuloma

    Directory of Open Access Journals (Sweden)

    Khandpur Sujay

    2001-01-01

    Full Text Available The clinical and histopathological features of annular elastolytic giant cell granuloma in a 42â€"year-old female patient are described. The condition presented as annular erythematous plaques over sun- exposed skin sparing the face. Histopathology revealed dense granulomatous infiltrate consisting of numerous giant cells and lymphohistiocytes without any palisading arrangement or necrobiosis. The features differentiating it from other similar granulomatous disorders are discussed.

  13. Manufacture of annular cermet articles

    Science.gov (United States)

    Forsberg, Charles W.; Sikka, Vinod K.

    2004-11-02

    A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

  14. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    Science.gov (United States)

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.

  15. Development of local oscillator integrated antenna array for microwave imaging diagnostics

    Science.gov (United States)

    Kuwahara, D.; Ito, N.; Nagayama, Y.; Tsuchiya, H.; Yoshikawa, M.; Kohagura, J.; Yoshinaga, T.; Yamaguchi, S.; Kogi, Y.; Mase, A.; Shinohara, S.

    2015-12-01

    Microwave imaging diagnostics are powerful tools that are used to obtain details of complex structures and behaviors of such systems as magnetically confined plasmas. For example, microwave imaging reflectometry and microwave imaging interferometers are suitable for observing phenomena that are involved with electron density fluctuations; moreover, electron cyclotron emission imaging diagnostics enable us to accomplish the significant task of observing MHD instabilities in large tokamaks. However, microwave imaging systems include difficulties in terms of multi-channelization and cost. Recently, we solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne- type antenna array, which can be easily stacked as a 2-D receiving array, because it uses an end-fire element. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. This paper describes the principle of the LIA, and provides details about an 8 channel prototype LIA.

  16. Non-volatile resistive photo-switches for flexible image detector arrays

    Science.gov (United States)

    Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J. W.

    2015-09-01

    The increasing quest to find lightweight, conformable or flexible image detectors for machine vision or medical imaging brings organic electronics into the spotlight for these fields of application. Here were we introduce a unique imaging device concept and its utilization in an organic, flexible detector array with simple passive matrix wiring. We present a flexible organic image detector array built up from non-volatile resistive multi-bit photo-switchable elements. This unique realization is based on an organic photodiode combined with an organic resistive memory device wired in a simple crossbar configuration. The presented concept exhibits significant advantages compared to present organic and inorganic detector array technologies, facilitating the detection and simultaneous storage of the image information in one detector pixel, yet also allowing for simple read-out of the information from a simple passive-matrix crossbar wiring. This concept is demonstrated for single photo-switchable pixels as well as for arrays with sizes up to 32 by 32 pixels (1024 bit). The presented results pave the way for a versatile flexible and easy-to-fabricate sensor array technology. In a final step, the concept was expanded to detection of x-rays.

  17. Research on geometric rectification of the Large FOV Linear Array Whiskbroom Image

    Science.gov (United States)

    Liu, Dia; Liu, Hui-tong; Dong, Hao; Liu, Xiao-bo

    2015-08-01

    To solve the geometric distortion problem of large FOV linear array whiskbroom image, a model of multi center central projection collinearity equation was founded considering its whiskbroom and linear CCD imaging feature, and the principle of distortion was analyzed. Based on the rectification method with POS, we introduced the angular position sensor data of the servo system, and restored the geometric imaging process exactly. An indirect rectification scheme aiming at linear array imaging with best scanline searching method was adopted, matrixes for calculating the exterior orientation elements was redesigned. We improved two iterative algorithms for this device, and did comparison and analysis. The rectification for the images of airborne imaging experiment showed ideal effect.

  18. Luminescence imaging strategies for drone-based PV array inspection

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Riedel, Nicholas; Thorsteinsson, Sune

    2017-01-01

    he goal of this work is to perform outdoor defect detection imaging that will be used in a fast, accurate and automatic drone-based survey system for PV power plants. The imaging development focuses on techniques that do not require electrical contact, permitting automatic drone inspections to be...

  19. Numerical simulation research on multi-electrodes resistivity imaging survey array

    Institute of Scientific and Technical Information of China (English)

    Jianjun NIU; Xiaopei ZHANG; Lizhi DU

    2008-01-01

    Multi-electrodes Resistivity Imaging Survey (MRIS) is an array method of electrical survey. In practice how to choose a reasonable array is the key to get reliable survey results. Based on four methods of MRIS such as Wenner, Schlumberger, Pole-pole and Dipole-dipole the authors established the model, by studying the result of the forward numerical simulation modeling and inverse modeling, and analyzed the differences among the different forms of detection devices.

  20. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    OpenAIRE

    Viti Federica; Merelli Ivan; Caprera Andrea; Lazzari Barbara; Stella Alessandra; Milanesi Luciano

    2008-01-01

    Abstract Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their util...

  1. Imaging of Bloch oscillations in erbium-doped curved waveguide arrays.

    Science.gov (United States)

    Chiodo, N; Della Valle, G; Osellame, R; Longhi, S; Cerullo, G; Ramponi, R; Laporta, P; Morgner, U

    2006-06-01

    We report a direct observation of Bloch-like dynamics of light in curved waveguide arrays manufactured in Er:Yb-doped phosphate glass by femtosecond laser writing. The green upconversion fluorescence emitted by excited erbium ions is exploited to image the flow of the guided pump light at approximately 980 nm along the array. Direct and clear evidence of periodic light breathing for single-waveguide excitation, closely related to Bloch oscillations, is reported.

  2. Multi-anode microchannel arrays - New detectors for imaging and spectroscopy in space

    Science.gov (United States)

    Timothy, J. G.; Bybee, R. L.

    1983-01-01

    Consideration is given to the construction and operation of multi-anode microchannel array detector systems having formats as large as 256 x 1024 pixels. Such arrays are being developed for imaging and spectroscopy at soft X-ray, ultraviolet and visible wavelengths from balloons, sounding rockets and space probes. Both discrete-anode and coincidence-anode arrays are described. Two types of photocathode structures are evaluated: an opaque photocathode deposited directly on the curved-channel MCP and an activated cathode deposited on a proximity-focused mesh. Future work will include sensitivity optimization in the different wavelength regions and the development of detector tubes with semitransparent proximity-focused photocathodes.

  3. Analysis of Image Formation with Thinned Random Arrays

    Science.gov (United States)

    1979-06-01

    FORCE OFFICE OF SCIENTIFIC RESEARCH Building 410 i Boiling Air Force Base , Washington, DC 20332 A ~VA Approved for public rolo~ae; UT G’ -7 7 . . . . 7...However, there is no general theory available for the algorithmic design of this class of arrays. Many of the designs to date have been based on trial- and...system. The system impulse function is directly related 14 to the pupil function by a Fourier trmnsformation: h(x,y) ff P(•,) 6 -i2T(xc+Y8) dadO . (3

  4. Electrowetting liquid lens array on curved substrates for wide field of view image sensor

    Science.gov (United States)

    Bang, Yousung; Lee, Muyoung; Won, Yong Hyub

    2016-03-01

    In this research, electrowetting liquid lens array on curved substrates is developed for wide field of view image sensor. In the conventional image sensing system, this lens array is usually in the form of solid state. However, in this state, the lens array which is similar to insect-like compound eyes in nature has several limitations such as degradation of image quality and narrow field of view because it cannot adjust focal length of lens. For implementation of the more enhanced system, the curved array of lenses based on electrowetting effect is developed in this paper, which can adjust focal length of lens. The fabrication of curved lens array is conducted upon the several steps, including chamber fabrication, electrode & dielectric layer deposition, liquid injection, and encapsulation. As constituent materials, IZO coated convex glass, UV epoxy (NOA 68), DI water, and dodecane are used. The number of lenses on the fabricated panel is 23 by 23 and each lens has 1mm aperture with 1.6mm pitch between adjacent lenses. When the voltage is applied on the device, it is observed that each lens is changed from concave state to convex state. From the unique optical characteristics of curved array of liquid lenses such as controllable focal length and wide field of view, we can expect that it has potential applications in various fields such as medical diagnostics, surveillance systems, and light field photography.

  5. A High-Frequency High Frame Rate Duplex Ultrasound Linear Array Imaging System for Small Animal Imaging

    Science.gov (United States)

    Zhang, Lequan; Xu, Xiaochen; Hu, Changhong; Sun, Lei; Yen, Jesse T.; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    High-frequency (HF) ultrasound imaging has been shown to be useful for non-invasively imaging anatomical structures of the eye and small animals in biological and pharmaceutical research, achieving superior spatial resolution. Cardiovascular research utilizing mice requires not only real-time B-scan imaging, but also ultrasound Doppler to evaluate both anatomy and blood flow of the mouse heart. This paper reports the development of a high frequency ultrasound duplex imaging system capable of both B-mode imaging and Doppler flow measurements, using a 64-element linear array. The system included a HF pulsed-wave Doppler module, a 32-channel HF B-mode imaging module, a PC with a 200 MS/s 14-bit A/D card, and real-time LabView software. A 50dB signal-to-noise ratio (SNR) and a depth of penetration of larger than 12 mm were achieved using a 35 MHz linear array with 50 μm pitch. The two-way beam widths were determined to be 165 μm to 260 μm and the clutter energy to total energy ratio (CTR) were 9.1 dB to 12 dB, when the array was electronically focused at different focal points at depths from 4.8 mm to 9.6 mm. The system is capable of acquiring real-time B-mode images at a rate greater than 400 frames per second (fps) for a 4.8 × 13 mm field of view, using a 30 MHz 64-element linear array with 100 μm pitch. Sample in vivo cardiac high frame rate images and duplex images of mouse hearts are shown to assess its current imaging capability and performance for small animals. PMID:20639149

  6. Portal Annular Pancreas: A Rare and Overlooked Anomaly

    Science.gov (United States)

    Mittal, Puneet; Gupta, Ranjana; Mittal, Amit; Ahmed, Arshad

    2017-01-01

    Summary Background Portal annular pancreas is a rare pancreatic developmental anomaly which is often overlooked at imaging, and often diagnosed retrospectively when it is detected incidentally at the time of surgery. Although the anomaly itself is asymptomatic, it becomes important in cases where pancreatic resection/anastomosis is planned, because of varying ductal anatomy, risk of ductal injury and increased risk of postoperative pancreatic fistula formation. Case Report We present imaging findings in a case of portal annular pancreas in a 45-year-old male patient. Conclusions Portal annular pancreas is a rare and often neglected pancreatic anomaly due to a lack of awareness of this entity. With the advent of MDCT and MRI, accurate preoperative diagnosis of this condition is possible.

  7. Surface estimation methods with phased-arrays for adaptive ultrasonic imaging in complex components

    Science.gov (United States)

    Robert, S.; Calmon, P.; Calvo, M.; Le Jeune, L.; Iakovleva, E.

    2015-03-01

    Immersion ultrasonic testing of structures with complex geometries may be significantly improved by using phased-arrays and specific adaptive algorithms that allow to image flaws under a complex and unknown interface. In this context, this paper presents a comparative study of different Surface Estimation Methods (SEM) available in the CIVA software and used for adaptive imaging. These methods are based either on time-of-flight measurements or on image processing. We also introduce a generalized adaptive method where flaws may be fully imaged with half-skip modes. In this method, both the surface and the back-wall of a complex structure are estimated before imaging flaws.

  8. Effect of roughness on imaging and characterizing rough crack-like defect using ultrasonic arrays

    Science.gov (United States)

    Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.

    2012-05-01

    All naturally occurring crack-like defects in solid structures are rough to some degree, which can affect defect inspection and characterization. Based on the simulated array data for various rough cracks and the total focusing method imaging algorithm, the effect of roughness on defect imaging and characterization was discussed. The array data was simulated by using the forward model combining with scattering matrices for various rough cracks. The scattering matrix describes the scattering field of a scatterer from all possible incident and scattering directions. It is shown that roughness can be either beneficial or detrimental to the detectability of a crack-like defect, depending on the defect characteristics such as length, roughness, correlation length, orientation angle, and array inspection configuration. It is also shown that roughness can cause the underestimation of length of rough crack-like defects by using the image-based approach.

  9. Sparse Recovery for Bistatic MIMO Radar Imaging in the Presence of Array Gain Uncertainties

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-01-01

    Full Text Available A sparse recovery based transmit-receive angle imaging scheme is proposed for bistatic multiple-input multiple-output (MIMO radar. The redundancy of the transmit and receive angles in the same range cell is exploited to construct the sparse model. The imaging is then performed by compressive sensing method with consideration of both the transmit and receive array gain uncertainties. An additional constraint is imposed on the inverse of the transmit and receive array gain errors matrices to make the optimization problem of the CS solvable. The image of the targets can be reconstructed using small number of snapshots in the case of large array gain uncertainties. Simulation results confirm the effectiveness of the proposed scheme.

  10. Imaging of Simple Defects in Austenitic Steel Welds Using a Simulated Ultrasonic Array

    Science.gov (United States)

    Connolly, G. D.; Lowe, M. J. S.; Rokhlin, S. I.; Temple, J. A. G.

    2009-03-01

    The use of ultrasonic arrays has increased dramatically within recent years due to their ability to perform multiple types of inspection and due to the fact that phased arrays allow the immediate production of images within the structure through post-processing of received signals. These arrays offer potential advantages to the inspection of austenitic steel welds where, for reasons of safety and economics, it is important to be able to detect and size any crack-like defects that may occur during service or may have occurred during welding. This paper outlines the theory behind the generation of images of simple planar defects within a previously developed weld model. Images generated using fundamental ray-tracing theory and from finite element simulations by selected inspection procedures will be shown and compared.

  11. Floating volumetric image formation using a dihedral corner reflector array device.

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system.

  12. Spatio-spectral color filter array design for optimal image recovery.

    Science.gov (United States)

    Hirakawa, Keigo; Wolfe, Patrick J

    2008-10-01

    In digital imaging applications, data are typically obtained via a spatial subsampling procedure implemented as a color filter array-a physical construction whereby only a single color value is measured at each pixel location. Owing to the growing ubiquity of color imaging and display devices, much recent work has focused on the implications of such arrays for subsequent digital processing, including in particular the canonical demosaicking task of reconstructing a full color image from spatially subsampled and incomplete color data acquired under a particular choice of array pattern. In contrast to the majority of the demosaicking literature, we consider here the problem of color filter array design and its implications for spatial reconstruction quality. We pose this problem formally as one of simultaneously maximizing the spectral radii of luminance and chrominance channels subject to perfect reconstruction, and-after proving sub-optimality of a wide class of existing array patterns-provide a constructive method for its solution that yields robust, new panchromatic designs implementable as subtractive colors. Empirical evaluations on multiple color image test sets support our theoretical results, and indicate the potential of these patterns to increase spatial resolution for fixed sensor size, and to contribute to improved reconstruction fidelity as well as significantly reduced hardware complexity.

  13. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    Science.gov (United States)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  14. Imaging Functions of Quasi-Periodic Nanohole Array as an Ultra-Thin Planar Optical Lens

    Directory of Open Access Journals (Sweden)

    Tsung Sheng Kao

    2015-06-01

    Full Text Available In this paper, the lensing functions and imaging abilities of a quasi-periodic nanohole array in a metal screen have been theoretically investigated and demonstrated. Such an optical binary mask with nanoholes designed in an aperiodic arrangement can function as an ultra-thin planar optical lens, imaging complex structures composed of multiple light sources at tens of wavelengths away from the lens surface. Via resolving two adjacent testing objects at different separations, the effective numerical aperture (N.A. and the effective imaging area of the planar optical lens can be evaluated, mimicking the imaging function of a conventional lens with high N.A. Furthermore, by using the quasi-periodic nanohole array as an ultra-thin planar optical lens, important applications such as X-ray imaging and nano-optical circuits may be found in circumstances where conventional optical lenses cannot readily be applied.

  15. A dual-layer transducer array for 3-D rectilinear imaging.

    Science.gov (United States)

    Yen, Jesse T; Seo, Chi Hyung; Awad, Samer I; Jeong, Jong S

    2009-01-01

    Very large element counts (16,000-65,000) are required for 2-D arrays for 3-D rectilinear imaging. The difficulties in fabricating and interconnecting 2-D arrays with a large number of elements (>5,000) have limited the development of suitable transducers for 3-D rectilinear imaging. In this paper, we propose an alternative solution to this problem by using a dual-layer transducer array design. This design consists of 2 perpendicular 1-D arrays for clinical 3-D imaging of targets near the transducer. These targets include the breast, carotid artery, and musculoskeletal system. This transducer design reduces the fabrication complexity and the channel count, making 3-D rectilinear imaging more realizable. With this design, an effective N x N 2-D array can be developed using only N transmitters and N receivers. This benefit becomes very significant when N becomes greater than 128, for example. To demonstrate feasibility, we constructed a 4 x 4 cm prototype dual-layer array. The transmit array uses diced PZT-5H elements, and the receive array is a single sheet of undiced P[VDF-TrFE] copolymer. The receive elements are defined by the copper traces on the flexible interconnect circuit. The measured -6 dB fractional bandwidth was 80% with a center frequency of 4.8 MHz. At 5 MHz, the nearest neighbor crosstalk of the PZT array and PVDF array was -30.4 +/- 3.1 dB and -28.8 +/- 3.7 dB, respectively. This dual-layer transducer was interfaced with an Ultrasonix Sonix RP system, and a synthetic aperture 3-D data set was acquired. We then performed offline 3-D beamforming to obtain volumes of nylon wire targets. The theoretical lateral beamwidth was 0.52 mm compared with measured beamwidths of 0.65 mm and 0.67 mm in azimuth and elevation, respectively. Then, 3-D images of an 8 mm diameter anechoic cyst phantom were also acquired.

  16. Comparison of ultrasonic array imaging algorithms for non-destructive evaluation

    Science.gov (United States)

    Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.

    2013-01-01

    Ultrasonic array imaging algorithms have been widely used and developed in nondestructive evaluation in the last 10 years. In this paper, three imaging algorithms (Total Focusing Method (TFM), Phase Coherent Imaging (PCI), and Spatial Compounding Imaging (SCI)) are compared through both simulation and experimental measurements. In the simulation, array data sets were generated using a hybrid forward model containing a single defect amongst a multitude of randomly distributed point scatterers to represent backscatter from material microstructure. The Signal to Noise Ratio (SNR) of the final images and their resolution were used to indicate the quality of the different imaging algorithms. The images of different types of defect (point reflectors and planar cracks) were used to investigate the robustness of the imaging algorithms. It is shown that PCI can yield higher image resolution than the TFM, but that the images of cracks are distorted. Overall, the TFM is the most robust algorithm across a range of different types of defects. It is also shown that the detection limit of all three imaging algorithms is almost equal for weakly scattering defects.

  17. Single photon imaging and timing array sensor apparatus and method

    Science.gov (United States)

    Smith, R. Clayton

    2003-06-24

    An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.

  18. A coherent through-wall MIMO phased array imaging radar based on time-duplexed switching

    Science.gov (United States)

    Chen, Qingchao; Chetty, Kevin; Brennan, Paul; Lok, Lai Bun; Ritchie, Matthiew; Woodbridge, Karl

    2017-05-01

    Through-the-Wall (TW) radar sensors are gaining increasing interest for security, surveillance and search and rescue applications. Additionally, the integration of Multiple-Input, Multiple-Output (MIMO) techniques with phased array radar is allowing higher performance at lower cost. In this paper we present a 4-by-4 TW MIMO phased array imaging radar operating at 2.4 GHz with 200 MHz bandwidth. To achieve high imaging resolution in a cost-effective manner, the 4 Tx and 4 Rx elements are used to synthesize a uniform linear array (ULA) of 16 virtual elements. Furthermore, the transmitter is based on a single-channel 4-element time-multiplexed switched array. In transmission, the radar utilizes frequency modulated continuous wave (FMCW) waveforms that undergo de-ramping on receive to allow digitization at relatively low sampling rates, which then simplifies the imaging process. This architecture has been designed for the short-range TW scenarios envisaged, and permits sufficient time to switch between antenna elements. The paper first outlines the system characteristics before describing the key signal processing and imaging algorithms which are based on traditional Fast Fourier Transform (FFT) processing. These techniques are implemented in LabVIEW software. Finally, we report results from an experimental campaign that investigated the imaging capabilities of the system and demonstrated the detection of personnel targets. Moreover, we show that multiple targets within a room with greater than approximately 1 meter separation can be distinguished from one another.

  19. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    Science.gov (United States)

    Simpson, R.; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G.

    2016-11-01

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  20. Transverse Oscillations for Phased Array Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2010-01-01

    Medical ultrasound imaging is widely used to visualize blood flow in the human circulatory system. However, conventional methods are angle dependent. The Transverse Oscillation (TO) method is able to measure the lateral velocity component, and it has been demonstrated in in vivo measurements...

  1. Volumetric elasticity imaging with a 2-D CMUT array.

    Science.gov (United States)

    Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-06-01

    This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.

  2. Hexabundles: imaging fiber arrays for low-light astronomical applications

    DEFF Research Database (Denmark)

    Bland-Hawthorn, Joss; Bryant, Julia; Robertson, Gordon;

    2011-01-01

    We demonstrate for the first time an imaging fibre bundle (“hexabundle”) that is suitable for low-light applications in astronomy. The most successful survey instruments at optical-infrared wavelengths today have obtained data on up to a million celestial sources using hundreds of multimode fibre...

  3. The use of a negative index planoconcave lens array for wide-viewing angle integral imaging.

    Science.gov (United States)

    Kim, Hwi; Hahn, Joonku; Lee, Byoungho

    2008-12-22

    Wide-viewing angle integral imaging by means of a negative refractive index planoconcave lens array is theoretically investigated. The optical properties of a negative refractive index lens are analyzed from the point of view of integral imaging. The effective focal length of a positive index planoconvex lens and a negative index planoconcave lens with the same surface spherical curvature R are approximated as fP,eff = 2R and fN,eff = 0.4 R, respectively. This short effective focal length of the negative index lens is advantageous for extending the viewing angle of the integral imaging. In addition, some other optical properties of a negative index lens are analyzed and compared for a positive index lens. Three-dimensional ray-tracing observation simulations of integral imaging systems with a negative index lens array and a positive index lens array are then performed, in a comparative study of the wide- ewing angle mode for integral imaging. A three-dimensional ray-tracing simulator for an integral imaging system is then developed. Some interesting issues that appear in the wide-viewing mode of integral imaging are discussed. The negative refractive index planoconcave lens was found to give a wider viewing angle of -60(deg.) approximately +60(deg.) and reduces aberration with only a single spherical planoconcave lens.

  4. Design of a Compact Wideband Antenna Array for Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    J. Puskely

    2013-12-01

    Full Text Available In the paper, wideband antenna arrays aimed at microwave imaging applications and SAR applications operating at Ka band were designed. The antenna array feeding network is realized by a low-loss SIW technology. Moreover, we have replaced the large feed network comprised of various T and Y junctions by a simple broadband network of compact size to more reduce losses in the substrate integrated waveguide and also save space on the PCB. The designed power 8-way divider is complemented by a wideband substrate integrated waveguide to a grounded coplanar waveguide transition and directly connected to the antenna elements. The measured results of antenna array are consistent with our simulation. Obtained results of the developed array demonstrated improvement compared to previously developed binary feed networks with microstrip or SIW splitters.

  5. Annular lipoatrophy of the ankles.

    Science.gov (United States)

    Dimson, Otobia G; Esterly, Nancy B

    2006-02-01

    Lipoatrophic panniculitis likely represents a group of disorders characterized by an inflammatory panniculitis followed by lipoatrophy. It occurs locally in a variety of settings and has been reported in the literature under various terms, including annular atrophic connective tissue panniculitis of the ankles, annular and semicircular lipoatrophy, abdominal lipoatrophy, and connective tissue panniculitis. Herein, a case of annular lipoatrophy of the ankles is described in a 6-year-old girl with autoimmune thyroid disease. Histologically, a mixed lobular panniculitis with lipophages was present. This pattern resembles that seen in lipoatrophic panniculitis. After a single, acute episode of an inflammatory process with subsequent lipoatrophy, her skin lesions have stabilized for 2 years requiring no treatment.

  6. Doped carbon nanostructure field emitter arrays for infrared imaging

    Science.gov (United States)

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  7. Algorithms and Array Design Criteria for Robust Imaging in Interferometry

    Science.gov (United States)

    2016-04-01

    from the esteemed Harvard faculty. In particular, I would like to thank Prof. Yue Lu. I was very fortunate to be enrolled in the Statistical Inference... parents , Jean and Tom Kurien. xvi Introduction The use of optical interferometry as a multi-aperture imaging approach is attracting in- creasing...on the scene’s compactness, sparsity, or smoothness). In particular, a myriad of so-called self -calibration algorithms have been developed (see, e.g

  8. Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array

    Science.gov (United States)

    Zhang, Lei; Hao, Jiaming; Qiu, Min; Zouhdi, Said; Yang, Joel Kwang Wei; Qiu, Cheng-Wei

    2014-10-01

    Recently, the control of anomalous light bending via flat gradient-phase metasurfaces has enabled many unprecedented applications. However, either low manipulation efficiency or challenging difficulties in fabrication hinders their practical applications, in particular in the visible range. Therefore, a concept of degenerated image dipole array is reported to realize anomalous light bending with high efficiency. A continuous phase delay varying rather than a discrete one, along with an in-plane wave vector is utilized to achieve anomalous light bending, by controlling and manipulating the mutual coupling between dipole array and the dipole array of its image. The anomalous light bending covers almost the entire visible range with broad incident angles, accompanied with preserved well-defined planar wavefront. In addition, this design is feasible to be fabricated with recent nanofabrication techniques due to its planarized surface configuration. The concept of imperfect image dipole array degenerated from ideal metamaterial absorbers surprisingly empowers significant enhancement in light manipulation efficiency for visible light in a distinct fashion.Recently, the control of anomalous light bending via flat gradient-phase metasurfaces has enabled many unprecedented applications. However, either low manipulation efficiency or challenging difficulties in fabrication hinders their practical applications, in particular in the visible range. Therefore, a concept of degenerated image dipole array is reported to realize anomalous light bending with high efficiency. A continuous phase delay varying rather than a discrete one, along with an in-plane wave vector is utilized to achieve anomalous light bending, by controlling and manipulating the mutual coupling between dipole array and the dipole array of its image. The anomalous light bending covers almost the entire visible range with broad incident angles, accompanied with preserved well-defined planar wavefront. In

  9. Frequency-domain photoacoustic phased array probe for biomedical imaging applications.

    Science.gov (United States)

    Telenkov, Sergey; Alwi, Rudolf; Mandelis, Andreas; Worthington, Arthur

    2011-12-01

    We report the development of a frequency-domain biomedical photoacoustic imaging system that utilizes a continuous-wave laser source with a custom intensity modulation pattern, ultrasonic phased array for signal detection, and processing coupled with a beam-forming algorithm for reconstruction of photoacoustic correlation images. Sensitivity to optical contrast was demonstrated using tissue-mimicking phantoms and in-vivo tissue samples.

  10. 3-D Imaging using Row--Column-Addressed 2-D Arrays with a Diverging Lens

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Stuart, Matthias Bo

    2016-01-01

    with equipment in the price range of conventional 2-D imaging. This study proposes a delay-and-sum (DAS) beamformation scheme specific to double-curved RCA 2-D arrays and validates its focusing ability based on simulations. A synthetic aperture imaging (SAI) sequence with single element transmissions at a time...... is accurate for achieving correct time-of-flight calculations, and hence avoids geometrical distortions....

  11. Far-field Diffraction Properties of Annular Walsh Filters

    Directory of Open Access Journals (Sweden)

    Pubali Mukherjee

    2013-01-01

    Full Text Available Annular Walsh filters are derived from the rotationally symmetric annular Walsh functions which form a complete set of orthogonal functions that take on values either +1 or −1 over the domain specified by the inner and outer radii of the annulus. The value of any annular Walsh function is taken as zero from the centre of the circular aperture to the inner radius of the annulus. The three values 0, +1, and −1 in an annular Walsh function can be realized in a corresponding annular Walsh filter by using transmission values of zero amplitude (i.e., an obscuration, unity amplitude and zero phase, and unity amplitude and phase, respectively. Not only the order of the Walsh filter but also the size of the inner radius of the annulus provides an additional degree of freedom in tailoring of point spread function by using these filters for pupil plane filtering in imaging systems. In this report, we present the far-field amplitude characteristics of some of these filters to underscore their potential for effective use in several demanding applications like high-resolution microscopy, optical data storage, microlithography, optical encryption, and optical micromanipulation.

  12. Multi-frequency harmonic arrays: initial experience with a novel transducer concept for nonlinear contrast imaging.

    Science.gov (United States)

    Forsberg, Flemming; Shi, William T; Jadidian, Bahram; Winder, Alan A

    2004-12-01

    Nonlinear contrast imaging modes such as second harmonic imaging (HI) and subharmonic imaging (SHI) are increasingly important for clinical applications. However, the performance of currently available transducers for HI and SHI is significantly constrained by their limited bandwidth. To bypass this constraint, a novel transducer concept termed multi-frequency harmonic transducer arrays (MFHA's) has been designed and a preliminary evaluation has been conducted. The MFHA may ultimately be used for broadband contrast enhanced HI and SHI with high dynamic range and consists of three multi-element piezo-composite sub-arrays (A-C) constructed so the center frequencies are 4f(A) = 2f(B) = f(C) (specifically 2.5/5.0/10.0 MHz and 1.75/3.5/7.0 MHz). In principle this enables SHI by transmitting on sub-array C receiving on B and, similarly, from B to A as well as HI by transmitting on A receiving on B and, likewise, from B to C. Initially transmit and receive pressure levels of the arrays were measured with the elements of each sub-array wired in parallel. Following contrast administration, preliminary in vitro HI and SHI signal-to-noise ratios of up to 40 dB were obtained. In conclusion, initial design and in vitro characterization of two MFHA's have been performed. They have an overall broad frequency bandwidth of at least two octaves. Due to the special design of the array assembly, the SNR for HI and SHI was comparable to that of regular B-mode and better than commercially available HI systems. However, further research on multi-element MFHA's is required before their potential for in vivo nonlinear contrast imaging can be assessed.

  13. Airborne Linear Array Image Geometric Rectification Method Based on Unequal Segmentation

    Science.gov (United States)

    Li, J. M.; Li, C. R.; Zhou, M.; Hu, J.; Yang, C. M.

    2016-06-01

    As the linear array sensor such as multispectral and hyperspectral sensor has great potential in disaster monitoring and geological survey, the quality of the image geometric rectification should be guaranteed. Different from the geometric rectification of airborne planar array images or multi linear array images, exterior orientation elements need to be determined for each scan line of single linear array images. Internal distortion persists after applying GPS/IMU data directly to geometrical rectification. Straight lines may be curving and jagged. Straight line feature -based geometrical rectification algorithm was applied to solve this problem, whereby the exterior orientation elements were fitted by piecewise polynomial and evaluated with the straight line feature as constraint. However, atmospheric turbulence during the flight is unstable, equal piecewise can hardly provide good fitting, resulting in limited precision improvement of geometric rectification or, in a worse case, the iteration cannot converge. To solve this problem, drawing on dynamic programming ideas, unequal segmentation of line feature-based geometric rectification method is developed. The angle elements fitting error is minimized to determine the optimum boundary. Then the exterior orientation elements of each segment are fitted and evaluated with the straight line feature as constraint. The result indicates that the algorithm is effective in improving the precision of geometric rectification.

