WorldWideScience

Sample records for annual wind speeds

  1. Annual variations in sea surface wind speed around Japan observed by ASCAT

    Science.gov (United States)

    Takeyama, Y.; Shimada, S.; Ohsawa, T.; Kozai, K.; Kogaki, T.

    2015-12-01

    Sea surface wind speeds and these statistics can be applied for many marine industrial activities. For example, the averaged wind speed is crucial information for a site selection of an offshore wind farm. It has widely been recognized that a total amount of the offshore wind generation is strongly depended on the annual average wind speeds. A advanced scatterometer (ASCAT), which is a kind of scatterometer aboard METOP-A and B, has observed sea surface wind speeds at the height of 10 m above the sea surface approximately twice a day using active microwaves. The annual average wind speed can be calculated from the observed wind speed. For an actual use of the annual average wind speed, generalities and representativeness of the wind speed must be clarified. To investigate annual variations in sea surface wind speed around Japan (120°E to 165°E, 19°N to 49°N), the annual average wind speeds and these standard deviations are calculated from 5 years of ASCAT observations from 2010 through 2014. It is found that there are some sea areas where standard deviations are relatively higher than their surroundings. Annual average wind speed maps indicate that the high standard deviation is caused by strong winds from Eurasia in the winter of 2011 in part of North Pacific Ocean and Sea of Okhotsk. Additionally standard deviations for only winter are also higher than for summer in those sea areas. Therefore the strong wind speed in the winter of a particular year can easily affect to the annual average wind speed. Meanwhile off the coast of Niigata and Hokkaido, there are also higher standard deviation areas than their surroundings. Differences between monthly maximum wind speeds for the winter and minimum wind speeds for the summer in these areas are larger and the large differences seem to be a cause of the high standard deviations.

  2. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    Science.gov (United States)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  3. A Method for Estimating Annual Energy Production Using Monte Carlo Wind Speed Simulation

    Directory of Open Access Journals (Sweden)

    Birgir Hrafnkelsson

    2016-04-01

    Full Text Available A novel Monte Carlo (MC approach is proposed for the simulation of wind speed samples to assess the wind energy production potential of a site. The Monte Carlo approach is based on historical wind speed data and reserves the effect of autocorrelation and seasonality in wind speed observations. No distributional assumptions are made, and this approach is relatively simple in comparison to simulation methods that aim at including the autocorrelation and seasonal effects. Annual energy production (AEP is simulated by transforming the simulated wind speed values via the power curve of the wind turbine at the site. The proposed Monte Carlo approach is generic and is applicable for all sites provided that a sufficient amount of wind speed data and information on the power curve are available. The simulated AEP values based on the Monte Carlo approach are compared to both actual AEP and to simulated AEP values based on a modified Weibull approach for wind speed simulation using data from the Burfell site in Iceland. The comparison reveals that the simulated AEP values based on the proposed Monte Carlo approach have a distribution that is in close agreement with actual AEP from two test wind turbines at the Burfell site, while the simulated AEP of the Weibull approach is such that the P50 and the scale are substantially lower and the P90 is higher. Thus, the Weibull approach yields AEP that is not in line with the actual variability in AEP, while the Monte Carlo approach gives a realistic estimate of the distribution of AEP.

  4. A GIS wind resource map with tabular printout of monthly and annual wind speeds for 2,000 towns in Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Brower, M.C. [Brower & Company, Andover, MA (United States); Factor, T. [Iowa Wind Energy Institute, Fairfield, IA (United States)

    1997-12-31

    The Iowa Wind Energy Institute, under a grant from the Iowa Energy Center, undertook in 1994 to map wind resources in Iowa. Fifty-meter met towers were erected at 13 locations across the state deemed promising for utility-scale wind farm development. Two years of summarized wind speed, direction, and temperature data were used to create wind resource maps incorporating effects of elevation, relative exposure, terrain roughness, and ground cover. Maps were produced predicting long-term mean monthly and annual wind speeds on a one-kilometer grid. The estimated absolute standard error in the predicted annual average wind speeds at unobstructed locations is 9 percent. The relative standard error between points on the annual map is estimated to be 3 percent. These maps and tabular data for 2,000 cities and towns in Iowa are now available on the Iowa Energy Center`s web site (http.//www.energy.iastate.edu).

  5. High Spatial Resolution Simulation of Annual Wind Energy Yield Using Near-Surface Wind Speed Time Series

    Directory of Open Access Journals (Sweden)

    Christopher Jung

    2016-05-01

    Full Text Available In this paper a methodology is presented that can be used to model the annual wind energy yield (AEYmod on a high spatial resolution (50 m × 50 m grid based on long-term (1979–2010 near-surface wind speed (US time series measured at 58 stations of the German Weather Service (DWD. The study area for which AEYmod is quantified is the German federal state of Baden-Wuerttemberg. Comparability of the wind speed time series was ensured by gap filling, homogenization and detrending. The US values were extrapolated to the height 100 m (U100m,emp above ground level (AGL by the Hellman power law. All U100m,emp time series were then converted to empirical cumulative distribution functions (CDFemp. 67 theoretical cumulative distribution functions (CDF were fitted to all CDFemp and their goodness of fit (GoF was evaluated. It turned out that the five-parameter Wakeby distribution (WK5 is universally applicable in the study area. Prior to the least squares boosting (LSBoost-based modeling of WK5 parameters, 92 predictor variables were obtained from: (i a digital terrain model (DTM, (ii the European Centre for Medium-Range Weather Forecasts re-analysis (ERA-Interim reanalysis wind speed data available at the 850 hPa pressure level (U850hPa, and (iii the Coordination of Information on the Environment (CORINE Land Cover (CLC data. On the basis of predictor importance (PI and the evaluation of model accuracy, the combination of predictor variables that provides the best discrimination between U100m,emp and the modeled wind speed at 100 m AGL (U100m,mod, was identified. Results from relative PI-evaluation demonstrate that the most important predictor variables are relative elevation (Φ and topographic exposure (τ in the main wind direction. Since all WK5 parameters are available, any manufacturer power curve can easily be applied to quantify AEYmod.

  6. Wind_Speeds_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included wind speeds for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came from...

  7. Analysis of Height Affect on Average Wind Speed by Ann

    OpenAIRE

    Ata, Raşit; Çetin, Numan

    2011-01-01

    The power generated by wind turbines depends on several factors. Two of them are the wind speed and the tower height of wind turbine. In this study, the annual average wind speed based on the tower height is predicted using Artificial Neural Networks (ANN) and comparisons made with conventional model approach. The backpropagation multi layer ANNs were used to estimate annual average wind speed for three locations in Turkey. The Model has been developed with the help of neural network methodol...

  8. Analysis of Height Affect on Average Wind Speed by ANN

    OpenAIRE

    Ata, Raşit; Çetin, Numan

    2011-01-01

    The power generated by wind turbines depends on several factors. Two of them are the wind speed and the tower height of wind turbine. In this study, the annual average wind speed based on the tower height is predicted using Artificial Neural Networks (ANN) and comparisons made with conventional model approach. The backpropagation multi layer ANNs were used to estimate annual average wind speed for three locations in Turkey. The Model has been developed with the help of neural network methodol...

  9. Wind speed estimation using multilayer perceptron

    International Nuclear Information System (INIS)

    Highlights: • We present a method for determining the average wind speed using neural networks. • We use data from that site in the short term and data from other nearby stations. • The inputs used in the ANN were wind speed and direction data from a station. • The method allows knowing the wind speed without topographical data. - Abstract: Wind speed knowledge is prerequisite in the siting of wind turbines. In consequence the wind energy use requires meticulous and specified knowledge of the wind characteristics at a location. This paper presents a method for determining the annual average wind speed at a complex terrain site by using neural networks, when only short term data are available for that site. This information is useful for preliminary calculations of the wind resource at a remote area having only a short time period of wind measurements measurement in a site. Artificial neural networks are useful for implementing non-linear process variables over time, and therefore are a useful tool for estimating the wind speed. The neural network used is multilayer perceptron with three layers and the supervised learning algorithm used is backpropagation. The inputs used in the neural network were wind speed and direction data from a single station, and the training patterns used correspond to sixty days data. The results obtained by simulating the annual average wind speed at the selected site based on data from nearby stations with correlation coefficients above 0.5 were satisfactory, compared with actual values. Reliable estimations were obtained, with errors below 6%

  10. WIND SPEED AND ENERGY POTENTIAL ANALYSES

    Directory of Open Access Journals (Sweden)

    A. TOKGÖZLÜ

    2013-01-01

    Full Text Available This paper provides a case study on application of wavelet techniques to analyze wind speed and energy (renewable and environmental friendly energy. Solar and wind are main sources of energy that allows farmers to have the potential for transferring kinetic energy captured by the wind mill for pumping water, drying crops, heating systems of green houses, rural electrification's or cooking. Larger wind turbines (over 1 MW can pump enough water for small-scale irrigation. This study tried to initiate data gathering process for wavelet analyses, different scale effects and their role on wind speed and direction variations. The wind data gathering system is mounted at latitudes: 37° 50" N; longitude 30° 33" E and height: 1200 m above mean sea level at a hill near Süleyman Demirel University campus. 10 minutes average values of two levels wind speed and direction (10m and 30m above ground level have been recorded by a data logger between July 2001 and February 2002. Wind speed values changed between the range of 0 m/s and 54 m/s. Annual mean speed value is 4.5 m/s at 10 m ground level. Prevalent wind

  11. NTF – wind speed comparison

    DEFF Research Database (Denmark)

    Vesth, Allan; Gómez Arranz, Paula

    The report describes measurements carried out on a given turbine. A comparison between wind speed on the met mast and Nacelle Wind speed are made and the results are presented on graphs and in a table. The data used for the comparison are the data that are same as used for the power curve report...

  12. Forecasting wind speed financial return

    CERN Document Server

    D'Amico, Guglielmo; Prattico, Flavio

    2013-01-01

    The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

  13. Wind speed forecasting for wind energy applications

    Science.gov (United States)

    Liu, Hong

    With more wind energy being integrated into our grid systems, forecasting wind energy has become a necessity for all market participants. Recognizing the market demands, a physical approach to site-specific hub-height wind speed forecasting system has been developed. This system is driven by the outputs from the Canadian Global Environmental Multiscale (GEM) model. A simple interpolation approach benchmarks the forecasting accuracy inherited from GEM. Local, site specific winds are affected on a local scale by a variety of factors including representation of the land surface and local boundary-layer process over heterogeneous terrain which have been a continuing challenge in NWP models like GEM with typical horizontal resolution of order 15-km. In order to resolve these small scale effects, a wind energy industry standard model, WAsP, is coupled with GEM to improve the forecast. Coupling the WAsP model with GEM improves the overall forecasts, but remains unsatisfactory for forecasting winds with abrupt surface condition changes. Subsequently in this study, a new coupler that uses a 2-D RANS model of boundary-layer flow over surface condition changes with improved physics has been developed to further improve the forecasts when winds coming from a water surface to land experience abrupt changes in surface conditions. It has been demonstrated that using vertically averaged wind speeds to represent geostrophic winds for input into the micro-scale models could reduce forecast errors. The hub-height wind speed forecasts could be further improved using a linear MOS approach. The forecasting system has been evaluated, using a wind energy standard evaluation matrix, against data from an 80-m mast located near the north shore of Lake Erie. Coupling with GEM-LAM and a power conversion model using a theoretical power curve have also been investigated. For hub-height wind speeds GEM appears to perform better with a 15-Ian grid than the high resolution GEM-2.5Ian version at the

  14. Determination trends and abnormal seasonal wind speed in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Hassoon, Ahmed F. [Department of Atmospheric Sciences, College of Science, AL- Mustansiriyah University, Baghdad (Iraq)

    2013-07-01

    Monthly observed wind speed data at four weather stations (Baghdad, Mosul, Basra, Rutba) at 10m above surface were used to explore the temporal variations of the wind speed (1971-2000) in Iraq. There are different methods to analyze wind speed variation data, but the time series are one of the powerful analysis methods to diagnose the seasonal wind speed anomaly. The results show most high abnormal data is found in summer seasons in all the stations of study, where it concentrated at 1975, 1976, 1978,1996-1995, 2000. Rutba station is different where its high deviation about annual average at nearly all the seasons, in this station there are trends in seasonal wind towards decreases in all the seasons, for example in winter it reached to about 0.046m/s.a-1, while in other stations Mosul and Basra there increases in annual seasonal wind speed trends in seasons spring, summer, autumn where its reached higher value at summer in Basra about 0.0482m/s.a-1. The second method to determine abnormal annual seasonal wind speed is through comparison seasonal average wind speed, where the average wind speed at the seasons summer and spring in Baghdad and Basra station have very high averages at nearly all years, this cannot see in Mosul and Rutba, in Rutba the seasonal average is intersected with each other, summer and spring is not have greater seasonal average in this station.

  15. Wind Speed Simulation Using Wavelets

    Directory of Open Access Journals (Sweden)

    A. H. Siddiqi

    2005-01-01

    Full Text Available Most of the renewable energy sources have direct or indirect link with the sun. Wind is also a form of solar energy. It is initiated by uneven heating of the atmospheric air by the sun, affected from the topography and surface roughness of the earth's surface and rotation of the earth. The earth's terrain, water surfaces and vegetation cover modifies wind flow patterns. Wind energy or wind power terms describe the process by which the wind is used to generate mechanical energy or electricity. In view of this, there has been several studies of wind speed characteristics in different parts of the world using Weibull distribution and Fourier method of time series analysis. Wavelet methods invented in mid-eighties have attracted attention of Engineers, Physicists, Computer Scientists and Mathematicians alike for applications purposes in diverse fields. So much so that two prominent workers of this field Coifman and Daubechies have been given prestigious awards of U.S.A. in the year 2000 for their contribution in this field. In the present study we apply wavelet methods and related software to study wind speed data of certain places in Saudi Arabia.

  16. Effect of Wind Direction on ENVISAT ASAR Wind Speed Retrieval

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi;

    2010-01-01

    results, the WRF wind direction retrieves sea surface wind speeds with higher accuracies of the other wind directions at Hiratsuka. On the other hand, at Shirahama, it is not found an advantage of the WRF wind direction. Thus, the WRF wind direction cannot always retrieve wind speed with a high accuracy......This paper presents an evaluation of effects of wind directions (NCEP, MANAL, QuickSCAT and WRF) on the sea surface wind speed retrieval from 75 ENVISAT ASAR images with four C-band Geophysical model functions, CMOD4, CMOD_IFR2, CMOD5 and CMOD5N at two target areas, Hiratsuka and Shirahama. As....... However, a wind speed error generated with the WRF wind direction is the smallest of those with the other wind directions, and the error is as small as the level of SAR original radiometric errors. Consequently, the WRF wind direction is the most suitable of the four wind directions on the SAR wind speed...

  17. Wind speed dynamical model in a wind farm

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal

    This paper presents a model for wind speed in a wind farm. The basic purpose of the paper is to calculate approximately the wind speed in the vicinity of each wind turbine in a farm. In this regard the governing equations of flow will be solved for the whole wind farm. In ideal circumstances, the...

  18. Torque Control for Variable Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, P.; Van Engelen, T.G. [ECN Wind Energy, Petten (Netherlands)

    2004-11-01

    An advanced generator control algorithm has been developed and implemented in ECN's control design tool for wind turbines. For wind speeds above nominal the algorithm limits power and rotor speed to the common bounds of constant power control in variable speed turbines, while the electromagnetic torque varies half as much as found in literature. Simultaneously production dips at above nominal wind speeds are avoided. The algorithm has been examined by the aero-elastic wind turbine code Phatas. Application on a commercial wind turbine is in preparation.

  19. Survey and assessment of wind-speed and windpower in Egypt, including air density variation

    Energy Technology Data Exchange (ETDEWEB)

    Essa, Khaled S.M.; Mubarak, Fawzia

    2006-03-15

    Nearly 5 years of meteorological data were analysed from 18 stations throughout Egypt, classified as located in Mediterranean, Inland, and Red Sea zones. The national annual average wind speed was 5.8 m/s at 10 m height. The Hurguda station (Red Sea coast) has 5.8 m/s mean annual wind speed and the largest peak wind speed there was 13.8 m/s, with 98% of wind-speed records being in the range of 3 to 10 m/s. Dekhala station (Inland) has the least annual average wind speed of 2.3 m/s, with 98.5% of wind speed records in the range of 1 to 5 m/s. For Mediterranean stations, Port Said has the largest mean wind speed of 4.9 m/s. A general wind energy potential considering both wind speed and air density was derived. Comparison are made between Weibull, Rayleigh, and actual data distributions of wind speed and wind power of two years (2003 and 2004). A Weibull distribution is the best match to the actual probability distribution of wind speed data for most stations. The maximum wind energy potential was 373 W/m2 in June at El-Tor (Red Sea coast) where the annual mean value was 207 W/m2. (Author)

  20. Reducing the uncertainty in wind speed estimations near the coast

    Science.gov (United States)

    Floors, Rogier; Hahmann, Andrea N.; Karagali, Ioanna; Vasiljevic, Nikola; Lea, Guillaume; Simon, Elliot; Courtney, Michael; Ahsbahs, Tobias; Bay Hasager, Charlotte; Badger, Merete; Peña, Alfredo

    2016-04-01

    Many countries plan to meet renewable energy targets by installing near-shore wind farms, because of the high offshore wind speeds and good grid connectivity. Because of the strong relation between mean wind speed and the annual energy production, there is an interest in reducing uncertainty of the estimation of the wind speed in these coastal areas. The RUNE project aims to provide recommendations on the use of lidar systems and mesoscale models results to find the most effective (cost vs. accuracy) solution of estimating near-shore wind resources. Here we show some first results of the RUNE measuring campaign at the west coast of Jutland that started in December 2015. In this campaign, a long-range WindScanner system (a multi-lidar instrumentation) was used simultaneously with measurements from several vertical profiling lidars, a meteorological mast and an offshore buoy. These measurements result in a detailed picture of the flow in a transect across the coastline from approximately 5 km offshore up to 3 km inland. The wind speed obtained from a lidar in a sector-scanning mode and from two time-synchronized lidars that were separated horizontally but focused in the same point, will be compared. Furthermore it will be shown how the resulting horizontal wind speed transects compare with the wind speed measurements from the vertical profiling lidars and the meteorological mast. The behaviour of the coastal gradient in wind speed in this area is discussed. Satellite data for the wind over the RUNE measurement area were also collected. Synthetic Aperture Radar (SAR) winds from Sentinel-1 and TerraSAR-X were retrieved at different spatial resolutions. Advanced Scatterometer (ASCAT) swath winds were obtained from both METOP-A and B platforms. These were used for direct comparisons with the lidar in sector scanning mode.

  1. Probability distributions for offshore wind speeds

    International Nuclear Information System (INIS)

    In planning offshore wind farms, short-term wind speeds play a central role in estimating various engineering parameters, such as power output, extreme wind load, and fatigue load. Lacking wind speed time series of sufficient length, the probability distribution of wind speed serves as the primary substitute for data when estimating design parameters. It is common practice to model short-term wind speeds with the Weibull distribution. Using 10-min wind speed time series at 178 ocean buoy stations ranging from 1 month to 20 years in duration, we show that the widely-accepted Weibull distribution provides a poor fit to the distribution of wind speeds when compared with more complicated models. We compare distributions in terms of three different metrics: probability plot R2, estimates of average turbine power output, and estimates of extreme wind speed. While the Weibull model generally gives larger R2 than any other 2-parameter distribution, the bimodal Weibull, Kappa, and Wakeby models all show R2 values significantly closer to 1 than the other distributions considered (including the Weibull), with the bimodal Weibull giving the best fits. The Kappa and Wakeby distributions fit the upper tail (higher wind speeds) of a sample better than the bimodal Weibull, but may drastically over-estimate the frequency of lower wind speeds. Because the average turbine power is controlled by high wind speeds, the Kappa and Wakeby estimate average turbine power output very well, with the Kappa giving the least bias and mean square error out of all the distributions. The 2-parameter Lognormal distribution performs best for estimating extreme wind speeds, but still gives estimates with significant error. The fact that different distributions excel under different applications motivates further research on model selection based upon the engineering parameter of interest.

  2. When real life wind speed exceeds design wind assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Winther-Jensen, M.; Joergensen, E.R. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Most modern wind turbines are designed according to a standard or a set of standards to withstand the design loads with a defined survival probability. Mainly the loads are given by the wind conditions on the site defining the `design wind speeds`, normally including extreme wind speeds given as an average and a peak value. The extreme wind speeds are normally (e.g. in the upcoming IEC standard for wind turbine safety) defined as having a 50-year recurrence period. But what happens when the 100 or 10,000 year wind situation hits a wind turbine? Results on wind turbines of wind speeds higher than the extreme design wind speeds are presented based on experiences especially from the State of Gujarat in India. A description of the normal approach of designing wind turbines in accordance with the standards in briefly given in this paper with special focus on limitations and built-in safety levels. Based on that, other possibilities than just accepting damages on wind turbines exposed for higher than design wind speeds are mentioned and discussed. The presentation does not intend to give the final answer to this problem but is meant as an input to further investigations and discussions. (au)

  3. Analysis of prevailing wind speed and direction at Mersing and possibility of wind machine installation

    International Nuclear Information System (INIS)

    The aim of this paper is to analyse wind data at windy site in Malaysia. The data was analysed at the hub height at 50 meter above ground. Statistical calculations and Wiebull distribution model were used for wind data analysis and the potentiality of available power density at Mersing site was estimated. The hourly, daily, monthly and annual analysis was done for the data. The evaluation of wind energy output and wind energy conversion (WEC) parameters were examined. The results showed that, the Mersing site is suitable for installation of wind machine with the low wind speed region

  4. Fault tolerant wind speed estimator used in wind turbine controllers

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    Advanced control schemes can be used to optimize energy production and cost of energy in modern wind turbines. These control schemes most often rely on wind speed estimations. These designs of wind speed estimators are, however, not designed to be fault tolerant towards faults in the used sensors...... applying the proposed wind speed estimator to a simulation model of a wind turbine. Notice that since the faults are accommodated in the observer scheme the actual controller do not need to be adjusted or reconfigured to accommodate the sensor faults....

  5. Wind speed dynamical model in a wind farm

    OpenAIRE

    Soleimanzadeh M.; Wisniewski R.

    2010-01-01

    This paper presents a model for wind speed in a wind farm. The basic purpose of the paper is to calculate approximately the wind speed in the vicinity of each wind turbine in a farm. In this regard the governing equations of flow will be solved for the whole wind farm. In ideal circumstances, the dynamic model for wind flow will be established. The state space variables are determined based on a fine mesh defined for the farm. The end goal of this method is to assist the development of a dyna...

  6. Fiber Laser for Wind Speed Measurements

    DEFF Research Database (Denmark)

    Olesen, Anders Sig

    This PhD thesis evaluates the practical construction and use of a Frequency Stepped Pulse Train modulated coherent Doppler wind lidar (FSPT lidar) for wind speed measurement. The concept of Doppler lidar is introduced as a means to measure line of sight wind speed by the Doppler shift of reflected...... concept wind speed measurements obtained with the FSPT lidar are shown. This is followed by a discussion of the advantages and disadvantages of a FSPT lidar compared to a CW and a pulsed lidar system, and further avenues for evolving the concepts....

  7. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  8. Offshore wind speed and wind power characteristics for ten locations in Aegean and Ionian Seas

    Indian Academy of Sciences (India)

    Haralambos S Bagiorgas; Giouli Mihalakakou; Shafiqur Rehman; Luai M Al-Hadhrami

    2012-08-01

    This paper utilizes wind speed data measured at 3 and 10 m above water surface level using buoys at 10 stations in Ionian and Aegean Seas to understand the behaviour of wind and thereafter energy yield at these stations using 5 MW rated power offshore wind turbine. With wind power densities of 971 and 693 W/m2 at 50 m above water surface level, Mykonos and Lesvos were found to be superb and outstanding windy sites with wind class of 7 and 6, respectively. Other locations like Athos, Santorini and Skyros with wind power density of more than 530 W/m2 and wind class of 5 were found to be the excellent sites. Around 15–16% higher winds were observed at 10 m compared to that at 3 m. Lower values of wind speed were found during summer months and higher during winter time in most of the cases reported in the present work. Slightly decreasing (∼2% per year) linear trends were observed in annual mean wind speed at Lesvos and Santorini. These trends need to be verified with more data from buoys or from nearby onshore meteorological stations. At Athos and Mykonos, increasing linear trends were estimated. At all the stations the chosen wind turbine could produce energy for more than 70% of the time. The wind speed distribution was found to be well represented by Weibull parameters obtained using Maximum likelihood method compared to WAsP and Method of Moments.

  9. Offshore wind speed and wind power characteristics for ten locations in Aegean and Ionian Seas

    Science.gov (United States)

    Bagiorgas, Haralambos S.; Mihalakakou, Giouli; Rehman, Shafiqur; Al-Hadhrami, Luai M.

    2012-08-01

    This paper utilizes wind speed data measured at 3 and 10 m above water surface level using buoys at 10 stations in Ionian and Aegean Seas to understand the behaviour of wind and thereafter energy yield at these stations using 5 MW rated power offshore wind turbine. With wind power densities of 971 and 693 W/m2 at 50 m above water surface level, Mykonos and Lesvos were found to be superb and outstanding windy sites with wind class of 7 and 6, respectively. Other locations like Athos, Santorini and Skyros with wind power density of more than 530 W/m2 and wind class of 5 were found to be the excellent sites. Around 15-16% higher winds were observed at 10 m compared to that at 3 m. Lower values of wind speed were found during summer months and higher during winter time in most of the cases reported in the present work. Slightly decreasing (~2% per year) linear trends were observed in annual mean wind speed at Lesvos and Santorini. These trends need to be verified with more data from buoys or from nearby onshore meteorological stations. At Athos and Mykonos, increasing linear trends were estimated. At all the stations the chosen wind turbine could produce energy for more than 70% of the time. The wind speed distribution was found to be well represented by Weibull parameters obtained using Maximum likelihood method compared to WAsP and Method of Moments.

  10. WIND SPEED AND ENERGY POTENTIAL ANALYSES

    OpenAIRE

    A. TOKGÖZLÜ; O. KAYNAR; M. ALTUNÇ; M.ZONTUL; Z. ASLAN

    2013-01-01

    This paper provides a case study on application of wavelet techniques to analyze wind speed and energy (renewable and environmental friendly energy). Solar and wind are main sources of energy that allows farmers to have the potential for transferring kinetic energy captured by the wind mill for pumping water, drying crops, heating systems of green houses, rural electrification's or cooking. Larger wind turbines (over 1 MW) can pump enough water for small-scale irrigation. This study tried to ...

  11. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.;

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated...... first flow regime comprising the first turbines in a row the local mean wind speed over the rotor disc is found to decrease linearly from turbine to turbine for the turbines operating at maximum power but also to some extend extend below rated power. The second flow regime is characterized by a constant...... local equilibrium wind speed. Based on the present results the equilibrium wind speed normalized with the inflow wind speed varies from about 0.4 for a spacing of 3D to slightly above 0.6 for a 9D spacing at an ambient turbulence intensity equal 6%. It is also found that for a turbine in the...

  12. Mycielski approach for wind speed prediction

    Energy Technology Data Exchange (ETDEWEB)

    Hocaoglu, Fatih O. [Afyon Kocatepe University, Department of Electronics and Communication Engineering, 03200 Afyonkarahisar (Turkey); Fidan, Mehmet; Gerek, Oemer N. [Anadolu University, Department of Electrical and Electronics Engineering, 26555 Eskisehir (Turkey)

    2009-06-15

    Wind speed modeling and prediction plays a critical role in wind related engineering studies. However, since the data have random behavior, it is difficult to apply statistical approaches with apriori and deterministic parameters. On the other hand, wind speed data have an important feature; extreme transitions from a wind state to a far different one are rare. Therefore, behavioral modeling is possible. Although several studies focus on global parametrization of wind data behavior, the literature in time-wise modeling and prediction is relatively small. In this study, a novel approach for wind speed modeling using the Mycielski algorithm is demonstrated. The algorithm accurately predicts the time variations of wind speed data in the sense of forecasting future values of wind data by analyzing the repeatedness in the history of the data. The prediction precision of the procedure is tested using wind speed data obtained from three different locations of Turkey (Kayseri, izmir and Antalya). Prediction results with high accuracy are obtained and presented. (author)

  13. Estimation of Maximum Wind Speeds in Tornadoes

    OpenAIRE

    Dergarabedian, Paul; Fendell, Francis

    2011-01-01

    A method is proposed for rapidly estimating the maximum value of the azimuthal velocity component (maximum swirling speed) in tornadoes and waterspouts. The method requires knowledge of the cloud-deck height and a photograph of the funnel cloud—data usually available. Calculations based on this data confirm that the lower maximum wind speeds suggested by recent workers (roughly one-quarter of the sonic speed for sea-level air) are more plausible for tornadoes than the sonic speed sometimes ci...

  14. Low Speed Wind Tunnel Facility (LSWTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility consists of a large-scale, low-speed open-loop induction wind tunnel which has been modified to house a linear turbine cascade. A 125-hp...

  15. Low wind speed wind turbine in DIY version

    OpenAIRE

    Van den Bossche, Alex

    2013-01-01

    Wind energy has still a place, as it can generate power in the winter, when less sun is available and when the wind speed is higher. This paper proposes a solution for low cost blades from a polyethylene pipe (PE) and a low cost electric bike generator, which is possible to realize by a do it yourself (DIY) person. It is intended as low wind speed wind turbine (LWWT). The design is rather optimized towards a low cost/swept area, rather than the cost/nominal power. It uses a variant on the fur...

  16. Virtual inertia for variable speed wind turbines

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Rudolph, Andreas Jakob; Münster-Swendsen, Janus;

    2013-01-01

    Inertia provision for frequency control is among the ancillary services that different national grid codes will likely require to be provided by future wind turbines. The aim of this paper is analysing how the inertia response support from a variable speed wind turbine (VSWT) to the primary...... frequency control of a power system can be enhanced. Unlike fixed speed wind turbines, VSWTs do not inherently contribute to system inertia, as they are decoupled from the power system through electronic converters. Emphasis in this paper is on how to emulate VSWTs inertia using control of the power...... conventional generation. The range of wind speeds near the power limitation zone seems to be the most critical from a primary response point of view. The theoretical reasons behind this are elucidated in the paper. Copyright © 2012 John Wiley & Sons, Ltd....

  17. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    Directory of Open Access Journals (Sweden)

    Ju Feng

    2015-04-01

    Full Text Available Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data at Horns Rev and three different joint distributions are obtained, which all fit the measurement data quite well in terms of the coefficient of determination . Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind direction is especially critical for layout optimization and the recommended choice of bin sizes for wind speed and wind direction is finally presented.

  18. Wind speed prediction using different computing techniques

    OpenAIRE

    Nayak, Munir Ahmad; Deo, M. C.

    2014-01-01

    Wind is slated to become one of the most sought after source of energy in future. Both onshore as well as offshore wind farms are getting deployed rapidly over the world. This paper evaluates a neural network based time series approach to predict wind speed in real time over shorter duration of up to 12 hr based on analysis of three hourly wind data collected through a wave rider buoy deployed off Goa in deep water and far away from the shore. The data were collected for 4 years from February...

  19. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distribu......Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint...... quite well in terms of the coefficient of determination R-2. Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind...... direction is especially critical for layout optimization and the recommended choice of bin sizes for wind speed and wind direction is finally presented....

  20. Control algorithms for effective operation of variable-speed wind turbines

    Science.gov (United States)

    1993-10-01

    This report describes a computer code, called ASYM, and provides results from its application in simulating the control of the 34-m Test Bed vertical-axis wind turbine (VAWT) in Bushland, Texas. The code synthesizes dynamic wind speeds on a second-by-second basis in the time domain. The wind speeds conform to a predetermined spectral content governed by the hourly average wind speed that prevails at each hour of the simulation. The hourly average values are selected in a probabilistic sense through the application of Markov chains, but their cumulative frequency of occurrence conforms to a Rayleigh distribution that is governed by the mean annual wind speed of the site selected. The simulated wind speeds then drive a series of control algorithms that enable the code to predict key operational parameters such as number of annual starts and stops, annual energy production, and annual fatigue damage at a critically stressed joint on the wind turbine. This report also presents results from the application of ASYM that pertain to low wind speed cut-in and cut-out conditions and controlled operation near critical speed ranges that excite structural vibrations that can lead to accelerated fatigue damage.

  1. Short-term wind speed estimation based on weather data

    OpenAIRE

    ÖZGÖNENEL, Okan; Thomas, David W. P.

    2012-01-01

    For accurate and efficient use of wind power, it is important to know the statistical characteristics, availability, diurnal variation, and prediction of wind speed. Prediction of wind power permits the scheduling of the connection or the disconnection of wind turbines to achieve optimal operating costs. In this paper, a simple and accurate method for predicting wind speed based on weather-sensitive data is presented. The proposed wind speed prediction system is cost-effective and o...

  2. The Change in the Maximum Wind Speed and the Impact of it on Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    WU Jian-mei; SUN Jin-sen; SUI Gui-ling; XIE Su-he; WANG Meng

    2012-01-01

    Using the data on the maximum wind speed within ten minutes every month in the period 1971-2009 in Zhucheng City of Shandong Province, we conduct statistical analysis of the maximum wind speed in Zhucheng City. The results show that over thirty-nine years, the annual maximum wind speed in four seasons in Zhucheng City tends to decline. The annual maximum wind speed declines at the rate of 1.45 m/s every 10 years. It falls fastest in winter, with decline rate of 1.73 m/s every 10 years; it is close to the average annual maximum wind speed in spring and autumn, with decline rate of 1.44 m/s and 14.8 m/s every 10 years, respectively; it falls slowest in summer, and the extreme value of the maximum wind speed occurs mainly in spring. The curve of changes in the monthly maximum wind speed in Zhucheng City assumes diminishing shape of "two peaks and one trough". We conduct preliminary analysis of the windy weather situation, and put forth specific defensive measures against the hazards of strong winds in the different periods.

  3. Torque- and Speed Control of a Pitch Regulated Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rasila, Mika

    2003-07-01

    Variable speed operated wind turbines has the potential to reduce fatigue loads, compared to fixed speed wind turbines. With pitch controllable rotor blades limitation of the power at high wind speeds is obtained. The thesis describes different controlling aspects concerning wind turbines and how these together can be used to optimize the system's performance. Torque control is used in order to achieve reduction on the mechanical loads on the drive-train for low wind speeds and limitation of power output for high wind speeds. In the high wind speed interval torque control is effective in order to limit the output power if a sufficiently fast pitch actuator is used. In the middle wind speed interval filter utilization can be used to give a reference signal to the controller in order to reduce speed and torque variations.

  4. Variations in long term wind speed during different decades in Arabian Sea and Bay of Bengal

    Indian Academy of Sciences (India)

    V Sanil Kumar; C Sajiv Philip

    2010-10-01

    A study has been carried out by comparing the extreme wind speeds estimated based on NCEP/NCAR reanalysis data for 100 years return period using Fischer Tippet-1 (commonly known as Gumbel)and Weibull distributions for three locations (off Goa,Visakhapatnam and Machilipatnam)in the north Indian Ocean.The wind dataset for Goa is compared with that from ERA-40 data.For higher wind speeds (12-20 m s−1),NCEP wind speed has higher percentage of occurrence than that of ERA-40.Analysis has shown slight upward trend in the annual maximum wind for location off Machilipatnam with an increase of 1.2cms−1 per year and a decreasing trend of −1.3cms−1 per year in the case of Goa.The Weibull distribution with shape parameter 2 fits the annual maximum wind data better than FT-1 distribution.

  5. Multiple architecture system for wind speed prediction

    International Nuclear Information System (INIS)

    A new approach based on multiple architecture system (MAS) for the prediction of wind speed is proposed. The motivation behind the proposed approach is to combine the complementary predictive powers of multiple models in order to improve the performance of the prediction process. The proposed MAS can be implemented by associating the predictions obtained from the different regression algorithms (MLR, MLP, RBF and SVM) making up the ensemble by three fusion strategies (simple, weighted and non-linear). The efficiency of the proposed approach has been assessed on a real data set recorded from seven locations in Algeria during a period of 10 years. The experimental results point out that the proposed MAS approach is capable of improving the precision of the wind speed prediction compared to the traditional prediction methods.

  6. Control of Variable Speed Variable Pitch Wind Turbine at Above and Below Rated Wind Speed

    Directory of Open Access Journals (Sweden)

    Saravanakumar Rajendran

    2014-01-01

    Full Text Available The paper presents a nonlinear approach to wind turbine (WT using two-mass model. The main aim of the controller in the WT is to maximize the energy output at varying wind speed. In this work, a combination of linear and nonlinear controllers is adapted to variable speed variable pitch wind turbines (VSVPWT system. The major operating regions of the WT are below (region 2 and above rated (region 3 wind speed. In these regions, generator torque control (region 2 and pitch control (region 3 are used. The controllers in WT are tested for below and above rated wind speed for step and vertical wind speed profile. The performances of the controllers are analyzed with nonlinear FAST (Fatigue, Aerodynamics, Structures, and Turbulence WT dynamic simulation. In this paper, two nonlinear controllers, that is, sliding mode control (SMC and integral sliding mode control (ISMC, have been applied for region 2, whereas for pitch control in region 3 conventional PI control is used. In ISMC, the sliding manifold makes use of an integral action to show effective qualities of control in terms of the control level reduction and sliding mode switching control minimization.

  7. Decadal predictability of regional scale wind speed and wind energy potentials over Central Europe

    Science.gov (United States)

    Moemken, Julia; Reyers, Mark; Buldmann, Benjamin; Pinto, Joaquim G.

    2016-04-01

    Regional climate predictions on timescales from one year to one decade are gaining importance since this time frame falls within the planning horizon of politics, economy, and society. In this context, decadal predictions are of particular interest for the development of renewable energies such as wind energy. The present study examines the decadal predictability of regional scale wind speed and wind energy potentials in the framework of the MiKlip consortium ("Mittelfristige Klimaprognosen"; www.fona-miklip.de). This consortium aims to develop a model system based on the Max-Planck-Institute Earth System Model (MPI-ESM) that can provide skilful decadal predictions on regional and global scales. Three generations of the decadal prediction system, which differ primarily in their ocean initialisation, are analysed here. Ensembles of uninitialised historical and yearly initialised hindcast experiments are used to assess different skill scores for 10m wind speeds and wind energy output (Eout) over Central Europe, with special focus given to Germany. With this aim, a statistical-dynamical downscaling (SDD) approach is used for the regionalisation of the global datasets. Its added value is evaluated by comparison of skill scores for MPI-ESM large-scale wind speeds and SDD simulated regional wind speeds. All three MPI-ESM ensemble generations show some forecast skill for annual mean wind speed and Eout over Central Europe on yearly and multi-yearly time scales. The forecast skill is mostly limited to the first years after initialisation. Differences between the three ensemble generations are generally small. The regionalisation preserves and sometimes increases the forecast skill of the global runs but results depend on lead time and ensemble generation. Moreover, regionalisation often improves the ensemble spread. Seasonal Eout skills are generally lower than for annual means. Skill scores are lowest during summer, and persist longest in autumn. A large-scale westerly

  8. Torque observer for the control of variable speed wind turbines operating below rated wind speed

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas-Dobson, R.; Asher, G.M. [Universidad de Magallanes, Punta Arenas (Chile); Asher, G. [Nottingham Univ. (United Kingdom). Dept. of Electrical Engineering

    1996-12-31

    This paper gives a formal analysis and design of a combined mechanical torque observer and direct speed control strategy for the tracking of the optimal speed in a variable wind speed turbine-generator system. An analysis of the control structure linearized about the optimal tracking point is derived and forms the basis for analytic comparisons with the more common indirect tracking control. The linearized structure is used for a formal design of an interacting speed controller and torque observer system. Simulation results relating to tracking accuracy and energy capture for a 7.5kW system are presented and discussed. Finally, the controller-observer structure is implemented on a 7.5kW experimental rig using a Switched Reluctance generator and verifies the good performance of the design approach. The application of a torque for wind speed estimation is also discussed. (author)

  9. ACCUWIND - Accurate wind speed measurements in wind energy - Summary report

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Dahlberg, J.-Å.; Cuerva, A.; Mouzakis, F.; Busche, P.; Eecen, P.; Sanz-Andres, A.; Franchini, S.; Markkilde Petersen, Søren

    2006-01-01

    verification purposes, and for purposes of optimisation in research and development. The revised IEC standard on power performance measurements has now included requirements for classification of cup anemometers. Thebasis for setting up such requirements of cup anemometers is two EU projects SITEPARIDEN and......The cup anemometer is at present the standard instrument used for mean wind speed measurement in wind energy. It is being applied in high numbers around the world for wind energy assessments. It is also applied exclusively for accredited power performancemeasurements for certification and...... analysis of characteristics of cup and sonic anemometers. The methods and procedures provide a platform, hopefully for use in meeting the requirements of the IEC standard on power performance measurements, as well as for development of improvedinstruments....

  10. Wind speed forecasting in the central California wind resource area

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, E.F. [Wind Economics & Technology, Inc., Martinez, CA (United States)

    1997-12-31

    A wind speed forecasting program was implemented in the summer seasons of 1985 - 87 in the Central California Wind Resource Area (WRA). The forecasting program is designed to use either meteorological observations from the WRA and local upper air observations or upper air observations alone to predict the daily average windspeed at two locations. Forecasts are made each morning at 6 AM and are valid for a 24 hour period. Ease of use is a hallmark of the program as the daily forecast can be made using data entered into a programmable HP calculator. The forecasting program was the first step in a process to examine whether the electrical energy output of an entire wind power generation facility or defined subsections of the same facility could be predicted up to 24 hours in advance. Analysis of the results of the summer season program using standard forecast verification techniques show the program has skill over persistence and climatology.

  11. Estimation of Rotor Effective Wind Speed: A Comparison

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Knudsen, Torben; Svenstrup, Mikael;

    2013-01-01

    Modern wind turbine controllers use wind speed information to improve power production and reduce loads on the turbine components. The turbine top wind speed measurement is unfortunately imprecise and not a good representative of the rotor effective wind speed. Consequently, many different model......-based algorithms have been proposed that are able to estimate the wind speed using common turbine measurements. In this paper, we present a concise yet comprehensive analysis and comparison of these techniques, reviewing their advantages and drawbacks. We implement these techniques and compare the results on both...... aero-servo-elastic turbine simulations and real turbine field experiments in different wind scenarios....

  12. Wind speed change regionalization in China (1961–2012

    Directory of Open Access Journals (Sweden)

    Pei-Jun Shi

    2015-06-01

    Full Text Available This research quantitatively recognized the wind speed change using wind speed trend and trend of wind speed variability from 1961 to 2012 and regionalized the wind speed change on a county-level basis. The mean wind speed observation data and linear fitting method were used. The findings suggested that level-I regionalization includes six zones according to wind speed trend value in different regions, viz. Northeast China–North China substantial declining zone, East–Central China declining zone, Southeast China slightly declining zone, Southwest China very slightly declining zone, Northwest China declining zone, and Qinghai–Tibetan Plateau slightly declining zone. Level-II regionalization divides China into twelve regions based on trend of wind speed variability and the level-I regionalization results.

  13. Wind speed change regionalization in China(1961-2012)

    Institute of Scientific and Technical Information of China (English)

    SHI; Pei-Jun; ZHANG; Gang-Feng; KONG; Feng; YE; Qian

    2015-01-01

    This research quantitatively recognized the wind speed change using wind speed trend and trend of wind speed variability from 1961 to 2012 and regionalized the wind speed change on a county-level basis.The mean wind speed observation data and linear fitting method were used.The findings suggested that level-I regionalization includes six zones according to wind speed trend value in different regions,viz.Northeast ChinaeNorth China substantial declining zone,EasteCentral China declining zone,Southeast China slightly declining zone,Southwest China very slightly declining zone,Northwest China declining zone,and QinghaieTibetan Plateau slightly declining zone.Level-II regionalization divides China into twelve regions based on trend of wind speed variability and the level-I regionalization results.

  14. Pitch Angle Control of Variable Speed Wind Turbine

    OpenAIRE

    Yousif El-Tous

    2008-01-01

    The aim of this study is to design a simple controller to maximize the extracted energy of wind turbines. In this study the pitch angle control of variable speed wind turbine is investigated. In particular, it concentrates on the extraction of maximum available energy, reduction of torque and output power variations, which gives stresses in the gearbox and mechanical structure. The control concentrates on separate wind speed internals as well as on whole wind speed region. It is found that th...

  15. Wind speed estimation in wind turbines using EKF: application to experimental data

    OpenAIRE

    Hernández, Jordi; Guadayol, Marc; Puig Cayuela, Vicenç

    2014-01-01

    Wind speed estimation is an important issue when addressing the control or the monitoring of a wind turbine. A realistic value of wind speed could be very useful to improve performance of wind turbine controllers, either for scheduling or as an extra feed forward term. In addition, it could also be useful for fault diagnosis and fault-tolerant control of the wind turbine. The objective of this work is to design and implement a wind speed estimator based on an Extended Kal...

  16. Estimation of friction velocity from the wind-wave spectrum at extremely high wind speeds

    Science.gov (United States)

    Takagaki, N.; Komori, S.; Suzuki, N.

    2016-05-01

    The equilibrium range of wind-waves at normal and extremely high wind speeds was investigated experimentally using a high-speed wind-wave tank together with field measurements at normal wind speeds. Water level fluctuations at normal and extremely high wind speeds were measured with resistance-type wave gauges, and the wind-wave spectrum and significant phase velocity were calculated. The equilibrium range constant was estimated from the wind-wave spectrum and showed the strong relationship with inverse wave age at normal and extremely high wind speeds. Using the strong relation between the equilibrium range constant and inverse wave age, a new method for estimating the wind speed at 10-m height (U 10) and friction velocity (u*) was proposed. The results suggest that U 10 and u* can be estimated from wave measurements alone at extremely high wind speeds in oceans under tropical cyclones.

  17. IEA Wind Energy Annual Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    The twenty-third IEA Wind Energy Annual Report reviews the progress during 2000 of the activities in the Implementing Agreement for Co-operation in the Research and Development on Wind Turbine Systems under the auspices of the International Energy Agency (IEA). The agreement and its program, which is known as IEA R&D Wind, is a collaborative venture among 19 contracting parties from 17 IEA member countries and the European Commission.

  18. Nonparametric analysis of high wind speed data

    Science.gov (United States)

    Francisco-Fernández, Mario; Quintela-del-Río, Alejandro

    2013-01-01

    In this paper, nonparametric curve estimation methods are applied to analyze time series of wind speeds, focusing on the extreme events exceeding a chosen threshold. Classical parametric statistical approaches in this context consist in fitting a generalized Pareto distribution (GPD) to the tail of the empirical cumulative distribution, using maximum likelihood or the method of the moments to estimate the parameters of this distribution. Additionally, confidence intervals are usually computed to assess the uncertainty of the estimates. Nonparametric methods to estimate directly some quantities of interest, such as the probability of exceedance, the quantiles or return levels, or the return periods, are proposed. Moreover, bootstrap techniques are used to develop pointwise and simultaneous confidence intervals for these functions. The proposed models are applied to wind speed data in the Gulf Coast of US, comparing the results with those using the GPD approach, by means of a split-sample test. Results show that nonparametric methods are competitive with respect to the standard GPD approximations. The study is completed generating synthetic data sets and comparing the behavior of the parametric and the nonparametric estimates in this framework.

