WorldWideScience

Sample records for annual radiation dose

  1. Annual radiation dose in thermoluminescence dating

    International Nuclear Information System (INIS)

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned

  2. Ambient radioactivity levels and radiation doses. Annual report 2012

    International Nuclear Information System (INIS)

    The annual report 2012 on ambient radioactivity levels and radiation doses covers the following issues: Part A: General information: natural environmental radioactivity; artificial radioactivity in the environment; occupational radiation exposure; radiation exposures from medical applications; the handling of radioactive materials and sources of ionizing radiation; non-ionizing radiation. Part B: Current data and their evaluation: natural environmental radioactivity; artificial radioactivity in the environment; occupational radiation exposures; radiation exposures from medical applications; the handling of radioactive materials and sources of ionizing radiation; non-ionizing radiation. The report includes data on the stock of radioactive waste, radiation accidents and unusual events.

  3. Individual radiation doses. Annual report 1994

    International Nuclear Information System (INIS)

    During the year we measured whole body doses on 10,670 persons, distributed as follows: 0-0.5 mSv on 9,203 persons, 0.6-1 mSv on 665 persons, 1-1.5 mSv on 762 persons, >5 mSv on 40 persons. For doses higher than 4 mSv/4 weeks, the reason for the irradiation will be investigated. 2 tabs, 2 figs

  4. Estimation of annual radiation dose received by some industrial workers

    International Nuclear Information System (INIS)

    Radon and its progeny in the atmosphere, soil, ground water, oil and gas deposits contributes the largest fraction of the natural radiation dose to populations, enhanced interest exhibited in tracking its concentration is thus fundamental for radiation protection. The combustion of coal in various industrial units like thermal power plants. National fertilizer plants, paper mill etc. results in the release of some natural radioactivity to the atmosphere through formation of fly ash and bottom ash or slag. This consequent increases the radioactivity in soil, water and atmosphere around thermal power plants. Keeping this in mind the measurements of radon, thoron and their progeny concentration in the environment of some industrial units has been carried out using solid state nuclear track detectors (SSNTD). The specially designed twin cup dosimeter used here consists two chambers of cylindrical geometry separated by a wall in the middle with each having length of 4.5 cm and radius of 3.1 cm. This dosimeter employs three SSNTDs out of which two detectors were placed in each chamber and a third one was placed on the outer surface of the dosimeter. One chamber is fitted with glass fiber filter so that radon and thoron both can diffuse into the chamber while in other chamber, a semi permeable membrane is used. The membrane mode measures the radon concentration alone as it can diffuse through the membrane but suppresses the thoron. The twin cup dosimeter also has a provision for bare mode enabling it to register tracks due to radon, thoron and their progeny in total. Therefore, using this dosimeter we can measure the individual concentration of radon, thoron, and their progeny at the same time. The annual effective doses received by the workers in some industrial units has been calculated. The results indicate some higher levels in coal handling and fly ash area of the plants. (author)

  5. Annual dose distribution of Nuclear Malaysia radiation workers for monitoring period from year 2003 to 2007

    International Nuclear Information System (INIS)

    Estimation of radiation dose (external exposure) received by Nuklear Malaysia's radiation workers are measured by using personal dosimetry device which are provided by SSDL-Nuklear Malaysia. Dose assessment report for monitoring period from year 2003 - 2007 shows that almost all radiation workers received annual doses less than 20 mSv, only in very small percentage of radiation workers received annual doses between 20.1 to 50 mSv and none of the workers received doses higher than 50 mSv/year. Exposure dose below 20 mSv/year (the new annual dose limit to be used in Malaysia soon) could be fully achieved by improving the compliance with the safety regulations and enhancing the awareness about radiation safety among the workers. (Author)

  6. Radiation doses to Norwegian heart-transplanted patients undergoing annual coronary angiography

    International Nuclear Information System (INIS)

    Heart-transplanted patients in Norway undergo annual coronary angiography (CA). The aims of this study were to establish a conversion factor between dose-area product and effective dose for these examinations and to use this to evaluate the accumulated radiation dose and risks associated with annual CA. An experienced cardiac interventionist performed a simulated examination on an Alderson phantom loaded with thermoluminescence dosemeters. The simulated CA examination yielded a dose-area product of 17 Gy cm2 and an effective dose of 3.4 mSv: the conversion factor between dose-area product and effective dose was 0.20 mSv Gy cm-2. Dose-area product values from 200 heart-transplanted patients that had undergone 906 CA examinations between 2001 and 2008 were retrieved from the institutional database. Mean dose-area product from annual CA was 25 Gy cm2, ranging from 2 to 140 Gy cm2. Mean number of CA procedure was 8 (range, 1-23). Mean accumulated effective dose for Norwegian heart-transplanted patients between 2001 and 2008 was 34 mSv (range, 5-113 mSv). Doses and radiation risks for heart-transplanted patients are generally low, because most heart transplantations are performed on middle-aged patients with limited life expectancy. Special concern should however be taken to reduce doses for young heart-transplanted patients who are committed to lifelong follow-up of their transplanted heart. (authors)

  7. Change of annual collective dose equivalent of radiation workers at KURRI

    International Nuclear Information System (INIS)

    The change of exposure dose equivalent of radiation workers at KURRI (Kyoto University Research Reactor Institute) in the past 30 years is reported together with the operational accomplishments. The reactor achieved criticality on June 24, 1964 and reached the normal power of 1000 kW on August 17 of the same year, and the normal power was elevated to 5000 kW on July 16, 1968 until today. The change of the annual effective dose equivalent, the collective dose equivalent, the average annual dose equivalent and the maximum dose equivalent are indicated in the table and the figure. The chronological table on the activities of the reactor is added. (T.H.)

  8. Estimation of annual occupational effective doses from external ionizing radiation at medical institutions in Kenya

    Science.gov (United States)

    Korir, Geoffrey; Wambani, Jeska; Korir, Ian

    2011-04-01

    This study details the distribution and trends of doses due to occupational radiation exposure among radiation workers from participating medical institutions in Kenya, where monthly dose measurements were collected for a period of one year ranging from January to December in 2007. A total of 367 medical radiation workers were monitored using thermoluminescent dosemeters. They included radiologists (27%), oncologists (2%), dentists (4%), Physicists (5%), technologists (45%), nurses (4%), film processor technicians (3%), auxiliary staff (4%), and radiology office staff (5%). The average annual effective dose of all categories of staff was found to range from 1.19 to 2.52 mSv. This study formed the initiation stage of wider, comprehensive and more frequent monitoring of occupational radiation exposures and long-term investigations into its accumulation patterns in our country.

  9. Level of natural radionuclides in foodstuffs and resultant annual ingestion radiation dose

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The natural radioactivities in three major groups of foodstuff widely consumed in Upper Egypt were determined. The specific activities of 226Ra, 232Th, and 40K in cereals, leguminosae, and flour were measured using γ-ray spectroscopy. Another group of hay, water, and soil samples from the same location were also analyzed. Hay samples were found to contain the highest radioactivity concentration among all the samples that were investigated. This increment could be due to the high water content in the shoots which tends to accumulate soluble radionuclides. The average calculated concentrations of soil samples in the present study exhibits the lowest values with respect to those from different countries. In the case of water samples, the average activities of both 232Th and 40K were similar to those for soil while 226Ra was twice that of water sample. The annual ingestion dose from each radionuclide was calculated. The computed annual dose owing to daily intake of radium, thorium, and potassium via wheat flour, lentils,and bean in the present study (214.8 μSv) is ten times lower than the global average annual radiation dose (2400 μSv)from the natural radiation sources as proposed by UNSCEAR. The obtained results show that the dose values are quite low and carry insignificant radiation dose to the public.

  10. Level of natural radionuclides in foodstuffs and resultant annual ingestion radiation dose

    International Nuclear Information System (INIS)

    The natural radioactivities in three major groups of foodstuff widely consumed in Upper Egypt were determined. The specific activities of 226Ra, 232Th, and 40K in cereals, leguminosae, and flour were measured using γ-ray spectroscopy. Another group of hay, water, and soil samples from the same location were also analyzed. Hay samples were found to contain the highest radioactivity concentration among all the samples that were investigated. This increment could be due to the high water content in the shoots which tends to accumulate soluble radionuclides. The average calculated concentrations of soil samples in the present study exhibits the lowest values with respect to those from different countries. In the case of water samples, the average activities of both 232Th and 40K were similar to those for soil while 226Ra was twice that of water sample. The annual ingestion dose from each radionuclide was calculated. The computed annual dose owing to daily intake of radium, thorium, and potassium via wheat flour, lentils, and bean in the present study (214.8 μSv) is ten times lower than the global average annual radiation dose (2400 μSv) from the natural radiation sources as proposed by UNSCEAR. The obtained results show that the dose values are quite low and carry insignificant radiation dose to the public. (authors)

  11. Estimation of annual occupational effective doses from external ionising radiation at medical institutions in Kenya

    Directory of Open Access Journals (Sweden)

    Geoffrey K Korir

    2011-12-01

    Full Text Available This study details the distribution and trends of doses from occupational radiation exposure among radiation workers from participating medical institutions in Kenya, where monthly dose measurements were collected for a period of one year (January to December 2007 using thermoluminescent dosimeters. A total of 367 medical radiation workers were monitored, comprising 27% radiologists, 2% oncologists, 4% dentists, 5% physicists, 45% technologists, 4% nurses, 3% film processor technicians, 4% auxiliary staff, and 5% radiology office staff. The average annual effective dose for all subjects ranged from 1.19 to 2.52 mSv. Among these workers, technologists received the largest annual effective dose. The study forms the initiation stage of wider, comprehensive and more frequent monitoring of occupational radiation exposures and long-term investigations into its accumulation patterns, which could form the basis of future records on the detrimental effects of radiation, characteristic of workers in the medical sector, and other co-factors in a developing country such as Kenya.

  12. Calculation of annual radiation doses to human organs due to consumption of marine fish

    International Nuclear Information System (INIS)

    The annual radiation doses have been estimated from the analysis of 40 K, 137 Cs, 226 Ra, 228 Ra radionuclides in the marine fish of the Bay of Bengal for ten different organs of man including, red marrow, lung, thyroid, lower large intestine, upper large intestine, small intestine, muscle, stomach, gonads and bone surface. The lowest dose is calculated in thyroid as 2.7x10 -9 Sv/y and the highest in bone surface as 1.1x10-7 Sv/y. The dose due to 226Ra is highest (1.2x10-7 Sv/y) in the whole body while the lowest dose is delivered by 40K (3.6x10-8 Sv/yil)

  13. Contribution of maternal radionuclide burdens to prenatal radiation doses: Relationships between annual limits on intake and prenatal doses

    International Nuclear Information System (INIS)

    This addendum describes approaches for calculating and expressing radiation doses to the embryo/fetus from maternal intakes of radionuclides at levels corresponding to fractions or multiples of the Annual Limits on Intake (ALI). Information, concerning metabolic or dosimetric characteristics and the placental transfer of selected, occupationally significant radionuclides was presented in NUREG/CR-5631, Revision 1. That information was used to estimate levels of radioactivity in the embryo/fetus as a function of stage of pregnancy and time after entry. Extension of MIRD methodology to accommodate gestational-stage-dependent characteristics allowed dose calculations for the simplified situation based on introduction of 1 μCi into the woman's transfer compartment (blood). The expanded scenarios in this addendum include repeated or chronic ingestion or inhalation intakes by a woman during pregnancy and body burdens at the beginning of pregnancy. Tables present dose equivalent to the embryo/fetus relative to intakes of these radionuclides in various chemical or physical forms and from preexisting maternal burdens corresponding to ALI; complementary intake values (fraction of an ALI and μCi) that yield a dose equivalent of 0.05 rem are included. Similar tables give these measures of dose equivalency to the uterus from intakes of radionuclides for use as surrogates for embryo/fetus dose when biokinetic information is not available

  14. The issue concerning the use of an annual as opposed to a committed dose limit for internal radiation protection

    International Nuclear Information System (INIS)

    The scientific, technical, practical, and ethical considerations that relate to the use of an annual as opposed to a committed dose limitation system for internal radiation protection are evaluated and presented. The concerns about problems associated with the more recent ICRP committed dose recommendations that have been expressed by persons who are currently operating under an annual dose limitation system are reviewed and discussed in terms of the radiation protection programme elements that are required for an effective ALARA programme. We include in this and a follow-up article a comparison of how these alternative dose limitation systems affect the economic and professional livelihood of radiation workers and the requirements that they impose upon employers. Finally, we recommend the use of an ICRP based committed dose limitation system that provides protection of workers over an entire occupational lifetime without undue impact on their livelihood and without undue requirements for employers. (author)

  15. The annual terrestrial gamma radiation dose to the population of the urban Christchurch area

    International Nuclear Information System (INIS)

    Natural terrestrial gamma radiation dose rates were measured with a high pressure ionization chamber at 70 indoor (195 site measurements) and 58 outdoor locations in the metropolitan Christchurch area. Based on these site measurements, the average gonad dose rate to the population from natural terrestrial gamma radiation was estimated to be 273+-56 microgray per annum. (auth)

  16. Estimation of annual occupational effective doses from external ionising radiation at medical institutions in Kenya

    OpenAIRE

    Geoffrey K Korir; Jeska S. Wambani; Ian K Korir

    2011-01-01

    This study details the distribution and trends of doses from occupational radiation exposure among radiation workers from participating medical institutions in Kenya, where monthly dose measurements were collected for a period of one year (January to December 2007) using thermoluminescent dosimeters. A total of 367 medical radiation workers were monitored, comprising 27% radiologists, 2% oncologists, 4% dentists, 5% physicists, 45% technologists, 4% nurses, 3% film processor technicians, 4% a...

  17. Evaluation of absorbed dose rate and annual effective dose equivalent due to terrestrial gamma radiation in rocks in a part of Southwestern Nigeria

    International Nuclear Information System (INIS)

    The average outdoor absorbed dose rate in air and the average annual effective dose equivalent due to terrestrial gamma radiation from 40K, 238U and 232Th in rocks in Ondo and Ekiti States, Southwestern Nigeria have been evaluated from measurements of the concentrations of these radionuclides in this environmental material. The concentration measurements were obtained using a very sensitive gamma spectroscopic system consisting of a 7.6x7.6 cm NaI(Tl) scintillation detector coupled to a computerised ACCUSPEC installation. The average absorbed dose rate and average annual effective dose equivalent was found to be 8.33±2.76 nGy.h-1 and 8.7±2.9 μSv.y-1 respectively. (author)

  18. Evaluation of absorbed dose rate and annual effective dose equivalent due to terrestrial gamma radiation in rocks in a part of Southwestern Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O.S

    2002-07-01

    The average outdoor absorbed dose rate in air and the average annual effective dose equivalent due to terrestrial gamma radiation from {sup 40}K, {sup 238}U and {sup 232}Th in rocks in Ondo and Ekiti States, Southwestern Nigeria have been evaluated from measurements of the concentrations of these radionuclides in this environmental material. The concentration measurements were obtained using a very sensitive gamma spectroscopic system consisting of a 7.6x7.6 cm NaI(Tl) scintillation detector coupled to a computerised ACCUSPEC installation. The average absorbed dose rate and average annual effective dose equivalent was found to be 8.33{+-}2.76 nGy.h{sup -1} and 8.7{+-}2.9 {mu}Sv.y{sup -1} respectively. (author)

  19. Radiation doses to Finns

    International Nuclear Information System (INIS)

    The estimated annual radiation doses to Finns have been reduced in the recent years without any change in the actual radiation environment. This is because the radiation types have been changed. The risk factors will probably be changed again in the future, because recent studies show discrepancies in the neutron dosimetry concerning the city of Hiroshima. Neutron dosimetry discrepancy has been found between the predicted and estimated neutron radiation. The prediction of neutron radiation is calculated by Monte Carlo simulations, which have also been used when designing recommendations for the limits of radiation doses (ICRP60). Estimation of the neutron radiation is made on the basis of measured neutron activation of materials in the city. The estimated neutron dose beyond 1 km is two to ten, or more, times as high as the predicted dose. This discrepancy is important, because the most relevant distances with respect to radiation risk evaluation are between 1 and 2 km. Because of this discrepancy, the present radiation risk factors for gamma and neutron radiation, which rely on the Monte Carlo calculations, are false, too. The recommendations of ICRP60 have been adopted in a few countries, including Finland, and they affect the planned common limits of the EU. It is questionable whether happiness is increased by adopting false limits, even if they are common. (orig.) (2 figs., 1 tab.)