  14. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B. [Xsirius, Inc, Camarillo, CA (United States)

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  15. Clutter noise reduction for phased array imaging using frequency-spatial polarity coherence

    Science.gov (United States)

    Gongzhang, Rui; Gachagan, Anthony; Xiao, Bo

    2015-03-01

    A number of materials used in industry exhibit highly-scattering properties which can reduce the performance of conventional ultrasonic NDE approaches. Moving Bandwidth Polarity Thresholding (MBPT) is a robust frequency diversity based algorithm for scatter noise reduction in single A-scan waveforms, using sign coherence across a range of frequency bands to reduce grain noise and improve Signal to Noise Ratio. Importantly, for this approach to be extended to array applications, spatial variation of noise characteristics must also be considered. This paper presents a new spatial-frequency diversity based algorithm for array imaging, extended from MBPT. Each A-scan in the full matrix capture array dataset is partitioned into a serial of overlapped frequency bands and then undergoes polarity thresholding to generate sign-only coefficients indicating possible flaw locations within each selected band. These coefficients are synthesized to form a coefficient matrix using a delay and sum approach in each frequency band. Matrices produced across the frequency bands are then summed to generate a weighting matrix, which can be applied on any conventional image. A 5MHz linear array has been used to acquire data from both austenitic steel and high nickel alloy (HNA) samples to validate the proposed algorithm. Background noise is significantly suppressed for both samples after applying this approach. Importantly, three side drilled holes and the back wall of the HNA sample are clearly enhanced in the processed image, with a mean 133% Contrast to Noise Ratio improvement when compared to a conventional TFM image.

  16. Efficient Data Capture and Post-Processing for Real-Time Imaging Using AN Ultrasonic Array

    Science.gov (United States)

    Moreau, L.; Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2010-02-01

    Over the past few years, ultrasonic phased arrays have shown good potential for nondestructive testing (NDT), thanks to high resolution imaging algorithms. Many algorithms are based on the full matrix capture, obtained by firing each element of an ultrasonic array independently, and collecting the data with all elements. Because of the finite sound velocity in the specimen, two consecutive firings must be separated by a minimum time interval. Therefore, more array elements require longer data acquisition times. Moreover, if the array has N elements, then the full matrix contains N2 temporal signals to be processed. Because of the limited calculation speed of current computers, a large matrix of data can result in long post-processing times. In an industrial context where real-time imaging is desirable, it is crucial to reduce acquisition and/or post-processing times. This paper investigates methods designed to reduce acquisition and post-processing times for the total focusing method and wavenumber imaging algorithms. Limited transmission cycles are used to reduce data capture and post-processing. Post-processing times are further reduced by demodulating the data to temporal baseband frequencies. Results are presented so that a compromise can be made between acquisition time, post-processing time and image quality.

  17. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  18. Computer simulation of the effects of a distributed array antenna on synthetic aperture radar images

    Science.gov (United States)

    Estes, J. M.

    1985-01-01

    The ARL:UT orbital SAR simulation has been upgraded to use three-dimensional antenna gain patterns. This report describes the modifications and presents quantitative image analyses of a simulation using antenna patterns generated from the modeling of a distributed array antenna.

  19. X-ray imaging sensor arrays on foil using solution processed organic photodiodes and organic transistors

    NARCIS (Netherlands)

    Kumar, A.; Moet, D.; Steen, J.L. van der; Tripathi, A.K.; Rodriguez, F.G.; Maas, J.; Simon, M.; Reutten, W.; Douglas, A.; Raaijmakers, R.; Malinowski, P.E.; Myny, K.; Shafique, U.; Andriessen, R.; Heremans, P.; Gelinck, G.H.

    2014-01-01

    We demonstrate organic imaging sensor arrays fabricated on flexible plastic foil with the solution processing route for both photodiodes and thin film transistors. We used the photovoltaic P3HT:PCBM blend for fabricating the photodiodes using spin coating and pentacene as semiconductor material for

  20. Distributed Read-out Imaging Device array for astronomical observations in UV/VIS

    NARCIS (Netherlands)

    Hijmering, R.A.

    2009-01-01

    STJ (Superconducting Tunneling Junctions) are being developed as spectro-photometers in wavelengths ranging from the NIR to X-rays. 10x12 arrays of STJs have already been successfully used as optical imaging spectrometers with the S-Cam 3, on the William Hershel Telescope on La Palma and on the Opti

  1. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Directory of Open Access Journals (Sweden)

    Viti Federica

    2008-04-01

    Full Text Available Abstract Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.

  2. Convex Array Vector Velocity Imaging Using Transverse Oscillation and Its Optimization

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Brandt, Andreas Hjelm; Bachmann Nielsen, Michael

    2015-01-01

    A method for obtaining vector flow images using the transverse oscillation (TO) approach on a convex array is presented. The paper presents optimization schemes for TO fields and evaluates their performance using simulations and measurements with an experimental scanner. A 3-MHz 192-element conve...

  3. Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging

    Science.gov (United States)

    Byun, Minsueop; Lee, Dasol; Kim, Minkyung; Kim, Yangdoo; Kim, Kwan; Ok, Jong G.; Rho, Junsuk; Lee, Heon

    2017-04-01

    Overcoming the resolution limit of conventional optics is regarded as the most important issue in optical imaging science and technology. Although hyperlenses, super-resolution imaging devices based on highly anisotropic dispersion relations that allow the access of high-wavevector components, have recently achieved far-field sub-diffraction imaging in real-time, the previously demonstrated devices have suffered from the extreme difficulties of both the fabrication process and the non-artificial objects placement. This results in restrictions on the practical applications of the hyperlens devices. While implementing large-scale hyperlens arrays in conventional microscopy is desirable to solve such issues, it has not been feasible to fabricate such large-scale hyperlens array with the previously used nanofabrication methods. Here, we suggest a scalable and reliable fabrication process of a large-scale hyperlens device based on direct pattern transfer techniques. We fabricate a 5 cm × 5 cm size hyperlenses array and experimentally demonstrate that it can resolve sub-diffraction features down to 160 nm under 410 nm wavelength visible light. The array-based hyperlens device will provide a simple solution for much more practical far-field and real-time super-resolution imaging which can be widely used in optics, biology, medical science, nanotechnology and other closely related interdisciplinary fields.

  4. Ultrasonic array imaging in nondestructive evaluation: total focusing method with using circular coherence factor

    Science.gov (United States)

    Zhang, Jie; Drinkwater, Bruce W.; Wilcox, Paul D.

    2013-01-01

    Ultrasonic array imaging algorithms have been widely used and developed in non-destructive evaluation in the last 10 years. In this paper, a widely-used imaging algorithms, Total Focusing Method (TFM), was further developed with using the phase statistical information of the scattering field from a scatterer, i.e., Circular Coherence Factor (CCF). TFM and TFM with using CCF are compared through both simulation and experimental measurements. In the simulation, array data sets were generated by using a hybrid forward model containing a single defect amongst a multitude of randomly distributed point scatterers to represent backscatter from material microstructure. The number of point scatterers per unit area and their scattering amplitude were optimized to reduce computation cost. The Signal to Noise Ratio (SNR) of the finial images and their resolution were used to indicate the quality of the different imaging algorithms. The images of different types of defect (point reflectors and planar cracks) were used to investigate the robustness of the imaging algorithms. It is shown that, with using CCF, higher image resolution can be achieved, but that the images of cracks are distorted. It is also shown that the detection limit of the imaging algorithms is almost equal for weakly scattering defects.

  5. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Wang, Langping, E-mail: aplpwang@hit.edu.cn; Wang, Xiaofeng

    2016-08-01

    Highlights: • An annular cathode for HCPEB irradiation of circular components was designed. • The processing window for the annular cathode is obtained. • Irradiation thickness uniformity along the circumferential direction exceeds 90%. - Abstract: In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  6. Measuring the wavelength-dependent divergence of transmission through sub-wavelength hole-arrays by spectral imaging

    NARCIS (Netherlands)

    Docter, M.W.; Young, I.T.; Piciu, O.M.; Bossche, A.; Alkemade, P.F.A.; Van den Berg, P.M.; Garini, Y.

    2006-01-01

    We present a study on the far-field patterns of light transmitted through sub-wavelength metallic hole-arrays. Spectral imaging measurements are used here on hole arrays for the first time. It provides both spatial and spectral information of the transmission in far-field. The visibility of the imag

  7. Eosinophilic annular erythema in childhood - Case report*

    Science.gov (United States)

    Abarzúa, Alvaro; Giesen, Laura; Silva, Sergio; González, Sergio

    2016-01-01

    Eosinophilic annular erythema is a rare, benign, recurrent disease, clinically characterized by persistent, annular, erythematous lesions, revealing histopathologically perivascular infiltrates with abundant eosinophils. This report describes an unusual case of eosinophilic annular erythema in a 3-year-old female, requiring sustained doses of hydroxychloroquine to be adequately controlled. PMID:27579748

  8. Hexabundles: imaging fibre arrays for low-light astronomical applications

    DEFF Research Database (Denmark)

    Bland-Hawthorn, Joss; Bryant, Julie; Robertson, Gordon

    2010-01-01

    We demonstrate for the first time an imaging fibre bundle (“hexabundle”) that is suitable for low-light applications in astronomy. The most successful survey instruments at optical-infrared wavelengths today have obtained data on up to a million celestial sources using hundreds of multimode fibres...... at a time fed to multiple spectrographs. But a large fraction of these sources are spatially extended on the celestial sphere such that a hexabundle would be able to provide spectroscopic information at many distinct locations across the source. Our goal is to upgrade single-fibre survey instruments...... with multimode hexabundles in place of the multimode fibres. We discuss two varieties of hexabundles: (i) closely packed circular cores allowing the covering fraction to approach the theoretical maximum of 91%; (ii) fused noncircular cores where the interstitial holes have been removed and the covering fraction...

  9. Hexabundles: imaging fiber arrays for low-light astronomical applications.

    Science.gov (United States)

    Bland-Hawthorn, Joss; Bryant, Julia; Robertson, Gordon; Gillingham, Peter; O'Byrne, John; Cecil, Gerald; Haynes, Roger; Croom, Scott; Ellis, Simon; Maack, Martin; Skovgaard, Peter; Noordegraaf, Danny

    2011-01-31

    We demonstrate a novel imaging fiber bundle ("hexabundle") that is suitable for low-light applications in astronomy. The most successful survey instruments at optical-infrared wavelengths use hundreds to thousands of multimode fibers fed to one or more spectrographs. Since most celestial sources are spatially extended on the celestial sphere, a hexabundle provides spectroscopic information at many distinct locations across the source. We discuss two varieties of hexabundles: (i) lightly fused, closely packed, circular cores; (ii) heavily fused non-circular cores with higher fill fractions. In both cases, we find the important result that the cladding can be reduced to ~2 μm over the short fuse length, well below the conventional ~10λ thickness employed more generally, with a consequent gain in fill factor. Over the coming decade, it is to be expected that fiber-based instruments will be upgraded with hexabundles in order to increase the spatial multiplex capability by two or more orders of magnitude.

  10. Optimization of acoustic emitted field of transducer array for ultrasound imaging.

    Science.gov (United States)

    He, Zhengyao

    2014-01-01

    A method is proposed to calculate the weight vector of a transducer array for ultrasound imaging to obtain a low-sidelobe transmitting beam pattern based on the near-field response vector. An optimization problem is established, and the second-order cone (SOC) algorithm is used to solve the problem to obtain the weight vector. The optimized acoustic emitted field of the transducer array is then calculated using the Field II program by applying the obtained weight vector to the array. The simulation results with a 64-element 26 MHz linear phased array show that the proposed method can be used to control the sidelobe of the near-field transmitting beam pattern of the transducer array and achieve a low-sidelobe level. The near-field sound pressure distribution of the transducer array using the proposed method focuses much better than that using the standard delay and sum (DAS) beamforming method. The sound energy is more concentrated using the proposed method.

  11. Sensitivity- and effort-gain analysis: multilead ECG electrode array selection for activation time imaging.

    Science.gov (United States)

    Hintermüller, Christoph; Seger, Michael; Pfeifer, Bernhard; Fischer, Gerald; Modre, Robert; Tilg, Bernhard

    2006-10-01

    Methods for noninvasive imaging of electric function of the heart might become clinical standard procedure the next years. Thus, the overall procedure has to meet clinical requirements as an easy and fast application. In this paper, we propose a new electrode array which improves the resolution of methods for activation time imaging considering clinical constraints such as easy to apply and compatibility with routine leads. For identifying the body-surface regions where the body surface potential (BSP) is most sensitive to changes in transmembrane potential (TMP), a virtual array method was used to compute local linear dependency (LLD) maps. The virtual array method computes a measure for the LLD in every point on the body surface. The most suitable number and position of the electrodes within the sensitive body surface regions was selected by constructing effort gain (EG) plots. Such a plot depicts the relative attainable rank of the leadfield matrix in relation to the increase in number of electrodes required to build the electrode array. The attainable rank itself was computed by a detector criterion. Such a criterion estimates the maximum number of source space eigenvectors not covered by noise when being mapped to the electrode space by the leadfield matrix and recorded by a detector. From the sensitivity maps, we found that the BSP is most sensitive to changes in TMP on the upper left frontal and dorsal body surface. These sensitive regions are covered best by an electrode array consisting of two L-shaped parts of approximately 30 cm x 30 cm and approximately 20 cm x 20 cm. The EG analysis revealed that the array meeting clinical requirements best and improving the resolution of activation time imaging consists of 125 electrodes with a regular horizontal and vertical spacing of 2-3 cm.

  12. Benign concentric annular macular dystrophy

    Directory of Open Access Journals (Sweden)

    Luísa Salles de Moura Mendonça

    2015-06-01

    Full Text Available The purpose of the authors is to show clinical findings of a patient with benign concentric annular macular dystrophy, which is an unusual condition, and part of the "bull’s eye" maculopathy differential diagnosis. An ophthalmologic examination with color perception, fluorescein angiography, and ocular electrophysiology was performed.

  13. Active millimeter-wave video rate imaging with a staring 120-element microbolometer array

    Science.gov (United States)

    Luukanen, Arttu; Miller, Aaron J.; Grossman, Erich N.

    2004-08-01

    Passive indoors imaging of weapons concealed under clothing poses a formidable challenge for millimeter-wave imagers due to the sub-picowatt signal levels present in the scene. Moreover, video-rate imaging requires a large number of pixels, which leads to a very complex and expensive front end for the imager. To meet the concealed weapons detection challenge, our approach uses a low cost pulsed-noise source as an illuminator and an array of room-temperature antenna-coupled microbolometers as the detectors. The reflected millimeter-wave power is detected by the bolometers, gated, integrated and amplified by audio-frequency amplifiers, and after digitization, displayed in real time on a PC display. We present recently acquired videos obtained with the 120-element array, and comprehensively describe the performance characteristics of the array in terms of sensitivity, optical efficiency, uniformity and spatial resolution. Our results show that active imaging with antenna-coupled microbolometers can yield imagery comparable to that obtained with systems using MMIC amplifiers but with a cost per pixel that is orders of magnitude lower.

  14. Distortion effects in a switch array UWB radar for time-lapse imaging of human heartbeats

    Science.gov (United States)

    Brovoll, Sverre; Berger, Tor; Aardal, Åyvind; Lande, Tor S.; Hamran, Svein-Erik

    2014-05-01

    Cardiovascular diseases (CVD) are a major cause of deaths all over the world. Microwave radar can be an alternative sensor for heart diagnostics and monitoring in modern healthcare that aids early detection of CVD symptoms. In this paper measurements from a switch array radar system are presented. This UWB system operates below 3 GHz and does time-lapse imaging of the beating heart inside the human body. The array consists of eight fat dipole elements. With a switch system, every possible sequence of transmit/receive element pairs can be selected to build a radar image from the recordings. To make the radar waves penetrate the human tissue, the antenna array is placed in contact with the body. Removal of the direct signal leakage through the antennas and body surface are done by high-pass (HP) filtering of the data prior to image processing. To analyze the results, measurements of moving spheres in air and simulations are carried out. We see that removal of the direct signal introduces amplitude distortion in the images. In addition, the effect of small target motion between the collection times of data from the individual elements is analyzed. With low pulse repetition frequency (PRF) this motion will distort the image. By using data from real measurements of heart motion in simulations, we analyze how the PRF and the antenna geometry influence this distortions.

  15. Thermal imaging of plasma with a phased array antenna in QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kishore, E-mail: mishra@triam.kyushu-u.ac.jp; Nagata, K.; Akimoto, R.; Banerjee, S. [IGSES, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Idei, H.; Zushi, H.; Hanada, K.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Onchi, T.; Kuzmin, A. [RIAM, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Yamamoto, M. K. [Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011 (Japan)

    2014-11-15

    A thermal imaging system to measure plasma Electron Bernstein Emission (EBE) emanating from the mode conversion region in overdense plasma is discussed. Unlike conventional ECE/EBE imaging, this diagnostics does not employ any active mechanical scanning mirrors or focusing optics to scan for the emission cones in plasma. Instead, a standard 3 × 3 waveguide array antenna is used as a passive receiver to collect emission from plasma and imaging reconstruction is done by accurate measurements of phase and intensity of these signals by heterodyne detection technique. A broadband noise source simulating the EBE, is installed near the expected mode conversion region and its position is successfully reconstructed using phase array technique which is done in post processing.

  16. Nonlinear ultrasonic phased array imaging of closed cracks using global preheating and local cooling

    Science.gov (United States)

    Ohara, Yoshikazu; Takahashi, Koji; Ino, Yoshihiro; Yamanaka, Kazushi

    2015-10-01

    Closed cracks are the main cause of underestimation in ultrasonic inspection, because the ultrasound transmits through the crack. Specifically, the measurement of closed-crack depth in coarse-grained materials, which are highly attenuative due to linear scatterings at the grains, is the most difficult issue. To solve this problem, we have developed a temporary crack opening method, global preheating and local cooling (GPLC), using tensile thermal stress, and a high-selectivity imaging method, load difference phased array (LDPA), based on the subtraction of phased array images between different stresses. To demonstrate our developed method, we formed a closed fatigue crack in coarse-grained stainless steel (SUS316L) specimen. As a result of applying it to the specimen, the high-selectivity imaging performance was successfully demonstrated. This will be useful in improving the measurement accuracy of closed-crack depths in coarse-grained material.

  17. Development of imaging arrays for solar UV observations based on wide band gap materials

    Science.gov (United States)

    Schuehle, Udo H.; Hochedez, Jean-Francois E.; Pau, Jose Luis; Rivera, Carlos; Munoz, Elias; Alvarez, Jose; Kleider, Jean-Paul; Lemaire, Philippe; Appourchaux, Thierry; Fleck, Bernhard; Peacock, Anthony; Richter, Mathias; Kroth, Udo; Gottwald, Alexander; Castex, Marie-Claude; Deneuville, Alain; Muret, Pierre; Nesladek, Milos; Omnes, Franck; John, Joachim; Van Hoof, Chris

    2004-02-01

    Solar ultraviolet imaging instruments in space pose most demanding requirements on their detectors in terms of dynamic range, low noise, high speed, and high resolution. Yet UV detectors used on missions presently in space have major drawbacks limiting their performance and stability. In view of future solar space missions we have started the development of new imaging array devices based on wide band gap materials (WBGM), for which the expected benefits of the new sensors - primarily visible blindness and radiation hardness - will be highly valuable. Within this initiative, called "Blind to Optical Light Detectors (BOLD)", we have investigated devices made of AlGa-nitrides and diamond. We present results of the responsivity measurements extending from the visible down to extreme UV wavelengths. We discuss the possible benefits of these new devices and point out ways to build new imaging arrays for future space missions.

  18. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia.

  19. Study of the characteristics of a scintillation array and single pixels for nuclear medicine imaging applications

    Institute of Scientific and Technical Information of China (English)

    ZHU Jie; MA Hong-Guang; MA Wen-Yan; ZENG Hui; WANG Zhao-Min; XU Zi-Zong

    2009-01-01

    By using a pixelized Nal(T1) crystal array coupled to a R2486 PSPMT, the characteristics of the array and of a single pixel, such as the light output, energy resolution, peak-to-valley ratio (P/V) and imaging performance of the detector were studied. The pixel size of the NaI(TI) scintillation pixel array is 2 min×2 mm×5 mm. There are in total 484 pixels in a 22~22 matrix. In the pixel spectrum an average peak-to-valley ratio (P/V) of 16 was obtained. In the image of all the pixels, good values for the Peak-to-Valley ratios could be achieved, namely a mean of 17, a maximum of 45 and the average peak FWHM (the average value of intrinsic spatial resolution) of 2.3 mm. However, the PSPMT non-uniform response and the scintillation pixels array inhomogeneities degrade the imaging performance of the detector.

  20. First results of a cryogenic optical photon-counting imaging spectrometer using a DROID array

    Science.gov (United States)

    Hijmering, R. A.; Verhoeve, P.; Martin, D. D. E.; Venn, R.; van Dordrecht, A.; Groot, P. J.

    2010-02-01

    Context. We present the first system test in which we demonstrate the concept of using an array of Distributed Read Out Imaging Devices (DROIDs) for optical photon detection. Aims: After the successful S-Cam 3 detector, the next step in the development of a cryogenic optical photon counting imaging spectrometer under the S-Cam project is to increase the field of view using DROIDs. With this modification the field of view of the camera has been increased by a factor of five in a given area while keeping the number of readout channels the same. Methods: The test has been performed using the flexible S-Cam 3 system and exchanging the 10 × 12 Superconducting Tunnel Junction array for a 3 × 20 DROID array. The extra data reduction needed with DROIDs is performed offline. Results: We show that, although the responsivity (number of tunnelled quasiparticles per unit of absorbed photon energy, e-/eV) of the current array is too low for direct astronomical applications, the imaging quality is already good enough for pattern detection and will improve further with increasing responsivity. Conclusions: The obtained knowledge can be used to optimise the system for the use of DROIDs.

  1. First results of a cryogenic optical photon counting imaging spectrometer using a DROID array

    CERN Document Server

    Hijmering, R A; Martin, D D E; Venn, R; van Dordrecht, A; Groot, P J

    2009-01-01

    Context. In this paper we present the first system test in which we demonstrate the concept of using an array of Distributed Read Out Imaging Devices (DROIDs) for optical photon detection. Aims. After the successful S-Cam 3 detector the next step in the development of a cryogenic optical photon counting imaging spectrometer under the S-Cam project is to increase the field of view using DROIDs. With this modification the field of view of the camera has been increased by a factor of 5 in area, while keeping the number of readout channels the same. Methods. The test has been performed using the flexible S-Cam 3 system and exchanging the 10x12 Superconducting Tunnel Junction array for a 3x20 DROID array. The extra data reduction needed with DROIDs is performed offline. Results. We show that, although the responsivity (number of tunnelled quasiparticles per unit of absorbed photon energy, e- /eV) of the current array is too low for direct astronomical applications, the imaging quality is already good enough for pa...

  2. The Ultrasonic Measurement of Crystallographic Orientation for Imaging Anisotropic Components with 2d Arrays

    Science.gov (United States)

    Lane, C. J. L.; Dunhill, A. K.; Drinkwater, B. W.; Wilcox, P. D.

    2011-06-01

    Single crystal components are used widely in the gas-turbine industry. However, these components are elastically anisotropic which causes difficulties when performing NDE inspections with ultrasound. Recently an ultrasonic algorithm for a 2D array has been corrected to perform the reliable volumetric inspection of single crystals. For the algorithm to be implemented the crystallographic orientation of the components must be known. This paper, therefore, develops and reviews crystallographic orientation methods using 2D ultrasonic arrays. The methods under examination are based on the anisotropic propagation of surface and bulk waves and an image-based orientation method is also considered.

  3. Super-Resolution Imaging by Arrays of High-Index Spheres Embedded in Transparent Matrices

    CERN Document Server

    Allen, Kenneth W; Li, Yangcheng; Limberopoulos, Nicholaos I; Walker, Dennis E; Urbas, Augustine M; Astratov, Vasily N

    2014-01-01

    We fabricated thin-films made from polydimethylsiloxane (PDMS) with embedded high-index (n~1.9-2.2) microspheres for super-resolution imaging applications. To control the position of microspheres, such films can be translated along the surface of the nanoplasmonic structure to be imaged. Microsphere-assisted imaging, through these matrices, provided lateral resolution of ~{\\lambda}/7 in nanoplasmonic dimer arrays with an illuminating wavelength {\\lambda}=405 nm. Such thin films can be used as contact optical components to boost the resolution capability of conventional microscopes.

  4. Two-dimensional X-ray imaging using plastic scintillating fiber array

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Due to its low cost,flexibility and convenience for long distance dala transfer,plastic scintillation fiber (PSF)have been increasingly used in building detectors or sensors for detecting various radiations and imaging.In this work,the performance of using PSF coupled with charge-coupled devices(CCD)to build are adetectors for 2D X-ray imaging is studied.We describe the experimental setup and show the obtained images from CCD.Modulation Transfer Function(MTF)of the PSF array is also presented and compared to earlier reports.

  5. QWIP focal plane array theoretical model of 3-D imaging LADAR system

    OpenAIRE

    El Mashade, Mohamed Bakry; AbouElez, Ahmed Elsayed

    2016-01-01

    The aim of this research is to develop a model for the direct detection three-dimensional (3-D) imaging LADAR system using Quantum Well Infrared Photodetector (QWIP) Focal Plane Array (FPA). This model is employed to study how to add 3-D imaging capability to the existing conventional thermal imaging systems of the same basic form which is sensitive to 3–5 mm (mid-wavelength infrared, MWIR) or 8–12 mm (long-wavelength infrared, LWIR) spectral bands. The integrated signal photoelectrons in cas...

  6. Image quality improvement by the structured light illumination method in an optical readout cantilever array infrared imaging system.

    Science.gov (United States)

    Feng, Yun; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Yu, Xiaomei; Kong, Lingqin; Ma, Wei; Liu, Xiaohua

    2015-04-01

    The structured light illumination method is applied in an optical readout uncooled infrared imaging system to improve the IR image quality. The unavoidable nonuniform distribution of the initial bending angles of the bimaterial cantilever pixels in the focal plane array (FPA) can be well compensated by this method. An ordinary projector is used to generate structured lights of different intensity distribution. The projected light is divided into patches of rectangular regions, and the brightness of each region can be set automatically according to the deflection angles of the FPA and the light intensity focused on the imaging plane. By this method, the FPA image on the CCD plane can be much more uniform and the image quality of the IR target improved significantly. A comparative experiment is designed to verify the effectiveness. The theoretical analysis and experimental results show that the proposed structured light illumination method outperforms the conventional one, especially when it is difficult to perfect the FPA fabrication.

  7. Application of conformal map theory for design of 2-D ultrasonic array structure for NDT imaging application: a feasibility study.

    Science.gov (United States)

    Ramadas, Sivaram N; Jackson, Joseph C; Dziewierz, Jerzy; O'Leary, Richard; Gachagan, Anthony

    2014-03-01

    Two-dimensional ultrasonic phased arrays are becoming increasingly popular in nondestructive evaluation (NDE). Sparse array element configurations are required to fully exploit the potential benefits of 2-D phased arrays. This paper applies the conformal mapping technique as a means of designing sparse 2-D array layouts for NDE applications. Modeling using both Huygens' field prediction theory and 2-D fast Fourier transformation is employed to study the resulting new structure. A conformal power map was used that, for fixed beam width, was shown in simulations to have a greater contrast than rectangular or random arrays. A prototype aperiodic 2-D array configuration for direct contact operation in steel, with operational frequency ~3 MHz, was designed using the array design principle described in this paper. Experimental results demonstrate a working sparse-array transducer capable of performing volumetric imaging.

  8. Polymer microlens array integrated with imaging sensors by UV-molding technique

    Science.gov (United States)

    Lai, Jianjun; Zhao, Yue; Ke, Caijun; Yi, Xinjian; Zhang, TianXu

    2005-01-01

    Fabrication of Polymer microlens array based on UV-molding techniques is presented. UV-molding enables for the integration of polymer microlens array on top of arbitrary substrates like glass, silicon other polymeric films. In this technique, photoresist or glass mold is first fabricated by conventional photolithnic method and subsequently served as transparent replication tool. UV curable polymer resin is then coated on patterned or unpatterned substrates and a contact mask aligner is used to align substrates and replication mold tool and then make the mold immersed into the resin. Replication of polymer on substrates is achieved by UV photopolymerisation of the resin. Resin thickness and gap distance between mold and substrate are carefully controlled in order to obtain acceptable thickness of cured polymer base. The UV molding technique was used to molding of a polymer film carring microlens array on the surface of an experimental CCD imaging sensor chip in this paper to enhance its fill factor and sensitivity.

  9. Development and characterization of a TES optical imaging array for astrophysics applications

    Energy Technology Data Exchange (ETDEWEB)

    Burney, J. E-mail: burney@stanford.edu; Bay, T.J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Romani, R.W.; Tomada, A.; Nam, S.W.; Miller, A.J.; Martinis, J.; Wang, E.; Kenny, T.; Young, B.A

    2004-03-11

    Our research group has successfully developed photon detectors capable of both time-stamping and energy-resolving individual photons at very high rates in a wide band from the near-IR through optical and into the near-UV. We have fabricated 32-pixel arrays of these Transition-Edge Sensor (TES) devices and have mounted them in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We have characterized single pixel behavior; we have also begun operating multiple pixels simultaneously, starting the scaling process towards use of the full array. We emphasize the development of a metalized mask for our array that blocks photons from hitting the inter-pixel areas and reflects them onto the TESs. We also present calibration data on detector resolution, electronics noise, and optical alignment.

  10. Synthetic Receive Beamforming and Image Acquisition Capabilities Using an 8 x 128 1.75D Array

    DEFF Research Database (Denmark)

    Fernandez, Anna T.; Gammelmark, Kim; Dahl, Jeremy J.;

    2003-01-01

    , several rows in elevation) through the use of synthetic elevation imaging. We describe synthetic elevation beamforming methods and its implementation with our 8 x 128, 1.75D array (Tetrad Co., Englewood, CO). This array has been successfully interfaced with a Siemens Elegra scanner for summed RF...... and single channel RIP data acquisition. Individual rows of the 8 x 128 array can be controlled, allowing for different aperture configurations on transmit and receive beamforming. Advantages of using this array include finer elevation sampling, a larger array footprint for aberration measurements...