  19. The economics of a variable speed wind-diesel

    International Nuclear Information System (INIS)

    A remote community power supply system generating over 1,000 kWH/d will have at least one diesel generator running all the time. If one or more wind turbine generators are added to such a system, the diesel generator will produce less power when wind speeds are adequate, but its fuel efficiency will gradually decrease as load decreases. In the variable speed wind/diesel concept, the diesel rpm is reduced with decreasing load and a high fuel efficiency is maintained over virtually the full power range. The outputs of the diesel and wind turbine generators are fed into an inverter which synthesizes a desired voltage wave-shape with controlled magnitude and frequency. The variable speed wind/diesel concept may make vertical axis wind turbines suitable for remote community power supply because the inverter effectively isolates the power ripple of the wind turbine. A possible wind/diesel system configuration using the variable speed concept is illustrated. The economics of a 50-kW variable speed diesel and a 80-kW variable speed wind turbine generator was analyzed. Going from a constant speed diesel generator to a variable speed generator operating at 55% capacity factor, a 6% fuel saving was achieved. Adding one 80-kW wind turbine increased fuel savings to 32% at 5 m/s wind speed, but the unit energy cost rose 8.5%. At 7 m/s wind speed, fuel savings were 59% and energy savings were 7.8%. Economics are better for a peaking variable speed 50-kW wind/diesel system added to an existing diesel system to extend the installed capacity. At 7 m/s wind speed the fuel savings translate into ca $40,000 over 10 y and purchase of a $150,000 diesel generator is postponed. 7 figs., 1 tab

  20. Comparison of NWP wind speeds and directions to measured wind speeds and directions

    DEFF Research Database (Denmark)

    Astrup, Poul; Mikkelsen, Torben

    Numerical Weather Predictions (NWP) of wind speed and direction has been compared to measurements for seven German sites for nuclear power plants, and for Risø, the site of the Danish nuclear research reactors now being decommissioned . For the German sites the data cover approximately three month...

  1. Comparison of SAR Wind Speed Retrieval Algorithms for Evaluating Offshore Wind Energy Resources

    DEFF Research Database (Denmark)

    Kozai, K.; Ohsawa, T.; Takeyama, Y.; Shimada, S.; Niwa, R.; Hasager, Charlotte Bay; Badger, Merete

    2010-01-01

    stability, while CMOD5.N assumes a neutral condition. By utilizing Monin-Obukov similarity theory in the inverse LKB code, equivalent neutral wind speeds derived from CMOD5.N are converted to stability dependent wind speeds (CMOD5N_ SDW). Results of comparison in terms of energy density indicate the CMOD5N......Envisat/ASAR-derived offshore wind speeds and energy densities based on 4 different SAR wind speed retrieval algorithms (CMOD4, CMOD-IFR2, CMOD5, CMOD5.N) are compared with observed wind speeds and energy densities for evaluating offshore wind energy resources. CMOD4 ignores effects of atmospheric...

  2. Stochastic generation of hourly wind speed time series

    International Nuclear Information System (INIS)

    In the present study hourly wind speed data of Kuala Terengganu in Peninsular Malaysia are simulated by using transition matrix approach of Markovian process. The wind speed time series is divided into various states based on certain criteria. The next wind speed states are selected based on the previous states. The cumulative probability transition matrix has been formed in which each row ends with 1. Using the uniform random numbers between 0 and 1, a series of future states is generated. These states have been converted to the corresponding wind speed values using another uniform random number generator. The accuracy of the model has been determined by comparing the statistical characteristics such as average, standard deviation, root mean square error, probability density function and autocorrelation function of the generated data to those of the original data. The generated wind speed time series data is capable to preserve the wind speed characteristics of the observed data

  3. OW QuikSCAT Wind Speed, Stress and Stress Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived ocean wind speed, stress and stress curl measurements collected by means of the NASA/JPL SeaWinds Scatterometer sensor. The...

  4. Effectiveness of Changing Wind Turbine Cut-in Speed to Reduce Bat Fatalities at Wind Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Huso, Manuela M. P. [Oregon State Univ., Corvallis, OR (United States); Hayes, John P. [Univ. of Florida, Gainesville, FL (United States)

    2009-04-01

    This report details an experiment on the effectiveness of changing wind turbine cut-in speed on reducing bat fatality from wind turbines at the Casselman Wind Project in Somerset County, Pennsylvania.

  5. The influence of humidity fluxes on offshore wind speed profiles

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Sempreviva, Anna Maria; Pryor, Sara

    2010-01-01

    extrapolation from lower measurements. With humid conditions and low mechanical turbulence offshore, deviations from the traditional logarithmic wind speed profile become significant and stability corrections are required. This research focuses on quantifying the effect of humidity fluxes on stability corrected...... wind speed profiles. The effect on wind speed profiles is found to be important in stable conditions where including humidity fluxes forces conditions towards neutral. Our results show that excluding humidity fluxes leads to average predicted wind speeds at 150 m from 10 m which are up to 4% higher...... than if humidity fluxes are included, and the results are not very sensitive to the method selected to estimate humidity fluxes....

  6. High speed plasma streams in solar wind

    International Nuclear Information System (INIS)

    The behavior of the high-speed plasma streams (HSPSs) in the solar wind is investigated during the period of the solar cycles (SCs) nos. 20-22 (1964-1996). The analysis is performed taking into account their frequency of appearance and the following parameters: the durations (in days); the maximum velocities; the velocity gradients; the importance of the streams. The time variation of the HSPS parameters and their occurrence rate shows an 11-years periodicity with some differences between the considered SCs. The even and odd solar 11-year cycles are different in the structure of their maxima, too. The different behavior of the HSPS parameters between even and odd solar cycle could be due to the 22-year solar magnetic cycle. (authors)

  7. Assessment of wind speed and wind power through three stations in Egypt, including air density variation and analysis results with rough set theory

    International Nuclear Information System (INIS)

    It is well known that the wind energy potential is proportional to both air density and the third power of the wind speed average over a suitable time period. The wind speed and air density have random variables depending on both time and location. The main objective of this work is to derive the most general wind energy potential of the wind formulation putting into consideration the time variable in both wind speed and air density. The correction factor is derived explicitly in terms of the cross-correlation and the coefficients of variation.The application is performed for environmental and wind speed measurements at the Cairo Airport, Kosseir and Hurguada, Egypt. Comparisons are made between Weibull, Rayleigh, and actual data distributions of wind speed and wind power of one year 2005. A Weibull distribution is the best match to the actual probability distribution of wind speed data for most stations. The maximum wind energy potential was 373 W/m2 in June at Hurguada (Red Sea coast) where the annual mean value was 207 W/m2. By Using Rough Set Theory, We Find That the Wind Power Depends on the Wind Speed with greater than air density

  8. Wind speed prediction using statistical regression and neural network

    Indian Academy of Sciences (India)

    Makarand A Kulkarni; Sunil Patil; G V Rama; P N Sen

    2008-08-01

    Prediction of wind speed in the atmospheric boundary layer is important for wind energy assess- ment,satellite launching and aviation,etc.There are a few techniques available for wind speed prediction,which require a minimum number of input parameters.Four different statistical techniques,viz.,curve fitting,Auto Regressive Integrated Moving Average Model (ARIMA),extrapolation with periodic function and Artificial Neural Networks (ANN)are employed to predict wind speed.These methods require wind speeds of previous hours as input.It has been found that wind speed can be predicted with a reasonable degree of accuracy using two methods,viz.,extrapolation using periodic curve fitting and ANN and the other two methods are not very useful.

  9. Multistep Wind Speed Forecasting Based on Wavelet and Gaussian Processes

    Directory of Open Access Journals (Sweden)

    Niya Chen

    2013-01-01

    Full Text Available Accurate wind speed forecasts are necessary for the safety and economy of the renewable energy utilization. The wind speed forecasts can be obtained by statistical model based on historical data. In this paper, a novel W-GP model (wavelet decomposition based Gaussian process learning paradigm is proposed for short-term wind speed forecasting. The nonstationary and nonlinear original wind speed series is first decomposed into a set of better-behaved constitutive subseries by wavelet decomposition. Then these sub-series are forecasted respectively by GP method, and the forecast results are summed to formulate an ensemble forecast for original wind speed series. Therefore, the previous process which obtains wind speed forecast result is named W-GP model. Finally, the proposed model is applied to short-term forecasting of the mean hourly and daily wind speed for a wind farm located in southern China. The prediction results indicate that the proposed W-GP model, which achieves a mean 13.34% improvement in RMSE (Root Mean Square Error compared to persistence method for mean hourly data and a mean 7.71% improvement for mean daily wind speed data, shows the best forecasting accuracy among several forecasting models.

  10. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio;

    2016-01-01

    is derived from an admittance function. The equivalent wind speed is a representation of the averaging of the wind speeds over the wind turbine rotor plane and is used as input to the static power curve to get the output power. The proposed wind turbine model is validated for the whole operating......This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series for...... power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...

  11. Short-Term Wind Speed Forecasting for Power System Operations

    KAUST Repository

    Zhu, Xinxin

    2012-04-01

    The emphasis on renewable energy and concerns about the environment have led to large-scale wind energy penetration worldwide. However, there are also significant challenges associated with the use of wind energy due to the intermittent and unstable nature of wind. High-quality short-term wind speed forecasting is critical to reliable and secure power system operations. This article begins with an overview of the current status of worldwide wind power developments and future trends. It then reviews some statistical short-term wind speed forecasting models, including traditional time series approaches and more advanced space-time statistical models. It also discusses the evaluation of forecast accuracy, in particular, the need for realistic loss functions. New challenges in wind speed forecasting regarding ramp events and offshore wind farms are also presented. © 2012 The Authors. International Statistical Review © 2012 International Statistical Institute.

  12. Offshore wind energy: full speed ahead

    International Nuclear Information System (INIS)

    More than 4,000 MW of wind power may be installed offshore in Denmark in the course of the next 30 years. Large wind turbines, cheaper foundations and new knowledge about offshore wind conditions are improving the economics of offshore wind power. Two pilot offshore wind farms of 5 MW each have been built by electric utilities in Denmark using conventional wind turbines: Vindeby in 1991 and Tuno Knob in 1995. (author)

  13. Predictive control of wind turbines by considering wind speed forecasting techniques

    OpenAIRE

    Narayana, Mahinsasa; Putrus, Ghanim; Jovanovic, Milutin; Lung, P. S.

    2009-01-01

    A wind turbine system is operated such that the points of wind rotor curve and electrical generator curve coincide. In order to obtain maximum power output of a wind turbine generator system, it is necessary to drive the wind turbine at an optimal rotor speed for a particular wind speed. A Maximum Power Point Tracking (MPPT) controller is used for this purpose. In fixed-pitch variable-speed wind turbines, wind-rotor parameters are fixed and the restoring torque of the generator needs to be ad...

  14. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  15. Influence of wind speed gusts on power generation

    International Nuclear Information System (INIS)

    Based on the analysis of the Estonian offshore and onshore wind database, the boundaries of the probability of wind speed gusts and lulls, which lead to disturbances in the electrical grid, are assessed. These boundaries are assigned to the probability distribution function (pdf) of wind speed gusts and lulls on one hand and to the pdf of power deflections on the other. The probability of electrical disturbances remains between these boundaries. For the evaluation of the pdf of gusts and lulls, standard deviation of the wind speed can be used. (author)

  16. Investigation of Wind Speed Persistence Over Marmara Region

    Science.gov (United States)

    Özgür, Evren; Koçak, Kasım

    2016-04-01

    Persistence is a measure of continuity of a variable over a period of time at any location. This definition implies that wind speed persistence means a positive serial correlation in a time series. In literature, there are numerous methods for measuring wind speed persistence. In this study, wind speed persistence were obtained for 19 stations located in Marmara Region by using two different methods. Daily wind speed data, taken from Turkish State Meteorological Service, were used in the study. The observation period was taken to be 1965-2014 for all stations. The methods used in the study are directional statistical method and wind speed duration curves approach. In directional statistical method, individual dates of winds are defined as directional variables; then, directional mean and variance are calculated. Wind dates are being converted to angular values and these days are being considered as a unit vector which has direction θ. In polar coordinate, the measures of directional mean and variance have been expressed as a vector with direction θmean and magnitude r. The r value can be considered as a measure of persistence. The wind speed duration curve is simply the cumulative distribution function of the wind speed in a certain period of time. In other words, it is the graphical representation of wind speed and percentage of exceedence time for a predefined threshold wind speed value in the same graphic. As a threshold wind speed, lower quartile (q0.25) value of ranked wind speed data were selected. In application, total time period was divided into five subperiods and changes of persistence in wind speeds as far as subperiods were presented. Persistence can be used in different kinds of study areas such as control of forest fires, dispersion of air pollutants, calculation of wind energy potential, ventilation of a city, etc. The results of this analysis showed that the proposed methods can be used as an alternative approach to determine whether a given time

  17. Observed Trends in Wind Speed over the Southern Ocean

    Science.gov (United States)

    Hande, L. B.; Siems, S. T.; Manton, M. J.

    2012-06-01

    Most studies of trends in regional climate focus on temperature, however for maritime environments in particular, changes in the wind are equally important. An analysis of trends in the wind over Macquarie Island is performed with a radio-sonde database spanning nearly four decades. The results indicate that the surface wind speed is increasing, with the trend for the upper levels being less well defined. The surface wind is highly correlated with the upper level winds, and the wind at all levels are moderately correlated with the Southern Annular Mode. ECMWF ERA-Interim reanalysis data shows significant trends in wind speed over several levels, however slightly smaller than trends in the soundings over a similar time period. The correlations in ERA-Interim are similar to those in the soundings. A clustering analysis of the wind reveals four distinct regimes, with a trend towards a regime characterised by strong north westerly winds.

  18. A methodology to generate statistically dependent wind speed scenarios

    International Nuclear Information System (INIS)

    Wind power - a renewable energy source increasingly attractive from an economic viewpoint - constitutes an electricity production alternative of growing relevance in current electric energy systems. However, wind power is an intermittent source that cannot be dispatched at the will of the producer. Modeling wind power production requires characterizing wind speed at the sites where the wind farms are located. The wind speed at a particular location can be described through a stochastic process that is spatially correlated with the stochastic processes describing wind speeds at other locations. This paper provides a methodology to characterize the stochastic processes pertaining to wind speed at different geographical locations via scenarios. Each one of these scenarios embodies time dependencies and is spatially dependent of the scenarios describing other wind stochastic processes. The scenarios generated by the proposed methodology are intended to be used within stochastic programming decision models to make informed decisions pertaining to wind power production. The methodology proposed is accurate in reproducing wind speed historical series as well as computationally efficient. A comprehensive case study is used to illustrate the capabilities of the proposed methodology. Appropriate conclusions are finally drawn.

  19. A methodology to generate statistically dependent wind speed scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J.M.; Conejo, A.J. [Department of Electrical Engineering, Univ. Castilla - La Mancha, Campus Universitario s/n, 13071 Ciudad Real (Spain); Minguez, R. [Environmental Hydraulics Institute ' ' IH Cantabria' ' , Univ. Cantabria, Avenida de los Castros s/n, 39005 Santander (Spain)

    2010-03-15

    Wind power - a renewable energy source increasingly attractive from an economic viewpoint - constitutes an electricity production alternative of growing relevance in current electric energy systems. However, wind power is an intermittent source that cannot be dispatched at the will of the producer. Modeling wind power production requires characterizing wind speed at the sites where the wind farms are located. The wind speed at a particular location can be described through a stochastic process that is spatially correlated with the stochastic processes describing wind speeds at other locations. This paper provides a methodology to characterize the stochastic processes pertaining to wind speed at different geographical locations via scenarios. Each one of these scenarios embodies time dependencies and is spatially dependent of the scenarios describing other wind stochastic processes. The scenarios generated by the proposed methodology are intended to be used within stochastic programming decision models to make informed decisions pertaining to wind power production. The methodology proposed is accurate in reproducing wind speed historical series as well as computationally efficient. A comprehensive case study is used to illustrate the capabilities of the proposed methodology. Appropriate conclusions are finally drawn. (author)

  20. Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chang

    2015-02-01

    Full Text Available It is of great importance and urgency for Taiwan to develop offshore wind power. However, relevant data on offshore wind energy resources are limited. This study imported wind speeds measured by a tidal station and a buoy into the software WAsP to estimate the high-altitude wind speeds in the two areas. A light detection and ranging (Lidar system was set up near the tidal station and buoy. High-altitude wind speeds measured by the Lidar system were compared with the WAsP-estimated values, and it was discovered that the two data sets were consistent. Then, long-term wind speed data observed by buoys and tidal stations at various locations were imported into WAsP to forecast wind speeds at heights of 55–200 m on the west coast of Taiwan. The software WAsP Engineering was used to analyze the extreme wind speeds in the same areas. The results show that wind speeds at 100 m are approximately 9.32–11.24 m/s, which means that the coastal areas of west Taiwan are rich in wind energy resources. When a long-term 10-min average wind speed is used, the extreme wind speed on the west coast is estimated to be between 36.4 and 55.3 m/s.

  1. Pitch Angle Control for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, M;

    2008-01-01

    Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...... controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have...... the potential when the system contains strong non-linearity, such as wind turbulence is strong, or the control objectives include fatigue loads. The design of the fuzzy logic controller and the comparisons with conversional pitch angle control strategies with various controlling variables are carried out...

  2. Pitch Angle Control of Variable Speed Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yousif El-Tous

    2008-01-01

    Full Text Available The aim of this study is to design a simple controller to maximize the extracted energy of wind turbines. In this study the pitch angle control of variable speed wind turbine is investigated. In particular, it concentrates on the extraction of maximum available energy, reduction of torque and output power variations, which gives stresses in the gearbox and mechanical structure. The control concentrates on separate wind speed internals as well as on whole wind speed region. It is found that the control structures varies substantially between the wind speed regions. Two different control systems are compared. The results show that pitch actuator with three levels of pitching speed have better response.

  3. The influence of humidity fluxes on offshore wind speed profiles

    Directory of Open Access Journals (Sweden)

    R. J. Barthelmie

    2010-05-01

    Full Text Available Wind energy developments offshore focus on larger turbines to keep the relative cost of the foundation per MW of installed capacity low. Hence typical wind turbine hub-heights are extending to 100 m and potentially beyond. However, measurements to these heights are not usually available, requiring extrapolation from lower measurements. With humid conditions and low mechanical turbulence offshore, deviations from the traditional logarithmic wind speed profile become significant and stability corrections are required. This research focuses on quantifying the effect of humidity fluxes on stability corrected wind speed profiles. The effect on wind speed profiles is found to be important in stable conditions where including humidity fluxes forces conditions towards neutral. Our results show that excluding humidity fluxes leads to average predicted wind speeds at 150 m from 10 m which are up to 4% higher than if humidity fluxes are included, and the results are not very sensitive to the method selected to estimate humidity fluxes.

  4. Accounting for the speed shear in wind turbine power performance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.

    2010-04-15

    at hub height and below only. It is well established that the turbulence intensity also influences the power performance of a wind turbine. Two ways of accounting for the turbulence were tested with the experimental data: an adaptation of the equivalent wind speed so that it also accounts for the turbulence intensity and the combination of the equivalent wind speed accounting for the wind shear only with the turbulence normalising method for turbulence intensity suggested by Albers. The second method was found to be more suitable for normalising the power curve for the turbulence intensity. Using the equivalent wind speed accounting for the wind shear in the power performance measurement was shown to result in a more repeatable power curve than the standard power curve and hence, in a better annual energy production estimation. Furthermore, the decrease of the scatter in the power curve corresponds to a decrease of the category A uncertainty in power, resulting in a smaller uncertainty in estimated AEP. (author)

  5. Prediction models for wind speed at turbine locations in a wind farm

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas; Soltani, Mohsen

    2011-01-01

    standard turbine measurements such as rotor speed and power produced, an effective wind speed, which represents the wind field averaged over the rotor disc, is derived. The effective wind speed estimator is based on a continuous–discrete extended Kalman filter that takes advantage of nonlinear time varying......In wind farms, individual turbines disturb the wind field by generating wakes that influence other turbines in the farm. From a control point of view, there is an interest in dynamic optimization of the balance between fatigue and production, and an understanding of the relationship between turbines...... manifested through the wind field is hence required. This paper develops models for this relationship. The result is based on two new contributions: the first is related to the estimation of effective wind speeds, which serves as a basis for the second contribution to wind speed prediction models. Based on...

  6. Optimum hub height of a wind turbine for maximizing annual net profit

    International Nuclear Information System (INIS)

    Highlights: • Annual Net Profit was proposed to optimize the hub height of a wind turbine. • Procedures of the hub height optimization method were introduced. • Effect of local wind speed characteristics on optimum hub height was illustrated. • Effect of rated power on optimum hub height was negligible in the range 0.75–3 MW. • Rated speed and cut-out speed had great effects on optimum hub height. - Abstract: The optimization method of the hub height, which can ensure the economic feasibility of the wind turbine, is proposed in this study. Annual Net Profit is suggested as an objective function and the optimization procedure is developed. The effects of local wind speed and wind turbine power characteristics on the optimum hub height are investigated. The optimum hub height decreased as the mean wind speed and wind shear exponent increased. Rated power had little effect on optimum hub height; it follows that the economies of scale are negligible in the rated power range of 0.75–3 MW. Among the wind turbine power characteristics, rated speed and cut-out speed most strongly affected the optimum hub height

  7. Mapping of extreme wind speed for landscape modelling of the Bohemian Forest, Czech Republic

    Directory of Open Access Journals (Sweden)

    L. Pop

    2014-01-01

    Full Text Available Extreme wind events are among the most damaging weather-related hazards in the Czech Republic, forestry is heavily affected. In order to successfully run a landscape model dealing with such effects, spatial distribution of extreme wind speed statistics is needed. The presented method suggests using sector-wise wind field calculations together with extreme value statistics fitted at a reference station. A special algorithm is proposed to provide the data in the form expected by the landscape model, i.e. raster data of annual wind speed maxima. The method is demonstrated on the area of Bohemian Forest that represents one of largest and most compact forested mountains in Central Europe. The reference meteorological station Churáňov is located within the selected domain. Numerical calculations were based on linear model of WAsP Engineering methodology. Observations were cleaned of inhomogeneity and classified into convective and non-convective cases using index CAPE. Due to disjunct sampling of synoptic data, appropriate corrections were applied to the observed extremes. Finally they were fitted with Gumbel distribution. The output of numerical simulation is presented for the windiest direction sector. Another map shows probability that annual extreme exceeds required threshold. The method offers a tool for generation of spatially variable annual maxima of wind speed. It assumes a small limited model domain containing a reliable wind measurement. We believe that this is typical setup for applications similar to one presented in the paper.

  8. Wind plant capacity credit variations: A comparison of results using multiyear actual and simulated wind-speed data

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter-annual variation in capacity credit is still understated by the synthetic data technique.

  9. A Qualitative Description of Boundary Layer Wind Speed Records

    CERN Document Server

    Kavasseri, R G; Nagarajan, Radhakrishnan

    2006-01-01

    The complexity of the atmosphere endows it with the property of turbulence by virtue of which, wind speed variations in the atmospheric boundary layer (ABL) exhibit highly irregular fluctuations that persist over a wide range of temporal and spatial scales. Despite the large and significant body of work on microscale turbulence, understanding the statistics of atmospheric wind speed variations has proved to be elusive and challenging. Knowledge about the nature of wind speed at ABL has far reaching impact on several fields of research such as meteorology, hydrology, agriculture, pollutant dispersion, and more importantly wind energy generation. In the present study, temporal wind speed records from twenty eight stations distributed through out the state of North Dakota (ND, USA), ($\\sim$ 70,000 square-miles) and spanning a period of nearly eight years are analyzed. We show that these records exhibit a characteristic broad multifractal spectrum irrespective of the geographical location and topography. The rapi...

  10. Transient stability of a fixed speed wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Ledesma, P.; Usaola, J.; Rodriguez, J.L. [Universidad Carlos III de Madrid, Madrid (Spain)

    2003-07-01

    A typical fixed speed wind farm connected to a simple grid is modelled. Using this model, a three-phase fault is applied close to the wind farm, and cleared by disconnecting the affected line. The effect of several electric, mechanical and operational parameters on the critical fault-clearing time of this base case is evaluated and discussed. The studied parameters are the short-circuit power at the connection bus, the reactive power compensation, the distance to the fault, the rotor inertia, the hub-generator resonant frequency, the wind speed and the power output. For each parameter, the relationship between its value and the critical fault-clearing time is shown graphically. The results help to understand the transient stability phenomena in fixed speed wind farms, and could help to design fixed speed wind farms attending to transient stability requirements. (Author)

  11. The Poisson Gamma distribution for wind speed data

    Science.gov (United States)

    Ćakmakyapan, Selen; Özel, Gamze

    2016-04-01

    The wind energy is one of the most significant alternative clean energy source and rapidly developing renewable energy sources in the world. For the evaluation of wind energy potential, probability density functions (pdfs) are usually used to model wind speed distributions. The selection of the appropriate pdf reduces the wind power estimation error and also allow to achieve characteristics. In the literature, different pdfs used to model wind speed data for wind energy applications. In this study, we propose a new probability distribution to model the wind speed data. Firstly, we defined the new probability distribution named Poisson-Gamma (PG) distribution and we analyzed a wind speed data sets which are about five pressure degree for the station. We obtained the data sets from Turkish State Meteorological Service. Then, we modelled the data sets with Exponential, Weibull, Lomax, 3 parameters Burr, Gumbel, Gamma, Rayleigh which are used to model wind speed data, and PG distributions. Finally, we compared the distribution, to select the best fitted model and demonstrated that PG distribution modeled the data sets better.

  12. Towards a new tool of wind speed and wind direction verification

    Science.gov (United States)

    Dorninger, Manfred

    2016-04-01

    During MesoVICT the verification of 2D-surface wind fields will receive special attention. Vector fields like wind are more complex to verify than scalar quantities. It is common approach to verify the single scalar components with traditional verification measures. This makes an overall and easy to understand interpretation of wind speed and direction verification difficult. Alternatively only wind speed is verified, which is useful for evaluating wind storms or estimating wind power. Wind direction is rarely verified. Although it is an important quantity for e.g. the correct frontal position, in the case of forest fires or during landing procedures of airplanes. In this presentation a new and simple verification procedure is introduced dealing with wind speed and direction. It is a grid-point based scheme but can be applied for spatial, for temporal as well as for ensemble forecast evaluations. In a first step differences of forecasts and observations of wind speed and direction are calculated and are filled in a specific scatter plot in a polar coordinate system. The different quadrants of the scatter plot can be interpreted in the following way (quadrants are counted anti-clockwise): I) Forecasted wind direction is rotated too anti-clockwise (directed towards the cyclone center), wind speed too high II) Forecasted wind direction is rotated too anti-clockwise, wind speed too low III) Forecasted wind direction is rotated too clockwise, wind speed too low IV) Forecasted wind direction is rotated too clockwise, wind speed too high To reduce the information of the point cloud the centre of gravity is determined and radii containing 10%, 25%, .. are defined which represent another verification measure. Several examples and possibilities of a statistical evaluation of these difference scatter plots will be presented during the conference.

  13. EU-NORSEWIND - Delivering Offshore Wind Speed Data

    DEFF Research Database (Denmark)

    Oldroyd, Andy; Hasager, Charlotte Bay; Stickland, M.T.;

    large scale wind farms in relatively concentrated geographical areas. NORSEWInD has a clear remit, the delivery of offshore wind speed data at a nominal project hub height acquired in offshore locations. The project will use a multi-instrument approach, combining mast technology, LiDAR remote sensing...... and satellite based observations to compile a large and novel wind speed dataset suitable for use in the wind industry. The data will also feed into key areas such as forecasting and MESOSCALE modelling improvements. The result is a large database accessible via a web based interface utilising GIS...

  14. Hourly Wind Speed Interval Prediction in Arid Regions

    Science.gov (United States)

    Chaouch, M.; Ouarda, T.

    2013-12-01

    The long and extended warm and dry summers, the low rate of rain and humidity are the main factors that explain the increase of electricity consumption in hot arid regions. In such regions, the ventilating and air-conditioning installations, that are typically the most energy-intensive among energy consumption activities, are essential for securing healthy, safe and suitable indoor thermal conditions for building occupants and stored materials. The use of renewable energy resources such as solar and wind represents one of the most relevant solutions to overcome the increase of the electricity demand challenge. In the recent years, wind energy is gaining more importance among the researchers worldwide. Wind energy is intermittent in nature and hence the power system scheduling and dynamic control of wind turbine requires an estimate of wind energy. Accurate forecast of wind speed is a challenging task for the wind energy research field. In fact, due to the large variability of wind speed caused by the unpredictable and dynamic nature of the earth's atmosphere, there are many fluctuations in wind power production. This inherent variability of wind speed is the main cause of the uncertainty observed in wind power generation. Furthermore, producing wind power forecasts might be obtained indirectly by modeling the wind speed series and then transforming the forecasts through a power curve. Wind speed forecasting techniques have received substantial attention recently and several models have been developed. Basically two main approaches have been proposed in the literature: (1) physical models such as Numerical Weather Forecast and (2) statistical models such as Autoregressive integrated moving average (ARIMA) models, Neural Networks. While the initial focus in the literature has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. In short term

  15. Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan

    OpenAIRE

    Pei-Chi Chang; Ray-Yeng Yang; Chi-Ming Lai

    2015-01-01

    It is of great importance and urgency for Taiwan to develop offshore wind power. However, relevant data on offshore wind energy resources are limited. This study imported wind speeds measured by a tidal station and a buoy into the software WAsP to estimate the high-altitude wind speeds in the two areas. A light detection and ranging (Lidar) system was set up near the tidal station and buoy. High-altitude wind speeds measured by the Lidar system were compared with the WAsP-estimated values, an...

  16. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  17. Estimation of wind speed and wave height during cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Mandal, S.; AshokKumar, K.

    , the isobaric charts were collected at three hourly intervals from the India Meteorological Department. The storm variables such as central pressure, radius of maximum wind, speed of forward motion and direction of storm movement were extracted and the method...

  18. Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin

    2014-02-27

    To support large-scale integration of wind power into electric energy systems, state-of-the-art wind speed forecasting methods should be able to provide accurate and adequate information to enable efficient, reliable, and cost-effective scheduling of wind power. Here, we incorporate space-time wind forecasts into electric power system scheduling. First, we propose a modified regime-switching, space-time wind speed forecasting model that allows the forecast regimes to vary with the dominant wind direction and with the seasons, hence avoiding a subjective choice of regimes. Then, results from the wind forecasts are incorporated into a power system economic dispatch model, the cost of which is used as a loss measure of the quality of the forecast models. This, in turn, leads to cost-effective scheduling of system-wide wind generation. Potential economic benefits arise from the system-wide generation of cost savings and from the ancillary service cost savings. We illustrate the economic benefits using a test system in the northwest region of the United States. Compared with persistence and autoregressive models, our model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars annually in regions with high wind penetration, such as Texas and the Pacific northwest. © 2014 Sociedad de Estadística e Investigación Operativa.

  19. The Probability Distribution Model of Wind Speed over East Malaysia

    Directory of Open Access Journals (Sweden)

    Nurulkamal Masseran

    2013-07-01

    Full Text Available Many studies have found that wind speed is the most significant parameter of wind power. Thus, an accurate determination of the probability distribution of wind speed is an important parameter to measure before estimating the wind energy potential over a particular region. Utilizing an accurate distribution will minimize the uncertainty in wind resource estimates and improve the site assessment phase of planning. In general, different regions have different wind regimes. Hence, it is reasonable that different wind distributions will be found for different regions. Because it is reasonable to consider that wind regimes vary according to the region of a particular country, nine different statistical distributions have been fitted to the mean hourly wind speed data from 20 wind stations in East Malaysia, for the period from 2000 to 2009. The values from Kolmogorov-Smirnov statistic, Akaike’s Information Criteria, Bayesian Information Criteria and R2 correlation coefficient were compared with the distributions to determine the best fit for describing the observed data. A good fit for most of the stations in East Malaysia was found using the Gamma and Burr distributions, though there was no clear pattern observed for all regions in East Malaysia. However, the Gamma distribution was a clear fit to the data from all stations in southern Sabah.

  20. Economic performance indicators of wind energy based on wind speed stochastic modeling

    International Nuclear Information System (INIS)

    Highlights: • We propose a new and different wind energy production indicator. • We compute financial profitability of potential wind power sites. • The wind speed process is modeled as an indexed semi-Markov chain. • We check if the wind energy is a good investment with and without incentives. - Abstract: We propose the computation of different wind energy production indicators and financial profitability of potential wind power sites. The computation is performed by modeling the wind speed process as an indexed semi-Markov chain to predict and simulate the wind speed dynamics. We demonstrate that the indexed semi-Markov chain approach enables reproducing the indicators calculated on real data. Two different time horizons of 15 and 30 years are analyzed. In the first case we consider the government incentives on the energy price now present in Italy, while in the second case the incentives have not been taken into account

  1. A comparison between a hydro-wind plant and wind speed forecasting using ARIMA models

    Science.gov (United States)

    Bayón, L.; Grau, J. M.; Ruiz, M. M.; Suárez, P. M.

    2014-10-01

    In this paper, we will present a comparison between two options for harnessing wind power. We will first analyze the behaviour of a wind farm that goes to the electricity market, having previously made a forecast of wind speed while accepting the deviation penalties that these may incur. Second, we will study the possibility of the wind farm not going to the market individually, but as part of a hydro-wind plant.

  2. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Gottschall, Julia; Lindelöw, Per Jonas Petter

    2011-01-01

    describe an experiment in which wind speed profiles were measured in front of a multimegawatt turbine using a ground–based pulsed lidar. Ignoring the vertical shear was shown to overestimate the kinetic energy flux of these profiles, in particular for those deviating significantly from a power law profile....... As a consequence, the power curve obtained for these deviant profiles was different from that obtained for the ‘near power law’ profiles. An equivalent wind speed based on the kinetic energy derived from the measured wind speed profile was then used to plot the performance curves. The curves obtained...... uncertainty and improve the annual energy production estimation. Copyright © 2011 John Wiley & Sons, Ltd....

  3. Wind speed power spectrum analysis for Bushland, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, E.D. [USDA-Agricultural Research Service, Bushland, TX (United States)

    1996-12-31

    Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.

  4. Adaptive Torque Control of Variable Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. E.

    2004-08-01

    The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry for variable speed wind turbines below rated power. This adaptive controller uses a simple, highly intuitive gain adaptation law designed to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds.

  5. Seasonality, interannual variability, and linear tendency of wind speeds in the northeast Brazil from 1986 to 2011.

    Science.gov (United States)

    Torres Silva dos Santos, Alexandre; Moisés Santos e Silva, Cláudio

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study. PMID:24250267

  6. Influence of Speed Governors of Hydropower Stations on Frequency Stabilization of Fixed-Speed Wind Farm

    Science.gov (United States)

    AL Jowder, Fawzi A. Rahman

    2013-05-01

    This paper uses a small power system, consisting of two hydropower stations and a fixed-speed wind farm as sources of power, to study the influence of type of speed governor of hydropower stations on the frequency stabilization of the fixed-speed wind farm. As an example, two types of speed governors are selected which are (1) mechanical-hydraulic speed governor and (2) electrical-hydraulic speed governor. Rest of the speed governors can be also examined following the same methodology presented in the research. Two transfer functions, which correspond to the two speed governors, are developed for each hydropower station. The overall transfer function of the test power system is developed, and different study cases are presented. The frequency response analysis of the different transfer functions is used to compare the two speed governors based on their ability to stabilize the frequency deviation of the fixed-speed wind resulting from electrical or mechanical disturbances in the power systems. Time-domain simulations under a mechanical disturbance, represented by a wind gust, and an electrical disturbance, represented by three-phase to ground fault, are performed to validate the results of the frequency response analysis.

  7. Comparison of NWP wind speeds and directions to measured wind speeds and directions

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, P.; Mikkelsen, Torben

    2010-09-15

    Numerical Weather Predictions (NWP) of wind speed and direction has been compared to measurements for seven German sites for nuclear power plants, and for Risoe, the site of the Danish nuclear research reactors now being decommissioned . For the German sites the data cover approximately three month, the NWP data from Austrian Meteorological and Geophysical Office, AMGO, cover 5th January to 31st March 2009 with two daily sets of analysis and 1 to 48 hours forecasts, the measured data cover the full three month, i.e. from 1st January, with 10 minute resolution. For the Risoe site NWP results of the HIRLAM code from Danish Meteorological Institute were once stored for two thirds of a year, i.e. 1017 times analysis and 1 to 5 hour forecast within the period 21st October 1998 to 30th September 1999, and 10 minute averaged measured data are available since November 1995. (author)

  8. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanting Hu

    2013-07-01

    Full Text Available Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution power oscillation due to wind shear and tower shadow effects is the significant part in the flicker emission of variable speed wind turbines with PMSG during continuous operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.

  9. Power curve report - with rotor equivalent wind speed

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the...... reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis and...

  10. Rotor equivalent wind speed for power curve measurement – comparative exercise for IEA Wind Annex 32

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Cañadillas, B.; Clifton, A.;

    2014-01-01

    . Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast or...... various lidars). The participants carried out two preliminary steps in order to reach consensus on how to implement the REWS method. First, they all derived the REWS for one 10 minute wind speed profile. Secondly, they all derived the power curves for one dataset. The main point requiring consensus was...

  11. WIND SPEED AND ATMOSPHERIC STABILITY TRENDS FOR SELECTED UNITED STATES SURFACE STATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Allen H. Weber, A

    2006-11-01

    Recently it has been suggested that global warming and a decrease in mean wind speeds over most land masses are related. Decreases in near surface wind speeds have been reported by previous investigators looking at records with time spans of 15 to 30 years. This study focuses on United States (US) surface stations that have little or no location change since the late 1940s or the 1950s--a time range of up to 58 years. Data were selected from 62 stations (24 of which had not changed location) and separated into ten groups for analysis. The group's annual averages of temperature, wind speed, and percentage of Pasquill-Gifford (PG) stability categories were fitted with linear least squares regression lines. The results showed that the temperatures have increased for eight of the ten groups as expected. Wind speeds have decreased for nine of the ten groups. The mean slope of the wind speed trend lines for stations within the coterminous US was -0.77 m s{sup -1} per century. The percentage frequency of occurrence for the neutral (D) PG stability category decreased, while that for the unstable (B) and the stable (F) categories increased in almost all cases except for the group of stations located in Alaska.

  12. Indexed semi-Markov process for wind speed modeling.

    Science.gov (United States)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first

  13. Power Control Design for Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Francesc Pozo

    2012-08-01

    Full Text Available This paper considers power generation control in variable-speed variable-pitch horizontal-axis wind turbines operating at high wind speeds. A dynamic chattering torque control and a proportional integral (PI pitch control strategy are proposed and validated using the National Renewable Energy Laboratory wind turbine simulator FAST (Fatigue, Aerodynamics, Structures, and Turbulence code. Validation results show that the proposed controllers are effective for power regulation and demonstrate high-performances for all other state variables (turbine and generator rotational speeds; and smooth and adequate evolution of the control variables for turbulent wind conditions. To highlight the improvements of the provided method, the proposed controllers are compared to relevant previously published studies.

  14. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    Science.gov (United States)

    Diepeveen, N. F. B.; Jarquin-Laguna, A.

    2014-12-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximum aerodynamic efficiency for below rated wind speeds. The experiments with a small horizontal-axis wind turbine rotor, coupled to a hydraulic circuit, were conducted at the Open Jet Facility of the Delft University of Technology. In theory, the placement of a nozzle at the end of the hydraulic circuit causes the pressure and hence the rotor torque to increase quadratically with flow speed and hence rotation speed. The rotor torque is limited by a pressure relief valve. Results from the experiments proved the functionality of this passive speed control concept. By selecting the correct nozzle outlet area the rotor operates at or near the optimum tip speed ratio.

  15. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    International Nuclear Information System (INIS)

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximum aerodynamic efficiency for below rated wind speeds. The experiments with a small horizontal-axis wind turbine rotor, coupled to a hydraulic circuit, were conducted at the Open Jet Facility of the Delft University of Technology. In theory, the placement of a nozzle at the end of the hydraulic circuit causes the pressure and hence the rotor torque to increase quadratically with flow speed and hence rotation speed. The rotor torque is limited by a pressure relief valve. Results from the experiments proved the functionality of this passive speed control concept. By selecting the correct nozzle outlet area the rotor operates at or near the optimum tip speed ratio

  16. Hurricane Wind Speed Estimation Using WindSat 6 and 10 GHz Brightness Temperatures

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-08-01

    Full Text Available The realistic and accurate estimation of hurricane intensity is highly desired in many scientific and operational applications. With the advance of passive microwave polarimetry, an alternative opportunity for retrieving wind speed in hurricanes has become available. A wind speed retrieval algorithm for wind speeds above 20 m/s in hurricanes has been developed by using the 6.8 and 10.7 GHz vertically and horizontally polarized brightness temperatures of WindSat. The WindSat measurements for 15 category 4 and category 5 hurricanes from 2003 to 2010 and the corresponding H*wind analysis data are used to develop and validate the retrieval model. In addition, the retrieved wind speeds are also compared to the Remote Sensing Systems (RSS global all-weather product and stepped-frequency microwave radiometer (SFMR measurements. The statistical results show that the mean bias and the overall root-mean-square (RMS difference of the retrieved wind speeds with respect to the H*wind analysis data are 0.04 and 2.75 m/s, respectively, which provides an encouraging result for retrieving hurricane wind speeds over the ocean surface. The retrieved wind speeds show good agreement with the SFMR measurements. Two case studies demonstrate that the mean bias and RMS difference are 0.79 m/s and 1.79 m/s for hurricane Rita-1 and 0.63 m/s and 2.38 m/s for hurricane Rita-2, respectively. In general, the wind speed retrieval accuracy of the new model in hurricanes ranges from 2.0 m/s in light rain to 3.9 m/s in heavy rain.

  17. Rotor equivalent wind speed for power curve measurement - comparative exercise for IEA Wind Annex 32

    Science.gov (United States)

    Wagner, R.; Cañadillas, B.; Clifton, A.; Feeney, S.; Nygaard, N.; Poodt, M.; St. Martin, C.; Tüxen, E.; Wagenaar, J. W.

    2014-06-01

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise. Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast or various lidars). The participants carried out two preliminary steps in order to reach consensus on how to implement the REWS method. First, they all derived the REWS for one 10 minute wind speed profile. Secondly, they all derived the power curves for one dataset. The main point requiring consensus was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions with large shear and low turbulence intensity.

  18. Rotor equivalent wind speed for power curve measurement – comparative exercise for IEA Wind Annex 32

    International Nuclear Information System (INIS)

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise. Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast or various lidars). The participants carried out two preliminary steps in order to reach consensus on how to implement the REWS method. First, they all derived the REWS for one 10 minute wind speed profile. Secondly, they all derived the power curves for one dataset. The main point requiring consensus was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions with large shear and low turbulence intensity

  19. Maximum power point tracking for variable-speed fixed-pitch small wind turbines

    OpenAIRE

    Putrus, Ghanim; Narayana, Mahinsasa; Jovanovic, Milutin; Leung, Pak Sing

    2009-01-01

    Variable-speed, fixed-pitch wind turbines are required to optimize power output performance without the aerodynamic controls. A wind turbine generator system is operated such that the optimum points of wind rotor curve and electrical generator curve coincide. In order to obtain maximum power output of a wind turbine generator system, it is necessary to drive the wind turbine at an optimal rotor speed for a particular wind speed. In fixed-pitch variablespeed wind turbines, wind-rotor performan...

  20. Dynamic behavior of parked wind turbine at extreme wind speed

    DEFF Research Database (Denmark)

    Totsuka, Yoshitaka; Imamura, Hiroshi; Yde, Anders

    2016-01-01

    and other scenario which is assumed to occur during the expected lifetime of wind turbine. This research focus on vibration problem under 50-year storm conditions while rotor is parked and blades are feathered. In this parked scenario, effect of a wind direction change of up to ± 180 degrees for both......In wind turbine design process, a series of load analysis is generally performed to determine ultimate and fatigue loads under various design load cases (DLCs) which is specified in IEC 61400. These design load scenario covers not only normal operating condition but also startup, shutdown, parked...... cases of standstill and idling is analyzed by time domain simulations using two different coupled aero-hydro-servo-elastic codes. Trend in modern wind turbines is development of bigger, lighter and more flexible rotors where vibration issues may cause aero-elastic instabilities which have a serious...

  1. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    DEFF Research Database (Denmark)

    Hu, Weihao; Zhang, Yunqian; Chen, Zhe;

    2013-01-01

    Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG...

  2. Measurement of wind speed from cooling lake thermal imagery

    Science.gov (United States)

    Garrett, Alfred J.; Tuckfield, R. Cary; Villa-Aleman, Eliel; Kurzeja, Robert J.; Pendergast, Malcolm M.

    2009-05-01

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.

  3. Variable-Speed Wind System Design : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lauw, Hinan K.; Weigand, Claus H.; Marckx, Dallas A.; Electronic Power Conditioning, Inc.

    1993-10-01

    Almost from the onset of the development of wind energy conversion systems (WECS), it was known that variable-speed operation of the turbine would maximize energy capture. This study was commissioned to assess the cost, efficiency gain, reduction of the cost of energy (COE), and other operating implications of converting the existing hardware of a modern fixed-speed wind energy conversion system to variable-speed operation. The purpose of this study was to develop a preliminary design for the hardware required to allow variable-speed operation using a doubly-fed generator with an existing fixed-speed wind turbine design. The turbine selected for this study is the AWT-26 designed and built by Advanced Wind Turbines Inc. of Redmond, Washington. The lowest projected COE using this variable-speed generation system is projected to be $0.0499/kWh, compared to the lowest possible COE with fixed-speed generation which is projected to be $0.0546/kWh. This translates into a 8.6% reduction of the COE using this variable-speed generation option. The preliminary system design has advanced to where the printed circuit boards can be physically laid out based on the schematics and the system software can be written based on the control flow-charts. The core of hardware and software has been proven to be successful in earlier versions of VSG systems. The body of this report presents the results of the VSWG system development. Operation under normal and fault conditions is described in detail, the system performance for variable-speed operation is estimated and compared to the original fixed-speed system performance, and specifications for all system components (generator, power electronic converter, and system controller) are given. Costs for all components are estimated, and incremental system cost is compared to incremental energy production. Finally, operational features of the VSWG which are not available in the existing FSWG system are outlined.