  20. Average annual dose of radiation received by Cienfuegos population due to practices prescribed

    International Nuclear Information System (INIS)

    The work aims to determine the equivalent dose received by patients in Cienfuegos province in each medical procedure. This evaluation is the first one of its type in the province and constitutes the starting point for further studies. Hence although absorbed doses are calculated by each organ and tissue, it estimates the most effective dose to be able to compare different groups exposed so as to evaluate the detriment on health provoked by these tests

  1. Ambient radioactivity levels and radiation doses. Annual report 2013; Umweltradioaktivitaet und Strahlenbelastung. Jahresbreicht 2013

    Energy Technology Data Exchange (ETDEWEB)

    Hachenberger, Claudia; Trugenberger-Schnabel, Angela; Loebke-Reinl, Angelika; Peter, Josef (comps.) [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2015-04-15

    The report on environmental radioactivity and radiation exposure 2013 includes data concerning the following issues: sources of natural and artificial radioactivity, radon in buildings, radioactive materials in construction materials and industrial products, nuclear weapon tests, the consequences of reactor accidents in Chernobyl and Fukushima, nuclear facilities, occupational exposure, radiation exposure from medical applications, handling of radioactive materials in research and technology, radioactive wastes, radiation accidents and specific incidents.

  2. Registration of radiation doses

    International Nuclear Information System (INIS)

    In Finland the Radiation and Nuclear Safety Authority (STUK) is maintaining the register (called Dose Register) of the radiation exposure of occupationally exposed workers in order to ensure compliance with the principles of optimisation and individual protection. The guide contains a description of the Dose Register and specifies the responsibilities of the party running a radiation practice to report the relevant information to the Dose Register

  3. Radiation practices. Annual report 2002

    International Nuclear Information System (INIS)

    A total of 1820 safety licences granted for the use of radiation in Finland were current at the end of 2002. There were also 2037 undertakings for dental X-ray diagnostics (licencefree). The Safety Licence Register of the Radiation and Nuclear Safety Authority (STUK) listed 14 120 radiation devices and 262 radionuclide laboratories. In 2002, STUK performed 401 inspections of licensed practices and 25 inspections of licence-free dental X-ray practices. Restrictions were ordered on the use of one device. Repairs were ordered in 116 cases and recommended in 55 cases. No remarks were given in 254 cases. Imports of radioactive substances amounted to 110 157 GBq and exports totalled 22 359 GBq. Short-lived radionuclides produced in Finland amounted to 42 487 GBq. The STUK interim storage for radioactive wastes received 65 batches of low-level wastes. A total of 11 190 workers were individually monitored for radiation exposure at 1176 workplaces. Of these workers, some 32% were category A workers and 67% category B workers. In no case were annual dose limits exceeded. The total dose in the use of radiation and nuclear energy recorded in the STUK Dose Register was 6.35 Sv. The mean doses in typical diagnostic X-ray procedures based on phantom measurements were below the reference levels issued by the European Community, the IAEA and STUK. Accuracy of the therapeutic doses underlying good therapeutic results in radiotherapy has remained within acceptable limits, and no excessive doses jeopardizing the safety of therapy have occurred. In the regulatory control of natural radiation, inspection reports requesting performance of radon repairs or measurements of radon concentrations were sent to 145 enterprises. Underground radon inspections were performed in 4 mines and 7 excavation sites. The mean effective dose to aircraft crew caused by cosmic radiation was 1.6 mSv. Ministry of Social Affairs and Health Decree on the Limitation of Public Exposure to Non-Ionizing Radiation

  4. Radiation dose in vertebroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizade, A.; Lovblad, K.O.; Wilhelm, K.E.; Somon, T.; Wetzel, S.G.; Kelekis, A.D.; Yilmaz, H.; Abdo, G.; Martin, J.B.; Viera, J.M.; Ruefenacht, D.A. [Neuroradiology DRRI, Geneva University Hospital, Rue Micheli-du-Crest 24, 1211, Geneva 14 (Switzerland)

    2004-03-01

    We wished to measure the absorbed radiation dose during fluoroscopically controlled vertebroplasty and to assess the possibility of deterministic radiation effects to the operator. The dose was measured in 11 consecutive procedures using thermoluminescent ring dosimeters on the hand of the operator and electronic dosimeters inside and outside of the operator's lead apron. We found doses of 0.022-3.256 mGy outside and 0.01-0.47 mGy inside the lead apron. Doses on the hand were higher, 0.5-8.5 mGy. This preliminary study indicates greater exposure to the operator's hands than expected from traditional apron measurements. (orig.)

  5. Risk of Low Dose/Low Dose Rate Ionizing Radiation to Humans Symposium at the EMS 2009 Annual Meeting - September 2006

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F.; von Borstel, Robert C.; Brenner,; Redpath, J. Leslie; Erickson, Barbra E.; Brooks,

    2009-11-12

    The low dose symposium thoughtfully addressed controversy of risk from low dose radiation exposure, hormesis and radon therapy. The stem cell symposium cogently considered the role of DNA damage and repair in hematopoietic stem cells underlying aging and malignancy and provocatively presented evidence that stem cells may have distinct morphologies and replicative properties, as well as special roles in cancer initiation. In the epigenetics symposium, studies illustrated the long range interaction of epigenetic mechanisms, the roles of CTCF and BORIS in region/specific regulation of epigenetic processes, the impact of DNA damage on epigenetic processes as well as links between epigenetic mechanisms and early nutrition and bystander effects.

  6. Radiation-dose estimates and hazard evaluations for inhaled airborne radionuclides. Annual progress report, July 1981-June 1982

    International Nuclear Information System (INIS)

    The objective was to conduct confirmatory research on aerosol characteristics and the resulting radiation dose distribution in animals following inhalation and to provide prediction of health consequences in humans due to airborne radioactivity which might be released in normal operations or under accident conditions during production of nuclear fuel composed of mixed oxides of U and Pu. Four research reports summarize the results of specific areas of research. The first paper details development of a method for determination of specific surface area of small samples of mixed oxide or pure PuO2 particles. The second paper details the extension of the biomathematical model previously used to describe retention, distribution and excretion of Pu from these mixed oxide aerosols to include a description of Am and U components of these aerosols. The third paper summarizes the biological responses observed in radiation dose pattern studies in which dogs, monkeys and rate received inhalation exposures to either 7500C heat treated UO2 + PuO2, 17500C heat-treated (U,Pu)O2 or 8500C heat-treated pure PuO2. The fourth paper described dose-response studies in which rats were exposed to (U,Pu)O2 or pure PuO2. This paper updates earlier reports and summarizes the status of animals through approximately 650 days after inhalation

  7. Radiation Doses from some Egyptian industrial products

    International Nuclear Information System (INIS)

    The annual dose equivalent from exposures to radionuclides contained in some industrial ores and their waste products, were estimated using collective data from these industrial materials. This study takes in consideration industrial ores and their waste products. The materials studied were iron and steel products, cement manufacture, phosphate fertilizers, phosphoric acid production as well as ores used in ceramic production and waste. An integrated method was used in mathematical assumption form for the purpose of calculating the radiation dose equivalent. The calculated values of the annual radiation doses for workers were found to be significant. These results are discussed in the light of international exposure limits for workers

  8. Low chronic radiation doses

    International Nuclear Information System (INIS)

    In the context of the Chernobyl and Fukushima accidents where large territories have been contaminated durably and as consequence where local populations are submitted to chronic low radiation doses, IRSN (French institute for radiation protection and nuclear safety) has led various studies to assess the impact of chronic low doses. Studies about the effects of uranium on marine life show that the impact is strongly dependent on the initial state of the individual (zebra Danio rerio fish). The studies about the impact of chronic low doses due to cesium and strontium contamination show different bio-accumulations: 137Cs is found in the animal's whole body with higher concentrations in muscles and kidneys while 90Sr is found almost exclusively in bones and it accumulates more in female mice than in males. The study dedicated to the sanitary impact of chronic low doses on the workers of the nuclear industry shows a higher risk for developing a leukemia, a pleural cancer or a melanoma but no correlation appears between doses and the appearance of the pleural cancer or the melanoma. (A.C.)

  9. Estimation of annual effective dose from 226Ra 228Ra due to consumption of foodstuffs by inhabitants of high level natural radiation of Ramsar, Iran

    International Nuclear Information System (INIS)

    Full text: A knowledge of natural radioactivity in man and his environment is important since naturally occurring radionuclides are the major source of radiation exposure to man. Radioactive nuclides present in the natural environment enter the human body mainly through food and water.Besides, measurement of naturally occurring radionuclides in the environment can be used not only as a reference when routine releases from nuclear installation or accidental radiation exposures are assessed, but also as a baseline to evaluate the impact caused by non-nuclear activities. In Iran, measurement of natural and artificial radionuclides in environmental samples in normal and high-background radiation areas have been performed by some investigators but no information has been available on 226Ra and 228Ra in foodstuffs. Therefore we have started measurements of 226Ra and 228Ra in foodstuffs of Ramsar which is a coastal city in the north part of Iran and has been known as one of the world's high level natural radiation areas, using low level gamma spectrometry measurement system .The results from our measurements and food consumption rates for inhabitants of Ramsar city have been used for the estimation of annual effective dose due to consumption of foodstuffs by inhabitants of Ramsar city. A total of 33 samples from 11 different foodstuffs including root vegetables (beetroot), leafy vegetables (lettuce, parsley and spinach) and tea, meat,chicken, pea,broad bean, rice, and cheese were purchased from markets and were analyzed for their 226Ra and 228Ra concentrations. The highest concentrations of 226 Ra and 228 Ra were determined in tea samples with 1570 and 1140 mBq kg-1 respectively and the maximum estimated annual effective dose from 226 Ra and Ra due to consumption foodstuffs were determined to be 19.22 and 0.71 μSv from rice and meat samples respectively

  10. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  11. Distribution of K, eU and Th and evaluation of annual radiation dose in the region of the Serra do Carambei Granite - PR

    International Nuclear Information System (INIS)

    is study was conducted in an area of 14 km in length oriented in the NNE direction by 7.3 km wide, covering the totality of the Serra do Carambei Granite and adjacent units. Located in the northern region of the Alagados dam, Parana State, this granite contains relatively high concentrations of K, eU and eTh, known since the 1970s through airborne and terrestrial gamma-ray spectrometry surveys. Recent radiochemical tests conducted on 61 samples of geological materials such as rocks (17 samples) and material of the weathering mantle and alluvial deposits (44 samples), confirmed the occurrence of radioactive anomalies in this granite, especially in thorium and uranium. The contents of K, eU and eTh obtained in gamma-ray spectrometry survey and radiochemical tests, converted to annual radiation dose (ARD), allowed to evaluate the intensity of natural radiation, whose levels relatively high in certain regions of the study area, can offer hazard to the local populations. The analysis and interpretation of data, as well the preparation of contour maps of K, eU and eTh were fundamental to understand the behavior and mobility of radionuclides in different environmental compartments of the area. (author)

  12. Dose constraints to the individual annual doses of exposed workers in the medical sector

    Energy Technology Data Exchange (ETDEWEB)

    Kamenopoulou, V. E-mail: titika@eeae.nrcps.ariadne-t.gr; Drikos, G.; Dimitriou, P

    2001-03-01

    The study is an attempt, within the process of the optimization of radiation protection, to propose constraints to the individual annual doses of classified workers employed in the medical sector of ionizing radiation applications in Greece. These exposed workers were grouped according to their specialties, i.e. medical doctors, technicians and nurses and their occupational category with common or similar tasks, such as diagnostic radiology, interventional radiology, nuclear medicine and radiotherapy. The last 5 years' annual dose distributions of these occupational groups, coming from the National Dose Registry Information System (NDRIS) of the Greek Atomic Energy Commission (GAEC) were analyzed. The proposed dose constraints (DCs) were set at levels, below which the annual doses of the 70 or 75% of the exposed workers per category are expected to be included. At the present stage the derived values may be considered achievable ceiling values referring to acceptably applied practices rather than to optimized ones, taking into account social and economic criteria.