  11. LOFAR tied-array imaging of Type III solar radio bursts

    CERN Document Server

    Morosan, D E; Zucca, P; Fallows, R; Carley, E P; Mann, G; Bisi, M M; Kerdraon, A; Konovalenko, A A; MacKinnon, A L; Rucker, H O; Thidé, B; Magdalenić, J; Vocks, C; Reid, H; Anderson, J; Asgekar, A; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Bregman, J; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Conway, J E; de Gasperin, F; de Geus, E; Deller, A; Duscha, S; Eislöffel, J; Engels, D; Falcke, H; Ferrari, C; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Hassall, T E; Hessels, J W T; Hoeft, M; Hörandel, J; Horneffer, A; Iacobelli, M; Juette, E; Karastergiou, A; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; Maat, P; Markoff, S; McKean, J P; Mulcahy, D D; Munk, H; Nelles, A; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pietka, G; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D; Serylak, M; Smirnov, O; Stappers, B W; Stewart, A; Tagger, M; Tang, Y; Tasse, C; Thoudam, S; Toribio, C; Vermeulen, R; van Weeren, R J; Wucknitz, O; Yatawatta, S; Zarka, P

    2014-01-01

    The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio telescopes. Here, the combined high spatial, spectral and temporal resolution of the Low Frequency Array (LOFAR) was used to study solar Type III radio bursts at 30-90 MHz and their association with CMEs. The Sun was imaged with 126 simultaneous tied-array beams within 5 solar radii of the solar centre. This method offers benefits over standard interferometric imaging since each beam produces high temporal (83 ms) and spectral resolution (12.5 kHz) dynamic spectra at an array of spatial locations centred on the Sun. LOFAR's standard interferometric output is currently limited to one image per second. Over a period of 30 minutes, multiple Type III radio bursts were observed, a number of which were found to be located at high...

  12. Fiber faceplate modulation readout in Bi-material micro-cantilever mirror array imaging system

    Science.gov (United States)

    Hui, Mei; Xia, Zhengzheng; Liu, Ming; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2016-05-01

    Fiber faceplate modulation was applied to read out the precise actuation of silicon-based, surface micro-fabricated cantilever mirrors array in optical imaging system. The faceplate was made by ordered bundles consisting of as many as ten thousands fibers. The transmission loss of an individual fiber in the bundles was 0.35dB/cm and the cross talk between neighboring fibers in the faceplate was about 15%. Micro-cantilever mirrors array (Focal-Plane Array (FPA)) which composed of two-level bi-material pixels, absorb incident infrared flux and result in a temperature increase. The temperature distribution of incident flux transformed to the deformation distribution in FPA which has a very big difference in coefficients of thermal expansion. FPA plays the roles of target sensing and has the characteristics of high detection sensitivity. Instead of general filter such as knife edge or pinhole, fiber faceplate modulate the beam reflected by the units of FPA. An optical readout signal brings a visible spectrum into pattern recognition system, yielding a visible image on monitor. Thermal images at room temperature have been obtained. The proposed method permits optical axis compact and image noise suppression.

  13. High-speed imaging and wavefront sensing with an infrared avalanche photodiode array

    CERN Document Server

    Baranec, Christoph; Riddle, Reed; Hall, Donald; Jacobson, Shane; Law, Nicholas M; Chun, Mark

    2015-01-01

    Infrared avalanche photodiode arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared avalanche photodiode array that achieves a correlated double sampling read noise of 0.73 e- in the lab, and a total noise of 2.52 e- on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics system at the Palomar Observatory 1.5-m telescope. We report here on the improved image quality achieved simultaneously at visible and infrared wavelengths by using the array as part of an image stabilization control-loop with adaptive-optics sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity as well as future uses of this technology in other adaptive optics and high-contrast imaging applications.

  14. A Full Parallel Event Driven Readout Technique for Area Array SPAD FLIM Image Sensors

    Directory of Open Access Journals (Sweden)

    Kaiming Nie

    2016-01-01

    Full Text Available This paper presents a full parallel event driven readout method which is implemented in an area array single-photon avalanche diode (SPAD image sensor for high-speed fluorescence lifetime imaging microscopy (FLIM. The sensor only records and reads out effective time and position information by adopting full parallel event driven readout method, aiming at reducing the amount of data. The image sensor includes four 8 × 8 pixel arrays. In each array, four time-to-digital converters (TDCs are used to quantize the time of photons’ arrival, and two address record modules are used to record the column and row information. In this work, Monte Carlo simulations were performed in Matlab in terms of the pile-up effect induced by the readout method. The sensor’s resolution is 16 × 16. The time resolution of TDCs is 97.6 ps and the quantization range is 100 ns. The readout frame rate is 10 Mfps, and the maximum imaging frame rate is 100 fps. The chip’s output bandwidth is 720 MHz with an average power of 15 mW. The lifetime resolvability range is 5–20 ns, and the average error of estimated fluorescence lifetimes is below 1% by employing CMM to estimate lifetimes.

  15. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    Science.gov (United States)

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  16. Circuit design for the retina-like image sensor based on space-variant lens array

    Science.gov (United States)

    Gao, Hongxun; Hao, Qun; Jin, Xuefeng; Cao, Jie; Liu, Yue; Song, Yong; Fan, Fan

    2013-12-01

    Retina-like image sensor is based on the non-uniformity of the human eyes and the log-polar coordinate theory. It has advantages of high-quality data compression and redundant information elimination. However, retina-like image sensors based on the CMOS craft have drawbacks such as high cost, low sensitivity and signal outputting efficiency and updating inconvenience. Therefore, this paper proposes a retina-like image sensor based on space-variant lens array, focusing on the circuit design to provide circuit support to the whole system. The circuit includes the following parts: (1) A photo-detector array with a lens array to convert optical signals to electrical signals; (2) a strobe circuit for time-gating of the pixels and parallel paths for high-speed transmission of the data; (3) a high-precision digital potentiometer for the I-V conversion, ratio normalization and sensitivity adjustment, a programmable gain amplifier for automatic generation control(AGC), and a A/D converter for the A/D conversion in every path; (4) the digital data is displayed on LCD and stored temporarily in DDR2 SDRAM; (5) a USB port to transfer the data to PC; (6) the whole system is controlled by FPGA. This circuit has advantages as lower cost, larger pixels, updating convenience and higher signal outputting efficiency. Experiments have proved that the grayscale output of every pixel basically matches the target and a non-uniform image of the target is ideally achieved in real time. The circuit can provide adequate technical support to retina-like image sensors based on space-variant lens array.

  17. High-resolution images of tremor migrations beneath the Olympic Peninsula from stacked array of arrays seismic data

    Science.gov (United States)

    Peng, Yajun; Rubin, Allan M.

    2016-02-01

    Episodic tremor and slip (ETS) in subduction zones is generally interpreted as the manifestation of shear slip near the base of earthquake-generating portion of the plate interface. Here we devise a new method of cross-correlating stacked Array of Arrays seismic data that provides greatly improved tremor locations, a proxy for the underlying slow slip, beneath the Olympic Peninsula. This increased resolution allows us to image many features of tremor that were not visible previously. We resolve the spatial transition between the rupture zones of the inter-ETS and major ETS episodes in 2010, suggesting stress redistribution by the former. Most tremor migrations propagated along the slowly advancing main tremor front during both the inter-ETS and the major ETS episodes, even though the main front of the former deviated strongly from its usual (along-dip) orientation. We find a distinct contrast between along-dip rupture extent of large-scale rapid tremor reversals (RTRs) to the south and that to the north in our study region that anticorrelates with the locations of inter-ETS events. These RTRs originate from the main front, similar to smaller-scale RTRs previously observed at high-resolution, and many start by propagating along the main front. This could be consistent with RTRs being triggered by a cascading failure of brittle asperities. After initiation, the RTRs repeatedly occupy the same source region, and the early repetitions appear not to be tidally driven. Their stress drop may come from continuing fault weakening processes within the tremor zone, or loading by aseismic slip in surrounding regions.

  18. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy.

    Science.gov (United States)

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L

    2008-11-21

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps.

  19. Development of Local Oscillator Integrated Antenna Array for Electron Cyclotron Emission Imaging Diagnostics

    Science.gov (United States)

    Kuwahara, Daisuke; Ito, Naoki; Nagayama, Yoshio; Tsuchiya, Hayato; Yoshikawa, Masayuki; Kohagura, Junko; Yoshinaga, Tomokazu; Yamaguchi, Soichiro; Kogi, Yuichiro; Mase, Atsushi

    2016-10-01

    Microwave imaging systems include difficulties in terms of multi-channelization and cost. Our group solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne-type antenna array, which can be easily stacked as a 2-D receiving array. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. However, the LIA still has problems, that the instabilities of the sensitivity and poor channel isolation. This paper describes the principle of the LIA, and solutions of above-mentioned problems. This work is performed with the support and under the auspices of the NIFS Collaborative Research Program (NIFS15KOAP029 and NIFS16KUGM115).

  20. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  1. Photoacoustic projection imaging using a 64-channel fiber optic detector array

    Science.gov (United States)

    Bauer-Marschallinger, Johannes; Felbermayer, Karoline; Bouchal, Klaus-Dieter; Veres, Istvan A.; Grün, Hubert; Burgholzer, Peter; Berer, Thomas

    2015-03-01

    In this work we present photoacoustic projection imaging with a 64-channel integrating line detector array, which average the pressure over cylindrical surfaces. For imaging, the line detectors are arranged parallel to each other on a cylindrical surface surrounding a specimen. Thereby, the three-dimensional imaging problem is reduced to a twodimensional problem, facilitating projection imaging. After acquisition of a dataset of pressure signals, a twodimensional photoacoustic projection image is reconstructed. The 64 channel line detector array is realized using optical fibers being part of interferometers. The parts of the interferometers used to detect the ultrasonic pressure waves consist of graded-index polymer-optical fibers (POFs), which exhibit better sensitivity than standard glass-optical fibers. Ultrasonic waves impinging on the POFs change the phase of light in the fiber-core due to the strain-optic effect. This phase shifts, representing the pressure signals, are demodulated using high-bandwidth balanced photo-detectors. The 64 detectors are optically multiplexed to 16 detection channels, thereby allowing fast imaging. Results are shown on a Rhodamine B dyed microsphere.

  2. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe

    Science.gov (United States)

    Wang, Yu; Erpelding, Todd N.; Jankovic, Ladislav; Guo, Zijian; Robert, Jean-Luc; David, Guillaume; Wang, Lihong V.

    2012-06-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3-D) volumetric imaging system based on a two-dimensional (2-D) matrix array ultrasound probe. A wavelength-tunable dye laser pumped by a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2-D array transducer (X7-2, Philips Healthcare) detects both the pulse-echo ultrasound and photoacoustic signals. A multichannel data acquisition system acquires the RF channel data. The imaging system enables rendering of co-registered 3-D ultrasound and photoacoustic images without mechanical scanning. The resolution along the azimuth, elevation, and axial direction are measured to be 0.69, 0.90 and 0.84 mm for photoacoustic imaging. In vivo 3-D photoacoustic mapping of the sentinel lymph node was demonstrated in a rat model using methylene blue dye. These results highlight the clinical potential of 3-D PA imaging for identification of sentinel lymph nodes for cancer staging in humans.

  3. Effects of Non-Elevation-Focalized Linear Array Transducer on Ultrasound Plane-Wave Imaging

    Directory of Open Access Journals (Sweden)

    Congzhi Wang

    2016-11-01

    Full Text Available Plane-wave ultrasound imaging (PWUS has become an important method of ultrasound imaging in recent years as its frame rate has exceeded 10,000 frames per second, allowing ultrasound to be used for two-dimensional shear wave detection and functional brain imaging. However, compared to the traditional focusing and scanning method, PWUS images always suffer from a degradation of lateral resolution and contrast. To improve the image quality of PWUS, many different beamforming algorithms have been proposed and verified. Yet the influence of transducer structure is rarely studied. For this paper, the influence of using an acoustic lens for PWUS was evaluated. Two linear array transducers were fabricated. One was not self-focalized in the elevation direction (non-elevation-focalized transducer, NEFT; the other one was a traditional elevation-focalized transducer (EFT. An initial simulation was conducted to show the influence of elevation focusing. Then the images obtained with NEFT on a standard ultrasound imaging phantom were compared with those obtained with EFT. It was demonstrated that, in a relatively deep region, the contrast of an NEFT image is better than that of an EFT image. These results indicate that a more sophisticated design of ultrasound transducer would further improve the image quality of PWUS.

  4. IR Imaging Using Arrays of SiO2 Micromechanical Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Grbovic, Dragoslav [ORNL; Lavrik, Nickolay V [ORNL; Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL; Hunter, Scott Robert [ORNL

    2012-01-01

    In this letter, we describe the fabrication of an array of bimaterial detectors for infrared (IR) imaging that utilize SiO2 as a structural material. All the substrate material underneath the active area of each detector element was removed. Each detector element incorporates an optical resonant cavity layer in the IR absorbing region of the sensing element. The simplified microfabrication process requires only four photolithographic steps with no wet etching or sacrificial layers. The thermomechanical deflection sensitivity was 7.9 10-3 rad/K which corresponds to a noise equivalent temperature difference (NETD) of 2.9 mK. In the present work the array was used to capture IR images while operating at room temperature and atmospheric pressure and no need for vacuum packaging. The average measured NETD of our IR detector system was approximately 200 mK but some sensing elements exhibited an NETD of 50 mK.

  5. Reversible Back-Propagation Imaging Algorithm for Post-Processing of Ultrasonic Array Data

    Science.gov (United States)

    Velichko, A.; Wilcox, P. D.

    2009-03-01

    The paper describes a method for processing data from an ultrasonic transducer array. The proposed algorithm is formulated in such a way that it is reversible, i.e. the raw data set can be recovered from the image. This is of practical significance because it allows the raw-data to be spatially filtered using the image to extract, for example, only the raw data associated with a particular reflector. The method is tested on experimental data obtained from a commercial 64-element, 5-MHZ array on an aluminium specimen that contains a number of machined slots and side-drilled holes. The raw transmitter-receiver data corresponded to each reflector is extracted and the scattering matrices of different reflectors are reconstructed. It allows the signals from 1-mm-long slot and a 1-mm-diameter hole to be clearly distinguished and the orientation and the size of the slots to be determined.

  6. a Model-Based Autofocus Algorithm for Ultrasonic Imaging Using a Flexible Array

    Science.gov (United States)

    Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2010-02-01

    Autofocus is a methodology for estimating and correcting errors in the assumed parameters of an imaging algorithm. It provides improved image quality and, therefore, better defect detection and characterization capabilities. In this paper, we present a new autofocus algorithm developed specifically for ultrasonic non-destructive testing and evaluation (NDE). We consider the estimation and correction of errors in the assumed element positions for a flexible ultrasonic array coupled to a specimen with an unknown surface profile. The algorithm performs a weighted least-squares minimization of the time-of-arrival errors in the echo data using assumed models for known features in the specimen. The algorithm is described for point and planar specimen features and demonstrated using experimental data from a flexible array prototype.

  7. Two-dimensional Fast ESPRIT Algorithm for Linear Array SAR Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Yi-chao

    2015-10-01

    Full Text Available The linear array Synthetic Aperture Radar (SAR system is a popular research tool, because it can realize three-dimensional imaging. However, owning to limitations of the aircraft platform and actual conditions, resolution improvement is difficult in cross-track and along-track directions. In this study, a twodimensional fast Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT algorithm for linear array SAR imaging is proposed to overcome these limitations. This approach combines the Gerschgorin disks method and the ESPRIT algorithm to estimate the positions of scatterers in cross and along-rack directions. Moreover, the reflectivity of scatterers is obtained by a modified pairing method based on “region growing”, replacing the least-squares method. The simulation results demonstrate the applicability of the algorithm with high resolution, quick calculation, and good real-time response.

  8. Focal length measurement of microlens-array by the clarity function of digital image

    Science.gov (United States)

    Zhu, Xianchang; Wu, Fan; Cao, Xuedong; Wu, Shibin; Zhang, Peng; Jing, Hongwei

    2012-10-01

    In this paper, a method for the focal length measurement of Microlens-array (MLA) is introduced. The measuring setup is composed by monochromatic, condenser, collimator, MLA, microscope and CCD sensor. An experiment was performed using a MLA whose focal length is about 8 mm and a GUI based on Matlab software was developed to analyze the image gathered at the vertex and the focus by the clarity of digital image processing technology. The measuring uncertainty of this method is about 0.8% and this method introduced in this paper can finish tens of microlens array measurement at a single shot. Compared with traditional technology for MLA measuring, this method not only has a preferable precision but also super efficiency.

  9. Ultra-Fast Processing of Gigapixel Tissue MicroArray Images Using High Performance Computing

    OpenAIRE

    Yinhai Wang; David McCleary; Ching-Wei Wang; Paul Kelly; Jackie James; Fennell, Dean A; Peter Hamilton

    2010-01-01

    Background: Tissue MicroArrays (TMAs) are a valuable platform for tissue based translational research and the discovery of tissue biomarkers. The digitised TMA slides or TMA Virtual Slides, are ultra-large digital images, and can contain several hundred samples. The processing of such slides is time-consuming, bottlenecking a potentially high throughput platform. Methods: A High Performance Computing (HPC) platform for the rapid analysis of TMA virtual slides is presented in this study. Using...

  10. Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging

    Science.gov (United States)

    2016-02-13

    switchable array, RF magnetic field, NQR, MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic...Resonance (NMR) or Nuclear Quadrupole Resonance (NQR) techniques. REF [1] and [6] explain the differences between NMR and NQR. What NMR and NQR...inductances due to physical dimensions. A wider bandwidth will insure all surface coils are individually tuned and matched within the bandwidth

  11. Large-area, flexible imaging arrays constructed by light-charge organic memories

    OpenAIRE

    Lei Zhang; Ti Wu; Yunlong Guo; Yan Zhao; Xiangnan Sun; Yugeng Wen; Gui Yu; Yunqi Liu

    2013-01-01

    Existing organic imaging circuits, which offer attractive benefits of light weight, low cost and flexibility, are exclusively based on phototransistor or photodiode arrays. One shortcoming of these photo-sensors is that the light signal should keep invariant throughout the whole pixel-addressing and reading process. As a feasible solution, we synthesized a new charge storage molecule and embedded it into a device, which we call light-charge organic memory (LCOM). In LCOM, the functionalities ...

  12. LOFAR tied-array imaging and spectroscopy of solar S bursts

    Science.gov (United States)

    Morosan, D. E.; Gallagher, P. T.; Zucca, P.; O'Flannagain, A.; Fallows, R.; Reid, H.; Magdalenić, J.; Mann, G.; Bisi, M. M.; Kerdraon, A.; Konovalenko, A. A.; MacKinnon, A. L.; Rucker, H. O.; Thidé, B.; Vocks, C.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bentum, M. J.; Bernardi, G.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brouw, W. N.; Butcher, H. R.; Ciardi, B.; de Geus, E.; Eislöffel, J.; Falcke, H.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hessels, J. W. T.; Hoeft, M.; Karastergiou, A.; Kondratiev, V. I.; Kuper, G.; van Leeuwen, J.; McKay-Bukowski, D.; McKean, J. P.; Munk, H.; Orru, E.; Paas, H.; Pizzo, R.; Polatidis, A. G.; Scaife, A. M. M.; Sluman, J.; Tasse, C.; Toribio, M. C.; Vermeulen, R.; Zarka, P.

    2015-08-01

    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims: Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods: We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results: On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2-8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions: We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission. A movie associated to Fig. 3 is available in electronic form at http://www.aanda.org

  13. Application of multi-channel photoelastic imaging technology in array type ultrasonic nondestructive testing

    Science.gov (United States)

    Fan, Zhen-zhong; Bi, Chao

    2015-08-01

    With the rapid development of modern nondestructive testing technologies, ultrasonic phased array and Ultrasonic array testing technology has been used widely, at the same time the propagation process of ultrasonic in the material becomes more and more complex. In order to make the ultrasonic propagation path become visible and researchers can observe the acoustic field directly, considering the properties of the ultrasonic as a stress wave, according to the theory of polarized light interference, a multi-channel dynamic photoelastic imaging system is developed successfully. The system can generate many kinds of focusing ultrasonic fields in optical specimen by controlling the ultrasonic transmission delay time of each equipment channel, and the system has the ability to simulate the acoustic field's focusing process of the ultrasonic phased array. The image shot by CCD camera reflects the propagation process of the acoustic field in the specimen, and the dynamic video is formed under control of the timing circuit, and the system has the ability to save the captured image in the computer.

  14. Low frequency ultrasonic array imaging using signal post-processing for concrete material

    Science.gov (United States)

    Ozawa, Akio; Izumi, Hideki; Nakahata, Kazuyuki; Ohira, Katsumi; Ogawa, Kenzo

    2017-02-01

    The use of ultrasonic arrays to conduct nondestructive evaluation has significantly increased in recent years. A post-processing beam-forming technique that utilizes a complete set of signals of all combinations of transmission and reception el-ements was proposed as an array imaging technique. In this study, a delay-and-sum beam reconstruction method utilizing post-processing was applied to the imaging of internal voids and reinforced steel bars in concrete material. Due to the high attenuation of the ultrasonic wave in concrete, it is necessary to use an ultrasonic wave as the incident wave at low frequencies and high in-tensities. In this study, an array transducer with a total of 16 elements was designed on the basis of a multigaussian beam model. The center frequency of the transducer was 50 kHz, and low frequency imaging was achieved by performing computations using a graphics processing unit accelerators in the post-processing beam formation. The results indicated that the shapes of through holes and steel bars in a concrete specimen with 700 mm height were reconstructed with high resolution.

  15. Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams

    CERN Document Server

    Kannegulla, Akash; Rahman, Syed; Fay, Patrick; Xing, Huili Grace; Cheng, Li-Jing; Liu, Lei

    2013-01-01

    We report terahertz coded-aperture imaging using photo-induced reconfigurable aperture arrays on a silicon wafer. The coded aperture was implemented using programmable illumination from a commercially available digital light processing projector. At 590 GHz, each of the array element apertures can be optically turned on and off with a modulation depth of 20 dB and a modulation rate of ~1.3 KHz. Prototype demonstrations of 4 by 4 coded-aperture imaging using Hadamard coding have been performed and this technique has been successfully applied to mapping THz beams by using a 6 by 6 aperture array at 590 GHz. The imaging results agree closely with theoretical calculations based on Gaussian beam transformation, demonstrating that this technique is promising for realizing real-time and low-cost terahertz cameras for many applications. The reported approach provides a simple but powerful means to visualize THz beams, which is highly desired in quasi-optical system alignment, quantum-cascade laser design and characte...

  16. Full matrix capture and the total focusing imaging algorithm using laser induced ultrasonic phased arrays

    Science.gov (United States)

    Stratoudaki, Theodosia; Clark, Matt; Wilcox, Paul D.

    2017-02-01

    Laser ultrasonics is a technique where lasers are used for the generation and detection of ultrasound instead of conventional piezoelectric transducers. The technique is broadband, non-contact, and couplant free, suitable for large stand-off distances, inspection of components of complex geometries and hazardous environments. In this paper, array imaging is presented by obtaining the full matrix of all possible laser generation, laser detection combinations in the array (Full Matrix Capture), at the nondestructive, thermoelastic regime. An advanced imaging technique developed for conventional ultrasonic transducers, the Total Focusing Method (TFM), is adapted for laser ultrasonics and then applied to the captured data, focusing at each point of the reconstruction area. In this way, the beamforming and steering of the ultrasound is done during the post processing. A 1-D laser induced ultrasonic phased array is synthesized with significantly improved spatial resolution and defect detectability. In this study, shear waves are used for the imaging, since they are more efficiently produced than longitudinal waves in the nondestructive, thermoelastic regime. Experimental results are presented from nondestructive, laser ultrasonic inspection of aluminum samples with side drilled holes and slots at depths varying between 5 and 20mm from the surface.

  17. Development of a 64 channel ultrasonic high frequency linear array imaging system

    Science.gov (United States)

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M.; Yen, Jesse; Shung, K. Kirk

    2011-01-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20 MHz–120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom

  18. Comparison of 3-D Synthetic Aperture Phased-Array Ultrasound Imaging and Parallel Beamforming

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-01-01

    simulations and measurements with anultrasound research scanner and a commercially available 3.5-MHz 1024-element 2-D transducer array. To limit the probecable thickness, 256 active elements are used in transmit andreceive for both techniques. The two imaging techniques weredesigned for cardiac imaging, which......B cystic resolutionby up to 62%. The FWHM of the measured line spread func-tion (LSF) at 80mm depth showed a difference of 20% in favorof SAI. SAI reduced the cyst radius at 60mm depth by 39%in measurements. SAI improved the contrast-to-noise ratiomeasured on anechoic cysts embedded in a tissue...

  19. Development of a 64 channel ultrasonic high frequency linear array imaging system.

    Science.gov (United States)

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M; Yen, Jesse; Shung, K Kirk

    2011-12-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20-120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3 ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images

  20. Synthetically Focused Imaging Techniques in Simulated Austenitic Steel Welds Using AN Ultrasonic Phased Array

    Science.gov (United States)

    Connolly, G. D.; Lowe, M. J. S.; Rokhlin, S. I.; Temple, J. A. G.

    2010-02-01

    In austenitic steel welds employed in safety-critical applications, detection of defects that may propagate during service or may have occurred during welding is particularly important. In this study, synthetically focused imaging techniques are applied to the echoes received by phased arrays in order to reconstruct images of the interior of a simulated austenitic steel weld, with application to sizing and location of simplified defects. Using a ray-tracing approach through a previously developed weld model, we briefly describe and then apply three focusing techniques. Results generated via both ray-tracing theory and finite element simulations will be shown.

  1. Ultrasonic array imaging of multilayer structures using full matrix capture and extended phase shift migration

    Science.gov (United States)

    Wu, Haiteng; Chen, Jian; Yang, Keji; Hu, Xuxiao

    2016-04-01

    Multilayer structures have been widely used in industrial fields, and non-destructive evaluation of these structures is of great importance to assure their quality and performance. Recently, ultrasonic array imaging using full matrix capture, e.g. the total focusing method (TFM), has been shown to increase sensitivity to small defects and improve imaging resolution in homogeneous media. However, it cannot be applied to multilayer structures directly, due to the sound velocity variation in different layers and because refraction occurs at layer interfaces, which gives rise to difficulties in determining the propagation path and time. To overcome these problems, an extended phase shift migration (EPSM) is proposed for the full matrix imaging of multilayer structures in this paper. Based on the theory of phase shift migration for monostatic pulse-echo imaging, full matrix imaging using EPSM is derived by extrapolating the wavefields in both transmission and reception, and extended to the multilayer case. The performance of the proposed algorithm is evaluated by full matrix imaging of a two-layer structure with side-drilled holes conducted both in the simulation and the experiment. The results verify that the proposed algorithm is capable of full matrix imaging of a layered structure with a high resolution and signal-to-noise ratio. For comparison, full matrix imaging using the TFM with root-mean-squared velocity is also performed, and the results demonstrate that the proposed algorithm is superior to the TFM in improving both the image quality and resolution.

  2. Infrared microspectroscopic imaging using a large radius germanium internal reflection element and a focal plane array detector.

    Science.gov (United States)

    Patterson, Brian M; Havrilla, George J; Marcott, Curtis; Story, Gloria M

    2007-11-01

    Previously, we established the ability to collect infrared microspectroscopic images of large areas using a large radius hemisphere internal reflection element (IRE) with both a single point and a linear array detector. In this paper, preliminary work in applying this same method to a focal plane array (FPA) infrared imaging system is demonstrated. Mosaic tile imaging using a large radius germanium hemispherical IRE on a FPA Fourier transform infrared microscope imaging system can be used to image samples nearly 1.5 mm x 2 mm in size. A polymer film with a metal mask is imaged using this method for comparison to previous work. Images of hair and skin samples are presented, highlighting the complexity of this method. Comparisons are made between the linear array and FPA methods.

  3. Image fiber optic space-CDMA parallel transmission experiment using 8 x 8 VCSEL/PD arrays.

    Science.gov (United States)

    Nakamura, Moriya; Kitayama, Ken-ichi; Igasaki, Yasunori; Shamoto, Naoki; Kaneda, Keiji

    2002-11-10

    We experimentally demonstrate space-code-division multiple access (space-CDMA) based twodimensional (2-D) parallel optical interconnections by using image fibers and 8 x 8 vertical-cavity surface-emitting laser (VCSEL)/photo diode (PD) arrays. Two spatially encoded four-bit (2 x 2) parallel optical signals were emitted fiom 2-D VCSEL arrays and transmitted through image fibers. The encoded signals were multiplexed by an image-fiber coupler and detected by a 2-D PD array on the receiver side. The receiver recovered the intended parallel signal by decoding the signal. The transmission speed was 64 Mbps/ch (total throughput: 512 Mbps). Bit-error-rate (BER) measurement with a laterally misaligned PD array showed the array had a misalignment tolerance of 25 microm for a BER performance of 10(-9).

  4. ABO Blood-Typing Using an Antibody Array Technique Based on Surface Plasmon Resonance Imaging

    Science.gov (United States)

    Houngkamhang, Nongluck; Vongsakulyanon, Apirom; Peungthum, Patjaree; Sudprasert, Krisda; Kitpoka, Pimpun; Kunakorn, Mongkol; Sutapun, Boonsong; Amarit, Ratthasart; Somboonkaew, Armote; Srikhirin, Toemsak

    2013-01-01

    In this study, readily available antibodies that are used in standard agglutination tests were evaluated for their use in ABO blood typing by a surface plasmon resonance imaging (SPR imaging) technique. Five groups of antibodies, including mixed clones of anti-A, anti-B, and anti-AB, and single clones of anti-A and anti-B, were used to construct the five-line detection arrays using a multichannel flow cell in the SPR imager. The red blood cell (RBC) samples were applied to a multichannel flow cell that was orthogonal to the detection line arrays for blood group typing. We found that the blood samples were correctly grouped in less than 12 min by the SPR imaging technique, and the results were consistent with those of the standard agglutination technique for all 60 samples. We found that mixed clones of antibodies provided 33%–68% greater change in the SPR signal than the single-clone antibodies. Applying the SPR imaging technique using readily available antibodies may reduce the costs of the antibodies, shorten the measurement time, and increase the throughput. PMID:24021965

  5. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.

    Science.gov (United States)

    Boppel, Sebastian; Lisauskas, Alvydas; Max, Alexander; Krozer, Viktor; Roskos, Hartmut G

    2012-02-15

    We demonstrate the principle applicability of antenna-coupled complementary metal oxide semiconductor (CMOS) field-effect transistor arrays as cameras for real-time coherent imaging at 591.4 GHz. By scanning a few detectors across the image plane, we synthesize a focal-plane array of 100×100 pixels with an active area of 20×20 mm2, which is applied to imaging in transmission and reflection geometries. Individual detector pixels exhibit a voltage conversion loss of 24 dB and a noise figure of 41 dB for 16 μW of the local oscillator (LO) drive. For object illumination, we use a radio-frequency (RF) source with 432 μW at 590 GHz. Coherent detection is realized by quasioptical superposition of the image and the LO beam with 247 μW. At an effective frame rate of 17 Hz, we achieve a maximum dynamic range of 30 dB in the center of the image and more than 20 dB within a disk of 18 mm diameter. The system has been used for surface reconstruction resolving a height difference in the μm range.