  4. Survey of variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Hylander, J.; Thorborg, K. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    During the last five years the production and operation of variable-speed wind turbines have advanced from a few experimental machines to a serial production of at least 10 MW of installed capacity of variable speed machines per week. The rated power of serial wind turbines is today around 600 kW and for the prototypes up to 3000 kW. Variable speed operation of wind turbines can be obtained with several different types of electrical generating systems, such as synchronous generators with diode rectifiers and thyristor inverters or induction generators with IGBT-converters, for the wide speed range. For the narrow speed range the wound motor induction generator with a rotor cascade or a controlled rotor resistance is preferable. The development of permanent magnetic material and the reduction of costs of the power electronic components have opened a possibility of designing cost-effective wind turbines with a directly driven generator. Pitch control together with variable speed will make it possible to limit the power variation within a few percent, 2 to 5 %, of the rated power. 7 refs, 4 figs, 2 tabs

  5. Multifractal and local correlation of simultaneous wind speed-power output from a single wind trubine

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2014-05-01

    The wind energy production is a nonlinear and no stationary resource, due to the intermittent statistics of atmospheric wind speed at all spatial and temporal scales ranging from large scale variations to very short scale variations. Recently, Rudy et al.[1] observed the intermittent and multifractal properties of wind energy production. Classically, IEC standard 4100 is used by the wind energy community, for modeling the interactions of wind speed with the wind turbine. However, this model reflects gaussian statistics contrary to observed wind and energy production measurements. Modeling of power curve of a single wind turbine remains a challenge. The precise understanding of the dynamics of nonlinear power curve over very short time scales, is necessary. Hence, multifractal cross-correlation methods such as Generalized Correlations Exponents (GCE), multifractal detrended cross-correlation analysis (MFXDFA), multifractal detrending moving average cross-correlation analysis (MFXDMA) are applied to simultaneous wind speed power output from a single wind turbine to determine the nature of scaling correlation behavior. Furthermore, in order to detect eventual local correlation, an application of empirical mode decomposition based on time dependent intrinsic correlation to simultaneous measurements is performed. The simultaneous wind speed-power output measurements are recorded continuously with a sampling rate f = 1Hz, during 115 days in 2006. The wind speed measurements are obtained at 31 m above the ground, and the power output is delivered by 500 kW Nordtank wind turbine positionned at the Technical University, Risœ, Denmark. References [1] Calif, R., Schmitt, F.G., Huang, Y., Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis, Physica, 392, 4106-4120, 2013.

  6. Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison

    International Nuclear Information System (INIS)

    From extensive application over a number of years, it has been established that the nonlinear rotor aerodynamics of typical medium and large wind turbines exhibit an effectively global separability property, in other words the aerodynamic torque of the machine can be defined by two independent additive functions. Two versions of the separability of aerodynamic torque for variable speed wind turbines are investigated here; the separated function, related to wind speed, in the first version is only dependent on that variable and not rotor speed and in the second version is only dependent on tip speed ratio. Both provide very good approximations to the aerodynamic torque over extensive neighbourhoods of T0, at least from 0 to 2T0

  7. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng;

    2011-01-01

    The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high-resolution hur......The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high......-resolution hurricane was conducted. A case study was carried out to retrieve ocean surface wind field from C-band RADARSAT-1 SAR image which captured the structure of hurricane Helene over the Atlantic Ocean on 20 September, 2006. With wind direction from the outputs of U.S. Navy Operational Global Atmospheric...... CIWRAP models have been tested to extract wind speed from SAR data. The SAR retrieved ocean surface winds were compared to the aircraft wind speed observations from stepped frequency microwave radiometer (SFMR). The results show the capability of hurricane wind monitoring by SAR....

  8. On the wind speed reduction in the center of large clusters of wind turbines

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs

    1992-01-01

    of the wind speed assuming the wind turbines effectively act as roughness elements. The model makes use of similarities to so-called canopy flows, where the surface drag and the drag on individual obstacles are added to form the total drag. Results are compared with existing models for reduction of......The paper intends to probe the feasibility of a method to determine the wind speed reduction in the center of a large wind farm by means of simple boundary layer theory. Therefore, the simplest possible assumptions have been chosen. The paper presents an approach for determination of the reduction...

  9. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  10. Higher-than-predicted saltation threshold wind speeds on Titan.

    Science.gov (United States)

    Burr, Devon M; Bridges, Nathan T; Marshall, John R; Smith, James K; White, Bruce R; Emery, Joshua P

    2015-01-01

    Titan, the largest satellite of Saturn, exhibits extensive aeolian, that is, wind-formed, dunes, features previously identified exclusively on Earth, Mars and Venus. Wind tunnel data collected under ambient and planetary-analogue conditions inform our models of aeolian processes on the terrestrial planets. However, the accuracy of these widely used formulations in predicting the threshold wind speeds required to move sand by saltation, or by short bounces, has not been tested under conditions relevant for non-terrestrial planets. Here we derive saltation threshold wind speeds under the thick-atmosphere, low-gravity and low-sediment-density conditions on Titan, using a high-pressure wind tunnel refurbished to simulate the appropriate kinematic viscosity for the near-surface atmosphere of Titan. The experimentally derived saltation threshold wind speeds are higher than those predicted by models based on terrestrial-analogue experiments, indicating the limitations of these models for such extreme conditions. The models can be reconciled with the experimental results by inclusion of the extremely low ratio of particle density to fluid density on Titan. Whereas the density ratio term enables accurate modelling of aeolian entrainment in thick atmospheres, such as those inferred for some extrasolar planets, our results also indicate that for environments with high density ratios, such as in jets on icy satellites or in tenuous atmospheres or exospheres, the correction for low-density-ratio conditions is not required. PMID:25487154

  11. WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamiński

    2014-06-01

    Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.

  12. A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions

    Directory of Open Access Journals (Sweden)

    Yingning Qiu

    2016-07-01

    Full Text Available Although Permanent Magnet Synchronous Generator (PMSG wind turbines (WTs mitigate gearbox impacts, they requires high reliability of generators and converters. Statistical analysis shows that the failure rate of direct-drive PMSG wind turbines’ generators and inverters are high. Intelligent fault diagnosis algorithms to detect inverters faults is a premise for the condition monitoring system aimed at improving wind turbines’ reliability and availability. The influences of random wind speed and diversified control strategies lead to challenges for developing intelligent fault diagnosis algorithms for converters. This paper studies open-circuit fault features of wind turbine converters in variable wind speed situations through systematic simulation and experiment. A new fault diagnosis algorithm named Wind Speed Based Normalized Current Trajectory is proposed and used to accurately detect and locate faulted IGBT in the circuit arms. It is compared to direct current monitoring and current vector trajectory pattern approaches. The results show that the proposed method has advantages in the accuracy of fault diagnosis and has superior anti-noise capability in variable wind speed situations. The impact of the control strategy is also identified. Experimental results demonstrate its applicability on practical WT condition monitoring system which is used to improve wind turbine reliability and reduce their maintenance cost.

  13. Band Depth Clustering for Nonstationary Time Series and Wind Speed Behavior

    OpenAIRE

    Tupper, Laura L.; Matteson, David S.; Anderson, C. Lindsay

    2015-01-01

    We explore the behavior of wind speed over time, using the Eastern Wind Dataset published by the National Renewable Energy Laboratory. This dataset gives wind speeds over three years at hundreds of potential wind farm sites. Wind speed analysis is necessary to the integration of wind energy into the power grid; short-term variability in wind speed affects decisions about usage of other power sources, so that the shape of the wind speed curve becomes as important as the overall level. To asses...

  14. Daily wind speed harmonic analysis for Marmara region in Turkey

    International Nuclear Information System (INIS)

    Presently exploited rates of fossil fuels are expected to deplete resources within the next 40-50 years, and consequently, human beings seek alternative energy resources that are clean, friendly to the environment and sustainable. Accumulation of carbon dioxide in the lower layers of the atmosphere may cause climate change and consequent occurrence of floods, intensive rainfalls and droughts. In order to reduce such dangerous effects all countries have to try to improve their energy resources quality and, if possible, to replace fossil fuels, such as coal, with the renewable alternatives of wind, solar and solar-hydrogen energies. Among these, wind power has a priori significance for Turkey. Wind time series depend very much on meteorological measurements of wind direction and velocity. Unfortunately, in many parts of the world, it is difficult to obtain such data for wind speed time series assessments. In this study, harmonic analysis is used to model the daily wind speed values recorded at ten stations in the Marmara region, Turkey, with distinct meteorological conditions from 1993 to 1997. The coefficients, amplitude, variance and phase angle, of each harmonic are calculated for the months of January, April, July and October, leading to total variance maps for spatial interpolations. It is seen that up to the 9th harmonic more than 80% of the total variance can be presented. The western and eastern parts of the Marmara region have different wind pattern characteristics. The contributions of each harmonic to the total variance are calculated, and then regional variance maps are evaluated

  15. Wind Speed Prediction Using Box-Jenkins Method

    Directory of Open Access Journals (Sweden)

    Helga Silaghi

    2008-05-01

    Full Text Available This paper presents the Box-Jenkins method used for wind speed prediction. Box-Jenkins methodology finds the best fit of a time series to past values in order to make forecasts. This methodology uses the autocorrelation and partial autocorrelation functions.

  16. Disturbance Compensation by Wind Speed Reconstruction based on a Takagi-Sugeno Wind Turbine Model

    International Nuclear Information System (INIS)

    In this work, the nonlinear Tagaki-Sugeno modelling method is utilised to set up an observer-based feed-forward control scheme for wind turbines, which can compensate for the influence of the disturbing wind variation on the rotational speed. The applied scheme leads to a reduced thrust force acting on the rotor

  17. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximu

  18. Speed Synchronization of web winding System with Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Hachemi Glaoui

    2013-02-01

    Full Text Available A continuous web winding system is a large-scale, complex interconnected dynamic system with numerous tension zones to transport the web while processing it. There are two control schemes for large-scale system control: the centralized scheme and the decentralized scheme. Centralized control is the traditional control method, which considers all the information about the system to be a single dynamic model and design a control system for this model. A speed synchronization control strategy for multiple induction motors, based on adjacent cross-coupling control structure, is developed by employing total sliding mode control method. The proposed control strategy is to stabilize speed tracking of each induction motor while synchronizing its speed with the speed of the other motors so as to make speed synchronization error amongst induction motors converge to zero. The global stability and the convergence of the designed controller are proved by using Lyapunov method. Simulation results demonstrate the effectiveness of the proposed method.

  19. A New Height Error Revision Method of Predicting Long-Term Wind Speed with MCP Algorithm

    Science.gov (United States)

    Liu, Yujue; Hu, Fei

    2013-04-01

    Wind energy technology is one of the fastest in growing rate in new and renewable energy technologies. It is very important to select stronger windy sites in a country for the purpose of producing more electricity. Measure-Correlate-Predict (MCP) algorithms are used to predict the wind resource at target site for wind power development. MCP method model bases on a relationship between wind data (speed and direction) measured at the target site and concurrent wind data at reference site nearby. The model is then used with long-term data from the reference site to predict the long-term wind speed and direction distributions at the target site. MCP method is in order to be able to determine the annual energy capture of a wind farm located at the target site. Over the last 15 years well over a half dozen of MCP methods in the literature. The MCP algorithms differ in terms of overall approach, model definition, use of direction sectors, and length of the data. Such as 1)a linear regression model; 2)a model using distributions of ratios of wind speeds at two sites; 3)a vector regression method; 4)a method based on the ratio of standard deviations of two data sets, etc. Unfortunately, none of these MCP algorithms can predict wind speed from two sites at different altitudes. If the target site is much higher or lower than the reference site, the result accuracy will be much poorer. Inner Mongolia grassland is known as one of the regions that rich in wind resource in China. The data we use is from three wind measurements, consisting of nearly one year of six layers in XiLinGuoLe of Inner Mongolia . Firstly, we use the maximum likelihood method to estimate k, shape parameter and c, scale parameter of the Weibull function for different time periods. And then we find out that c has a power law function of height, and that k varies as the form of a quadratic function of height and obtains the max value in the height of 10 to100 meters. Finally, we add the height distribution

  20. Wind speed variability and adaptation strategies in coastal areas of the Pacific Northwest

    OpenAIRE

    Griffin, Bradford

    2010-01-01

    Overall, previous wind speed studies in the Pacific Northwest (PNW) present conflicting results for wind speed trends (both increasing and decreasing) in relation to climate drivers. This study fills a gap in the understanding of PNW wind behaviour by: determining if relationships exist between wind speed distributions, ocean/atmospheric climate indices, and monitoring station-specific attributes; assessing the robustness of relationships for forecasting wind speeds within the study area; and...

  1. Assessment of wind resources and annual energy production of wind farms

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    Wind energy provides a significant share of EU’s renewable energy source. It is anticipated in the European Commission (EC), the International Energy Agency (IEA), and the European Wind Energy Association (EWEA) that wind energy expands further. Wind energy has had an annual growth of 15.6% during...

  2. Blade Design Optimisation for Fixed-Pitch Fixed-Speed Wind Turbines

    OpenAIRE

    Lin Wang; Xinzi Tang; Xiongwei Liu

    2012-01-01

    Fixed-pitch fixed-speed (FPFS) wind turbines have some distinct advantages over other topologies for small wind turbines, particularly for low wind speed sites. The blade design of FPFS wind turbines is fundamentally different to fixed-pitch variable-speed wind turbine blade design. Theoretically, it is difficult to obtain a global mathematical solution for the blade design optimisation. Through case studies of a given baseline wind turbine and its blade airfoil, this paper aims to demonstrat...

  3. Empirical investigation on using wind speed volatility to estimate the operation probability and power output of wind turbines

    International Nuclear Information System (INIS)

    Highlights: ► Ten-minute wind speed and power generation data of an offshore wind turbine are used. ► An ARMA–GARCH-M model is built to simultaneously forecast wind speed mean and volatility. ► The operation probability and expected power output of the wind turbine are predicted. ► The integrated approach produces more accurate wind power forecasting than other conventional methods. - Abstract: In this paper, we introduce a quantitative methodology that performs the interval estimation of wind speed, calculates the operation probability of wind turbine, and forecasts the wind power output. The technological advantage of this methodology stems from the empowered capability of mean and volatility forecasting of wind speed. Based on the real wind speed and corresponding wind power output data from an offshore wind turbine, this methodology is applied to build an ARMA–GARCH-M model for wind speed forecasting, and then to compute the operation probability and the expected power output of the wind turbine. The results show that the developed methodology is effective, the obtained interval estimation of wind speed is reliable, and the forecasted operation probability and expected wind power output of the wind turbine are accurate

  4. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    OpenAIRE

    Yanting Hu; Zhe Chen; Yunqian Zhang; Weihao Hu

    2013-01-01

    Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG) developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution) power oscillation due to wind shear and tower shadow effects is the sign...

  5. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Particle Sizes and Wind Speeds for Full... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr...

  6. Indirect sensorless speed control of a PMSG for wind application

    DEFF Research Database (Denmark)

    Diaz, S.A.; Silva, C.; Juliet, J.;

    2009-01-01

    In this paper, the sensorless control of a permanent magnet synchronous generator (PMSG) for wind turbine applications is presented. This kind of generator has many advantages, such as: high efficiency, high power density and low maintenance requirements. To improve these characteristics in the...... sensorless strategies are avoided. The sensorless scheme proposed here is based on a synchronous d-q frame phaselocked loop (PLL) for back-emf estimation, as those used in voltage phase detection for grid connected converters. The wind turbine control includes maximum power point tracking (MPPT) using the...... whole wind generator system a sensorless scheme is proposed, thereby avoiding problems of electromagnetic interferences and failures in the position sensor. Usually, in wind drive system, the generator is not operated a very low speeds, therefore problems related to low back-emf for flux estimation in...

  7. Occurrence of high-speed solar wind streams over the Grand Modern Maximum

    CERN Document Server

    Mursula, Kalevi; Holappa, Lauri

    2015-01-01

    In the declining phase of the solar cycle, when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity in the near-Earth space. Here, using a novel definition of geomagnetic activity at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged solar wind speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onwards. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each solar cycle 16-23. For most cycles the HSS activity clearly maximizes during one year...

  8. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.;

    2016-01-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate...... high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the Advanced Composition Explorer (ACE) spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation...... between the coronal hole area observed in Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images and solar wind properties at the near-Earth environment, the WSA model establishes a link between properties of the open magnetic field lines extending from the photosphere to the corona...

  9. Predicting extreme wind speeds on a tropical island for multi-peril catastrophe modelling

    Science.gov (United States)

    Thornton, James; Moncoulon, David; Millinship, Ian; Raven, Emma

    2013-04-01

    Catastrophe models are important tools used by the reinsurance industry for assessing and managing risk. Here, we present the methods used to develop high-resolution wind hazard maps for the Indian Ocean island of La Réunion. As the recent Cyclone Dumile (January 2013) reminded us, the island is at considerable risk from the extreme weather associated with tropical cyclones. It also contains a significant proportion of the total value insured in French overseas territories. The wind maps, alongside flood and storm surge maps, were ultimately combined with exposure information in a multi-peril catastrophe model to provide probabilistic estimates of insured loss. Our wind mapping methodology used established extreme value theory statistics to estimate the annual probability of extreme wind speeds, including those exceeding the observed maxima of our 19 year record, at meteorological stations. This gave approximate wind speeds for a range of return periods at these specific locations. Since the spatial density of the stations was insufficient to resolve the numerous potential effects of the complex island topography, geographically weighted regression (GWR) models were then developed to interpolate these cyclonic wind speeds across the entire island. Factors known to affect local wind speed such as elevation, surface roughness and coastal proximity were explicitly accounted for. Using this advanced interpolation method, wind hazard maps were produced for six return periods between 1 in 10 and 1 in 1000 years. Our maps compared favourably with those of historical events, and also showed patterns of wind speed in agreement with the findings of other studies investigating the effects of topography. Leave-one-out cross-validation (LOOCV) further confirmed the satisfactory performance of the models in providing a robust and comprehensive description of wind patterns during cyclone passage. Uncertainty increased with return period as more extrapolation of the limited

  10. Hi-Q Rotor - Low Wind Speed Technology

    Energy Technology Data Exchange (ETDEWEB)

    Todd E. Mills; Judy Tatum

    2010-01-11

    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data

  11. Wind turbine blades for harnessing energy from Malaysian low speed wind - manufacturing technique

    International Nuclear Information System (INIS)

    Blades for wind turbine to harness energy in the Malaysia low speed winds have been designed. During wind tunnel testing, wind turbine model using this type of blades has cut in speed of 1.5 m/s and turned at 450 rpm at 4 m/s wind. The blades, due to their critical dimensions of 1.2 m length, 5 cm thickness, tapered and 15 degree twist, were difficult to produce especially in large number. Several production methods have been studied but for economical mass production, fibreglass blades using CNC cutting mould were chosen. The blade and mould designs and the manufacturing processes are briefly outlined in this paper. (Author)

  12. Short-term wind speed predictions with machine learning techniques

    Science.gov (United States)

    Ghorbani, M. A.; Khatibi, R.; FazeliFard, M. H.; Naghipour, L.; Makarynskyy, O.

    2016-02-01

    Hourly wind speed forecasting is presented by a modeling study with possible applications to practical problems including farming wind energy, aircraft safety and airport operations. Modeling techniques employed in this paper for such short-term predictions are based on the machine learning techniques of artificial neural networks (ANNs) and genetic expression programming (GEP). Recorded values of wind speed were used, which comprised 8 years of collected data at the Kersey site, Colorado, USA. The January data over the first 7 years (2005-2011) were used for model training; and the January data for 2012 were used for model testing. A number of model structures were investigated for the validation of the robustness of these two techniques. The prediction results were compared with those of a multiple linear regression (MLR) method and with the Persistence method developed for the data. The model performances were evaluated using the correlation coefficient, root mean square error, Nash-Sutcliffe efficiency coefficient and Akaike information criterion. The results indicate that forecasting wind speed is feasible using past records of wind speed alone, but the maximum lead time for the data was found to be 14 h. The results show that different techniques would lead to different results, where the choice between them is not easy. Thus, decision making has to be informed of these modeling results and decisions should be arrived at on the basis of an understanding of inherent uncertainties. The results show that both GEP and ANN are equally credible selections and even MLR should not be dismissed, as it has its uses.

  13. Grid impact of variable-speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Aa. [Chalmers Univ. of Technology, Dept. of Electric Power Engineering, Goeteborg (Sweden); Soerensen, P. [Risoe National Lab., Roskilde (Denmark); Santjer, F. [German Wind Energy Inst., DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In this paper the power quality of variable-speed wind turbines equipped with forced-commutated inverters is investigated. Measurements have been taken on the same type of variable-speed wind turbines in Germany and Sweden. The measurements have been analysed according to existing IEC standards. Special attention has been paid to the aggregation of several wind turbines on flicker emission and harmonics. The aggregation has been compared with the summation laws used in the draft IEC 61400-21 `Power Quality Requirements for Grid Connected wind turbines`. The methods for calculating and summing flicker proposed by IEC Standards are reliable. Harmonics and inter-harmonics are treated in IEC 61000-4-7 and IEC 61000-3-6. The methods for summing harmonics and inter-harmonics in IEC 61000-3-6 are applicable to wind turbines. In order to obtain a correct magnitude of the frequency components, the use of a well-defined window width, according to IEC 61000-4-7 Amendment 1 is of a great importance. (au)

  14. Fuzzy logic based variable speed wind generation system

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, M.G. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. PMC - Mecatronica; Bose, B.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Electrical Engineering; Spiegel, Ronal J. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air and Energy Engineering Research Lab.

    1996-12-31

    This work demonstrates the successful application of fuzzy logic to enhance the performance and control of a variable speed wind generation system. A maximum power point tracker control is performed with three fuzzy controllers, without wind velocity measurement, and robust to wind vortex and turbine torque ripple. A squirrel cage induction generator feeds the power to a double-sided PWM converter system which pumps the power to a utility grid or supplies to an autonomous system. The fuzzy logic controller FLC-1 searches on-line the generator speed so that the aerodynamic efficiency of the wind turbine is optimized. A second fuzzy controller FLC-2 programs the machine flux by on-line search so as to optimize the machine-converter system wind vortex. Detailed analysis and simulation studies were performed for development of the control strategy and fuzzy algorithms, and a DSP TMS320C30 based hardware with C control software was built for the performance evaluation of a laboratory experimental set-up. The theoretical development was fully validated and the system is ready to be reproduced in a higher power installation. (author) 7 refs., 3 figs., 1 tab.

  15. High resolution reanalysis of wind speeds over the British Isles for wind energy integration

    Science.gov (United States)

    Hawkins, Samuel Lennon

    The UK has highly ambitious targets for wind development, particularly offshore, where over 30GW of capacity is proposed for development. Integrating such a large amount of variable generation presents enormous challenges. Answering key questions depends on a detailed understanding of the wind resource and its temporal and spatial variability. However, sources of wind speed data, particularly offshore, are relatively sparse: satellite data has low temporal resolution; weather buoys and met stations have low spatial resolution; while the observations from ships and platforms are affected by the structures themselves. This work uses a state-of-the art mesoscale atmospheric model to produce a new high-resolution wind speed dataset over the British Isles and surrounding waters. This covers the whole region at a resolution of 3km for a period of eleven consecutive years, from 2000 to 2010 inclusive, and is thought to be the first high resolution re-analysis to represent a true historic time series, rather than a statistically averaged climatology. The results are validated against observations from met stations, weather buoys, offshore platforms and satellite-derived wind speeds, and model bias is reduced offshore using satellite derived wind speeds. The ability of the dataset to predict power outputs from current wind farms is demonstrated, and the expected patterns of power outputs from future onshore and offshore wind farms are predicted. Patterns of wind production are compared to patterns of electricity demand to provide the first conclusive combined assessment of the ability of future onshore and offshore wind generation meet electricity demand and contribute to secure energy supplies..

  16. Forecasting surface wind speeds over offshore islands near Taiwan during tropical cyclones: Comparisons of data-driven algorithms and parametric wind representations

    Science.gov (United States)

    Wei, Chih-Chiang

    2015-03-01

    Tropical cyclones often affect the western North Pacific region. Between May and October annually, enormous flood damage is frequently caused by typhoons in Taiwan. This study adopted machine learning techniques to forecast the hourly wind speeds over offshore islands near Taiwan during tropical cyclones. To develop a highly reliable surface wind speed prediction technique, the four kernel-based support vector machines for regression (SVR) models, comprising radial basis function, linear, polynomial, and Pearson VII universal kernels were used. To ensure the accuracy of the SVR model, traditional regressions and the parametric wind representations, comprising the modified Rankine profile, Holland wind profile, and DeMaria wind profile were used to compare wind speed forecasts. The methodology was applied to two islands near Taiwan, Lanyu, and Pengjia Islets. The forecasting horizon ranged from 1 to 6 h. The results indicated that the Pearson VII SVR is the most precise of the kernel-based SVR models, regressions, and parametric wind representations. Additionally, Typhoons Nanmadol and Saola which made landfall over Taiwan during 2011 and 2012 were simulated and examined. The results showed that the Pearson VII SVR yielded more favorable results than did the regressions and Holland wind profile. In addition, we observed that Holland wind profile seems applicable to open ocean but unsuitable for areas affected by topographic effects, such as the Central Mountain Range of Taiwan.

  17. Wind generator with electronic variable-speed drives

    Energy Technology Data Exchange (ETDEWEB)

    David, A.; Buchheit, N.; Jakobsen, H.

    1996-12-31

    Variable speed drives have been inserted between the network and the generator on certain recent wind power facilities. They have the following advantages: the drive allows the wind generator to operate at low speed with a significant reduction in acoustic noise, an important point if the facilities are sited near populated areas; the drive optimizes energy transfer, providing a gain of 4 to 10 %; the drive can possibly replace certain mechanical parts (the starting system and it in some cases, the reduction gear); the drive not only provides better transient management in relation to the network for less mechanical stress on the wind generator, it is also able to control reactive power. One commercial drive design sold by several manufacturers has already been installed on several wind generators with outputs of between 150 and 600 kw. In addition, such a solution is extremely well suited to mixed renewable energy systems. This design uses two inverse rectifier type converters and can therefore exchange energy in both directions. The equivalent drive with a single IGBT converter on the motor side and a diode converter on the network side is the solution most widely adopted throughout industry (with more than 50, 000 units installed in France per year). It still remains to be seen whether such a solution could be profitable in wind generator application (since the cost of the drive is quite high). This technical analysis is more destined for the converter-machine assembly specialists and is presented in this document, paying particular attention as it does to the modelling of the `wind energy - generator - drive - network` assembly, the associated drive command and control strategies and the simulations obtained during various transients. A 7.5 kW test bed has been installed in the Laboratoire d`Electronique de Puissance de Clamart, enabling tests to be carried out which emulate the operation of a wind generator.

  18. Adaptive torque control of variable speed wind turbines

    Science.gov (United States)

    Johnson, Kathryn E.

    Wind is a clean, renewable resource that has become more popular in recent years due to numerous advances in technology and public awareness. Wind energy is quickly becoming cost competitive with fossil fuels, but further reductions in the cost of wind energy are necessary before it can grow into a fully mature technology. One reason for higher-than-necessary cost of the wind energy is uncertainty in the aerodynamic parameters, which leads to inefficient controllers. This thesis explores an adaptive control technique designed to reduce the negative effects of this uncertainty. The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry. The standard controller was developed for variable speed wind turbines operating below rated power. The new adaptive controller uses a simple, highly intuitive gain adaptation law intended to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds. The adaptive controller has been tested both in simulation and on a real turbine, with numerous experimental results provided in this work. Simulations have considered the effects of erroneous wind measurements and time-varying turbine parameters, both of which are concerns on the real turbine. The adaptive controller has been found to operate as desired under realistic operating conditions, and energy capture has increased on the real turbine as a result. Theoretical analyses of the standard and adaptive controllers were performed, as well, providing additional insight into the system. Finally, a few extensions were made with the intent of making the adaptive control idea even more appealing in the commercial wind turbine market.

  19. Design guidelines for H-Darrieus wind turbines: Optimization of the annual energy yield

    International Nuclear Information System (INIS)

    Highlights: • Proposal for a new design criterion for H-Darrieus turbines based on the energy-yield maximization. • 21,600 design cases analyzed to identify the best solutions for each installation site (i.e. average wind speed). • Critical analysis of the best design choices in terms of turbine shape, dimensions, airfoils and constraints. • Notable energy increase provided by the new design approach. • Each site requires a specific turbine concept to optimize the energy yield. - Abstract: H-Darrieus wind turbines are gaining popularity in the wind energy market, particularly as they are thought to represent a suitable solution even in unconventional installation areas. To promote the diffusion of this technology, industrial manufacturers are continuously proposing new and appealing exterior solutions, coupled with tempting rated-power offers. The actual operating conditions of a rotor over a year can be, however, very different from the nominal one and strictly dependent on the features of the installation site. Based on these considerations, a turbine optimization oriented to maximize the annual energy yield, instead of the maximum power, is thought to represent a more interesting solution. With this goal in mind, 21,600 test cases of H-Darrieus rotors were compared on the basis of their energy-yield capabilities for different annual wind distributions in terms of average speed. The wind distributions were combined with the predicted performance maps of the rotors obtained with a specifically developed numerical code based on a Blade Element Momentum (BEM) approach. The influence on turbine performance of the cut-in speed was accounted for, as well as the limitations due to structural loads (i.e. maximum rotational speed and maximum wind velocity). The analysis, carried out in terms of dimensionless parameters, highlighted the aerodynamic configurations able to ensure the largest annual energy yield for each wind distribution and set of aerodynamic

  20. Incorporating geostrophic wind information for improved space–time short-term wind speed forecasting

    KAUST Repository

    Zhu, Xinxin

    2014-09-01

    Accurate short-term wind speed forecasting is needed for the rapid development and efficient operation of wind energy resources. This is, however, a very challenging problem. Although on the large scale, the wind speed is related to atmospheric pressure, temperature, and other meteorological variables, no improvement in forecasting accuracy was found by incorporating air pressure and temperature directly into an advanced space-time statistical forecasting model, the trigonometric direction diurnal (TDD) model. This paper proposes to incorporate the geostrophic wind as a new predictor in the TDD model. The geostrophic wind captures the physical relationship between wind and pressure through the observed approximate balance between the pressure gradient force and the Coriolis acceleration due to the Earth’s rotation. Based on our numerical experiments with data from West Texas, our new method produces more accurate forecasts than does the TDD model using air pressure and temperature for 1to 6-hour-ahead forecasts based on three different evaluation criteria. Furthermore, forecasting errors can be further reduced by using moving average hourly wind speeds to fit the diurnal pattern. For example, our new method obtains between 13.9% and 22.4% overall mean absolute error reduction relative to persistence in 2-hour-ahead forecasts, and between 5.3% and 8.2% reduction relative to the best previous space-time methods in this setting.

  1. Efficient Low-Speed Flight in a Wind Field

    Science.gov (United States)

    Feldman, Michael A.

    1996-01-01

    A new software tool was needed for flight planning of a high altitude, low speed unmanned aerial vehicle which would be flying in winds close to the actual airspeed of the vehicle. An energy modeled NLP (non-linear programming) formulation was used to obtain results for a variety of missions and wind profiles. The energy constraint derived included terms due to the wind field and the performance index was a weighted combination of the amount of fuel used and the final time. With no emphasis on time and with no winds the vehicle was found to fly at maximum lift to drag velocity, V(sub md). When flying in tail winds the velocity was less than V(sub md), while flying in head winds the velocity was higher than V(sub md). A family of solutions was found with varying times of flight and varying fuel amounts consumed which will aid the operator in choosing a flight plan depending on a desired landing time. At certain parts of the flight, the turning terms in the energy constraint equation were found to be significant. An analysis of a simpler vertical plane cruise optimal control problem was used to explain some of the characteristics of the vertical plane NLP results.

  2. Mitigation of Wind Power Fluctuation by Active Current Control of Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao; Cheng, Ming

    2013-01-01

    Wind shear and tower shadow are the sources of power fluctuation of grid connected wind turbines during continuous operation. This paper presents a simulation model of a MW-level doubly fed induction generator (DFIG) based variable speed wind turbine with a partial-scale back-to-back power...... converter in Simulink. A simple and effective method of wind power fluctuations mitigation by active current control of DFIG is proposed. It smoothes the generator output active power oscillations by adjusting the active current of the DFIG, such that the power oscillation is stored as the kinetic energy of...... the wind turbine. The simulations are performed on the NREL 1.5MW upwind reference wind turbine model. The simulation results are presented and discussed to demonstrate the validity of the proposed control method....

  3. Input observability analysis of Fixed speed wind turbine

    OpenAIRE

    García Planas, María Isabel

    2012-01-01

    This paper deals with the concept of input observability in a fixed speed wind turbine. A linear system has been calculated from the nonlinear equations of the squirrel cage induction generator, supposing it connected directly to the grid and assuming a steady state operating point. The observability of the input from the output of the system could be an interesting way to know if its possible to develop some new controls without introduce special sensors in the system. Furthermor...

  4. Functional output-controllability analysis of fixed speed wind turbine

    OpenAIRE

    Domínguez García, José Luís; García Planas, María Isabel

    2013-01-01

    This paper deals with the concepts of functional output-controllability character of a finite-dimensional linear dynamical system. And a method for comput- ing the functional outputcontrollability consisting on the calculation of the rank of a certain constant ma- trix related to the system dynamics is introduced. The linear system under study is a fixed speed wind tur- bine (FSWT) formed by a squirrel cage generator con- nected directly to the grid. Due to the non-lin...

  5. Input Observability Analysis of Fixed Speed Wind Turbine

    OpenAIRE

    García Planas, María Isabel; Domínguez García, José Luís; Mediano Valiente, Begoña

    2012-01-01

    This paper deals with the concept of input observability in a fixed speed wind turbine. A linear system has been calculated from the nonlinear equations of the squirrel cage induction generator, supposing it connected directly to the grid and assuming a steady state operating point. The observability of the input from the output of the system could be an interesting way to know if its possible to develop some new controls without introduce special sensors in the system. Furthermor...

  6. Mixture EMOS model for calibrating ensemble forecasts of wind speed

    OpenAIRE

    Baran, Sándor; Lerch, Sebastian

    2015-01-01

    Ensemble model output statistics (EMOS) is a statistical tool for post-processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions (PDFs). The EMOS predictive PDF is given by a parametric distribution with parameters depending on the ensemble forecasts. We propose an EMOS model for calibrating wind speed forecasts based on weighted mixtures of truncated normal (TN)...

  7. AC-DC integrated load flow calculation for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses of...... converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....

  8. Performance Analysis of ANFIS in short term Wind Speed Prediction

    Directory of Open Access Journals (Sweden)

    Vandatilde;andshy;ctor Hugo Garcandatilde;andshy;a Rodrandatilde;andshy;guez

    2012-09-01

    Full Text Available Results are presented on the performance of Adaptive NeuroFuzzy Inference system (ANFIS for wind velocity forecasts in the Isthmus of Tehuantepec region in the state of Oaxaca, Mexico. The data bank was provided by the meteorological station located at the University of Isthmus, Tehuantepec campus, and this data bank covers the period from 2008 to 2011. Three data models were constructed to carry out 16, 24 and 48 hours forecasts using the following variables: wind velocity, temperature, barometric pressure, and date. The performance measure for the three models is the mean standard error (MSE. In this work, performance analysis in short-term prediction is presented, because it is essential in order to define an adequate wind speed model for eolian parks, where a right planning provide economic benefits.

  9. Design of PVC Bladed Horizontal Axis Wind Turbine for Low Wind Speed Region

    Directory of Open Access Journals (Sweden)

    Vicky K Rathod

    2014-07-01

    Full Text Available The Project is aimed at designing a wind turbine that can be able to build by Laypersons, using readily available material which is feasible & affordable to provide much needed electricity. Since most of the high wind power density regions in the zone of high wind speed are already being tapped by large scale wind turbine and so it required creating a large scope for the development of low wind speed turbines. Our study focuses primarily on designing the blade for tapping power in the regions of low wind power density. The aerodynamic profiles of wind turbine blades have major influence on aerodynamic efficiency of wind turbine. This can be achieved by comparing the effectiveness of a crude blade fashioned from a different Size, Material & standard of PVC drainage pipe which are easily available in market. It can be evaluated by performing experimental analysis, data collection & its evaluation on different type & size of PVC Pipe & preparing an analytical tool for best Design.

  10. Wind farm induced changes in wind speed and surface fluxes over the North Sea

    Science.gov (United States)

    Chatterjee, Fabien; van Lipzig, Nicole; Meyers, Johan

    2016-04-01

    Offshore wind farm deployment in the North Sea is foreseen to expand dramatically in the coming years. The strong expansion of offshore wind parks is likely to affect the regional climatology on the North Sea. We assess this impact by conducting a regional climate model simulation over future wind farms built near the German coast. In order to achieve this, the wind farm parameterisation of Fitch et al. 2012, where wind farms are parameterised as elevated sources of turbulent kinetic energy and sinks of momentum ( Blahak et al 2010 and Fitch et al 2012) is implemented in COSMO-CLM at a 1.5 km resolution. As a first step, COSMO-CLM's ability to reproduce wind profiles over the North Sea is evaluated using wind speed data from the FINO1 meteorological mast, toghether with QuikScat scatterometer data, for a time period of 2000-2008. Subsequently, the impact of windfarms on the regional climate over a period of ten years (1999-2008) is assessed. A large scale wind farm can create wakes which depending on the wind direction could affect the power production of a neighbouring farm. Furthermore, wind farms decelerate the flow and create a vertical circulation in the inflow region. As a result, changes in vertical fluxes of moisture are observed. This leads to enhanced low level cloud cover which may trigger changes in precipitation.

  11. Design of a shrouded wind turbine for low wind speeds / Jacobus Daniel Human

    OpenAIRE

    Human, Jacobus Daniel

    2014-01-01

    The use of renewable energy is promoted worldwide to be less dependent on fossil fuels and nuclear energy. Therefore research in the field is driven to increase efficiency of renewable energy systems. This study aimed to develop a wind turbine for low wind speeds in South Africa. Although there is a greater tendency to use solar panels because of the local weather conditions, there are some practical implications that have put the use of solar panels in certain areas to an end....

  12. Applying micro scales of horizontal axis wind turbines for operation in low wind speed regions

    International Nuclear Information System (INIS)

    Highlights: • Three micro-turbines with output power less than 1 kW were designed for operation in low wind speed regions. • In addition to the output power, starting time was considered as a key parameter during the design. • The effects of generator resistive torque and number of blades on the performance of the turbines were investigated. - Abstract: Utilizing the micro scales of wind turbines could noticeably supply the demand for the electricity in low wind speed regions. Aerodynamic design and optimization of the blade, as a main part of a wind turbine, were addressed in the study. Three micro scales of horizontal axis wind turbines with output power of 0.5, 0.75 and 1 kW were considered and the geometric optimization of the blades in terms of the two involved parameters, chord and twist, was undertaken. In order to improve the performance of the turbines at low wind speeds, starting time was included in an objective function in addition to the output power – the main and desirable goal of the wind turbine blade design. A purpose-built genetic algorithm was employed to maximize both the output power and the starting performance which were calculated by the blade-element momentum theory. The results emphasize that the larger values of the chord and twist at the root part of the blades are indispensable for the better performance when the wind speed is low. However, the noticeable value of the generator resistive torque could largely delay the starting of the micro-turbines especially for the considered smaller size, 0.5 kW, where the starting aerodynamic torque could not overcome the generator resistive torque. For that size, an increase in the number of blades improved both the starting performance and also output power

  13. Verification of high-speed solar wind stream forecasts using operational solar wind models

    CERN Document Server

    Reiss, Martin A; Veronig, Astrid M; Nikolic, Ljubomir; Vennerstrom, Susanne; Schoengassner, Florian; Hofmeister, Stefan J

    2016-01-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the ACE spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation between the coronal hole area observed in Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images and solar wind properties at the near-Earth environment, the WSA model establishes a link between properties of the open magnetic field lines extending from the photosphere to the corona and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed sol...

  14. Sea surface wind speed estimation from space-based lidar measurements

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2008-02-01

    Full Text Available Global satellite observations of lidar backscatter measurements acquired by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO mission and collocated sea surface wind speed data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E, are used to investigate the relation between wind driven wave slope variance and sea surface wind speed. The new slope variance – wind speed relation established from this study is similar to the linear relation from Cox-Munk (1954 and the log-linear relation from Wu (1972, 1990 for wind speed larger than 7 m/s and 13.3 m/s, respectively. For wind speed less than 7 m/s, the slope variance is proportional to the square root of the wind speed, assuming a two dimensional isotropic Gaussian wave slope distribution. This slope variance – wind speed relation becomes linear if a one dimensional Gaussian wave slope distribution is assumed. Contributions from whitecaps and subsurface backscattering are effectively removed by using 532 nm lidar depolarization measurements. This new slope variance – wind speed relation is used to derive sea surface wind speed from CALIPSO single shot lidar measurements (70 m spot size, after correcting for atmospheric attenuation. The CALIPSO wind speed result agrees with the collocated AMSR-E wind speed, with 1.2 m/s rms error.

  15. Wind Speed Estimation and Parameterization of Wake Models for Downregulated Offshore Wind Farms

    DEFF Research Database (Denmark)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Poulsen, Niels Kjølstad;

    The estimation of possible (or available) power of a downregulated offshore wind farm is the content of the PossPOW project (See PossPOW Poster ID: 149). The main challenges of this estimation process are: 1) to determine the free stream equivalent wind speed at the turbine level since the accuracy...... of nacelle anemometers are in question and power curve derivation is no longer applicable during downregulation 2) to apply a real-time wake model which can calculate the power production as if the wind farm was operating normally even in short downregulation periods. However, most existing wake...

  16. Wind Energy Department annual progress report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, B.D.; Riis, U. (eds.)

    2003-12-01

    Research and development activities of the Wind Energy Department range from boundary layer meteorology, fluid dynamics, and structural mechanics to power and control engineering as well as wind turbine loading and safety. The overall purpose of our work is to meet the needs for knowledge, methods and procedures from government, the scientific community, and the wind turbine industry in particular. Our assistance to the wind turbine manufacturers serve to pave the way for technological development and thus further the exploitation of wind energy worldwide. We do this by means of research and innovation, education, testing and consultancy. In providing services for the wind turbine industry, we are involved in technology development, design, testing, procedures for operation and maintenance, certification and international wind turbine projects s as well as the solution of problems encountered in the application of wind energy, e.g. grid connection. A major proportion of these activities are on a commercial basis, for instance consultancy, software development, accredited testing of wind turbines and blades as well as approval and certification in co-operation with Det Norske Veritas. The departments activities also include research into atmospheric physics and environmental issues related to the atmosphere. One example is the development of online warning systems for airborne bacteria and other harmful substances. The department is organized in programmes according to its main scientific and technical activities. Research programmes: 1) Aeroelastic Design, AED; 2) Atmospheric Phyrics, ATM; 3) Electrical DEsign and Control, EDS; 4) Wind Power Meteorology, VKM; 5) Wind Turbines, VIM; 6) Wind Turbine Diagnostics, VMD. Commercial programmes: 1) The Test Station for Large Wind Turbines, Hoevsoere, HOeV; 2) Risoe Wind Consult, INR; 3) Wind Turbine Testing; 4) Sparkaer Blade Test Centre.(au)

  17. Long-term north-south asymmetry in solar wind speed inferred from geomagnetic activity: A new type of century-scale solar oscillation?

    DEFF Research Database (Denmark)

    Mursula, K.; Zieger, B.

    2001-01-01

    A significant and very similar annual variation in solar wind speed and in geomagnetic activity was recently found around all the four solar cycle minima covered by direct SW observations since mid-1960's. We have shown that the phase of this annual variation reverses with the Sun's polarity...... reversal, depicting a new form of 22-year periodicity. The annual variation results from a small north-south asymmetry in SW speed distribution where the minimum speed region is shifted toward the northern magnetic hemisphere. Here we study the very long-term evolution of the annual variation using early...... registrations of geomagnetic activity. We find a significant annual variation during the high-activity solar cycles in mid-19th century and since 1930's. Most interestingly, the SW speed asymmetry in mid-19th century was opposite to the present asymmetry, i.e., the minimum speed region was then shifted toward...

  18. Flicker study on variable speed wind turbines with doubly fed induction generators

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    Grid connected wind turbines may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a doubly fed induction generator developed in the simulation tool of PSCAD/EMTDC. Flicker emission of variable speed wind turbines with...... doubly fed induction generators is investigated during continuous operation, and the dependence of flicker emission on mean wind speed, wind turbulence intensity, short circuit capacity of grid and grid impedance angle are analyzed. A comparison is done with the fixed speed wind turbine, which leads to a...... conclusion that the factors mentioned above have different influences on flicker emission compared with that in the case of the fixed speed wind turbine. Flicker mitigation is realized by output reactive power control of the variable speed wind turbine with doubly fed induction generator. Simulation results...

  19. Gain-scheduled Linear Quadratic Control of Wind Turbines Operating at High Wind Speed

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

    then interpolated linearly to get a control law for the entire operating envelope. A nonlinear state estimator is designed as a combination of two unscented Kalman filters and a linear disturbance estimator. The gain-scheduling variable (wind speed) is then calculated from the output of these state...

  20. An innovative medium speed wind turbine rotor blade design for low wind regime (electrical power generation)

    International Nuclear Information System (INIS)

    This paper describes the preliminary study of a small-scale wind turbine rotor blade (a low wind speed region turbine). A new wind turbine rotor blade (AE2 blade) for stand alone system has been conceptualized, designed, constructed and tested. The system is a reduced size prototype (half-scaled) to develop an efficient (adapted to Malaysian wind conditions)and cost effective wind energy conversion system (WECS) with local design and production technique. The blades were constructed from aluminium sheet with metal blending technique. The layout and design of rotor blade, its innovative features and test results are presented. Results from indoor test showed that the advantages of AE2 blade in low speed, with the potential of further improvements. The best rotor efficiency, CP attained with simple AE2 blades rotor (number of blade = 3) was 37.3% (Betz efficiency = 63%) at tip speed ratio (TSR) = 3.6. From the fabrication works and indoor testing, the AE2 blade rotor has demonstrated its structural integrity (ease of assembly and transportation), simplicity, acceptable performance and low noise level. (Author)

  1. Observing seasonal variations of sea surface wind speed and significant wave height using TOPEX altimetry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    One year of ocean topography experiment (TOPEX) altimeter data are used to study the seasonal variations of global sea surface wind speed and significant wave height. The major wind and wave zones of the world oceans are precisely identified, their seasonal variability and characteristics are quantitatively analyzed, and the diversity of global wind speed seasonality and the variability of significant wave height in response to sea surface wind speed are also revealed.

  2. Wind Energy Department. Annual progress report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Skrumsager, B.; Larsen, S.; Hauge Madsen, P. (eds.)

    2002-10-01

    The report describes the work of the Wind Energy Department at Risoe National Laboratory in 2001. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2001 is shown, including lists of publications, lectures, committees and staff members. (au)

  3. Wind Energy Department. Annual progress report 2001

    International Nuclear Information System (INIS)

    The report describes the work of the Wind Energy Department at Risoe National Laboratory in 2001. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2001 is shown, including lists of publications, lectures, committees and staff members. (au)

  4. Low Speed PSP Testing in Production Wind Tunnels

    Science.gov (United States)

    Bell, James; Mehta, Rabi; Schairer, Ed; Hand, Larry; Nixon, David (Technical Monitor)

    1998-01-01

    The brightness signal from a pressure-sensitive paint varies inversely with absolute pressure. Consequently high signal-to-noise ratios are required to resolve aerodynamic pressure fields at low speeds, where the pressure variation around an object might only be a few percent of the mean pressure. This requirement is unavoidable, and implies that care must be taken to minimize noise sources present in the measurement. This paper discusses and compares the main noise sources in low speed PSP testing using the "classical" intensity-based single-luminophore technique. These are: temperature variation, model deformation, and lamp drift/paint degradation. Minimization of these error sources from the point of view of operation in production wind tunnels is discussed, with some examples from recent tests in NASA Ames facilities.

  5. ACCUWIND - Accurate wind speed measurements in wind energy - Summary report[Cup and sonic anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Dahlberg, J.Aa.; Cuerva, A.; Mouzakis, F.; Busche, P.; Eecen, P.; Sanz-Andres, A.; Franchini, S.; Markkilde Petersen, S.