  13. Dose constraints to the individual annual doses of exposed workers in the medical sector.

    Science.gov (United States)

    Kamenopoulou, V; Drikos, G; Dimitriou, P

    2001-03-01

    The study is an attempt, within the process of the optimization of radiation protection, to propose constraints to the individual annual doses of classified workers employed in the medical sector of ionizing radiation applications in Greece. These exposed workers were grouped according to their specialties, i.e. medical doctors, technicians and nurses and their occupational category with common or similar tasks, such as diagnostic radiology, interventional radiology, nuclear medicine and radiotherapy. The last 5 years' annual dose distributions of these occupational groups, coming from the National Dose Registry Information System (NDRIS) of the Greek Atomic Energy Commission (GAEC) were analyzed. The proposed dose constraints (DCs) were set at levels, below which the annual doses of the 70 or 75% of the exposed workers per category are expected to be included. At the present stage the derived values may be considered achievable ceiling values referring to acceptably applied practices rather than to optimized ones, taking into account social and economic criteria. PMID:11274851

  14. Annual dose from radon in Mongolia

    International Nuclear Information System (INIS)

    Today, the research of radon is one of the most important themes in nuclear physics and environmental science. Research in indoor air radon and outdoor air radon are very significant for hygiene. Outdoor air radon changes with geographical region, season, month and hours of day. And indoor air radon pertains from outdoor air radon, buildings material and ventilation. Experimental data of determination Rn222 by Scintillation method (SAC-4) in outdoor air, in premises of a microtron MT-22, other working rooms and dwellings (concrete, brick, wooden and Mongolian ger) are considered. With the purpose of research of radiation safety in indoor and outdoor of the microtron, we have developed a technique of determination radon and its short-lived decay product Po218 by the scintillation counter SAC-4. Concrete, brick, wooden, mongolian ger 4 buildings radon concentration in winter (November and December) of 6 years, measurements 400 points average to cause to out average and annual dose rate from radon are measured. Radon concentration has in outdoor air (winter) 18.7 (2.3/38.8) Bq/m3. Indoor air (concrete, brick, wooden, Mongolian ger) radon concentration has 26.0 (8.2/42.6) Bq/m3. Received dose rate annual to human of radon 0.8 (0.33/1.26) mSv/year. This concentration is less than maximum effective dose (2.5mSv/year) of human year. Mongolian National Standard 'Method of determination of radon concentration in air' (MNS5246:2003) is processed and certified. The work is carried out at the Nuclear Research Centre of the National University of Mongolia. (author)

  15. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F; Kovalchuk, Olga; Dolinoy, Dana C; Dubrova, Yuri E; Coleman, Matthew A; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  16. Internal 40K radiation dose to Indians

    International Nuclear Information System (INIS)

    A group of 350 Indians from both sexes (7-65 years) representing different regions of India was studied for internal 40K radiation dose from the naturally occurring body 40K, which was measured in the National Institute of Nutrition (NIN) whole-body counter. Although the 40K radioactivity reached a peak value by 18 years in female (2,412 Bq) and by 20 years in male (3,058 Bq) and then varied inversely with age in both sexes, the radiation dose did not show such a trend. Boys and girls of 11 years had annual effective dose of nearly 185 mSv, which decreased during adolescence (165 mSv), increased to 175 mSv by 18-20 years in adults and decreased progressively on further ageing to 99 mSv in males and 69 mSv in females at 65 years. The observed annual effective dose (175 mSv) of the young adults was close to that of the ICRP Reference Man (176 mSv) and Indian Reference Man (175 mSv). With a mean specific activity of 55 Bq/kg for the subjects and a conversion coefficient close to 3 mSv per annum per Bq/kg, the average annual effective dose from the internal 40K turned out to be 165 mSv for Indians. (author)

  17. Biological characterization of radiation exposure and dose estimates for inhaled uranium milling effluents. Annual progress report, April 1981-March 1982

    International Nuclear Information System (INIS)

    The problems addressed are the protection of uranium will workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. Sampling of airborne yellowcake at four uranium mills showed that aerosols were heterogeneous, changed with time and contained approx. 50% of the airborne uranium in particles greater than 12 μm aerodynamic diameter. Results are related to specific packaging steps and to predictions of appreciable upper respiratory tract deposition rates for the aerosols, if inhaled by a worker without respiratory protection. Previously used in vitro dissolution techniques were evaluated and the uses of the results for interpreting urinary bioassay data are described. Preliminary results from an inhalation experiment using rats indicate that the clearance patterns of inhaled uranium from lung agreed quantitatively with results from in vitro dissolution and infrared analyses of the yellowcake used. Preliminary results from an experiment to simulate contamination of a wound by yellowcake showed that more of the implanted dose of a less soluble form of yellowcake was retained at the wound site than of a more soluble form at 32 days after implantation. The results did not quantitatively agree with in vitro dissolution results. A two-year study of yellowcake from two mills was initiated. Twenty Beagle dogs were exposed by nose-only inhalation to a more soluble form of yellowcake and 20 to a less soluble form

  18. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  19. Monitoring of radiation exposure. Annual report 2000

    International Nuclear Information System (INIS)

    At the end of 2000, there were 1,779 valid safety licenses in Finland for the use of radiation. In addition, there were 2,038 responsible parties for dental x-ray diagnostics. The registry Radiation and Nuclear Safety Authority (STUK) listed 13,754 radiation sources and 270 radionuclide laboratories. In the year 2000 360 inspections were made concerning the safety licences and 53 concerning dental x-ray diagnostics. The import of radioactive substances amounted to 175,836 GBq and export to 74,420 GBq. Short-lived radionuclides produced in Finland amounted to 55,527 GBq. In the year 2000 there were 10,846 workers monitored for radiation exposure at 1,171 work sites. Of these employees, 27% received an annual dose exceeding the recording level. The annual effective dose limit was not exceeded. The total dose recorded in the dose registry(sum of the individual dosemeter readings) was 6.5 Sv in 2000

  20. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author)

  1. Measurement of and activities of Wheat and Corn Products in Ilam Province Iran and Resultant Annual Ingestion Radiation Dose

    Directory of Open Access Journals (Sweden)

    Vahid Changizi

    2013-08-01

    Full Text Available Background: Background: Natural background radiation is the main source of human exposure to radioactive material. Soils naturally have radioactive mineral contents. The aim of this study is to determine natural ( , , and artificial ( radioactivity levels in wheat and corn fields of Eilam province.Methods: HPGe detector was used to measure the concentration activity of and series, and in wheat and corn samples taken from different regions of Eilam province, in Iran.Results: In wheat and corn samples, the average activity concentrations of , , and were found to be 1,67, 0.5, 91.73, 0.01 and 0.81, 0.85, 101.52, 0.07Bq/kg (dry weight, respectively. Hex and Hin in the present work are lower than 1. The average value of Hex was found to be 0.02 and 0.025 and average value of Hin to be found 0.025 and 0.027 in wheat fields samples and corn samples in Eilam provinces, respectively. The obtained values of AGDE are 30.49 mSv/yr for wheat filed samples and 37.89 mSv/yr for corn samples; the AEDE rate values are 5.28 mSv/yr in wheat filed samples and this average value was found to be 6.13 mSv/yr in corn samples in Eilam. Transfer factors (TFs of long lived radionuclide such as , , and from soils to corn and wheat plants have been studied by radiotracer experiments.Conclusion: The natural radioactivity levels in Eilam province are not at the range of high risk of morbidity and are under international standards.

  2. Radiation dose during angiographic procedures

    International Nuclear Information System (INIS)

    The use of angiographic procedures is becoming more prevalent as new techniques and equipment are developed. There have been concerns in the scientific community about the level of radiation doses received by patients, and indirectly by staff, during some of these radiological procedures. The purpose of this study was to assess the level of radiation dose from angiographic procedures to patient at the Ottawa Hospital, General Campus. Radiation dose measurements, using Thermo-Luminescent Dosimeters (TLDs), were performed on more than 100 patients on various procedures. The results show that while the patient dose from the great majority of angiographic procedures is less than 2 Gy, a significant number of procedures, especially interventional procedures may have doses greater than 2 Gy and may lead to deterministic effects. (author)

  3. Radiation Doses Received by the Irish Population

    International Nuclear Information System (INIS)

    Some chemical elements present in the environment since the Earth was formed are naturally radioactive and exposure to these sources of radiation cannot be avoided. There have also been additions to this natural inventory from artificial sources of radiation that did not exist before the 1940s. Other sources of radiation exposure include cosmic radiation from outer space and the use of radiation in medical diagnosis and treatment. There can be large variability in the dose received by invividual members of the population from any given source. Some sources of radiation expose every member of the population while, in other cases, only selected individuals may be exposed. For example, natural radioactivity is found in all soils and therefore everybody receives some radiation dose from this activity. On the other hand, in the case of medical exposures, only those who undergo a medical procedure using radiation will receive a radiation dose. The Radiological Protection Institute of Ireland (RPII) has undertaken a comprehensive review of the relevant data on radiation exposure in Ireland. Where no national data have been identified, the RPII has either undertaken its own research or has referred to the international literature to provide a best estimate of what the exposure in Ireland might be. This has allowed the relative contribution of each source to be quantified. This new evaluation is the most up-to-date assessment of radiation exposure and updates the assessment previously reported in 2004. The dose quoted for each source is the annual 'per caput' dose calculated on the basis of the most recently available data. This is an average value calculated by adding the doses received by each individual exposed to a given radiation source and dividing the total by the current population of 4.24 million. All figures have been rounded, consistent with the accuracy of the data. In line with accepted international practice, where exposure takes place both indoors and

  4. Mammography Radiation Dose and Image Quality

    International Nuclear Information System (INIS)

    The early detection of breast cancer is technologically very challenging for radiography. At present screen-film mammography is the favoured method for early detection of breast cancer. In the United States, screening is under way and a large number of asymptomatic women are being exposed to radiation for the purpose of detecting early occult cancer. The prognosis for this disease is greatly improved if the cancer can be found before it reaches the size of 1 cm. Because of the widespread use of this imaging technology, much attention has been paid to its optimisation in terms of patient radiation dose, required image quality and quality control. Mammography in the USA is regulated by the Federal Government through mandatory facility certification including annual inspections and a specified quality control programme. However, there is still a wide range of radiation dose delivered to achieve a given film optical density and level of image quality. (author)

  5. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  6. Radiation doses - maps and magnitudes

    International Nuclear Information System (INIS)

    Three slide sets which can be used in lectures about radiation protection have been published by NRPB. Each consists of 20 slides with captions, and are available at a price of Pound 25 + VAT per set (UK), Pound 25 (Europe) or Pound 35 (rest of world). The slide sets are based on publications in the NRPB ''At-a-Glance'' series of broadsheets, which use illustrations as the main source of information, supported by captions; the series generally avoids the jargon of radiation protection, although each leaflet is based on scientific studies. Slide Set Number 1, ''Radiation Doses - Maps and Magnitudes'' based on the broadsheet of the same name shows visually the main sources of radiation exposure, natural and man-made, with emphasis on the range of doses as well as the averages. The enormous variation in doses across the country is clearly set out. (author)

  7. Radiation biology of low doses

    International Nuclear Information System (INIS)

    Present risk assessments and standards in radiation protection are based on the so-called linear no-threshold (LNT) dose - effect hypothesis, i.e., on a linear, proportional relationship between radiation doses and their effects on biological systems. This concept presupposes that any dose, irrespective of its level and time of occurrence, carries the same risk coefficient and, moreover, that no individual biological effects are taken into account. This contribution presents studies of low energy transfer (LET) radiation which deal with the risk of cancer to individual cells. According to the LNT hypothesis, the relationship for the occurrence of these potential effects should be constant over the dose range: successful repair, cell death, mutation with potential carcinogenesis. The results of the studies presented here indicate more differentiated effects as a function of dose application as far as damage to cellular DNA by ionizing radiation is concerned. At the same overall dose level, multiple exposures to low doses sometimes give rise to much smaller effects than those arising from one single exposure to the total dose. These adaptive effects of cells are known from other studies. The results of the study allow the conclusion to be drawn that non-linear relationships must be assumed to exist for the LET radiation considered. Correspondingly, the linear no-threshold hypothesis model should at least be reconsidered with respect to the low dose range in the light of recent biological findings. The inclusion of other topical research findings also could give rise to a new, revised, risk-oriented approach in radiological protection. (orig.)

  8. Radiation Practices. Annual report 2004

    International Nuclear Information System (INIS)

    A total of 1791 safety licences for the use of radiation were current at the end of 2004. There were 1924 responsible parties engaged in licence-exempt dental X-ray practices, made notifiable to STUK. Regulatory control of the use of radiation was carried out through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of a Dose Register. Radiation safety guides were also published and research was conducted to support the regulatory control. In 2004, STUK conducted 438 inspections of licensed practices and 38 inspections of notifiable licence-exempt dental X-ray practices. Restrictions were imposed on the use of five appliances. Repairs were ordered in 150 inspections and recommended in 85 inspections. No remarks were given in 229 inspections. A total of 11 082 workers engaged in radiation work were subject to individual monitoring in 2004. 135 000 dose entries were made in the register maintained by STUK. In no case did the individual dose of any worker exceed the dose limits stipulated in the Radiation Decree. Regulatory control of natural radiation concentrated on radon at workplaces and exposure of aircrews to cosmic radiation. At the end of 2004, 55 workplaces including a total of 74 work areas were subject to radon monitoring. A total of 2540 pilots and cabin crew members were monitored for exposure to cosmic radiation. Metrological activities continued with calibration and development work as in previous years. Regulatory control of the use of non-ionizing radiation focused particularly on mobile phones and sunbeds. Radiation safety assessments were also made for public broadcasting equipment, radars, 'artificial sun' aboard a cruise liner, UVC bactericide lamps in a bakery and show laser lights. A recommendation on radiation safety for sunbeds was prepared in association with other Nordic countries. Most research and development work was done in jointly financed research projects and

  9. Radiation Practices. Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, E. (ed.)

    2005-06-01

    A total of 1791 safety licences for the use of radiation were current at the end of 2004. There were 1924 responsible parties engaged in licence-exempt dental X-ray practices, made notifiable to STUK. Regulatory control of the use of radiation was carried out through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of a Dose Register. Radiation safety guides were also published and research was conducted to support the regulatory control. In 2004, STUK conducted 438 inspections of licensed practices and 38 inspections of notifiable licence-exempt dental X-ray practices. Restrictions were imposed on the use of five appliances. Repairs were ordered in 150 inspections and recommended in 85 inspections. No remarks were given in 229 inspections. A total of 11 082 workers engaged in radiation work were subject to individual monitoring in 2004. 135 000 dose entries were made in the register maintained by STUK. In no case did the individual dose of any worker exceed the dose limits stipulated in the Radiation Decree. Regulatory control of natural radiation concentrated on radon at workplaces and exposure of aircrews to cosmic radiation. At the end of 2004, 55 workplaces including a total of 74 work areas were subject to radon monitoring. A total of 2540 pilots and cabin crew members were monitored for exposure to cosmic radiation. Metrological activities continued with calibration and development work as in previous years. Regulatory control of the use of non-ionizing radiation focused particularly on mobile phones and sunbeds. Radiation safety assessments were also made for public broadcasting equipment, radars, 'artificial sun' aboard a cruise liner, UVC bactericide lamps in a bakery and show laser lights. A recommendation on radiation safety for sunbeds was prepared in association with other Nordic countries. Most research and development work was done in jointly financed research projects

  10. ESTE AI (Annual Impacts) - the program for calculation of radiation doses caused by effluents in routine releases to the atmosphere and to the hydrosphere

    International Nuclear Information System (INIS)

    ESTE AI is a program for calculation of radiation doses caused by effluents in routine releases to the atmosphere and to the hydrosphere. Doses to the members of critical groups of inhabitants in the vicinity of NPP are calculated and as a result, critical group is determined. The program enables to calculate collective doses as well. Collective doses to the inhabitants living in the vicinity of the NPP are calculated. ESTE AI calculates doses to the whole population of Slovakia from the effluents of the specific plant. In this calculation, global nuclides are included and assumed, as well. The program enables to calculate and to document beyond-border radiological impacts of effluents caused by routine operation of NPP. ESTE AI was approved by the 'Public Health Authority of the Slovak Republic' and is used as legal instrument by Slovenske elektrarne a.s., NPP Bohunice. (authors)

  11. Radiation practices. Annual report 2008

    International Nuclear Information System (INIS)

    1775 safety licences for the use of radiation were current at the end of 2008. 1831 responsible parties were engaged in notifiable licence-exempt dental X-ray activities. Use of radiation was controlled through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. STUK conducted 424 inspections of licensed practices and 18 inspections of notifiable licence-exempt dental X-ray practices in 2008. 209 repair orders and recommendations were issued. Use of one appliance was prohibited. A total of just over 11 500 workers were subject to individual monitoring in 2008, and about 140 000 dose entries were made in the Dose Register maintained by STUK. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 89 workplaces including a total of 201 work areas were subject to radon monitoring during 2008. Some 3700 pilots and cabin crew members were monitored for exposure to cosmic radiation. Metrological activities continued with calibration and development work as in previous years. Regulatory control of the use of non-ionizing radiation in 2008 focused particularly on mobile phones, sunbeds and lasers. Ten mobile phone types and five baby monitors were tested in market surveillance of wireless communication devices. 25 sunbed facilities were inspected and nine laser display inspections were performed. There were 22 abnormal incidents involving the use of radiation in 2008. Seventeen of these incidents concerned the use of radiation in industry, research or transportation, four concerned the use of radiation in health care, and one concerned the use of non-ionizing radiation. None of these incidents had serious consequences. (orig.)