  6. Wave path calculation for phased array imaging to evaluate weld zone of elbow pipes (Conference Presentation)

    Science.gov (United States)

    Park, Choon-Su; Park, Jin Kyu; Choi, Wonjae; Cho, Seunghyun; Kim, Dong-Yeol; Han, Ki Hyung

    2017-04-01

    It has long been non-destructively evaluated on weld joints of various pipes which are indispensable to most of industrial structures. Ultrasound evaluation has been used to detect flaws in welding joints, but some technical deficiencies still remain. Especially, ultrasound imaging on weld of elbow pipes has many challenging issues due to varying surface along circumferential direction. Conventional ultrasound imaging has particularly focused on ultrasonic wave propagation based on ray theory. This confines the incident angle and the position of an array transducer as well. Total focusing method (TFM), however, can provide not only high resolution images but also flexibility that enables to use ultrasonic waves to every direction that they can reach. This leads us to develop a method to get images of weld zone from an elbow part that curves. It is inevitable of each ultrasonic wave from the array transducer to transmit through different media and to be reflected from the boundary with angles along the curved surface. To form a correct PA image, careful calculation is made to ensure that time delay of receive-after-transmit is correctly shifted and summed even under non-planar boundary condition. Here, a method to calculate wave paths for the zone of interest at weld joint of an elbow pipe is presented. Numerical simulations of wave propagation on an elbow pipe are made to verify the proposed method. It is also experimentally demonstrated that the proposed method is well applied to various actual pipes that contains artificial flaws with a flexible wedge.

  7. Concordance and reproducibility between M-mode, tissue Doppler imaging, and two-dimensional strain imaging in the assessment of mitral annular displacement and velocity in patients with various heart conditions

    DEFF Research Database (Denmark)

    de Knegt, Martina Chantal; Biering-Sorensen, Tor; Sogaard, Peter;

    2014-01-01

    AIMS: Mitral annular (MA) displacement reflects longitudinal left ventricular (LV) deformation and systolic velocity measurements reflect the rate of contraction; both are valuable in the diagnosis and prognosis of cardiac disease. The aim of this study was to test the agreement and reproducibility......, and M-mode determined in the septal and lateral walls in the apical four-chamber view were assessed in 50 control subjects and in 168 patients with various cardiac anomalies known to affect longitudinal displacement such as heart failure, mitral regurgitation, LV hypertrophy, and LV dilation. Intra...

  8. Classification of annular bed flow patterns and investigation on their influence on the bottom spray fluid bed coating process.

    Science.gov (United States)

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2010-05-01

    This study aims to classify annular bed flow patterns in the bottom spray fluid bed coating process, study their influence on coat uniformity and investigate the feasibility of developing real-time annular bed flow pattern detection as a PAT tool. High-speed imaging and particle image velocimetry were used to visualize annular bed flow. Color coating and subsequent tristimulus colorimetry were employed to determine influence of annular bed flow pattern on coat uniformity. Feasibility of monitoring annular bed flow pattern through an observation window was tested using miniaturized particle velocity field and time series particle velocity orientation information. Three types of annular bed flow patterns were identified. Plug flow gave the best coat uniformity followed by global and localized fluidization. Plug flow may be advantageous for high spray-rate conditions, large-scale coating and prevention of particle segregation. Plug flow could be differentiated from the other flow patterns through a simulated observation window. Annular bed flow patterns were classified and found to influence particle coat uniformity noticeably. Availability of annular bed flow information for large-scale coaters would enable adjustments for process optimization. This study highlights the potential of monitoring annular bed flow pattern as a PAT tool.

  9. Fast, Deep-Record-Length, Fiber-Coupled Photodiode Imaging Array for Plasma Diagnostics

    Science.gov (United States)

    Brockington, Samuel; Case, Andrew; Witherspoon, F. Douglas

    2015-11-01

    HyperV Technologies has been developing an imaging diagnostic comprised of an array of fast, low-cost, long-record-length, fiber-optically-coupled photodiode channels to investigate plasma dynamics and other fast, bright events. By coupling an imaging fiber bundle to a bank of amplified photodiode channels, imagers and streak imagers can be constructed. By interfacing analog photodiode systems directly to commercial analog-to-digital converters and modern memory chips, a scalable solution for 100 to 1000 pixel systems with 14 bit resolution and record-lengths of 128k frames has been developed. HyperV is applying these techniques to construct a prototype 1000 Pixel framing camera with up to 100 Msamples/sec rate and 10 to 14 bit depth. Preliminary experimental results as well as future plans will be discussed. Work supported by USDOE Phase 2 SBIR Grant DE-SC0009492.

  10. Average modulation transfer function of line-array fiber-optic image bundles

    Institute of Scientific and Technical Information of China (English)

    Hui Wang(王慧); Yang Xiang(向阳); Bingxi Yu(禹秉熙)

    2004-01-01

    The image quality evaluation in fiber-optic image bundles was addressed by the modulation transfer function(MTF).With the definition of the contrast transfer function(CTF),the MTF model of line-array fiber-optic image bundles was established and analyzed numerically.The average MTF was carefully evaluated by considering the influence of phase match on the MTF between input pattern and fiber-optic image bundles.In this paper,the average MTF is mean arithmetical value on the MTFs of eight different phases.The results show that,for certain fiber diameter and spatial frequency,the relationship between the core diameter and the average MTF is inverse proportion; for certain fiber cladding thickness,the relationship between the core diameter and the average MTF is also inverse proportion.And at Nyquist frequency,the MTF value is near 0.5.

  11. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    Science.gov (United States)

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  12. 7.5 MHz dual-layer transducer array for 3-D rectilinear imaging.

    Science.gov (United States)

    Chen, Yuling; Nguyen, Man; Yen, Jesse T

    2011-07-01

    The difficulties associated with fabrication and interconnection have limited the development of 2-D ultrasound transducer arrays with a large number ofelements (>5000). In previous work, we described a 5 MHz center frequency PZT-P[VDF-TrFE] dual-layer transducer that used two perpendicular 1-D arrays for 3-D rectilinear imaging. This design substantially reduces the channel count as well as fabrication complexity, which makes 3-D imaging more realizable. Higher frequencies (>5 MHz) are more commonly used in clinical applications or imaging targets near transducers, such as the breast, carotid and musculoskeletal tissue. In this paper, we present a 7.5 MHz dual-layer transducer array for 3-D rectilinear imaging. A modified acoustic stack model was designed and fabricated. PZT elements were sub-diced to eliminate lateral coupling. This sub-dicing process made the PZT into a 2-2 composite material, which could help improve transducer sensitivity and bandwidth. Full synthetic-aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics data-acquisition system (VDAS). Offline 3-D beamforming was then performed to obtain volumes of a multiwire phantom and a cyst phantom. The generalized coherence factor (GCF) was applied to improve the contrast of cyst images. The measured -6 dB fractional bandwidth of the transducer was 71% with a center frequency of 7.5 MHz. The measured lateral beamwidths were 0.521 mm and 0.482 mm in azimuth and elevation, respectively, compared with a simulated beamwidth of 0.43 mm.

  13. A Sub-pixel Image Processing Algorithm of a Detector Based on Staring Focal Plane Array

    Institute of Scientific and Technical Information of China (English)

    LI Ya-qiong; JIN Wei-qi; XU Chao; WANG Xia

    2008-01-01

    Optical micro-scanning technology can be used to increase spatial resolution of many optical imaging systems, especially thermal imaging system. One of its key issues is relevant image processing algorithm. A fast reconstruction algo-rithm is proposed for two dimensional 2×2 micro-scanning based on the sub-pixel imaging and reconstruction principle of two-dimensional stating focal plane arrays (FPA). Specifically, three initialization methods are presented and implemented with the simulated data, their performances are compared according to image quality index . Experiment results show that, by the first initialization approach, tirnely over-sampled image can be accurately recovered, although special field diaphragm is needed. In the second initialization, the extrapolation approximation in obtaining reconstruction results is better than either bilinear interpolation or over-sampling reconstruction, without requiting any special process on system. The proposed algorithm has simple structure, low computational cost and can be realized in real-time. A high-resolution image can be obtained by low-resolution detectors. So, the algorithm has potential applications in visible light and infrared imaging area.

  14. Developments in MOVPE HgCdTe arrays for passive and active infrared imaging

    Science.gov (United States)

    Baker, Ian; Maxey, Chris; Hipwood, Les; Weller, Harald; Thorne, Peter

    2012-09-01

    SELEX Galileo Infrared Ltd has developed a range of 3rd Generation infrared detectors based on HgCdTe grown by Metal Organic Vapour Phase Epitaxy (MOVPE) on low cost GaAs substrates. There have been four key development aims: reducing the cost especially for large arrays, extending the wavelength range, improving the operating temperature for lower power, size and weight cameras and increasing the functionality. Despite a 14% lattice mismatch between GaAs and HgCdTe MOVPE arrays show few symptoms of misfit dislocations even in longwave detectors. The key factors in the growth and device technology are described in this paper to explain at a scientific level the radiometric quality of MOVPE arrays. A feature of the past few years has been the increasingly sophisticated products that are emerging thanks to custom designed silicon readout devices. Three devices are described as examples: a multifunctional device that can operate as an active or passive imager with built-in range finder, a 3-side buttable megapixel array and an ultra-low noise device designed for scientific applications.

  15. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain

    Directory of Open Access Journals (Sweden)

    Li Liechen

    2016-02-01

    Full Text Available A conformal sparse array based on combined Barker code is designed for airship platform. The performance of the designed array such as signal-to-noise ratio is analyzed. Using the hovering characteristics of the airship, interferometry operation can be applied on the real aperture imaging results of two pulses, which can eliminate the random backscatter phase and make the image sparse in the transform domain. Building the relationship between echo and transform coefficients, the Compressed Sensing (CS theory can be introduced to solve the formula and achieving imaging. The image quality of the proposed method can reach the image formed by the full array imaging. The simulation results show the effectiveness of the proposed method.

  16. A Reconfigurable Radiation Pattern Annular Slot Antenna

    OpenAIRE

    Aziz, NA; Radhi, A; Nilavalan, R

    2016-01-01

    This paper contemplate a theoretical analysis of a pattern reconfigurable antenna using annular slot antenna operating in low frequency. A shorting pin is inserted to allow the annular slot antenna to have an omnidirectional radiation pattern like a monopole antenna. The reconfigurable antenna consists of numerous metal cylinders arranged around the annular slot antenna. By controlling pin diodes associated with the metal cylinders, the antenna is capable of working up in different dire...

  17. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  18. Fluorescence lifetime imaging using a single photon avalanche diode array sensor (Conference Presentation)

    Science.gov (United States)

    Wargocki, Piotr M.; Spence, David J.; Goldys, Ewa M.; Charbon, Edoardo; Bruschini, Claudio E.; Antalović, Ivan Michel; Burri, Samuel

    2017-02-01

    Single photon detectors allows us work with the weakest fluorescence signals. Single photon arrays, combined with ps-controlled gating allow us to create image maps of fluorescence lifetimes, which can be used for in-vivo discrimination of tissue activity. Here we present fluorescence lifetime imaging using the `SwissSPAD' sensor, a 512-by-128-pixel array of gated single photon detectors, fabricated in a standard high-voltage 0.35 μm CMOS process. We present a protocol for spatially resolved lifetime measurements where the lifetime can be retrieved for each pixel. We demonstrate the system by imaging patterns of Fluorescein and Rhodamine B on test slides, as well as measuring mixed samples to retrieve both components of the decay lifetime. The single photon sensitivity of the sensor creates a valuable instrument to perform live cell or live animal (in vivo) measurements of the weak autofluorescent signals, for example distinguishing unlabelled free and bound NADH. Our ultimate goal is to create a real time fluorescence lifetime imaging system, possibly integrated into augmented reality goggles, which could allow immediate discrimination of in vivo tissues.

  19. Information theory analysis of sensor-array imaging systems for computer vision

    Science.gov (United States)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.; Self, M. O.

    1983-01-01

    Information theory is used to assess the performance of sensor-array imaging systems, with emphasis on the performance obtained with image-plane signal processing. By electronically controlling the spatial response of the imaging system, as suggested by the mechanism of human vision, it is possible to trade-off edge enhancement for sensitivity, increase dynamic range, and reduce data transmission. Computational results show that: signal information density varies little with large variations in the statistical properties of random radiance fields; most information (generally about 85 to 95 percent) is contained in the signal intensity transitions rather than levels; and performance is optimized when the OTF of the imaging system is nearly limited to the sampling passband to minimize aliasing at the cost of blurring, and the SNR is very high to permit the retrieval of small spatial detail from the extensively blurred signal. Shading the lens aperture transmittance to increase depth of field and using a regular hexagonal sensor-array instead of square lattice to decrease sensitivity to edge orientation also improves the signal information density up to about 30 percent at high SNRs.

  20. Evaluation of ultrasonic array imaging algorithms for inspection of a coarse grained material

    Science.gov (United States)

    Van Pamel, A.; Lowe, M. J. S.; Brett, C. R.

    2014-02-01

    Improving the ultrasound inspection capability for coarse grain metals remains of longstanding interest to industry and the NDE research community and is expected to become increasingly important for next generation power plants. A test sample of coarse grained Inconel 625 which is representative of future power plant components has been manufactured to test the detectability of different inspection techniques. Conventional ultrasonic A, B, and C-scans showed the sample to be extraordinarily difficult to inspect due to its scattering behaviour. However, in recent years, array probes and Full Matrix Capture (FMC) imaging algorithms, which extract the maximum amount of information possible, have unlocked exciting possibilities for improvements. This article proposes a robust methodology to evaluate the detection performance of imaging algorithms, applying this to three FMC imaging algorithms; Total Focusing Method (TFM), Phase Coherent Imaging (PCI), and Decomposition of the Time Reversal Operator with Multiple Scattering (DORT MSF). The methodology considers the statistics of detection, presenting the detection performance as Probability of Detection (POD) and probability of False Alarm (PFA). The data is captured in pulse-echo mode using 64 element array probes at centre frequencies of 1MHz and 5MHz. All three algorithms are shown to perform very similarly when comparing their flaw detection capabilities on this particular case.

  1. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    Science.gov (United States)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Assessment of array scintillation detector for follicle thyroid 2-D image acquisition using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carlos Borges da; Santanna, Claudio Reis de [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: borges@ien.gov.br; santanna@ien.gov.br; Braz, Delson [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: delson@lin.ufrj.br; Carvalho, Denise Pires de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Fisiologia Endocrina]. E-mail: dencarv@ufrj.br

    2007-07-01

    This work presents an innovative study to find out the adequate scintillation inorganic detector array to be used coupled to a specific light photo sensor, a charge coupled device (CCD), through a fiber optic plate. The goal is to choose the type of detector that fits a 2-dimensional imaging acquisition of a cell thyroid tissue application with high resolution and detection efficiency in order to map a follicle image using gamma radiation emission. A point or volumetric source - detector simulation by using a MCNP4B general code, considering different source energies, detector materials and geometry including pixel sizes and reflector types was performed. In this study, simulations were performed for 7 x 7 and 127 x 127 arrays using CsI(Tl) and BGO scintillation crystals with pixel size ranging from 1 x 1 cm{sup 2} to 10 x 10 {mu}m{sup 2} and radiation thickness ranging from 1 mm to 10 mm. The effect of all these parameters was investigated to find the best source-detector system that result in an image with the best contrast details. The results showed that it is possible to design a specific imaging system that allows searching for in-vitro studies, specifically in radiobiology applied to endocrine physiology. (author)

  3. Information theory analysis of sensor-array imaging systems for computer vision

    Science.gov (United States)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.; Self, M. O.

    1983-01-01

    Information theory is used to assess the performance of sensor-array imaging systems, with emphasis on the performance obtained with image-plane signal processing. By electronically controlling the spatial response of the imaging system, as suggested by the mechanism of human vision, it is possible to trade-off edge enhancement for sensitivity, increase dynamic range, and reduce data transmission. Computational results show that: signal information density varies little with large variations in the statistical properties of random radiance fields; most information (generally about 85 to 95 percent) is contained in the signal intensity transitions rather than levels; and performance is optimized when the OTF of the imaging system is nearly limited to the sampling passband to minimize aliasing at the cost of blurring, and the SNR is very high to permit the retrieval of small spatial detail from the extensively blurred signal. Shading the lens aperture transmittance to increase depth of field and using a regular hexagonal sensor-array instead of square lattice to decrease sensitivity to edge orientation also improves the signal information density up to about 30 percent at high SNRs.

  4. Curvilinear 3-D Imaging Using Row--Column-Addressed 2-D Arrays with a Diverging Lens: Feasibility Study

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Beers, Christopher

    2017-01-01

    Constructing a double-curved row–columnaddressed (RCA) 2-D array or applying a diverging lens over the flat RCA 2-D array can extend the imaging field-of-view (FOV) to a curvilinear volume without increasing the aperture size, which is necessary for applications such as abdominal and cardiac imag...... of this study demonstrate that the proposed beamforming approach is accurate for achieving correct time-of-flight calculations, and hence avoids geometrical distortions....

  5. Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays.

    Science.gov (United States)

    Gurun, Gokce; Hasler, Paul; Degertekin, F

    2011-08-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for highfrequency intravascular ultrasound imaging. A custom 8-inch (20-cm) wafer is fabricated in a 0.35-μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range, and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input-referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulseecho measurement. Transducer-noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 to 20 MHz.

  6. Monolayer suppression of transport imaged in annealed PbSe nanocrystal arrays.

    Science.gov (United States)

    Fischbein, Michael D; Puster, Matthew; Drndic, Marija

    2010-06-09

    We use correlated electrostatic force, transmission electron, and atomic force microscopy (EFM, TEM, and AFM) to visualize charge transport in monolayers and up to five layers of PbSe nanocrystal arrays drop-cast on electrode devices. Charge imaging reveals that current paths are dependent on the locally varying thickness and continuity of an array. Nanocrystal monolayers show suppressed conduction compared to bilayers and other multilayers, suggesting a departure from linear scaling of conductivity with array thickness. Moreover, multilayer regions appear electrically isolated if connected solely by a monolayer. Partial suppression is also observed within multilayer regions that contain narrow junctions only several nanocrystals wide. High-resolution TEM structural imaging of the measured devices reveals a larger reduction of inter-nanocrystal spacing in multilayers compared to monolayers upon vacuum-annealing, offering a likely explanation for the difference in conductivity between these two cases. This restriction of transport by monolayers and narrow junctions is an important factor that must be addressed in future designs of optoelectronic devices based on nanocrystals.

  7. Combining Multiple Electrode Arrays for Two-Dimensional Electrical Resistivity Imaging Using the Unsupervised Classification Technique

    Science.gov (United States)

    Ishola, K. S.; Nawawi, M. N. M.; Abdullah, K.

    2015-06-01

    This article describes the use of k-means clustering, an unsupervised image classification technique, to help interpret subsurface targets. The k-means algorithm is employed to combine and classify the two-dimensional (2D) inverse resistivity models obtained from three different electrode arrays. The algorithm is initialized through the selection of the number of clusters, number of iterations and other parameters such as stopping criteria. Automatically, it seeks to find groups of closely related resistivity values that belong to the same cluster and are more similar to each other than resistivity values belonging to other clusters. The approach is applied to both synthetic and field data. The 2D postinversions of the resistivity data were preprocessed by resampling and interpolating to the same coordinate. Following the preprocessing, the three images are combined into a single classified image. All the image preprocessing, manipulation and analysis are performed using the PCI Geomatics software package. The results of the clustering and classification are presented as classified images. An assessment of the performance of the individual and combined images for the synthetic models is carried out using an error matrix, mean absolute error and mean absolute percent error. The estimated errors show that images obtained from maximum values of the reconstructed resistivity for the different models give the best representation of the true models. Additionally, the overall accuracy and kappa values show good agreement between the combined classified images and true models. Depending on the model, the overall accuracy ranges from 86 to 99 %, while the kappa coefficient is in the range of 54-98 %. Classified images with kappa coefficients greater than 0.8 show strong agreement, while images with kappa coefficients greater than 0.5 but less than 0.8 give moderate agreement. For the field data, the k-mean classifier produces images that incorporate structural features of

  8. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Science.gov (United States)

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  9. A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM

    Directory of Open Access Journals (Sweden)

    Changhyuk Lee

    2016-09-01

    Full Text Available We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1 a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2 integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS technology and characterized without any post-processing.

  10. Water management in a planar air-breathing fuel cell array using operando neutron imaging

    Science.gov (United States)

    Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.

    2016-11-01

    Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.

  11. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging

    Science.gov (United States)

    Berthing, Trine; Bonde, Sara; Rostgaard, Katrine R.; Hannibal Madsen, Morten; Sørensen, Claus B.; Nygård, Jesper; Martinez, Karen L.

    2012-10-01

    The perspectives offered by vertical arrays of nanowires for biosensing applications in living cells depend on the access of individual nanowires to the cell interior. Recent results on electrical access and molecular delivery suggest that direct access is not always obtained. Here, we present a generic approach to directly visualize the membrane conformation of living cells interfaced with nanowire arrays, with single nanowire resolution. The method combines confocal z-stack imaging with an optimized cell membrane labelling strategy which was applied to HEK293 cells interfaced with 2-11 μm long and 3-7 μm spaced nanowires with various surface coatings (bare, aminosilane-coated or polyethyleneimine-coated indium arsenide). We demonstrate that, for all commonly used nanowire lengths, spacings and surface coatings, nanowires generally remain enclosed in a membrane compartment, and are thereby not in direct contact with the cell interior.

  12. A novel MEMS-based focal plane array for infrared imaging

    Institute of Scientific and Technical Information of China (English)

    LI Chaobo; JIAO Binbin; SHI Shali; YE Tianchun; CHEN Dapeng; ZHANG Qingchuan; GUO Zheying; DONG Fengliang; WU Xiaoping

    2007-01-01

    On the basis of opto-mechanical effect and micro electromechanical system(MEMS)technology,a novel substrate-free focal plane array(FPA)with the thermal isolated structure for uncooled infrared imaging is developed,even as alternate evaporated Au on SiN cantilever is used for thermal isolation.A human thermal image is obtained successfully by using the infrared imaging system composed of the FPA and optical detecting system.The experiment results show that the realization of thermal isolation structure in substrate-free FPA increases the temperature rise of the deflecting leg effectively,whereas the noise equivalent temperature difierence(NETDl is about 200 mK.

  13. Supplemental Blue LED Lighting Array to Improve the Signal Quality in Hyperspectral Imaging of Plants

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Mahlein

    2015-06-01

    Full Text Available Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400–500 nm of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs with an emission peak at 470 nm.

  14. High-throughput fiber-array transvaginal ultrasound/photoacoustic probe for ovarian cancer imaging

    Science.gov (United States)

    Salehi, Hassan S.; Kumavor, Patrick D.; Alqasemi, Umar; Li, Hai; Wang, Tianheng; Zhu, Quing

    2014-03-01

    A high-throughput ultrasound/photoacoustic probe for delivering high contrast and signal-to-noise ratio images was designed, constructed, and tested. The probe consists of a transvaginal ultrasound array integrated with four 1mm-core optical fibers and a sheath. The sheath encases transducer and is lined with highly reflecting aluminum for high intensity light output and uniformity while at the same time remaining below the maximum permissible exposure (MPE) recommended by the American National Standards Institute (ANSI). The probe design was optimized by simulating the light fluence distribution in Zemax. The performance of the probe was evaluated by experimental measurements of the fluence and real-time imaging of polyethylene-tubing filled with blood. These results suggest that our probe has great potential for in vivo imaging and characterization of ovarian cancer.

  15. Advanced 3-D Ultrasound Imaging: 3-D Synthetic Aperture Imaging using Fully Addressed and Row-Column Addressed 2-D Transducer Arrays

    DEFF Research Database (Denmark)

    Bouzari, Hamed

    with transducer arrays using this addressing scheme, when integrated into probe handles. For that reason, two in-house prototyped 62+62 row-column addressed 2-D array transducer probes were manufactured using capacitive micromachined ultrasonic transducer (CMUT) and piezoelectric transducer (PZT) technology...... in many clinical applications. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D ultrasound imaging. Two limiting factors have traditionally been the low image quality as well as low volume rate achievable with a 2-D transducer array using the conventional 3-D...... and measurements with the ultrasound research scanner SARUS and a 3.8 MHz 1024 element 2-D transducer array. In all investigations, 3-D synthetic aperture imaging achieved a better resolution, lower side-lobes, higher contrast, and better signal to noise ratio than parallel beamforming. This is achieved partly...

  16. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.

    Science.gov (United States)

    Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan

    2013-10-21

    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.

  17. In vivo visualization of robotically implemented synthetic tracked aperture ultrasound (STRATUS) imaging system using curvilinear array

    Science.gov (United States)

    Zhang, Haichong K.; Aalamifar, Fereshteh; Boctor, Emad M.

    2016-04-01

    Synthetic aperture for ultrasound is a technique utilizing a wide aperture in both transmit and receive to enhance the ultrasound image quality. The limitation of synthetic aperture is the maximum available aperture size limit determined by the physical size of ultrasound probe. We propose Synthetic-Tracked Aperture Ultrasound (STRATUS) imaging system to overcome the limitation by extending the beamforming aperture size through ultrasound probe tracking. With a setup involving a robotic arm, the ultrasound probe is moved using the robotic arm, while the positions on a scanning trajectory are tracked in real-time. Data from each pose are synthesized to construct a high resolution image. In previous studies, we have demonstrated the feasibility through phantom experiments. However, various additional factors such as real-time data collection or motion artifacts should be taken into account when the in vivo target becomes the subject. In this work, we build a robot-based STRATUS imaging system with continuous data collection capability considering the practical implementation. A curvilinear array is used instead of a linear array to benefit from its wider capture angle. We scanned human forearms under two scenarios: one submerged the arm in the water tank under 10 cm depth, and the other directly scanned the arm from the surface. The image contrast improved 5.51 dB, and 9.96 dB for the underwater scan and the direct scan, respectively. The result indicates the practical feasibility of STRATUS imaging system, and the technique can be potentially applied to the wide range of human body.

  18. Distinct annular oligomers captured along the assembly and disassembly pathways of transthyretin amyloid protofibrils.

    Directory of Open Access Journals (Sweden)

    Ricardo H Pires

    Full Text Available BACKGROUND: Defects in protein folding may lead to severe degenerative diseases characterized by the appearance of amyloid fibril deposits. Cytotoxicity in amyloidoses has been linked to poration of the cell membrane that may involve interactions with amyloid intermediates of annular shape. Although annular oligomers have been detected in many amyloidogenic systems, their universality, function and molecular mechanisms of appearance are debated. METHODOLOGY/PRINCIPAL FINDINGS: We investigated with high-resolution in situ atomic force microscopy the assembly and disassembly of transthyretin (TTR amyloid protofibrils formed of the native protein by pH shift. Annular oligomers were the first morphologically distinct intermediates observed in the TTR aggregation pathway. Morphological analysis suggests that they can assemble into a double-stack of octameric rings with a 16 ± 2 nm diameter, and displaying the tendency to form linear structures. According to light scattering data coupled to AFM imaging, annular oligomers appeared to undergo a collapse type of structural transition into spheroid oligomers containing 8-16 monomers. Disassembly of TTR amyloid protofibrils also resulted in the rapid appearance of annular oligomers but with a morphology quite distinct from that observed in the assembly pathway. CONCLUSIONS/SIGNIFICANCE: Our observations indicate that annular oligomers are key dynamic intermediates not only in the assembly but also in the disassembly of TTR protofibrils. The balance between annular and more compact forms of aggregation could be relevant for cytotoxicity in amyloidogenic disorders.

  19. Interventional multispectral photoacoustic imaging with a clinical linear array ultrasound probe for guiding nerve blocks

    Science.gov (United States)

    Xia, Wenfeng; West, Simeon J.; Nikitichev, Daniil I.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2016-03-01

    Accurate identification of tissue structures such as nerves and blood vessels is critically important for interventional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challenging, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA) system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe. Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimulation. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with clinical translation are discussed.

  20. Self characterization of a coded aperture array for neutron source imaging

    Energy Technology Data Exchange (ETDEWEB)

    Volegov, P. L., E-mail: volegov@lanl.gov; Danly, C. R.; Guler, N.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N. [Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-12-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.

  1. Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

    Directory of Open Access Journals (Sweden)

    Stewart Santos

    2011-04-01

    Full Text Available We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA-based image enhancement approach and the “model-based” descriptive experiment design (DEED regularization paradigm are unified into a new dynamic experiment design (DYED regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.

  2. Quantitative annular dark field electron microscopy using single electron signals.

    Science.gov (United States)

    Ishikawa, Ryo; Lupini, Andrew R; Findlay, Scott D; Pennycook, Stephen J

    2014-02-01

    One of the difficulties in analyzing atomic resolution electron microscope images is that the sample thickness is usually unknown or has to be fitted from parameters that are not precisely known. An accurate measure of thickness, ideally on a column-by-column basis, parameter free, and with single atom accuracy, would be of great value for many applications, such as matching to simulations. Here we propose such a quantification method for annular dark field scanning transmission electron microscopy by using the single electron intensity level of the detector. This method has the advantage that we can routinely quantify annular dark field images operating at both low and high beam currents, and under high dynamic range conditions, which is useful for the quantification of ultra-thin or light-element materials. To facilitate atom counting at the atomic scale we use the mean intensity in an annular dark field image averaged over a primitive cell, with no free parameters to be fitted. To illustrate the potential of our method, we demonstrate counting the number of Al (or N) atoms in a wurtzite-type aluminum nitride single crystal at each primitive cell over the range of 3-99 atoms.

  3. Quantitative Microwave Imaging of Realistic Numerical Breast Phantoms Using an Enclosed Array of Multiband, Miniaturized Patch Antennas.

    Science.gov (United States)

    Burfeindt, Matthew J; Behdad, Nader; Van Veen, Barry D; Hagness, Susan C

    2012-01-01

    We present a 3-D microwave breast imaging study in which we reconstruct the dielectric profiles of MRI-derived numerical breast phantoms from simulated array measurements using an enclosed array of multiband, miniaturized patch antennas. The array is designed to overcome challenges relating to the ill-posed nature of the inverse scattering system. We use a multifrequency formulation of the distorted Born iterative method to image four normal-tissue breast phantoms, each corresponding to a different density class. The reconstructed fibroglandular distributions are very faithful to the true distributions in location and basic shape. These results establish the feasibility of using an enclosed array of miniaturized, multiband patch antennas for quantitative microwave breast imaging.

  4. Perspective rectification of integral images produced using arrays of circular lenses.

    Science.gov (United States)

    Koufogiannis, E T; Sgouros, N P; Sangriotis, M S

    2013-07-10

    There are many different three-dimensional (3D) techniques to capture and deliver autostereoscopic 3D content. A promising technique that provides two-dimensional parallax as well as high-quality, full-color 3D content is integral imaging (InI). Misalignments between the lens arrays (LAs) and the camera charged coupled device, however, introduce geometric distortions in the acquired image that propagate through the different image processing stages and deteriorate the 3D effect. Here, we propose a method to accurately rectify the perspective distortion of integral images (InIms) generated using circular lenses. Using an edge-linking approach, we extracted elliptically shaped contours of elemental images in the perspectively distorted InIm. To calculate the rectification matrix, we used the images of the circular points. Subsequently, we applied a triangulation scheme followed by a statistical approach to accurately estimate the grid structure of the LA. Finally, we provided experimental results over a wide range of InIms to evaluate the robustness and accuracy of the proposed method using objective metrics.