    2006-07-15

    The cup anemometer is at present the standard instrument used for mean wind speed measurement in wind energy. It is being applied in high numbers around the world for wind energy assessments. It is also applied exclusively for accredited power performance measurements for certification and verification purposes, and for purposes of optimisation in research and development. The revised IEC standard on power performance measurements has now included requirements for classification of cup anemometers. The basis for setting up such requirements of cup anemometers is two EU projects SITEPARIDEN and CLASSCUP from which the proposed classification method for cup anemometers was developed for the IEC standard. While cup anemometers at present are the standard anemometer being used for average wind speed measurements, sonic anemometers have been developed significantly over the last years, and prices have come down. The application of sonic anemometers may increase in wind energy if they prove to have comparable or better operational characteristics compared to cup anemometers, and if similar requirements to sonic anemometers are established as for cup anemometers. Sonic anemometers have historically been used by meteorologists for turbulence measurements, but have also found a role on wind turbine nacelles for wind speed and yaw control purposes. The report on cup and sonic anemometry deals with establishment of robustness in assessment and classification by focus on methods and procedures for analysis of characteristics of cup and sonic anemometers. The methods and procedures provide a platform, hopefully for use in meeting the requirements of the IEC standard on power performance measurements, as well as for development of improved instruments. (au)

  6. A data mining approach: Analyzing wind speed and insolation period data in Turkey for installations of wind and solar power plants

    International Nuclear Information System (INIS)

    Highlights: ► Wind speed and insolation period data were analyzed using a data mining approach. ► Most of the studies in the literature were based on Weibull and Rayleigh models. ► Nearest and farest neighbor algorithms were used with different distance metrics. ► Many inferences were achieved in efficient limits for wind and solar farm analyses. - Abstract: Wind and solar power plant installations have been recently increased rapidly with respect to the depletion of fossil-based fuels all over the world. Due to stochastic nature of meteorological conditions, wind and solar energies have a non-schedulable nature and they require several installation analyses to determine the location and the capacities of wind and solar power to be produced. This paper focuses on the similarity, feasibility and numerical analyses of 75 cities in Turkey based on the monthly average wind speed and insolation period data. The nearest and the farest neighbor algorithms are used as agglomerative hierarchical clustering methods with Euclidean, Manhattan and Minkowski distance metrics in the stage of making the similarity and feasibility analyses. The maximum cophenetic correlation coefficient is achieved by the nearest neighbor algorithm with the Minkowski distance metric in the similarity and feasibility analyses. On the other hand, graphical representations of the monthly average wind speed and insolation period data are utilized for making the numerical analysis. The highest annual average wind speed and insolation period are obtained as 3.88 m/s and 8.45 h/day, respectively. Overall, many inferences were achieved in acceptable and efficient limits for wind and solar energy.

  7. Comparison of measured and simulated wind speed data in the North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Winterfeldt, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2008-11-06

    A systematic investigation and comparison of near-surface marine wind speed obtained from in situ and satellite observations, atmospheric reanalyses and regional atmospheric hindcasts with reanalysis driven regional climate models (RCMs) is presented for the eastern North Atlantic and the North Sea. Wind speed retrievals from two remote sensing data sets, namely QuikSCAT and the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) data set, are found to give good representation of observed near-surface wind speed. The value of the root mean squared error (RMSE) for all co-located HOAPS and in situ wind speed data is 2 m/s, while it is 1.8 m/s for QuikSCAT demonstrating that QuikSCAT's mission requirement of providing wind speed with an RMSE of 2 m/s is met for the eastern North Atlantic and the North Sea. QuikSCAT shows a slightly better agreement with observed instantaneous wind speed and its frequency distribution than HOAPS. In contrast, HOAPS wind speed is available for a much longer period and is therefore the more suitable product for climatic studies or investigations of trends in wind speed. The capability of two state-of-the-art RCMs (with and without spectral nudging applied) to add value for surface marine wind fields in comparison to the reanalysis wind speed forcing is assessed by the comparison with in situ wind speed observations in the eastern North Atlantic in 1998. The comparison of the 10 m wind speed forecasts from the NCEP/NCAR and NCEP/DOE-II reanalyses with in-situ observations demonstrates the implausibility of the latter forecast resulting in its non-consideration in the added value assessment. The added value is investigated for instantaneous wind speeds (relevant for case studies) and their frequency distribution (relevant for e.g., extreme value statistics and estimations of wind potential). The observations are discriminated into groups according to their proximity to land and assimilation status, meaning whether

  8. Effective wind speed estimation: Comparison between Kalman Filter and Takagi-Sugeno observer techniques.

    Science.gov (United States)

    Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst

    2016-05-01

    Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated. PMID:26725505

  9. Wind Speed Estimation and Wake model Re-calibration for Downregulated Offshore Wind Farms

    Science.gov (United States)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Kjølstad Poulsen, Niels; Réthoré, Pierre-Elouan; Mirzaei, Mahmood

    2014-05-01

    In recent years, the wind farm sizes have increased tremendously and with increasing installed capacity, the wind farms are requested to downregulate from their maximum possible power more frequently, especially in the offshore environment. Determination of the possible (or available) power is crucial not only because the reserve power has considerable market value but also for wind farm developers to be properly compensated for the loss during downregulation. While the available power calculation is straightforward for a single turbine, it gets rather complicated for the whole wind farm due to the change in the wake characteristics. In fact, the wake losses generated by the upstream turbine(s) decrease during downregulation and the downstream turbines therefore see more wind compared to the normal operation case. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a whole wind farm which is downregulated. Therefore, the PossPOW project aims to develop a verified and internationally accepted way to determine the possible power of a down-regulated offshore wind farm. The first phase of the project is to estimate the rotor effective wind speed. Since the nacelle anemometers are not readily available and are known to have reliability issues, the proposed method is to use power, pitch angle and rotational speed as inputs and combine it with a generic Cp model to estimate the wind speed. The performance of the model has been evaluated for both normal operation and downregulation periods using two different case studies: Horns Rev-I wind farm and NREL 5MW single turbine. During downregulation, the wake losses are not as severe and the velocity deficits at the downstream turbines are smaller as if also the wake is "downregulated". On the other hand, in order to calculate the available power, the wakes that would have been produced normally (if the turbines were not curtailed) are of importance, not the

  10. LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes

    Directory of Open Access Journals (Sweden)

    Eamon McKeogh

    2011-08-01

    Full Text Available Detailed knowledge of the wind resource is necessary in the developmental and operational stages of a wind farm site. As wind turbines continue to grow in size, masts for mounting cup anemometers—the accepted standard for resource assessment—have necessarily become much taller, and much more expensive. This limitation has driven the commercialization of two remote sensing (RS tools for the wind energy industry: The LIDAR and the SODAR, Doppler effect instruments using light and sound, respectively. They are ground-based and can work over hundreds of meters, sufficient for the tallest turbines in, or planned for, production. This study compares wind measurements from two commercial RS instruments against an instrumented mast, in upland (semi-complex terrain typical of where many wind farms are now being installed worldwide. With appropriate filtering, regression analyses suggest a good correlation between the RS instruments and mast instruments: The RS instruments generally recorded lower wind speeds than the cup anemometers, with the LIDAR more accurate and the SODAR more precise.

  11. Soil tillage and windbreak effects on millet and cowpea: I. Wind speed, evaporation, and wind erosion

    International Nuclear Information System (INIS)

    Deforestation, overgrazing, and declining soil regeneration periods have resulted in increased wind erosion problems in dry areas of the West African Sahel, but little is known about the bio-physical factors involved. This research was conducted to determine the effects of ridging and four different windbreak spacings on wind erosion, potential evaporation, and soil water reserves. A field trial was conducted from 1985 to 1987 on 12 ha of a Psammentic Paleustalf in Southern Niger. Millet, Pennisetum glaucum (L.), and cowpea, Vigna unguiculata (L.) Walp., were seeded in strips on flat and ridged soil. Windbreaks of savannah vegetation were spaced at 6, 20, 40, and 90 m. The effects of ridging on wind speed, evaporation, and wind erosion were small and mostly non-significant. However, average wind speed at 0.3 m above ground in the center of cowpea and millet strips was significantly reduced from 2.8 to 2.1 m s-1 as windbreak distances narrowed from 90 to 6 m. As a consequence, potential evaporation declined by 15% and the amount of windblown soil particles by 50% in ridged and by 70% in flat treatments. Despite reduced potential evaporation, average subsoil water reserves were 14 mm smaller in the 6- than in the 20-m windbreak spacing indicating excessive water extraction by the windbreak vegetation. Thus, establishing windbreaks with natural savannah vegetation may require a careful consideration of the agronomic benefits and costs to competing crops. 21 refs., 5 figs

  12. Soil tillage and windbreak effects on millet and cowpea: I. Wind speed, evaporation, and wind erosion

    Energy Technology Data Exchange (ETDEWEB)

    Banzhaf, J.; Leihner, D.E.; Buerkert, A. (Univ. of Hohenheim, Stuttgart (Germany)); Serafini, P.G. (Univ. of Arkansas, Fayetteville (United States))

    Deforestation, overgrazing, and declining soil regeneration periods have resulted in increased wind erosion problems in dry areas of the West African Sahel, but little is known about the bio-physical factors involved. This research was conducted to determine the effects of ridging and four different windbreak spacings on wind erosion, potential evaporation, and soil water reserves. A field trial was conducted from 1985 to 1987 on 12 ha of a Psammentic Paleustalf in Southern Niger. Millet, Pennisetum glaucum (L.), and cowpea, Vigna unguiculata (L.) Walp., were seeded in strips on flat and ridged soil. Windbreaks of savannah vegetation were spaced at 6, 20, 40, and 90 m. The effects of ridging on wind speed, evaporation, and wind erosion were small and mostly non-significant. However, average wind speed at 0.3 m above ground in the center of cowpea and millet strips was significantly reduced from 2.8 to 2.1 m s[sup [minus]1] as windbreak distances narrowed from 90 to 6 m. As a consequence, potential evaporation declined by 15% and the amount of windblown soil particles by 50% in ridged and by 70% in flat treatments. Despite reduced potential evaporation, average subsoil water reserves were 14 mm smaller in the 6- than in the 20-m windbreak spacing indicating excessive water extraction by the windbreak vegetation. Thus, establishing windbreaks with natural savannah vegetation may require a careful consideration of the agronomic benefits and costs to competing crops. 21 refs., 5 figs.

  13. Assessment of wind resources and annual energy production of wind farms

    OpenAIRE

    Hasager, Charlotte Bay

    2012-01-01

    Wind energy provides a significant share of EU’s renewable energy source. It is anticipated in the European Commission (EC), the International Energy Agency (IEA), and the European Wind Energy Association (EWEA) that wind energy expands further. Wind energy has had an annual growth of 15.6% during the last 17 years. In Denmark the plan is to increase to 50% share of total electricity consumption in 2020 compared to 26% in 2011. In EU this was 6.3% in 2011. In EU new installed wind power was 9...

  14. Wind Energy Department annual progress report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Johanse, B.D.; Riis. U. (eds.)

    2004-12-01

    This report covers the scientific work of the Wind Energy Department in 2003. It comprises departmental programmes as well as brief summaries of all non-conficential projects and a review of the key issues of 2003. (au)

  15. Wind Energy Department annual progress report 2003

    OpenAIRE

    2004-01-01

    This report covers the scientific work of the Wind Energy Department in 2003. It comprises departmental programmes as well as brief summaries of all non-confidential projects and a review of the key issues of 2003.

  16. Power system integration and control of variable speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Eek, Jarle

    2009-12-15

    A wind power plant is a highly dynamic system that dependent on the type of technology requires a number of automatic control loops. This research deals with modelling, control and analysis related to power system integration of variable speed, pitch controlled wind turbines. All turbine components have been modelled and implemented in the power system simulation program SIMPOW, and a description of the modelling approach for each component is given. The level of model detail relates to the classical modelling of power system components for power system stability studies, where low frequency oscillations are of special importance. The wind turbine model includes a simplified representation of the developed rotor torque and the thrust force based on C{sub p-} and C{sub t} characteristic curves. The mechanical system model represents the fundamental torsional mode and the first mode of blades and tower movements. Two generator technologies have been investigated. The doubly fed induction generator (DFIG) and the stator converter interfaced permanent magnet synchronous generator (PMSG). A simplified model of a 2 level voltage source converter is used for both machine types. The generator converter controllers have been given special attention. All model components are linearized for the purpose of control system design and power system interaction related to small signal stability analysis. Different control strategies discussed in the literature have been investigated with regard to power system interaction aspects. All control parameters are identified using the internal model control approach. The analysis is focused on three main areas: 1. Identification of low damped oscillatory modes. This is carried out by the establishment and discussion of wind turbine modelling. 2. Interaction between control loops. A systematic approach is presented in order to analyse the influence of control loops used in variable speed wind turbines. 3.Impact on power system performance

  17. Wind Energy Department annual progress report 2002

    DEFF Research Database (Denmark)

    2004-01-01

    This report covers the scientific work of the Wind Energy Department in 2002. It contains departmental programmes as well as brief summaries of all non-confidential projects and a review of this year’s key issues.......This report covers the scientific work of the Wind Energy Department in 2002. It contains departmental programmes as well as brief summaries of all non-confidential projects and a review of this year’s key issues....

  18. Wind Energy Department annual progress report 2003

    DEFF Research Database (Denmark)

    2004-01-01

    This report covers the scientific work of the Wind Energy Department in 2003. It comprises departmental programmes as well as brief summaries of all non-confidential projects and a review of the key issues of 2003.......This report covers the scientific work of the Wind Energy Department in 2003. It comprises departmental programmes as well as brief summaries of all non-confidential projects and a review of the key issues of 2003....

  19. Wind speed dependent size-resolved parameterization for the organic enrichment of sea spray

    Directory of Open Access Journals (Sweden)

    B. Gantt

    2011-04-01

    Full Text Available For oceans to become a significant source of primary organic aerosol (POA, sea spray must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic mass fraction of sea spray aerosol (OMss. To test this hypothesis, we developed a new marine POA emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-a, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-a concentration ([Chl-a] are the most consistent predictors of OMss. This relationship, combined the published aerosol size dependence of OMss, resulted in a new parameterization for the organic carbon fraction of sea spray. Global marine primary organic emission is investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-a], and modeled 10 meter winds. Analysis of model simulations show that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.8 to 5.6 Tg C yr−1. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere.

  20. Wind speed dependent size-resolved parameterization for the organic enrichment of sea spray

    Directory of Open Access Journals (Sweden)

    B. Gantt

    2011-01-01

    Full Text Available For oceans to become a significant source of primary organic aerosol, sea spray must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic fraction of sea spray aerosol (OCss. To test this hypothesis, we developed a new marine primary organic aerosol emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-a, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-a concentration ([Chl-a] are the most consistent predictors of OCss. This relationship, combined with the published aerosol size dependence of OCss, resulted in a new parameterization for the organic carbon fraction of sea spray. Global marine primary organic emission is investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-a], and modeled 10 m winds. Analysis of model simulations show that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.1 to 5.3 Tg C yr−1. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere.

  1. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight

    Science.gov (United States)

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey. Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  2. A new approach to very short term wind speed prediction using k-nearest neighbor classification

    International Nuclear Information System (INIS)

    Highlights: ► Wind speed parameter was predicted in an n-tupled inputs using k-NN classification. ► The effects of input parameters, nearest neighbors and distance metrics were analyzed. ► Many useful and reasonable inferences were uncovered using the developed model. - Abstract: Wind energy is an inexhaustible energy source and wind power production has been growing rapidly in recent years. However, wind power has a non-schedulable nature due to wind speed variations. Hence, wind speed prediction is an indispensable requirement for power system operators. This paper predicts wind speed parameter in an n-tupled inputs using k-nearest neighbor (k-NN) classification and analyzes the effects of input parameters, nearest neighbors and distance metrics on wind speed prediction. The k-NN classification model was developed using the object oriented programming techniques and includes Manhattan and Minkowski distance metrics except from Euclidean distance metric on the contrary of literature. The k-NN classification model which uses wind direction, air temperature, atmospheric pressure and relative humidity parameters in a 4-tupled space achieved the best wind speed prediction for k = 5 in the Manhattan distance metric. Differently, the k-NN classification model which uses wind direction, air temperature and atmospheric pressure parameters in a 3-tupled inputs gave the worst wind speed prediction for k = 1 in the Minkowski distance metric

  3. An appraisal of wind speed distribution prediction by soft computing methodologies: A comparative study

    International Nuclear Information System (INIS)

    Highlights: • Probabilistic distribution functions of wind speed. • Two parameter Weibull probability distribution. • To build an effective prediction model of distribution of wind speed. • Support vector regression application as probability function for wind speed. - Abstract: The probabilistic distribution of wind speed is among the more significant wind characteristics in examining wind energy potential and the performance of wind energy conversion systems. When the wind speed probability distribution is known, the wind energy distribution can be easily obtained. Therefore, the probability distribution of wind speed is a very important piece of information required in assessing wind energy potential. For this reason, a large number of studies have been established concerning the use of a variety of probability density functions to describe wind speed frequency distributions. Although the two-parameter Weibull distribution comprises a widely used and accepted method, solving the function is very challenging. In this study, the polynomial and radial basis functions (RBF) are applied as the kernel function of support vector regression (SVR) to estimate two parameters of the Weibull distribution function according to previously established analytical methods. Rather than minimizing the observed training error, SVRpoly and SVRrbf attempt to minimize the generalization error bound, so as to achieve generalized performance. According to the experimental results, enhanced predictive accuracy and capability of generalization can be achieved using the SVR approach compared to other soft computing methodologies

  4. Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting

    DEFF Research Database (Denmark)

    Gallego, Cristobal; Pinson, Pierre; Madsen, Henrik; Costa, A.; Cuerva, A.

    2011-01-01

    Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these...... one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power...... transformation process can be introduced by considering the local wind speed. In both cases, conditional parametric models showed a better performance than the one achieved by the regime-switching strategy. The results attained reinforce the idea that each explanatory variable allows the modelling of different...

  5. A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting.

    Science.gov (United States)

    Ren, Ye; Suganthan, Ponnuthurai Nagaratnam; Srikanth, Narasimalu

    2016-08-01

    Wind energy is a clean and an abundant renewable energy source. Accurate wind speed forecasting is essential for power dispatch planning, unit commitment decision, maintenance scheduling, and regulation. However, wind is intermittent and wind speed is difficult to predict. This brief proposes a novel wind speed forecasting method by integrating empirical mode decomposition (EMD) and support vector regression (SVR) methods. The EMD is used to decompose the wind speed time series into several intrinsic mode functions (IMFs) and a residue. Subsequently, a vector combining one historical data from each IMF and the residue is generated to train the SVR. The proposed EMD-SVR model is evaluated with a wind speed data set. The proposed EMD-SVR model outperforms several recently reported methods with respect to accuracy or computational complexity. PMID:25222957

  6. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise the...... the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on...... the scatter in the power curve. A power curve defined in terms of this equivalent wind speed would be less dependant on the shear than the standard power curve. The equivalent wind speed method was then experimentally validated with lidar measurements. Two equivalent wind speed definitions were...

  7. Flicker Mitigation by Individual Pitch Control of Variable Speed Wind Turbines With DFIG

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao; Cheng, Ming

    2014-01-01

    Due to the wind speed variation, wind shear and tower shadow effects, grid connected wind turbines are the sources of power fluctuations which may produce flicker during continuous operation. This paper presents a model of an MW-level variable-speed wind turbine with a doubly fed induction...... generatorto investigate the flicker emission and mitigation issues. An individual pitch control (IPC) strategy is proposed to reduce the flicker emission at different wind speed conditions. The IPC scheme is proposed and the individual pitch controller is designed according to the generator active power and...... the azimuth angle of the wind turbine. The simulations are performed on the NREL (National Renewable Energy Laboratory) 1.5-MW upwind reference wind turbine model. Simulation results show that damping the generator active power by IPC is an effective means for flicker mitigation of variable speed wind...

  8. Load Mitigation and Optimal Power Capture for Variable Speed Wind Turbine in Region 2

    OpenAIRE

    Saravanakumar Rajendran; Debashisha Jena

    2015-01-01

    This paper proposes the two nonlinear controllers for variable speed wind turbine (VSWT) operating at below rated wind speed. The objective of the controller is to maximize the energy capture from the wind with reduced oscillation on the drive train. The conventional controllers such as aerodynamic torque feedforward (ATF) and indirect speed control (ISC) are adapted initially, which introduce more power loss, and the dynamic aspects of WT are not considered. In order to overcome the above dr...

  9. Mistral and Tramontane wind speed and wind direction patterns in regional climate simulations

    Science.gov (United States)

    Obermann, Anika; Bastin, Sophie; Belamari, Sophie; Conte, Dario; Gaertner, Miguel Angel; Li, Laurent; Ahrens, Bodo

    2016-03-01

    The Mistral and Tramontane are important wind phenomena that occur over southern France and the northwestern Mediterranean Sea. Both winds travel through constricting valleys before flowing out towards the Mediterranean Sea. The Mistral and Tramontane are thus interesting phenomena, and represent an opportunity to study channeling effects, as well as the interactions between the atmosphere and land/ocean surfaces. This study investigates Mistral and Tramontane simulations using five regional climate models with grid spacing of about 50 km and smaller. All simulations are driven by ERA-Interim reanalysis data. Spatial patterns of surface wind, as well as wind development and error propagation along the wind tracks from inland France to offshore during Mistral and Tramontane events, are presented and discussed. To disentangle the results from large-scale error sources in Mistral and Tramontane simulations, only days with well simulated large-scale sea level pressure field patterns are evaluated. Comparisons with the observations show that the large-scale pressure patterns are well simulated by the considered models, but the orographic modifications to the wind systems are not well simulated by the coarse-grid simulations (with a grid spacing of about 50 km), and are reproduced slightly better by the higher resolution simulations. On days with Mistral and/or Tramontane events, most simulations underestimate (by 13 % on average) the wind speed over the Mediterranean Sea. This effect is strongest at the lateral borders of the main flow—the flow width is underestimated. All simulations of this study show a clockwise wind direction bias over the sea during Mistral and Tramontane events. Simulations with smaller grid spacing show smaller biases than their coarse-grid counterparts.

  10. USING ARTIFICIAL NEURAL NETWORKS FOR FORCASTING WIND SPEED CHANGES IN THE CITY OF KERMAN

    OpenAIRE

    NEZHAD, Hossein Soltani; ZADEH, Alimorad Khajeh; DEH DIVAN, Samira Soleimani

    2015-01-01

    Abstract. Nowadays, taking advantage of renewable energies has increased in order to produce electric energy. Wind energy is one of renewable energies which has been the center of attention in industrial communities. Correct windspeed forecast has a considerable number of applications in military and civilian affairs for air traffic control, missile , and ship navigation .Furthermore, forecasting wind-speed changes has also become important due to controlling appropriate reactions in wind t...

  11. A preliminary assessment of the sea surface wind speed production of HY-2 scanning microwave radiometer

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaoqi; ZHU Jianhua; LIN Mingsen; ZHAO Yili; WANG He; CHEN Chuntao; PENG Hailong; ZHANG Youguang

    2014-01-01

    A scanning microwave radiometer (RM) was launched on August 16, 2011, on board HY-2 satellite. The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily validated using in-situ measurements and WindSat observations, respectively, from January to June 2012. The wind speed root-mean-square (RMS) difference of the comparisons with in-situ data is 1.89 m/s for the measurements of NDBC and 1.72 m/s for the recent four-month data measured by PY30-1 oil platform, respectively. On a global scale, the wind speeds of HY-2 RM are compared with the sea surface wind speeds derived from WindSat, the RMS difference of 1.85 m/s for HY-2 RM collocated observations data set is calculated in the same period as above. With analyzing the global map of a mean difference between HY-2 RM and WindSat, it appears that the bias of the sea surface wind speed is obviously higher in the inshore regions. In the open sea, there is a relatively higher positive bias in the mid-latitude regions due to the overestimation of wind speed observations, while the wind speeds are underestimated in the Southern Ocean by HY-2 RM relative to WindSat observations.

  12. Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Genesis Partners LP

    2010-08-01

    This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

  13. The long-term trend of the sea surface wind speed and the wave height (wind wave, swell, mixed wave) in global ocean during the last 44 a

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chongwei; ZHOU Lin; HUANG Chaofan; SHI Yinglong; LI Jiaxun; LI Jing

    2013-01-01

    Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da-ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in the global ocean at grid point 1.5◦×1.5◦during the last 44 a is analyzed. It is discovered that a ma-jority of global ocean swell wave height exhibits a significant linear increasing trend (2-8 cm/decade), the distribution of annual linear trend of the significant wave height (SWH) has good consistency with that of the swell wave height. The sea surface wind speed shows an annually linear increasing trend mainly con-centrated in the most waters of Southern Hemisphere westerlies, high latitude of the North Pacific, Indian Ocean north of 30◦S, the waters near the western equatorial Pacific and low latitudes of the Atlantic waters, and the annually linear decreasing mainly in central and eastern equator of the Pacific, Juan. Fernandez Archipelago, the waters near South Georgia Island in the Atlantic waters. The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed. Another find is that the swell is dominant in the mixed wave, the swell index in the central ocean is generally greater than that in the offshore, and the swell index in the eastern ocean coast is greater than that in the western ocean inshore, and in year-round hemisphere westerlies the swell index is relatively low.

  14. Wind River Watershed restoration: 1999 annual report; ANNUAL

    International Nuclear Information System (INIS)

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey-Columbia River Research Lab (USGS-CRRL), and WA Department of Fish and Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination-Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring-Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment-Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration-Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  15. A conceptual framework for evaluating variable speed generator options for wind energy applications

    Science.gov (United States)

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.

    1995-01-01

    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  16. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    OpenAIRE

    Rajesh Karki; Dinesh Dhungana; Roy Billinton

    2013-01-01

    Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant researc...

  17. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  18. Intelligent control for large-scale variable speed variable pitch wind turbines

    Institute of Scientific and Technical Information of China (English)

    Xinfang ZHANG; Daping XU; Yibing LIU

    2004-01-01

    Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances.Automatic control is crucial for the efficiency and reliability of wind turbines.On the basis of simplified and proper model of variable speed variable pitch wind turbines,the effective wind speed is estimated using extended Kalman filter.Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other.At below-rated wind speed,the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture.At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power.The simulation shows the effectiveness of the intelligent control.

  19. Changes in Surface Wind Speed over North America from CMIP5 Model Projections and Implications for Wind Energy

    Directory of Open Access Journals (Sweden)

    Sujay Kulkarni

    2014-01-01

    Full Text Available The centennial trends in the surface wind speed over North America are deduced from global climate model simulations in the Climate Model Intercomparison Project—Phase 5 (CMIP5 archive. Using the 21st century simulations under the RCP 8.5 scenario of greenhouse gas emissions, 5–10 percent increases per century in the 10 m wind speed are found over Central and East-Central United States, the Californian Coast, and the South and East Coasts of the USA in winter. In summer, climate models projected decreases in the wind speed ranging from 5 to 10 percent per century over the same coastal regions. These projected changes in the surface wind speed are moderate and imply that the current estimate of wind power potential for North America based on present-day climatology will not be significantly changed by the greenhouse gas forcing in the coming decades.

  20. The distribution of solar wind speeds during solar minimum: calibration for numerical solar wind modeling constraints on the source of the slow solar wind

    OpenAIRE

    McGregor, S L; Hughes, W. J.; Arge, C. N.; Owens, M. J.; Odstrcil, D.

    2011-01-01

    It took the solar polar passage of Ulysses in the early 1990s to establish the global structure of the solar wind speed during solar minimum. However, it remains unclear if the solar wind is composed of two distinct populations of solar wind from different sources (e.g., closed loops which open up to produce the slow solar wind) or if the fast and slow solar wind rely on the superradial expansion of the magnetic field to account for the observed solar wind speed variation. We investigate the ...

  1. Chandrayaan-1 observations of backscattered solar wind protons from the lunar regolith: Dependence on the solar wind speed

    Science.gov (United States)

    Lue, Charles; Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Bhardwaj, Anil; Wurz, Peter

    2014-05-01

    We study the backscattering of solar wind protons from the lunar regolith using the Solar Wind Monitor of the Sub-keV Atom Reflecting Analyzer on Chandrayaan-1. Our study focuses on the component of the backscattered particles that leaves the regolith with a positive charge. We find that the fraction of the incident solar wind protons that backscatter as protons, i.e., the proton-backscattering efficiency, has an exponential dependence on the solar wind speed that varies from ~0.01% to ~1% for solar wind speeds of 250 km/s to 550 km/s. We also study the speed distribution of the backscattered protons in the fast (~550 km/s) solar wind case and find both a peak speed at ~80% of the solar wind speed and a spread of ~85 km/s. The observed flux variations and speed distribution of the backscattered protons can be explained by a speed-dependent charge state of the backscattered particles.

  2. A study of single multiplicative neuron model with nonlinear filters for hourly wind speed prediction

    International Nuclear Information System (INIS)

    Wind speed prediction is one important methods to guarantee the wind energy integrated into the whole power system smoothly. However, wind power has a non–schedulable nature due to the strong stochastic nature and dynamic uncertainty nature of wind speed. Therefore, wind speed prediction is an indispensable requirement for power system operators. Two new approaches for hourly wind speed prediction are developed in this study by integrating the single multiplicative neuron model and the iterated nonlinear filters for updating the wind speed sequence accurately. In the presented methods, a nonlinear state–space model is first formed based on the single multiplicative neuron model and then the iterated nonlinear filters are employed to perform dynamic state estimation on wind speed sequence with stochastic uncertainty. The suggested approaches are demonstrated using three cases wind speed data and are compared with autoregressive moving average, artificial neural network, kernel ridge regression based residual active learning and single multiplicative neuron model methods. Three types of prediction errors, mean absolute error improvement ratio and running time are employed for different models’ performance comparison. Comparison results from Tables 1–3 indicate that the presented strategies have much better performance for hourly wind speed prediction than other technologies. - Highlights: • Developed two novel hybrid modeling methods for hourly wind speed prediction. • Uncertainty and fluctuations of wind speed can be better explained by novel methods. • Proposed strategies have online adaptive learning ability. • Proposed approaches have shown better performance compared with existed approaches. • Comparison and analysis of two proposed novel models for three cases are provided

  3. CFD based design and modelling of wind fence to mitigate high-speed wind loading on a modular data center

    Science.gov (United States)

    Gorrepati, Devi Prasad

    A Modular Data Center (MDC) is a portable method of deploying a data center's capacity. As an alternative to the traditional data center, an MDC can be placed anywhere data capacity is required. The purpose of this study is to reduce the damage or loss of performance caused to the data centers that use free cooling, by mitigating high-speed winds. The Modular Data centers which use free cooling and that are located in open regions are subjected to various environmental risks such as very high-speed winds. As this wind blows over these data centers, the pressure difference generated within and outside the enclosure can have a drastic effect on the free cooling. Therefore, by using a wind fence which basically acts as a barrier to the upstream wind and reduces the mean velocity of air downstream of the wind fence, we reduce the pressure difference created and also the wind induced loading on the objects situated behind the fence. Although wind fences are used in many agricultural and farming practices, their usage pertaining to MDCs is very limited. The challenge is to reduce wind speed from 100 mph to 10 mph. This has been achieved by iteratively designing and analyzing a wind fence using CFD simulations to come up with a few wind fence options that have defined properties such as height, perforation and location (distance from the inlet of MDC) of the wind fence.

  4. Numerical study on the restriction speed of train passing curved rail in cross wind

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The results of numerical investigations of aerodynamic forces and moment coefficients of flow passing a simplified train geometry under different wind speeds are summarized. To compute numerically the different coefficients, the three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations, combined with the k-ε turbulence model, were solved using finite volume technique. The pres-sure-velocity fields were coupled using the SIMPLE algorithm. At each iteration the pressure correction was obtained by solving a velocity divergence-derived Poisson-like equation. With the computed aerodynamic forces, the formula of the restriction speed at which the train passed curved rail in cross wind was deduced to analyse the influences of aerodynamic forces on the restriction speed. Results of numerical investigations showed that aerodynamic lift and overturn moment increased more and more rapidly with train speed and wind speed. The enhancement trends showed nonlinear phenomena and enhanced risk in the course of train movement. When the train travels at a high speed and encounters a huge cross wind, the influence involved by nonlinear risk increment will extremely impair safety of train. The following conclusion can also be drawn: The effect of aerodynamic lift makes restriction speed reduce, however, the influences of aerodynamic drag to the limit train speed rest on the direction of wind flow. When the wind blows from inner rail to outer rail, aerodynamic forces shall reduce the restriction speed, by contraries, when the wind blows from outer rail to inner rail, aerodynamic forces shall increase the restriction speed.

  5. Numerical study on the restriction speed of train passing curved rail in cross wind

    Institute of Scientific and Technical Information of China (English)

    CHEN RuiLin; ZENG QingYuan; ZHONG XinGu; XIANG Jun; GUO XiaoGang; ZHAO Gang

    2009-01-01

    The results of numerical investigations of aerodynamic forces and moment coefficients of flow passing a simplified train geometry under different wind speeds are summarized. To compute numerically the different coefficients, the three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations,combined with the k-ε turbulence model, were solved using finite volume technique. The pressure-velocity fields were coupled using the SIMPLE algorithm. At each iteration the pressure correction was obtained by solving a velocity divergence-derived Poisson-Iike equation. With the computed aerodynamic forces, the formula of the restriction speed at which the train passed curved rail in cross wind was deduced to analyse the influences of aerodynamic forces on the restriction speed. Results of numerical investigations showed that aerodynamic lift and overturn moment increased more and more rapidly with train speed and wind speed. The enhancement trends showed nonlinear phenomena and enhanced risk in the course of train movement. When the train travels at a high speed and encounters a huge cross wind, the influence involved by nonlinear risk increment will extremely impair safety of train.The following conclusion can also he drawn: The effect of aerodynamic lift makes restriction speed reduce, however, the influences of aerodynamic drag to the limit train speed rest on the direction of wind flow. When the wind blows from inner rail to outer rail, aerodynamic forces shall reduce the restriction speed, by contraries, when the wind blows from outer rail to inner rail, aerodynamic forces shall increase the restriction speed.

  6. Impact of Wind Speed Correlation on the Operation of Energy Storage Systems

    OpenAIRE

    Davril Mathieu; Xu Xiaoyuan; Yan Zheng

    2016-01-01

    Renewable resources technologies such as wind power currently demonstrate a worldwide popularity thanks to their environmental friendly status and their economic potential. The variability of the wind power output implies the use of practical solutions such as energy storage systems in order to retain the power system stability and reliability. The wind geographical correlation between different wind farms also impacts the system reliability. This paper studies the effects of the wind speed c...

  7. Power control design for variable-speed wind turbines

    OpenAIRE

    Francesc Pozo; Mauricio Zapateiro; Ningsu Luo; Leonardo Acho; Yolanda Vidal

    2014-01-01

    This important book presents a selection of new research on wind turbine technology, including aerodynamics, generators and gear systems, towers and foundations, control systems, and environmental issues. This book introduces some of the basic principle of wind turbine design. The different chapters discuss ways to analyze wind turbine performance, approaches for wind turbine improvement, fault detection in wind turbines, and how to mediate the adverse effects of wind turbine use. The boo...

  8. Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Akdag, S.A. [Istanbul Technical University, Energy Institute, Ayazaga Campus, Maslak, Istanbul (Turkey); Bagiorgas, H.S.; Mihalakakou, G. [Department of Environmental and Natural Resources Management, University of Ioannina, 2 G. Sepheri Str., 30100 Agrinio (Greece)

    2010-08-15

    The statistical characteristics of wind speed data recorded at nine buoys, located in Ionian and Aegean Sea (Eastern Mediterranean) are analyzed in this paper, in order to present a more accurate method for estimation of wind speed characteristics, according to the suitability of the probability distribution functions (pdf). This article has focussed on wind regimes that present nearly zero percentages of null wind speeds. The selected distributions for examination are the typical two-parameter Weibull wind speed distribution (W-pdf) and the two-component mixture Weibull distribution (WW-pdf), involving five parameters (two shape parameters, two scale parameters, and one proportionality parameter). Suitable software, based on the maximum likelihood method, is used in order to estimate the aforementioned two-parameters of the typical W-pdf and the five parameters of the mixed WW-pdf. The suitability of the aforementioned distributions is judged from the coefficient of determination (R{sup 2}) and the fit standard error (RMSE) tests, which had been carried out between each one of the theoretical distributions and the corresponding experimental cumulative frequencies of the nine selected sites. From these tests it is clear that, in most cases (six experimental stations - having either unimodal or bimodal frequency distributions), mixed-Weibull distribution provides the highest degree of fit. In the other three cases, the mixing weight p of the two-component mixed Weibull density function equals to zero (p = 0), so the mixed-Weibull distribution is been transformed to the typical Simple-Weibull distribution. Hence, the general conclusion is that the aforementioned mixture of two Weibull distributions is more suitable for the description of such wind conditions and could offer less relative errors in determining the annual mean wind power density. (author)

  9. Quantification of rain gauge measurement undercatch and wind speed correction

    Science.gov (United States)

    Pollock, Michael; Quinn, Paul; Dutton, Mark; Wilkinson, Mark

    2014-05-01

    Hydrological processes are adversely affected by systematic rain gauge inaccuracy due to wind induced undercatching. The implications of this are discussed and addressed. Despite evidence of the undercatch problem being cited in the past and the difficulty in solving such a complex problem; it has become an inconvenient truth to hydrologists that major inaccuracies in rainfall measurement exist. A two year long experiment using new equipment and improved data logging and telemetery techniques enriches this formative work to redress the wilful neglect with which accurate rainfall measurement has been treated in recent decades. Results from this work suggest that the annual systematic undercatch can be in the order of 20 percent in the UK. During specific periods (measured at high temporal resolution), this can rise to as high as 50 percent for a single wind impacted event. As one organisation, responsible for the environment in the UK, moves towards using fewer instruments (15 percent fewer in the next year), it is scarcely possible to overstate the importance in solving this problem. It had been hoped that new equipment, such as acoustic distrometer and weighing gauge technologies, would be able to reduce the magnitude of the bias. However, through data gathered in the 2 year experiment and through secondary sources from the 1970s and 1980s, it is demonstrated that this is not the case and that the same problems with undercatching remain now as they did then. We further postulate that wider, denser networks of inexpensive telemetered equipment are now possible but they must still address the undercatch issue. There is little merit in pointing out an age old problem if no solution is put forward to fix it. The aforementioned experiment has furnished new ideas and further work has been commissioned to address this problem. This will be achieved via the medium of a Knowledge Transfer Partnership between Newcastle University and an innovative equipment manufacturer

  10. Investigation of wind speed cooling effect on PV panels in windy locations

    DEFF Research Database (Denmark)

    Gökmen, Nuri; Hu, Weihao; Hou, Peng;

    2016-01-01

    taking into account generally underestimated wind speed cooling effect. Firstly, optimum tilt angle variations have been investigated and secondly yearly energy comparisons are made for cases with and without considering wind speed. A more accurate mathematical model is given to estimate yearly energy...

  11. An Experimental Investigation of FNN Model for Wind Speed Forecasting Using EEMD and CS

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2015-01-01

    Full Text Available With depletion of traditional energy and increasing environmental problems, wind energy, as an alternative renewable energy, has drawn more and more attention internationally. Meanwhile, wind is plentiful, clean, and environmentally friendly; moreover, its speed is a very important piece of information needed in the operations and planning of the wind power system. Therefore, choosing an effective forecasting model with good performance plays a quite significant role in wind power system. A hybrid CS-EEMD-FNN model is firstly proposed in this paper for multistep ahead prediction of wind speed, in which EEMD is employed as a data-cleaning method that aims to remove the high frequency noise embedded in the wind speed series. CS optimization algorithm is used to select the best parameters in the FNN model. In order to evaluate the effectiveness and performance of the proposed hybrid model, three other short-term wind speed forecasting models, namely, FNN model, EEMD-FNN model, and CS-FNN model, are carried out to forecast wind speed using data measured at a typical site in Shandong wind farm, China, over three seasons in 2011. Experimental results demonstrate that the developed hybrid CS-EEMD-FNN model outperforms other models with more accuracy, which is suitable to wind speed forecasting in this area.

  12. Hour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2013-11-01

    Full Text Available Operation of wind power generation in a large farm is quite challenging in a smart grid owing to uncertain weather conditions. Consequently, operators must accurately forecast wind speed/power in the dispatch center to carry out unit commitment, real power scheduling and economic dispatch. This work presents a novel method based on the integration of empirical mode decomposition (EMD with artificial neural networks (ANN to forecast the short-term (1 h ahead wind speed/power. First, significant parameters for training the ANN are identified using the correlation coefficients. These significant parameters serve as inputs of the ANN. Owing to the volatile and intermittent wind speed/power, the historical time series of wind speed/power is decomposed into several intrinsic mode functions (IMFs and a residual function through EMD. Each IMF becomes less volatile and therefore increases the accuracy of the neural network. The final forecasting results are achieved by aggregating all individual forecasting results from all IMFs and their corresponding residual functions. Real data related to the wind speed and wind power measured at a wind-turbine generator in Taiwan are used for simulation. The wind speed forecasting and wind power forecasting for the four seasons are studied. Comparative studies between the proposed method and traditional methods (i.e., artificial neural network without EMD, autoregressive integrated moving average (ARIMA, and persistence method are also introduced.

  13. Application of Bayesian model averaging in modeling long-term wind speed distributions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gong; Shi, Jing [Department of Industrial and Manufacturing Engineering, North Dakota State University, Dept 2485, P.O. Box 6050, Fargo, ND 58108 (United States)

    2010-06-15

    Accurate estimation of wind speed distribution is critical to the assessment of wind energy potential, the site selection of wind farms, and the operations management of wind power conversion systems. This paper proposes a new approach for deriving more reliable and robust wind speed distributions than conventional statistical modeling approach. This approach combines Bayesian model averaging (BMA) and Markov Chain Monte Carlo (MCMC) sampling methods. The derived BMA probability density function (PDF) of the wind speed is an average of the model PDFs included in the model space weighted by their posterior probabilities over the sample data. MCMC method provides an effective way for numerically computing marginal likelihoods, which are essential for obtaining the posterior model probabilities. The approach is applied to multiple sites with high wind power potential in North Dakota. The wind speed data at these sites are the mean hourly wind speeds collected over two years. It is demonstrated that indeed none of the conventional statistical models such as Weibull distribution are universally plausible for all the sites. However, the BMA approach can provide comparative reliability and robustness in describing the long-term wind speed distributions for all sites, while making the traditional model comparison based on goodness-of-fit statistics unnecessary. (author)

  14. MPPT Algorithm for Small Wind Systems based on Speed Control Strategy

    Directory of Open Access Journals (Sweden)

    Ciprian VLAD

    2008-07-01

    Full Text Available This paper presents experimental results of an autonomous low-power wind energy conversion system (WECS, based on a permanent-magnet synchronous generator (PMSG connected directly to the wind turbine. The purpose of this paper is to present an improving method for MPPT (Maximum Power Point Tracking algorithm based shaft rotational speed optimal control. The proposed method concern the variable delay compensation between measured wind speed from anemometer and wind shaft rotational speed proportional signal. Experimental results aiming to prove the efficiency of the proposed method are presented.

  15. Relationship between wind speed and aerosol optical depth over remote ocean

    Directory of Open Access Journals (Sweden)

    R. G. Grainger

    2009-11-01

    Full Text Available The effect of wind speed on aerosol optical depth (AOD at 550 nm over remote ocean regions is investigated. Remote ocean regions are defined by the combination of AOD from satellite observation and wind direction from ECMWF. According to our definition, many oceanic regions cannot be taken as remote ocean regions due to long-range transportation of aerosols from continents. Highly correlated linear relationships are found in remote ocean regions with a wind speed range of 4–20 ms−1. The enhancement of AOD at high wind speed is explained as the increase of sea salt aerosol production.

  16. Investigation of measuring wind speed using anemometers on a measuring mast

    Energy Technology Data Exchange (ETDEWEB)

    Gjerding, J.B.; Dyre Jespersen, K.; Langhans, F.

    1998-01-01

    The report describes a project carried out by Tripod Wind Energy from September 1996 to September 1997 comprising wind measurements and data analyses. The aim of the project was to investigate the possible influence of the anemometer position on the measuring mast on the measured wind speed. The investigation is of special interest in connection with wind turbines, where the result from wind speed measurements forms the basis of the majority of economic calculations. The report therefore in particular describes the conditions in connection with the measuring wind turbine power curves. The conclusion of the work is that even small variations of the wind speed measuring set up have a significant effect on the measured wind speed. An influence which in turn has an impact of the calculated energy output of a wind turbine and/or wind farm. Varying measurements set-ups are acceptable within the frames of existing and acknowledged codes and recommendations. The work indicates that the frames are too wide leading to ambiguous wind speed measurements. In order to eliminate this ambiguousness it is recommended that it is carefully considered to revise the mentioned documents, particularly with respect to specification of anemometer positioning. The work presented had been funded by The Danish Energy Agency. (au)

  17. Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Blaabjerg, Frede; Boldea, Ion

    2004-01-01

    the interaction between a wind turbine and the power system. The model is intended to simulate the behaviour of the wind turbine using induction generators both during normal operation. Sample simulation results for two induction generators (2/0.5 MW) validate the fundamental issues.......To optimise the power produced in a wind turbine, the speed of the turbine should vary with the wind speed. A simple control method is proposed that will allow an induction machine to run a turbine at its maximum power coefficient. Various types of power control strategies have been suggested for...... application in variable speed wind turbines. The usual strategy is to control the power or the torque acting on the wind turbine shafts. This paper presents an alternative control strategy, where the rotational speed is the controlled variable. The paper describes a model, which is being developed to simulate...

  18. Dependence of US hurricane economic loss on maximum wind speed and storm size

    International Nuclear Information System (INIS)

    Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependences of normalized US hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the US from 1988 through 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation with maximum wind speed (V max) and size (R), L = 10cV maxaR b, with c determining an overall scaling factor and the exponents a and b generally ranging between 4–12 and 2–4 respectively. Both a and b tend to increase with stronger wind speed. Hurricane Sandy’s size was about three times of the average size of all hurricanes analyzed. Based on the bi-variate regression model that explains the most variance for hurricanes, Hurricane Sandy’s loss would be approximately 20 times smaller if its size were of the average size with maximum wind speed unchanged. It is important to revise conventional empirical hurricane loss models that are only dependent on maximum wind speed to include both maximum wind speed and size as predictors. (letters)

  19. The Control System Simulation of Variable-Speed Constant-Frequency Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    窦金延; 曹娜

    2010-01-01

    <正>In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control strategy.Present the whole dynamic control model of variable-speed wind generator system in MATLAB/ Simulink,and the simulation results confirm the validity and effectiveness of the proposed control strategy.

  20. Voltage sag influence on fatigue life of the drivetrain of fixed speed wind turbines

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Santos-Martin, David; Jensen, Henrik Myhre

    2011-01-01

    Occurrence of voltage sags due to electrical grid faults and other network disturbances generate transients of the generator electromagnetic torque which result in significant high stresses and noticeable vibrations for the wind turbine mechanical system and may also have a detrimental effect on...... the fatigue life of important drivetrain components. The high penetration of wind energy in the electrical grids demands new requirements for the operation of wind energy conversion systems. Although fixed speed wind turbine technology is nowadays replaced by variable speed wind turbines. In some...... countries (Spain and Germany) with high wind energy penetration it is mandatory or under bonus to retrofit these fixed speed wind turbines and provide ride through capability. An electro-mechanical model is built to simulate the grid disturbances that easily excite the asynchronous generators poorly damped...