  12. Radiation practices. Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, E. (ed.)

    2009-09-15

    1775 safety licences for the use of radiation were current at the end of 2008. 1831 responsible parties were engaged in notifiable licence-exempt dental X-ray activities. Use of radiation was controlled through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. STUK conducted 424 inspections of licensed practices and 18 inspections of notifiable licence-exempt dental X-ray practices in 2008. 209 repair orders and recommendations were issued. Use of one appliance was prohibited. A total of just over 11 500 workers were subject to individual monitoring in 2008, and about 140 000 dose entries were made in the Dose Register maintained by STUK. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 89 workplaces including a total of 201 work areas were subject to radon monitoring during 2008. Some 3700 pilots and cabin crew members were monitored for exposure to cosmic radiation. Metrological activities continued with calibration and development work as in previous years. Regulatory control of the use of non-ionizing radiation in 2008 focused particularly on mobile phones, sunbeds and lasers. Ten mobile phone types and five baby monitors were tested in market surveillance of wireless communication devices. 25 sunbed facilities were inspected and nine laser display inspections were performed. There were 22 abnormal incidents involving the use of radiation in 2008. Seventeen of these incidents concerned the use of radiation in industry, research or transportation, four concerned the use of radiation in health care, and one concerned the use of non-ionizing radiation. None of these incidents had serious consequences. (orig.)

  13. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  14. Mammography and radiation dose

    International Nuclear Information System (INIS)

    The physical aspects of mammography have been investigated by a commissioned group of physicists at six centers in the United States. Continuous monitoring of the various centers has established sound reproducible data. The 1976 evaluation of 63 systems used in 29 screening centers indicated an average dose to the skin of 2.2 rads per exposure. With high resolution mammography in 2000 asymptomatic women over 35 years of age in a screening program at Emory University, 19 cancers were demonstrated; only one was palpable after localization by mammography, the only one with an axillary lymph node metastasis. Each study required an average of less than 1.5 rads to the fibroglandular tissue of the breasts. Mammography is most useful in the 35 to 50 year age group but should not be denied to younger symptomatic or asymptomatic women

  15. Long-term radiation dose reduction plan of KHNP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saeng-Ki; Shin, Sang-Woon; Lim, Byoung-Chan [Korea Hydro and Nuclear Power Company, Seoul (Korea, Republic of)

    2002-07-01

    Annual radiation dose limit to radiation worker was substantially lowered in Korea by the adoption of 1990 recommendations of the International Commission on Radiation Protection (ICRP 60) in its legislation. On the other hand, radiation management environment in nuclear power plants is getting more worse because of the accumulation of radiation sources inside the system and the frequent need for maintenance according as the operation years of nuclear power plants increase. Therefore, Korea Hydro and Nuclear power Co., Ltd. (KHNP) has established a long-term 10 years' plan from 2001 to 2010 for the reduction of radiation dose to workers. The plan is aimed for the reduction of annual dose per unit averaged over 5 years from 0.9 man-Sv in 2001 to 0.75 man- Sv in 2010 by radiation source reduction, equipment/tool improvement or new equipment development for easy maintenance, and the improvement of administration and system.

  16. Radiation Practices. Annual Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, E. (ed.)

    2004-07-01

    A total of 1811 safety licences for the use of radiation were current at the end of 2003. There were 1962 responsible parties engaged in licence-exempt dental X-ray practices, made notifiable to STUK. Regulatory control of the use of radiation was carried out through regular inspections performed at places of use, postal control, guidance, maintenance of a Dose Register and research intended to support the regulatory control. A total of 10 900 workers engaged in radiation work were subject to individual monitoring in 2003. 135 000 dose entries were made in the register maintained by STUK. In no case did the individual dose of any worker exceed the dose limits stipulated in the Radiation Decree. Regulatory control of natural radiation concentrated on radon at workplaces and exposure of aircrews to cosmic radiation. At the end of 2003, 90 workplaces including a total of 141 work areas were subject to ongoing radon monitoring. A total of 2485 pilots and cabin crew members were monitored for exposure to cosmic radiation. Metrological activities continued with calibration and development work as in previous years. The DOS Laboratory of STO joined the international MRA agreement on the 'self declaration principle'. Regulatory control of the use of non-ionizing radiation focused particularly on mobile phones and sun-beds. Mobile phone market control began by measuring the radiation produced by a range of 12 mobile phones of varying type. Spot check inspections were conducted at tanning facilities and a report was completed on radiation safety improvements at such establishments. A method of measurement based on commercial CCD spectroradiometers was developed for spectral measurements of UV phototherapy appliances and sunbeds. The said method is also suitable for measurements at places of use. A new type of magnetometer, which measures peak values over a wide frequency band weighted according to exposure limits, was developed for measuring low frequency magnetic

  17. Radiation Practices. Annual Report 2003

    International Nuclear Information System (INIS)

    A total of 1811 safety licences for the use of radiation were current at the end of 2003. There were 1962 responsible parties engaged in licence-exempt dental X-ray practices, made notifiable to STUK. Regulatory control of the use of radiation was carried out through regular inspections performed at places of use, postal control, guidance, maintenance of a Dose Register and research intended to support the regulatory control. A total of 10 900 workers engaged in radiation work were subject to individual monitoring in 2003. 135 000 dose entries were made in the register maintained by STUK. In no case did the individual dose of any worker exceed the dose limits stipulated in the Radiation Decree. Regulatory control of natural radiation concentrated on radon at workplaces and exposure of aircrews to cosmic radiation. At the end of 2003, 90 workplaces including a total of 141 work areas were subject to ongoing radon monitoring. A total of 2485 pilots and cabin crew members were monitored for exposure to cosmic radiation. Metrological activities continued with calibration and development work as in previous years. The DOS Laboratory of STO joined the international MRA agreement on the 'self declaration principle'. Regulatory control of the use of non-ionizing radiation focused particularly on mobile phones and sun-beds. Mobile phone market control began by measuring the radiation produced by a range of 12 mobile phones of varying type. Spot check inspections were conducted at tanning facilities and a report was completed on radiation safety improvements at such establishments. A method of measurement based on commercial CCD spectroradiometers was developed for spectral measurements of UV phototherapy appliances and sunbeds. The said method is also suitable for measurements at places of use. A new type of magnetometer, which measures peak values over a wide frequency band weighted according to exposure limits, was developed for measuring low frequency magnetic fields. In

  18. Radiation Practices. Annual Report 2005

    International Nuclear Information System (INIS)

    1764 safety licences for the use of radiation were current at the end of 2005. 1907 responsible parties were engaged in notifiable licence-exempt dental X-ray practices. Regulatory control of the use of radiation was performed through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. STUK conducted 458 inspections of licensed practices and 62 inspections of notifiable licence-exempt dental X-ray practices in 2005. 273 remedial orders and recommendations were issued. Use of one appliance was prohibited. A total of 11 698 workers engaged in radiation work were subject to individual monitoring in 2005. 137 000 dose entries were made in the Dose Register. In no case did the individual dose of any worker exceed the dose limits stipulated in the Radiation Decree. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 90 workplaces including a total of 233 work areas were subject to radon monitoring during 2005. 2600 pilots and cabin crew members were monitored for exposure to cosmic radiation. Metrological activities continued with calibration and development work as in previous years. Regulatory control of the use of non-ionizing radiation in 2005 continued to focus particularly on mobile phones and sunbeds. 15 mobile phone types were tested in market surveillance of mobile phones. A total of 44 sunbed appliances were inspected at 36 sunbed facilities. Most research and development work took place within jointly financed research projects. This work focused especially on developing testing and measuring methods for determining exposure to electromagnetic fields caused by mobile phones and their base stations. There were 13 abnormal incidents involving the use of radiation in 2005. Eight of these incidents concerned

  19. Radiation Practices. Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, E. (ed.)

    2006-06-15

    1764 safety licences for the use of radiation were current at the end of 2005. 1907 responsible parties were engaged in notifiable licence-exempt dental X-ray practices. Regulatory control of the use of radiation was performed through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. STUK conducted 458 inspections of licensed practices and 62 inspections of notifiable licence-exempt dental X-ray practices in 2005. 273 remedial orders and recommendations were issued. Use of one appliance was prohibited. A total of 11 698 workers engaged in radiation work were subject to individual monitoring in 2005. 137 000 dose entries were made in the Dose Register. In no case did the individual dose of any worker exceed the dose limits stipulated in the Radiation Decree. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 90 workplaces including a total of 233 work areas were subject to radon monitoring during 2005. 2600 pilots and cabin crew members were monitored for exposure to cosmic radiation. Metrological activities continued with calibration and development work as in previous years. Regulatory control of the use of non-ionizing radiation in 2005 continued to focus particularly on mobile phones and sunbeds. 15 mobile phone types were tested in market surveillance of mobile phones. A total of 44 sunbed appliances were inspected at 36 sunbed facilities. Most research and development work took place within jointly financed research projects. This work focused especially on developing testing and measuring methods for determining exposure to electromagnetic fields caused by mobile phones and their base stations. There were 13 abnormal incidents involving the use of radiation in 2005. Eight of these incidents concerned

  20. Radiation practices. Annual report 2011

    International Nuclear Information System (INIS)

    1791 safety licences for the use of radiation were current at the end of 2011. 1702 responsible parties were engaged in notifiable licence-exempt dental X-ray activities. Use of radiation was controlled through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. The Radiation and Nuclear Safety Authority (STUK) conducted 575 inspections of licensed practices in 2011. 633 repair orders and recommendations were issued in the course of inspections. A total of nearly 11 700 workers were subject to individual monitoring in 2011 and about 143 000 dose entries were made in the Dose Register maintained by STUK. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 166 workplaces including a total of 288 work areas were subject to radon monitoring during 2011. Just over 3600 cockpit and cabin crew members were monitored for exposure to cosmic radiation. STUK was involved in four ionizing radiation research projects, and also took part in an international expert group evaluation of STUK research activities. New alpha and beta sources were procured for metrological activities and a Co-60 irradiation device procured in 2010 was installed and taken into use. Calibration and testing services continued as in previous years. Regulatory control of the use of non-ionizing radiation in 2011 focused particularly on mobile phones, sunbeds and lasers. Orders were issued to 5 responsible parties to discontinue the use of tattoo removal lasers. 7 sunbed facilities were inspected and 10 on-site laser display inspections were performed. Five mobile phone types were tested in market surveillance of wireless communication devices. Non-ionizing radiation research activities were also subjected to the evaluation of STUK research activities

  1. Radiation practices. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, E. (ed.)

    2012-09-15

    1791 safety licences for the use of radiation were current at the end of 2011. 1702 responsible parties were engaged in notifiable licence-exempt dental X-ray activities. Use of radiation was controlled through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. The Radiation and Nuclear Safety Authority (STUK) conducted 575 inspections of licensed practices in 2011. 633 repair orders and recommendations were issued in the course of inspections. A total of nearly 11 700 workers were subject to individual monitoring in 2011 and about 143 000 dose entries were made in the Dose Register maintained by STUK. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 166 workplaces including a total of 288 work areas were subject to radon monitoring during 2011. Just over 3600 cockpit and cabin crew members were monitored for exposure to cosmic radiation. STUK was involved in four ionizing radiation research projects, and also took part in an international expert group evaluation of STUK research activities. New alpha and beta sources were procured for metrological activities and a Co-60 irradiation device procured in 2010 was installed and taken into use. Calibration and testing services continued as in previous years. Regulatory control of the use of non-ionizing radiation in 2011 focused particularly on mobile phones, sunbeds and lasers. Orders were issued to 5 responsible parties to discontinue the use of tattoo removal lasers. 7 sunbed facilities were inspected and 10 on-site laser display inspections were performed. Five mobile phone types were tested in market surveillance of wireless communication devices. Non-ionizing radiation research activities were also subjected to the evaluation of STUK research activities

  2. Occupational radiation doses to personnel

    International Nuclear Information System (INIS)

    Results are presented of 2-year measurements of personnel doses performed according to the program of Personel Dosimetry Centre of Leningrad Scientific Research Institute of Radiation Hygiene. Investigations were carried out in 7 regions of the USSR. Thermoluminescent ''Harshow 2000 D'' dosemeter and lithium fluoride detector were used. Mean dose for all occupational groups (defectoscopists, personnel of radioactive waste disposal, medical radiologists) is found to be not exceeding 10% of maximum permissible dose. It is concluded that working conditions of personnel tested meet the requirements of RPG-76 and sanitary rules BSR-72/80

  3. Individual Dose Monitor of External Radiation Personnel in IMP (1996~2001)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For evaluating the individual annual effective dose of eternal radiation personnel in IMP, we monitored individual dose of external radiation personnel every year. The monitoring results are shown in Table 1, from which it is known from 1998 to 2001, we monitored 1099 workers, the mean annual effective dose is 0.13 mSv.