  5. Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition.

    Science.gov (United States)

    Park, Chulhee; Kang, Moon Gi

    2016-05-18

    A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors.

  6. An LTCC Based Compact SIW Antenna Array Feed Network for a Passive Imaging Radiometer

    KAUST Repository

    Abuzaid, Hattan

    2013-02-05

    Passive millimeter-wave (PMMW) imaging is a technique that allows the detection of inherent millimeter-wave radiation emitted by bodies. Since different bodies with varying properties emit unequal power intensities, a contrast can be established to detect their presence. The advantage of this imaging scheme over other techniques, such as optical and infrared imaging, is its ability to operate under all weather conditions. This is because the relatively long wavelengths of millimeter-waves, as compared to visible light, penetrate through clouds, fog, and sandstorms. The core of a PMMW camera is an antenna, which receives the electromagnetic radiation from a scene. Because PMMW systems require high gains to operate, large antenna arrays are typically employed. This mandatory increase of antenna elements is associated with a large feeding network. Therefore, PMMW cameras usually have a big profile. In this work, two enabling technologies, namely, Substrate integrated Waveguide (SIW) and Low Temperature Co-fired Ceramic (LTCC), are coupled with an innovative design to miniaturize the passive front-end. The two technologies synergize very well with the shielded characteristics of SIW and the high density multilayer integration of LTCC. The proposed design involves a novel multilayer power divider, which is incorporated in a folded feed network structure by moving between layers. The end result is an efficient feeding network, which footprint is least affected by an increase in array size. This is because the addition of more elements is accommodated by a vertical expansion rather than a lateral one. To characterize the feed network, an antenna array has been designed and integrated through efficient transitions.The complete structure has been simulated and fabricated. The results demonstrate an excellent performance, manifesting in a gain of 20 dBi and a bandwidth of more than 11.4% at 35 GHz. These values satisfy the general requirements of a PMMW system.

  7. Vibration of an eccentrically clamped annular plate

    Science.gov (United States)

    Tseng, J.-G.; Wickert, J. A.

    1994-04-01

    Small amplitude vibration of an eccentric annular plate, which is free along its outer edge and clamped along the interior, is investigated through experimental and analytical methods. A disk with this geometry, or a stacked array in which the clamping and symmetry axes of each disk are nominally coincident, is common in data storage and brake systems applications. In the present case, the geometric imperfections on the boundary can have important implications for the disk's dynamic response. Changes that occur in the natural frequency spectrum, the mode shapes, and the free response under eccentric mounting are studied through laboratory measurements and an approximate discrete model of the plate. The natural frequencies and modes are found through global discretization of the Kamke quotient for a classical thin plate. For the axisymmetric geometry, the natural frequencies of the sine and cosine vibration modes for a specified number of nodal diameters are repeated. With increasing eccentricity, on the other hand, each pair of repeated frequencies splits at a rate that depends on the number of nodal diameters. Over a range of clamping and eccentricity ratios, the model's predictions are compared to the measured results.

  8. Evaluation of GM-APD array devices for low-light-level imaging

    Science.gov (United States)

    Kolb, Kimberly; Hanold, Brandon; Lee, Joong; Figer, Donald F.

    2014-05-01

    The ability to count single photons is necessary to achieve many important science objectives in the near future. This paper presents the lab-tested performance of a photon-counting array-based Geiger-mode avalanche photodiode (GMAPD) device in the context of low-light-level imaging. Testing results include dark count rate, afterpulsing probability, intra-pixel sensitivity, and photon detection efficiency, and the effects of radiation damage on detector performance. The GM-APD detector is compared to the state-of-the-art performance of other established detectors using Signal-to-noise ratio as the overall evaluation metric.

  9. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  10. Soliton bunching in annular Josephson junctions

    DEFF Research Database (Denmark)

    Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter

    1996-01-01

    By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used...

  11. Field computation for two-dimensional array transducers with limited diffraction array beams.

    Science.gov (United States)

    Lu, Jian-Yu; Cheng, Jiqi

    2005-10-01

    A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.

  12. Tactile soft-sparse mean fluid-flow imaging with a robotic whisker array.

    Science.gov (United States)

    Tuna, Cagdas; Jones, Douglas L; Kamalabadi, Farzad

    2015-08-04

    An array of whiskers is critical to many mammals to survive in their environment. However, current engineered systems generally employ vision, radar or sonar to explore the surroundings, not having sufficiently benefited from tactile perception. Inspired by the whisking animals, we present here a novel tomography-based tactile fluid-flow imaging technique for the reconstruction of surroundings with an artificial whisker array. The moment sensed at the whisker base is the weighted integral of the drag force per length, which is proportional to the relative velocity squared on a whisker segment. We demonstrate that the 2D cross-sectional mean fluid-flow velocity-field can be successfully mapped out by collecting moment measurements at different angular positions with the whisker array. We use a regularized version of the FOCal underdetermined system solver algorithm with a smoothness constraint to obtain soft-sparse static estimates of the 2D cross-sectional velocity-squared distribution. This new proposed approach has the strong potential to be an alternative environmental sensing technology, particularly in dark or murky environments.

  13. OpenMSI Arrayed Analysis Toolkit: Analyzing Spatially Defined Samples Using Mass Spectrometry Imaging.

    Science.gov (United States)

    de Raad, Markus; de Rond, Tristan; Rübel, Oliver; Keasling, Jay D; Northen, Trent R; Bowen, Benjamin P

    2017-06-06

    Mass spectrometry imaging (MSI) has primarily been applied in localizing biomolecules within biological matrices. Although well-suited, the application of MSI for comparing thousands of spatially defined spotted samples has been limited. One reason for this is a lack of suitable and accessible data processing tools for the analysis of large arrayed MSI sample sets. The OpenMSI Arrayed Analysis Toolkit (OMAAT) is a software package that addresses the challenges of analyzing spatially defined samples in MSI data sets. OMAAT is written in Python and is integrated with OpenMSI ( http://openmsi.nersc.gov ), a platform for storing, sharing, and analyzing MSI data. By using a web-based python notebook (Jupyter), OMAAT is accessible to anyone without programming experience yet allows experienced users to leverage all features. OMAAT was evaluated by analyzing an MSI data set of a high-throughput glycoside hydrolase activity screen comprising 384 samples arrayed onto a NIMS surface at a 450 μm spacing, decreasing analysis time >100-fold while maintaining robust spot-finding. The utility of OMAAT was demonstrated for screening metabolic activities of different sized soil particles, including hydrolysis of sugars, revealing a pattern of size dependent activities. These results introduce OMAAT as an effective toolkit for analyzing spatially defined samples in MSI. OMAAT runs on all major operating systems, and the source code can be obtained from the following GitHub repository: https://github.com/biorack/omaat .

  14. OpenMSI Arrayed Analysis Toolkit: Analyzing Spatially Defined Samples Using Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    de Raad, Markus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); de Rond, Tristan [Univ. of California, Berkeley, CA (United States); Rübel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Keasling, Jay D. [Univ. of California, Berkeley, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Technical Univ. of Denmark, Lyngby (Denmark); Northen, Trent R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Bowen, Benjamin P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2017-05-03

    Mass spectrometry imaging (MSI) has primarily been applied in localizing biomolecules within biological matrices. Although well-suited, the application of MSI for comparing thousands of spatially defined spotted samples has been limited. One reason for this is a lack of suitable and accessible data processing tools for the analysis of large arrayed MSI sample sets. In this paper, the OpenMSI Arrayed Analysis Toolkit (OMAAT) is a software package that addresses the challenges of analyzing spatially defined samples in MSI data sets. OMAAT is written in Python and is integrated with OpenMSI (http://openmsi.nersc.gov), a platform for storing, sharing, and analyzing MSI data. By using a web-based python notebook (Jupyter), OMAAT is accessible to anyone without programming experience yet allows experienced users to leverage all features. OMAAT was evaluated by analyzing an MSI data set of a high-throughput glycoside hydrolase activity screen comprising 384 samples arrayed onto a NIMS surface at a 450 μm spacing, decreasing analysis time >100-fold while maintaining robust spot-finding. The utility of OMAAT was demonstrated for screening metabolic activities of different sized soil particles, including hydrolysis of sugars, revealing a pattern of size dependent activities. Finally, these results introduce OMAAT as an effective toolkit for analyzing spatially defined samples in MSI. OMAAT runs on all major operating systems, and the source code can be obtained from the following GitHub repository: https://github.com/biorack/omaat.

  15. Piezoelectric Micromachined Ultrasound Transducer (PMUT Arrays for Integrated Sensing, Actuation and Imaging

    Directory of Open Access Journals (Sweden)

    Yongqiang Qiu

    2015-04-01

    Full Text Available Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs, diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

  16. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging.

    Science.gov (United States)

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-04-03

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

  17. Adaptive beamforming for array imaging of plate structures using lamb waves.

    Science.gov (United States)

    Engholm, Marcus; Stepinski, Tadeusz

    2010-12-01

    Lamb waves are considered a promising tool for the monitoring of plate structures. Large areas of plate structures can be monitored using active arrays employing beamforming techniques. Dispersion and multiple propagating modes are issues that need to be addressed when working with Lamb waves. Previous work has mainly focused on standard delay-and-sum (DAS) beamforming while reducing the effects of multiple modes through frequency selectivity and transducer design. This paper presents a minimum variance distortionless response (MVDR) approach for Lamb waves using a uniform rectangular array (URA) and a single transmitter. Theoretically calculated dispersion curves are used to compensate for dispersion. The combination of the MVDR approach and the two-dimensional array improves the suppression of interfering Lamb modes. The proposed approach is evaluated on simulated and experimental data and compared with the standard DAS beamformer. It is shown that the MVDR algorithm performs better in terms of higher resolution and better side lobe and mode suppression capabilities. Known issues of the MVDR approach, such as signal cancellation in highly correlated environments and poor robustness, are addressed using methods that have proven effective for the purpose in other fields of active imaging.

  18. Optimum annular focusing by a phase plate

    CERN Document Server

    Arrizón, Victor; Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel

    2015-01-01

    Conventional light focusing, i. e. concentration of an extended optical field within a small area around a point, is a frequently used process in Optics. An important extension to conventional focusing is the generation of the annular focal field of an optical beam. We discuss a simple optical setup that achieves this kind of focusing employing a phase plate as unique optical component. We first establish the class of beams that being transmitted through the phase plate can be focused into an annular field with topological charge of arbitrary integer order q. Then, for each beam in this class we determine the plate transmittance that generates the focal field with the maximum possible peak intensity. In particular, we discuss and implement experimentally the optimum annular focusing of a Gaussian beam. The attributes of optimum annular focal fields, namely the high peak intensity, intensity gradient and narrow annular section, are advantageous for different applications of such structured fields.

  19. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  20. Real-time 3D display system based on computer-generated integral imaging technique using enhanced ISPP for hexagonal lens array.

    Science.gov (United States)

    Kim, Do-Hyeong; Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Jeong, Ji-Seong; Lee, Jae-Won; Kim, Kyung-Ah; Kim, Nam; Yoo, Kwan-Hee

    2013-12-01

    This paper proposes an open computer language (OpenCL) parallel processing method to generate the elemental image arrays (EIAs) for hexagonal lens array from a three-dimensional (3D) object such as a volume data. Hexagonal lens array has a higher fill factor compared to the rectangular lens array case; however, each pixel of an elemental image should be determined to belong to the single hexagonal lens. Therefore, generation for the entire EIA requires very large computations. The proposed method reduces processing time for the EIAs for a given hexagonal lens array. By using the proposed image space parallel processing (ISPP) method, it can enhance the processing speed that generates the 3D display of real-time interactive integral imaging for hexagonal lens array. In our experiment, we implemented the EIAs for hexagonal lens array in real-time and obtained a good processing time for a large of volume data for multiple cases of lens arrays.

  1. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array

    Science.gov (United States)

    Acconcia, Christopher N.; Jones, Ryan M.; Goertz, David E.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2017-09-01

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  2. High-dynamic range image projection using an auxiliary MEMS mirror array.

    Science.gov (United States)

    Hoskinson, Reynald; Stoeber, Boris

    2008-05-12

    We introduce a new concept to improve the contrast and peak brightness of conventional data projectors. Our method provides a non-homogenous light source by dynamically directing fractions of the light from the projector lamp before it reaches the display mechanism. This will supply more light to the areas that need it most, at the expense of the darker parts of the image. In effect, this method will produce a low resolution version of the image onto the image-forming element. To manipulate the light in this manner, we propose using an intermediate array of microelectromechanical system (MEMS) mirrors. By directing the light away from the dark parts earlier in the display chain, the amount of light that needs to be blocked will be reduced, thus decreasing the black level of the final image. Moreover, the ability to dynamically allocate more light to the bright parts of the image will allow for peak brightness higher than the average maximum brightness of display.

  3. Interferometric imaging with the 32 element Murchison Wide-field Array

    CERN Document Server

    Ord, S M; Wayth, R B; Greenhill, L J; Bernardi, G; Gleadow, S; Edgar, R G; Clark, M A; Allen, G; Arcus, W; Benkevitch, L; Bowman, J D; Briggs, F H; Bunton, J D; Burns, S; Cappallo, R J; Coles, W A; Corey, B E; deSouza, L; Doeleman, S S; Derome, M; Deshpande, A; Emrich, D; Goeke, R; Gopalakrishna, M R; Herne, D; Hewitt, J N; Kamini, P A; Kaplan, D L; Kasper, J C; Kincaid, B B; Kocz, J; Kowald, E; Kratzenberg, E; Kumar, D; Lonsdale, C J; Lynch, M J; McWhirter, S R; Madhavi, S; Matejek, M; Morales, M F; Morgan, E; Oberoi, D; Pathikulangara, J; Prabu, T; Rogers, A E E; Roshi, A; Salah, J E; Schinkel, A; Shankar, N Udaya; Srivani, K S; Stevens, J; Tingay, S J; Vaccarella, A; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C

    2010-01-01

    The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.

  4. Radiation tolerant compact image sensor using CdTe photodiode and field emitter array (Conference Presentation)

    Science.gov (United States)

    Masuzawa, Tomoaki; Neo, Yoichiro; Mimura, Hidenori; Okamoto, Tamotsu; Nagao, Masayoshi; Akiyoshi, Masafumi; Sato, Nobuhiro; Takagi, Ikuji; Tsuji, Hiroshi; Gotoh, Yasuhito

    2016-10-01

    A growing demand on incident detection is recognized since the Great East Japan Earthquake and successive accidents in Fukushima nuclear power plant in 2011. Radiation tolerant image sensors are powerful tools to collect crucial information at initial stages of such incidents. However, semiconductor based image sensors such as CMOS and CCD have limited tolerance to radiation exposure. Image sensors used in nuclear facilities are conventional vacuum tubes using thermal cathodes, which have large size and high power consumption. In this study, we propose a compact image sensor composed of a CdTe-based photodiode and a matrix-driven Spindt-type electron beam source called field emitter array (FEA). A basic principle of FEA-based image sensors is similar to conventional Vidicon type camera tubes, but its electron source is replaced from a thermal cathode to FEA. The use of a field emitter as an electron source should enable significant size reduction while maintaining high radiation tolerance. Current researches on radiation tolerant FEAs and development of CdTe based photoconductive films will be presented.

  5. Comparison of Vector Velocity Imaging using Directional Beamforming and Transverse Oscillation for a Convex Array Transducer

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    rig with a stationary, laminar flow, and the volume flow was measured by a MAG 3000 (Danfos, Sønderbog, Denmark) magnetic flow meter for reference. Data were beamformed with an optimized transverse oscillation scheme for the TO VFI, and standard fourth-order estimators were employed for the velocity......Vector velocity imaging can reveal both the magnitude and direction of the blood velocity. Several techniques have been suggested for estimating the velocity, and this paper compares the performance for directional beamforming and transverse oscillation (TO) vector flow imaging (VFI). Data have...... been acquired using the SARUS experimental ultrasound scanner connected to a BK 8820e (BK Medical, Herlev, Denmark) convex array probe with 192 active elements. A duplex sequence with 129 B-mode emissions interleaved with 129 flow emissions has been made. The flow was generated in a recirculating flow...

  6. Frequency-difference MIT imaging of cerebral haemorrhage with a hemispherical coil array: numerical modelling.

    Science.gov (United States)

    Zolgharni, M; Griffiths, H; Ledger, P D

    2010-08-01

    The feasibility of detecting a cerebral haemorrhage with a hemispherical MIT coil array consisting of 56 exciter/sensor coils of 10 mm radius and operating at 1 and 10 MHz was investigated. A finite difference method combined with an anatomically realistic head model comprising 12 tissue types was used to simulate the strokes. Frequency-difference images were reconstructed from the modelled data with different levels of the added phase noise and two types of a priori boundary errors: a displacement of the head and a size scaling error. The results revealed that a noise level of 3 m degrees (standard deviation) was adequate for obtaining good visualization of a peripheral stroke (volume approximately 49 ml). The simulations further showed that the displacement error had to be within 3-4 mm and the scaling error within 3-4% so as not to cause unacceptably large artefacts on the images.

  7. First astronomical images obtained with an array of multiplexed superconducting bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Staguhn, J.G. [NASA/GSFC, Greenbelt, MD 20771 (United States) and SSAI, 10210 Greenbelt Road, Lanham, MD 20706 (United States)]. E-mail: johannes.staguhn@gsfc.nasa.gov; Benford, D.J. [NASA/GSFC, Greenbelt, MD 20771 (United States); Moseley, S.H. [NASA/GSFC, Greenbelt, MD 20771 (United States); Allen, C.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Kennedy, C.R. [NASA/GSFC, Greenbelt, MD 20771 (United States); Notre Dame University, Notre Dame, IN 46556 (United States); Lefranc, S. [Institut d' Astrophysique Spatiale, Orsay (France); Maher, S.F. [NASA/GSFC, Greenbelt, MD 20771 (United States); SSAI, 10210 Greenbelt Road, Lanham, MD 20706 (United States); Pajot, F. [Institut d' Astrophysique Spatiale, Orsay (France); Rioux, C. [Institut d' Astrophysique Spatiale, Orsay (France); Shafer, R.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Voellmer, G.M. [NASA/GSFC, Greenbelt, MD 20771 (United States)

    2006-04-15

    We present multicolor images of Jupiter observed in the 350{mu}m band with the first deployed astronomical instrument to use multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that made these images in July 2004 at the Caltech Submillimeter Observatory (CSO). FIBREs detectors are superconducting bilayer transition edge sensor (TES) bolometers read out by a SQUID multiplexer. An order-sorted Fabry-Perot provides illumination of a 16-element linear bolometer array, resulting in five orders at a spectral resolution R of 1200 covering a band of 17 of the observed wavelength. The optics permit these orders to be scanned to cover the entirety of either the 350 or 450{mu}m bands.

  8. [Generalized granuloma annulare or diffuse dermal histiocytosis?].

    Science.gov (United States)

    Kretzschmar, L; Biel, K; Luger, T A; Goerdt, S

    1995-08-01

    Generalized granuloma annulare is a rare variant of granuloma annulare affecting the trunk and extremities with a multitude of lesions. In contrast to localized granuloma annulare, generalized granuloma annulare occurs in older patients, shows a stronger association with diabetes, and is characteristically chronic. Like our 55-year-old patient, most patients present with papules and annular plaques; less often, macular or non-annular lesions may be encountered. Histology often fails to show necrobiotic or necrotic connective tissue changes demarcated by a palisading granuloma. Instead, there are diffuse dermal, band-like or nodular aggregations of histiocytes intermingled with some multinucleated giant cells and a predominantly lymphocytic infiltrate in the periphery. Because of its special characteristics, it has been suggested that generalized granuloma annulare might constitute a separate disease entity and that it should be classed among the primary cutaneous histiocytoses as a diffuse dermal histiocytosis. Using immunohistochemistry to determine the macrophage phenotype of the lesional histiocytes, we have shown that generalized granuloma annulare is not a cutaneous histiocytosis. Neither MS-1 high-molecular-weight protein, a new specific marker for cutaneous non-Langerhans cell histiocytoses, nor CD1a, the well-known marker for Langerhans cells and Langerhans cell histiocytoses, is expressed by the lesional histiocytes of our patient. In contrast, the antigen expression pattern was diagnostic for non-infectious granulomas and was highly similar to that in localized granuloma annulare. In contrast to the successful treatment of localized granuloma annulare reported with intralesional interferon beta-1, systemic treatment with interferon alpha-2b (9 x 10(6) units three times a week) was ineffective.

  9. VIDA (Vlti Imaging with a Densified Array), a densified pupil combiner proposed for snapshot imaging with the VLTI

    Science.gov (United States)

    Lardiere, Olivier; Labeyrie, Antoine; Mourard, Denis; Riaud, Pierre; Arnold, Luc; Dejonghe, Julien; Gillet, Sophie

    2003-02-01

    Only in the recent years did it become realized that multi-aperture interferometric arrays could provide direct snapshot images and coronagraphic images in a non-Fizeau mode. Whereas homothetic mapping of entrance pupil to exit pupil is useless when the aperture is higly diluted, a "densified-pupil" or "hypertelescope" imaging mode can concentrate most light into a high-resolution Airy peak. In addition to the luminosity gain, there is a contrast gain particularly valuable for stellar coronagraphy and exoplanets finding. The current VLTI is able to combine light from two telescopes coherently. In subsequent phases, a combiner is planned for applying closure phase with up to eight telescopes (UT and AT). The small number of apertures currently considered at the VLTI, does not take full advantage of hypertelescope imaging, but still performs significantly better than other observing modes (+3.8mag gain in comparison with Fizeau mode). We propose some possible optical scheme for a densified-pupil combiner for the VLTI. Beyond its science value, the proposed instrument can serve as a precursor for many-element post-VLTI hypertelescopes.

  10. First imaging results from Apertif, a phased-array feed for WSRT

    Science.gov (United States)

    Adams, Elizabeth A.; Adebahr, Björn; de Blok, Willem J. G.; Hess, Kelley M.; Hut, Boudewijn; Lucero, Danielle M.; Maccagni, Filippo; Morganti, Raffaella; Oosterloo, Tom; Staveley-Smith, Lister; van der Hulst, Thijs; Verheijen, Marc; Verstappen, Joris

    2017-01-01

    Apertif is a phased-array feed for the Westerbork Synthesis Radio Telescope (WSRT), increasing the field of view of the telescope by a factor of twenty-five. In 2017, three legacy surveys will commence: a shallow imaging survey, a medium-deep imaging survey, and a pulsars and fast transients survey. The medium-deep imaging survey will include coverage of the northern Herschel Atlas field, the CVn region, HetDex, and the Perseus-Pisces supercluster. The shallow imaging survey increases overlap with HetDex, has expanded coverage of the Perseus-Pisces supercluster, and includes part of the Zone of Avoidance. Both imaging surveys are coordinating with MaNGA and will have WEAVE follow-up. The imaging surveys will be done in full polarization over the frequency range 1130-1430 MHz, which corresponds to redshifts of z=0-0.256 for neutral hydrogen (HI). The spectral resolution is 12.2 kHz, or an HI velocity resolution of 2.6 km/s at z=0 and 3.2 km/s at z=0.256. The full resolution images will have a beam size of 15"x15"/sin(declination), and tapered data products (i.e., 30" resolution images) will also be available. The shallow survey will cover ~3500 square degrees with a four-sigma HI imaging sensitivity of 2.5x10^20 atoms cm^-2 (20 km/s linewidth) at the highest resolution and a continuum sensitivity of 15 uJy/beam (11 uJy/beam for polarization data). The current plan calls for the medium deep survey to cover 450 square degrees and provide an HI imaging sensitivity of 1.0x10^20 atoms cm^-2 at the highest resolution and a continuum sensitivity of 6 uJy/beam, close to the confusion limit (4 uJy/beam for polarization data, not confusion limited). Up-to-date information on Apertif and the planned surveys can be found at: http://www.apertif.nl.Commissioning of the Apertif instrument is currently underway. Here we present first results from the image commissioning, including the detection of HI absorption plus continuum and HI imaging. These results highlight the data quality

  11. Distributed Read-out Imaging Device array for astronomical observations in UV/VIS

    Science.gov (United States)

    Hijmering, Richard A.

    2009-12-01

    STJ (Superconducting Tunneling Junctions) are being developed as spectro-photometers in wavelengths ranging from the NIR to X-rays. 10x12 arrays of STJs have already been successfully used as optical imaging spectrometers with the S-Cam 3, on the William Hershel Telescope on La Palma and on the Optical Ground Station on Tenerife. To overcome the limited field of view which can be achieved with single STJ arrays, DROIDS (Distributed Read Out Imaging Devices) are being developed which produce next to energy and timing also produce positional information with each detector element. These DROIDS consist of a superconducting absorber strip with proximized STJs on either end. The STJs are a Ta/Al/AlOx/Al/Ta 100/30/1/30/100nm sandwich of which the bottom electrode Ta layer is one with the 100nm thick absorber layer. The ratio of the two signals from the STJs provides information on the absorption position and the sum signal is a measure for the energy of the absorbed photon. In this thesis we present different important processes which are involved with the detection of optical photons using DROIDs. This includes the spatial and spectral resolution, confinement of the quasiparticles in the proximized STJs to enhance tunnelling and quasiparticle creation resulting from absorption of a photon in the proximized STJ. We have combined our findings in the development of a 2D theoretical model which describes the diffusion of quasiparticles and imperfect confinement via exchange of quasiparticles between the absorber and STJ. Finally we will present some of the first results obtained with an array of 60 360x33.5 μm2 DROIDs in 3x20 format.

  12. Uncooled Terahertz real-time imaging 2D arrays developed at LETI: present status and perspectives

    Science.gov (United States)

    Simoens, François; Meilhan, Jérôme; Dussopt, Laurent; Nicolas, Jean-Alain; Monnier, Nicolas; Sicard, Gilles; Siligaris, Alexandre; Hiberty, Bruno

    2017-05-01

    As for other imaging sensor markets, whatever is the technology, the commercial spread of terahertz (THz) cameras has to fulfil simultaneously the criteria of high sensitivity and low cost and SWAP (size, weight and power). Monolithic silicon-based 2D sensors integrated in uncooled THz real-time cameras are good candidates to meet these requirements. Over the past decade, LETI has been studying and developing such arrays with two complimentary technological approaches, i.e. antenna-coupled silicon bolometers and CMOS Field Effect Transistors (FET), both being compatible to standard silicon microelectronics processes. LETI has leveraged its know-how in thermal infrared bolometer sensors in developing a proprietary architecture for THz sensing. High technological maturity has been achieved as illustrated by the demonstration of fast scanning of large field of view and the recent birth of a commercial camera. In the FET-based THz field, recent works have been focused on innovative CMOS read-out-integrated circuit designs. The studied architectures take advantage of the large pixel pitch to enhance the flexibility and the sensitivity: an embedded in-pixel configurable signal processing chain dramatically reduces the noise. Video sequences at 100 frames per second using our 31x31 pixels 2D Focal Plane Arrays (FPA) have been achieved. The authors describe the present status of these developments and perspectives of performance evolutions are discussed. Several experimental imaging tests are also presented in order to illustrate the capabilities of these arrays to address industrial applications such as non-destructive testing (NDT), security or quality control of food.

  13. Low complexity MIMO sonar imaging using a virtual sparse linear array

    Institute of Scientific and Technical Information of China (English)

    Xionghou Liu; Chao Sun; Yixin Yang; Jie Zhuo; Yina Han

    2016-01-01

    A multiple-input multiple-output (MIMO) sonar can synthesize a large-aperture virtual uniform linear array (ULA) from a smal number of physical elements. However, the large aperture is obtained at the cost of a great number of matched filters with much heavy computation load. To reduce the com-putation load, a MIMO sonar imaging method using a virtual sparse linear array (SLA) is proposed, which contains the offline and online processing. In the offline processing, the virtual ULA of the MIMO sonar is thinned to a virtual SLA by the simulated annealing algorithm, and matched filters corre-sponding to inactive virtual elements are removed. In the online processing, outputs of matched filters corresponding to active elements are colected for further multibeam processing and hence, the number of matched filters in the echo proc-essing procedure is effectively reduced. Numerical simula-tions show that the proposed method can reduce the compu-tation load effectively while obtaining a similar imaging per-formance as the traditional method.

  14. Radiation tolerance of a Geiger-mode avalanche photodiode imaging array

    Science.gov (United States)

    Kolb, Kimberly E.; Figer, Donald F.; Lee, Joong; Hanold, Brandon J.

    2016-07-01

    Radiation testing results for a Geiger-mode avalanche photodiode (GM-APD) array-based imager are reviewed. Radiation testing is a crucial step in technology development that assesses the readiness of a specific device or instrument for space-based missions or other missions in high-radiation environments. Pre- and postradiation values for breakdown voltage, dark count rate (DCR), after pulsing probability, photon detection efficiency (PDE), crosstalk probability, and intrapixel sensitivity are presented. Details of the radiation testing setup and experiment are provided. The devices were exposed to a total dose of 50 krad(Si) at the Massachusetts General Hospital's Francis H. Burr Proton Therapy Center, using monoenergetic 60 MeV protons as the radiation source. This radiation dose is equivalent to radiation absorbed over 10 solar cycles at an L2 orbit with 1-cm aluminum shielding. The DCR increased by 2.3 e-/s/pix/krad(Si) at 160 K, the afterpulsing probability increased at all temperatures and settings by a factor of ˜2, and the effective breakdown voltage shifted by +1.5 V. PDE, crosstalk probability, and intrapixel sensitivity were unchanged by radiation damage. The performance of the GM-APD imaging array is compared to the performance of the CCD on board the ASCA satellite with a similar radiation shield and radiation environment.

  15. Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging

    Science.gov (United States)

    Wu, Yong; Hu, Wei; Tong, Qing; Lei, Yu; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2017-09-01

    In this paper, a new kind of liquid-crystal microlens array with graphene electrodes controlled electrically are designed and fabricated successfully. The graphene-based liquid-crystal microlens arrays (GLCMAs) exhibit excellent beam focusing performances in both the visible and near infrared (NIR) wavelength regions and also synthetic aperture imaging function. The graphene films used to fabricate the electrodes of the GLCMAs are grown by chemical vapor deposition over copper foils, demonstrating several characters of low sheet resistance and high transmittance in both wavelength ranges above. The key processes for shaping the GLCMAs include: transferring graphene films from copper foils to wafers selected, conventional UV-photolithography, ICP etching, and liquid-crystal encapsulation. Through performing common optical measurements, the point spread functions of incident lasers with different wavelength, such as red lasers of ∼600 nm, green lasers of ∼532 nm, and NIR lasers of ∼980 nm, have been obtained. Several key parameters including focal spots size, average normalized light intensity, focal length, average deviation rate and contrast ratio have been acquired and analyzed. A particular synthetic-aperture imaging based on the GLCMA is realized so as to certify a fact that a single target pattern can be constructed effectively based on some sub-aperture patterns with several tens or hundreds of micrometer scale, and thus highlight a way to fast process partial or small-zoned patterns for enhancing the detection efficiency of special targets.