  1. Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation

    Energy Technology Data Exchange (ETDEWEB)

    Carta, Jose A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Ramirez, Penelope; Velazquez, Sergio [Department of Renewable Energies, Technological Institute of the Canary Islands, Pozo Izquierdo Beach s/n, 35119 Santa Lucia, Gran Canaria, Canary Islands (Spain)

    2008-10-15

    Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error {epsilon} made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R{sup 2} statistic (R{sub a}{sup 2}). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R{sub a}{sup 2} statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R{sub a}{sup 2} increases. (author)

  2. Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation

    International Nuclear Information System (INIS)

    Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error ε made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R2 statistic (Ra2). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the Ra2 statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as Ra2 increases

  3. Modeling and Control of Standalone PMSG WECS for Grid Compatibility at Varying Wind Speeds

    OpenAIRE

    Shilpa Mishra; Chatterji, S.; Shimi S.L.; Sandeep Shukla

    2014-01-01

    Wind energy is one of the most available and exploitable forms of renewable energy. Variable speed PMSG based Wind Energy Conversion System (WECS) offers many advantages compared to the fixed speed squirrel cage induction generators such as improved stator output operation at better power factor, no maintenance cost for gear box (as it is direct-driven) reduction in weight and losses, higher efficiency and ability to run at low speeds. The elimination of the gear box and brushes can enhance t...

  4. First and second order Markov chain models for synthetic generation of wind speed time series

    International Nuclear Information System (INIS)

    Hourly wind speed time series data of two meteorological stations in Malaysia have been used for stochastic generation of wind speed data using the transition matrix approach of the Markov chain process. The transition probability matrices have been formed using two different approaches: the first approach involves the use of the first order transition probability matrix of a Markov chain, and the second involves the use of a second order transition probability matrix that uses the current and preceding values to describe the next wind speed value. The algorithm to generate the wind speed time series from the transition probability matrices is described. Uniform random number generators have been used for transition between successive time states and within state wind speed values. The ability of each approach to retain the statistical properties of the generated speed is compared with the observed ones. The main statistical properties used for this purpose are mean, standard deviation, median, percentiles, Weibull distribution parameters, autocorrelations and spectral density of wind speed values. The comparison of the observed wind speed and the synthetically generated ones shows that the statistical characteristics are satisfactorily preserved

  5. RTDS-based modelling and analysis of grid-connected fixed speed wind generator system

    Energy Technology Data Exchange (ETDEWEB)

    Park, D.J.; Kim, Y.J.; Park, M.; Yu, I.K. [Changwon National Univ., Bangladesh (Korea, Republic of). Dept. of Electrical Engineering; Ali, M.H. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Electrical and Computer Engineering

    2008-07-01

    Wind power is the most attractive renewable energy source in terms of energy efficiency and cost. This paper presented an innovative real-time simulation method for a grid connected wind generator system using a real time digital simulator (RTDS) based modeling and simulation technique. A 3 MW fixed-speed wind generator system was connected to the power grid and modeled using RSCAD. The simulated wind generator system was then interfaced with the RTDS in order to carry out simulations in real time. Random wind speed variations were considered. Transient stability analysis was carried out considering the speed control mode of the pitch angle control system. The responses of the wind generator terminal voltage, real power and rotor speed were observed and analyzed. Real wind speed data extracted from an anemometer was used in this work. The validity of the developed wind generator system was confirmed through simulation results. It was concluded that fluctuations in the wind generator can be minimized by changing the blade pitch angle. Future studies will include a comparison of the performance of the pitch angle control system with other methods for stabilizing wind generators. 8 refs., 2 tabs., 14 figs.

  6. Observation of the Starting and Low Speed Behavior of Small Horizontal Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Sikandar Khan

    2014-01-01

    Full Text Available This paper describes the starting behavior of small horizontal axis wind turbines at high angles of attack and low Reynolds number. The unfavorable relative wind direction during the starting time leads to low starting torque and more idling time. Wind turbine models of sizes less than 5 meters were simulated at wind speed range of 2 m/s to 5 m/s. Wind turbines were modeled in Pro/E and based on the optimized designs given by MATLAB codes. Wind turbine models were simulated in ADAMS for improving the starting behavior. The models with high starting torques and less idling times were selected. The starting behavior was successfully improved and the optimized wind turbine models were able to produce more starting torque even at wind speeds less than 5 m/s.

  7. Impact of Wind Speed Correlation on the Operation of Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Davril Mathieu

    2016-01-01

    Full Text Available Renewable resources technologies such as wind power currently demonstrate a worldwide popularity thanks to their environmental friendly status and their economic potential. The variability of the wind power output implies the use of practical solutions such as energy storage systems in order to retain the power system stability and reliability. The wind geographical correlation between different wind farms also impacts the system reliability. This paper studies the effects of the wind speed correlation level on the performance of the associated energy storage system (ESS. Wind correlated model using Weibull probability distribution and Nataf transformation is presented. Energy storage system model and energy management algorithm are developed. Both are applied to a modified IEEE-RTS power generation and load model. The case simulation results indicate that the wind speed correlation level between two wind farms impacts the power distribution inside energy storages and that it needs to be considered in order not to overestimate ESS benefits on the system.

  8. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight

    OpenAIRE

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind sp...

  9. A review of wind speed probability distributions used in wind energy analysis. Case studies in the Canary Islands

    Energy Technology Data Exchange (ETDEWEB)

    Carta, J.A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Gran Canaria, Canary Islands (Spain); Ramirez, P. [Department of Renewable Energies, Technological Institute of the Canary Islands, Pozo Izquierdo Beach s/n, 35119 Santa Lucia, Gran Canaria, Canary Islands (Spain); Velazquez, S. [Department of Electronics and Automatics Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Gran Canaria, Canary Islands (Spain)

    2009-06-15

    The probability density function (PDF) of wind speed is important in numerous wind energy applications. A large number of studies have been published in scientific literature related to renewable energies that propose the use of a variety of PDFs to describe wind speed frequency distributions. In this paper a review of these PDFs is carried out. The flexibility and usefulness of the PDFs in the description of different wind regimes (high frequencies of null winds, unimodal, bimodal, bitangential regimes, etc.) is analysed for a wide collection of models. Likewise, the methods that have been used to estimate the parameters on which these models depend are reviewed and the degree of complexity of the estimation is analysed in function of the model selected: these are the method of moments (MM), the maximum likelihood method (MLM) and the least squares method (LSM). In addition, a review is conducted of the statistical tests employed to see whether a sample of wind data comes from a population with a particular probability distribution. With the purpose of cataloguing the various PDFs, a comparison is made between them and the two parameter Weibull distribution (W.pdf), which has been the most widely used and accepted distribution in the specialised literature on wind energy and other renewable energy sources. This comparison is based on: (a) an analysis of the degree of fit of the continuous cumulative distribution functions (CDFs) for wind speed to the cumulative relative frequency histograms of hourly mean wind speeds recorded at weather stations located in the Canarian Archipelago; (b) an analysis of the degree of fit of the CDFs for wind power density to the cumulative relative frequency histograms of the cube of hourly mean wind speeds recorded at the aforementioned weather stations. The suitability of the distributions is judged from the coefficient of determination R{sup 2}. Amongst the various conclusions obtained, it can be stated that the W.pdf presents a

  10. On the relationship of radar backscatter to wind speed and fetch. [ocean wave generation

    Science.gov (United States)

    Ross, D.; Jones, W. L.

    1978-01-01

    The physics of the interaction of electromagnetic waves with the ocean surface has been an active area of research for a number of years. This paper contains the results of satellite and aircraft experiments to investigate the ability of active microwave radars to infer surface wind speeds remotely. Data obtained from the recent National Aeronautics and Space Administration (NASA) Skylab experiment are compared with surface wind speeds measured by low-flying aircraft and ships-of-opportunity and found to give useful estimates of the ocean wind field. Also investigated was the influence of varying wave height on radar measurements of wind speed by measuring the backscattering cross-section for constant wind speed but variable wave conditions. It is found that this effect is of little importance.

  11. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    DEFF Research Database (Denmark)

    Hansen, A. D.; Soerensen, P.; Iov, Florin; Blaabjerg, Frede

    2004-01-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind...... turbine. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The variable speed/variable pitch wind turbine with doubly......-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions....

  12. A global study of temporal and spatial variation of SWH and wind speed and their correlation

    Institute of Scientific and Technical Information of China (English)

    HAN Shuzong; ZHANG Huirong; ZHENG Yunxia

    2014-01-01

    The climatology of significant wave height (SWH) and sea surface wind speed are matters of concern in the fields of both meteorology and oceanography because they are very important parameters for planning offshore structures and ship routings. The TOPEX/Poseidon altimeter, which collected data for about 13 years from September 1992 to October 2005, has measured SWHs and surface wind speeds over most of the world’s oceans. In this paper, a study of the global spatiotemporal distributions and variations of SWH and sea surface wind speed was conducted using the TOPEX/Poseidon altimeter data set. The range and char-acteristics of the variations were analyzed quantitatively for the Pacific, Atlantic, and Indian oceans. Areas of rough waves and strong sea surface winds were localized precisely, and the correlation between SWH and sea surface wind speed analyzed.

  13. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Anca D.; Soerensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Iov, Florin; Blaabjerg, Frede [Aalborg Univ. (Denmark). Inst. of Energy Technology

    2004-07-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind turbine. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions.

  14. De-trending of wind speed variance based on first-order and second-order statistical moments only

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2014-01-01

    The lack of efficient methods for de-trending of wind speed resource data may lead to erroneous wind turbine fatigue and ultimate load predictions. The present paper presents two models, which quantify the effect of an assumed linear trend on wind speed standard deviations as based on available...... statistical data only. The first model is a pure time series analysis approach, which quantifies the effect of non-stationary characteristics of ensemble mean wind speeds on the estimated wind speed standard deviations as based on mean wind speed statistics only. This model is applicable to statistics of...

  15. Control of variable speed wind turbine with doubly-fed induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Iov, F.; Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology, Aalborg (Denmark)

    2004-07-01

    draIn this paper, a Control method suitable for a variable speed grid connected pitch-controlled wind turbine with doubly-fed induction generator (DFIG) is developed. The targets of the Control system are: 1) to Control the power drawn from the wind turbine in order to track the wind turbine optimum operation point 2) to limit the power in case of high wind speeds and 3) to Control the reactive power interchanged between the wind turbine generator and the grid. The considered configuration of DFIG is an induction generator with a wound rotor connected to the grid through a back-to-back power converter and a stator directly connected to the grid. The paper presents the overall Control system of the variable speed DFIG wind turbine, with focus on the Control strategies and algorithms applied at each hierarchical Control level of the wind turbine. There are two Control levels: a DFIG Control level and wind turbine Control level. The DFIG Control level contains a fast Control of the power converter and of the doubly-fed induction generator and it has as goal to Control the active and reactive power of the wind turbine independently. The wind turbine Control level supervises with Control signals both the DFIG Control level and the hydraulic pitch Control system of the wind turbine. The present Control method is designed for normal continuous operations. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT, which makes possible to investigate the dynamic performance of gid-connected wind turbines as a part of realistic electrical grid models. Several significant simulation results are performed With the overall Control-implemented algorithm applied on a variable speed, variable pitch wind turbine model. (au)

  16. Dependency of U.S. Hurricane Economic Loss on Maximum Wind Speed and Storm Size

    CERN Document Server

    Zhai, Alice R

    2014-01-01

    Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependencies of normalized U.S. hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the U.S. from 1988 to 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation with maximum wind speed (Vmax) and size (R). Assuming L=10^c Vmax^a R^b, c being a scaling factor, the coefficients, a and b, generally range between 4-12 and 2-4, respectively. Both a and b tend to increase with stronger wind speed. For large losses, a weighted regression model, with...

  17. Control design for a pitch-regulated, variable speed wind turbine

    DEFF Research Database (Denmark)

    Hansen, M.H.; Hansen, Anca Daniela; Larsen, Torben J.;

    2005-01-01

    wind speed step-up over rated wind speed, which can be almost removed by changing the parameters of the frequency converter. • Responses of rotor speed, pitchangle, and power for different simulations with turbulent inflow are similar for all three controllers. Again, there seems to be an advantage of...... different, which makes a directly quantitative comparison difficult. But there are some observations of similar behaviours should be mentioned: • Very similar step responses in rotor speed, pitch angle, and powerare seen for simulations with steps in wind speed. • All controllers show a peak in power for...... tuning the parameters of the frequency converter to obtain a more constant power output. The dynamicmodelling of the power controller is an important result for the inclusion of generator dynamics in the aeroelastic modelling of wind turbines. A reduced dynamic model of the relation between generator...

  18. Reconstruction of Helio-latitudinal Structure of the Solar Wind Proton Speed and Density

    CERN Document Server

    Sokół, Justyna M; Bzowski, Maciej; Tokumaru, Munetoshi

    2015-01-01

    The modeling of the heliosphere requires continuous three-dimensional solar wind data. The in-situ out-of-ecliptic measurements are very rare, so that other methods of solar wind detection are needed. We use the remote sensing data of the solar wind speed from observations of interplanetary scintillation (IPS) to reconstruct spatial and temporal structures of the solar wind proton speed from 1985 to 2013. We developed a method of filling the data gaps in the IPS observations to obtain continuous and homogeneous solar wind speed records. We also present a method to retrieve the solar wind density from the solar wind speed, utilizing the invariance of the solar wind dynamic pressure and energy flux with latitude. To construct the synoptic maps of solar wind speed we use the decomposition into spherical harmonics of each of the Carrington rotation map. To fill the gaps in time we apply the singular spectrum analysis to the time series of the coefficients of spherical harmonics. We obtained helio-latitudinal prof...

  19. Variable speed wind turbine generator system with current controlled voltage source inverter

    International Nuclear Information System (INIS)

    highlights: → Current controlled voltage source inverter scheme for wind power application. → Low voltage ride through of wind farm. → Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  20. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  1. Neuron-Adaptive PID Based Speed Control of SCSG Wind Turbine System

    Directory of Open Access Journals (Sweden)

    Shan Zuo

    2014-01-01

    Full Text Available In searching for methods to increase the power capacity of wind power generation system, superconducting synchronous generator (SCSG has appeared to be an attractive candidate to develop large-scale wind turbine due to its high energy density and unprecedented advantages in weight and size. In this paper, a high-temperature superconducting technology based large-scale wind turbine is considered and its physical structure and characteristics are analyzed. A simple yet effective single neuron-adaptive PID control scheme with Delta learning mechanism is proposed for the speed control of SCSG based wind power system, in which the RBF neural network (NN is employed to estimate the uncertain but continuous functions. Compared with the conventional PID control method, the simulation results of the proposed approach show a better performance in tracking the wind speed and maintaining a stable tip-speed ratio, therefore, achieving the maximum wind energy utilization.

  2. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  3. Analytical calculation of the minimum wind speed required to sustain wind-blown sand on Earth and Mars

    CERN Document Server

    Kok, Jasper F

    2010-01-01

    The wind-driven hopping motion of sand grains, known as saltation, forms dunes and ripples and ejects fine dust particles into the atmosphere on both Earth and Mars. While the wind speed at which saltation is initiated, the fluid threshold, has been studied extensively, the wind speed at which it is halted, the impact threshold, has been poorly quantified for Mars conditions. We present an analytical model of the impact threshold, which we show to be in agreement with measurements and recent numerical simulations for Earth conditions. For Mars conditions, we find that the impact threshold is approximately an order of magnitude below the fluid threshold, in agreement with previous studies. Saltation on Mars can thus be sustained at wind speeds an order of magnitude less than required to initiate it, leading to the occurrence of hysteresis. These results confirm earlier simulations with a detailed numerical saltation model, and have important implications for the formation of sand dunes, ripples, and dust storm...

  4. Power limitation in variable speed wind turbines using pitch control and a mechanical torque observer

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas-Dobson, R. [Universidad de Magallanes, Punta Arenas (Chile); Asher, G.M. [Nottingham University (United Kingdom). Dept. of Electrical Engineering

    1996-12-31

    This paper addresses a variable speed wind energy conversion system which uses pitch angle control of the blades for power limitation. Three control methods are discussed to compensate the non linearities of the pitch control system. These are the well known method of gain scheduling using pitch angle feedback, a new pitch control method based on a simple and non-computationally intensive wind speed observer, and finally a fuzzy logic controller. Also, in this paper the advantages of using a torque observer for pitch control of variable speed wind turbines are extensively discussed. (author)

  5. Long-term correlations in hourly wind speed records in Pernambuco, Brazil

    Science.gov (United States)

    de Oliveira Santos, Maíra; Stosic, Tatijana; Stosic, Borko D.

    2012-02-01

    We study the statistical properties of hourly wind speed time series detected at four weather stations in the state of Pernambuco, Brazil, in the period 2008-2009. We find that the average and maximum hourly wind speeds deviate from a mutual linear relationship, and that they may be well explained individually by a Weibull distribution, however, with different shape parameter values. On the other hand, the long-term correlations of both of these observables obey the same power-law behavior, with two distinct scaling regimes. Our results agree with previous studies on wind speed series correlations in other regions of the world, which is suggestive of universal behavior.

  6. Flux-tube geometry and solar wind speed during an activity cycle

    Science.gov (United States)

    Pinto, R. F.; Brun, A. S.; Rouillard, A. P.

    2016-07-01

    Context. The solar wind speed at 1 AU shows cyclic variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal (asymptotic) wind speed in a given magnetic flux-tube is generally anti-correlated with its total expansion ratio, which motivated the definition of widely used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad hoc corrections (especially for the slow wind in the vicinities of streamer/coronal hole boundaries) and empirical fits to in situ spacecraft data. A predictive law based solely on physical principles is still missing. Aims: We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes (close to and far from streamer boundaries) using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. Methods: We use numerical magneto-hydrodynamical simulations of the corona and wind coupled to a dynamo model to determine the properties of the coronal magnetic field and of the wind velocity (as a function of time and latitude) during a whole 11-yr activity cycle. These simulations provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Results: Our study confirms that the terminal (asymptotic) speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the

  7. Accounting for the speed shear in wind turbine power performance measurement

    OpenAIRE

    Wagner, Rozenn; Courtney, Michael

    2010-01-01

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise the wind field in front of the turbine. However, with the growing size of the turbine rotors during the last years, the effect of the variations of the wind speed within the swept rotor area, and there...

  8. LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009)

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Mikkelsen, Torben; Hansen, Kasper Hjorth; Sjöholm, Mikael; Harris, Michael

    spinner of a MW-sized wind turbine, and investigate the approaching wind fields from this vantage point. Time series of wind speed measurements from the lidar with 50 Hz sampling rate were successfully obtained for approximately 60 days, during the measurement campaign lasting from April to August 2009....... In this report, information is given regarding the experimental setup and the lidar’s operation parameters. The geometrical model used for the reconstruction of the scanning pattern of the lidar is described. This model takes into account the lidar’s pointing direction, the spinner axis’s vertical...... tilt and the wind turbine’s yaw relative to the mean wind speed direction. The data analysis processes are documented. A methodology for the calculation of the yaw misalignment of the wind turbine relative to the wind direction, as a function of various averaging times, is proposed, using the lidar...

  9. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms

    International Nuclear Information System (INIS)

    Highlights: • A hybrid architecture is proposed for the wind speed forecasting. • Four algorithms are used for the wind speed multi-scale decomposition. • The extreme learning machines are employed for the wind speed forecasting. • All the proposed hybrid models can generate the accurate results. - Abstract: Realization of accurate wind speed forecasting is important to guarantee the safety of wind power utilization. In this paper, a new hybrid forecasting architecture is proposed to realize the wind speed accurate forecasting. In this architecture, four different hybrid models are presented by combining four signal decomposing algorithms (e.g., Wavelet Decomposition/Wavelet Packet Decomposition/Empirical Mode Decomposition/Fast Ensemble Empirical Mode Decomposition) and Extreme Learning Machines. The originality of the study is to investigate the promoted percentages of the Extreme Learning Machines by those mainstream signal decomposing algorithms in the multiple step wind speed forecasting. The results of two forecasting experiments indicate that: (1) the method of Extreme Learning Machines is suitable for the wind speed forecasting; (2) by utilizing the decomposing algorithms, all the proposed hybrid algorithms have better performance than the single Extreme Learning Machines; (3) in the comparisons of the decomposing algorithms in the proposed hybrid architecture, the Fast Ensemble Empirical Mode Decomposition has the best performance in the three-step forecasting results while the Wavelet Packet Decomposition has the best performance in the one and two step forecasting results. At the same time, the Wavelet Packet Decomposition and the Fast Ensemble Empirical Mode Decomposition are better than the Wavelet Decomposition and the Empirical Mode Decomposition in all the step predictions, respectively; and (4) the proposed algorithms are effective in the wind speed accurate predictions

  10. Wind speed estimation using C-band compact polarimetric SAR for wide swath imaging modes

    Science.gov (United States)

    Denbina, Michael; Collins, Michael J.

    2016-03-01

    We have investigated the use of C-band compact polarimetric synthetic aperture radar for estimation of ocean surface wind speeds. Using 1399 buoy observations collocated with Radarsat-2 scenes, compact polarimetric data was simulated for two of the Radarsat Constellation's planned wide swath imaging modes. Provided the wind direction is known or can be estimated, our results demonstrate that wind speed can be estimated from the right-vertical polarization channel of the compact polarimetry using a combination of the CMOD5 geophysical model function and a linear model. If wind speed estimation without wind direction input is desired, the randomly-polarized component of the backscattered power can be used in a similar fashion to that of the linear cross-polarizations, but is less affected by increases in the noise effective sigma-zero of the data. A model is proposed for the randomly-polarized power as a function of incidence angle and wind speed, independent of wind direction. The results suggest that compact polarimetry is a strong alternative to linearly polarized synthetic aperture radar data for wind speed estimation applications, particularly for wide swath imaging modes with a high noise floor.

  11. Dependence of the maximum power and wind speed

    Directory of Open Access Journals (Sweden)

    Florentiu Deliu

    2013-09-01

    Full Text Available The issue paper is to present renewable energy sources insisting mainly on wind energy. This source is analyzed in the context of Romania in particular and the EU in general. A turbine with horizontal axis is usually coupled with vessel power systems. Wind energy knows an increased growth rate. At the end of the paper are presented possible structure of coupled a wind to power systems.

  12. Does the size distribution of mineral dust aerosols depend on the wind speed at emission?

    CERN Document Server

    Kok, Jasper F

    2011-01-01

    The size distribution of mineral dust aerosols partially determines their interactions with clouds, radiation, ecosystems, and other components of the Earth system. Several theoretical models predict that the dust size distribution depends on the wind speed at emission, with larger wind speeds predicted to produce smaller aerosols. The present study investigates this prediction using a compilation of published measurements of the size-resolved vertical dust flux emitted by eroding soils. Surprisingly, these measurements indicate that the size distribution of naturally emitted dust aerosols is independent of the wind speed. The recently formulated brittle fragmentation theory of dust emission is consistent with this finding, whereas other theoretical dust emission models are not. The independence of the emitted dust size distribution with wind speed simplifies both the interpretation of geological records of dust deposition and the parameterization of dust emission in atmospheric circulation models.

  13. Magneto switch microcircuit and wind speed measurement’s sensor on its base

    OpenAIRE

    Kasimov F. D.; Ibragimov R. A.; Svikhnushin N. M.

    2009-01-01

    The magneto switch microcircuit on the base of Hall-effect is developed. The electric scheme of the magneto sensitive IC was designed and its basic technical characteristics are described. The gauge of wind speed on its base is fabricated.

  14. A sensorless control for a variable speed wind turbine operating at partial load

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Ronilson [School of Mines, Department of Engineering of Control and Automation, Federal University of Ouro Preto, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG (Brazil)

    2011-01-15

    This paper presents a sensorless control for a variable speed wind turbine (WT) operating at partial load in order to eliminate the direct measurement of the wind speed. In this proposal, the estimated aerodynamic torque is used to determine the optimal reference of the speed control for maximum energy conversion. The maximization of the efficiency on energy conversion and the minimization of detrimental dynamical loads are control trade-offs considered in the design of an optimal discrete-time feedback LQG/LTR controller for the Wind Energy Conversion System (WECS), which is based on the optimization of a quadratic cost function. The performance of the proposed control when the WT is submitted to a gust or step variation on wind speed is evaluated from computational simulations. It is also presented some proposals for sensorless control of the electrical generator. (author)

  15. Construction of SDE-based wind speed models with exponential autocorrelation

    CERN Document Server

    Miñano, Rafael Zárate

    2015-01-01

    This paper provides a systematic method to build wind speed models based on stochastic differential equations (SDEs). The resulting models produce stochastic processes with a given probability distribution and exponential decaying autocorrelation function. The only information needed to build the models is the probability density function of the wind speed and its autocorrelation coefficient. Unlike other methods previously proposed in the literature, the proposed method leads to models able to reproduce an exact exponential autocorrelation even if the probability distribution is not Gaussian. A sufficient condition for the property above is provided. The paper includes the explicit formulation of SDE-based wind speed models obtained from several probability distributions used in the literature to describe different wind speed behaviors.

  16. Offshore coastal wind speed gradients: Issues for the design and development of large offshore windfarms

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Badger, Jake; Pryor, S.C.;

    2007-01-01

    Simulations, from mesoscale numerical models, and analyses of in-situ and remote sensing data from offshore wind farms in Denmark, are used to examine both horizontal and vertical gradients of wind speeds in the coastal zone. Results suggest that the distance from the coastline over which wind...... sufficiently long (or the windfarm is further from the coast) both horizontal and vertical wind speed gradients over the area of the wind farm appear to be small and negligible....... speed vertical profiles are not at equilibrium with the sea surface (which defines the coastal zone) extends to 20 km and possibly 70 km from the coast. Using this operational definition of the coastal zone, these results thus imply the typical width of the coastal zone in northern Europe is between 20...

  17. Designing, Constructing, And Testing A Low – Speed Open – Jet Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Nguyen Quoc Y

    2014-01-01

    Full Text Available A low-speed wind tunnel has been built and tested in the Laboratory of Fluid Mechanics at the Hochiminh City University of Technology for teaching and doing research. The wind tunnel is an open-jet type with the nozzle area of 1m x 1m and the maximum wind speed of 14 m/s. To evaluate quality of the wind flow created by the tunnel, velocity distribution and turbulence intensity of airflow were measured at the nozzle by a thermal-couple anemometer. The measurements indicated that the turbulence intensity was less than two percent while the uniformity of wind speed across the nozzle is more than ninety five percent.

  18. Improved method for specifying solar wind speed near the Sun

    Czech Academy of Sciences Publication Activity Database

    Arge, Ch. N.; Odstrčil, Dušan; Pizzo, V. J.; Mayer, L. R.

    Melville : American Institute of Physics, 2003 - (Velli, M.; Bruno, R.; Malara, F.), s. 190-193 [International solar wind conference /10./. Pisa (IT), 17.06.2002-21.06.2002] Institutional research plan: CEZ:AV0Z1003909 Keywords : solar wind * magnetic field Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  19. Simulation of Wind Speed in the Ventilation Tunnel for Surge Tanks in Transient Processes

    OpenAIRE

    Jiandong Yang; Huang Wang; Wencheng Guo; Weijia Yang; Wei Zeng

    2016-01-01

    Hydroelectric power plants' open-type surge tanks may be built in mountains subject to the provision of atmospheric air. Hence, a ventilation tunnel is indispensable. The air flow in the ventilation tunnel is associated with the fluctuation of water-level in the surge tank. There is a great relationship between the wind speed and the safe use and project investment of ventilation tunnels. To obtain the wind speed in a ventilation tunnel for a surge tank during transient processes, this articl...

  20. Dynamic Moisture Comfort Property of Fine Denier Polypropylene Fabric in Different Wind Speed Conditions

    OpenAIRE

    Hongyan Tu; Luoyan Hu; Zhe Liu; Mingli Jiao; Kai Yang

    2013-01-01

    In order to study the moisture comfort property of fine denier polypropylene fiber fabric in different wind speed conditions, dynamic experiments were performed using Textile-Microclimate Measuring Instrument in climate chamber. The relative humidity variation curves of inner and outer surfaces of test fabrics were tested and the comprehensive index was introduced to evaluate fabric’s dynamic moisture comfort property. Results show that under four different environmental wind speed conditions...

  1. Short-term prediction method of wind speed series based on fractal interpolation

    International Nuclear Information System (INIS)

    Highlights: • An improved fractal interpolation prediction method is proposed. • The chaos optimization algorithm is used to obtain the iterated function system. • The fractal extrapolate interpolation prediction of wind speed series is performed. - Abstract: In order to improve the prediction performance of the wind speed series, the rescaled range analysis is used to analyze the fractal characteristics of the wind speed series. An improved fractal interpolation prediction method is proposed to predict the wind speed series whose Hurst exponents are close to 1. An optimization function which is composed of the interpolation error and the constraint items of the vertical scaling factors in the fractal interpolation iterated function system is designed. The chaos optimization algorithm is used to optimize the function to resolve the optimal vertical scaling factors. According to the self-similarity characteristic and the scale invariance, the fractal extrapolate interpolation prediction can be performed by extending the fractal characteristic from internal interval to external interval. Simulation results show that the fractal interpolation prediction method can get better prediction result than others for the wind speed series with the fractal characteristic, and the prediction performance of the proposed method can be improved further because the fractal characteristic of its iterated function system is similar to that of the predicted wind speed series

  2. A New Structure Based on Cascaded Multilevel Converter for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2010-01-01

    An alternative structure for variable speed wind turbine, using multiple permanent magnet synchronous generators (PMSGs) drive-train configuration and cascaded multilevel converter is proposed in this paper. This study presents a power electronic solution for the wind turbine. A transformer...... simulation model of 10 MW variable speed wind turbine based on PMSGs developed in PSCAD/EMTDC is presented. The dynamic performance of grid-connected wind turbine is analyzed. Simulation results shows that the proposed structure may be attractive in wind power generation.......-less cascaded multilevel converter interface based on PMSGs is developed to synthesize a desired high ac sinusoidal output voltage. The benefits of high power and high ac voltage make this structure possible to be applied in the wind power generation. In addition, the bulky transformer could be omitted. A...

  3. Generation of Random Wind Speed Profiles for Evaluation of Stress in WT Power Converters

    DEFF Research Database (Denmark)

    Pigazo, Alberto; Qin, Zian; Liserre, Marco;

    2013-01-01

    Wind turbines are subjected to wind speed variations that cause a power profile that will stress the overall system. This stress is tranfered to the power converter, resulting in temperature variations of the power devices and, hence, causing the reduction of the lifetime. The lifetime expectatio...

  4. Flicker Study on Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Yue;

    2008-01-01

    Grid connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbines with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed in the...

  5. Low Voltage Ride-Through of Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Yue;

    2009-01-01

    This paper presents a simulation model of a MW-level variable speed wind turbine with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed in the simulation tool of PSCAD/EMTDC. The low voltage ride-through (LVRT) capability of the wind turbine is investigated. A new...

  6. Power Control of Permanent Magnet Generator Based Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2009-01-01

    When the wind power accounts for a large portion of the grid, it will be required to regulate the active power and reactive power. This paper investigates a MWlevel variable speed wind turbine with a permanent magnet synchronous generator (PMSG). The power control capabilities of two kinds of...

  7. Modelling and control of variable speed wind turbines for power system studies

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2010-01-01

    implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally, it will be...

  8. Study of wind speed attenuation at Kavaratti Island using land-based, offshore, and satellite measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Rivankar, P.; Balakrishnan Nair, T.M.B.

    The role of dense coconut palms in attenuating the wind speed at Kavaratti Island, which is located in the southeastern Arabian Sea, is examined based on land-based and offshore wind measurements (U sub(10)) using anchored-buoy-mounted and satellite...

  9. Consideration of tip speed limitations in preliminary analysis of minimum COE wind turbines

    Science.gov (United States)

    Cuerva-Tejero, A.; Yeow, T. S.; Lopez-Garcia, O.; Gallego-Castillo, C.

    2014-12-01

    A relation between Cost Of Energy, COE, maximum allowed tip speed, and rated wind speed, is obtained for wind turbines with a given goal rated power. The wind regime is characterised by the corresponding parameters of the probability density function of wind speed. The non-dimensional characteristics of the rotor: number of blades, the blade radial distributions of local solidity, twist, angle, and airfoil type, play the role of parameters in the mentioned relation. The COE is estimated using a cost model commonly used by the designers. This cost model requires basic design data such as the rotor radius and the ratio between the hub height and the rotor radius. Certain design options, DO, related to the technology of the power plant, tower and blades are also required as inputs. The function obtained for the COE can be explored to find those values of rotor radius that give rise to minimum cost of energy for a given wind regime as the tip speed limitation changes. The analysis reveals that iso-COE lines evolve parallel to iso-radius lines for large values of limit tip speed but that this is not the case for small values of the tip speed limits. It is concluded that., as the tip speed limit decreases, the optimum decision for keeping minimum COE values can be: a) reducing the rotor radius for places with high weibull scale parameter or b) increasing the rotor radius for places with low weibull scale parameter.

  10. Consideration of tip speed limitations in preliminary analysis of minimum COE wind turbines

    International Nuclear Information System (INIS)

    A relation between Cost Of Energy, COE, maximum allowed tip speed, and rated wind speed, is obtained for wind turbines with a given goal rated power. The wind regime is characterised by the corresponding parameters of the probability density function of wind speed. The non-dimensional characteristics of the rotor: number of blades, the blade radial distributions of local solidity, twist, angle, and airfoil type, play the role of parameters in the mentioned relation. The COE is estimated using a cost model commonly used by the designers. This cost model requires basic design data such as the rotor radius and the ratio between the hub height and the rotor radius. Certain design options, DO, related to the technology of the power plant, tower and blades are also required as inputs. The function obtained for the COE can be explored to find those values of rotor radius that give rise to minimum cost of energy for a given wind regime as the tip speed limitation changes. The analysis reveals that iso-COE lines evolve parallel to iso-radius lines for large values of limit tip speed but that this is not the case for small values of the tip speed limits. It is concluded that., as the tip speed limit decreases, the optimum decision for keeping minimum COE values can be: a) reducing the rotor radius for places with high weibull scale parameter or b) increasing the rotor radius for places with low weibull scale parameter

  11. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    Science.gov (United States)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  12. Modeling and control of a variable speed variable pitch angle prototype wind turbine

    OpenAIRE

    Evren, Sanem; Ünel, Mustafa; Unel, Mustafa; Akşit, Mahmut Faruk; Aksit, Mahmut Faruk

    2013-01-01

    This paper focuses on modeling, control and simulation of a 500 KW horizontal axis prototype wind turbine that is being developed in the context of the MILRES (National Wind Energy Systems) Project in Turkey. The prototype turbine is designed as variable speed variable pitch angle wind turbine due to its advantages in efficiency and the structure. Aerodynamic, mechanical and electrical subsystems along with pitch and torque controllers are designed in both Matlab/Simulink and S4WT simulation ...

  13. Modeling and Control of a Variable Speed Variable Pitch Angle Prototype Wind Turbine

    OpenAIRE

    Evren, Sanem; Ünel, Mustafa; Akşit, Mahmut

    2013-01-01

    This paper focuses on modeling, control and simulation of a 500 KW horizontal axis prototype wind turbine that is being developed in the context of the MILRES (National Wind Energy Systems) Project in Turkey. The prototype turbine is designed as variable speed variable pitch angle wind turbine due to its advantages in efficiency and the structure. Aerodynamic, mechanical and electrical subsystems along with pitch and torque controllers are designed in both Matlab/Simulink and S4WT simulation ...

  14. System-wide contribution to frequency response from variable speed wind turbines

    OpenAIRE

    Ruttledge, Lisa; Flynn, Damian

    2012-01-01

    Due to the differing electromechanical characteristics of modern variable speed wind turbines to conventional generators, the provision of ancillary services from wind generation is likely to change the nature of the frequency response of power systems to contingency events. This paper explores the aggregate contribution from wind turbines to the frequency response of future power systems, considering both emulated inertial and governor controls. In particular, the potential issues that may a...

  15. Numerical simulation of aerodynamic derivatives and critical wind speed for long-span bridges based on simplified steady wind field

    Institute of Scientific and Technical Information of China (English)

    Xin Dabo; Ou Jinping

    2007-01-01

    Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the critical flutter wind speed for long-span bridges is presented in this paper. The RNG κ-ε turbulent model is introduced to establish the governing equations, including the continuity equation and the Navier-Stokes equations, for solving the wind flow field around a two-dimensional bridge section. To illustrate the effectiveness and accuracy of the proposed approach, a simple application to the Hume Bridge in China is provided, and the numerical results show that the aerodynamic derivatives and the critical flutter wind speed obtained agree well with the wind tunnel test results.

  16. Seasonality, Interannual Variability, and Linear Tendency of Wind Speeds in the Northeast Brazil from 1986 to 2011

    OpenAIRE

    Alexandre Torres Silva dos Santos; Cláudio Moisés Santos e Silva

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: fil...

  17. Improving transition between power optimization and power limitation of variable speed/variable pitch wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Bindner, H. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Rebsdorf, A. [Vestas Wind Systems A/S, Lem (Denmark)

    1999-03-01

    The paper summarises and describes the main results of a recently performed study of improving the transition between power optimization and power limitation for variable speed/variable pitch wind turbines. The results show that the capability of varying the generator speed also can be exploited in the transition stage to improve the quality of the generated power. (au)

  18. Reduction of the performance of a noise screen due to screen-induced wind-speed gradients: numerical computations and wind-tunnel experiments

    NARCIS (Netherlands)

    Salomons, E.M.

    1999-01-01

    Downwind sound propagation over a noise screen is investigated by numerical computations and scale model experiments in a wind tunnel. For the computations, the parabolic equation method is used, with a range-dependent sound-speed profile based on wind-speed profiles measured in the wind tunnel and

  19. Wind Power - WINDSPD50_IN: Mean Wind Speed at Height of 50 Meters above Ground, Derived from Mesoscale Atmospheric Simulation System and WindMap (TrueWind Solutions, 200-Meter Grid)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The following is excerpted from an unpublished report by Michael Brower (2004): "Using the MesoMap system, TrueWind has produced maps of mean wind speed in Indiana...

  20. Wind Power - WINDSPD100_IN: Mean Wind Speed at Height of 100 Meters above Ground, Derived from Mesoscale Atmospheric Simulation System and WindMap (TrueWind Solutions, 200-Meter Grid)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The following is excerpted from an unpublished report by Michael Brower (2004): "Using the MesoMap system, TrueWind has produced maps of mean wind speed in Indiana...

  1. Control of the variable speed generator on the Sandia 34-metre vertical axis wind turbine

    Science.gov (United States)

    Ralph, Mark E.

    The DOE/Sandia 34-meter VAWT Test Bed is a 500kW variable-speed wind turbine. The turbine is operated between 25 and 38 rpm and has been characterized from a structural and aerodynamic standpoint. A preliminary variable speed control algorithm has been implemented on the Test Bed. This paper describes the initial variable-speed control algorithm developed for the Test Bed and the performance of that algorithm to date. Initial performance comparisons between variable-speed and fixed-speed operation are made as well as some thoughts on the expansion of the operating envelope of the Test Bed.

  2. DAC with LQR Control Design for Pitch Regulated Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammad; Hussain, Dil Muhammad Akbar; Soltani, Mohsen

    2014-01-01

    Disturbance Accommodation Control (DAC) is used to model and simulate a system with known disturbance waveform. This paper presents a control scheme to mitigate the effect of disturbances by using collective pitch control for the aboverated wind speed (Region III) for a variable speed wind turbine....... We have used Linear Quadratic Regulator (LQR) to obtain full state feedback gain, disturbance feedback gain is calculated independently and then estimator gain is achieved by poleplacement technique in the DAC augmented plant model. The reduced order model (two-mass model) of wind turbine is used and...

  3. Dual measurement terminal fall speeds and multiple Doppler winds

    Science.gov (United States)

    Grosh, R. C.

    1983-01-01

    It is shown that radar-derived terminal fall speed measurements can be useful in determining vertical air velocity in the middle troposphere by means of a network of Doppler radars. The theoretical principles of the dual measurement technique are described, and the relationship between measurement accuracies and theoretical estimates of terminal fall speeds is discussed. It is demonstrated that the use of differential reflectivity to estimate terminal fall speeds can reduce the standard error of vertical velocity estimates by 40-50 percent.

  4. Robust Active Disturbance Rejection Control Approach to Maximize Energy Capture in Variable-Speed Wind Turbines

    OpenAIRE

    Horacio Coral-Enriquez; John Cortés-Romero; Ramos, Germán A.

    2013-01-01

    This paper proposes an alternative robust observer-based linear control technique to maximize energy capture in a 4.8 MW horizontal-axis variable-speed wind turbine. The proposed strategy uses a generalized proportional integral (GPI) observer to reconstruct the aerodynamic torque in order to obtain a generator speed optimal trajectory. Then, a robust GPI observer-based controller supported by an active disturbance rejection (ADR) approach allows asymptotic tracking of the generator speed opt...

  5. Comparative study of speed estimators with highly noisymeasurement signals for Wind Energy Generation Systems

    OpenAIRE

    Carranza Castillo, Oscar; Figueres Amorós, Emilio; Garcerá Sanfeliú, Gabriel; GONZÁLEZ MORALES, LUIS GERARDO

    2011-01-01

    This paper presents a comparative study of several speed estimators to implement a sensorless speed control loop in Wind Energy Generation Systems driven by power factor correction three-phase boost rectifiers. This rectifier topology reduces the low frequency harmonics contents of the generator currents and, consequently, the generator power factor approaches unity whereas undesired vibrations of the mechanical system decrease. For implementation of the speed estimators, the compared techniq...

  6. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, Erasmo [Facultad de Ingenieria Mecanica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia No. 403, Centro (Mexico); Rivera, Wilfrido [Centro de Ivestigacion en Energia, Universidad Nacional Autonoma de Mexico, Apartado Postal 34, Temixco 62580, Morelos (Mexico)

    2010-12-15

    In this paper the wind speed forecasting in the Isla de Cedros in Baja California, in the Cerro de la Virgen in Zacatecas and in Holbox in Quintana Roo is presented. The time series utilized are average hourly wind speed data obtained directly from the measurements realized in the different sites during about one month. In order to do wind speed forecasting Hybrid models consisting of Autoregressive Integrated Moving Average (ARIMA) models and Artificial Neural Network (ANN) models were developed. The ARIMA models were first used to do the wind speed forecasting of the time series and then with the obtained errors ANN were built taking into account the nonlinear tendencies that the ARIMA technique could not identify, reducing with this the final errors. Once the Hybrid models were developed 48 data out of sample for each one of the sites were used to do the wind speed forecasting and the results were compared with the ARIMA and the ANN models working separately. Statistical error measures such as the mean error (ME), the mean square error (MSE) and the mean absolute error (MAE) were calculated to compare the three methods. The results showed that the Hybrid models predict the wind velocities with a higher accuracy than the ARIMA and ANN models in the three examined sites. (author)

  7. A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm

    International Nuclear Information System (INIS)

    Highlights: • Impact of meteorological factors on wind speed forecasting is taken into account. • Forecasted wind speed results are corrected by the associated rules. • Forecasting accuracy is improved by the new wind speed forecasting strategy. • Robust of the proposed model is validated by data sampled from different sites. - Abstract: Wind energy has been the fastest growing renewable energy resource in recent years. Because of the intermittent nature of wind, wind power is a fluctuating source of electrical energy. Therefore, to minimize the impact of wind power on the electrical grid, accurate and reliable wind power forecasting is mandatory. In this paper, a new wind speed forecasting approach based on based on the chaotic time series modelling technique and the Apriori algorithm has been developed. The new approach consists of four procedures: (I) Clustering by using the k-means clustering approach; (II) Employing the Apriori algorithm to discover the association rules; (III) Forecasting the wind speed according to the chaotic time series forecasting model; and (IV) Correcting the forecasted wind speed data using the associated rules discovered previously. This procedure has been verified by 31-day-ahead daily average wind speed forecasting case studies, which employed the wind speed and other meteorological data collected from four meteorological stations located in the Hexi Corridor area of China. The results of these case studies reveal that the chaotic forecasting model can efficiently improve the accuracy of the wind speed forecasting, and the Apriori algorithm can effectively discover the association rules between the wind speed and other meteorological factors. In addition, the correction results demonstrate that the association rules discovered by the Apriori algorithm have powerful capacities in handling the forecasted wind speed values correction when the forecasted values do not match the classification discovered by the association rules

  8. Short-Term Wind Speed Forecasting Using Support Vector Regression Optimized by Cuckoo Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2015-01-01

    Full Text Available This paper develops an effectively intelligent model to forecast short-term wind speed series. A hybrid forecasting technique is proposed based on recurrence plot (RP and optimized support vector regression (SVR. Wind caused by the interaction of meteorological systems makes itself extremely unsteady and difficult to forecast. To understand the wind system, the wind speed series is analyzed using RP. Then, the SVR model is employed to forecast wind speed, in which the input variables are selected by RP, and two crucial parameters, including the penalties factor and gamma of the kernel function RBF, are optimized by various optimization algorithms. Those optimized algorithms are genetic algorithm (GA, particle swarm optimization algorithm (PSO, and cuckoo optimization algorithm (COA. Finally, the optimized SVR models, including COA-SVR, PSO-SVR, and GA-SVR, are evaluated based on some criteria and a hypothesis test. The experimental results show that (1 analysis of RP reveals that wind speed has short-term predictability on a short-term time scale, (2 the performance of the COA-SVR model is superior to that of the PSO-SVR and GA-SVR methods, especially for the jumping samplings, and (3 the COA-SVR method is statistically robust in multi-step-ahead prediction and can be applied to practical wind farm applications.

  9. A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting

    International Nuclear Information System (INIS)

    Highlights: • A new hybrid model is developed for wind speed forecasting. • The model is based on the Kalman filter and the ARIMA. • An intelligent optimization method is employed in the hybrid model. • The new hybrid model has good performance in western China. - Abstract: Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily

  10. Models for Numerical Evaluation of Variable Speed Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, Hui; Chen, Zhe; Polinder, H.

    2007-01-01

    different wind generator systems, the other presents the optimization results and evaluation of variable speed wind generator systems. In this report, firstly, it gives an overview of various wind generator topologies, including their advantages and disadvantages, market status and developing trends. Next......, the analytical models include the wind turbine power characteristics; the single/threestage gearbox and the power electronic converter for possible wind turbine concepts are described. Finally, the electromagnetic design models of the investigated generator topologies are presented, including the......Wind energy is currently one of the most cost-effective energy sources to produce electricity among various renewable energy sources. During last two decades, various wind turbine concepts with different generator systems have been developed and built. It is necessary to identify the most cost...

  11. Fixed-Speed and Variable-Slip Wind Turbines Providing Spinning Reserves to the Grid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-11-01

    As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response so they can support the frequency stability of the grid. To provide governor response, wind turbines should be able to generate less power than the available wind power and hold the rest in reserve, ready to be accessed as needed. This paper explores several ways to control wind turbine output to enable reserve-holding capability. This paper focuses on fixed-speed (also known as Type 1) and variable-slip (also known as Type 2) turbines.