  4. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  5. Radiation practices. Annual report 2010

    International Nuclear Information System (INIS)

    1760 safety licences for the use of radiation were current at the end of 2010. 1789 responsible parties were engaged in notifiable licence-exempt dental X-ray activities. Use of radiation was controlled through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. The Radiation and Nuclear Safety Authority (STUK) conducted 384 inspections of licensed practices in 2010. 447 repair orders and recommendations were issued in the course of inspections. A total of nearly 12 100 workers were subject to individual monitoring in 2010. Just under 160 000 dose entries were made in the Dose Register maintained by STUK. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 140 workplaces including a total of 348 work areas were subject to radon monitoring during 2010. 3428 cockpit and cabin crew members were monitored for exposure to cosmic radiation. STUK took part in three major ionizing radiation research projects. An IAEA research project tested diagnostic dosimetry guidelines. The accuracy and reliability of internal and external radiotherapy dosimetric methods in modern radiotherapy technology were studied as part of a European metrology research programme. In metrological activities the dosemeter calibration procedure for radiotherapy accelerator electron beams was modified by changing from meter calibrations in hospitals to laboratory calibrations. Some irradiation appliances were also replaced. Calibration services continued as in previous years. Regulatory control of the use of non-ionizing radiation in 2010 focused particularly on mobile phones, sunbeds and lasers. 16 sunbed facilities were inspected and 8 on-site laser display inspections were performed. Ten mobile phone types were tested in market surveillance of

  6. Radiation practices. Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, E. (ed.)

    2010-08-15

    1 742 safety licences for the use of radiation were current at the end of 2009. 1 820 responsible parties were engaged in notifiable licence-exempt dental X-ray activities. Use of radiation was controlled through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. The Radiation and Nuclear Safety Authority (STUK) conducted 414 inspections of licensed practices in 2009. 392 repair orders and recommendations were issued. A total of nearly 11 600 workers were subject to individual monitoring in 2009. Just under 160 000 dose entries were made in the Dose Register maintained by STUK. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 108 workplaces including a total of 219 work areas were subject to radon monitoring during 2009. 3655 cockpit and cabin crew members were monitored for exposure to cosmic radiation. STUK took part in three major ionizing radiation research projects. An IAEA research project tested IAEA/WHO diagnostic dosimetry guidelines. The accuracy and reliability of internal and external radiotherapy dosimetric methods in modern radiotherapy technology was studied as part of a European metrology research programme. In metrological activities the calibration procedure for radiotherapy accelerator electron beam dosemeters was modified by changing from meter calibration in hospitals to laboratory calibration. Some irradiation appliances were also replaced. Calibration services continued as in previous years. Regulatory control of the use of non-ionizing radiation in 2009 focused particularly on mobile phones, sunbeds and lasers. Fifteen mobile phone types were tested in market surveillance of wireless communication devices. 19 sunbed facilities were inspected and ten laser display inspections were

  7. Radiation practices. Annual report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, E. (ed.)

    2011-07-01

    1760 safety licences for the use of radiation were current at the end of 2010. 1789 responsible parties were engaged in notifiable licence-exempt dental X-ray activities. Use of radiation was controlled through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. The Radiation and Nuclear Safety Authority (STUK) conducted 384 inspections of licensed practices in 2010. 447 repair orders and recommendations were issued in the course of inspections. A total of nearly 12 100 workers were subject to individual monitoring in 2010. Just under 160 000 dose entries were made in the Dose Register maintained by STUK. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 140 workplaces including a total of 348 work areas were subject to radon monitoring during 2010. 3428 cockpit and cabin crew members were monitored for exposure to cosmic radiation. STUK took part in three major ionizing radiation research projects. An IAEA research project tested diagnostic dosimetry guidelines. The accuracy and reliability of internal and external radiotherapy dosimetric methods in modern radiotherapy technology were studied as part of a European metrology research programme. In metrological activities the dosemeter calibration procedure for radiotherapy accelerator electron beams was modified by changing from meter calibrations in hospitals to laboratory calibrations. Some irradiation appliances were also replaced. Calibration services continued as in previous years. Regulatory control of the use of non-ionizing radiation in 2010 focused particularly on mobile phones, sunbeds and lasers. 16 sunbed facilities were inspected and 8 on-site laser display inspections were performed. Ten mobile phone types were tested in market surveillance of

  8. Radiation practices. Annual report 2009

    International Nuclear Information System (INIS)

    1 742 safety licences for the use of radiation were current at the end of 2009. 1 820 responsible parties were engaged in notifiable licence-exempt dental X-ray activities. Use of radiation was controlled through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. The Radiation and Nuclear Safety Authority (STUK) conducted 414 inspections of licensed practices in 2009. 392 repair orders and recommendations were issued. A total of nearly 11 600 workers were subject to individual monitoring in 2009. Just under 160 000 dose entries were made in the Dose Register maintained by STUK. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 108 workplaces including a total of 219 work areas were subject to radon monitoring during 2009. 3655 cockpit and cabin crew members were monitored for exposure to cosmic radiation. STUK took part in three major ionizing radiation research projects. An IAEA research project tested IAEA/WHO diagnostic dosimetry guidelines. The accuracy and reliability of internal and external radiotherapy dosimetric methods in modern radiotherapy technology was studied as part of a European metrology research programme. In metrological activities the calibration procedure for radiotherapy accelerator electron beam dosemeters was modified by changing from meter calibration in hospitals to laboratory calibration. Some irradiation appliances were also replaced. Calibration services continued as in previous years. Regulatory control of the use of non-ionizing radiation in 2009 focused particularly on mobile phones, sunbeds and lasers. Fifteen mobile phone types were tested in market surveillance of wireless communication devices. 19 sunbed facilities were inspected and ten laser display inspections were

  9. Radiation dose from cigarette tobacco

    International Nuclear Information System (INIS)

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as 226Ra and 210Pb of the uranium series and 228Ra of the thorium series and or man-made radionuclides, such as 137Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for 226Ra varied from 42.5 to 178.6 μ Sv y-1 (average 79.7 μ Sv y-1), while for 228Ra from 19.3 to 116.0 μ Sv y-1 (average 67.1 μ Sv y-1) and for 210Pb from 47.0 to 134.9 μ Sv y-1 (average 104.7 μ Sv y-1), that is the same order of magnitude for each radionuclide. The sum of the effective doses of the three natural radionuclides varied from 151.9 to 401.3 μ Sv y-1 (average 251.5 μ Sv y-1). The annual effective dose from 137Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y-1 (average 199.3 nSv y-1). (authors)

  10. Radiation Dose Risk and Diagnostic Benefit in Imaging Investigations

    CERN Document Server

    Dobrescu, Lidia

    2015-01-01

    The paper presents many facets of medical imaging investigations radiological risks. The total volume of prescribed medical investigations proves a serious lack in monitoring and tracking of the cumulative radiation doses in many health services. Modern radiological investigations equipment is continuously reducing the total dose of radiation due to improved technologies, so a decrease in per caput dose can be noticed, but the increasing number of investigations has determined a net increase of the annual collective dose. High doses of radiation are cumulated from Computed Tomography investigations. An integrated system for radiation safety of the patients investigated by radiological imaging methods, based on smart cards and Public Key Infrastructure allow radiation absorbed dose data storage.

  11. Optimizing patient radiation dose in intervention procedures

    International Nuclear Information System (INIS)

    Although numerous patients derive great benefit from interventional procedures, a serious disadvantage associated with interventional procedures is patient radiation dose. Therefore, interventionalists should be aware of how to reduce the radiation dose to their patients. Currently, no conclusive method for reducing radiation dose is available for interventional procedures; hence, it is necessary to combine various methods. In addition, in order to reduce the radiation injury risk in interventional procedures, evaluation of patient radiation dose is essential. Generally, the tradeoff for a decrease in radiation dose is a loss in image performance. Therefore, optimization of radiation dose and image performance is important in interventional procedures

  12. Nuclear medicine annual external occupational dose distribution: Rio de Janeiro, Brazil, year 2005.

    Science.gov (United States)

    Mauricio, Claudia L P; Lima, Ana L S; da Silva, Herica L R; Souza-Santos, Denison; Silva, Claudio R

    2011-03-01

    Brazil has about 300 nuclear medicine services (NMS), 44 of them located in the state of Rio de Janeiro (RJ). Most nuclear medicine staff are routinely monitored for external dose. This paper makes a statistical analysis of all the RJ NMS annual external occupational doses in year 2005. Around 100 professionals of RJ NMS received annual doses >4.0 mSv, considering only external doses, but no one receives doses higher than the mean annual dose limit of 20 mSv. Extremities dosemeters are used by about 10 % of the staff. In some cases, these doses are more than 10 times higher than the dose in thorax. The maximum ratio of extremity dose/thorax dose, in 2005, was 72. This study shows the importance to improve radiation protection procedures in nuclear medicine, mainly because the number of occupational individuals in nuclear medicine and their external doses are increasing. PMID:21051433

  13. Nuclear medicine annual external occupational dose distribution: Rio de Janeiro (Brazil), year 2005

    International Nuclear Information System (INIS)

    Brazil has about 300 nuclear medicine services (NMS), 44 of them located in the state of Rio de Janeiro (RJ). Most nuclear medicine staff are routinely monitored for external dose. This paper makes a statistical analysis of all the RJ NMS annual external occupational doses in year 2005. Around 100 professionals of RJ NMS received annual doses >4.0 mSv, considering only external doses, but no one receives doses higher than the mean annual dose limit of 20 mSv. Extremities dosemeters are used by about 10 % of the staff. In some cases, these doses are more than 10 times higher than the dose in thorax. The maximum ratio of extremity dose/thorax dose, in 2005, was 72. This study shows the importance to improve radiation protection procedures in nuclear medicine, mainly because the number of occupational individuals in nuclear medicine and their external doses are increasing. (authors)

  14. Natural radiation dose to Gammarus

    International Nuclear Information System (INIS)

    The natural radiation dose rate to whole body and components of the Gammarus species (i.e., G. Tigrinus, G. Fasciatus and G. Daiberi) that occurs in the Hudson River is evaluated and the results compared with the upper limits of dose rates from man made sources to the whole body of the organisms. Methods were developed to study the distribution of alpha emitters from 226Ra plus daughter products in Gammarus using autoradiographic techniques, taking into account the amount of radon that escapes from the organisms. This methodology may be adapted to study the distribution of alpha emitters in contaminated tissues of plants and animals

  15. Radiation dose assessment for building material

    International Nuclear Information System (INIS)

    A mathematical model for radiation dose assessment for building materials based on attenuation and build up for gamma rays of the natural emitters was studied in this work. This was done by calculate the air absorbed dose from elemental volume and integrate over the total wall volume, which uniformed density and activity concentration. The used form of the build-up is a mixing of exponential and linear form for Berger model [1]. To convert absorbed dose to effective dose for all natural emitter (include 137Cs in case of fallout), the dose rate conversion factors which were reported in UNSCEAR (1993) Report [2] and U. S. NCRP (1987) [3] was used. These factors are 0.7 Sv/Gy for adult and 0.8 Sv/Gy for children. A computer program for calculating the absorbed and the annual effective dose was prepared in MATLAB language. The program is applicable for wall or room building materials when walls consist of one or two layers. The obtained results were compared with published studies. (author)

  16. Radiation Doses Received by the Irish Population 2014

    International Nuclear Information System (INIS)

    People are constantly exposed to a variety of sources of both natural and artificial radioactivity. The radiation dose received by the population from such sources is periodically estimated by the Radiological Protection Institute of Ireland RPII. This report is an update of a population dose assessment undertaken in 2008 and includes the most recent data available on the principal radiation exposure pathways. Wherever possible the collective dose and the resulting average annual dose to an individual living in Ireland, based on the most recently published figure for the population of Ireland, have been calculated for each of the pathways of exposure

  17. Radiation doses and evaluation of radiation health risk in X-ray diagnosis

    International Nuclear Information System (INIS)

    Mean doses of irradiation of some patent organs and effective equivalent doses (EED) during 21 kind of X-ray examinations were determined on the basis of materials of radiation-sanitary investigation into volume and character of X-ray aid, received by population in one of the RSFSR regions, and its correlation with literary data. Average annual collective radiation doses of the region population were evaluated, among them collective EED, accounting for 1.85 MZw/year per head

  18. Biology responses to low dose radiation

    International Nuclear Information System (INIS)

    Biology responses to low dose radiation is the most important problem of medical radiation and radiation protection. The especial mechanism of low dose or low dose rate induced cell responses, has been found independent with linear no-threshold model. This article emphasize to introduce low dose or low dose rate induced biology responses of adaptive response, by-effect, super-sensitivity and genomic instability. (authors)

  19. Natural background radiation and population dose in China

    Energy Technology Data Exchange (ETDEWEB)

    Guangzhi, C. (Ministry of Public Health, Beijing, BJ (China)); Ziqiang, P.; Zhenyum, H.; Yin, Y.; Mingqiang, G.

    On the basis of analyzing the data for the natural background radiation level in China, the typical values for indoor and outdoor terrestrial gamma radiation and effective dose equivalents from radon and thoron daughters are recommended. The annual effective dose equivalent from natural radiation to the inhabitant is estimated to be 2.3 mSv, in which 0.54 mSv is from terrestrial gamma radiation and about 0,8 mSv is from radon and its short-lived daughters. 55 Refs.

  20. Occupational radiation doses in Portugal from 1994 to 1998

    International Nuclear Information System (INIS)

    This work reports on the occupational radiation doses for external radiation received in 1994-1998 by the radiation workers monitored by the Radiological Protection and Nuclear Safety Department (DPRSN) in Portugal. Individual monitoring for external radiation is carried out in Portugal by DPRSN since the 60s, and the workers are monitored on a monthly or quarterly bases. In 1995 DPRSN monitored approximately 8000 people and was the only laboratory carrying out this sort of activity in Portugal. In 1998 the number of monitored people increased to nearly 8500 from 860 facilities, which leads us to state that the results shown in this work are well representative of the universe of radiation workers in Portugal. Until 1996, the dose measurement procedure was based only on film dosimetry and the results reported for the 1994-1995 period were obtained with this methodology. Since 1996, thermoluminescent dosimetry (TLD) was gradually introduced and since then an effort has been made to transfer the monitored workers from film to TLD. In 1998, both film and TLD dosimetry systems were running simultaneously, with average numbers of 4500 workers monitored with film dosimetry, while 4000 were monitored with TLD. The data presented from 1996 to 1998 were obtained with both methodologies. This work reports the annual mean effective doses received from external radiation, for the monitored and exposed workers in the different fields of activity, namely, industry, research laboratories, health and mining. The distribution of the annual effective dose by dose intervals is also reported. The collective annual dose by field of activity is estimated and the contribution to the total annual collective dose is determined. The collective dose estimates for the period 1994 to 1998 demonstrated that the health sector is the most representative exposed group in Portugal. (author)

  1. Radiation doses from residual radioactivity

    International Nuclear Information System (INIS)

    requires knowing the location of the person to within about 200 m from the time of the explosion to a few weeks afterwards. This is an effort that might be comparable to the present shielding study for survivors. The sizes of the four exposed groups are relatively small; however, the number has been estimated only for those exposed to fallout in the Nishiyama district of Nagasaki. Okajima listed the population of Nishiyama as about 600 at the time of the bomb. No figures are available for the other three groups. The individual exposures from residual radiation may not be significant compared with the direct radiation at the time of the bomb. On the other hand, individuals with potential exposure from these sources are dubious candidates for inclusion in a cohort that was presumably not exposed. For comparison with organ doses estimated in other parts of this program, the exposure estimates are converted to absorbed dose in tissue. The first conversion of exposure to absorbed dose in air uses the factor rad in air 0.87 x exposure in R. UNSCEAR uses an average combined factor of 0.7 to convert absorbed dose in air to absorbed dose in tissue for the whole body. This factor accounts for the change in material (air to tissue) and for backscatter and the shielding afforded by other tissues of the body. No allowance for shielding by buildings has been included here. The cumulative fallout exposures given above become absorbed doses in tissue of 12 to 24 rad for Nagasaki and 0.6 to 2 rad for Hiroshima. The cumulative exposures from induced radioactivity become absorbed doses in tissue of 18 to 24 rad for Nagasaki and about 50 rad for Hiroshima. (author)

  2. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  3. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    International Nuclear Information System (INIS)

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance

  4. Radiation dose to physicians’ eye lens during interventional radiology

    Science.gov (United States)

    Bahruddin, N. A.; Hashim, S.; Karim, M. K. A.; Sabarudin, A.; Ang, W. C.; Salehhon, N.; Bakar, K. A.