  16. Imaging at Both Ends of the Spectrum: the Long Wavelength Array and Fermi

    CERN Document Server

    Taylor, G B

    2012-01-01

    The Long Wavelength Array (LWA) will be a new multi-purpose radio telescope operating in the frequency range 10-88 MHz. Scientific programs include pulsars, supernova remnants, general transient searches, radio recombination lines, solar and Jupiter bursts, investigations into the "dark ages" using redshifted hydrogen, and ionospheric phenomena. Upon completion, LWA will consist of 53 phased array "stations" distributed across a region over 400 km in diameter. Each station consists of 256 pairs of dipole-type antennas whose signals are formed into beams, with outputs transported to a central location for high-resolution aperture synthesis imaging. The resulting image sensitivity is estimated to be a few mJy (5sigma, 8 MHz, 2 polarizations, 1 h, zenith) from 20-80 MHz; with angular resolution of a few arcseconds. Additional information is online at http://lwa.unm.edu. Partners in the LWA project include LANL, JPL, NRL, UNM, NMT, and Virginia Tech. The full LWA will be a powerful instrument for the study of par...

  17. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays

    Science.gov (United States)

    Laborde, C.; Pittino, F.; Verhoeven, H. A.; Lemay, S. G.; Selmi, L.; Jongsma, M. A.; Widdershoven, F. P.

    2015-09-01

    Platforms that offer massively parallel, label-free biosensing can, in principle, be created by combining all-electrical detection with low-cost integrated circuits. Examples include field-effect transistor arrays, which are used for mapping neuronal signals and sequencing DNA. Despite these successes, however, bioelectronics has so far failed to deliver a broadly applicable biosensing platform. This is due, in part, to the fact that d.c. or low-frequency signals cannot be used to probe beyond the electrical double layer formed by screening salt ions, which means that under physiological conditions the sensing of a target analyte located even a short distance from the sensor (∼1 nm) is severely hampered. Here, we show that high-frequency impedance spectroscopy can be used to detect and image microparticles and living cells under physiological salt conditions. Our assay employs a large-scale, high-density array of nanoelectrodes integrated with CMOS electronics on a single chip and the sensor response depends on the electrical properties of the analyte, allowing impedance-based fingerprinting. With our platform, we image the dynamic attachment and micromotion of BEAS, THP1 and MCF7 cancer cell lines in real time at submicrometre resolution in growth medium, demonstrating the potential of the platform for label/tracer-free high-throughput screening of anti-tumour drug candidates.

  18. Super-Resolution Imaging by using a Metallic Rod Array in the Near Infrared Region

    Institute of Scientific and Technical Information of China (English)

    YAO Jie; YE Yong-Hong

    2012-01-01

    An array of metallic rods can transport details below the diffraction limit of an object from the front face to the back face. This super-resolution imaging system has been studied in the microwave, mid-infrared and optical range. We investigate its performance in the near infrared (1550 nm) region. Numerical simulations show that the near-field components of dipole sources are transferred by the excitation and propagation of the surface plasmon mode of the rods. The appropriate length of rods is determined by the excited surface plasmon mode. The spatial resolution is greatly affected by the loss of metal.%An array of metallic rods can transport details below the diffraction limit of an object from the front face to the back face.This super-resolution imaging system has been studied in the microwave,mid-infrared and optical range.We investigate its performance in the near infrared (1550nm) region.Numerical simulations show that the near-field components of dipole sources are transferred by the excitation and propagation of the surface plasmon mode of the rods.The appropriate length of rods is determined by the excited surface plasmon mode.The spatial resolution is greatly affected by the loss of metal.

  19. Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays

    Energy Technology Data Exchange (ETDEWEB)

    Love, Steven P [Los Alamos National Laboratory

    2008-01-01

    Hyperspectral imaging (HSI), in which each pixel contains a high-resolution spectrum, is a powerful technique that can remotely detect, identify, and quantify a multitude of materials and chemicals. The advent of addressable micro-mirror arrays (MMAs) makes possible a new class of programmable hyperspectral imagers that can perform key spectral processing functions directly in the optical hardware, thus alleviating some of HSI's high computational overhead, as well as offering improved signal-to-noise in certain important regimes (e.g. when using uncooled infrared detectors). We have built and demonstrated a prototype UV-Visible micro-mirror hyperspectral imager that is capable not only of matched-filter imaging, but also of full hyperspectral imagery via the Hadamard transform technique. With this instrument, one can upload a chemical-specific spectral matched filter directly to the MMA, producing an image showing the location of that chemical without further processing. Target chemicals are changeable nearly instantaneously simply by uploading new matched-filter patterns to the MMA. Alternatively, the MMA can implement Hadamard mask functions, yielding a full-spectrum hyperspectral image upon inverting the transform. In either case, the instrument can produce the 2D spatial image either by an internal scan, using the MMA itself, or with a traditional external push-broom scan. The various modes of operation are selectable simply by varying the software driving the MMA. Here the design and performance of the prototype is discussed, along with experimental results confirming the signal-to-noise improvement produced by the Hadamard technique in the noisy-detector regime.

  20. Boundary layer development over a large array of porous-disk-modeled wind turbines via stereo particle image velocimetry

    Science.gov (United States)

    Camp, Elizabeth; Vuppuluri, Vasant; Cal, Raúl

    2014-11-01

    The increasing size of wind turbine arrays in service highlights the importance of understanding the flow physics within such large turbine arrays. Thus, the development of a wind turbine array boundary layer (WTBL) was investigated experimentally for an 8 × 5 array of model wind turbines. Model wind turbines were on a 1:2000 scale and turbine rotors were represented by porous disks. Stereoscopic Particle Image Velocimetry (SPIV) measurements were done along the centerline of the wind turbine array at several streamwise positions both within and above the canopy. Measurements and analysis of the mean and streamwise-averaged statistics of the SPIV fields focus on the rotors in the furthest downstream positions. Statistics will be used to determine if a fully developed WTBL has been achieved.

  1. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging.

    Science.gov (United States)

    Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W

    2014-10-20

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint.

  2. A novel IR polarization imaging system designed by a four-camera array

    Science.gov (United States)

    Liu, Fei; Shao, Xiaopeng; Han, Pingli

    2014-05-01

    A novel IR polarization staring imaging system employing a four-camera-array is designed for target detection and recognition, especially man-made targets hidden in complex battle field. The design bases on the existence of the difference in infrared radiation's polarization characteristics, which is particularly remarkable between artificial objects and the natural environment. The system designed employs four cameras simultaneously to capture the00 polarization difference to replace the commonly used systems engaging only one camera. Since both types of systems have to obtain intensity images in four different directions (I0 , I45 , I90 , I-45 ), the four-camera design allows better real-time capability and lower error without the mechanical rotating parts which is essential to one-camera systems. Information extraction and detailed analysis demonstrate that the caught polarization images include valuable polarization information which can effectively increase the images' contrast and make it easier to segment the target even the hidden target from various scenes.

  3. An active coronagraph using a liquid crystal array for exoplanet imaging: principle and testing

    Institute of Scientific and Technical Information of China (English)

    Xi Zhang; De-Qing Ren; Yong-Tian Zhu; Jiang-Pei Dou

    2012-01-01

    High-contrast imaging coronagraphs,used for the detection of exoplanets,have always adopted passive coronagraph optical components.It is therefore impossible to actively optimize the coronagraphs to achieve their best performance.To solve this problem,we propose a novel high-contrast imaging coronagraph which combines a liquid crystal array (LCA) for active pupil apodization and a deformable mirror (DM) for phase correction.The LCA we use is an amplitude-only spatial light modulator.The LCA is well calibrated and compensates for its amplitude non-uniformity and nonlinear intensity responsivity.We measured the imaging contrasts of the coronagraph system with the LCA only and without the DM deployed.Imaging contrasts of 10-4 and 10-5 can be reached at an inner working angular distance of 2.5 and 5λ/D,respectively.A simulation shows that the phase errors on the coronagraph pupil limit the contrast performance.The contrast could be further improved if a DM is deployed to correct the phase errors induced by the LCA and coronagraph optics.

  4. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  5. Technical note: rapid prototyping of 3D grid arrays for image guided therapy quality assurance.

    Science.gov (United States)

    Kittle, David; Holshouser, Barbara; Slater, James M; Guenther, Bob D; Pitsianis, Nikos P; Pearlstein, Robert D

    2008-12-01

    Three dimensional grid phantoms offer a number of advantages for measuring imaging related spatial inaccuracies for image guided surgery and radiotherapy. The authors examined the use of rapid prototyping technology for directly fabricating 3D grid phantoms from CAD drawings. We tested three different fabrication process materials, photopolymer jet with acrylic resin (PJ/AR), selective laser sintering with polyamide (SLS/P), and fused deposition modeling with acrylonitrile butadiene styrene (FDM/ABS). The test objects consisted of rectangular arrays of control points formed by the intersections of posts and struts (2 mm rectangular cross section) and spaced 8 mm apart in the x, y, and z directions. The PJ/AR phantom expanded after immersion in water which resulted in permanent warping of the structure. The surface of the FDM/ABS grid exhibited a regular pattern of depressions and ridges from the extrusion process. SLS/P showed the best combination of build accuracy, surface finish, and stability. Based on these findings, a grid phantom for assessing machine-dependent and frame-induced MR spatial distortions was fabricated to be used for quality assurance in stereotactic neurosurgical and radiotherapy procedures. The spatial uniformity of the SLS/P grid control point array was determined by CT imaging (0.6 x 0.6 x 0.625 mm3 resolution) and found suitable for the application, with over 97.5% of the control points located within 0.3 mm of the position specified in CAD drawing and none of the points off by more than 0.4 mm. Rapid prototyping is a flexible and cost effective alternative for development of customized grid phantoms for medical physics quality assurance.

  6. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T. [Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Cornell University, Ithaca, NY 14853 (United States); Cornell University, Ithaca, NY 14853 (United States)

    2016-01-28

    A high-speed pixel array detector for time-resolved X-ray imaging at synchrotrons has been developed. The ability to isolate single synchrotron bunches makes it ideal for time-resolved dynamical studies. A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  7. Image enhancement for sub-harmonic phased array by removing surface wave interference with spatial frequency filter

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Su; Kim, Jun Woo; Cho, Seung Hyun; Seo, Dae Cheol [Center for Safety Measurements, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2014-06-15

    Closed cracks are difficult to detect using conventional ultrasonic testing because most incident ultrasound passes completely through these cracks. Nonlinear ultrasound inspection using sub-harmonic frequencies a promising method for detecting closed cracks. To implement this method, a sub-harmonic phased array (PA) is proposed to visualize the length of closed cracks in solids. A sub-harmonic PA generally consists of a single transmitter and an array receiver, which detects sub-harmonic waves generated from closed cracks. The PA images are obtained using the total focusing method (TFM), which (with a transmitter and receiving array) employs a full matrix in the observation region to achieve fine image resolution. In particular, the receiving signals are measured using a laser Doppler vibrometer (LDV) to collect PA images for both fundamental and sub-harmonic frequencies. Oblique incidence, which is used to boost sub-harmonic generation, inevitably produces various surface waves that contaminate the signals measured in the receiving transducer. Surface wave interference often degrades PA images severely, and it becomes difficult to read the closed crack's position from the images. Various methods to prevent or eliminate this interference are possible. In particular, enhancing images with signal processing could be a highly cost-effective method. Because periodic patterns distributed in a PA image are the most frequent interference induced by surface waves, spatial frequency filtering is applicable for removing these waves. Experiments clearly demonstrate that the spatial frequency filter improves PA images.

  8. Design and prototype of radar sensor with Vivaldi linear array for through-wall radar imaging: an experimental study

    Science.gov (United States)

    Yılmaz, Betül; Özdemir, Caner

    2016-10-01

    We present a radar sensor that was designed to detect and image moving objects/targets on the other side of a wall. The radar sensor was composed of a linear array of Vivaldi antenna elements, an radio frequency (RF) switch, a microcontroller unit, and an RF transceiver. For the linear array, a total of eight antenna elements were used as sensors in synthetic aperture radar (SAR) configuration in the cross-range axis to improve the resolution in this dimension. Design steps of Vivaldi antenna elements and the entire linear array were presented. After the design, the prototyping procedure and the details of the radar sensor were given. Through-the-wall radar (TWR) imaging experiments were performed for stationary and moving targets using the assembled sensor. The resultant TWR images after these experiments were presented. During the image formation, a back-projection type image focusing algorithm was implemented and applied to increase the signal-to-noise ratio of the raw images. The constructed radar images demonstrated that our radar sensor could successfully detect and image both stationary and moving targets on the other side of the wall.

  9. Thermal imager based on the array light sensor device of 128×128 CdHgTe-photodiodes

    Directory of Open Access Journals (Sweden)

    Reva V. P.

    2010-08-01

    Full Text Available The results of investigation of developed thermal imager for middle (3—5 µm infrared region are presented and its applications features are discussed. The thermal imager consists of cooled to 80 K 128×128 diodes focal plane array on the base of cadmium–mercury–telluride compound and cryostat with temperature checking system. The photodiode array is bonded with readout device (silicon focal processor via indium microcontacts. The measured average value of noise equivalent temperature difference was NETD= 20±4 mK (background radiation temperature T = 300 K, field of view 2θ = 180°, the cooled diaphragm was not used.

  10. Three-dimensional acoustic imaging with planar microphone arrays and compressive sensing

    Science.gov (United States)

    Ning, Fangli; Wei, Jingang; Qiu, Lianfang; Shi, Hongbing; Li, Xiaofan

    2016-10-01

    For obtaining super-resolution source maps, we extend compressive sensing (CS) to three-dimensional acoustic imaging. Source maps are simulated with a planar microphone array and a CS algorithm. Comparing the source maps of the CS algorithm with those of the conventional beamformer (CBF) and Tikhonov Regularization (TIKR), we find that the CS algorithm is computationally more effective and can obtain much higher resolution source maps than the CBF and TIKR. The effectiveness of the CS algorithm is analyzed. The CS algorithm can locate the sound sources exactly when the frequency is above 4000 Hz and the signal-to-noise ratio (SNR) is above 12 dB. The location error of the CS algorithm increases as the frequency drops below the threshold, and the errors in location and power increase as SNR decreases. The further from the array the source is, the larger the location error is. The lateral resolution of the CS algorithm is much better than the range resolution. Finally, experimental measurements are conducted in a semi-anechoic room. Two mobile phones are served as sound sources. The results show that the CS algorithm can reconstruct two sound sources near the bottom of the two mobile phones where the speakers are located. The feasibility of the CS algorithm is also validated with the experiment.

  11. Imaging of downward-looking linear array SAR using three-dimensional spatial smoothing MUSIC algorithm

    Science.gov (United States)

    Zhang, Siqian; Kuang, Gangyao

    2014-10-01

    In this paper, a novel three-dimensional imaging algorithm of downward-looking linear array SAR is presented. To improve the resolution, multiple signal classification (MUSIC) algorithm has been used. However, since the scattering centers are always correlated in real SAR system, the estimated covariance matrix becomes singular. To address the problem, a three-dimensional spatial smoothing method is proposed in this paper to restore the singular covariance matrix to a full-rank one. The three-dimensional signal matrix can be divided into a set of orthogonal three-dimensional subspaces. The main idea of the method is based on extracting the array correlation matrix as the average of all correlation matrices from the subspaces. In addition, the spectral height of the peaks contains no information with regard to the scattering intensity of the different scattering centers, thus it is difficulty to reconstruct the backscattering information. The least square strategy is used to estimate the amplitude of the scattering center in this paper. The above results of the theoretical analysis are verified by 3-D scene simulations and experiments on real data.

  12. Tiled Array of Pixelated CZT Imaging Detectors for ProtoEXIST2 and MIRAX-HXI

    CERN Document Server

    Hong, Jaesub; Grindlay, Jonathan; Rodrigues, Barbara; Ellis, Jon Robert; Baker, Robert; Barthelmy, Scott; Mao, Peter; Miyasaka, Hiromasa; Apple, Jeff

    2013-01-01

    We have assembled a tiled array (220 cm2) of fine pixel (0.6 mm) imaging CZT detectors for a balloon borne wide-field hard X-ray telescope, ProtoEXIST2. ProtoEXIST2 is a prototype experiment for a next generation hard X-ray imager MIRAX-HXI on board Lattes, a spacecraft from the Agencia Espacial Brasilieira. MIRAX will survey the 5 to 200 keV sky of Galactic bulge, adjoining southern Galactic plane and the extragalactic sky with 6' angular resolution. This survey will open a vast discovery space in timing studies of accretion neutron stars and black holes. The ProtoEXIST2 CZT detector plane consists of 64 of 5 mm thick 2 cm x 2 cm CZT crystals tiled with a minimal gap. MIRAX will consist of 4 such detector planes, each of which will be imaged with its own coded-aperture mask. We present the packaging architecture and assembly procedure of the ProtoEXIST2 detector. On 2012, Oct 10, we conducted a successful high altitude balloon experiment of the ProtoEXIST1 and 2 telescopes, which demonstrates their technolog...

  13. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  14. Focal Plane Array Sensor for Imaging Infrared Seeker of Antitank Guided Missile

    Directory of Open Access Journals (Sweden)

    A.V.R. Warrier

    1995-07-01

    Full Text Available Technological issues and Processes for fabrication of mercury cadmium telluride detector arrays, charge coupled device readout arrays and integration of these into a focal plane array sensor have been discussed. Mini arrays of 16 X 16 size have been realised and tested to prove the technology and process schedule with a view to scaling up this for larger arrays to be used in the antitank guided missile.

  15. 3-D Imaging Using Row-Column-Addressed Arrays With Integrated Apodization

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Rasmussen, Morten Fischer; Bagge, Jan Peter

    2015-01-01

    Pa, and the sensitivity was 0.299 ± 0.090 V/Pa. The nearest neighbor crosstalk level was -23.9 ± 3.7 dB, while the transmit-to-receive-elements crosstalk level was -40.2 ± 3.5 dB. Imaging of a 0.3-mm-diameter steel wire using synthetic transmit focusing with 62 single-element emissions demonstrated axial and lateral...... with the capability of transmitting and receiving on all elements, and the option of disabling the integrated apodization. The center frequency and -6-dB fractional bandwidth of the array elements were 2.77 ± 0.26 MHz and 102 ± 10%, respectively. The surface transmit pressure at 2.5 MHz was 590 ± 73 k...

  16. Non-Destructive Spent Fuel Characterization with Semi-Conducting Gallium Arsinde Neutron Imaging Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Douglas S. McGregor; Holly K. Gersch; Jeffrey D. Sanders; John C. Lee; Mark D. Hammig; Michael R. Hartman; Yong Hong Yang; Raymond T. Klann; Brian Van Der Elzen; John T. Lindsay; Philip A. Simpson

    2002-01-30

    High resistivity bulk grown GaAs has been used to produce thermal neutron imaging devices for use in neutron radiography and characterizing burnup in spent fuel. The basic scheme utilizes a portable Sb/Be source for monoenergetic (24 keV) neutron radiation source coupled to an Fe filter with a radiation hard B-coated pixellated GaAs detector array as the primary neutron detector. The coated neutron detectors have been tested for efficiency and radiation hardness in order to determine their fitness for the harsh environments imposed by spent fuel. Theoretical and experimental results are presented, showing detector radiation hardness, expected detection efficiency and the spatial resolution from such a scheme. A variety of advanced neutron detector designs have been explored, with experimental results achieving 13% thermal neutron detection efficiency while projecting the possibility of over 30% thermal neutron detection efficiency.

  17. Planar Array Sensor for High-speed Component Distribution Imaging in Fluid Flow Applications

    Directory of Open Access Journals (Sweden)

    Uwe Hampel

    2007-10-01

    Full Text Available A novel planar array sensor based on electrical conductivity measurements ispresented which may be applied to visualize surface fluid distributions. The sensor ismanufactured using printed-circuit board fabrication technology and comprises of 64 x 64interdigital sensing structures. An associated electronics measures the electricalconductivity of the fluid over each individual sensing structure in a multiplexed manner byapplying a bipolar excitation voltage and by measuring the electrical current flowing from adriver electrode to a sensing electrode. After interrogating all sensing structures, a two-dimensional image of the conductivity distribution over a surface is obtained which in turnrepresents fluid distributions over sensor’s surface. The employed electronics can acquire upto 2500 frames per second thus being able to monitor fast transient phenomena. The systemhas been evaluated regarding measurement accuracy and depth sensitivity. Furthermore, theapplication of the sensor in the investigation of two different flow applications is presented.

  18. Designing shielded radio-frequency phased-array coils for magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Xu Wen-Long; Zhang Ju-Cheng; Li Xia; Xu Bing-Qiao; Tao Gui-Sheng

    2013-01-01

    In this paper,an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed.The target field method is used to find current densities distributed on primary and shield coils.The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils.The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature.To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coil's winding pattern,the selection of a penalty factor is discussed in detail.

  19. Divergent Field Annular Ion Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In this...

  20. A clinical study of annular cyclitis

    Directory of Open Access Journals (Sweden)

    Marilita Michael Moschos

    2009-02-01

    Full Text Available Marilita Michael Moschos1, Yan Guex-Crosier2, Ioannis Margetis1, Leonidas Zografos21Department of Ophthalmology, University of Athens, Greece; 2Jules Gonin Eye Hospital, University of Lausanne, SwitzerlandPurpose: To investigate six cases of annular cyclitis.Methods: All patients with impairment of visual acuity underwent complete ophthalmologic examination, color fundus photography, laboratory tests and fluorescein angiography. Indocyanine green (ICG angiography and B-scan ultrasonography were also performed in three cases in order to diagnose the disease.Results: All patients presented a unilateral or bilateral granulomatous uveitis, associated with inflammatory annular cyclitis. They had a shallow anterior chamber, a mildly elevated intraocular pressure (under 25 mm Hg and an annular serous retinal detachment. A resolution was observed after specific therapy associated with systemic prednisolone therapy and antiglaucomatous drops.Conclusion: This is the first description of an observational study of six patients with inflammatory annular cyclitis.Keywords: cyclitis, uveitis, malignant glaucoma

  1. Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays

    Science.gov (United States)

    Tobin, Rachael; Altmann, Yoann; Ren, Ximing; McCarthy, Aongus; Lamb, Robert A.; McLaughlin, Stephen; Buller, Gerald S.

    2017-09-01

    In this paper, we investigate the recovery of range and spectral profiles associated with remote three-dimensional scenes sensed via single-photon multispectral lidar (MSL). We consider two different spatial/spectral sampling strategies and compare their performance for a similar overall number of detected photons. For a regular spatial grid of pixels, the first strategy consists of sampling all the spatial locations of the grid for each of the L wavelengths. The second strategy is consistent with the use of mosaic filter-based arrays and consists of acquiring only one wavelength (out of L) per spatial location. Despite the reduction of spectral content observed in each location, the second strategy has clear potential advantages for fast multispectral imaging using only a single frame read out. We propose a fully automated computational method, adapted for each of the two sampling strategies in order to recover the target range profile, as well as the reflectivity profiles associated with the different wavelengths. These strategies were also assessed with high ambient background. The performance of the two sampling strategies is illustrated using a single-photon MSL system with L = 4 wavelengths (473, 532, 589 and 640 nm). The results presented demonstrate that although the first strategy usually provides more accurate results, the second strategy does not exhibit a significant performance degradation, particularly for sparse photon data (down to 1 photon per pixel on average). These results suggest a way forward for the integration of single-photon detector arrays with mosaic filters for use in a range of emerging photon-starved two-dimensional and three-dimensional imaging applications.

  2. Communications, Navigation, and Timing Constraints for the Solar Imaging Radio Array (SIRA)

    Science.gov (United States)

    Lemaster, E. A.; Byler, E. A.; Aschwanden, M. J.

    2003-12-01

    The Solar Imaging Radio Array (SIRA) is a proposed NASA mission to measure solar radio emissions in the 30kHz to 30MHz region of the electromagnetic spectrum. The baseline design consists of 16 separated spacecraft in an irregular pattern several kilometers across. Each spacecraft is equipped with a pair of crossed dipole antennas that together form a 16-element radio interferometer for Fourier-type image reconstruction (120 baselines in the UV-plane). The required close coordination between this formation of spacecraft places many unique constraints on the SIRA communications, navigation, control, and timing architectures. Current specifications call for knowledge of the relative locations of the spacecraft to approximately meter-level accuracy in order to maintain primary instrument resolution. Knowledge of the relative timing differences between the clocks on the spacecraft must likewise be maintained to tens of nanoseconds or better. This in turn sets a minimum bound on the regularity of communications updates between spacecraft. Although the actual positions of the spacecraft are not tightly constrained, enough control authority and system autonomy must be present to keep the spacecraft from colliding due to orbital perturbations. Each of these constraints has an important effect on the design of the architecture for the entire array. This paper examines the engineering requirements and design tradeoffs for the communications, navigation, and timing architectures for SIRA. Topics include the choice of navigation sensor, communications methodology and modulation schemes, and clock type to meet the overall system performance goals while overcoming issues such as communications dynamic range, bandwidth limitations, power constraints, available antenna beam patterns, and processing limitations. In addition, this paper discusses how the projected use of smaller spacecraft buses with their corresponding payload and cost limits has important consequences for the

  3. Sonographic evaluation of digital annular pulley tears

    Energy Technology Data Exchange (ETDEWEB)

    Martinoli, C.; Derchi, L.E. [Istituto di Radiologia, Universita di Genova, Genoa (Italy); Bianchi, S.; Garcia, J.F. [Dept. de Radiologie, Hopital Cantonal Universitaire de Geneve (Switzerland); Nebiolo, M. [Reparto Pronto Soccorso Medico, Pietra Ligure (Italy)

    2000-07-01

    Objective. To evaluate the sonographic (US) appearance of digital annular pulley (DAP) tears in high-level rock climbers. Design and patients. We performed a retrospective analysis of the US examinations of 16 high-level rock climbers with clinical signs of DAP lesions. MRI and surgical evaluation were performed in five and three patients respectively. The normal US and MRI appearances of DAP were evaluated in 40 and three normal fingers respectively. Results. Nine of 16 patients presented a DAP tear. In eight subjects (seven with complete tears involving the fourth finger and one the fifth finger), US diagnosis was based on the indirect sign of volar bowstringing of the flexor tendons. Injured pulleys were not appreciated by US. Tears concerned the A2 and A3 in six patients and the A3 and A4 in two patients. A2 pulley thickening and hypoechogenicity compatible with a partial tear was demonstrated in one patient. MRI and surgical data correlated well with the US findings. Four patients had tenosynovitis of the flexor tendons but no evidence of pulley disruption. US examinations of three patients were normal. In the healthy subjects US demonstrated DAP in 16 of 40 digits. Conclusion. US can diagnose DAP tears and correlates with the MRI and surgical data. Because of its low cost and non-invasiveness we suggest US as the first imaging modality in the evaluation of injuries of the digital pulley. (orig.)

  4. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    Directory of Open Access Journals (Sweden)

    Jong-Ryul Yang

    2016-03-01

    Full Text Available A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  5. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    Science.gov (United States)

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-03-02

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  6. A 270×1 Ge-on-Si photodetector array for sensitive infrared imaging

    Science.gov (United States)

    Sammak, A.; Aminian, M.; Qi, L.; Charbon, E.; Nanver, Lis K.

    2014-05-01

    A CMOS compatible Ge photodetector (Ge-PD) fabricated on Si substrates has been shown to be suitable for near infrared (NIR) sensing; linear and avalanche detection, in both proportional and Geiger modes have been demonstrated, for photon counting at room temperature [1]. This paper focuses on implementations of the technology for the fabrication of imaging arrays of such detectors with high reproducibility and yield. The process involves selective chemical vapor deposition (CVD) of a ~ 1-μm-thick n-type Ge crystal on a Si substrate at 700°C, followed by deposition of a nm-thin Ga and B layer-stack (so-called PureGaB), all in the same deposition cycle. The PureGaB layer fulfills two functions; firstly, the Ga forms an ultrashallow p+n junction on the surface of Ge islands that allows highly sensitive NIR photodiode detection in the Ge itself; secondly, the B-layer forms a barrier that protects the Ge/Ga layers against oxidation when exposed to air and against spiking during metallization. A design for patterning the surrounding oxide is developed to ensure a uniform selective growth of the Ge crystalline islands so that the wafer surface remains flat over the whole array and any Ge nucleation on SiO2 surface is avoided. This design can deliver pixel sizes up to 30×30 μm2 with a Ge fill factor of up to 95 %. An Al metallization is used to contact each of the photodiodes to metal pads located outside the array area. A new process module has been developed for removing the Al metal on the Ge-islands to create an oxide-covered PureGaB-only front-entrance window without damaging the ultrashallow junction; thus the sensitivity to front-side illumination is maximized, especially at short wavelengths. The electrical I-V characteristics of each photodetector pixel are, to our knowledge, the best reported in literature with ideality factors of ~1.05 with Ion/Ioff ratios of 108. The uniformity is good and the yield is close to 100% over the whole array.

  7. Annular-Cross-Section CFE Chamber

    Science.gov (United States)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  8. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    Science.gov (United States)

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  9. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    Directory of Open Access Journals (Sweden)

    Erwin Hack

    2016-02-01

    Full Text Available In terahertz (THz materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i vanadium oxide; (ii amorphous silicon; (iii a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  10. Portable sequential multicolor thermal imager based on a MCT 384 x 288 focal plane array

    Science.gov (United States)

    Breiter, Rainer; Cabanski, Wolfgang A.; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann

    2001-10-01

    AIM has developed a sequential multicolor thermal imager to provide customers with a test system to realize real-time spectral selective thermal imaging. In contrast to existing PC based laboratory units, the system is miniaturized with integrated signal processing like non-uniformity correction and post processing functions such as image subtraction of different colors to allow field tests in military applications like detection of missile plumes or camouflaged targets as well as commercial applications like detection of chemical agents, pollution control, etc. The detection module used is a 384 X 288 mercury cadmium telluride (MCT) focal plane array (FPA) available in the mid wave (MWIR) or long wave spectral band LWIR). A compact command and control electronics (CCE) provides clock and voltage supply for the detector as well as 14 bit deep digital conversion of the analog detector output. A continuous rotating wheel with four facets for filters provides spectral selectivity. The customer can choose between various types of filter characteristics, e.g. a 4.2 micrometer bandpass filter for CO2 detection in the MWIR band. The rotating wheel can be synchronized to an external source giving the rotation speed, typical 25 l/s. A position sensor generates the four frame start signals for synchronous operation of the detector -- 100 Hz framerate for the four frames per rotation. The rotating wheel is exchangeable for different configurations and also plates for a microscanner operation to improve geometrical resolution are available instead of a multicolor operation. AIM's programmable MVIP image processing unit is used for signal processing like non- uniformity correction and controlling the detector parameters. The MVIP allows to output the four subsequent images as four quarters of the video screen to prior to any observation task set the integration time for each color individually for comparable performance in each spectral color and after that also to determine

  11. Dual-mode ultrasound arrays for image-guided targeting of atheromatous plaques

    Science.gov (United States)

    Ballard, John R.; Casper, Andrew J.; Liu, Dalong; Haritonova, Alyona; Shehata, Islam A.; Troutman, Mitchell; Ebbini, Emad S.