  12. Simulation of Wind Speed in the Ventilation Tunnel for Surge Tanks in Transient Processes

    Directory of Open Access Journals (Sweden)

    Jiandong Yang

    2016-02-01

    Full Text Available Hydroelectric power plants’ open-type surge tanks may be built in mountains subject to the provision of atmospheric air. Hence, a ventilation tunnel is indispensable. The air flow in the ventilation tunnel is associated with the fluctuation of water-level in the surge tank. There is a great relationship between the wind speed and the safe use and project investment of ventilation tunnels. To obtain the wind speed in a ventilation tunnel for a surge tank during transient processes, this article adopts the one-dimensional numerical simulation method and establishes a mathematical model of a wind speed by assuming the boundary conditions of air discharge for a surge tank. Thereafter, the simulation of wind speed in a ventilation tunnel, for the case of a surge tank during transient processes, is successfully realized. Finally, the effective mechanism of water-level fluctuation in a surge tank and the shape of the ventilation tunnel (including length, sectional area and dip angle for the wind speed distribution and the change process are discovered. On the basis of comparison between the simulation results of 1D and 3D computational fluid dynamics (CFD, the results indicate that the one-dimensional simulation method as proposed in this article can be used to accurately simulate the wind speed in the ventilation tunnel of a surge tank during transient processes. The wind speed fluctuations can be superimposed by using the low frequency mass wave (i.e., fundamental wave and the high frequency elastic wave (i.e., harmonic wave. The water-level fluctuation in a surge tank and the sectional area of the ventilation tunnel mainly affect the amplitude of fundamental and harmonic waves. The period of a fundamental wave can be determined from the water-level fluctuations. The length of the ventilation tunnel has an effect on the period and amplitude of harmonic waves, whereas the dip angle influences the amplitude of harmonic waves.

  13. LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, N.; Mikkelsen, Torben; Hansen, Kasper H.; Sjoeholm, M.; Harris, M.

    2010-08-15

    In the context of the increasing application of remote sensing techniques in wind energy, the feasibility of upwind observations via a spinner-mounted wind lidar was tested during the SpinnerEx 2009 experiment. The objective was to install a QinetiQ (Natural Power) ZephIR lidar in the rotating spinner of a MW-sized wind turbine, and investigate the approaching wind fields from this vantage point. Time series of wind speed measurements from the lidar with 50 Hz sampling rate were successfully obtained for approximately 60 days, during the measurement campaign lasting from April to August 2009. In this report, information is given regarding the experimental setup and the lidar's operation parameters. The geometrical model used for the reconstruction of the scanning pattern of the lidar is described. This model takes into account the lidar's pointing direction, the spinner axis's vertical tilt and the wind turbine's yaw relative to the mean wind speed direction. The data analysis processes are documented. A methodology for the calculation of the yaw misalignment of the wind turbine relative to the wind direction, as a function of various averaging times, is proposed, using the lidar's instantaneous line-of-sight radial wind speed measurements. Two different setups have been investigated in which the approaching wind field was measured at distances of 0.58 OE and 1.24 OE rotor diameters upwind, respectively. For both setups, the instantaneous yaw misalignment of the turbine has been estimated from the lidar measurements. Data from an adjacent meteorological mast as well as data logged within the wind turbine's control system were used to evaluate the results. (author)

  14. On control strategies for power optimization and regulation of variable speed wind turbines

    International Nuclear Information System (INIS)

    The research work is dealing with variable speed wind turbines modelling and control design, in order to achieve the objectives of maximizing the extracted energy from the wind, below the rated power area in the one hand and in the other hand regulating the electric power production, above the rated power area, while reducing mechanical transient loads. For this purpose, we have studied various control strategies from linear to nonlinear based. some of the controllers that we have developed, herein appear for the first time in the relevant domain, the remaining others are an adaptation of well know controllers to the adopted wind turbine models. as matter of fact, we have derived two wind turbine models as well as a wind speed estimator. Indeed, the estimator allows obtaining the effective wind speed which cannot be measured, since the wind profile around the rotor is variable in time and space. As results, it has been shown that single input control by means of pitch angle or generator control cannot succeed to simultaneously drive the electric power output regulation and the rotor speed reference tracking. So then, our idea is to combine nonlinear dynamic state feedback torque control and pitch linear based control which turns out to be the best strategy. In addition, the validation of the controllers performance, using a high turbulence wind speed profile, has been performed through wind turbine simulators provided by nrel (national renewable energy laboratory, golden, co), has confirmed the theoretical results and has led to quite satisfactory conclusions in terms of energy capture optimization, power regulation and disturbances strong rejection as well. (author)

  15. New simulation method for the study of subsynchronous resonance (SSR) in variable speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fadaeinedjad, R.; Moschopoulos, G.; Moallem, M. [Western Ontario Univ., London, ON (Canada). Dept. of Electrical and Computer Engineering

    2006-07-01

    A model using TurbSim, FAST and Simulink to simulate mechanical and electrical parts of a wind turbine was presented. The model was used to investigate the effects of compensation level, mechanical damping and wind distribution on the dynamic response of the study system when a power system disturbance occurred. Previous studies investigating sub-synchronous resonance (SSR) in wind power systems have only considered fixed speed wind turbines, and pitch control effect has been neglected. Time domain models for the induction machine, the bidirectional PWM converter and the power system were used to link a doubly fed induction generator (DFIG) model to FAST in a Simulink environment. The electrical variables and parameters were referred to the stator. The relation between the 3 phase quantities and d-q components was defined by Park's transformation. Case studies comparing torque amplifications for 2 different compensation levels were presented. Tower oscillations and pitch action were shown for 2 different tower dampings, and the effect of different wind speed distributions was investigated. Results of the studies showed that network resonance frequencies related to the series compensation level impacted the torsional torque amplitudes subsequent to an electrical disturbance. Results suggested that in order to study SSR in variable speed wind turbines, pitch controller action should be considered as well as generator control action. Results also indicated that the possibility of SSR during turbulent and high speed wind is greater than during smooth and low speed wind, as turbulent wind creates higher mechanical forces. 13 refs., 5 figs.

  16. Aerodynamical errors on tower mounted wind speed measurements due to the presence of the tower

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    1996-12-01

    Field measurements of wind speed from two lattice towers showed large differences for wind directions where the anemometers of both towers should be unaffected by any upstream obstacle. The wind speed was measured by cup anemometers mounted on booms along the side of the tower. A simple wind tunnel test indicates that the boom, for the studied conditions, could cause minor flow disturbances. A theoretical study, by means of simple 2D flow modelling of the flow around the mast, demonstrates that the tower itself could cause large wind flow disturbances. A theoretical study, based on simple treatment of the physics of motion of a cup anemometer, demonstrates that a cup anemometer is sensitive to velocity gradients across the cups and responds clearly to velocity gradients in the vicinity of the tower. Comparison of the results from the theoretical study and field tests show promising agreement. 2 refs, 8 figs

  17. Resolving Nonstationary Spectral Information in Wind Speed Time Series Using the Hilbert-Huang Transform

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Giebel, Gregor; Pinson, Pierre;

    2010-01-01

    summarized to show climatological patterns in the relationship between wind variability and time of day. First, by integrating the Hilbert spectrum along the frequency axis, a scalar time series representing the total variability within a given frequency range is calculated. Second, by calculating average...... spectra conditional to time of day, the time axis of the Hilbert spectrum is “remapped” to show climatological patterns. Third, the daily patterns in wind variability and wind speed are compared for the four seasons of the year. It is found that the most intense wind variability occurs in autumn even...

  18. A Study of Hydrogen Generation with Doubly-Fed Adjustable Speed Wind Generator

    Science.gov (United States)

    Kinoshita, Hirotaka; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    This paper presents a combination system of wind power generator and hydrogen generator. In the proposed system, Doubly-Fed Synchronous Generator (DFSG) is used as an adjustable speed wind generator, and an electrolyzer is connected to its terminal for hydrogen generation, which is controlled by power electronic converters. Output power from the wind generator is smoothed and supplied to the power system as well as to the electrolyzer to generate hydrogen under a cooperative control of the wind generator and the electrolyzer. The performance of the proposed system is investigated by simulation analyses, in which simulations are performed by using PSCAD/EMTDC.

  19. Reduction of horizontal wind speed in a boundary layer with obstacles

    DEFF Research Database (Denmark)

    Emeis, S.; Frandsen, S.

    1993-01-01

    The reduction of horizontal wind speed at hub height in an infinite cluster of wind turbines is computed from a balance between a loss of horizontal momentum due to the drag and replenishment from above by turbulent fluxes. This reduction is derived without assumptions concerning the vertical wind...... profile above or below hub height, only some basic assumptions on turbulent exchange have been made. Two applications of the result are presented, one considering wind turbines and one pressure drag on orographic obstacles in the atmospheric boundary layer. Both applications are basically governed by the...

  20. Power curve report - with rotor equivalent wind speed

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the...

  1. Data-Driven Topographic Feature Selection for Mean Wind Speed Mapping

    Science.gov (United States)

    Foresti, L.; Pozdnoukhov, A.; Kanevski, M.

    2009-04-01

    Accurate spatial mapping of long term mean wind speeds is of great importance for renewable resources evaluation and wind farm location planning. This task is conventionally approached with a physical model further corrected with some geostatistical or semi-empirical method to take into account local topography and land cover effects. In mountainous regions of complex topographies, however, the evaluation of mean wind speed with this procedure is less precise. A variety of small-scale topographic features has to be incorporated into the model to take into account the factors affecting the wind speed, such as hill and tunnel effects. Large number of topographic features can be computed from digital elevation models to be integrated into a prediction model. Spatial prediction of the wind speeds by using a large set of input features is a high dimensional and non-linear problem. In conventional scheme, one relies here on many empirical correction coefficients and various topographic indices to take into account the influence of terrain. However, there is an emerging field of machine learning algorithms, which are the data-driven methods well-suited to solve such problems. They are aimed at modelling the non-linear dependencies between the high dimensional input features and a target variable such as the wind speed. There is a noticeable interest for using these methods for wind mapping. The presented research provides an application of machine learning methods (neural networks and support vector methods) for spatial prediction of mean wind speeds with a particular attention paid to the problem of feature selection. The number of features which can be generated from digital elevation model is countless as the features can be computed at various spatial scales. For example, a difference of terrains smoothed at different spatial scales enables to highlight the ridges and valleys. Feature selection methods allow finding the features and correspondingly the spatial scales

  2. The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest

    OpenAIRE

    Cross, Benjamin David

    2013-01-01

    The use of wind power is growing rapidly in the Pacific Northwest (PNW) due to environmental concerns, decreasing costs, strong wind speeds, and the desire to minimize the impacts of streamflow variability on electricity prices and system flexibility through diversification. In hydroelectric dominated systems, like the PNW, the benefits of wind power can be maximized by accounting for the relationship between long term variability in wind speeds and reservoir inflows. Clean energy policies in...

  3. Recursive wind speed forecasting based on Hammerstein Auto-Regressive model

    International Nuclear Information System (INIS)

    Highlights: • Developed a new recursive WSF model for 1–24 h horizon based on Hammerstein model. • Nonlinear HAR model successfully captured chaotic dynamics of wind speed time series. • Recursive WSF intrinsic error accumulation corrected by applying rotation. • Model verified for real wind speed data from two sites with different characteristics. • HAR model outperformed both ARIMA and ANN models in terms of accuracy of prediction. - Abstract: A new Wind Speed Forecasting (WSF) model, suitable for a short term 1–24 h forecast horizon, is developed by adapting Hammerstein model to an Autoregressive approach. The model is applied to real data collected for a period of three years (2004–2006) from two different sites. The performance of HAR model is evaluated by comparing its prediction with the classical Autoregressive Integrated Moving Average (ARIMA) model and a multi-layer perceptron Artificial Neural Network (ANN). Results show that the HAR model outperforms both the ARIMA model and ANN model in terms of root mean square error (RMSE), mean absolute error (MAE), and Mean Absolute Percentage Error (MAPE). When compared to the conventional models, the new HAR model can better capture various wind speed characteristics, including asymmetric (non-gaussian) wind speed distribution, non-stationary time series profile, and the chaotic dynamics. The new model is beneficial for various applications in the renewable energy area, particularly for power scheduling

  4. Wind speed and temperature trends impacts on reference evapotranspiration in Southern Italy

    Science.gov (United States)

    Liuzzo, Lorena; Viola, Francesco; Noto, Leonardo V.

    2016-01-01

    In this study, the impacts of both temperature and wind speed trends on reference evapotranspiration have been assessed using as a case study the Southern Italy, which present a wide variety of combination of such climatic variables trends in terms of direction and magnitude. The existence of statistically significant trends in wind speed and temperature from observational datasets, measured in ten stations over Southern Italy during the period 1968-2004, has been investigated. Time series have been examined using the Mann-Kendall nonparametric statistical test in order to detect possible evidences of wind speed and temperature trends at different temporal resolution and significance level. Once trends have been examined and quantified, the effects of these trends on seasonal reference evapotranspiration have been evaluated using the FAO-56 Penman-Monteith equation. Results quantified the effects of extrapolated temperature and wind speed trends on reference evapotranspiration. Where these climatic drivers are on the same direction, reference evapotranspiration generally increases during the growing season due to a nonlinear overlapping of effects. Whereas wind speed decreases and temperature increases, there is a sort of counterbalancing effect between the two considered climatic forcing in determining future reference evapotranspiration.

  5. Flux-tube geometry and wind speed during an activity cycle

    CERN Document Server

    Pinto, R F; Rouillard, A P

    2016-01-01

    The solar wind speed at 1 AU shows variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal wind speed in a magnetic flux-tube is anti-correlated with its expansion ratio, which motivated the definition of widely-used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad-hoc corrections. A predictive law based solely on physical principles is still missing. We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. We use MHD simulations of the corona and wind coupled to a dynamo model to provide a large statistical ensemble of open flux-tubes which we...

  6. Satellite retrieval of hurricane wind speeds using the AMSR2 microwave radiometer

    Science.gov (United States)

    Yao, Panpan; Wan, Jianhua; Wang, Jin; Zhang, Jie

    2015-09-01

    The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite, launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm, the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature, wind speed, water vapor, and liquid cloud water content. However, rain alters the properties of atmospheric scattering and absorption, which contaminates the brightness temperatures measured by the microwave radiometer. Therefore, it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory, and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data, we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed, from which a channel combination of brightness temperature was established that is insensitive to rainfall, but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters, in conjunction with HRD wind field data, and adopting multiple linear regression and BP neural network methods, we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals, obtained using the multiple linear regression algorithm, were 3.1 m/s and 13%, respectively. However, the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better (2.1 m/s and 8%, respectively). Thus, the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.

  7. A reward semi-Markov process with memory for wind speed modeling

    Science.gov (United States)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first

  8. Observer Backstepping Control for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens

    2013-01-01

    . The nonlinear controller aims at regulating the generator torque such that an optimal tip-speed ratio can be obtained. Simply relying on the measured rotor angular velocity the proposed observer backstepping controller guarantees global asymptotic tracking of the desired trajectory while maintaining a...

  9. Speed Control of Induction Motor Fed from Wind Turbine via Particle Swarm Optimization Based PI Controller

    Directory of Open Access Journals (Sweden)

    A.S. Oshaba

    2013-05-01

    Full Text Available Three-phase Induction Motor (IM is widely used in the industry because of its rugged construction and absence of brushes. However, speed control of IM is required depending on the desired speed and application. This study proposes a design of a Proportional Integral (PI controller using Particle Swarm Optimization (PSO algorithm to control the speed of an IM supplied from wind turbine. The wind turbine acts as a prime mover to a connected DC generator. Pulse Width Modulation (PWM is used to obtain three phase AC voltage from the output of DC generator. The proposed design problem of speed controller is formulated as an optimization problem. PSO is employed to search for optimal controller parameters by minimizing the time domain objective function. The performance of the proposed technique has been evaluated with respect to the variation of load torque and speed wind turbine. Also the performance of the proposed controller has been evaluated with the performance of the PI controller tuned by Genetic Algorithm (GA in order to demonstrate the superior efficiency of the proposed PSO in tuning PI controller. Simulation results emphasis on the better performance of the optimized PI controller based on PSO in compare to optimized PI controller based on GA over a wide range of load torque and speed wind turbine.

  10. Study of wind speed attenuation at Kavaratti Island using land-based, offshore, and satellite measurements

    Science.gov (United States)

    Joseph, Antony; Rivonkar, Pradhan; Balakrishnan Nair, T. M.

    2012-06-01

    The role of dense coconut palms in attenuating the wind speed at Kavaratti Island, which is located in the southeastern Arabian Sea, is examined based on land-based and offshore wind measurements (U10) using anchored-buoy-mounted and satellite-borne sensors (QuikSCAT scatterometer and TMI microwave imager) during an 8-year period (2000-2007). It is found that round the year monthly-mean wind speed measurements from the Port Control Tower (PCT) located within the coconut palm farm at the Kavaratti Island are weaker by 15-61% relative to those made from the nearby offshore region. Whereas wind speed attenuation at the island is ~15-40% in the mid-June to mid-October south-west monsoon period, it is ~41-61% during the rest of the year. Wind direction measurements from all the devices overlapped, except in March-April during which the buoy measurements deviated from the other measurements by ~20°. U10 wind speed measurements from PCT during the November 2009 tropical cyclone "Phyan" indicated approximately 50-80% attenuation relative to those from the seaward boundary of the island's lagoon (and therefore least influenced by the coconut palms). The observed wind speed attenuation can be understood through the theory of free turbulent flow jets embodied in the boundary-layer fluid dynamics, according to which both the axial and transverse components of the efflux of flows discharged through the inter-leaves porosity (orifice) undergo increasing attenuation in the downstream direction with increasing distance from the orifice. Thus, the observed wind speed attenuation at Kavaratti Island is attributable to the decline in wind energy transmission from the seaward boundary of the coconut palm farm with distance into the farm. Just like mangrove forests function as bio-shields against forces from oceanic waves and stormsurges through their large above-ground aerial root systems and standing crop, and thereby playing a distinctive role in ameliorating the effects of

  11. Dynamic behavior and transient stability analysis of fixed speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Mohsen; Parniani, Mostafa [Power Systems Dynamics and Control Lab., Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., P.O. Box: 11155-9363, Tehran (Iran)

    2009-12-15

    This paper analytically investigates the dynamic behavior of fixed speed wind turbines (FSWTs) under wind speed fluctuations and system disturbances, and identifies the nature of transient instability and system variables involved in the instability. The nature of transient instability in FSWT is not similar to synchronous generators in which the cause of instability is rotor angle instability. In this paper, the study of dynamic behavior includes modal and sensitivity analysis, dynamic behavior analysis under wind speed fluctuation, eigenvalue tracking, and using it to characterize the instability mode, and investigating possible outcomes of instability. The results of theoretical studies are verified by time domain simulations. It is found that the instability occurs due to the mechanical dynamics and the instability is closely related to increasing of generator slip. (author)

  12. Very short-term wind speed prediction: A new artificial neural network-Markov chain model

    Energy Technology Data Exchange (ETDEWEB)

    Pourmousavi Kani, S.A. [Electrical and Computer Engineering Department, 627 Cobleigh Hall, Montana State University, Bozeman, MT 59717 (United States); Ardehali, M.M. [Energy Research Center, Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran 15914 (Iran, Islamic Republic of)

    2011-01-15

    As the objective of this study, artificial neural network (ANN) and Markov chain (MC) are used to develop a new ANN-MC model for forecasting wind speed in very short-term time scale. For prediction of very short-term wind speed in a few seconds in the future, data patterns for short-term (about an hour) and very short-term (about minutes or seconds) recorded prior to current time are considered. In this study, the short-term patterns in wind speed data are captured by ANN and the long-term patterns are considered utilizing MC approach and four neighborhood indices. The results are validated and the effectiveness of the new ANN-MC model is demonstrated. It is found that the prediction errors can be decreased, while the uncertainty of the predictions and calculation time are reduced. (author)

  13. Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-06-01

    Full Text Available Affected by various environmental factors, wind speed presents high fluctuation, nonlinear and non-stationary characteristics. To evaluate wind energy properly and efficiently, this paper proposes a modified fast ensemble empirical model decomposition (FEEMD-bat algorithm (BA-least support vector machines (LSSVM (FEEMD-BA-LSSVM model combined with input selected by deep quantitative analysis. The original wind speed series are first decomposed into a limited number of intrinsic mode functions (IMFs with one residual series. Then a LSSVM is built to forecast these sub-series. In order to select input from environment variables, Cointegration and Granger causality tests are proposed to check the influence of temperature with different leading lengths. Partial correlation is applied to analyze the inner relationships between the historical speeds thus to select the LSSVM input. The parameters in LSSVM are fine-tuned by BA to ensure the generalization of LSSVM. The forecasting results suggest the hybrid approach outperforms the compared models.

  14. Very short-term wind speed prediction: A new artificial neural network-Markov chain model

    International Nuclear Information System (INIS)

    As the objective of this study, artificial neural network (ANN) and Markov chain (MC) are used to develop a new ANN-MC model for forecasting wind speed in very short-term time scale. For prediction of very short-term wind speed in a few seconds in the future, data patterns for short-term (about an hour) and very short-term (about minutes or seconds) recorded prior to current time are considered. In this study, the short-term patterns in wind speed data are captured by ANN and the long-term patterns are considered utilizing MC approach and four neighborhood indices. The results are validated and the effectiveness of the new ANN-MC model is demonstrated. It is found that the prediction errors can be decreased, while the uncertainty of the predictions and calculation time are reduced.

  15. Dual stator winding variable speed asynchronous generator: optimal design and experiments

    Science.gov (United States)

    Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.

    2015-06-01

    In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].

  16. Dual stator winding variable speed asynchronous generator: magnetic equivalent circuit with saturation, FEM analysis and experiments

    Science.gov (United States)

    Tutelea, L. N.; Muntean, N.; Deaconu, S. I.; Cunţan, C. D.

    2016-02-01

    The authors carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behaviour in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings, FEM validation of parameters and characteristics with free FEMM 4.2 computing software and the practice experimental tests for verifying them. Issue is limited to three phase range of double stator winding cage-asynchronous generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].

  17. Variable Speed Wind Turbine Based on Multiple Generators Drive-Train Configuration

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2010-01-01

    A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine. A cascaded multilevel converter interface based on the MPMSGs is developed to synthesize a desired high ac sinusoidal...... reduce the fluctuation of the electromagnetic torque sum and results in a good performance for the MPMSGs structure. The simulation study is conducted using PSCAD/EMTDC, and the results verify the feasibility of this variable speed wind turbine based on multiple generators drive-train configuration....... output voltage, which could be directly connected to the grids. What is more, such arrangement has been made so that the output ac voltage having a selected phase angle difference among the stator windings of multiple generators. A phase angle shift strategy is proposed in this paper, which effectively...

  18. Analysis of the short-term overproduction capability of variable speed wind turbines

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit; Margaris, Ioannis D.;

    2014-01-01

    extensions of the Type IV standard wind turbine model proposed by the IEC Committee in IEC 61400-27-1. This modified standard model is able to account for dynamic features relevant for integrating active power ancillary services in wind power plants, such as frequency support capabilities. The performance of......Emphasis in this article is on variable speed wind turbines (VSWTs) capability to provide short-term overproduction and better understanding of VSWTs’ mechanical and electrical limits to deliver such support. VSWTs’ short-term overproduction capability is of primary concern for the transmission...... VSWTs during short-term overproduction is assessed and discussed by means of simulations for different wind speed levels, overproduction percentages and durations. The results show that the capability of VSWTs providing short-term overproduction to the grid strongly depends on the initial pre...

  19. Relationships among daily mean and maximum wind speeds, with application to data quality assurance

    Science.gov (United States)

    Graybeal, Daniel Y.

    2006-01-01

    A growing number of climate change and variability studies, as well as applied research toward improving engineering design climatographies, require high-quality, long-term, extreme-value climate data sets for accurate and reliable estimates and assessments. As part of a historical weather data rescue project of the US government, new data quality control procedures are being developed and applied for daily maximum wind speeds. Not only are existing quality assurance procedures mostly lacking for such data but the climatological relationships upon which such quality checks may be based are also grossly underexploited. Therefore, this study seeks to elucidate relationships among peak-gust, fastest-mile, and fastest 5-min wind speeds, utilizing the peak gust factor model but generalizing it for these and other extreme wind-speed elements. The relationship between peak-gust factor and daily mean wind speed is also adapted for quality assurance and for a wider range of climates than previously studied. Fastest-interval wind-speed factors are found to follow Gaussian, gamma, or Weibull probability distributions, included within mixed models to handle zeros. Resistant prediction interval estimates about a resistant regression were developed for quality assurance of peak-gust factor, given the daily mean wind speed. Flagging thresholds were estimated using parametric bootstrapping. Flag rates from 0.05 to 0.5% are in line with rates reported in the literature, from work with similar data sets; overall Type I and Type II error rates are in the range 0.03-0.3%. The approach outlined lends itself straightforwardly to application in data quality assurance.

  20. Modeling and Design Optimization of Variable-Speed Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Ulas Eminoglu

    2014-01-01

    Full Text Available As a result of the increase in energy demand and government subsidies, the usage of wind turbine system (WTS has increased dramatically. Due to the higher energy production of a variable-speed WTS as compared to a fixed-speed WTS, the demand for this type of WTS has increased. In this study, a new method for the calculation of the power output of variable-speed WTSs is proposed. The proposed model is developed from the S-type curve used for population growth, and is only a function of the rated power and rated (nominal wind speed. It has the advantage of enabling the user to calculate power output without using the rotor power coefficient. Additionally, by using the developed model, a mathematical method to calculate the value of rated wind speed in terms of turbine capacity factor and the scale parameter of the Weibull distribution for a given wind site is also proposed. Design optimization studies are performed by using the particle swarm optimization (PSO and artificial bee colony (ABC algorithms, which are applied into this type of problem for the first time. Different sites such as Northern and Mediterranean sites of Europe have been studied. Analyses for various parameters are also presented in order to evaluate the effect of rated wind speed on the design parameters and produced energy cost. Results show that proposed models are reliable and very useful for modeling and optimization of WTSs design by taking into account the wind potential of the region. Results also show that the PSO algorithm has better performance than the ABC algorithm for this type of problem.

  1. Wind River Watershed Restoration : 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2003-02-01

    This report focuses on work conducted in 2000 and 2001 by the U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) as part of the Wind River Watershed Restoration Project. The project started in the early 1990s, and has been funded through the Bonneville Power Administration (BPA) since 1998. The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the Wind River subbasin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. In addition to USGS-CRRL, other BPA-funded entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), and Washington Department of Fish and Wildlife (WDFW). To describe the activities and accomplishments of the USGS-CRRL portion of the project, we partitioned the 2000-2001 annual report into two pieces: Report A and Report B. In Report A, we provide information on flow, temperature, and habitat conditions in the Wind River subbasin. Personnel from CRRL monitored flows at 12 sites in 2000 and 17 sites in 2001. Flow measurements were generally taken every two weeks during June through October, which allowed tracking of the descending limb of the hydrograph in late spring, through the base low flow period in summer, and the start of the ascending limb of the hydrograph in fall. We maintained a large array of water-temperature sites in the Wind River subbasin, including data from 25 thermographs in 2000 and 27 thermographs in 2001. We completed stream reach surveys on 14.0 km in 2000 and 6.1 km in 2001. Our focus for these reach surveys has been on the upper Trout Creek and upper Wind River watersheds, though some reach surveys have occurred in the Panther Creek watershed. Data generated by these reach surveys include stream width, stream gradient, large woody debris frequency, pool frequency, canopy

  2. Control of a Stand-Alone Variable Speed Wind Energy Supply System †

    OpenAIRE

    Mohamed M. Hamada; Mohamed A. A. Wahab; Tomonobu Senjyu; Mohamed Orabi; Mahmoud M. Hussein

    2013-01-01

    This paper presents a simple control strategy for the operation of a variable speed stand-alone wind turbine with a permanent magnet synchronous generator (PMSG). The PMSG is connected to a three phase resistive load through a switch mode rectifier and a voltage source inverter. Control of the generator side converter is used to achieve maximum power extraction from the available wind power. Control of the DC-DC bidirectional buck-boost converter, which is connected between batteries bank and...

  3. Dynamic Protective Control Strategy for Distributed Generation System with Fixed-speed Wind Turbines

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The characteristics of induction generator based fixed-speed wind turbines (FSWT) are investigated. The impacts of different execution time in protective operations are studied under different fauit duration and various wind velocity situations, e.g. , FSWT stabilities of load shedding in distribution systems. Based on this research, a dynamic protective control strategy for a distributed generation system (DGS) with FSWT is proposed. Finally, simulation results demonstrate the effectiveness of the strategy.

  4. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system

    OpenAIRE

    Zaragoza Bertomeu, Jordi; Pou Félix, Josep; Arias Pujol, Antoni; Spiteri, Cyril; Robles Sestafe, Eider; Ceballos Recio, Salvador

    2011-01-01

    This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two differ...

  5. Variable Speed Wind Turbine Based on Multiple Generators Drive-Train Configuration

    OpenAIRE

    Deng, Fujin; Chen, Zhe

    2010-01-01

    A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine. A cascaded multilevel converter interface based on the MPMSGs is developed to synthesize a desired high ac sinusoidal output voltage, which could be directly connected to the grids. What is more, such arrangement has been made so that the output ac voltage having a selected phase angle difference among the stator w...

  6. Development of a wind gust model to estimate gust speeds and their return periods

    OpenAIRE

    Seregina, Larisa S.; Haas, Rabea; Born, Kai; Joaquim G. Pinto

    2014-01-01

    Spatially dense observations of gust speeds are necessary for various applications, but their availability is limited in space and time. This work presents an approach to help to overcome this problem. The main objective is the generation of synthetic wind gust velocities. With this aim, theoretical wind and gust distributions are estimated from 10 yr of hourly observations collected at 123 synoptic weather stations provided by the German Weather Service. As pre-processing, an exposure correc...

  7. Solution of the Atmospheric Diffusion Equation with Longitudinal Wind Speed Depending on Source Distance

    OpenAIRE

    Davidson Martins Moreira; Taciana Toledo de Almeida Albuquerque

    2016-01-01

    Abstract An integral semi-analytical solution of the atmospheric diffusion equation considering wind speed as a function of both downwind distance from a pollution source and vertical height is presented. The model accounts for transformation and removal mechanisms via both chemical reaction and dry deposition processes. A hypothetical dispersion of contaminants emitted from an urban pollution source in the presence of mesoscale winds in an unstable atmospheric boundary layer is showed. The r...

  8. Influence of wind farm capacity, turbine size and wind speed on production cost: analysis of the actual market trend

    International Nuclear Information System (INIS)

    Several studies are undertaken in R and D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site that could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analysed. A brief analysis of the market trend is also performed. (author)

  9. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    Science.gov (United States)

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  10. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    Science.gov (United States)

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  11. Estimation of extreme wind speed in SCS and NWP by a non-stationary model

    Directory of Open Access Journals (Sweden)

    Lizhen Wang

    2016-05-01

    Full Text Available In offshore engineering design, it is considerably significant to have an adequately accurate estimation of marine environmental parameters, in particular, the extreme wind speed of tropical cyclone (TC with different return periods to guarantee the safety in projected operating life period. Based on the 71-year (1945–2015 TC data in the Northwest Pacific (NWP by the Joint Typhoon Warning Center (JTWC of US, a notable growth of the TC intensity is observed in the context of climate change. The fact implies that the traditional stationary model might be incapable of predicting parameters in the extreme events. Therefore, a non-stationary model is proposed in this study to estimate extreme wind speed in the South China Sea (SCS and NWP. We find that the extreme wind speeds of different return periods exhibit an evident enhancement trend, for instance, the extreme wind speeds with different return periods by non-stationary model are 4.1%–4.4% higher than stationary ones in SCS. Also, the spatial distribution of extreme wind speed in NWP has been examined with the same methodology by dividing the west sea areas of the NWP 0°–45°N, 105°E–130°E into 45 subareas of 5°×5°, where oil and gas resources are abundant. Similarly, remarkable spacial in-homogeneity in the extreme wind speed is seen in this area: the extreme wind speed with 50-year return period in the subarea (15°N–20°N, 115°E–120°E of Zhongsha and Dongsha Islands is 73.8 m/s, while that in the subarea of Yellow Sea (30°N–35°N, 120°E–125°E is only 47.1 m/s. As a result, the present study demonstrates that non-stationary and in-homogeneous effects should be taken into consideration in the estimation of extreme wind speed.

  12. Effect of wind speed on accuracy of Turc method in a humid climate

    OpenAIRE

    Trajković Slaviša; Stojnić Vladimir

    2007-01-01

    The Turc method is one of the simplest and most accurate empirical equations used for ETO estimation. The objectives of this study are: first, to investigate the effect of wind speed on accuracy of Turc method; second, to develop the wind speed adjustment factors for the Turc method. The adjusted Turc method provides the quite good agreement with the evapotranspiration obtained by the FAO-56 Penman-Monteith method. It gave reliable estimation at all the locations and it has proven to be the m...

  13. a New Method to Detect Regions Endangered by High Wind Speeds

    Science.gov (United States)

    Fischer, P.; Ehrensperger, S.; Krauß, T.

    2016-06-01

    In this study we evaluate whether the methodology of Boosted Regression Trees (BRT) suits for accurately predicting maximum wind speeds. As predictors a broad set of parameters derived from a Digital Elevation Model (DEM) acquired within the Shuttle Radar Topography Mission (SRTM) is used. The derived parameters describe the surface by means of quantities (e.g. slope, aspect) and quality (landform classification). Furthermore land cover data from the CORINE dataset is added. The response variable is maximum wind speed, measurements are provided by a network of weather stations. The area of interest is Switzerland, a country which suits perfectly for this study because of its highly dynamic orography and various landforms.

  14. Comparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi;

    2013-01-01

    This work discusses the accuracies of geophysical model functions (GMFs) for retrieval of sea surface wind speed from satellite-borne Synthetic Aperture Radar (SAR) images in Japanese coastal waters characterized by short fetches and variable atmospheric stability conditions. In situ observations...... neutral condition. In short, at the moment, CMOD5.N is thought to be the most promising GMF for the SAR wind speed retrieval with the atmospheric stability correction in Japanese coastal waters, although there is ample room for future improvement for the effect from short fetch....

  15. Short-term Probabilistic Forecasting of Wind Speed Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Morales González, Juan Miguel; Møller, Jan Kloppenborg;

    2016-01-01

    and uncertain nature. In this paper, we propose a modeling framework for wind speed that is based on stochastic differential equations. We show that stochastic differential equations allow us to naturally capture the time dependence structure of wind speed prediction errors (from 1 up to 24 hours...... ahead) and, most importantly, to derive point and quantile forecasts, predictive distributions, and time-path trajectories (also referred to as scenarios or ensemble forecasts), all by one single stochastic differential equation model characterized by a few parameters....

  16. Flux-tube geometry and wind speed during an activity cycle

    OpenAIRE

    Pinto, R. F.; Brun, A. S.; Rouillard, A. P.

    2016-01-01

    The solar wind speed at 1 AU shows variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal wind speed in a magnetic flux-tube is anti-correlated with its expansion ratio, which motivated the definition of widely-used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad-hoc corrections. A predictive law based solely on physical principl...

  17. Effect of wind speed on accuracy of Turc method in a humid climate

    Directory of Open Access Journals (Sweden)

    Trajković Slaviša

    2007-01-01

    Full Text Available The Turc method is one of the simplest and most accurate empirical equations used for ETO estimation. The objectives of this study are: first, to investigate the effect of wind speed on accuracy of Turc method; second, to develop the wind speed adjustment factors for the Turc method. The adjusted Turc method provides the quite good agreement with the evapotranspiration obtained by the FAO-56 Penman-Monteith method. It gave reliable estimation at all the locations and it has proven to be the most adjustable to the local climatic conditions. These results recommend the adjusted Turc method for estimating reference evapotranspiration.

  18. Robust Active Disturbance Rejection Control Approach to Maximize Energy Capture in Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Horacio Coral-Enriquez

    2013-01-01

    Full Text Available This paper proposes an alternative robust observer-based linear control technique to maximize energy capture in a 4.8 MW horizontal-axis variable-speed wind turbine. The proposed strategy uses a generalized proportional integral (GPI observer to reconstruct the aerodynamic torque in order to obtain a generator speed optimal trajectory. Then, a robust GPI observer-based controller supported by an active disturbance rejection (ADR approach allows asymptotic tracking of the generator speed optimal trajectory. The proposed methodology controls the power coefficient, via the generator angular speed, towards an optimum point at which power coefficient is maximum. Several simulations (including an actuator fault are performed on a 4.8 MW wind turbine benchmark model in order to validate the proposed control strategy and to compare it to a classical controller. Simulation and validation results show that the proposed control strategy is effective in terms of power capture and robustness.

  19. Effect of tuned unified power flow controller to mitigate the rotor speed instability of fixed-speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jayashri, R. [Department of Electrical and Electronics Engineering, Sri Venkateswara College of Engineering (Affiliated to Anna University), Pennalur, Sriperumbudur, Tamilnadu 602105 (India); Kumudini Devi, R.P. [Department of Electrical and Electronics Engineering, College of Engineering, Anna University, Chennai (India)

    2009-03-15

    In this paper, the dynamic performance of grid connected Wind Energy Conversion System (WECS) is analysed in terms of the newly defined concept of rotor speed stability. The WECS is considered as a fixed-speed system that is equipped with a squirrel-cage induction generator. The drive-train is represented as a two-mass model. Results show that for a particular fault simulated the voltage at the Point of Common Coupling (PCC) drops below 80% immediately after fault application and settles at a low value. The rotor speed of induction generators becomes unstable. In order to improve the low voltage ride-through of WECS under fault conditions and to damp the rotor speed oscillations of induction generator, an Unified Power Flow Controller (UPFC) is employed. The gains of this FACTS controller are tuned with a simple Genetic Algorithm (GA). It is observed that UPFC helps not only in regulating the voltage, but also in mitigating the rotor speed instability. (author)

  20. Low-speed wind tunnel testing of the NPS/NASA Ames Mach 6 optimized waverider

    OpenAIRE

    Cedrun, Mark E.

    1994-01-01

    Low-speed wind tunnel tests were conducted to determine the subsonic aerodynamic characteristics of an optimized supersonic (Mach 6) conical-flow waverider designed for a deck-launched intercept mission. These tests are part of the continuing waverider research being conducted by the Naval Postgraduate School and the NASA Ames Research Center. The tests consisted of performing Alpha and Beta sweeps, at different dynamic pressures, with a 15 inch aluminum waverider model in the NPS low-speed w...

  1. Changes in thermospheric temperature induced by high-speed solar wind streams

    OpenAIRE

    Gardner, Larry; Sojka, Jan J.; Schunk, Robert W.; Heelis, Rod

    2012-01-01

    During high-speed stream (HSS) events the solar wind speed increases, and the cross polar cap potential increases, leading to increased Joule heating at high latitudes. The heat input at high latitudes heats the polar regions, which then conducts to lower latitudes, producing global heating. The heating occurs during the risetime of the cross polar cap potential and throughout the period of high cross polar cap potential as seen in our simulation. These simulations are performed using the Uta...

  2. Solution of the Atmospheric Diffusion Equation with Longitudinal Wind Speed Depending on Source Distance

    Directory of Open Access Journals (Sweden)

    Davidson Martins Moreira

    2016-06-01

    Full Text Available Abstract An integral semi-analytical solution of the atmospheric diffusion equation considering wind speed as a function of both downwind distance from a pollution source and vertical height is presented. The model accounts for transformation and removal mechanisms via both chemical reaction and dry deposition processes. A hypothetical dispersion of contaminants emitted from an urban pollution source in the presence of mesoscale winds in an unstable atmospheric boundary layer is showed. The results demonstrate that the mesoscale winds generated by urban heat islands advect contaminants upward, which increases the intensity of air pollution in urban areas.

  3. Comparison of simulators for variable-speed wind turbine transient analysis

    DEFF Research Database (Denmark)

    Seman, S.; Iov, Florin; Niiranen, J.; Arkkio, A.

    2006-01-01

    This paper presents a comparison of three variable-speed wind turbine simulators used for a 2 MW wind turbine short-term transient behaviour study during a symmetrical network disturbance. The simulator with doubly fed induction generator (DFIG) analytical model, the simulator with a finite element...... method (FEM) DFIG model and the wind turbine simulator with an analytical model of DFIG are compared. The comparison of the simulation results shows the influence of the different modelling approaches on the short-term transient simulation accuracy...

  4. Adaptive Voltage Control Strategy for Variable-Speed Wind Turbine Connected to a Weak Network

    DEFF Research Database (Denmark)

    Abulanwar, Elsayed; Hu, Weihao; Chen, Zhe; Iov, Florin

    2016-01-01

    Significant voltage fluctuations and power quality issues pose considerable constraints on the efficient integration of remotely located wind turbines into weak networks. Besides, 3p oscillations arising from the wind shear and tower shadow effects induce further voltage perturbations during...... continuous operation. This study investigates and analyses the repercussions raised by integrating a doubly-fed induction generator wind turbine into an ac network of different parameters and very weak conditions. An adaptive voltage control (AVC) strategy is proposed to retain voltage constancy and...... smoothness at the point of connection (POC) in order to maximise the wind power penetration into such networks. Intensive simulation case studies under different network topology and wind speed ranges reveal the effectiveness of the AVC scheme to effectively suppress the POC voltage variations particularly...

  5. Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions

    International Nuclear Information System (INIS)

    Highlights: • Four hybrid algorithms are proposed for the wind speed decomposition. • Adaboost algorithm is adopted to provide a hybrid training framework. • MLP neural networks are built to do the forecasting computation. • Four important network training algorithms are included in the MLP networks. • All the proposed hybrid algorithms are suitable for the wind speed predictions. - Abstract: The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS

  6. Error Correction Method for Wind Speed Measured with Doppler Wind LIDAR at Low Altitude

    Science.gov (United States)

    Liu, Bingyi; Feng, Changzhong; Liu, Zhishen

    2014-11-01

    For the purpose of obtaining global vertical wind profiles, the Atmospheric Dynamics Mission Aeolus of European Space Agency (ESA), carrying the first spaceborne Doppler lidar ALADIN (Atmospheric LAser Doppler INstrument), is going to be launched in 2015. DLR (German Aerospace Center) developed the A2D (ALADIN Airborne Demonstrator) for the prelaunch validation. A ground-based wind lidar for wind profile and wind field scanning measurement developed by Ocean University of China is going to be used for the ground-based validation after the launch of Aeolus. In order to provide validation data with higher accuracy, an error correction method is investigated to improve the accuracy of low altitude wind data measured with Doppler lidar based on iodine absorption filter. The error due to nonlinear wind sensitivity is corrected, and the method for merging atmospheric return signal is improved. The correction method is validated by synchronous wind measurements with lidar and radiosonde. The results show that the accuracy of wind data measured with Doppler lidar at low altitude can be improved by the proposed error correction method.

  7. Validation of satellite SAR offshore wind speed maps to in-situ data, microscala and mesoscale model results

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Barthelmie, R.; Dellwik, E.; Hoffmann Joergensen, B.; Gylling Mortensen, N.; Nielsen, M.; Pryor, S.; Rathmann, O.

    2002-05-01

    A validation study has been performed in order to investigate the precision and accuracy of the satellite-derived ERS-2 SAR wind products in offshore regions. The overall project goal is to develop a method for utilizing the satellite wind speed maps for offshore wind resources, e.g. in future planning of offshore wind farms. The report describes the validation analysis in detail for three sites in Denmark, Italy and Egypt. The site in Norway is analyzed by the Nansen Environmental and Remote Sensing Centre (NERSC). Wind speed maps and wind direction maps from Earth Observation data recorded by the ERS-2 SAR satellite have been obtained from the NERSC. For the Danish site the wind speed and wind direction maps have been compared to in-situ observations from a met-mast at Horns Rev in the North Sea located 14 km offshore. The SAR wind speeds have been area-averaged by simple and advanced footprint modelling, ie. the upwind conditions to the meteorological mast are explicitly averaged in the SAR wind speed maps before comparison. The comparison results are very promising with a standard error of {+-} 0.61 m s{sup -1}, a bias {approx}2 m s{sup -1} and R{sup 2} {approx}0.88 between in-situ wind speed observations and SAR footprint averaged values at 10 m level. Wind speeds predicted by the local scale model LINCOM and the mesoscale model KAMM2 have been compared to the spatial variations in the SAR wind speed maps. The finding is a good correspondence between SAR observations and model results. Near the coast is an 800 m wide band in which the SAR wind speed observations have a strong negative bias. The bathymetry of Horns Rev combined with tidal currents give rise to bias in the SAR wind speed maps near areas of shallow, complex bottom topography in some cases. A total of 16 cases were analyzed for Horns Rev. For Maddalena in Italy five cases were analyzed. At the Italian site the SAR wind speed maps were compared to WAsP and KAMM2 model results. The WAsP model

  8. Evaluation of power flow solutions with fixed speed wind turbine generating systems

    International Nuclear Information System (INIS)

    Highlights: • The model of a wind generator is modified and incorporated into a power flow program. • Unlike previous methods, modification to source codes of the program is not required. • The turbine power curve is mathematically expressed using manufacturer’s data. • The power flow of the IEEE 118-bus system is successfully solved with 12 wind farms for 1000 random cases of wind speeds. • For a simple system, the load flow results are also compared with the corresponding steady state values of dynamic responses. - Abstract: An increased penetration of wind turbine generating systems into power grid calls for proper modeling of the systems and incorporating the model into various computational tools used in power system operation and planning studies. This paper proposes a simple method of incorporating the exact equivalent circuit of a fixed speed wind generator into conventional power flow program. The method simply adds two internal buses of the generator to include all parameters of the equivalent circuit. For a given wind speed, the active power injection into one of the internal buses is determined through wind turbine power curve supplied by the manufacturers. The internal buses of the model can be treated as a traditional P–Q bus and thus can easily be incorporated into any standard power flow program by simply augmenting the input data files and without modifying source codes of the program. The effectiveness of the proposed method is then evaluated on a simple system as well as on the IEEE 30- and 118-bus systems. The results of the simple system are also compared with those found through Matlab/Simulink using dynamic model of wind generating system given in SimPowerSystems blockset

  9. Wind resource assessment and wind power potential of Mil-E Nader region in Sistan and Baluchestan Province, Iran – Part 1: Annual energy estimation

    International Nuclear Information System (INIS)

    Highlights: • An estimation of wind power potential of Mil-E Nader region is proposed. • Wind data analyzed by well known wind energy software. • There is significant wind power potential at the region. - Abstract: In this paper, wind power potential of Mil-E Nader region is statistically analyzed based on 10 min measured short term wind data. Weibull parameters at 40 m height have been estimated and used to describe the distribution of wind data and its frequencies. Additionally, diurnal and monthly wind speed variations have been calculated. Based on power law model and average wind speed at three heights (10, 30 and 40 m), wind speeds at higher elevations have been extrapolated. Energy analysis has been carried out to find best hub height by comparing energy production of several wind turbines with different classes and hub heights. The energy production analysis showed that the wind turbines with 80 m height have high production in comparison to the others

  10. VSC-HVDC link to support voltage and frequency fluctuations for variable speed wind turbines for grid connection

    OpenAIRE

    Meere, Ronan; O'Malley, Mark; Keane, Andrew

    2012-01-01

    This paper presents the use of induction generator turbine machines with simplified frequency control as a direct drive solution for wind energy conversion. An offshore wind farm system is proposed utilising a VSC-HVDC connection. The wind farm will contain variable speed wind turbines driving Squirrel Cage Induction Generators (SCIG). The study will look at the electrical performance of the generators with real wind data and the design control implications with a VSC-HVDC link. The performan...