    2016-03-01

    The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure.

  5. Cytogenetic effects of low ionising radiation doses and biological dosimetry

    OpenAIRE

    Gricienė, Birutė

    2010-01-01

    The intensive use of ionising radiation (IR) sources and development of IR technology is related to increased exposure and adverse health risk to workers and public. The unstable chromosome aberration analysis in the group of nuclear energy workers (N=84) has shown that doses below annual dose limit (50 mSv) can induce chromosome aberrations in human peripheral blood lymphocytes. Significantly higher frequencies of the total chromosome aberrations were determened in the study group when compa...

  6. Annual dose measurement for luminescence dating in Salihli, Turkey

    OpenAIRE

    EGE, Arzu; TEKİN, Elçin EKDAL; KARALI, Turgay; CAN, Nurdoğan

    2009-01-01

    Determination of the annual dose level of an area is one of the most important parameters in calculating the geological and archaeological age of the sample using luminescence techniques. Therefore, the concentrations of the natural radionuclides in soils and samples have to be determined since naturally occurring radioactivity provides a major contribution to the annual dose. In this study, the annual dose level of Salihli, Turkey, was determined with 2 different methods: an indirect...

  7. Occupational radiation doses among diagnostic radiation workers in South Korea, 1996-2006

    International Nuclear Information System (INIS)

    This study details the distribution and trends of doses of occupational radiation among diagnostic radiation workers by using the national dose registry between 1996 and 2006 by the Korea Food and Drug Administration. Dose measurements were collected quarterly by the use of thermoluminescent dosemeter personal monitors. A total of 61 732 workers were monitored, including 18 376 radiologic technologists (30%), 13 762 physicians (22%), 9858 dentists (16%) and 6114 dental hygienists (9.9%). The average annual effective doses of all monitored workers decreased from 1.75 to 0.80 mSv over the study period. Among all diagnostic radiation workers, radiologic technologists received both the highest effective and collective doses. Male radiologic technologists aged 30-49 y composed the majority of workers receiving more than 5 mSv in a quarter. More intensive monitoring of occupational radiation exposure and investigation into its health effects on diagnostic radiation workers are required in South Korea. (authors)

  8. Estimation of radiation dose received by the radiation workers during radiographic testing

    International Nuclear Information System (INIS)

    This study was conducted primarily to evaluate occupational radiation dose in industrial radiography during radiographic testing at Balil-Hadida, with the aim of building up baseline data on radiation exposure in the industrial radiography practice in Sudan. Dose measurements during radiographic testing were performed and compared with IAEA reference dose. In this research the doses measured by using hand held radiation survey meter and personal monitoring dosimeter. The results showed that radiation doses ranged between minimum (0.448 mSv/ 3 month) , and maximum (1.838 mSv / 3 month), with an average value (0.778 mSv/ 3 month), and the standard deviation 0.292 for the workers used gamma mat camera. The analysis of data showed that the radiation dose for all radiation worker are receives less than annual limit for exposed workers 20 mSv/ year and compare with other study found that the dose received while body doses ranging from 0.1 to 9.4 mSv/ year, work area design in all the radiography site followed the three standard rules namely putting radiation signs, reducing access to control area and making of boundaries. Thus the accidents arising from design faults not likely to occur at these site. Results suggest that adequate fundamental training of radiation workers in general radiography prior to industrial radiography work will further improve the standard of personnel radiation protection. (Author)

  9. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Radiation Protection and Measurements; NCRP Report 124; 1996. United Nations Scientific Committee on the Effects of Atomic Radiation. ... ionizing radiation, Vol. 1: Sources. New York, NY: United Nations Publishing; 2000. Russell JR, Stabin MG, Sparks RB, ...

  10. Annual dose rate calculations for thermoluminescence dating

    International Nuclear Information System (INIS)

    Tabulations of decay data and dose rate calculations that are necessary for TL dating are presented. An effort has been made to collect the latest evaluated data and to catalog them in a form that is easily accessible, so that they may be updated as new revised values are reported. It is suggested that the largest error in thermoluminescence dating will come from sources other than the tabulated particle energies and branching ratios. These include: (a) the alpha to beta thermoluminescence efficiency determination; (b) concentration measurements of K, Rb, Th, and U; (c) all departures from secular equilibrium in the uranium and thorium decay chains; and (d) the imprecise calibration of laboratory radiation sources

  11. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  12. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  13. Assessment of population absorbed dose from external penetrating radiation in Beijing

    International Nuclear Information System (INIS)

    Gonad mean annual absorbed dose from external penetrating radiation for Beijing residents is 73.4 mrad/y of which the annual absorbed dose from cosmic ray is 27.1 mrad/y and that from natural radioactivity in building materials is 37.6 mrad/y. The construction of buildings and roads makes the annual absorbed dose change. The construction of buildings brings about an increase of 19.7 per cent in the annual absorbed dose. The construction of roads results in a reduction of 2.4%

  14. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  15. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  16. Dose received by radiation workers in Australia, 1991

    International Nuclear Information System (INIS)

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs

  17. Dose received by radiation workers in Australia, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N.D.

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs.

  18. Analysis of the occupational doses of female radiation workers in India

    International Nuclear Information System (INIS)

    Basis for control of occupational exposures of women are same as that of men except for pregnant women. Analysis of annual and cumulative occupational doses of female radiation workers as a group has been done. The average annual dose data in the four broad categories and age wise dose distribution is presented. The average working period for female radiation workers is about 3 to 5 years which is same as that of all the radiation workers on our records. The average cumulative dose for female workers is about 3 mSv. (author). 4 refs., 4 tabs

  19. Occupational radiation doses during interventional procedures

    Science.gov (United States)

    Nuraeni, N.; Hiswara, E.; Kartikasari, D.; Waris, A.; Haryanto, F.

    2016-03-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits.

  20. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  1. A meta-analysis of leukaemia risk from protracted exposure to low-dose gamma radiation

    OpenAIRE

    Daniels, R D; Schubauer-Berigan, M K

    2010-01-01

    Context More than 400 000 workers annually receive a measurable radiation dose and may be at increased risk of radiation-induced leukaemia. It is unclear whether leukaemia risk is elevated with protracted, low-dose exposure. Objective We conducted a meta-analysis examining the relationship between protracted low-dose ionising radiation exposure and leukaemia. Data sources Reviews by the National Academies and United Nations provided a summary of informative studies published before 2005. PubM...

  2. Radiation Protection Group annual report (1995)

    International Nuclear Information System (INIS)

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1995. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  3. Radiation Protection Group annual report (1996)

    International Nuclear Information System (INIS)

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  4. Radiation Protection Group annual report (1997)

    International Nuclear Information System (INIS)

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  5. Radiation Protection Group annual report (1998)

    International Nuclear Information System (INIS)

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  6. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the...... radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  7. Dose assurance in radiation processing plants

    International Nuclear Information System (INIS)

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing. (author)

  8. Dose assurance in radiation processing plants

    Science.gov (United States)

    Miller, A.; Chadwick, K. H.; Nam, J. W.

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing.

  9. Radiation doses to screened women in the Norwegian Breast Cancer Screening Program in 2005 and 2006

    International Nuclear Information System (INIS)

    The radiographers report exposure data for approximately 50 women annually to the Norwegian Radiation Protection Authority. Based on reported data from all laboratories involved in the Norwegian Breast Cancer Screening Program average glandular dose (AGD) to the screened. (author)

  10. Radiation Doses from Computed tomography in Iraq

    International Nuclear Information System (INIS)

    Radiation doses to Patient during CT scanner and the radiological risk are significant. Patient dose survey has been conducted to investigate the Iraq patient radiation doses received in CT scanners in order to established reference dose levels. These doses are Entrance Surface Dose (ESD),computed tomography dose index(CTDI)), and dose length product (DLP). Two CT scanner were investigated in this study were, Siemens Somatom Plus 4, located in at medical city of Baghdad, and Philips, Optimus located in privet hospital at Baghdad. ESD were measured by TLD and Dosimax ionization chamber for head, chest, and abdomen for both sex and different weights. The TLD results were higher than that measured with Dosimax due to scattered radiation .The scattering factor which is the ratio between dose measured by TLD and that measured by ionization chamber range between (1.14-1.34) compare to international measurement which is range between (1.1-1.5).The (ESD) measured by the two methods were agree well after the subtraction of scattering dose, and have compered with original research. Dose profile were measured using array of TLD chips shows that its full width at half maximum is(7.99 mm) approximately equal the slice thickness(8 mm). Our results compare with reference level at U.K, European Guidelines and

  11. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    International Nuclear Information System (INIS)

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  12. Quantification of individual of individual annual doses to the public due to Embalse NPP operation

    International Nuclear Information System (INIS)

    This paper compares the individual annual doses to the public produced during Embalse NPP operation and the natural radiation doses absorbed in everyday life by the same individuals. The basic idea is to show several examples that allow the comparison. Therefore, everybody will get a clear picture of the radiological contamination that surrounds us and the actual influence that Embalse NPP's operation has in the environment. The first concept to be considered is that the human body cells cannot distinguish whether radiation comes from a natural or an artificial source (a source created by man). This is of great importance in the case of the popular myth that says that radiation coming from artificial sources is the only damaging radiation, and that other types of radiation are innocuous, and represent no hazard to human health. We can preliminarily state that when considering the same dose, the effects of both kinds of radiation in human body are equal. (author)

  13. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  14. Plastic for indicating a radiation dose

    International Nuclear Information System (INIS)

    A plastic film suitable for indicating radiation dose contains a chlorine polymer, at least one acid sensitive coloring agent and a plasticizer. The film undergoes a distinct change of color in response to a given radiation dose, the degree of change proportional to the total change. These films may be stored for a long period without loss of sensitivity, and have good color stability after irradiation. (auth)

  15. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC-INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC-DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  16. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  17. Radiation dose in digital subtraction angiography

    International Nuclear Information System (INIS)

    A phantom study using thermoluminescence dosimeter was undertaken to compare radiation doses from five different imaging systems used in digital subtraction angiography (DSA). Red bone marrow and maximum skin doses were generally high. Depending upon the system, the maximum skin dose ranged from 202 to 53 mGy. Based on these results, the maximum skin dose was obtained in the clinical setting. The average dose in patients was 175 mGy for arterial DSA and 250 mGy for intravenous DSA. For radiologists, radiation doses to the lens, fingers of the right hand, and thyroid gland were 0.34, 0.27, and 0.4 mGy, respectively, in the case of mannual injection of contrast media; and undetectable, 0.029, and 0.0143 mGy, respectively, in the case of automatic injection. (Namekawa, K.)

  18. Dose mapping for documentation of radiation sterilization

    DEFF Research Database (Denmark)

    Miller, A.

    1999-01-01

    The radiation sterilization standards EN 552 and ISO 11137 require that dose mapping in real or simulated product be carried in connection with the process qualification. This paper reviews the recommendations given in the standards and discusses the difficulties and limitations of practical dose...

  19. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  20. Radiation doses - maps and magnitudes

    International Nuclear Information System (INIS)

    A NRPB leaflet in the 'At-a-Glance' Series presents information on the numerous sources and magnitude of exposure of man to radiation. These include the medical use of radiation, radioactive discharges to the environment, cosmic rays, gamma rays from the ground and buildings, radon gas and food and drink. A Pie chart represents the percentage contribution of each of those sources. Finally, the terms becquerel, microsievert and millisievert are explained. (U.K.)

  1. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  2. Work on optimum medical radiation doses

    International Nuclear Information System (INIS)

    Every day the medical world makes use of X-rays and radioisotopes. Radiology allows organs to be visualised, nuclear medicine diagnoses and treats cancer by injecting radioisotopes, and radiotherapy uses ionising radiation for cancer therapy. The medical world is increasingly mindful of the risks of ionising radiation that patients are exposed to during these examinations and treatments. In 2009 SCK-CEN completed two research projects that should help optimise the radiation doses of patients.

  3. Assessment of radiation dose awareness among pediatricians

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, Ontario (Canada); Haidar, Salwa [Mubarak Al-Kabeer Hospital, Department of Radiology, Salmiya (Kuwait); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada)

    2006-08-15

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  4. Assessment of radiation dose awareness among pediatricians

    International Nuclear Information System (INIS)

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  5. Occupational radiation doses in interventional radiology: Simulations

    International Nuclear Information System (INIS)

    In interventional radiology, occupational radiation doses can be high. Therefore, many authors have established conversion coefficients from the dose-area product data or from the personal dosemeter reading to the effective dose of the radiologist. These conversion coefficients are studied also in this work, with an emphasis on sensitivity of the results to changes in exposure conditions. Comparison to earlier works indicates that, for the exposure conditions examined in this work, all previous models discussed in this work overestimate the effective dose of the radiologist when a lead apron and a thyroid shield are used. Without the thyroid shield, underestimation may occur with some models. (authors)

  6. Radiation doses of patients during diagnostic radioisotope administration

    International Nuclear Information System (INIS)

    The concept of Somatic Effective Dose Equivalent is siutable for describing radiation-induced somatic risk because both the Dose Equivalent in individual tissues and also their varying radiation sensitivity are taken into consideration. In view of the age distribution of patients undergoing radionuclide treatment genetic risk plays a minor role. Some 3/4 of all radionuclide investigations involve a Somatic Effective Dose Equivalent which is less than the average natural radiation exposure of the population incurred annually. Using a Risk Factor of 1.25x10-4 Sv-1 and an Incidence Ratio of 0.4 and 0.6 a risk value of the order of 6 for a radiation-induced malignant tumour with lethal effect is calculated for all radionuclide investigations, with the exception of radioiodine; in the latter case a value of the order 4 is calculated. A large number of patients were administered radioiodine in previous years and this radionuclide has an exceptionally high organ dose of apporx. 0.7 Sv. For these reasons this test provides the best possibility to identify theoretically possible radiation effects in the diagnostic dose range. Findings emanating from therapeutic treatment in man and animals show that the Risk Factor of 1x10-2 Sv-1 for induction of thyroid gland carcinomas derived for external irradiation and mixtures of iodine isotopes cannot be applied for internal irradiation from iodine - 131. This is probably due to the considerably lower dose efficiency of this radionuclide, and the Risk Factor should be reduced to approx. 5x10-4 Sv-1. To date, no statistically established increase in thyroid carcinomal incidence could be found for diagnostic dose applications of the order of magnitude 1 Sv. (orig./MG)

  7. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiat...... radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing.......Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the...

  8. Biological characterization of radiation exposure and dose estimates for inhaled uranium milling effluents. Annual progress report April 1, 1982-March 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Eidson, A.F.