    2012-11-01

    A feasibility study was undertaken in order to investigate alternative noninvasive treatment options for atherosclerosis. In particular, the aim of this study was to investigate the potential use of Dual-Mode Ultrasound Arrays (DMUAs) for image guided treatment of atheromatous plaques. DMUAs offer a unique treatment paradigm for image-guided surgery allowing for robust image-based identification of tissue targets for localized application of HIFU. In this study we present imaging and therapeutic results form a 3.5 MHz, 64-element fenestrated prototype DMUA for targeting lesions in the femoral artery of familial hypercholesterolemic (FH) swine. Before treatment, diagnostic ultrasound was used to verify the presence of plaque in the femoral artery of the swine. Images obtained with the DMUA and a diagnostic (HST 15-8) transducer housed in the fenestration were analyzed and used for guidance in targeting of the plaque. Discrete therapeutic shots with an estimated focal intensity of 4000-5600 W/cm2 and 500-2000 msec duration were performed at several planes in the plaque. During therapy, pulsed HIFU was interleaved with single transmit focus imaging from the DMUA and M2D imaging from the diagnostic transducer for further analysis of lesion formation. After therapy, the swine's were recovered and later sacrificed after 4 and 7 days for histological analysis of lesion formation. At sacrifice, the lower half of the swine was perfused and the femoral artery with adjoining muscle was fixed and stained with H&E to characterize HIFU-induced lesions. Histology has confirmed that localized thermal lesion formation within the plaque was achieved according to the planned lesion maps. Furthermore, the damage was confined to the plaque tissue without damage to the intima. These results offer the promise of a new treatment potentially suited for vulnerable plaques. The results also provide the first real-time demonstration of DMUA technology in targeting fine tissue structures for

  12. 3-D Ultrasound Imaging Performance of a Row-Column Addressed 2-D Array Transducer: A Measurement Study

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2013-01-01

    A real-time 3-D ultrasound measurement using only 32 elements and 32 emissions is presented. The imaging quality is compared to a conventionally fully addressed array using 1024 elements and 256 emissions. The main-lobe of the measured line spread function is almost identical, but the side-lobe l...... ultrasound probe made by Vermon S.A....... is 510% larger than when row-column addressing the array. The cyst radius needed to achieve -20 dB intensity in the cyst is 396% larger for the fully addressed array compared to the row-column addressed array. The measurements were made using the experimental ultrasound scanner SARUS and a 32x32 element...

  13. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Brückner, Michael [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Becker, Katja [Justus Liebig University Giessen, Biochemistry and Molecular Biology, 35392 Giessen (Germany); Popp, Jürgen [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany); Frosch, Torsten, E-mail: torsten.frosch@uni-jena.de [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany)

    2015-09-24

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  14. Light Focusing and Two-Dimensional Imaging Through Scattering Media using the Photoacoustic Transmission-Matrix with an Ultrasound Array

    CERN Document Server

    Chaigne, Thomas; Katz, Ori; Bossy, Emmanuel; Gigan, Sylvain

    2014-01-01

    We implement the photoacoustic transmission-matrix approach on a two-dimensional photoacoustic imaging system, using a 15 MHz linear ultrasound array. Using a black leaf skeleton as a complex absorbing structure, we demonstrate that the photoacoustic transmission-matrix approach allows to reveal structural features that are invisible in conventional photoacoustic images, as well as to selectively control light focusing on absorbing targets, leading to a local enhancement of the photoacoustic signal.

  15. Fabrication of Prototype of Artificial Retina Adapted to a Curved Image Plane Based on Arrayed PMMA Microfibers

    OpenAIRE

    2011-01-01

    The traditional visual prosthesis combines both a camera and an electrode array implanted on the visual neural networks. Here, we introduce a new design of artificial retina which integrate the transmission of image and the electrical stimulation of cortical neurons on a single PMMA micro fiber. It is comprised of multiple PMMA microfibers with both ends connected with one flexible and one rigid substrates. The flexible one is a PDMS mold of microrods and ready to conform to a curved image pl...

  16. Real-time implementation of frequency-modulated continuous-wave synthetic aperture radar imaging using field programmable gate array.

    Science.gov (United States)

    Quan, Yinghui; Li, Yachao; Hu, Guibin; Xing, Mengdao

    2015-06-01

    A new miniature linear frequency-modulated continuous-wave radar which mounted on an unmanned aerial vehicle is presented. It allows the accomplishment of high resolution synthetic aperture radar imaging in real-time. Only a Kintex-7 field programmable gate array from Xilinx is utilized for whole signal processing of sophisticated radar imaging algorithms. The proposed hardware architecture achieves remarkable improvement in integration, power consumption, volume, and computing performance over its predecessor designs. The realized design is verified by flight campaigns.

  17. First in vivo use of a capacitive micromachined ultrasound transducer array-based imaging and ablation catheter.

    Science.gov (United States)

    Stephens, Douglas N; Truong, Uyen T; Nikoozadeh, Amin; Oralkan, Omer; Seo, Chi Hyung; Cannata, Jonathan; Dentinger, Aaron; Thomenius, Kai; de la Rama, Alan; Nguyen, Tho; Lin, Feng; Khuri-Yakub, Pierre; Mahajan, Aman; Shivkumar, Kalyanam; O'Donnell, Matt; Sahn, David J

    2012-02-01

    The primary objective was to test in vivo for the first time the general operation of a new multifunctional intracardiac echocardiography (ICE) catheter constructed with a microlinear capacitive micromachined ultrasound transducer (ML-CMUT) imaging array. Secondarily, we examined the compatibility of this catheter with electroanatomic mapping (EAM) guidance and also as a radiofrequency ablation (RFA) catheter. Preliminary thermal strain imaging (TSI)-derived temperature data were obtained from within the endocardium simultaneously during RFA to show the feasibility of direct ablation guidance procedures. The new 9F forward-looking ICE catheter was constructed with 3 complementary technologies: a CMUT imaging array with a custom electronic array buffer, catheter surface electrodes for EAM guidance, and a special ablation tip, that permits simultaneous TSI and RFA. In vivo imaging studies of 5 anesthetized porcine models with 5 CMUT catheters were performed. The ML-CMUT ICE catheter provided high-resolution real-time wideband 2-dimensional (2D) images at greater than 8 MHz and is capable of both RFA and EAM guidance. Although the 24-element array aperture dimension is only 1.5 mm, the imaging depth of penetration is greater than 30 mm. The specially designed ultrasound-compatible metalized plastic tip allowed simultaneous imaging during ablation and direct acquisition of TSI data for tissue ablation temperatures. Postprocessing analysis showed a first-order correlation between TSI and temperature, permitting early development temperature-time relationships at specific myocardial ablation sites. Multifunctional forward-looking ML-CMUT ICE catheters, with simultaneous intracardiac guidance, ultrasound imaging, and RFA, may offer a new means to improve interventional ablation procedures.

  18. A digital magnetic resonance imaging spectrometer using digital signal processor and field programmable gate array.

    Science.gov (United States)

    Liang, Xiao; Binghe, Sun; Yueping, Ma; Ruyan, Zhao

    2013-05-01

    A digital spectrometer for low-field magnetic resonance imaging is described. A digital signal processor (DSP) is utilized as the pulse programmer on which a pulse sequence is executed as a subroutine. Field programmable gate array (FPGA) devices that are logically mapped into the external addressing space of the DSP work as auxiliary controllers of gradient control, radio frequency (rf) generation, and rf receiving separately. The pulse programmer triggers an event by setting the 32-bit control register of the corresponding FPGA, and then the FPGA automatically carries out the event function according to preset configurations in cooperation with other devices; accordingly, event control of the spectrometer is flexible and efficient. Digital techniques are in widespread use: gradient control is implemented in real-time by a FPGA; rf source is constructed using direct digital synthesis technique, and rf receiver is constructed using digital quadrature detection technique. Well-designed performance is achieved, including 1 μs time resolution of the gradient waveform, 1 μs time resolution of the soft pulse, and 2 MHz signal receiving bandwidth. Both rf synthesis and rf digitalization operate at the same 60 MHz clock, therefore, the frequency range of transmitting and receiving is from DC to ~27 MHz. A majority of pulse sequences have been developed, and the imaging performance of the spectrometer has been validated through a large number of experiments. Furthermore, the spectrometer is also suitable for relaxation measurement in nuclear magnetic resonance field.

  19. A digital magnetic resonance imaging spectrometer using digital signal processor and field programmable gate array

    Science.gov (United States)

    Liang, Xiao; Binghe, Sun; Yueping, Ma; Ruyan, Zhao

    2013-05-01

    A digital spectrometer for low-field magnetic resonance imaging is described. A digital signal processor (DSP) is utilized as the pulse programmer on which a pulse sequence is executed as a subroutine. Field programmable gate array (FPGA) devices that are logically mapped into the external addressing space of the DSP work as auxiliary controllers of gradient control, radio frequency (rf) generation, and rf receiving separately. The pulse programmer triggers an event by setting the 32-bit control register of the corresponding FPGA, and then the FPGA automatically carries out the event function according to preset configurations in cooperation with other devices; accordingly, event control of the spectrometer is flexible and efficient. Digital techniques are in widespread use: gradient control is implemented in real-time by a FPGA; rf source is constructed using direct digital synthesis technique, and rf receiver is constructed using digital quadrature detection technique. Well-designed performance is achieved, including 1 μs time resolution of the gradient waveform, 1 μs time resolution of the soft pulse, and 2 MHz signal receiving bandwidth. Both rf synthesis and rf digitalization operate at the same 60 MHz clock, therefore, the frequency range of transmitting and receiving is from DC to ˜27 MHz. A majority of pulse sequences have been developed, and the imaging performance of the spectrometer has been validated through a large number of experiments. Furthermore, the spectrometer is also suitable for relaxation measurement in nuclear magnetic resonance field.

  20. Multi-Channel Deconvolution for Forward-Looking Phase Array Radar Imaging

    Directory of Open Access Journals (Sweden)

    Jie Xia

    2017-07-01

    Full Text Available The cross-range resolution of forward-looking phase array radar (PAR is limited by the effective antenna beamwidth since the azimuth echo is the convolution of antenna pattern and targets’ backscattering coefficients. Therefore, deconvolution algorithms are proposed to improve the imaging resolution under the limited antenna beamwidth. However, as a typical inverse problem, deconvolution is essentially a highly ill-posed problem which is sensitive to noise and cannot ensure a reliable and robust estimation. In this paper, multi-channel deconvolution is proposed for improving the performance of deconvolution, which intends to considerably alleviate the ill-posed problem of single-channel deconvolution. To depict the performance improvement obtained by multi-channel more effectively, evaluation parameters are generalized to characterize the angular spectrum of antenna pattern or singular value distribution of observation matrix, which are conducted to compare different deconvolution systems. Here we present two multi-channel deconvolution algorithms which improve upon the traditional deconvolution algorithms via combining with multi-channel technique. Extensive simulations and experimental results based on real data are presented to verify the effectiveness of the proposed imaging methods.

  1. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.

    Science.gov (United States)

    Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G

    2015-12-23

    Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  2. Comparison of vector velocity imaging using directional beamforming and transverse oscillation for a convex array transducer

    Science.gov (United States)

    Jensen, Jørgen Arendt

    2014-03-01

    Vector velocity imaging can reveal both the magnitude and direction of the blood velocity. Several techniques have been suggested for estimating the velocity, and this paper compares the performance for directional beam-forming and transverse oscillation (TO) vector flow imaging (VFI). Data have been acquired using the SARUS experimental ultrasound scanner connected to a BK 8820e (BK Medical, Herlev, Denmark) convex array probe with 192 active elements. A duplex sequence with 129 B-mode emissions interleaved with 129 flow emissions has been made. The flow was generated in a recirculating flow rig with a stationary, laminar flow, and the volume flow was measured by a MAG 3000 (Danfos, Sønderbog, Denmark) magnetic flow meter for reference. Data were beamformed with an optimized transverse oscillation scheme for the TO VFI, and standard fourth-order estimators were employed for the velocity estimation. Directional RF lines were beamformed along the flow direction and cross-correlation employed to estimate the velocity magnitude. The velocities were determined for beam-to-flow angles of 60, 75 and 90 degrees. Using 32 emissions the standard deviation relative to the peak velocity for TO estimation was 7.0% at a beam-to-flow angle of 75° . This was 3.8% for directional beamforming and at 60° it was 2.2%. The general improvement, however, comes at an increase by a factor of roughly 11 in the number of calculations for the directional beamformation compared to the TO method.

  3. LOFAR tied-array imaging of Type III solar radio bursts

    Science.gov (United States)

    Morosan, D. E.; Gallagher, P. T.; Zucca, P.; Fallows, R.; Carley, E. P.; Mann, G.; Bisi, M. M.; Kerdraon, A.; Konovalenko, A. A.; MacKinnon, A. L.; Rucker, H. O.; Thidé, B.; Magdalenić, J.; Vocks, C.; Reid, H.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Bregman, J.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; de Gasperin, F.; de Geus, E.; Deller, A.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hassall, T. E.; Hessels, J. W. T.; Hoeft, M.; Hörandel, J.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pietka, G.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Scaife, A. M. M.; Schwarz, D.; Serylak, M.; Smirnov, O.; Stappers, B. W.; Stewart, A.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, C.; Vermeulen, R.; van Weeren, R. J.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2014-08-01

    Context. The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (benefits over standard interferometric imaging since each beam produces high temporal (~83 ms) and spectral resolution (12.5 kHz) dynamic spectra at an array of spatial locations centred on the Sun. LOFAR's standard interferometric output is currently limited to one image per second. Results: Over a period of 30 min, multiple Type III radio bursts were observed, a number of which were found to be located at high altitudes (~4 R⊙ from the solar center at 30 MHz) and to have non-radial trajectories. These bursts occurred at altitudes in excess of values predicted by 1D radial electron density models. The non-radial high altitude Type III bursts were found to be associated with the expanding flank of a CME. Conclusions: The CME may have compressed neighbouring streamer plasma producing larger electron densities at high altitudes, while the non-radial burst trajectories can be explained by the deflection of radial magnetic fields as the CME expanded in the low corona. Movie associated to Fig. 2 is available in electronic form at http://www.aanda.org

  4. Large-area, flexible imaging arrays constructed by light-charge organic memories

    Science.gov (United States)

    Zhang, Lei; Wu, Ti; Guo, Yunlong; Zhao, Yan; Sun, Xiangnan; Wen, Yugeng; Yu, Gui; Liu, Yunqi

    2013-01-01

    Existing organic imaging circuits, which offer attractive benefits of light weight, low cost and flexibility, are exclusively based on phototransistor or photodiode arrays. One shortcoming of these photo-sensors is that the light signal should keep invariant throughout the whole pixel-addressing and reading process. As a feasible solution, we synthesized a new charge storage molecule and embedded it into a device, which we call light-charge organic memory (LCOM). In LCOM, the functionalities of photo-sensor and non-volatile memory are integrated. Thanks to the deliberate engineering of electronic structure and self-organization process at the interface, 92% of the stored charges, which are linearly controlled by the quantity of light, retain after 20000 s. The stored charges can also be non-destructively read and erased by a simple voltage program. These results pave the way to large-area, flexible imaging circuits and demonstrate a bright future of small molecular materials in non-volatile memory. PMID:23326636

  5. First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype

    NARCIS (Netherlands)

    Oberoi, Divya; Matthews, Lynn D.; Cairns, Iver H.; Emrich, David; Lobzin, Vasili; Lonsdale, Colin J.; Morgan, Edward H.; Prabu, T.; Vedantham, Harish; Wayth, Randall B.; Williams, Andrew; Williams, Christopher; White, Stephen M.; Allen, G.; Arcus, Wayne; Barnes, David; Benkevitch, Leonid; Bernardi, Gianni; Bowman, Judd D.; Briggs, Frank H.; Bunton, John D.; Burns, Steve; Cappallo, Roger C.; Clark, M.A.; Corey, Brian E.; Dawson, M.; DeBoer, David; De Gans, A.; deSouza, Ludi; Derome, Mark; Edgar, R. G.; Elton, T.; Goeke, Robert; Gopalakrishna, M. R.; Greenhill, Lincoln J.; Hazelton, Bryna; Herne, David; Hewitt, Jacqueline N.; Kamini, P. A.; Kaplan, David L.; Kasper, Justin C.; Kennedy, Rachel; Kincaid, Barton B.; Kocz, Jonathan; Koeing, R.; Kowald, Errol; Lynch, Mervyn J.; Madhavi, S.; McWhirter, Stephen R.; Mitchell, Daniel A.; Morales, Miguel F.; Ng, A.; Ord, Stephen M.; Pathikulangara, Joseph; Rogers, Alan E. E.; Roshi, Anish; Salah, Joseph E.; Sault, Robert J.; Schinckel, Antony; Udaya Shankar, N.; Srivani, K. S.; Stevens, Jamie; Subrahmanyan, Ravi; Thakkar, D.; Tingay, Steven J.; Tuthill, J.; Vaccarella, Annino; Waterson, Mark; Webster, Rachel L.; Whitney, Alan R.

    2011-01-01

    We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9- 201.6 MHz. Though our observing period is characterized as a period of "low"

  6. First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype

    NARCIS (Netherlands)

    Oberoi, Divya; Matthews, Lynn D.; Cairns, Iver H.; Emrich, David; Lobzin, Vasili; Lonsdale, Colin J.; Morgan, Edward H.; Prabu, T.; Vedantham, Harish; Wayth, Randall B.; Williams, Andrew; Williams, Christopher; White, Stephen M.; Allen, G.; Arcus, Wayne; Barnes, David; Benkevitch, Leonid; Bernardi, Gianni; Bowman, Judd D.; Briggs, Frank H.; Bunton, John D.; Burns, Steve; Cappallo, Roger C.; Clark, M. A.; Corey, Brian E.; Dawson, M.; DeBoer, David; De Gans, A.; deSouza, Ludi; Derome, Mark; Edgar, R. G.; Elton, T.; Goeke, Robert; Gopalakrishna, M. R.; Greenhill, Lincoln J.; Hazelton, Bryna; Herne, David; Hewitt, Jacqueline N.; Kamini, P. A.; Kaplan, David L.; Kasper, Justin C.; Kennedy, Rachel; Kincaid, Barton B.; Kocz, Jonathan; Koeing, R.; Kowald, Errol; Lynch, Mervyn J.; Madhavi, S.; McWhirter, Stephen R.; Mitchell, Daniel A.; Morales, Miguel F.; Ng, A.; Ord, Stephen M.; Pathikulangara, Joseph; Rogers, Alan E. E.; Roshi, Anish; Salah, Joseph E.; Sault, Robert J.; Schinckel, Antony; Udaya Shankar, N.; Srivani, K. S.; Stevens, Jamie; Subrahmanyan, Ravi; Thakkar, D.; Tingay, Steven J.; Tuthill, J.; Vaccarella, Annino; Waterson, Mark; Webster, Rachel L.; Whitney, Alan R.

    2011-01-01

    We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9- 201.6 MHz. Though our observing period is characterized as a period of "low" to "medium"

  7. Performance evaluation of a PET detector consisting of an LYSO array coupled to a 4 x 4 array of large-size GAPD for MR compatible imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Key Jo; Choi, Yong; Kang, Jihoon; Hu, Wei; Jung, Jin Ho; Min, Byung Jun [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Chung, Yong Hyun [Department of Radiological Science, Yonsei University, College of Health Science, 234 Meaji, Heungup Wonju, Kangwon-Do, 220-710 (Korea, Republic of); Jackson, Carl, E-mail: ychoi@sogang.ac.kr [SensL, Blackrock, Cork (Ireland)

    2011-05-01

    We examined a PET detector consisting of an LYSO array coupled to a 4 x 4 array of large-size Geiger-mode avalanche photodiode (GAPD). The GAPD coupled to 3 mm x 3 mm x 20 mm LYSO pixel crystal has been investigated for possible use as an MR-compatible PET photosensor. Primary characteristics of a PET detector, such as energy resolution and coincidence timing resolution were measured. Gain variation, count uniformity, and count estimation error of 4 x 4 array of LYSO-GAPD were measured to evaluate the performance parameters relevant for PET imaging. The energy resolution and coincidence timing resolution with 511 keV gamma rays were 18.5 {+-} 0.7% and 1.6 ns, respectively. The gain variation, count uniformity for all 16 channels were 1.3:1 and 1.3:1, respectively. The count estimation error between adjacent channels measured with an LYSO connected to a GAPD pixel was negligible (0.24 {+-} 0.04%). Long-term stability results show that there was no significant change in the photopeak position, energy resolution and count rate for 20 days. Cable lengths up to 300 cm, used between the GAPD and preamplifier, did not affect photopeak position and energy resolution. The performance of the LYSO-GAPD detector inside the MRI exhibited no significant change compared to that measured outside the MRI. The MR images acquired with and without the operating LYSO-GAPD detector located on top of the RF coil showed no considerable degradation in image quality. These results demonstrate the feasibility of using the LYSO-GAPD detector as PET photosensors, which could be used for MR compatible PET development.

  8. Phased array magnetic resonance imaging for staging clinically localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Borre, Michael; Langkilde, Niels Christian; Wolf, Hans [Aarhus Univ. Hospital (Denmark). Dept. of Urology; Lundorf, Erik [Aarhus Univ. Hospital (Denmark). Center of MRI; Marcussen, Niels [Aarhus Univ. Hospital (Denmark). Inst. of Pathology

    2005-09-01

    Patients suffering from intra-capsular prostate cancer (T1-2, N0, M0) are potential candidates for curative treatment by radical prostatectomy or radiation therapy. Curative intended therapy is frequently associated with substantial side effects, which makes accuracy of preoperative staging important. However, up to 40% of the patients with clinically localized disease turn out to be under-staged and should not have been subjected to curative surgery. The aim of this study was to assess the value of preoperative phased array MRI staging in patients who are candidates for radical prostatectomy. Ninety-five potential candidates for radical prostatectomy suspected of suffering from clinical prostate cancer underwent pre-diagnostic and pre-operative staging by magnetic resonance imaging (MRI). The results were compared with the postoperative pathological findings including evidence of extra-capsular extension (ECE) of the tumor. The MRI results were not taken into consideration when staging the patients preoperatively or offering treatment. Radical prostatectomy was performed within a few weeks after MRI. In 48 patients the diagnostic biopsy did not detect carcinoma but benign hyperplasia of the prostate (BPH), while 9 patients had T3 disease. Thirty-eight patients had clinically localized prostate cancer and underwent radical prostatectomy. In 16 cases (42%) ECE was postoperatively proven by the pathologist, while only 22 (58%) of the patients suffered from true localized prostate cancer. The sensitivity and specificity of MRI detecting ECE were 24% and 86% respectively, while the positive and negative predictive value of MRI with regard to ECE were only 57% and 61% respectively. Phased array MRI did not in its present form provide the necessary accuracy in preoperative staging in clinically localized prostate cancer patients.

  9. Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes.

    Science.gov (United States)

    Rossi, Andrea; Moritz, Tobias J; Ratelade, Julien; Verkman, A S

    2012-09-15

    Aquaporin-4 (AQP4) is a water channel expressed in astrocytes, skeletal muscle and epithelial cells that forms supramolecular aggregates in plasma membranes called orthogonal arrays of particles (OAPs). AQP4 is expressed as a short isoform (M23) that forms large OAPs, and a long isoform (M1) that does not form OAPs by itself but can mingle with M23 to form relatively small OAPs. AQP4 OAPs were imaged with ~20 nm spatial precision by photoactivation localization microscopy (PALM) in cells expressing chimeras of M1- or M23-AQP4 with photoactivatable fluorescent proteins. Native AQP4 was imaged by direct stochastic optical reconstruction microscopy (dSTORM) using a primary anti-AQP4 antibody and fluorescent secondary antibodies. We found that OAP area increased from 1878±747 to 3647±958 nm(2) with decreasing M1:M23 ratio from 1:1 to 1:3, and became elongated. Two-color dSTORM indicated that M1 and M23 co-assemble in OAPs with a M1-enriched periphery surrounding a M23-enriched core. Native AQP4 in astrocytes formed OAPs with an area of 2142±829 nm(2), which increased to 5137±1119 nm(2) with 2-bromopalmitate. PALM of AQP4 OAPs in live cells showed slow diffusion (average ~10(-12) cm(2)/s) and reorganization. OAP area was not altered by anti-AQP4 IgG autoantibodies (NMO-IgG) that cause the neurological disease neuromyelitis optica. Super-resolution imaging allowed elucidation of novel nanoscale structural and dynamic features of OAPs.

  10. Transparent Fabry-Perot polymer film ultrasound array for backward-mode photoacoustic imaging

    Science.gov (United States)

    Beard, Paul C.; Zhang, Edward Z. Y.; Cox, Benjamin T.

    2004-07-01

    A novel optical ultrasound sensor has been developed for backward-mode photoacoustic imaging. The sensor is based on a Fabry Perot polymer film interferometer, the mirrors of which are transparent to 1064nm, but highly reflective at 850nm. When illuminated by a CW interrogating laser source at the latter wavelength, the system acts as a resonant Fabry Perot (FP) sensing cavity, the reflected intensity output of which is dependent upon acoustically-induced changes in the optical thickness of the polymer film. By optically addressing different regions of the sensor, a notional ultrasound array of arbitrary aperture and dimensionality can be synthesised. The system was demonstrated in backward mode by transmitting 1064nm excitation laser pulses through the sensor into an Intralipid scattering solution (μa=0.03mm-1, μs'=1mm-1) containing various absorbing structures and detecting the resulting photoacoustic signals over a line. A 1D depth profile of a 1.3mm thick absorbing polymer sheet (´a=0.8mm-1) immersed to a depth of 12mm in the Intralipid solution was obtained by performing an 11mm linescan. In another experiment, a 3-layer structure consisting of 0.076mm thick line absorbers was immersed in Intralipid and a 2D image reconstructed from the detected photoacoustic signals using an inverse k-space reconstruction algorithm. Lateral resolution was 0.4mm and the vertical resolution 0.1mm. The ability of this system to map wideband photoacoustic signals with high sensitivity in backward mode may provide a useful tool for high resolution imaging of superficial tissue structures such as the skin microvasculature.

  11. Three-dimensional magnetotelluric imaging of Cascadia subduction zone from an amphibious array

    Science.gov (United States)

    Yang, B.; Egbert, G. D.; Key, K.; Bedrosian, P.; Livelybrooks, D.; Schultz, A.

    2016-12-01

    We present results from three-dimensional inversion of an amphibious magnetotelluric (MT) array consisting of 71 offshore and 75 onshore sites in the central part of Cascadia, to image down-dip and along strike variations of electrical conductivity, and constrain the 3D distribution of fluids and melt in the subduction zone. A larger scale array consisting of EarthScope transportable-array data and several 2D legacy profiles (e.g. EMSLAB, CAFE-MT, SWORMT) which covers WA, OR, northern CA and northern NV has been inverted separately, to provide a broader view of the subduction zone. Inverting these datasets including seafloor data, and involving strong coast effects presents many challenges, especially for the nominal TE mode impedances which have very anomalous phases in both land and seafloor sites. We find that including realistic bathymetry and conductive seafloor sediments significantly stabilizes the inversion, and that a two stage inversion strategy, first emphasizing fit to the more challenging TE data, improved overall data fits. We have also constrained the geometry of the (assumed resistive) subducting plates by extracting morphological parameters (e.g. upper boundary and thickness) from seismological models (McCrory et al 2012, Schmandt and Humphreys 2010). These constraints improve recovery and resolution of subduction related conductivity features. With the strategies mentioned above, we improved overall data fits, resulting in a model which reveals (for the first time) a conductive oceanic asthenosphere, extending under the North America plate. The most striking model features are conductive zones along the plate interface, including a continuous stripe of high conductivity just inboard of the coast, extending from the northern limits of our model in Washington state, to north-central Oregon. High conductivities also occur in patches near the tip of the mantle wedge, at depths appropriate for eclogitization, and at greater depth beneath the arc, in

  12. 6-Plex microsphere immunoassay with imaging planar array detection for mycotoxins in barley.

    Science.gov (United States)

    Peters, Jeroen; Cardall, Alice; Haasnoot, Willem; Nielen, Michel W F

    2014-08-21

    Mycotoxins are produced by fungi as secondary metabolites. They often multi-contaminate food and feed commodities posing a health risk to humans and animals. A fast and easy to apply multiplex screening of these commodities could be useful to detect multi-contamination. For this, we developed a semi-quantitative 6-plex immunoassay using a suspension array of paramagnetic colour-coded microspheres combined with imaging planar array detection for the mycotoxins aflatoxin B1, ochratoxin A, zearalenone, deoxynivalenol, T2-toxin, HT-2 toxin and fumonisin B1. Mycotoxin specific monoclonal antibodies were coupled to different sets of microspheres and mycotoxins conjugated to the fluorescent protein R-phycoerythrin served as reporter molecules. Competition between free mycotoxins in the sample and mixed reporter molecules for antibody binding sites on mixed microspheres created a multiplex direct inhibition immunoassay. The reagents were selected for no or low cross-interactions between the assays and cross-reactions with metabolites and possible masked forms were determined. A within-laboratory validation was carried out using blank and spiked barley samples. Furthermore, the 6-plex was used to screen available barley, and malted barley, reference materials. The validation showed very high inter and intra-day precision for all samples with a maximum relative standard deviation value of 10%. The screening assay allows easy and rapid multiplex detection of the target mycotoxins in barley according to EU legislation. With a cut off factor of 50%, based on the EU maximum levels, we were able to screen at 2 μg kg(-1) for aflatoxin B1, 2.5 μg kg(-1) for ochratoxin A, 625 μg kg(-1) for deoxynivalenol, 50 μg kg(-1) for zearalenone, 1000 μg kg(-1) for fumonisin B1 and 25 μg kg(-1) for T-2 toxin. Thanks to the transportable planar array system, the developed 6-plex has potential for future on-site testing. Future implementation of this method as a pre-screening tool, prior to

  13. VLBI observations of bright AGN jets with KVN and VERA Array (KaVA): Evaluation of Imaging Capability

    CERN Document Server

    Niinuma, Kotaro; Kino, Motoki; Sohn, Bong Won; Akiyama, Kazunori; Zhao, Guang-Yao; Sawada-Satoh, Satoko; Trippe, Sascha; Hada, Kazuhiro; Jung, Taehyun; Hagiwara, Yoshiaki; Dodson, Richard; Koyama, Shoko; Honma, Mareki; Nagai, Hiroshi; Chung, Aeree; Doi, Akihiro; Fujisawa, Kenta; Han, Myoung-Hee; Kim, Joeng-Sook; Lee, Jeewon; Lee, Jeong Ae; Miyazaki, Atsushi; Oyama, Tomoaki; Sorai, Kazuo; Wajima, Kiyoaki; Bae, Jaehan; Byun, Do-Young; Cho, Se-Hyung; Choi, Yoon Kyung; Chung, Hyunsoo; Chung, Moon-Hee; Han, Seog-Tae; Hirota, Tomoya; Hwang, Jung-Wook; Je, Do-Heung; Jike, Takaaki; Jung, Dong-Kyu; Jung, Jin-Seung; Kang, Ji-Hyun; Kang, Jiman; Kang, Yong-Woo; Kan-ya, Yukitoshi; Kanaguchi, Masahiro; Kawaguchi, Noriyuki; Kim, Bong Gyu; Kim, Hyo Ryoung; Kim, Hyun-Goo; Kim, Jaeheon; Kim, Jongsoo; Kim, Kee-Tae; Kim, Mikyoung; Kobayashi, Hideyuki; Kono, Yusuke; Kurayama, Tomoharu; Lee, Changhoon; Lee, Jung-Won; Lee, Sang Hyun; Minh, Young Chol; Matsumoto, Naoko; Nakagawa, Akiharu; Oh, Chung Sik; Oh, Se-Jin; Park, Sun-Youp; Roh, Duk-Gyoo; Sasao, Tetsuo; Shibata, Katsunori M; Song, Min-Gyu; Tamura, Yoshiaki; Wi, Seog-Oh; Yeom, Jae-Hwan; Yun, Young Joo

    2014-01-01

    The Korean very-long-baseline interferometry (VLBI) network (KVN) and VLBI Exploration of Radio Astrometry (VERA) Array (KaVA) is the first international VLBI array dedicated to high-frequency (23 and 43 GHz bands) observations in East Asia. Here, we report the first imaging observations of three bright active galactic nuclei (AGNs) known for their complex morphologies: 4C 39.25, 3C 273, and M 87. This is one of the initial result of KaVA early science. Our KaVA images reveal extended outflows with complex substructure such as knots and limb brightening, in agreement with previous Very Long Baseline Array (VLBA) observations. Angular resolutions are better than 1.4 and 0.8 milliarcsecond at 23 GHz and 43 GHz, respectively. KaVA achieves a high dynamic range of ~1000, more than three times the value achieved by VERA. We conclude that KaVA is a powerful array with a great potential for the study of AGN outflows, at least comparable to the best existing radio interferometric arrays.