  11. Wind characteristics and available wind energy in Egypt

    International Nuclear Information System (INIS)

    Three sites in Egypt, differing in natural conditions but having almost the same wind characteristics are chosen for this study. Annual mean wind speed at a height of 20m above ground level ranges between 4.6 and 5.5 m/s. Daily wind-speed distribution for every month of the year is presented. Monthly average wind speeds throughout the year are also presented. The analysis shows that the yearly average of the available wind power ranges between 73 and 112 W/m2. In view of wind energy exploration for agricultural purposes, estimates are reported of the seasonal and annual duration of wind speed and of duration of the available wind power. The possibility of utilizing wind energy at the different sites using small scale wind energy conversion systems is discussed. (author)

  12. Modeling Heteroscedasticity of Wind Speed Time Series in the United Arab Emirates

    Science.gov (United States)

    Kim, H. Y.; Marpu, P. R.; Ouarda, T.

    2014-12-01

    There has been a growing interest in wind resources in the Gulf region, not only for evaluating wind energy potential, but also for understanding and forecasting changes in wind, as a regional climate variable. In particular, time varying variance—the second order moment—or heteroscedasticity in wind time series is important to investigate since high variance causes turbulence, which affects wind power potential and may lead to structural changes in wind turbines. Nevertheless, the conditional variance of wind time series has been rarely explored, especially in the Gulf region. Therefore, the seasonal autoregressive integrated moving average-generalized autoregressive conditional heteroscedasticity (SARIMA-GARCH) model is applied to observed wind data in the United Arab Emirates (UAE). This model allows considering apparent seasonality which is present in wind time series and the heteroscedasticity in residuals indicated with the Engle test, to understand and forecast changes in the conditional variance of wind time series. In this study, the autocorrelation function of daily average wind speed time series obtained from seven stations within the UAE—Al Aradh, Al Mirfa, Al Wagan, East of Jebel Haffet, Madinat Zayed, Masdar City, Sir Bani Yas Island—is inspected to fit a SARIMA model. The best SARIMA model is selected according to the minimum Akaike Information Criteria (AIC) and based on residuals of the model. Then, the GARCH model is applied to the remaining residuals to capture the conditional variance of the SARIMA model. Results indicate that the SARIMA-GARCH model provides a good fir to wind data in the UAE.

  13. Transient Model Validation of Fixed-Speed Induction Generator Using Wind Farm Measurements

    DEFF Research Database (Denmark)

    Rogdakis, Georgios; Garcia-Valle, Rodrigo; Arana Aristi, Iván

    2012-01-01

    In this paper, an electromagnetic transient model for fixed-speed wind turbines equipped with induction generators is developed and implemented in PSCAD/EMTDC. The model is comprised by: an induction generator, aerodynamic rotor, and a two-mass representation of the shaft system. Model validation...

  14. Near surface spatially averaged air temperature and wind speed determined by acoustic travel time tomography

    Directory of Open Access Journals (Sweden)

    Armin Raabe

    2001-03-01

    Full Text Available Acoustic travel time tomography is presented as a possibility for remote monitoring of near surface airtemperature and wind fields. This technique provides line-averaged effective sound speeds changing with temporally and spatially variable air temperature and wind vector. The effective sound speed is derived from the travel times of sound signals which propagate at defined paths between different acoustic sources and receivers. Starting with the travel time data a tomographic algorithm (Simultaneous Iterative Reconstruction Technique, SIRT is used to calculate area-averaged air temperature and wind speed. The accuracy of the experimental method and the tomographic inversion algorithm is exemplarily demonstrated for one day without remarkable differences in the horizontal temperature field, determined by independent in situ measurements at different points within the measuring field. The differences between the conventionally determined air temperature (point measurement and the air temperature determined by tomography (area-averaged measurement representative for the area of the measuring field 200m x 260m were below 0.5 K for an average of 10 minutes. The differences obtained between the wind speed measured at a meteorological mast and calculated from acoustic measurements are not higher than 0.5 ms-1 for the same averaging time. The tomographically determined area-averaged distribution of air temperature (resolution 50 m x 50 m can be used to estimate the horizontal gradient of air temperature as a pre-condition to detect horizontal turbulent fluxes of sensible heat.

  15. Validation of sea surface temperature, wind speed and integrated water vapour from MSMR measurements. Project report

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    and autonomous weather station) were utilized for measuring sea truth parameters such as sea surface temperature (SST), Sea Surface Wind Speed (WS) and Columnar Water Vapor (WV). Total match-ups for SST and WS measured from various platforms exceeded 1400 (2 hrs...

  16. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    Science.gov (United States)

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  17. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  18. The spiral structure of a tropical cyclone and computation of maximum wind speed in it

    International Nuclear Information System (INIS)

    The spiral structure of a tropical cyclone has been explained by using the potential flow theory of Hydrodynamics. The same approach has been used to derive a formula for computation of maximum wind speed in a tropical cyclone, which agrees fairly well with an empirical formula obtained by Fletcher. (author)

  19. Experiment about Drag Reduction of Bionic Non-smooth Surface in Low Speed Wind Tunnel

    Institute of Scientific and Technical Information of China (English)

    Tian Li-mei; Ren Lu-quan; Han Zhi-wu; Zhang Shi-cun

    2005-01-01

    The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship be tween drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of 1 mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13 % to 22.30%.

  20. Improving Fault Ride-Through Capability of Variable Speed Wind Turbines in Distribution Networks

    DEFF Research Database (Denmark)

    Mokryani, Geev; Siano, P.; Piccolo, Antonio; Chen, Zhe

    2013-01-01

    In this paper, a fuzzy controller for improving the fault ride-through (FRT) capability of variable speed wind turbines (WTs) equipped with a doubly fed induction generator (DFIG) is presented. DFIGs can be used as reactive power sources to control the voltage at the point of common coupling (PCC...

  1. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    Science.gov (United States)

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  2. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction.

    Science.gov (United States)

    Ak, Ronay; Fink, Olga; Zio, Enrico

    2016-08-01

    The increasing liberalization of European electricity markets, the growing proportion of intermittent renewable energy being fed into the energy grids, and also new challenges in the patterns of energy consumption (such as electric mobility) require flexible and intelligent power grids capable of providing efficient, reliable, economical, and sustainable energy production and distribution. From the supplier side, particularly, the integration of renewable energy sources (e.g., wind and solar) into the grid imposes an engineering and economic challenge because of the limited ability to control and dispatch these energy sources due to their intermittent characteristics. Time-series prediction of wind speed for wind power production is a particularly important and challenging task, wherein prediction intervals (PIs) are preferable results of the prediction, rather than point estimates, because they provide information on the confidence in the prediction. In this paper, two different machine learning approaches to assess PIs of time-series predictions are considered and compared: 1) multilayer perceptron neural networks trained with a multiobjective genetic algorithm and 2) extreme learning machines combined with the nearest neighbors approach. The proposed approaches are applied for short-term wind speed prediction from a real data set of hourly wind speed measurements for the region of Regina in Saskatchewan, Canada. Both approaches demonstrate good prediction precision and provide complementary advantages with respect to different evaluation criteria. PMID:25910257

  3. Application of extreme learning machine for estimation of wind speed distribution

    Science.gov (United States)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Petković, Dalibor; Porcu, Emilio; Mostafaeipour, Ali; Ch, Sudheer; Sedaghat, Ahmad

    2016-03-01

    The knowledge of the probabilistic wind speed distribution is of particular significance in reliable evaluation of the wind energy potential and effective adoption of site specific wind turbines. Among all proposed probability density functions, the two-parameter Weibull function has been extensively endorsed and utilized to model wind speeds and express wind speed distribution in various locations. In this research work, extreme learning machine (ELM) is employed to compute the shape ( k) and scale ( c) factors of Weibull distribution function. The developed ELM model is trained and tested based upon two widely successful methods used to estimate k and c parameters. The efficiency and accuracy of ELM is compared against support vector machine, artificial neural network and genetic programming for estimating the same Weibull parameters. The survey results reveal that applying ELM approach is eventuated in attaining further precision for estimation of both Weibull parameters compared to other methods evaluated. Mean absolute percentage error, mean absolute bias error and root mean square error for k are 8.4600 %, 0.1783 and 0.2371, while for c are 0.2143 %, 0.0118 and 0.0192 m/s, respectively. In conclusion, it is conclusively found that application of ELM is particularly promising as an alternative method to estimate Weibull k and c factors.

  4. Application of the Single Imputation Method to Estimate Missing Wind Speed Data in Malaysia

    Directory of Open Access Journals (Sweden)

    Nurulkamal Masseran

    2013-07-01

    Full Text Available In almost all research fields, the procedure for handling missing values must be addressed before a detailed analysis can be made. Thus, a suitable method of imputation should be chosen to address the missing value problem. Wind speed has been found in engineering practice to be the most significant parameter in wind power. However, researchers are sometimes faced with the problem of missing wind speed data caused by equipment failure. In this study, we attempt to implement four types of single imputation methods to estimate the wind speed data from three adjacent stations in Malaysia. The methods, known as the site-dependent effect method, the hour mean method, the last and next method, and the row mean method, are compared based on the index of agreement to identify the best method for estimating the missing values. The results indicate that the last and next is the best of the three methods for estimating the missing data for the wind stations considered.

  5. Prediction of Wind Speeds Based on Digital Elevation Models Using Boosted Regression Trees

    Science.gov (United States)

    Fischer, P.; Etienne, C.; Tian, J.; Krauß, T.

    2015-12-01

    In this paper a new approach is presented to predict maximum wind speeds using Gradient Boosted Regression Trees (GBRT). GBRT are a non-parametric regression technique used in various applications, suitable to make predictions without having an in-depth a-priori knowledge about the functional dependancies between the predictors and the response variables. Our aim is to predict maximum wind speeds based on predictors, which are derived from a digital elevation model (DEM). The predictors describe the orography of the Area-of-Interest (AoI) by various means like first and second order derivatives of the DEM, but also higher sophisticated classifications describing exposure and shelterness of the terrain to wind flux. In order to take the different scales into account which probably influence the streams and turbulences of wind flow over complex terrain, the predictors are computed on different spatial resolutions ranging from 30 m up to 2000 m. The geographic area used for examination of the approach is Switzerland, a mountainious region in the heart of europe, dominated by the alps, but also covering large valleys. The full workflow is described in this paper, which consists of data preparation using image processing techniques, model training using a state-of-the-art machine learning algorithm, in-depth analysis of the trained model, validation of the model and application of the model to generate a wind speed map.

  6. Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine

    International Nuclear Information System (INIS)

    Highlights: • Set-up of an experimental test emulating a wind turbine, driving a grid-connected conventional DFIG. • An optimal operation below rated speed is achieved by means of an appropriate maximum power-point tracking algorithm. • Design and implementation of an adaptive model reference controller (MRAC) of the active and reactive power regulation. - Abstract: This paper presents the design and the implementation of a model reference adaptive control of the active and reactive power regulation of a grid connected wind turbine based on a doubly fed induction generator. This regulation is achieved below the synchronous speed, by means of a maximum power-point tracking algorithm. The experiment was conducted on a 1 kW didactic wound rotor induction machine in association with a wind turbine emulator. This implementation is realized using a dSPACE 1104 single-board control and acquisition interface. The obtained results show a permanent track of the available maximum wind power, under a chosen wind speed profile. Furthermore the proposed controller exhibits a smooth regulation of the stator active and reactive power amounts exchanged between the machine and the grid

  7. Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Floors, Rogier Ralph; Peña, Alfredo; Batchvarova, Ekaterina; Brümmer, Burghard

    2016-01-01

    Wind-speed observations from tall towers are used in combination with observations up to 600 m in altitude from a Doppler wind lidar to study the long-term conditions over suburban (Hamburg), rural coastal (Høvsøre) and marine (FINO3) sites. The variability in the wind field among the sites is ex...

  8. Wind Speed Estimation and Parametrization of Wake Models for Downregulated Offshore Wind Farms within the scope of PossPOW Project

    DEFF Research Database (Denmark)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Poulsen, Niels Kjølstad;

    2014-01-01

    main challenges encountered in the project so far are the estimation of wind speed and the recreation of the flow inside the downregulated wind farm as if it is operating ideally. The rotor effective wind speed was estimated using power, pitch angle and rotational speed as inputs combined with a......With increasing installed capacity, wind farms are requested to downregulate more frequently, especially in the offshore environment. Determination and verification of possible (or available) power of downregulated offshore wind farms are the aims of the PossPOW project (see PossPOW.dtu.dk). Two...... period. The re-calibrated model has to be further parametrized to include dynamic effects such as wind direction variability and meandering also considering different averaging time scales before implemented in full scale wind farms....

  9. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    Directory of Open Access Journals (Sweden)

    J. Kazil

    2015-10-01

    Full Text Available Observed and projected trends in large scale wind speed over the oceans prompt the question: how might marine stratocumulus clouds and their radiative properties respond to future changes in large scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum, and thereby acts on cloud liquid water path (LWP and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning – afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m−2, long wave emissions are very insensitive to LWP. This leads to the more general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find furthermore that large scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment, and in part because circulation driven by shear from large scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due

  10. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    Science.gov (United States)

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-01

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning-afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m-2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy

  11. Global measurements of sea surface temperature, wind speed and atmospheric water content from satellite microwave radiometry

    Science.gov (United States)

    Njoku, E. G.; Swanson, L.

    1983-01-01

    The Scanning Multichannel Microwave Radiometer (SMMR) was launched on the Seasat and Nimbus 7 satellites in 1978. The SMMR has the ability to measure sea surface temperature and wind speed with the aid of microwaves. In addition, the instrument was designed to measure water vapor and cloud liquid water with better spatial resolution than previous microwave radiometers, and to make sea-ice measurements with higher precision. A description is presented of the results of global analyses of sea surface temperature, wind speed, water vapor, and cloud liquid water, taking into account data provided by the SMMR on the Seasat satellite. It is found that the SMMR data show good self-consistency, and can usefully measure global distributions of sea surface temperatures, surface winds, water vapor, and cloud liquid water.

  12. Influence of the fitted probability distribution type on the annual mean power generated by wind turbines: A case study at the Canary Islands

    International Nuclear Information System (INIS)

    This paper aims to quantify the influence that probability distribution selected to fit wind speed data has on the estimation of the annual mean energy production of wind turbines. To perform this task, a comparative analysis between the well-known two parameter wind speed Weibull distribution and alternative mixture of finite distribution models (less simple but providing better fits in many locations) is applied, in order to contrast simplicity versus accuracy. Data fitted from a set of weather stations located at the Canary Islands and a representative sample of commercial wind turbines are taken into account to carry out this analysis. The calculations provide a wide variety of numerical results but, as a general conclusion, the analysis evidences that any improvement in wind data fits given by the use of a mixture of finite distributions, instead of the standard Weibull distribution, is partially or even totally lost as the annual mean energy production is worked out, practically regardless the weather station, the wind speed distribution model, the turbine size or the turbine concept

  13. IPS observations at 140 MHz to study solar wind speeds and density fluctuations by MEXART

    Science.gov (United States)

    Chang, Oyuki; Gonzalez-Esparza, J. A.; Mejia-Ambriz, J.

    2016-03-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring the inner heliosphere. These observations supply information on solar wind conditions covering heliocentric ranges that no other technique can provide. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to performing solar-wind studies employing the IPS technique. We present solar-wind parameters (scintillation indices and solar-wind speeds), using the initial measurements from this array of four IPS sources (3C273, 3C283, 3C286, 3C298) detected during October-December 2014. We report the transit of an IPS radio source (3C298), observed at 140 MHz, from weak- to strong-scattering regions at around 0.36 AU, and sky projection maps of solar wind conditions associated presumably with the passing of one or more Coronal Mass Ejections (CMEs). These results show the progress to operate the full array in the near future. The MEXART observations will complement the solar wind IPS studies using other frequencies, and the tracking of solar wind disturbances by other stations located at different longitudes. These solar wind measurements, provided in real time, can have space-weather forecasting applications.

  14. A control strategy for a variable-speed wind energy conversion system

    Science.gov (United States)

    Jacob, A.; Rajagopalan, V.; Veillette, D.

    1980-01-01

    In this article, a method of calculating an optimal control strategy for a variable-speed wind power generation scheme incorporating a squirrel cage induction machine and operating in a self-excited induction generator mode is discussed. This scheme also uses a conventional three-phase thyristor rectifier, a line-commutated inverter and an economical auxiliary commutated-voltage-source inverter. The three regulated variables are: (1) drive speed as a function of available mechanical energy by manipulating the resistive torque developed by induction generator; (2) induction motor power consumption during start-up of the wind machine of vertical axis type; (3) operating slip of the induction machine, thereby limiting start-up and braking currents. The developed strategy is also suitable for any other variable-speed drive system incorporating an induction machine.

  15. Adaptive Optics Parameters connection to wind speed at the Teide Observatory

    CERN Document Server

    García-Lorenzo, B; Fuensalida, J J; Castro-Almazan, J

    2009-01-01

    Current projects for large telescopes demand a proper knowledge of atmospheric turbulence to design efficient adaptive optics systems in order to reach large Strehl ratios. However, the proper characterization of the turbulence above a particular site requires long-term monitoring. Due to the lack of long-term information on turbulence, high-altitude winds (in particular winds at the 200 mbar pressure level) were proposed as a parameter for estimating the total turbulence at a particular site, with the advantage of records of winds going back several decades. We present the first complete study of atmospheric adaptive optics parameters above the Teide Observatory (Canary Islands, Spain) in relation to wind speed. On-site measurements of CN2(h) profiles (more than 20200 turbulence profiles) from G-SCIDAR observations and wind vertical profiles from balloons have been used to calculate the seeing, the isoplanatic angle and the coherence time. The connection of these parameters to wind speeds at ground and 200 m...

  16. A level 2 wind speed retrieval algorithm for the CYGNSS mission

    Science.gov (United States)

    Clarizia, Maria Paola; Ruf, Christopher; O'Brien, Andrew; Gleason, Scott

    2014-05-01

    The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS consists of a constellation of 8 microsatellites, which will measure ocean surface wind speed in all precipitating conditions, including those experienced in the TC eyewall, and with sufficient frequency to resolve genesis and rapid intensification. It does so through the use of an innovative remote sensing technique, known as Global Navigation Satellite System-Reflectometry, or GNSS-R. GNSS-R uses signals of opportunity from navigation constellations (e.g. GPS, GLONASS, Galileo), scattered by the surface of the ocean, to retrieve the surface wind speed. The dense space-time sampling capabilities, the ability of L-band signals to penetrate well through rain, and the possibility of simple, low-cost/low-power GNSS receivers, make GNSS-R ideal for the CYGNSS goals. Here we present an overview of a Level 2 (L2) wind speed retrieval algorithm, which would be particularly suitable for CYGNSS, and could be used to estimate winds from GNSS-R in general. The approach makes use of two different observables computed from 1-second Level 2a (L2a) delay-Doppler Maps (DDMs) of radar cross section. The first observable is called Delay-Doppler Map Average (DDMA), and it's the averaged radar cross section over a delay-Doppler window around the DDM peak (i.e. the specular reflection point coordinate in delay and Doppler). The second is called the Leading Edge Slope (LES), and it's the leading edge of the Integrated Delay Waveform (IDW), obtained by integrating the DDM along the Doppler dimension. The observables are calculated over a limited range of delays and Doppler frequencies, to comply with baseline spatial resolution requirements for the retrieved winds, which in the case of CYGNSS is 25 km x 25 km. If the observable from the 1-second DDM corresponds to a resolution higher than the specified one, time-averaging between

  17. Modelling of wind power plant controller, wind speed time series, aggregation and sample results

    OpenAIRE

    Anca Daniela HANSEN; Altin, Müfit; Nicolaos Antonio CUTULULIS

    2015-01-01

    This report describes the modelling of a wind power plant (WPP) including its controller. Several ancillary services like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) are implemented. The focus in this document is on the performance of the WPP output and not the impact of the WPP on the power system. By means of simulation tests, the capability of the implemented wind power plant model to deliver ancillary services is investigated.

  18. Candidate wind turbine generator site: annual data summary, January 1981-December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.

    1982-07-01

    Summarized hourly meteorological data for 34 candidate and wind turbine generator sites for calendar year 1981 are presented. These data are collected for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, wind speed, direction, and distribution data are given in eight tables. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

  19. Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo-Sanz, Sancho; Perez-Bellido, Angel M.; Ortiz-Garcia, Emilio G.; Portilla-Figueras, Antonio [Department of Signal Theory and Communications, Universidad de Alcala, Madrid (Spain); Prieto, Luis [Wind Resource Department, Iberdrola Renovables, Madrid (Spain); Paredes, Daniel [Department of Physics of the Earth, Astronomy and Astrophysics II, Universidad Complutense de Madrid (Spain)

    2009-06-15

    This paper presents the hybridization of the fifth generation mesoscale model (MM5) with neural networks in order to tackle a problem of short-term wind speed prediction. The mean hourly wind speed forecast at wind turbines in a wind park is an important parameter used to predict the total power production of the park. Our model for short-term wind speed forecast integrates a global numerical weather prediction model and observations at different heights (using atmospheric soundings) as initial and boundary conditions for the MM5 model. Then, the outputs of this model are processed using a neural network to obtain the wind speed forecast in specific points of the wind park. In the experiments carried out, we present some results of wind speed forecasting in a wind park located at the south-east of Spain. The results are encouraging, and show that our hybrid MM5-neural network approach is able to obtain good short-term predictions of wind speed at specific points. (author)

  20. Comparison of Lavenberg-Marquardt, Scaled Conjugate Gradient and Bayesian Regularization Backpropagation Algorithms for Multistep Ahead Wind Speed Forecasting Using Multilayer Perceptron Feedforward Neural Network

    OpenAIRE

    Baghirli, Orkhan

    2015-01-01

    Wind speed forecasting is critical for wind energy conversion systems since it greatly influences the issues such as scheduling of the power systems, and dynamic control of the wind turbines. Also, it plays an essential role for siting, sizing and improving the efficiency of wind power generation systems. Due to volatile and non-stationary nature of wind speed time series, wind speed forecasting has been proven to be a challenging task that requires adamant care and caution. There are several...

  1. Time Series Analysis and Forecasting for Wind Speeds Using Support Vector Regression Coupled with Artificial Intelligent Algorithms

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2015-01-01

    Full Text Available Wind speed/power has received increasing attention around the earth due to its renewable nature as well as environmental friendliness. With the global installed wind power capacity rapidly increasing, wind industry is growing into a large-scale business. Reliable short-term wind speed forecasts play a practical and crucial role in wind energy conversion systems, such as the dynamic control of wind turbines and power system scheduling. In this paper, an intelligent hybrid model for short-term wind speed prediction is examined; the model is based on cross correlation (CC analysis and a support vector regression (SVR model that is coupled with brainstorm optimization (BSO and cuckoo search (CS algorithms, which are successfully utilized for parameter determination. The proposed hybrid models were used to forecast short-term wind speeds collected from four wind turbines located on a wind farm in China. The forecasting results demonstrate that the intelligent hybrid models outperform single models for short-term wind speed forecasting, which mainly results from the superiority of BSO and CS for parameter optimization.

  2. Modified GIT model for predicting wind-speed behavior of low-grazing-angle radar sea clutter

    Science.gov (United States)

    Zhang, Yu-Shi; Zhang, Jin-Peng; Li, Xin; Wu, Zhen-Sen

    2014-10-01

    A modified GIT model for describing the variational trend of mean clutter reflectivity as a function of wind speed is proposed. It uses two slope adjustment factors and two critical wind-speed factors to define and adjust the increasing slope of reflectivity with respect to wind speed. In addition, it uses a constant factor to compensate the overall amplitude of clutter reflectivity. The performance of the modified GIT model has been verified on the basis of the L-band low-grazing-angle radar sea clutter data. The results are in good agreement with the experimental data, indicating that the model is more effective in predicting the wind-speed behavior of clutter reflectivity than the conventional GIT model, especially for lower and higher wind speeds. We believe that the proposed model can provide deeper insights into the relationship between radar sea clutter reflectivity and sea state conditions.

  3. Modified GIT model for predicting wind-speed behavior of low-grazing-angle radar sea clutter

    International Nuclear Information System (INIS)

    A modified GIT model for describing the variational trend of mean clutter reflectivity as a function of wind speed is proposed. It uses two slope adjustment factors and two critical wind-speed factors to define and adjust the increasing slope of reflectivity with respect to wind speed. In addition, it uses a constant factor to compensate the overall amplitude of clutter reflectivity. The performance of the modified GIT model has been verified on the basis of the L-band low-grazing-angle radar sea clutter data. The results are in good agreement with the experimental data, indicating that the model is more effective in predicting the wind-speed behavior of clutter reflectivity than the conventional GIT model, especially for lower and higher wind speeds. We believe that the proposed model can provide deeper insights into the relationship between radar sea clutter reflectivity and sea state conditions. (interdisciplinary physics and related areas of science and technology)

  4. Application of stochastic methods for wind speed forecasting and wind turbines design at the area of Thessaly, Greece

    Science.gov (United States)

    Dimitriadis, Panayiotis; Lazaros, Lappas; Daskalou, Olympia; Filippidou, Ariadni; Giannakou, Marianna; Gkova, Eleni; Ioannidis, Romanos; Polydera, Angeliki; Polymerou, Eleni; Psarrou, Eleftheria; Vyrini, Alexandra; Papalexiou, Simon; Koutsoyiannis, Demetris

    2015-04-01

    Several methods exist for estimating the statistical properties of wind speed, most of them being deterministic or probabilistic, disregarding though its long-term behaviour. Here, we focus on the stochastic nature of wind. After analyzing several historical timeseries at the area of interest (AoI) in Thessaly (Greece), we show that a Hurst-Kolmogorov (HK) behaviour is apparent. Thus, disregarding the latter could lead to unrealistic predictions and wind load situations, causing some impact on the energy production and management. Moreover, we construct a stochastic model capable of preserving the HK behaviour and we produce synthetic timeseries using a Monte-Carlo approach to estimate the future wind loads in the AoI. Finally, we identify the appropriate types of wind turbines for the AoI (based on the IEC 61400 standards) and propose several industrial solutions. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  5. Power Spectral Density of Fluctuations of Bulk and Thermal Speeds in the Solar Wind

    Science.gov (United States)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-07-01

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s‑1 bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are ‑1.43 and ‑1.38, respectively, whereas they are ‑3.08 and ‑2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  6. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  7. Modeling and Operational Testing of an Isolated Variable Speed PMSG Wind Turbine with Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    BAROTE, L.

    2012-05-01

    Full Text Available This paper presents the modeling and operational testing of an isolated permanent magnet synchronous generator (PMSG, driven by a small wind turbine with a battery energy storage system during wind speed and load variations. The whole system is initially modeled, including the PMSG, the boost converter and the storage system. The required power for the connected loads can be effectively delivered and supplied by the proposed wind turbine and energy storage systems, subject to an appropriate control method. Energy storage devices are required for power balance and power quality in stand alone wind energy systems. The main purpose is to supply 230 V / 50 Hz domestic appliances through a single-phase inverter. The experimental waveforms, compared to the simulation results, show a good prediction of the electrical variable parameters. Furthermore, it can be seen that the results validate the stability of the supply.

  8. A wave tank study of the dependence of X band cross sections on wind speed and water temperature

    Science.gov (United States)

    Keller, Mary Ruth; Keller, William C.; Plant, William J.

    1992-01-01

    The effects of varying the water temperature, wind speed, and wind stress on the values of backscatter were investigated using measurements of normalized radar cross sections of wind-generated waves, made at X band for both vertical and horizontal polarization for incidence angles 10, 28, 48, and 68 deg. The experiment was conducted using the Naval Research Laboratory wind-wave tank. Measurements made for a wide range of wind speeds and water temperatures are compared with results of backscattering models currently in use.

  9. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach

    International Nuclear Information System (INIS)

    Highlights: • A novel hybrid modeling method is proposed for short-term wind speed forecasting. • Support vector regression model is constructed to formulate nonlinear state-space framework. • Unscented Kalman filter is adopted to recursively update states under random uncertainty. • The new SVR–UKF approach is compared to several conventional methods for short-term wind speed prediction. • The proposed method demonstrates higher prediction accuracy and reliability. - Abstract: Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed. In this study, unscented Kalman filter (UKF) is integrated with support vector regression (SVR) based state-space model in order to precisely update the short-term estimation of wind speed sequence. In the proposed SVR–UKF approach, support vector regression is first employed to formulate a nonlinear state-space model and then unscented Kalman filter is adopted to perform dynamic state estimation recursively on wind sequence with stochastic uncertainty. The novel SVR–UKF method is compared with artificial neural networks (ANNs), SVR, autoregressive (AR) and autoregressive integrated with Kalman filter (AR-Kalman) approaches for predicting short-term wind speed sequences collected from three sites in Massachusetts, USA. The forecasting results indicate that the proposed method has much better performance in both one-step-ahead and multi-step-ahead wind speed predictions than the other approaches across all the locations

  10. Opportunities and challenges in assessing climate change impacts on wind energy-a critical comparison of wind speed projections in California

    International Nuclear Information System (INIS)

    Future climate change is expected to alter the spatial and temporal distribution of surface wind speeds (SWS), with associated impacts on electricity generation from wind energy. However, the predictions for the direction and magnitude of these changes hinge critically on the assessment methods used. Many climate change impact analyses, including those focused on wind energy, use individual climate models and/or statistical downscaling methods rooted in historical observations. Such studies may individually suggest an unrealistically high level of scientific certainty due to the absence of competing projections (over the same region, time period, etc). A new public data archive, the North American Regional Climate Change Assessment Program (NARCCAP), allows for a more comprehensive perspective on regional climate change impacts, here applied to three wind farm sites in California. We employ NARCCAP regional climate model data to estimate changes in SWS expected to occur in the mid-21st century at three wind farm regions: Altamont Pass, San Gorgonio Pass, and Tehachapi Pass. We examined trends in SWS magnitude and frequency using three different global/regional model pairs, focused on model evaluation, seasonal cycle, and long-term trends. Our results, while specific to California, highlight the opportunities and limitations in NARCCAP and other publicly available meteorological data sets for energy analysis, and the importance of using multiple models for climate change impact assessment. Although spatial patterns in current wind conditions agree fairly well among models and with NARR (North American Regional Reanalysis) data, results vary widely at our three sites of interest. This poor performance and model disagreement may be explained by complex topography, limited model resolution, and differences in model physics. Spatial trends and site-specific estimates of annual average changes (1980-2000 versus 2051-71) also differed widely across models. All models

  11. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    Science.gov (United States)

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  12. Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model

    Directory of Open Access Journals (Sweden)

    Erasmo Cadenas

    2016-02-01

    Full Text Available Two on step ahead wind speed forecasting models were compared. A univariate model was developed using a linear autoregressive integrated moving average (ARIMA. This method’s performance is well studied for a large number of prediction problems. The other is a multivariate model developed using a nonlinear autoregressive exogenous artificial neural network (NARX. This uses the variables: barometric pressure, air temperature, wind direction and solar radiation or relative humidity, as well as delayed wind speed. Both models were developed from two databases from two sites: an hourly average measurements database from La Mata, Oaxaca, Mexico, and a ten minute average measurements database from Metepec, Hidalgo, Mexico. The main objective was to compare the impact of the various meteorological variables on the performance of the multivariate model of wind speed prediction with respect to the high performance univariate linear model. The NARX model gave better results with improvements on the ARIMA model of between 5.5% and 10. 6% for the hourly database and of between 2.3% and 12.8% for the ten minute database for mean absolute error and mean squared error, respectively.

  13. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement

    Science.gov (United States)

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  14. Investigation of load reduction for a variable speed, variable pitch, and variable coning wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    A two bladed, variable speed and variable pitch wind turbine was modeled using ADAMS{reg_sign} to evaluate load reduction abilities of a variable coning configuration as compared to a teetered rotor, and also to evaluate control methods. The basic dynamic behavior of the variable coning turbine was investigated and compared to the teetered rotor under constant wind conditions as well as turbulent wind conditions. Results indicate the variable coning rotor has larger flap oscillation amplitudes and much lower root flap bending moments than the teetered rotor. Three methods of control were evaluated for turbulent wind simulations. These were a standard IPD control method, a generalized predictive control method, and a bias estimate control method. Each control method was evaluated for both the variable coning configuration and the teetered configuration. The ability of the different control methods to maintain the rotor speed near the desired set point is evaluated from the RMS error of rotor speed. The activity of the control system is evaluated from cycles per second of the blade pitch angle. All three of the methods were found to produce similar results for the variable coning rotor and the teetered rotor, as well as similar results to each other.

  15. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  16. A method of micrositing of wind turbine on building roof top by using joint distribution of wind speed and direction, and computational fluid dynamics

    International Nuclear Information System (INIS)

    Urban wind turbines are recommended for installation on a building roof top to capture more wind energy. It is critical to decide an exact location for the wind turbine installation on the roof top area. In this paper a joint probability density function of wind speed and direction is proposed as a statistical model for wind distribution, and a CFD approach is taken to predict the wind acceleration effect by the geometry of the building. Singly Truncated Normal Weibull (TNW) PDF mixture (TNW PDF) is used as the wind speed distribution function, and von Mises mixture distribution is utilized for the wind direction distribution. These two functions are jointly tested to accurately describe the wind database. The method proposed by Johnson and Wehrly is used to obtain angular linear distributions for this purpose. The inevitable acceleration and secondary effects of building's roof top upon the wind distribution is assessed quantitatively by means of the CFD technique. The CFD simulation provides time averaged wind speeds of various directions with their calculated probabilities at a specific location over the roof top. Thereby the micrositing method is suggested for determination of optimal location for the installation of small wind turbine in the urban roof top environment

  17. Vector Wind Velocity, Speed, and Mode Summaries for the Southeastern U. S

    International Nuclear Information System (INIS)

    This report presents wind speed and direction summaries for a wide area of the Southeastern United States (including EPA Region 4) and portions of the Ohio and Mississippi River Valleys in a monthly time series format that is further broken down for eight hours of the day (01:00, 04:00, 07:00, 10:00, 13:00, 16:00, 19:00, 22:00 EST). The data used for these summaries were obtained from the International Station MeteorologicalClimate Summary (FCCA, 1996), a publicly available source of tabular data from weather stations around the world distributed through the National Climatic Data Center. The advantage of examining the data in the form presented in this report is that it is far easier to examine and understand regional and diurnal weather patterns than would be possible with the tabular data in its original format. The winds presented here can be viewed online in any of three formats through an Internet link. The first format is the traditional wind rose as used in our earlier reports f or 13 stations in the Southeast, c.f., Weber, Buckley, and Parker 2002 and Weber, Buckley, and Kurzeja 2003. The second format is the mode, or most frequent wind direction sector from the wind rose plots (i.e., the longest ''petal'' from the individual station roses). Finally, the third format depicted is the average wind vector. The average wind vector was determined by extracting the wind speed and direction for each of the 16 sectors from a station's wind record and then summing components of these vectors for the month and time of observation. Each station was then plotted on a sequence of maps for the Southeastern U.S. using ArcView software. These maps form a time series in 3-hour increments showing changes in vector wind speed and direction for each month of the year. The complete set of color figures are too numerous to be included in this report, but may be accessed by contacting one of the authors

  18. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    Directory of Open Access Journals (Sweden)

    Jesús Peláez Vara

    2013-07-01

    Full Text Available The aim of this study was to propose and evaluate a very small wind turbine (VSWT that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through three operational modes: (i to drive the turbine to its optimum operation point; (ii to limit its maximum rotational speed; and (iii to limit the maximum power it generates. Two tests were performed, in order to evaluate the dynamic response of this system under variable wind speeds. The tests demonstrate that the system operates at the optimum operational point of the turbine, and within the set limits of maximum rotational speed and maximum generated power. The drop in performance in relation to its nominal value is about 75%, when operating at 50% of the nominal power. In summary, this VSWT with its proposed control program is feasible and reliable for operating direct-shaft grid-connected VSWTs.

  19. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Zhenyuan Jia

    2014-12-01

    Full Text Available High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  20. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    Science.gov (United States)

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-01-01

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°. PMID:25615732

  1. Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds

    Directory of Open Access Journals (Sweden)

    Yun-Su Kim

    2015-02-01

    Full Text Available This paper presents a method to seek the PI controller parameters of a PMSG wind turbine to improve control performance. Since operating conditions vary with the wind speed, therefore the PI controller parameters should be determined as a function of the wind speed. Small-signal modeling of a PMSG WT is implemented to analyze the stability under various operating conditions and with eigenvalues obtained from the small-signal model of the PMSG WT, which are coordinated by adjusting the PI controller parameters. The parameters to be tuned are chosen by investigating participation factors of state variables, which simplifies the problem by reducing the number of parameters to be tuned. The process of adjusting these PI controller parameters is carried out using particle swarm optimization (PSO. To characterize the improvements in the control method due to the PSO method of tuning the PI controller parameters, the PMSG WT is modeled using the MATLAB/SimPowerSystems libraries with the obtained PI controller parameters.

  2. An advanced strategy for wind speed forecasting using expert 2-D FIR filters

    Directory of Open Access Journals (Sweden)

    MOGHADDAM, A. A.

    2010-11-01

    Full Text Available Renewable energies such as wind and solar have become the most attractive means of electricity generation nowadays. Social and environmental benefits as well as economical issues result in further utilization of such these energy resources. In this regard, wind energy plays an important roll in operation of small-scale power systems like Micro Grid. On the other hand, wind stochastic nature in different time and place horizons, makes accurate forecasting of its behavior an inevitable task for market planners and energy management systems. In this paper an advanced strategy for wind speed estimation has been purposed and its superior performance is compared to that of conventional methods. The model is based on linear predictive filtering and image processing principles using 2-D FIR filters. To show the efficiency of purposed predictive model different FIR filters are designed and tested through similar data. Wind speed data have been collected during the period January 1, 2009 to December 31, 2009 from Casella automatic weather station at Plymouth. It is observed that 2-D FIR filters act more accurately in comparison with 1-D conventional representations; however, their prediction ability varies considerably through different filter sizing.

  3. Assessment of the dispersion of fission products in the atmosphere following a reactor accident under meteorological conditions of low wind speeds with or without high temporal and spatial variability in wind speed and direction

    International Nuclear Information System (INIS)

    This study of atmospheric dispersion at low wind speed include tracer experiments (SF6, CEA-CADARACHE site) and interpretation with the tri-Gaussian puff computer code ICAIRE 3 of CEA/IPSN. Interesting characteristic features of low wind speed under stable condition were obtained. Slow temporal evolution of concentration in the field was observed with high concentration values along time after release end. Interpretation of experimental results with the computer code, using certain standard deviations, shows reasonable agreement on maximum concentration values. However, the observed plume is narrower than calculated, and a better fit was obtained modifying the standard-deviations, especially reducing the transversal one. This effect is probably linked to site topography. Many observed differences between calculated and measured values are due to difficulty in evaluating the transport terms (wind speed and direction). Their punctual measurement gives a poor representation of mean pollutant transport, probably because of heterogeneity of wind field, at Cadarache, in low wind speed situations

  4. Decentralized & Adaptive Load-Frequency Control Scheme of Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2014-01-01

    In power systems with high penetration of Wind Power (WP), transferring a part of Load Frequency Control (LFC) burden to variable speed Wind Turbines (WTs) is inevitable. The conventional LFC schemes merely rely on frequency information and since frequency is a common variable throughout...... and therefore determining the contribution factor of each individual WT to gain an adaptive LFC approach. The Electrical Distance (ED) concept confirms that the locally measured voltage decay is a proper criterion of closeness to the disturbance place. Numerical simulations carried out in DigSilent Power...

  5. Impedance seen by Distance Relays on Lines Fed from Fixed Speed Wind Turbines

    Science.gov (United States)

    Srivastava, Sachin; Shenoy, U. J.; Chandra Biswal, Abhinna; Sethuraman, Ganesan

    2013-05-01

    This paper deals with line protection challenges experienced in a system having substantial wind generation penetration. Two types of generators, thermal synchronous generators and fixed speed wind turbines based on squirrel-cage induction generators, are simulated as thevenin equivalent model, connected to grid with single-circuit transmission line. The paper gives comparative discussion and summarizes analytical investigations carried out on the impedance seen by distance relays by varying fault resistances and grid short circuit MVA, for the protection of such transmission lines during faults.

  6. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    OpenAIRE

    Jesús Peláez Vara; Justo Ruiz Calvo; Jesús Ausín Rodríguez; Juan Vicente Martín Fraile; Francisco Javier Gomez-Gil; Andrés Bravo Cuesta

    2013-01-01

    The aim of this study was to propose and evaluate a very small wind turbine (VSWT) that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG) driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through thr...

  7. Design and Comparison of Full-size Converters for Large Variable-Speed Wind Turbines

    DEFF Research Database (Denmark)

    Zeng, Xiang Jun; Blaabjerg, Frede; Chen, Zhe

    2007-01-01

    The full-size converters for wind turbine systems can flexibly realize variable-speed control and meet power system operational requirements. The designs of Two-Level, Three-Level Neutral Point Clamped and Three-Level Flying Capacitor converter as full-size back-to-back converters for large wind...... turbine system are discussed in this paper. The harmonic standard and power system operation requirements for the converters are considered. And SVPWM with the on-off control is proposed to suppress the neutral point potential or fly-capacitor voltage deviation and drift for the three-level converters...

  8. Simulation and Study of Power Quality Issues in a Fixed Speed Wind Farm Substation

    OpenAIRE

    Magesh, T.; Chellamuthu, C.

    2015-01-01

    Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found th...

  9. Control Method for Variable Speed Wind Turbines to Support Temporary Primary Frequency Control

    DEFF Research Database (Denmark)

    Wang, Haijiao; Chen, Zhe; Jiang, Quanyuan

    2014-01-01

    This paper develops a control method for variable speed wind turbines (VSWTs) to support temporary primary frequency control of power system. The control method contains two parts: (1) up-regulate support control when a frequency drop event occurs; (2) down-regulate support control when a frequency...... rise event occurs. The up-regulate support is achieved by adaptively utilizing the wind energy curtailed by the pitch control and the kinetic energy stored in the rotating mass of the turbine blades. The down-regulate support is achieved by the pitch control. Furthermore, the up- and down-regulate...

  10. Orbiting observatory SOHO finds source of high-speed "wind" blowing from the Sun

    Science.gov (United States)

    1999-02-01

    "The search for the source of the solar wind has been like the hunt for the source of the Nile," said Dr. Don Hassler of the Southwest Research Institute, Boulder, Colorado, lead author of the paper in Science. "For 30 years, scientists have observed high-speed solar wind coming from regions in the solar atmosphere with open magnetic field lines, called coronal holes. However, only recently, with the observations from SOHO, have we been able to measure the detailed structure of this source region". The solar wind comes in two varieties : high-speed and low-speed. The low-speed solar wind moves at "only" 1.5 million kilometres per hour, while the high-speed wind is even faster, moving at speeds as high as 3 million kilometres per hour. As it flows past Earth, the solar wind changes the shape and structure of the Earth's magnetic field. In the past, the solar wind didn't affect us directly, but as we become increasingly dependent on advanced technology, we become more susceptible to its effects. Researchers are learning that variations in the solar wind flow can cause dramatic changes in the shape of the Earth's magnetic field, which can damage satellites and disrupt communications and electrical power systems. The nature and origin of the solar wind is one of the main mysteries ESA's solar observatory SOHO was designed to solve. It has long been thought that the solar wind flows from coronal holes; what is new is the discovery that these outflows are concentrated in specific patches at the edges of the honeycomb-shaped magnetic fields. Just below the surface of the Sun there are large convection cells, and each cell has a magnetic field associated with it. "If one thinks of these cells as paving stones in a patio, then the solar wind is breaking through like grass around the edges, concentrated in the corners where the paving stones meet", said Dr. Helen Mason, University of Cambridge, England, and co-author of the paper to appear in Science. "However, at speeds

  11. Development of a wind gust model to estimate gust speeds and their return periods

    Directory of Open Access Journals (Sweden)

    Larisa S. Seregina

    2014-04-01

    Full Text Available Spatially dense observations of gust speeds are necessary for various applications, but their availability is limited in space and time. This work presents an approach to help to overcome this problem. The main objective is the generation of synthetic wind gust velocities. With this aim, theoretical wind and gust distributions are estimated from 10 yr of hourly observations collected at 123 synoptic weather stations provided by the German Weather Service. As pre-processing, an exposure correction is applied on measurements of the mean wind velocity to reduce the influence of local urban and topographic effects. The wind gust model is built as a transfer function between distribution parameters of wind and gust velocities. The aim of this procedure is to estimate the parameters of gusts at stations where only wind speed data is available. These parameters can be used to generate synthetic gusts, which can improve the accuracy of return periods at test sites with a lack of observations. The second objective is to determine return periods much longer than the nominal length of the original time series by considering extreme value statistics. Estimates for both local maximum return periods and average return periods for single historical events are provided. The comparison of maximum and average return periods shows that even storms with short average return periods may lead to local wind gusts with return periods of several decades. Despite uncertainties caused by the short length of the observational records, the method leads to consistent results, enabling a wide range of possible applications.

  12. Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006

    Science.gov (United States)

    Lee, Sungeun; Hwang, Junga; Lee, Jae-Jin; Cho, Kyung-Suk; Kim, Khan-Hyuk; Yi, Yu

    2009-12-01

    Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs) were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1) High speed stream, (2) Pc5 ULF wave activity, (3) Southward IMF Bz, (4) substorm occurrence, (5) Whistler mode chorus wave, and (6) Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

  13. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.;

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during...

  14. Analysis and Modelling of Extreme Wind Speed Distributions in Complex Mountainous Regions

    Science.gov (United States)

    Laib, Mohamed; Kanevski, Mikhail

    2016-04-01

    Modelling of wind speed distributions in complex mountainous regions is an important and challenging problem which interests many scientists from several fields. In the present research, high frequency (10 min) Swiss wind speed monitoring data (IDAWEB service, Meteosuisse) are analysed and modelled with different parametric distributions (Weibull, GEV, Gamma, etc.) using maximum likelihood method. In total, 111 stations placed in different geomorphological units and at different altitude (from 203 to 3580 meters) are studied. Then, this information is used for training machine learning algorithms (Extreme Learning Machines, Support vector machine) to predict the distribution at new places, potentially useful for aeolian energy generation. An important part of the research deals with the construction and application of a high dimensional input feature space, generated from digital elevation model. A comprehensive study was carried out using feature selection approach to get the best model for the prediction. The main results are presented as spatial patterns of distributions' parameters.

  15. A NEW METHOD TO DETECT REGIONS ENDANGERED BY HIGH WIND SPEEDS

    Directory of Open Access Journals (Sweden)

    P. Fischer

    2016-06-01

    Full Text Available In this study we evaluate whether the methodology of Boosted Regression Trees (BRT suits for accurately predicting maximum wind speeds. As predictors a broad set of parameters derived from a Digital Elevation Model (DEM acquired within the Shuttle Radar Topography Mission (SRTM is used. The derived parameters describe the surface by means of quantities (e.g. slope, aspect and quality (landform classification. Furthermore land cover data from the CORINE dataset is added. The response variable is maximum wind speed, measurements are provided by a network of weather stations. The area of interest is Switzerland, a country which suits perfectly for this study because of its highly dynamic orography and various landforms.