    1984-05-01

    The problems addressed are the protection of uranium mill workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. A quantitative analytical method for yellowcake was developed based on the infrared absorption of ammonium diuranate and U/sub 3/O/sub 8/ mixtures in KBr. The method was applied to yellowcake samples obtained from six operating mills. The composition of yellowcake from the six mills ranged from nearly pure ammonium diuranate to nearly pure U/sub 3/O/sub 8/. The composition of yellowcake samples taken from lots from the same mill was only somewhat less variable. Because uranium mill workers might be exposed to yellowcake either by contamination of a wound or by inhalation, a study of retention and translocation of uranium after subcutaneous implantation in rats was done. The results showed that 49% of the implanted yellowcake cleared from the body with a half-time (T sub 1/2) in the body of 0.3 days, and the remainder was cleared with a T sub 1/2 of 11 to 30 days. Exposures of Beagle dogs by nose-only inhalation to aerosols of commercial yellowcake were completed. Biochemical indicators of kidney dysfunction that appeared in blood and urine 4 to 8 days after exposure to the more soluble yellowcake showed significant changes in dogs, but levels returned to normal by 16 days after exposure. No biochemical evidence of kidney dysfunction was observed in dogs exposed to the less soluble yellowcake form. 18 figures, 9 tables.

  9. Biological characterization of radiation exposure and dose estimates for inhaled uranium milling effluents. Annual progress report April 1, 1982-March 31, 1983

    International Nuclear Information System (INIS)

    The problems addressed are the protection of uranium mill workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. A quantitative analytical method for yellowcake was developed based on the infrared absorption of ammonium diuranate and U3O8 mixtures in KBr. The method was applied to yellowcake samples obtained from six operating mills. The composition of yellowcake from the six mills ranged from nearly pure ammonium diuranate to nearly pure U3O8. The composition of yellowcake samples taken from lots from the same mill was only somewhat less variable. Because uranium mill workers might be exposed to yellowcake either by contamination of a wound or by inhalation, a study of retention and translocation of uranium after subcutaneous implantation in rats was done. The results showed that 49% of the implanted yellowcake cleared from the body with a half-time (T sub 1/2) in the body of 0.3 days, and the remainder was cleared with a T sub 1/2 of 11 to 30 days. Exposures of Beagle dogs by nose-only inhalation to aerosols of commercial yellowcake were completed. Biochemical indicators of kidney dysfunction that appeared in blood and urine 4 to 8 days after exposure to the more soluble yellowcake showed significant changes in dogs, but levels returned to normal by 16 days after exposure. No biochemical evidence of kidney dysfunction was observed in dogs exposed to the less soluble yellowcake form. 18 figures, 9 tables

  10. Low radiation doses and antinuclear lobby

    International Nuclear Information System (INIS)

    The probability of mutations or diseases resulting from other than radiation causes is negatively dependent on radiation. Thus, for instance, the incidence of cancer, is demonstrably lower in areas with a higher radiation background. The hypothesis is expressed that there exist repair mechanisms for DNA damage which will repair the damage, and will give priority to those genes which are currently active. Survival and stochastic processes are not dependent on the overall repair of DNA but on the repair of critical function genes. New discoveries shed a different light on views of the linear dependence of radiation damage on the low level doses. (M.D.)

  11. Radiation doses from computed tomography in Australia

    International Nuclear Information System (INIS)

    Recent surveys in various countries have shown that computed tomography (CT) is a significant and growing contributor to the radiation dose from diagnostic radiology. Australia, with 332 CT scanners (18 per million people), is well endowed with CT equipment compared to European countries (6 to 13 per million people). Only Japan, with 8500 units (78 per million people), has a significantly higher proportion of CT scanners. In view of this, a survey of CT facilities, frequency of examinations, techniques and patient doses has been performed in Australia. It is estimated that there are 1 million CT examinations in Australia each year, resulting in a collective effective dose of 7000 Sv and a per caput dose of 0.39 mSv. This per caput dose is much larger than found in earlier studies in the UK and New Zealand but is less than 0.48 mSv in Japan. Using the ICRP risk factors, radiation doses from CT could be inducing about 280 fatal cancers per year in Australia. CT is therefore a significant, if not the major, single contributor to radiation doses and possible risk from diagnostic radiology. (authors)

  12. Radiation exposures for DOE and DOE contractor employees - 1991. Twenty-fourth annual report

    International Nuclear Information System (INIS)

    This is the 24th annual radiation exposure report published by US DOE and its predecessor agencies. This report summarizes the radiation exposures received by both employees and visitors at DOE and COE contractor facilities during 1991. Trends in radiations exposures are evaluated. The significance of the doses is addressed by comparing them to the DOE limits and by correlating the doses to health risks based on risk estimates from expert groups

  13. Dose constraints to the individual annual doses of exposed workers in nuclear medicine laboratories

    International Nuclear Information System (INIS)

    The study deals with the analysis of dose distribution records of the occupationally exposed workers in the field of nuclear medicine in Greece and the establishment of constraints to their individual annual doses (IAD) within the process of optimization in radiation protection. The exposed workers were grouped according to their specialties (medical doctors, technicians, others), the kind of services provided (diagnosis or diagnosis plus I-131 therapy) and the sector they belonged (public or private). Dose constraints (DC) were set at the level below which the IAD of the 75% of the exposed workers per specialty were included. Our results showed that DC levels were exceeded by the 13% of the exposed workers in the public and the 30% in the private sector respectively. Further investigation indicated that the reasons leading to the exceeding of DCs, may be attributed to the workload of the exposed workers which is greater in the private than in the public sector as well as, to possible difference in the specific tasks of workers between the two sectors. (author)

  14. Radiation dose assessment of musa acuminata - triploid (AAA)

    International Nuclear Information System (INIS)

    Bananas are radioactive due to the presence of the radioisotope-40K. This imposes a possible health risk to the general public. This study intended to assess the annual equivalent dosages and the annual effective dosage committed by the body. This seeks to benefit the general public, students and researchers, and entrepreneurs. Using atomic absorption spectrophotometry, lakatan banana (Musa acuminata-triploid (AAA), the most purchased variety cultivated in Barangay Adlawon, Cebu City, Philippines, was found to contain 0.53 g of total potassium for every 100 g of its fresh fruit wherein 6.2 x 10-5 g of which is potassium-40. Based on its 40K content banana was calculated to have a radioactivity of 16 Bq/100 g. it was found out that the body is exposed to radiation dosages ranging from 2.8 x 10-3 rem annually by eating 100 g of lakatan bananas everyday. Conversely, it is equivalent to the annual effective dosage of 0.0043 rem; the amount at which the body of an individual is uniformly exposed. However, no or extremely minute health risk was determined by just eating bananas. In fact, to exceed the radiation dose limits set by the International Commission on Radiation Protection, an individual may eat 116 kg of lakatan bananas everyday for a year. Fertilizers may be the major source of the radioisotope - 40K and assimilated by the plants. (author)

  15. Radiation doses in interventional radiology procedures

    International Nuclear Information System (INIS)

    Objective: To investigate the radiation doses for the patients undergoing interventional radiology and to analyze the dose - influencing factors. Methods: The clinical data of 461 patients undergoing interventional radiology, including cerebral angiography (CEA), cerebral aneurysm embolism (CAE), superselective hepatic arterial chemoembolization (SHAG), coronary angiography (COA), percutaneous intracoronary stent implantation (PISI), cardiac radiofrequency catheter ablation (RFCA), and permanent cardiac pacemaker implantation (PCPI) were collected to observe the cumulative air kerma (CAK), dose area product (DAP), and fluoroscopy time, and effective dose was estimated using the conversion factors. Results: The effective doses for CEA, CAE, SHAG, COA, PISI, RFCA, and PCPI were (0.33 ±0.20), (0.49 ±0.35), (6.92 ±4.19),(0.76 ±0.91), (2.35 ± 1.47), (0.50 ±0.74), and (0.67 ±0.70) Sv,respectively. In 126 of the 416 patients (26%), the effective doses were greater than 1 Sv, and the effective doses of 10 person-times were greater than 10 Sv, all of which were observed in the patients undergoing SHAG. The CAK values for CEA, CAE, SHAG, COA, PISI, RFCA, and PCPI were (0.55 ±0.43), (1.34 ± 1.11), (0.95 ±0.57), (0.32 ±0.31), (0.91 ±0.33), (0.16 ±0.22), and (0.15 ±0.14) Gy, respectively. The CAK values were greater than 1 Gy in 59 of the 461 patients (12.8%), greater than 2 Gy in 11 cases (2.4%), and greater than 3 Gy in 1 CEA cases and 1 CEA case, respectively. Conclusions: There is a wide variation range in radiation dose for different procedures. As most interventional radiology procedure can result in clinically significant radiation dose to the patient, stricter dose control should be carried out. (authors)

  16. Patient perspectives on radiation dose.

    Science.gov (United States)

    Graff, Joyce

    2014-03-01

    People with genetic cancer syndromes have a special interest in imaging. They also have special risk factors with respect to radiation. They need to utilize the potential of imaging while keeping in mind concerns about cumulative radiation exposure. Before imaging, early detection of problems was limited. With imaging, issues can be identified when they are small and a good plan of action can be developed early. Operations can be planned and metastatic cancer avoided. The positive contribution of imaging to the care of these patients can be profound. However, this additional surveillance is not without cost. An average patient with 1 of these syndromes will undergo 100 or more scans in their lifetime. Imaging professionals should be able to describe the risks and benefits of each scan in terms that the patient and the ordering physician can understand to make smart decisions about the ordering of scans. Why CT versus MRI? When are x-ray or ultrasound appropriate, and when are they not? What are the costs and the medical risks for the patient? What value does this picture add for the physician? Is there a way to answer the medical question with a test other than a scan? Medicine is a team sport, and the patient is an integral member of the team. PMID:24589397

  17. Evaluation of annual average equivalent dose of workers for nuclear medicine facilities in the Northeast Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lira, Renata F.; Silva Neto, Jose Almeida; Antonio Filho, Joao, E-mail: jaf@ufpe.br [Universidade Federal de Pernambuco (UFPE/DEN), Departamento de Energia Nuclear, Recife, PE (Brazil); Santos, Luiz A.P., E-mail: lasantos@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-07-01

    Nuclear Medicine (NM) is a radiation technique normally used to make therapeutic treatments or diagnosis. In this technique a small quantity of radioactive material combined with drugs is used to have the diagnostic images. Any activity involving ionizing radiation should be justified and it must have its working procedures to be optimized. The purpose of this paper is show the importance of optimization of the radiation protection systems and determines an optimal dose for occupational people in nuclear medicine. Such an optimization aims to avoid any possible contamination or accidents, and reduce costs of protection. The optimization for a service which manipulates ionizing radiation can be done using different techniques, and among other, we can mention the technique of expanded cost-benefit analysis. The data collection was divided into the equivalent dose annual average and the equivalent dose average in period. The database for this study was a survey of received doses from 87 occupational people of 10 nuclear medicine facilities in the northeast Brazil and it was made in a period of 13 years (1979-1991). The results show that the equivalent dose average in the period H was 2.39 mSv. Actually, since 1992 the analysis is in progress and it shows that equivalent dose annual average could reduce even more if procedures of work are followed correctly. (author)

  18. Imaging of Radiation Dose for Stereotactic Radiosurgery.

    Science.gov (United States)

    Guan, Timothy Y; Almond, Peter R; Park, Hwan C; Lindberg, Robert D; Shields, Christopher B

    2015-01-01

    The distributions of radiation dose for stereotactic radiosurgery, using a modified linear accelerator (Philips SL-25 and SRS-200), have been studied by using three different dosimeters: (1) ferrous-agarose-xylenol orange (FAX) gels, (2) TLD, and (3) thick-emulsion GafChromic dye film. These dosimeters were loaded into a small volume of defect in a phantom head. A regular linac stereotactic radiosurgery treatment was then given to the phantom head for each type of dosimeter. The measured radiation dose and its distributions were found to be in good agreement with those calculated by the treatment planning computer. PMID:27421869

  19. Epigenomic Adaptation to Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Michael N. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  20. High dose dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Radiation processing today offers various advantages in the field of sterilization of medical and pharmaceutical products, food preservation, treatment of chemical materials and a variety of other products widely used in modern society, all of which are of direct relevance to health and welfare. The safety and economic importance of radiation processing is clearly recognized. It is understood that reliable dosimetry is a key parameter for quality assurance of radiation processing and irradiated products. Furthermore, the standardization of dosimetry can provide a justification for the regulatory approval of irradiated products and form the basis of international clearance for free trade. After the initiation of the Agency's high dose standardization programme (1977), the first IAEA Symposium on High Dose Dosimetry was organized in 1984. As a result, concern as to the necessity of reliable dosimetry has greatly escalated not only in the scientific community but also in the radiation processing industry. The second International Symposium on High Dose Dosimetry for Radiation Processing was held in Vienna from 5 to 9 November, 1990, with a view to providing an international forum for the exchange of technical information on up to date developments in this particular field. The scientific programme held promises for an authoritative account of the status of high dose dosimetry throughout the world in 1990. Forty-one papers presented at the meeting discussed the development of new techniques, the improvement of reference and routine dosimetry systems, and the quality control and assurance of dosimetry. Refs, figs and tabs

  1. Radiation Leukemogenesis at Low Dose Rates

    International Nuclear Information System (INIS)

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures

  2. Radiation Leukemogenesis at Low Dose Rates

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  3. Effects of Proton Radiation Dose, Dose Rate and Dose Fractionation on Hematopoietic Cells in Mice

    OpenAIRE

    Ware, J.H.; Sanzari, J.; Avery, S.; Sayers, C; Krigsfeld, G.; Nuth, M.; Wan, X. S.; Rusek, A.; Kennedy, A R

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05–0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals...