  14. A comparison of 1D and 1.5D arrays for imaging volumetric flaws in small bore pipework

    Science.gov (United States)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2015-03-01

    1.5D arrays can be seen as a potentially ideal compromise between 1D arrays and 2D matrix arrays in terms of focusing capability, element density, weld coverage and data processing time. This paper presents an initial study of 1D and 1.5D arrays for high frequency (15MHz) imaging of volumetric flaws in small-bore (30-60mm outer diameter) thin-walled (3-8mm) pipework. A combination of 3D modelling and experimental work is used to determine Signal to Noise Ratio (SNR) improvement with a strong relationship between SNR and the longer dimension of element size observed. Similar behavior is demonstrated experimentally rendering a 1mm diameter Flat Bottom Hole (FBH) in Copper-Nickel alloy undetectable using a larger array element. A 3-5dB SNR increase is predicted when using a 1.5D array assuming a spherical reflector and a 2dB increase was observed on experimental trials with a FBH. It is argued that this improvement is likely to be a lower bound estimate due to the specular behavior of a FBH with future trials planned on welded samples with realistic flaws.

  15. Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil.

    Science.gov (United States)

    Tsai, Shang-Yueh; Otazo, Ricardo; Posse, Stefan; Lin, Yi-Ru; Chung, Hsiao-Wen; Wald, Lawrence L; Wiggins, Graham C; Lin, Fa-Hsuan

    2008-05-01

    Parallel imaging has been demonstrated to reduce the encoding time of MR spectroscopic imaging (MRSI). Here we investigate up to 5-fold acceleration of 2D proton echo planar spectroscopic imaging (PEPSI) at 3T using generalized autocalibrating partial parallel acquisition (GRAPPA) with a 32-channel coil array, 1.5 cm(3) voxel size, TR/TE of 15/2000 ms, and 2.1 Hz spectral resolution. Compared to an 8-channel array, the smaller RF coil elements in this 32-channel array provided a 3.1-fold and 2.8-fold increase in signal-to-noise ratio (SNR) in the peripheral region and the central region, respectively, and more spatial modulated information. Comparison of sensitivity-encoding (SENSE) and GRAPPA reconstruction using an 8-channel array showed that both methods yielded similar quantitative metabolite measures (P > 0.1). Concentration values of N-acetyl-aspartate (NAA), total creatine (tCr), choline (Cho), myo-inositol (mI), and the sum of glutamate and glutamine (Glx) for both methods were consistent with previous studies. Using the 32-channel array coil the mean Cramer-Rao lower bounds (CRLB) were less than 8% for NAA, tCr, and Cho and less than 15% for mI and Glx at 2-fold acceleration. At 4-fold acceleration the mean CRLB for NAA, tCr, and Cho was less than 11%. In conclusion, the use of a 32-channel coil array and GRAPPA reconstruction can significantly reduce the measurement time for mapping brain metabolites.

  16. Tomographic imaging of an ultrasonic field in a plane by use of a linear array: theory and experiment.

    Science.gov (United States)

    Waters, Kendall R; Johnston, Patrick H

    2005-11-01

    Quantitative ultrasonic characterization of in-homogeneous and anisotropic materials is often difficult due to undesired phenomena such as beam steering and phase aberration of the insonifying field. We introduce a method based on tomographic reconstruction techniques for the visualization of an ultrasonic field using a linear array rotated in a plane. Tomographic reconstruction of the ultrasonic field is made possible through the phase-sensitive nature of the tall, narrow piezoelectric elements of a linear array that act as parallel line integrators of the pressure field. We validate the proposed imaging method through numerical simulations of propagated ultrasonic fields based upon the angular spectrum decomposition technique. We then demonstrate the technique with experimental measurements of two textile composites and a reference water path. We reconstruct images of the real and imaginary parts of a transmitted 2 MHz ultrasonic field that are then combined to reconstruct images of the power and unwrapped phase. We also construct images of the attenuation and phase shift for several regions of the composites. Our results demonstrate that tomographic imaging of an ultrasonic field in a plane using a rotated linear array can potentially improve ultrasonic characterization of complex materials.

  17. Correction of ultrasonic array images to improve reflector sizing and location in inhomogeneous materials using a ray-tracing model.

    Science.gov (United States)

    Connolly, G D; Lowe, M J S; Temple, J A G; Rokhlin, S I

    2010-05-01

    The use of ultrasonic arrays has increased dramatically within recent years due to their ability to perform multiple types of inspection and to produce images of the structure through post-processing of received signals. Phased arrays offer many advantages over conventional transducers in the inspection of materials that are inhomogeneous with spatially varying anisotropic properties. In this paper, the arrays are focused on austenitic steel welds as a representative inhomogeneous material. The method of ray-tracing through a previously developed model of an inhomogeneous weld is shown, with particular emphasis on the difficulties presented by material inhomogeneity. The delay laws for the structure are computed and are used to perform synthetic focusing at the post-processing stage of signal data acquired by the array. It is demonstrated for a simulated austenitic weld that by taking material inhomogeneity and anisotropy into account, superior reflector location (and hence, superior sizing) results when compared to cases where these are ignored. The image is thus said to have been corrected. Typical images are produced from both analytical data in the frequency domain and data from finite element simulations in the time domain in a variety of wave modes, including cases with mode conversion and reflections.

  18. CFD Simulation of Annular Centrifugal Extractors

    Directory of Open Access Journals (Sweden)

    S. Vedantam

    2012-01-01

    Full Text Available Annular centrifugal extractors (ACE, also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of centrifugal field. For the development of rational and reliable design procedures, it is important to understand the flow patterns in the mixer and settler zones. Computational Fluid Dynamics (CFD has played a major role in the constant evolution and improvements of this device. During the past thirty years, a large number of investigators have undertaken CFD simulations. All these publications have been carefully and critically analyzed and a coherent picture of the present status has been presented in this review paper. Initially, review of the single phase studies in the annular region has been presented, followed by the separator region. In continuation, the two-phase CFD simulations involving liquid-liquid and gas-liquid flow in the annular as well as separator regions have been reviewed. Suggestions have been made for the future work for bridging the existing knowledge gaps. In particular, emphasis has been given to the application of CFD simulations for the design of this equipment.

  19. Sediment particle entrainment in an obstructed annular

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Bruno Venturini; Siqueira, Renato do Nascimento [Faculdade do Centro Leste (UCL), Serra, ES (Brazil). Lab. de Fenomenos de Transporte], e-mail: brunovl@ucl.br, e-mail: renatons@ucl.br

    2006-07-01

    Flow in an annular region with internal cylinder rotation is a classic problem in fluid mechanics and has been widely studied. Besides its importance as a fundamental problem, flow in annular regions has several practical applications. This project was motivated by an application of this kind of flow to the drilling of oil and gas wells. In this work, an erosion apparatus was constructed in order to study the effect of the internal cylinder rotation on particle entrainment in an obstructed annular space and bed package as well. The study also analyzed the influence of height of the particles bed on the process performance. The experiment was designed so that the internal cylinder rotation could be measured by an encoder. The fluid temperature was measured by a thermocouple and the experiments were carried out at the temperature of 25 deg C. The study revealed that the particle entrainment for the height of the bed that is close to the center of the cylinders is negligible and the internal cylinder rotation provokes the movement and packing of the bed. For lower height of the bed, with same dimension of the annular gap, the particle entrainment process was satisfactory and the bed compaction was smaller than in the previous case, leading to a more efficient cleaning process in the annular space. (author)

  20. HEB heterodyne focal plane arrays: a terahertz technology for high sensitivity near-range security imaging systems

    Science.gov (United States)

    Gerecht, Eyal; Gu, Dazhen; Yngvesson, Sigfrid; Rodriguez-Morales, Fernando; Zannoni, R.; Nicholson, John

    2005-05-01

    We have achieved the first demonstration of a low-noise heterodyne array operating at a frequency above 1 THz (1.6 THz). The prototype array has three elements, consisting of NbN hot electron bolometer (HEB) detectors on silicon substrates. We use a quasi-optical design to couple the signal and local oscillator (LO) power to the detector. We also demonstrate, for the first time, how the HEB detectors can be intimately integrated in the same block with monolithic microwave integrated circuit (MMIC) IF amplifiers. Such focal plane arrays can be increased in size to a few hundred elements using the next generation fabrication architecture for compact and easy assembly. Future HEB-based focal plane arrays will make low-noise heterodyne imaging systems with high angular resolution possible from 500 GHz to several terahertz. Large low-noise HEB arrays are well suited for real-time video imaging at any frequency over the entire terahertz spectrum. This is made possible by virtue of the extremely low local oscillator power requirements of the HEB detectors (a few hundred nanowatts to a microwatt per pixel). The operating temperature is 4 to 6 K, which can be provided by a compact and mobile cryocooler system, developed as a spin-off from the space program. The terahertz HEB imager consists of a computer-controlled optical system mounted on an elevation and azimuth scanning translator which provides a two-dimensional image of the target. We present preliminary measured data at the symposium for a terahertz security system of this type.

  1. Subsurface Imaging at Mount St. Helens with a Large-N Geophone Array

    Science.gov (United States)

    Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Moran, S. C.

    2015-12-01

    The 900-instrument Mount St. Helens nodal array recorded continuous data for approximately two weeks in the summer of 2014 and provides a remarkable opportunity to interrogate the structure beneath an active arc volcano. Two separate imaging techniques are applied to constrain both the distribution of microseismicity and subsurface velocity structure. Reverse-time source imaging is applied to the 10 km3 region beneath the volcanic edifice where most of cataloged seismicity occurred during the experiment. These efforts resulted in an order of magnitude increase in earthquake detections over the normal monitoring operations of the Pacific Northwest Seismic Network. Earthquake locations resolve a narrow, ≤1 km wide, vertical lineament of seismicity that extends from the surface to 4 km depth directly beneath the summit crater, consistent with the historical event distribution of Waite and Moran[2009]. This feature is interpreted as a fracture network that acts as a conduit connecting an underlying magma chamber to the surface. Moho imaging is achieved using the near-offset (PmP phase generated by the iMUSH active source shots that occurred during the deployment. The PmP arrivals are enhanced using short-term-average over long-term-average processing and then migrated using a 3D velocity model. The observed Moho depths range from 35-40 km with a slight eastward deepening across the Mt St Helens fracture zone. Significant variations are observed in the Moho reflectivity. Large amplitude PmP energy is observed in shots originating from the north and east whereas shots from the south-west display little-to-no PmP energy. The region above the reflective Moho is approximately coincident with areas displaying reduced lower-crustal velocities in the initial iMUSH tomography models and may therefore contain fluids and/or partial melt. Additional evidence for lower crustal fluids in this region is provided by deep-long-period (DLP) events which have historically been observed

  2. Development of electron optical system using annular pupils for scanning transmission electron microscope by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Takaomi, E-mail: matutani@ele.kindai.ac.jp [Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Yasumoto, Tsuchika; Tanaka, Takeo [Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan); Kawasaki, Tadahiro; Ichihashi, Mikio [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ikuta, Takashi [Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan)

    2012-02-01

    Annular pupils for electron optics were produced using a focused ion beam (FIB), enabling an increase in the depth of focus and allowing for aberration-free imaging and separation of the amplitude and phase images in a scanning transmission electron microscope (STEM). Simulations demonstrate that an increased focal depth is advantageous for three-dimensional tomography in the STEM. For a 200 kV electron beam, the focal depth is increased to approximately 100 nm by using an annular pupil with inner and outer semi-angles of 29 and 30 mrad, respectively. Annular pupils were designed with various outer diameters of 40-120 {mu}m and the inner diameter was designed at 80% of the outer diameter. A taper angle varying from 1 Degree-Sign to 20 Degree-Sign was applied to the slits of the annular pupils to suppress the influence of high-energy electron scattering. The fabricated annular pupils were inspected by scanning ion beam microscopy and scanning electron microscopy. These annular pupils were loaded into a STEM and no charge-up effects were observed in the scintillator projection images recorded by a CCD camera.

  3. A THz Superconducting Imaging Array Developed for the DATE5 Telescope

    Science.gov (United States)

    Shi, Sheng-Cai; Zhang, Wen; Li, Jing; Miao, Wei; Lin, Zhen-Hui; Lou, Zheng; Yao, Qi-Jun

    2016-08-01

    Dome A in Antarctica, located at an altitude of 4093 m and with very low temperature in winter down to -83^{circ }C, is an exceptionally dry site. Measurements of the atmospheric transmission in the range of 0.75-15 THz by a Far-infrared/THz Fourier transform spectrometer (FTS) strongly suggest that Dome A is a unique site for ground-based THz observations, especially for the 200- and 350-micron windows. A 5-m THz telescope (DATE5) is therefore proposed for Chinese Antarctic Kunlun Observatory. We are currently developing a THz superconducting imaging array (TeSIA) for the DATE5. The TeSIA will be working at the 350-\\upmu m window, with a pixel number of 32 × 32 and a sensitivity (NEP) of ˜ 10^{-16} W/Hz^{0.5}. Ti transition-edge sensors with time-domain multiplexing and TiN microwave kinetic inductance detectors with frequency-domain multiplexing are both developed for the TeSIA. In this paper, detailed system designs and some measurement results will be presented.

  4. Toward the Development of Group III-V Photodetectors and Imaging Arrays

    Science.gov (United States)

    Wickenden, Dennis K.

    2003-01-01

    A collaboration between researchers at NASA Goddard Space Flight Center (GSFC) (Code 718.1) and the Johns Hopkins University Applied Physics Laboratory (APL) on the development of gallium nitride (GaN) based photodetectors has been in existence since July 1994. This collaboration, based on APL undertaking the material growth and GSFC undertaking the device processing, has led to discrete GaN photoconductive detectors with superior characteristics to those of similar devices reported in the literature and, more recently, to the development of state-of-the art 256x256 imaging arrays with the pixels indium bump-bonded to a silicon readout circuit (RIOC). The object of this proposal is to continue the collaboration for the period 1998-2002 by outlining a program of work at the APL on the metalorganic chemical vapor deposition (MOCVD) growth of GaN and related materials for UV detector applications. In particular, emphasis will be placed on the optimization of growth on 2 in diameter substrates, on the growth of In(sub x)Ga(1-x)N and Al(sub x)Ga(1-x)N alloy structures to produce devices with a wider range of tailored cut-off wavelengths, and on the growth of pn-junction structures for photovoltaic devices.

  5. Synthesizing wide-angle and arbitrary view-point images from a circular camera array

    Science.gov (United States)

    Fukushima, Norishige; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki

    2006-02-01

    We propose a technique of Imaged-Based Rendering(IBR) using a circular camera array. By the result of having recorded the scene as surrounding the surroundings, we can synthesize a more dynamic arbitrary viewpoint images and a wide angle images like a panorama . This method is based on Ray- Space, one of the image-based rendering, like Light Field. Ray-Space is described by the position (x, y) and a direction (θ, φ) of the ray's parameter which passes a reference plane. All over this space, when the camera has been arranged circularly, the orbit of the point equivalent to an Epipor Plane Image(EPI) at the time of straight line arrangement draws a sin curve. Although described in a very clear form, in case a rendering is performed, pixel of which position of which camera being used and the work for which it asks become complicated. Therefore, the position (u, v) of the position (s, t) pixel of a camera like Light Filed redescribes space expression. It makes the position of a camera a polar-coordinates system (r, theta), and is making it close to description of Ray-Space. Thereby, although the orbit of a point serves as a complicated periodic function of periodic 2pi, the handling of a rendering becomes easy. From such space, the same as straight line arrangement, arbitrary viewpoint picture synthesizing is performed only due to a geometric relationship between cameras. Moreover, taking advantage of the characteristic of concentrating on one circular point, we propose the technique of generating a wide-angle picture like a panorama. When synthesizing a viewpoint, since it is overlapped and is recording the ray of all the directions of the same position, this becomes possible. Having stated until now is the case where it is a time of the camera fully having been arranged and a plenoptic sampling being filled. The discrete thing which does not fill a sampling is described from here. When arranging a camera in a straight line and compounding a picture, in spite of

  6. Demonstration of a snapshot full-Stokes division-of-aperture imaging polarimeter using Wollaston prism array

    Science.gov (United States)

    Mu, Tingkui; Zhang, Chunmin; Liang, Rongguang

    2015-12-01

    A snapshot full-Stokes division-of-aperture imaging polarimeter using a Wollaston prism array (WPA) is theoretically described and experimentally demonstrated. Two-dimensional spatial distributions of six polarization eigenstates, linear (0°, 90°, 45°, 135°), and left and right circular polarization states, are identified and separated by the WPA simultaneously and projected onto the six portions of a single focal-plane array by a lens array. The conditions of the measurement matrix formed by the six polarization modulation channels are naturally superior for immunity to Gaussian and Poisson noise. The unique properties of the WPA, such as its high extinction ratio, optical efficiency and transmittance, can further ensure the achievement of immunity. The snapshot principle and the conditions of the measurement matrix are discussed. A proof-of-concept system using a complementary metal oxide semiconductor (CMOS) sensor for visible light is built and validated using laboratory and outdoor measurements.

  7. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method.

    Science.gov (United States)

    Wang, Shumin; Duyn, Jeff H

    2006-06-21

    We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.

  8. Demonstration of a passive, low-noise, millimeter-wave detector array for imaging

    Science.gov (United States)

    Wikner, David; Grossman, Erich

    2009-05-01

    The design of a millimeter-wave (MMW) camera is presented. The camera is meant to serve as a demonstration platform for a new 32-channel MMW detector array that requires no pre-amplification prior to detection. The Army Research Laboratory (ARL) and National Institute of Standards and Technology (NIST) have worked with the Defense Advanced Research Projects Agency and several contractors for four years to develop an affordable MMW detector array technology suitable for use in a large staring array. The camera described uses one particular embodiment of detector array that resulted from the program. This paper reviews the design of the MMW optics that will be used to form imagery with the linear array and the tradeoffs made in that design. Also presented are the results of laboratory tests of the detector array that were made at both ARL and NIST.

  9. Nonlinear imaging (NIM) of flaws in a complex composite stiffened panel using a constructive nonlinear array (CNA) technique.

    Science.gov (United States)

    Malfense Fierro, Gian Piero; Meo, Michele

    2017-02-01

    Recently, there has been high interest in the capabilities of nonlinear ultrasound techniques for damage/defect detection as these techniques have been shown to be quite accurate in imaging some particular type of damage. This paper presents a Constructive Nonlinear Array (CNA) method, for the detection and imaging of material defects/damage in a complex composite stiffened panel. CNA requires the construction of an ultrasound array in a similar manner to standard phased arrays systems, which require multiple transmitting and receiving elements. The method constructively phase-match multiple captured signals at a particular position given multiple transmit positions, similar to the total focusing method (TFM) method. Unlike most of the ultrasonic linear techniques, a longer excitation signal was used to achieve a steady-state excitation at each capturing position, so that compressive and tensile stress at defect/crack locations increases the likelihood of the generation of nonlinear elastic waves. Moreover, the technique allows the reduction of instrumentation nonlinear wave generation by relying on signal attenuation to naturally filter these errors. Experimental tests were carried out on a stiffened panel with manufacturing defects. Standard industrial linear ultrasonic test were carried out for comparison. The proposed new method allows to image damages/defects in a reliable and reproducible manner and overcomes some of the main limitations of nonlinear ultrasound techniques. In particular, the effectiveness and robustness of CNA and the advantages over linear ultrasonic were clearly demonstrated allowing a better resolution and imaging of complex and realistic flaws.

  10. High-Resolution Ultrasonic Imaging of Dento-Periodontal Tissues Using a Multi-Element Phased Array System.

    Science.gov (United States)

    Nguyen, Kim-Cuong T; Le, Lawrence H; Kaipatur, Neelambar R; Zheng, Rui; Lou, Edmond H; Major, Paul W

    2016-10-01

    Intraoral ultrasonography uses high-frequency mechanical waves to study dento-periodontium. Besides the advantages of portability and cost-effectiveness, ultrasound technique has no ionizing radiation. Previous studies employed a single transducer or an array of transducer elements, and focused on enamel thickness and distance measurement. This study used a phased array system with a 128-element array transducer to image dento-periodontal tissues. We studied two porcine lower incisors from a 6-month-old piglet using 20-MHz ultrasound. The high-resolution ultrasonographs clearly showed the cross-sectional morphological images of the hard and soft tissues. The investigation used an integration of waveform analysis, travel-time calculation, and wavefield simulation to reveal the nature of the ultrasound data, which makes the study novel. With the assistance of time-distance radio-frequency records, we robustly justified the enamel-dentin interface, dentin-pulp interface, and the cemento-enamel junction. The alveolar crest level, the location of cemento-enamel junction, and the thickness of alveolar crest were measured from the images and compared favorably with those from the cone beam computed tomography with less than 10% difference. This preliminary and fundamental study has reinforced the conclusions from previous studies, that ultrasonography has great potential to become a non-invasive diagnostic imaging tool for quantitative assessment of periodontal structures and better delivery of oral care.

  11. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  12. Stitching algorithm for annular subaperture interferometry

    Institute of Scientific and Technical Information of China (English)

    Xi Hou; Fan Wu; Li Yang; Shibin Wu; Qiang Chen

    2006-01-01

    @@ Annular subaperture interferometry (ASI) has been developed for low cost and flexible test of rotationally symmetric aspheric surfaces, in which accurately combining the subaperture measurement data corrupted by misalignments and noise into a complete surface figure is the key problem. By introducing the Zernike annular polynomials which are orthogonal over annulus, a method that eliminates the coupling problem in the earlier algorithm based on Zernike circle polynomials is proposed. Vector-matrix notation is used to simplify the description and calculations. The performance of this reduction method is evaluated by numerical simulation. The results prove this method with high precision and good anti-noise capability.

  13. Annular, erythematous skin lesions in a neonate

    Directory of Open Access Journals (Sweden)

    Aparna Palit

    2012-01-01

    Full Text Available A 7-day-old premature female infant presented with rapidly progressive, erythematous, annular skin lesions from the 5 th day of life. She was diagnosed provisionally as a case of neonatal lupus erythematosus and was investigated accordingly. Histopathological examination of the skin biopsy specimen revealed presence of hyphae of dermatophytes in the stratum corneum, and the diagnosis was changed to tinea corporis. Differential diagnosis of the annular erythema of infancy has been discussed and the importance of scraping a scaly lesion for KOH preparation in the diagnostic work-up of such a patient has been highlighted.

  14. Cryogenic phased-array for high resolution magnetic resonance imaging (MRI); assessment of clinical and research applications

    Science.gov (United States)

    Ip, Flora S.

    Magnetic Resonance (MR) imaging is one of the most powerful tools in diagnostic medicine for soft tissue imaging. Image acquisition techniques and hardware receivers are very important in achieving high contrast and high resolution MR images. An aim of this dissertation is to design single and multi-element room and cryogenic temperature arrays and make assessments of their signal-to-noise ratio (SNR) and SNR gain. In this dissertation, four sets of MR receiver coils are built. They are the receiver-only cryo-coils that are not commercially available. A tuning and matching circuit is attached to each coil. The tuning and matching circuits are simple; however, each device component has to operate at a high magnetic field and cryogenic temperature environment. Remote DC bias of the varactor controls the tuning and matching outside the scanner room. Active detuning of the resonator is done by two p-i-n junction (PIN) diodes. Cooling of the receiver is done by a customized liquid nitrogen cryostat. The first application is to build a 3-Tesla 2x1 horseshoe counter-rotating current (CRC) cryogenic array to image the tibia in a human body. With significant increase in SNR, the surface coil should deliver high contrast and resolution images that can show the trabecular bone and bone marrow structure. This structural image will be used to model the mechanical strength of the bone as well as bone density and chance of fracture. The planar CRC is a unique design of this surface array. The second application is to modify the coil design to 7-Tesla to study the growth of infant rhesus monkey eyes. Fast scan MR images of the infant monkey heads are taken for monitoring shapes of their eyeballs. The monkeys are induced with shortsightedness by eye lenses, and they are scanned periodically to get images of their eyeballs. The field-of-view (FOV) of these images is about five centimeters and the area of interest is two centimeters deep from the surface. Because of these reasons

  15. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging

    National Research Council Canada - National Science Library

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-01-01

    .... Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays...

  16. Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  17. Second harmonic and subharmonic for non-linear wideband contrast imaging using a capacitive micromachined ultrasonic transducer array.

    Science.gov (United States)

    Novell, Anthony; Escoffre, Jean-Michel; Bouakaz, Ayache

    2013-08-01

    When insonified with suitable ultrasound excitation, contrast microbubbles generate various non-linear scattered components, such as the second harmonic (2H) and the subharmonic (SH). In this study, we exploit the wide frequency bandwidth of capacitive micromachined ultrasonic transducers (CMUTs) to enhance the response from ultrasound contrast agents by selective imaging of both the 2H and SH components simultaneously. To this end, contrast images using the pulse inversion method were recorded with a 64-element CMUT linear array connected to an open scanner. In comparison to imaging at 2H alone, the wideband imaging including both the 2H and SH contributions provided up to 130% and 180% increases in the signal-to-noise and contrast-to-tissue ratios, respectively. The wide-frequency band of CMUTs offers new opportunities for improved ultrasound contrast agent imaging.

  18. Optimization of Ambient Noise Cross-Correlation Imaging Across Large Dense Array

    Science.gov (United States)

    Sufri, O.; Xie, Y.; Lin, F. C.; Song, W.

    2015-12-01

    Ambient Noise Tomography is currently one of the most studied topics of seismology. It gives possibility of studying physical properties of rocks from the depths of subsurface to the upper mantle depths using recorded noise sources. A network of new seismic sensors, which are capable of recording continuous seismic noise and doing the processing at the same time on-site, could help to assess possible risk of volcanic activity on a volcano and help to understand the changes in physical properties of a fault before and after an earthquake occurs. This new seismic sensor technology could also be used in oil and gas industry to figure out depletion rate of a reservoir and help to improve velocity models for obtaining better seismic reflection cross-sections. Our recent NSF funded project is bringing seismologists, signal processors, and computer scientists together to develop a new ambient noise seismic imaging system which could record continuous seismic noise and process it on-site and send Green's functions and/or tomography images to the network. Such an imaging system requires optimum amount of sensors, sensor communication, and processing of the recorded data. In order to solve these problems, we first started working on the problem of optimum amount of sensors and the communication between these sensors by using small aperture dense network called Sweetwater Array, deployed by Nodal Seismic in 2014. We downloaded ~17 day of continuous data from 2268 one-component stations between March 30-April 16 2015 from IRIS DMC and performed cross-correlation to determine the lag times between station pairs. The lag times were then entered in matrix form. Our goal is to selecting random lag time values in the matrix and assuming all other elements of the matrix either missing or unknown and performing matrix completion technique to find out how close the results from matrix completion technique would be close to the real calculated values. This would give us better idea

  19. State-of-the-art imaging arrays and their applications; Proceedings of the Meeting, San Diego, CA, August 21-23, 1984

    Science.gov (United States)

    Prettyjohns, K. N.

    1984-01-01

    Visible and X-ray imaging arrays are considered, taking into account the future scientific CCD, high sensitivity charge-coupled device (CCD) imagers for television, an analysis of the vertical charge transfer efficiency of a 'line transfer' color image sensor, techniques for operating CCDs in very high speed framing mode, a wide dynamic range CCD camera, recent innovations in CID (Charge Injection Device) cameras, and the design and development of a 1024x1024 visible imager. Other topics explored are related to infrared imaging arrays, techniques for array testing and characterization, new applications and instruments, and imaging arrays in astronomy. Attention is given to the advent of three-dimensional imaging array architectures, a television compatible portable IR-CCD camera system, a method for measuring the modulation transfer function of CCDs using laser speckle, an expedient approach to focal plane testing, a CCD-based parallel analog processor, integrated detector array technology for infrared astronomy, and a star mapper using a linear CCD array.

  20. Core-shell diode array for high performance particle detectors and imaging sensors: status of the development

    Science.gov (United States)

    Jia, G.; Hübner, U.; Dellith, J.; Dellith, A.; Stolz, R.; Plentz, J.; Andrä, G.

    2017-02-01

    We propose a novel high performance radiation detector and imaging sensor by a ground-breaking core-shell diode array design. This novel core-shell diode array are expected to have superior performance respect to ultrahigh radiation hardness, high sensitivity, low power consumption, fast signal response and high spatial resolution simultaneously. These properties are highly desired in fundamental research such as high energy physics (HEP) at CERN, astronomy and future x-ray based protein crystallography at x-ray free electron laser (XFEL) etc.. This kind of detectors will provide solutions for these fundamental research fields currently limited by instrumentations. In this work, we report our progress on the development of core-shell diode array for the applications as high performance imaging sensors and particle detectors. We mainly present our results in the preparation of high aspect ratio regular silicon rods by metal assisted wet chemical etching technique. Nearly 200 μm deep and 2 μm width channels with high aspect ratio have been etched into silicon. This result will open many applications not only for the core-shell diode array, but also for a high density integration of 3D microelectronics devices.