  16. Variable speed wind turbine control by discrete-time sliding mode approach.

    Science.gov (United States)

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. PMID:26804750

  17. Dynamic Moisture Comfort Property of Fine Denier Polypropylene Fabric in Different Wind Speed Conditions

    Directory of Open Access Journals (Sweden)

    Hongyan Tu

    2013-05-01

    Full Text Available In order to study the moisture comfort property of fine denier polypropylene fiber fabric in different wind speed conditions, dynamic experiments were performed using Textile-Microclimate Measuring Instrument in climate chamber. The relative humidity variation curves of inner and outer surfaces of test fabrics were tested and the comprehensive index was introduced to evaluate fabric’s dynamic moisture comfort property. Results show that under four different environmental wind speed conditions, the dynamic moisture comfort property of fine denier polypropylene fiber fabric is much better than other fiber fabrics. In addition, grey mathematics theory was introduced to establish models to predict dynamic experiment’s results using static descriptive parameters. Four prediction models of dynamic comprehensive index were established and the predictive precision is much higher.

  18. Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines with Doubly Fed Induction Generators

    CERN Document Server

    Tang, Choon Yik; Jiang, John N

    2010-01-01

    This paper presents a feedback/feedforward nonlinear controller for variable-speed wind turbines with doubly fed induction generators. By appropriately adjusting the rotor voltages and the blade pitch angle, the controller simultaneously enables: (a) control of the active power in both the maximum power tracking and power regulation modes, (b) seamless switching between the two modes, and (c) control of the reactive power so that a desirable power factor is maintained. Unlike many existing designs, the controller is developed based on original, nonlinear, electromechanically-coupled models of wind turbines, without attempting approximate linearization. Its development consists of three steps: (i) employ feedback linearization to exactly cancel some of the nonlinearities and perform arbitrary pole placement, (ii) design a speed controller that makes the rotor angular velocity track a desired reference whenever possible, and (iii) introduce a Lyapunov-like function and present a gradient-based approach for mini...

  19. Simulation and Study of Power Quality Issues in a Fixed Speed Wind Farm Substation

    Directory of Open Access Journals (Sweden)

    T. Magesh

    2015-01-01

    Full Text Available Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation.

  20. Simulation and study of power quality issues in a fixed speed wind farm substation.

    Science.gov (United States)

    Magesh, T; Chellamuthu, C

    2015-01-01

    Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation. PMID:25950016

  1. Fault Diagnosis and Fault Tolerant Control with Application on a Wind Turbine Low Speed Shaft Encoder

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Sardi, Hector Eloy Sanchez; Escobet, Teressa;

    2015-01-01

    In recent years, individual pitch control has been developed for wind turbines, with the purpose of reducing blade and tower loads. Such algorithms depend on reliable sensor information. The azimuth angle sensor, which positions the wind turbine rotor in its rotation, is quite important. This sen...... due to individual pitch control algorithm operating with faulty azimuth angle inputs. The proposed approach is evaluated on a wind turbine benchmark model, which is based on the FAST aero-elastic code provided by NREL.......In recent years, individual pitch control has been developed for wind turbines, with the purpose of reducing blade and tower loads. Such algorithms depend on reliable sensor information. The azimuth angle sensor, which positions the wind turbine rotor in its rotation, is quite important. This...... sensor has to be correct as blade pitch actions should be different at different azimuth angle as the wind speed varies within the rotor field due to different phenomena. A scheme detecting faults in this sensor has previously been designed for the application of a high end fault diagnosis and fault...

  2. FIS/ANFIS Based Optimal Control for Maximum Power Extraction in Variable-speed Wind Energy Conversion System

    Science.gov (United States)

    Nadhir, Ahmad; Naba, Agus; Hiyama, Takashi

    An optimal control for maximizing extraction of power in variable-speed wind energy conversion system is presented. Intelligent gradient detection by fuzzy inference system (FIS) in maximum power point tracking control is proposed to achieve power curve operating near optimal point. Speed rotor reference can be adjusted by maximum power point tracking fuzzy controller (MPPTFC) such that the turbine operates around maximum power. Power curve model can be modelled by using adaptive neuro fuzzy inference system (ANFIS). It is required to simply well estimate just a few number of maximum power points corresponding to optimum generator rotor speed under varying wind speed, implying its training can be done with less effort. Using the trained fuzzy model, some estimated maximum power points as well as their corresponding generator rotor speed and wind speed are determined, from which a linear wind speed feedback controller (LWSFC) capable of producing optimum generator speed can be obtained. Applied to a squirrel-cage induction generator based wind energy conversion system, MPPTFC and LWSFC could maximize extraction of the wind energy, verified by a power coefficient stay at its maximum almost all the time and an actual power line close to a maximum power efficiency line reference.

  3. Modeling of a variable speed wind turbine with a permanent magnet synchronous generator

    OpenAIRE

    Rolán Blanco, Alejandro; Luna Alloza, Álvaro; Vázquez Guzmán, Gerardo; Aguilar Gaván, Daniel; Acevedo, Gustavo

    2009-01-01

    The aim of this work is to analyze a typical configuration of a Wind Turbine Generator System (WTGS) equipped with a Variable Speed Generator. Nowadays, doublyfed induction generators are being widely used on WTGS, although synchronous generators are being extensively utilized too. There are different types of synchronous generators, but the multi-pole Permanent Magnet Synchronous Generator (PMSG) is chosen in order to obtain its model. It offers better performance due...

  4. A Concentrated Solar Power Unit Collector’s Efficiency under varied wind speeds

    OpenAIRE

    Ajay Vardhan; A.C. Tiwar; Arvind Kausha; Sunil Hotchandani

    2013-01-01

    Concentrated Solar Power (CSP) harnesses the sun‟s solar energy to produce electricity. This report provides a technical analysis of the potential for CSP to provide low cost renewable electricity in Bhopal (M.P.) and outlines the impact of varied wind speeds on its collector‟s efficiency. Yields of CSP Plants depend strongly on site-specific meteorological conditions. Meteorological parameters that can influence the performance of CSP plant are Direct Normal I...

  5. Estimation of extreme wind speed in SCS and NWP by a non-stationary model

    OpenAIRE

    Lizhen Wang; Jiachun Li

    2016-01-01

    In offshore engineering design, it is considerably significant to have an adequately accurate estimation of marine environmental parameters, in particular, the extreme wind speed of tropical cyclone (TC) with different return periods to guarantee the safety in projected operating life period. Based on the 71-year (1945–2015) TC data in the Northwest Pacific (NWP) by the Joint Typhoon Warning Center (JTWC) of US, a notable growth of the TC intensity is observed in the context of climate change...

  6. Quantifying changes of wind speed distributions in the historical record of Atlantic tropical cyclones

    Directory of Open Access Journals (Sweden)

    K. Chen

    2009-10-01

    Full Text Available Here we re-examine the official Atlantic basin tropical cyclone (hurricane database HURDAT (1851–2008 and quantify differences between wind speed distributions in the early historical (1851–1943 record and more recent observations. Analyses were performed at three different geographical levels: for all six-hourly track segments of all Atlantic basin events, all segments of all events that crossed the US mainland, and US landfalling segments alone. At all three geographical levels of study, distributions of windspeeds over the last two, four and six decades display negligible dispersion or systematic change over time. On the other hand and relative to wind speed frequencies for subsequent years, the 1851–1943 record has a marked and statistically significant over-representation of wind speeds largely corresponding to Saffir-Simpson Categories 1 and 2 and under-representation of Categories 4 and 5 events; importantly, no single Category 5 event is recorded prior to 1924. The stability of the distribution of windspeeds at landfall over the last six decades, the dataset in which we can have most confidence, suggests that the differences in the earlier record are most likely explained by well-known measurement and observational deficiencies. Moreover by disaggregating the Power Dissipation Index (PDI, we demonstrate that the upward trend in Atlantic basin PDI since 1970s does not imply stronger and longer duration Category 5 windspeeds despite a warming climate. These results have implications for hurricane catastrophe loss modeling for the insurance industry and long-term trend analyses of the historical wind speed record, especially those related to the attribution of the role of Global Climate Change.

  7. Low power wind energy conversion system based on variable speed permanent magnet synchronous generators

    OpenAIRE

    Carranza Castillo, Oscar; Garcerá Sanfeliú, Gabriel; Figueres Amorós, Emilio; GONZÁLEZ MORALES, LUIS GERARDO

    2014-01-01

    This paper presents a low power wind energy conversion system (WECS) based on a permanent magnet synchronous generator and a high power factor (PF) rectifier. To achieve a high PF at the generator side, a power processing scheme based on a diode rectifier and a boost DC-DC converter working in discontinuous conduction mode is proposed. The proposed generator control structure is based on three cascaded control loops that regulate the generator current, the turbine speed and the amount of powe...

  8. Effects of nearby surface features on wind speed at a nuclear plant meteorological station

    International Nuclear Information System (INIS)

    There is a definite cause and effect relationship between the trees in the vicinity of the meteorological tower and the wind speed at the 10-meter level on the meteorological tower. For the affected directions, horizontal wind speed is significantly reduced below what it would be for that level if the trees were not present. This effect is only slightly less for the 10:1 exposure achieved with the 1977 tree clearing, which illustrates that meeting this commonly accepted distance to height ratio does not assure representativeness of 10-meter data collected at a nuclear plant site. The somewhat stronger effect for winds from the south through southwest directions may be partly attributable to the abrupt change in roughness and elevation encountered by air moving at an angle or directly across the reservoir, which is 3.5 to 5.0 kilometers wide at this site. This general reduction in wind speed values below what would be expected at the plant location will result in biased dispersion estimates. Calculated relative concentration values for releases treated as ground-level or building-wake releases would be larger than actual concentrations. While this would provide conservative concentration values, radioactive plume transport calculations would be nonconservative. The calculated, or predicted, transport rate would be slower than the actual transport rate. Such local biases affecting the spatial representativeness of airflow at 10 meters are a primary reason for TVA's decision to use 46-meter wind data for ground-level transport and diffusion modeling in its radiological emergency preparedness program

  9. On the geomagnetic response to high-speed solar-wind streams

    Energy Technology Data Exchange (ETDEWEB)

    Borello Filisetti, O.; Lovera, G.; Mussino, V.; Parisi, M.; Storini, M.

    1988-12-01

    The geomagnetic response to several well identified quasi-stationary solar-wind macrostructures are investigated, on 24-h scale, over the years 1965-1974. Sixty high-speed solar wind streams coming from coronal holes are analyzed grouping the events in three classes according to their time duration. For each class the average 24-h profile of the interplanetary parameters (magnetic field magnitude B, solar wind bulk speed V, proton density N/sub p/, temperature T/sub p/, ''total'' pressure P and dynamic pressure and the geomagnetic indices are obtained. The statistical reliability of these ''signals'' is evaluated by means of the two-way analysis of variance; the general features of these ''signals'' are discussed. During these streams the time dependence of the geomagnetic index values on a single interplanetary parameter shows an hysteresis-like behaviour, due to different stages of the geomagnetic perturbation development. Owing to the above hysteresis effect, a single interplanetary parameter is not sufficient to reproduce the complete geomagnetic perturbation and, at least, a combination of B and V variables is necessary. Average interplanetary physical conditions inside and outside high-speed plasma streams are also reported.

  10. Control design for a pitch-regulated, variable speed wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.H.; Hansen, A.; Larsen, T.J.; Oeye, S.; Soerensen, P.; Fuglsang, P.

    2005-01-01

    The three different controller designs presented herein are similar and all based on PI-regulation of rotor speed and power through the collective blade pitch angle and generator moment. The aeroelastic and electrical modelling used for the time-domain analysis of these controllers are however different, which makes a directly quantitative comparison difficult. But there are some observations of similar behaviours should be mentioned: 1) Very similar step responses in rotor speed, pitch angle, and power are seen for simulations with steps in wind speed. 2) All controllers show a peak in power for wind speed step-up over rated wind speed, which can be almost removed by changing the parameters of the frequency converter. 3) Responses of rotor speed, pitch angle, and power for different simulations with turbulent inflow are similar for all three controllers. Again, there seems to be an advantage of tuning the parameters of the frequency converter to obtain a more constant power output. The dynamic modelling of the power controller is an important result for the inclusion of generator dynamics in the aeroelastic modelling of wind turbines. A reduced dynamic model of the relation between generator torque and generator speed variations is presented; where the integral term of the inner PI-regulator of rotor current is removed be-cause the time constant is very small compared to the important aeroelastic frequencies. It is shown how the parameters of the transfer function for the remaining control system with the outer PI-regulator of power can be derived from the generator data sheet. The main results of the numerical optimisation of the control parameters in the pitch PI-regulator performed in Chapter 6 are the following: 1) Numerical optimization can be used to tune controller parameters, especially when the optimization is used as refinement of a qualified initial guess. 2) The design model used to calculate the initial value parameters, as described in Chapter 3

  11. Trends in surface wind speed and significant wave height as revealed by ERA-Interim wind wave hindcast in the Central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.

    and waves during the southwest monsoon season. We observed statistically declining trends in the mean and extreme wind speed (90th percentile) with increasing trend in extreme significant wave height (SWH). Seasonal analysis also investigated and found...

  12. Influence of time scale wind speed data on sustainability analysis for irrigating greenhouse crops

    Science.gov (United States)

    Díaz Méndez, Rodrigo; García Llaneza, Joaquín; Peillón, Manuel; Perdigones, Alicia; Sanchez, Raul; Tarquis, Ana M.; Garcia, Jose Luis

    2014-05-01

    Appropriate water supply at crop/farm level, with suitable costs, is becoming more and more important. Energy management is closely related to water supply in this context, being wind energy one of the options to be considered, using wind pumps for irrigation water supply. Therefore, it is important to characterize the wind speed frequency distribution to study the technical feasibility to use its energy for irrigation management purpose. The general objective of this present research is to analyze the impact of time scale recorded wind speed data in the sustainability for tomato (Solanum lycopersicum L.) grown under greenhouse at Cuban conditions using drip irrigation system. For this porpoise, a daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. Several factors were included: wind velocity (W, m/s) in function of the time scale averaged, flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. Three-hourly wind velocity (W3h, m/s) data from 1992 till 2008 was available for this study. The original data was grouped in six and twelve hourly data (W6h and W12h respectively) as well as daily data (W24h). For each time scale the daily estimation balance was applied. A comparison of the results points out a need for at least three-hourly data to be used mainly in the months in which mean wind speed are close or below the pumps threshold speed to start-up functioning. References Manuel Esteban Peillon Mesa, Ana Maria Tarquis Alfonso, José Luis García Fernández, and Raúl Sánchez Calvo. The use of wind pumps for irrigating greenhouse tomato crops: a case study in Cuba. Geophysical

  13. Enhancement of Voltage Stability in Fixed Speed Wind Energy Conversion Systems using FACTS Controller

    Directory of Open Access Journals (Sweden)

    K.MALARVIZHI

    2010-06-01

    Full Text Available Grid connected Fixed Speed Wind Turbines (FSWT may cause voltage stability problems which results in islanding of the generator from the grid. Voltage stability is a major issue to achieve the uninterrupted operation of wind farms equipped with FSWTs. In this paper the design of a Static Synchronous Compensator (STATCOM based on Cascaded H-Bridge (CHB – Multi Level Converter (MLC is proposed. The dynamic behavior of 3 level and 5 level CMC based STATCOM is validated by simulation with MATLAB/SIMULINK simulation techniques.A detailed analysis of the operating characteristics of the various inverter topologies are compared in the paper. To analyze the performance of the STATCOM connected in shunt with the transmission line, an induction generator based wind farm has been considered. The complete digital simulation of the STATCOM incorporated into the power system is performed in the MATLAB/SIMULINK environment and the results are presented to validate the feasibility of the proposed topology.

  14. Statistical analysis of low frequency vibrations in variable speed wind turbines

    International Nuclear Information System (INIS)

    The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature

  15. Impact of Shaft Stiffness on Inertial Response of Fixed Speed Wind Turbines

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Future power' system faces several challenges, one of them is the high penetration level of intermittent wind power generation, providing small or even no inertial response and being not contributing to the frequency stability. The effect of shaft stiffness on inertial response of fixed speed wind turbines is presented. Four different drive-train models based on the multi-body system are developed. The small-signal analysis demonstrates no significant differences between models in terms of electro-mechanical eigen-values for increasing shaft stiffness. The natural resonance frequency of drive-train torsion modes shows slightly different values between damped and undamped models, but no significant differences are found in the number-mass models. Time-domain simulations show the changes in the active power contribution of a wind farm based on a fixed speed wind turbine during the system frequency disturbance. The changes in the kinetic energy during the dynamic process are calculated and their contribution to the inertia constant is small and effective. The largest contribution of the kinetic energy is provided at the beginning of the system frequency disturbance to reduce the rate of the frequency change, it is positive for the frequency stability.

  16. Development of a wind gust model to estimate gust speeds and their return periods

    Science.gov (United States)

    Seregina, Larisa; Haas, Rabea; Born, Kai; Pinto, Joaquim G.

    2014-05-01

    Spatially dense observations of gust speeds are necessary for various applications, but their availability is limited in space and time. This work presents an approach to help to overcome this problem. The main objective is the generation of synthetic wind gust velocities. With this aim, theoretical wind and gust distributions are estimated from ten years of hourly observations collected at 123 synoptic weather stations provided by the German Weather Service. In a first step, an exposure correction is applied on measurements of the mean wind velocity to reduce the influence of local urban and topographic effects. In a second step, a transfer function is built between distribution parameters of wind and gust velocities. The aim of this step is to estimate the parameters of gusts at stations where only wind speed data is available. These parameters can be used in a third step to generate synthetic gusts, which can improve the accuracy of return periods at test sites with a lack of observations. The second objective is to determine return periods much longer than the nominal length of the original time series by considering extreme value statistics. Estimates for both local maximum return periods and average return periods for single historical events are provided. The comparison of maximum and average return periods shows that even storms with short average return periods may lead to local wind gusts with return periods of several decades. Despite uncertainties caused by the short length of the observational records, the method leads to consistent results, enabling a wide range of possible applications.

  17. Economic Analysis of Wind Turbine Installation in Taiwan

    OpenAIRE

    Ling, Jeeng-Min; Lublertlop, Kunkerati

    2015-01-01

    The wind speed characteristics are analyzed statistically based on a long-term hourly data record to evaluate the proper wind energy potential. The annual average wind speed and wind power density are investigated and compared by some significant indices, wind energy output and capacity factor, to show the variations of proper wind turbine specifications of installation in different locations of Taiwan. The minimum cost of wind energy is used to assess the economical feasibility for turbine i...

  18. Sociological investigation of the reception of Nysted Offshore wind farm. Annual report 2004[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-15

    This annual report presents the work related to the sociological part of a socio-economic project that examines the effects on the local communities of the two demonstration off-shore wind farms: Horns Rev Offshore Wind Farm, west of Blaavands Huk in Jutland, and Nysted Offshore Wind Farm, south of Lolland. The socio-economic project is part of the monitoring programme in connection with the construction of the offshore wind farms. Unlike projects, which examine the impact of the wind farms on nature, the socio-economic project did not start until 2003. The other part of the socio-economic project is an environmental-economic study that among other things examines the preferences of the population in relation to location of the wind farm and the willingness to pay for increasing the distance between the wind farms and the coast. This sociological study is qualitative. The study is divided into three phases, as the aim is to investigate the public community's attitude towards the erection of an offshore wind farm before and after the construction of the wind farm. This aim is based on the assumption that attitudes may change once the wind farm is erected and the population has experienced the visibility of the wind farm, etc. The division into phases is as follows: 1) Phase 1 treats the conditions as they were before the erection of Nysted Offshore Wind Farm. 2) Phase 2 is a study of the development in attitudes towards Horns Rev Offshore Wind Farm a year after erection. 3) Phase 3 comprises a follow-up study of the local area at Nysted Offshore Wind Farm. The Horns Rev study was conclusive and was carried out September-November 2003. The study at Nysted on the other hand implies two parts. The first was carried out April-August 2003 and identified attitudes before the wind farm was completed. A follow-up study in August-December 2004 served the purpose of revealing the extent of attitude changes regarding the wind farm and the development of these changes of

  19. High-resolution daily gridded datasets of air temperature and wind speed for Europe

    Science.gov (United States)

    Brinckmann, S.; Krähenmann, S.; Bissolli, P.

    2015-08-01

    New high-resolution datasets for near surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are hourly SYNOP observations, partly supplemented by station data from the ECA&D dataset (http://www.ecad.eu). These data are quality tested to eliminate erroneous data and various kinds of inhomogeneities. Grids in a resolution of 0.044° (5 km) are derived by spatial interpolation of these station data into the CORDEX area. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al. (2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are chosen for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Explained variance ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 °C and 1-1.5 m s-1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The datasets presented in this article are published at http://dx.doi.org/10.5676/DWD_CDC/DECREG0110v1.

  20. Annual progress report 2000. Wind Energy and Atmospheric Physics Dept.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. [eds.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  1. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  2. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. (eds.)

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  3. Annual report 1997. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, P.H.; Dannemand Andersen, P.; Skrumsager, B. [eds.

    1998-08-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory during 1997. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. (au)

  4. Impacts of reduced wind speed on physiology and ecosystem carbon flux of a semi-arid steppe ecosystem

    Institute of Scientific and Technical Information of China (English)

    DongYan Jin; Qiong Gao; YaLin Wang; Li Xu

    2014-01-01

    Decreasing wind speed is one aspect of global climate change as well as global warming, and has become a new research orientation in recent decades. The decrease is especially evident in places with frequent perennially high wind speeds. We simulated decreased wind speed by using a steel-sheet wind shield in a temperate grassland in Inner Mongolia to examine the changes in physical environmental variables, as well as their impacts on the photosynthesis of grass leaves and net ecosystem exchange (NEE). We then used models to calculate the variation of boundary layer conductance (BLC) and its impact on leaf photosynthesis, and this allowed us to separate the direct effects of wind speed reduction on leaf photo-synthesis (BLC) from the indirect ones (via soil moisture balance). The results showed that reduced wind speed primarily resulted in higher moisture and temperature in soil, and indirectly affected net assimilation and water use efficiency of the prevalent bunch grass Stipa krylovii. Moreover, the wind-sheltered plant community had a stronger ability to sequester carbon than did the wind-exposed community during the growing season.

  5. World′s first telepathology experiments employing WINDS ultra-high-speed internet satellite, nicknamed "KIZUNA"

    Directory of Open Access Journals (Sweden)

    Takashi Sawai

    2013-01-01

    Full Text Available Background: Recent advances in information technology have allowed the development of a telepathology system involving high-speed transfer of high-volume histological figures via fiber optic landlines. However, at present there are geographical limits to landlines. The Japan Aerospace Exploration Agency (JAXA has developed the "Kizuna" ultra-high speed internet satellite and has pursued its various applications. In this study we experimented with telepathology in collaboration with JAXA using Kizuna. To measure the functionality of the Wideband InterNet working engineering test and Demonstration Satellite (WINDS ultra-high speed internet satellite in remote pathological diagnosis and consultation, we examined the adequate data transfer speed and stability to conduct telepathology (both diagnosis and conferencing with functionality, and ease similar or equal to telepathology using fiber-optic landlines. Materials and Methods: We performed experiments for 2 years. In year 1, we tested the usability of the WINDS for telepathology with real-time video and virtual slide systems. These are state-of-the-art technologies requiring massive volumes of data transfer. In year 2, we tested the usability of the WINDS for three-way teleconferencing with virtual slides. Facilities in Iwate (northern Japan, Tokyo, and Okinawa were connected via the WINDS and voice conferenced while remotely examining and manipulating virtual slides. Results: Network function parameters measured using ping and Iperf were within acceptable limits. However; stage movement, zoom, and conversation suffered a lag of approximately 0.8 s when using real-time video, and a delay of 60-90 s was experienced when accessing the first virtual slide in a session. No significant lag or inconvenience was experienced during diagnosis and conferencing, and the results were satisfactory. Our hypothesis was confirmed for both remote diagnosis using real-time video and virtual slide systems, and also

  6. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    Science.gov (United States)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  7. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest

    OpenAIRE

    Cross, Benjamin D.; Karen E Kohfeld; Joseph Bailey; Cooper, Andrew B.

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between ...

  8. Magnetosphere response to high-speed solar wind streams: A comparison of weak and strong driving and the importance of extended periods of fast solar wind

    OpenAIRE

    Denton, Michael; Borovsky, J. E.

    2012-01-01

    Much attention has been focused on the reaction of the magnetosphere to the solar wind during the recent extended solar minimum (2006–2010). Although this period was exceptionally quiet when categorized by some parameters (e.g., the number of sunspots) the solar wind still contained features which impacted the Earth's magnetosphere and caused geomagnetic disturbances. Recurrent corotating interaction regions (CIRs) and associated high-speed solar wind streams (HSSs) are typically associated w...

  9. Magnetic Forces and Vibration in Wind Power Generators: Analysis of Fractional-Slot Low-Speed PM Machines with Concentrated Windings

    OpenAIRE

    Valavi, Mostafa

    2015-01-01

    The PhD research work presented in this thesis deals with radial magnetics forces and vibration in low-speed fractional-slot permanent magnet (PM) machines with concentrated windings. One of the applications of such machines is a direct-drive energy conversion system for wind turbines. Due to the presence of the low spatial harmonic orders in the radial forces distribution, fractional slot machines with concentrated windings can potentially have a higher vibration level than th...

  10. EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (AHe ≡ 100 × nHe/nH) by the Wind spacecraft are used to examine the dependence of AHe on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of AHe from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that AHe in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, AHe continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  11. Wind Energy and Atmospheric Physics Department annual progress report 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems. The...

  12. In situ measurements of wind and current speed and relationship between output power and turbulence

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, François G.; Sentchev, Alexei; Calif, Rudy

    2015-04-01

    In a context of energy transition, wind and tidal energy are sources of clean energy with the potential of partially satisfying the growing demand. The main problem of this type of energy, and other types of renewable energy remains the discontinuity of the electric power produced in different scales, inducing large fluctuations also called intermittency. This intermittency of wind and tidal energy is inherent to the turbulent nature of wind and marine currents. We consider this intermittent power production in strong relation with the turbulent intermittency of the resource. The turbulence theory is multifractal energy cascades models, a classic in physics of turbulence. From earlier studies in atmospheric sciences, we learn that wind speed and the aggregate power output are intermittent and multifractal over a wide range of scales [Calif and Schmitt 2014]. We want to extend this study to a marine current turbine and compare the scaling properties for those renewable energy sources. We consider here coupling between simultaneous velocity time series and output power from a wind turbine and a marine current turbine. Wind turbine data were obtained from Denmark and marine current data from Western Scheldt, Belgium where a prototype of a vertical and horizontal marine current turbines are tested. After an estimation of their Fourier density power spectra, we study their scaling properties in Kolmogorov's theory and the framework of fully developed turbulence. Hence, we employ a Hilbert-based methodology, namely arbitrary-order Hilbert spectral analysis [Calif et al. 2013a, 2013b] to characterize the intermittent property of the wind and marine current velocity in order to characterize the intermittent nature of the fluid. This method is used in order to obtain the spectrum and the corresponding power law for non-linear and non-stationary time series. The goal is to study the non-linear transfer characteristics in a multi-scale and multi-intensity framework.

  13. Assimilation of wind speed and direction observations: results from real observation experiments

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2015-06-01

    Full Text Available The assimilation of wind observations in the form of speed and direction (asm_sd by the Weather Research and Forecasting Model Data Assimilation System (WRFDA was performed using real data and employing a series of cycling assimilation experiments for a 2-week period, as a follow-up for an idealised post hoc assimilation experiment. The satellite-derived Atmospheric Motion Vectors (AMV and surface dataset in Meteorological Assimilation Data Ingest System (MADIS were assimilated. This new method takes into account the observation errors of both wind speed (spd and direction (dir, and WRFDA background quality control (BKG-QC influences the choice of wind observations, due to data conversions between (u,v and (spd, dir. The impacts of BKG-QC, as well as the new method, on the wind analysis were analysed separately. Because the dir observational errors produced by different platforms are not known or tuned well in WRFDA, a practical method, which uses similar assimilation weights in comparative trials, was employed to estimate the spd and dir observation errors. The asm_sd produces positive impacts on analyses and short-range forecasts of spd and dir with smaller root-mean-square errors than the u,v-based system. The bias of spd analysis decreases by 54.8%. These improvements result partly from BKG-QC screening of spd and dir observations in a direct way, but mainly from the independent impact of spd (dir data assimilation on spd (dir analysis, which is the primary distinction from the standard WRFDA method. The potential impacts of asm_sd on precipitation forecasts were evaluated. Results demonstrate that the asm_sd is able to indirectly improve the precipitation forecasts by improving the prediction accuracies of key wind-related factors leading to precipitation (e.g. warm moist advection and frontogenesis.

  14. Towards the modelling of pedestrian wind speed using high-resolution digital surface models and statistical methods

    Science.gov (United States)

    Johansson, Lars; Onomura, Shiho; Lindberg, Fredrik; Seaquist, Jonathan

    2016-04-01

    Wind is a complex phenomenon and a critical factor in assessing climatic conditions and pedestrian comfort within cities. To obtain spatial information on near-ground wind speed, 3D computational fluid dynamics (CFD) modelling is often used. This is a computationally intensive method which requires extensive computer resources and is time consuming. By using a simpler 2D method, larger areas can be processed and less time is required. This study attempts to model the relationship between near-ground wind speed and urban geometry using 2.5D raster data and variable selection methods. Such models can be implemented in a geographic information system (GIS) to assess the spatial distribution of wind speed at street level in complex urban environments at scales from neighbourhood to city. Wind speed data, 2 m above ground, is obtained from simulations by CFD modelling and used as a response variable. A number of derivatives calculated from high-resolution digital surface models (DSM) are used as potential predictors. A sequential variable selection algorithm followed by all-possible subset regression was used to select candidate models for further evaluation. The results show that the selected models explain general spatial wind speed pattern characteristics but the prediction errors are large, especially so in areas with high wind speeds. However, all selected models did explain 90 % of the wind speed variability (R 2 ≈ 0.90). Predictors adding information on width and height ratio and alignment of street canyons with respect to wind direction are suggested for improving model performance. To assess the applicability of any derived model, the results of the CFD model should be thoroughly evaluated against field measurements.

  15. L1 Adaptive Speed Control of a Small Wind Energy Conversion System for Maximum Power Point Tracking

    OpenAIRE

    Zhao, Haoran; Wu, Qiuwei; Rasmussen, Claus Nygaard; Blanke, Mogens

    2014-01-01

    This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wind speed estimation. The proposed MPPT control algorithm has a generic structure and can be used for different generator types. In order to verify the efficacy of the proposed L1 adaptive controller f...

  16. Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum

    OpenAIRE

    Thomas Huld; Ana M. Gracia Amillo

    2015-01-01

    We present a study of how photovoltaic (PV) module performance varies on continental scale. Mathematical models have been used to take into account shallow-angle reflectivity, spectral sensitivity, dependence of module efficiency on irradiance and module temperature as well as how the module temperature depends on irradiance, ambient temperature and wind speed. Spectrally resolved irradiance data retrieved from satellite images are combined with temperature and wind speed data from global com...

  17. A Low-Carbon Dispatch Model in a Wind Power Integrated System Considering Wind Speed Forecasting and Energy-Environmental Efficiency

    OpenAIRE

    Jian Zhao; Bichang Zou; Xiaohui Zhang; Qingwu Gong; Daojun Chen

    2012-01-01

    This paper introduces the “Energy-Environmental Efficiency†concept of building a low-carbon dispatch model of wind-incorporated power systems from the perspective of environmental protection and low-carbon dispatch promotion based on the existing economic environmental dispatch. A rolling auto-regressive and moving-average model is adopted to forecast wind speeds for the next 24 h and reduce the disadvantages brought about to the power system dispatch by wind speed fluctuations. A fuzzy s...

  18. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    Energy Technology Data Exchange (ETDEWEB)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  19. DAC to Mitigate the Effect of Periodic Disturbances on Drive Train using Collective Pitch for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammad; Hussain, Dil Muhammad Akbar; Soltani, Mohsen

    scheme to mitigate the effect of 3p flicker on drive train. 5MW wind turbine of the National Renewable Laboratories (NREL) is used as research object and results are simulated in MATLAB/Simulink. We designed the controller based on linearized model of the wind turbine generated for above rated wind speed...... and then tested its performance on the nonlinear model of wind turbine. We have shown a comparison of the results for proportional-integral(PI) and proposed DAC controller tested on nonlinear model of wind turbine. Result shows that our proposed controller shows better mitigation of flicker generated...

  20. Pulse-burst PIV in a high-speed wind tunnel

    Science.gov (United States)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-09-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility.

  1. Power maximization of an asynchronous wind turbine with a variable speed feeding a centrifugal pump

    International Nuclear Information System (INIS)

    Highlights: • The pumping system studied contain a WT, a SEIG, an IM and a CP. • The system must ensure the water pumping in optimum conditions despite the wind speed. • A steady state study and a practical testing are performed to resolve the control law. • A MPPT is proposed on the basis of static converter SVC. - Abstract: This article focuses on the study of a pumping system compound of a wind turbine, a self-excited induction generator (SEIG), an induction motor (IM), and a centrifugal pump (CP), which aims to ensure the water pumping in optimum conditions regardless the wind speed. As a first step, a study in the steady and dynamic state to determine the control law is examined. As a second step, and so as to achieve a maximum energy flow we have proposed a Maximum Power Point Tracking (MPPT) algorithm based on a static converter SVC. As a final step, experimental and simulation results are discussed to show the reliability of the system proposed

  2. Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature

    Science.gov (United States)

    Baran, Sándor; Möller, Annette

    2016-06-01

    Forecast ensembles are typically employed to account for prediction uncertainties in numerical weather prediction models. However, ensembles often exhibit biases and dispersion errors, thus they require statistical post-processing to improve their predictive performance. Two popular univariate post-processing models are the Bayesian model averaging (BMA) and the ensemble model output statistics (EMOS). In the last few years, increased interest has emerged in developing multivariate post-processing models, incorporating dependencies between weather quantities, such as for example a bivariate distribution for wind vectors or even a more general setting allowing to combine any types of weather variables. In line with a recently proposed approach to model temperature and wind speed jointly by a bivariate BMA model, this paper introduces an EMOS model for these weather quantities based on a bivariate truncated normal distribution. The bivariate EMOS model is applied to temperature and wind speed forecasts of the 8-member University of Washington mesoscale ensemble and the 11-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service and its predictive performance is compared to the performance of the bivariate BMA model and a multivariate Gaussian copula approach, post-processing the margins with univariate EMOS. While the predictive skills of the compared methods are similar, the bivariate EMOS model requires considerably lower computation times than the bivariate BMA method.

  3. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    Science.gov (United States)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  4. CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter

    Directory of Open Access Journals (Sweden)

    M.H. Mohamed

    2015-03-01

    Full Text Available Vertical axis wind turbines like the Darrieus turbine appear to be promising for the conditions of low wind speed, but suffer from a low efficiency compared to horizontal axis turbines. A fully detailed numerical analysis is introduced in this work to improve the global performance of this wind turbine. A comparison between ANSYS Workbench and Gambit meshing tools for the numerical modeling is performed to summarize a final numerical sequence for the Darrieus rotor performance. Then, this model sequence is applied for different blade airfoils to obtain the best performance. Unsteady simulations performed for different speed ratios and based on URANS turbulent calculations using sliding mesh approach. Results show that the accuracy of ANSYS Workbench meshing is improved by using SST K-omega model but it is not recommended for other turbulence models. Moreover, this CFD procedure is used in this paper to assess the turbine performance with different airfoil shapes (25 airfoils. The results introduced new shapes for this turbine with higher efficiency than the regular airfoils by 10%. In addition, blade pitch angle has been studied and the results indicated that the zero pitch angle gives best performance.

  5. Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    KAUST Repository

    Zedler, S. E.

    2009-04-25

    The drag coefficient parameterization of wind stress is investigated for tropical storm conditions using model sensitivity studies. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model was run in a regional setting with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using four different drag coefficient parameterizations. Respective model results were tested against in situ measurements of temperature profiles and velocity, available from an array of 22 surface drifters and 12 subsurface floats. Changing the drag coefficient parameterization from one that saturated at a value of 2.3 × 10 -3 to a constant drag coefficient of 1.2 × 10-3 reduced the standard deviation difference between the simulated minus the measured sea surface temperature change from 0.8°C to 0.3°C. Additionally, the standard deviation in the difference between simulated minus measured high pass filtered 15-m current speed reduced from 15 cm/s to 5 cm/s. The maximum difference in sea surface temperature response when two different turbulent mixing parameterizations were implemented was 0.3°C, i.e., only 11% of the maximum change of sea surface temperature caused by the storm. Copyright 2009 by the American Geophysical Union.

  6. Observations During GRIP from HIRAD: Ocean Surface Wind Speed and Rain Rate

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Jones, L.; Ruf, C. S.; Uhlhorn, E. W.; Bailey, M. C.; Buckley, C. D.; Simmons, D. E.; Johnstone, S.; Peterson, A.; Schultz, L. A.; Biewas, S.; Johnson, J. W.; Shah, G.; Feingstein, D.; Cleveland, W. H.; Johnson, J.; Hood, R. E.

    2011-01-01

    HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  7. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – Extreme learning machine approach

    International Nuclear Information System (INIS)

    Highlights: • A novel approach for short-term wind speed prediction is presented. • The system is formed by a coral reefs optimization algorithm and an extreme learning machine. • Feature selection is carried out with the CRO to improve the ELM performance. • The method is tested in real wind farm data in USA, for the period 2007–2008. - Abstract: This paper presents a novel approach for short-term wind speed prediction based on a Coral Reefs Optimization algorithm (CRO) and an Extreme Learning Machine (ELM), using meteorological predictive variables from a physical model (the Weather Research and Forecast model, WRF). The approach is based on a Feature Selection Problem (FSP) carried out with the CRO, that must obtain a reduced number of predictive variables out of the total available from the WRF. This set of features will be the input of an ELM, that finally provides the wind speed prediction. The CRO is a novel bio-inspired approach, based on the simulation of reef formation and coral reproduction, able to obtain excellent results in optimization problems. On the other hand, the ELM is a new paradigm in neural networks’ training, that provides a robust and extremely fast training of the network. Together, these algorithms are able to successfully solve this problem of feature selection in short-term wind speed prediction. Experiments in a real wind farm in the USA show the excellent performance of the CRO–ELM approach in this FSP wind speed prediction problem

  8. Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines

    Science.gov (United States)

    Ning, A.; Dykes, K.

    2014-06-01

    For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent.

  9. Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines

    International Nuclear Information System (INIS)

    For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent

  10. New self-excited variable speed constant frequency generator for wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, H.M.B. [Zagazig University (Egypt). Faculty of Engineering

    2000-09-01

    In this work, the possibility of using a new single-phase commutator machine as a stand-alone self-excited generator is investigated. The performance of this generator is tested under variable speed operation to simulate the practical case of variable wind turbine speed. The generator is self-excited through a resonance capacitor. The effect of varying the capacitance of this capacitor on the generated voltage and its frequency is studied. Load tests under a wide range of operating conditions are conducted to explore the capability of this type of generator. It has been found that this machine can operate as a variable speed constant frequency generator simply by varying the capacitance of the excitation capacitor. This important property makes this type of generator suitable for use in wind driven power systems. Finally, a mathematical model for the generator is obtained and a simulation program is developed to predict the performance of the generator. Close agreement between the simulation and the experimental results is obtained. (author)

  11. The impact of grid and spectral nudging on the variance of the near-surface wind speed

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.

    2015-01-01

    Grid and spectral nudging are effective ways of preventing drift from large scale weather patterns in regional climate models. However, the effect of nudging on the wind-speed variance is unclear. In this study, the impact of grid and spectral nudging on near-surface and upper boundary layer wind...

  12. Performance of Control Dynamics of Wind Turbine Based on Doubly Fed Induction Generator under Different Modes of Speed Operation

    OpenAIRE

    2013-01-01

    There are many solar power and wind stations installed in the power system for environmental and economic reasons. In fact, wind energy is inexpensive and the safest among all sources of renewable energy, it has been recognized that variable speed wind turbine based on the doubly fed induction generator is the most effective with less cost and high power yield. Therefore, this paper has chosen doubly fed induction generator for a comprehensive study of modeling, analyzing, and control. DFIG i...

  13. Comparison of a simple logarithmic and equivalent neutral wind approaches for converting buoy-measured wind speed to the standard height: special emphasis to North Indian Ocean

    Science.gov (United States)

    Singh, Prem; Parekh, Anant; Attada, Raju

    2013-02-01

    The difference between the transferred wind speed to 10-m height based on the equivalent neutral wind approach ( U n) and the logarithmic approach ( U log) is studied using in situ observations from the Indian, Pacific, and Atlantic Oceans, with special emphasis given to the North Indian Ocean. The study included U n - U log variations with pressure, relative humidity, wind speed, air temperature, and sea surface temperature (SST). U n - U log variation with respect to air temperature ( T a) reveals that U n - U log is out of phase with air temperature. Further analysis found that U n - U log is in phase with SST ( T s) - T a and varies between -1.0 and 1.0 m/s over the North Indian Ocean, while for the rest of the Oceans, it is between -0.3 and 0.8 m/s. This higher magnitude of U n - U log over the North Indian Ocean is due to the higher range of T s - T a (-4 to 6 °C) in the North Indian Ocean. Associated physical processes suggested that the roughness length and friction velocity dependence on the air-sea temperature difference contributes to the U n - U log difference. The study is further extended to evaluate the behavior of U n - U log under cyclonic conditions (winds between 15 and 30 m/s), and it was found that the magnitude of Un - U log varies 0.5-1.5 m/s under the cyclonic wind conditions. The increasing difference with the wind speed is due to the increase in the momentum transfer coefficient with wind speed, which modifies the friction velocity significantly, resulting in U n higher than U log. Thus, under higher wind conditions, U n - U log can contribute up to half the retrieval error (5 % of the wind speed magnitude) to the satellite validation exercise.

  14. Voltage control of a variable speed wind turbine connected to an isolated load: Experimental study

    International Nuclear Information System (INIS)

    Highlights: ► We develop an experimental test bench of a wind energy conversion system. ► A DC motor is emulating a variable speed wind turbine using a DS1104 card. ► The production unit is supplying a three-phase load. ► A voltage control is established in order to regulate the DC bus voltage and the line-to-line voltages. - Abstract: This study is interested in the development of an experimental test bench of an autonomous wind energy conversion system (WECS) based on a permanent magnet synchronous generator (PMSG). After the description of the test bench, the elements constituting the WECS are presented. Then, a real time model implemented under a digital signal processor (DSP) system is established. The first objective of this work is to validate the functionality of the test bench leading to experiment some principles developed in theory. The second objective is to control the load connection voltages and the DC bus voltage. For the first control, two resonant controllers are used and for the second one, a dump load, connected to the DC bus, offers the possibility to maintain a balance between production and consumption in spite of wind fluctuations and load variations. The experimental results show the effectiveness of the test bench trying out in real time the behavior of a WECS supplying an isolated load.

  15. An improved wind speed algorithm for“Jason-1”altimeter under tropical cyclone conditions

    Institute of Scientific and Technical Information of China (English)

    QIN Bangyong; ZHOU Xuan; ZHANG Honglei; YANG Xiaofeng; LU Rong; YU Yang; SHI Lijian

    2014-01-01

    Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration’s Climate Prediction Center Morphing technique (CMORPH) rain rate is introduced to a match-up dataset and then put into a rain correction model to re-move rain effects on“Jason-1”normalized radar cross section (NRCS);Hurricane Research Division (HRD) wind speed, which integrates all available surface weather observations, is used to substitute in situ data for establishing this relationship with“Jason-1”NRCS. Then, an improved“Jason-1”wind retrieval algorithm under tropical cyclone conditions is proposed. Seven tropical cyclones from 2003 to 2010 are studied to validate the new algorithm. The experimental results indicate that the standard deviation of this algorithm at C-band and Ku-band is 1.99 and 2.75 m/s respectively, which is better than the existing algorithms. In addition, the C-band algorithm is more suitable for sea surface wind retrieval than Ku-band under tropical cyclone conditions.

  16. 9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview

    Science.gov (United States)

    Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  17. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Zaragoza, Jordi; Pou, Josep; Arias, Antoni [Electronic Engineering Dept., Technical University of Catalonia, Campus Terrassa, C. Colom 1, 08222 Terrassa (Spain); Spiteri, Cyril [Department of Industrial Electrical Power Conversion, University of Malta, Faculty of Engineering, Msida (Malta); Robles, Eider; Ceballos, Salvador [Energy Unit, Robotiker-Tecnalia Technology Corporation, Zamudio, Basque Country (Spain)

    2011-05-15

    This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype. (author)

  18. Aeroacoustic response of coaxial wall-mounted Helmholtz resonators in a low-speed wind tunnel.

    Science.gov (United States)

    Slaton, William V; Nishikawa, Asami

    2015-01-01

    The aeroacoustic response of coaxial wall-mounted Helmholtz resonators with different neck geometries in a low-speed wind tunnel has been investigated. Experimental test results of this system reveal a strong aeroacoustic response over a Strouhal number range of 0.25 to 0.1 for both increasing and decreasing the flow rate in the wind tunnel. Aeroacoustic response in the low-amplitude range O(10(-3)) < Vac/Vflow < O(10(-1)) has been successfully modeled by describing-function analysis. This analysis, coupled with a turbulent flow velocity distribution model, gives reasonable values for the location in the flow of the undulating stream velocity that drives vortex shedding at the resonator mouth. Having an estimate for the stream velocity that drives the flow-excited resonance is crucial when employing the describing-function analysis to predict aeroacoustic response of resonators. PMID:25618056

  19. Infrared thermography for detection of laminar-turbulent transition in low-speed wind tunnel testing

    Science.gov (United States)

    Joseph, Liselle A.; Borgoltz, Aurelien; Devenport, William

    2016-05-01

    This work presents the details of a system for experimentally identifying laminar-to-turbulent transition using infrared thermography applied to large, metal models in low-speed wind tunnel tests. Key elements of the transition detection system include infrared cameras with sensitivity in the 7.5- to 14.0-µm spectral range and a thin, insulating coat for the model. The fidelity of the system was validated through experiments on two wind-turbine blade airfoil sections tested at Reynolds numbers between Re = 1.5 × 106 and 3 × 106. Results compare well with measurements from surface pressure distributions and stethoscope observations. However, the infrared-based system provides data over a much broader range of conditions and locations on the model. This paper chronicles the design, implementation and validation of the infrared transition detection system, a subject which has not been widely detailed in the literature to date.

  20. Numerical Study on the Impact of Ground Heating and Ambient Wind Speed on Flow Fields in Street Canyons

    Institute of Scientific and Technical Information of China (English)

    LI Lei; YANG Lin; ZHANG Li-Jie; JIANG Yin

    2012-01-01

    The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods.A series of numerical tests were performed,and three factors including height-to-width (H/W) ratio,ambient wind speed and ground heating intensity were taken into account.Three types of street canyon with H/W ratios of 0.5,1.0 and 2.0,respectively,were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed.The ground heating intensity,which was defined as the difference between the ground temperature and air temperature,ranged from 10 to 40 K with an increase of 10 K in the tests.The results showed that under calm conditions,ground heating could induce circulation with a wind speed of around 1.0 m s-1,which is enough to disperse pollutants in a street canyon.It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio.When ambient wind speed was lower than the threshold identified in this study,the impact of the thermal effect on the flow field was obvious,and there existed a multi-vortex flow pattern in the street canyon.When the ambient wind speed was higher than the threshold,the circulation pattern was basically determined by dynamic effects.The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon,which would help improve pollutant diffusion capability in street canyons.