  4. Proposal of new measure of radiation dose for a better understanding of radiation for the public

    International Nuclear Information System (INIS)

    New nuclear power plants need to be built to provide clean energy which does not generate carbon dioxide. Building such plants requires agreement by the public on the necessity for the development of nuclear power programs. It is therefore important to provide the general public with an understanding of the true situation in matters of radiation and to assuage irrational anxieties. A new method of radiation representation is proposed which is based on the annual absorbed or exposure dose equivalent originating from natural radiation. The representation is considered useful to enable the general public to recognize the reality of the influence of exposure to natural radiation. A comparison in made between the risk of radiation and other toxic materials. The toxicity of chemical materials is measured by amounts occurring naturally in the human body in a method similar to that used in the case of nuclear radiation. (author)

  5. Ionizing Radiation Dose Due to the Use of Agricultural Fertilizers

    International Nuclear Information System (INIS)

    The transference of radionuclides from the fertilizers to/and from soils to the foodstuffs can represent an increment in the internal dose when the vegetables are consumed by the human beings. This work evaluates the contribution of fertilizers to the increase of radiation level in the environment and of dose to the people. Samples of fertilizers, soils and vegetables produced in farms located in the neighbourhood of Sao Paulo city in the State of Sao Paulo, Brazil were analysed through gamma spectroscopy. The values of specific activity of 40K, 238U and 232Th show that there is no significant transference of natural radionuclides from fertilizers to the final product of the food chain. The annual committed effective dose due to the ingestion of 40K contained in the group of consumed vegetables analysed in this work resulted in the very low value of 0.882 μSv

  6. Biological indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    After an introductory report on the present level of practical experience in using biological indicator systems to identify and assess doses from radiation exposures, the state of the art in the field of biochemical, cytological and immunological indicators was presented as a basis for discussions in working groups. With reference to the type of radiation - gamma radiation, electrons, neutrons - the question was examined how and to which extent body doses could be evaluated on the basis of results from biological indicator systems. The indicator systems were examined and evaluated in working groups under the aspects of practical use, validity of results and demand of research according to uniform criteria. These were, among others, dose effect relationship, detection limit, reproducibility and specificity, interference factors, stress and reasonable inconvenience of the examined person, earliest possible availability of results and the maximum time needed to identify a biological effect after radiation exposure, as well as the possible maximum number of persons examined from a population group of radiation exposed individuals. The results of the working groups discussions were compiled and summarized in recommendations. (orig./MG)

  7. Radiation doses from Hanford site releases to the atmosphere

    International Nuclear Information System (INIS)

    Radiation doses to individuals were estimated for the years 1944-1992. The dose estimates were based on the radioactive-releases from the Hanford Site in south central Washington. Conceptual models and computer codes were used to reconstruct doses through the early 1970s. The published Hanford Site annual environmental data were used to complete the does history through 1992. The most significant exposure pathway was found to be the consumption of cow's milk containing iodine-131. For the atmospheric pathway, median cumulative dose estimates to the thyroid of children ranged from < 0.1 to 235 rad throughout the area studied. The geographic distribution of the dose levels was directly related to the pattern of iodine-131 deposition and was affected by the distribution of commercial milk and leafy vegetables. For the atmospheric pathway, the-highest estimated cumulative-effective-dose-equivalent (EDE) to an adult was estimated to be 1 rem at Ringold, Washington for the period 1944-1992. For the Columbia River pathway, cumulative EDE estimates ranged from <0.5 to l.5 rem cumulative dose to maximally exposed adults downriver from the Hanford Site for the years 1944-1992. The most significant river exposure pathway was consumption of resident fish containing phosphorus-32 and zinc-65

  8. Patient radiation doses from neuroradiology procedures

    International Nuclear Information System (INIS)

    Following the presentation of radiation-induced deterministic effects by some patients undergoing neuroradiological procedures during successive sessions, such as temporary epilation, in the 'Hospital Universitario de Canarias', measurements were made of dose to patients. The maximum dose-area product measured by ionization chamber during these procedures was 39617 cGy.cm2 in a diagnostic of aneurysm and the maximum dose to the skin measured by thermoluminescent dosemeters (TLDs) was 462.53 mGy. This can justify certain deterministic effects but it is unlikely that the patients will suffer serious effects from this skin dose. Also, measurements were made of effective dose about two usual procedures, embolisation of tumour und embolisation of aneurysm. These procedures were reproduced with an anthropomorphic phantom Rando and doses were measured with TLDs. Effective doses obtained were 3.79 mSv and 4.11 mSv, respectively. The effective dose valued by the program EFFDOSE was less than values measured with TLDs. (author)

  9. Simple dose verification system for radiotherapy radiation

    International Nuclear Information System (INIS)

    The aim of this paper is to investigate an accurate and convenient quality assurance programme that should be included in the dosimetry system of the radiotherapy level radiation. We designed a mailed solid phantom and used TLD-100 chips and a Rexon UL320 reader for the purpose of dosimetry quality assurance in Taiwanese radiotherapy centers. After being assembled, the solid polystyrene phantom weighted only 375 g which was suitable for mailing. The Monte Carlo BEAMnrc code was applied in calculations of the dose conversion factor of water and polystyrene phantom: the dose conversion factor measurements were obtained by switching the TLDs at the same calibration depth of water and the solid phantom to measure the absorbed dose and verify the accuracy of the theoretical calculation results. The experimental results showed that the dose conversion factors from TLD measurements and the calculation values from the BEAMnrc were in good agreement with a difference within 0.5%. Ten radiotherapy centers were instructed to deliver to the TLDs on central beam axis absorbed dose of 2 Gy. The measured doses were compared with the planned ones. A total of 21 beams were checked. The dose verification differences under reference conditions for 60Co, high energy X-rays of 6, 10 and 15 MV were truly within 4% and that proved the feasibility of applying the method suggested in this work in radiotherapy dose verification

  10. Radiation dose to the eye lens

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; D. Nielsen, Kamilla;

    2015-01-01

    field in oncology patients undergoing eyes-to-thighs PET/CT must always include the base of the scull according to department guidelines. The eye lens is sensitive to radiation exposure and if possible it should be avoided to scan the eye. If the patient’s head is kipped backwards during the scan one...... might avoid including the eye in the CT scan without losing sufficient visualization of the scull base. The aim of this study was to evaluate the possibility of decreasing the radiation dose to the eye lens, simply by changing the head position, when doing the PET/CT scan from the base of the scull...... the skull base. Conclusion: These results indicate that it is possible to reduce the radiation dose to the eye lens without loss of diagnostic information in the scan by optimizing positioning of the head....

  11. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  12. Analysis of occupational doses of workers on the dose registry of the Federal Radiation Protection Service in 2000 and 2001

    International Nuclear Information System (INIS)

    In 2000 and 2001 about 279 and 221 radiation workers, respectively, were monitored by the Federal Radiation Protection Service, University of Ibadan, in Nigeria. The distribution of the occupational doses shows that the majority of workers received doses below 4 mSv in each of the two years. The radiation workers in the two years are classified into two occupational categories: medicine and industry. The mean annual effective doses, collective doses and the collective dose distribution ratios for workers in each category and the entire monitored workers were calculated. The mean annual effective doses were compared with their corresponding worldwide values quoted by UNSCEAR. In each of the two years, a few workers in industry received doses higher than 50 mSv. The collective dose distribution ratio was found to be about 0.49, which is very close to the highest value of 0.5 in the range of values considered by UNSCEAR as normal for this parameter. This suggests that extra measures have to be taken, particularly in industry, to ensure that the proportion of workers at risk does not go outside this normal range. The occupational doses were also modelled by both the log-normal and Weibull distributions. Both distributions were found to describe the data in almost the same way. (author)

  13. RADIATION HYGIENIC MONITORING AND ASSESSMENT OF POPULATION DOSES IN RADIOACTIVELY CONTAMINATED AREAS OF TULA REGION

    Directory of Open Access Journals (Sweden)

    T. M. Chichura

    2016-01-01

    Full Text Available The goal. The analyses of radiation hygienic monitoring conducted in Tula region territories affected by the Chernobyl NPP accident regarding cesium-137 and strontium- 90 in the local foodstuffs and the analyses of populational annual effective dose. The materials and methods. The survey was conducted in Tula Region since 1997 to 2015. Over that period, more than fifty thousand samples of the main foodstuffs from the post-Chernobyl contaminated area were analyzed. Simultaneously with that, the external gamma - radiation dose rate was measured in the fixed control points. The dynamics of cesium -137 and strontium-90 content in foodstuffs were assessed along with the maximum values of the mean annual effective doses to the population and the contribution of the collective dose from medical exposures into the structure of the annual effective collective dose to the population. The results. The amount of cesium-137 and strontium -90 in the local foodstuffs was identified. The external gamma- radiation dose rate values were found to be stable and not exceeding the natural fluctuations range typical for the middle latitudes of Russia’s European territory. The maximum mean annual effective dose to the population reflects the stable radiation situation and does not exceed the permissible value of 1 mSv. The contribution of the collective dose from medical exposures of the population has been continuously reducing as well as the average individual dose to the population per one medical treatment under the annual increase of the medical treatments quantities. The conclusion. There is no exceedance of the admissible levels of cesium-137 and strontium- 90 content in the local foodstuffs. The mean annual effective dose to the population has decreased which makes it possible to transfer the settlements affected by the Chernobyl NPP accident to normal life style. This is covered by the draft concept of the settlements’ transfer to normal life style.

  14. Radiation dose measurements in intravenous pyelography

    International Nuclear Information System (INIS)

    Intravenous pyelography (IVP) and micturition cystourethrography (MCU) are the standard procedures in the radiological examination of children with urinary tract infections and in the control of these children. Gonad protection against radiation is not possible in MCU, but concerning the girls partly possible in IVP. It is of major importance to know the radiation dose in these procedures, especially since the examination is often repeated in the same patients. All IVP were done by means of the usual technique including possible gonad protection. The thermoluminescence dosimeter was placed rectally in the girls and fixed on the scrota in the boys. A total of 50 children was studied. Gonad dose ranged from 140 to 200mR in the girls and from 20 to 70mR in the boys (mean values). The radiation dose in IVP is very low compared to that of MCU, and from this point of view IVP is a dose saving examination in the control of children with urinary tract infections

  15. Biological effect of low dose radiation

    International Nuclear Information System (INIS)

    This document describes the recent findings in studies of low dose radiation effect with those by authors' group. The low dose radiation must be considered in assessment of radiation effects because it induces the biological influence unexpected hitherto; i.e., the bystander effect and genetic instability. The former is a non-targeted effect that non-irradiated cells undergo the influence of directly irradiated cells nearby, which involves cell death, chromosome aberration, micronucleus formation, mutation and carcinogenesis through cellular gap junction and/or by signal factors released. Authors' group has found the radical(s) possessing as long life time as >20 hr released from the targeted cells, a possible mediator of the effect; the generation of aneuploid cells as an early carcinogenetic change; and at dose level <10 Gy, activation of MAPK signal pathway leading to relaxation of chromatin structure. The genetic instability means the loss of stability where replication and conservation of genome are normally maintained, and is also a cause of the late radiation effect. The group has revealed that active oxygen molecules can affect the late effect like delayed cell death, giant cell formation and chromosome aberration, all of which lead to the instability, and is investigating the hypothesis that the telomere instability resulted from the abnormal post-exposure interaction with its nuclear membrane or between chromatin and nuclear matrix, is enhanced by structural distortion of nuclear genes. As well, shown is the possible suppression of carcinogenesis by p53. The group, to elucidate the mechanism underlying the low dose radiation effect, is conducting their studies in consideration of the sequential bases of physical, chemical and biological processes. (R.T.)

  16. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  17. Agriculture-related radiation dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  18. MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography

    International Nuclear Information System (INIS)

    Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panel digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose

  19. MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, M [Johns Hopkins Univ, Baltimore, MD (United States); Gingold, E [Thomas Jefferson University, Philadelphia, PA (United States); Jones, A [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panel digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose.

  20. Occupational radiation exposure. Twelfth annual report, 1979

    International Nuclear Information System (INIS)

    This report summarizes the occupational exposure data that is maintained in the US Nuclear Regulatory Commission's Radiation Exposure Information and Reports System (REIRS). This report is usually published on an annual basis and is available at all NRC public document rooms. The bulk of the information contained in the report was extracted from annual statistical reports submitted by all NRC licensees subject to the reporting requirements of 10 CFR 20.407. Four categories of licensees - operating nuclear power reactors, fuel fabricators and reprocessors, industrial radiographers, and manufacturers and distributors of specified quantities of byproduct materials - also submit personal identification and exposure information for terminating employees pursuant to 10 CFR 20.408, and some analysis of this data is also presented in this report

  1. Ionizing radiation: effects of low doses

    International Nuclear Information System (INIS)

    This article deals with the important and delicate subject posed by the study of the action on Man's health of low doses of ionizing radiation. A number of fundamental notions whose knowledge is indispensable in order to avoid doubtful meanings or misunderstandings are noted in this article. Following the reminder of these notions, the characteristics of the various types of pathological effects of radiation are indicated, as well as how it is possible for effects which are named ''aleatory'' to be evaluated with care so as to limit risks at low doses. The reader will easily understand that this article has to be somewhat didactic - it seemed best to proceed by well defined stages and to clearly specify numerous concepts whose meanings are not always clearly defined when such problems are treated

  2. Distribution of K, eU and Th and evaluation of annual radiation dose in the region of the Serra do Carambei Granite - PR; Distribuicao de K, eU e eTh e avaliacao da dose anual de radiacao na regiao do Granito Serra do Carambei - PR

    Energy Technology Data Exchange (ETDEWEB)

    Godoy, Luiz C., E-mail: luizcgodoy@brturbo.com.br [Departamento de Geociencias, Universidade Estadual de Ponta Grossa, PR (Brazil); Bittencourt, Andre V.L., E-mail: andre@ufpr.br [Laboratorio de Pesquisas Hidrogeologicas - LPH, Departamento de Geologia, Universidade Federal do Parana, Centro Politecnico, Curitiba, PR (Brazil); Santos, Leonardo J.C., E-mail: santos@ufpr.br [Laboratorio de Biogeografia e Solos - LABS, Departamento de Geografia, Universidade Federal do Parana, Centro Politecnico, Curitiba, PR (Brazil); Ferreira, Francisco J.F., E-mail: francisco.ferreira@ufpr.br [Laboratorio de Pesquisas em Geofisica Aplicada - LPGA, Departamento de Geologia, Universidade Federal do Parana, Centro Politecnico, Curitiba, PR (Brazil)

    2011-04-15

    is study was conducted in an area of 14 km in length oriented in the NNE direction by 7.3 km wide, covering the totality of the Serra do Carambei Granite and adjacent units. Located in the northern region of the Alagados dam, Parana State, this granite contains relatively high concentrations of K, eU and eTh, known since the 1970s through airborne and terrestrial gamma-ray spectrometry surveys. Recent radiochemical tests conducted on 61 samples of geological materials such as rocks (17 samples) and material of the weathering mantle and alluvial deposits (44 samples), confirmed the occurrence of radioactive anomalies in this granite, especially in thorium and uranium. The contents of K, eU and eTh obtained in gamma-ray spectrometry survey and radiochemical tests, converted to annual radiation dose (ARD), allowed to evaluate the intensity of natural radiation, whose levels relatively high in certain regions of the study area, can offer hazard to the local populations. The analysis and interpretation of data, as well the preparation of contour maps of K, eU and eTh were fundamental to understand the behavior and mobility of radionuclides in different environmental compartments of the area. (author)

  3. Wound trauma alters ionizing radiation dose assessment

    Directory of Open Access Journals (Sweden)

    Kiang Juliann G

    2012-06-01

    Full Text Available Abstract Background Wounding following whole-body γ-irradiation (radiation combined injury, RCI increases mortality. Wounding-induced increases in radiation mortality are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to bacterial infection. Among these factors, cytokines along with other biomarkers have been adopted for biodosimetric evaluation and assessment of radiation dose and injury. Therefore, wounding could complicate biodosimetric assessments. Results In this report, such confounding effects were addressed. Mice were given 60Co γ-photon radiation followed by skin wounding. Wound trauma exacerbated radiation-induced mortality, body-weight loss, and wound healing. Analyses of DNA damage in bone-marrow cells and peripheral blood mononuclear cells (PBMCs, changes in hematology and cytokine profiles, and fundamental clinical signs were evaluated. Early biomarkers (1 d after RCI vs. irradiation alone included significant decreases in survivin expression in bone marrow cells, enhanced increases in γ-H2AX formation in Lin+ bone marrow cells, enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood, and concomitant decreases in γ-H2AX formation in PBMCs and decreases in numbers of splenocytes, lymphocytes, and neutrophils. Intermediate biomarkers (7 – 10 d after RCI included continuously decreased γ-H2AX formation in PBMC and enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood. The clinical signs evaluated after RCI were increased water consumption, decreased body weight, and decreased wound healing rate and survival rate. Late clinical signs (30 d after RCI included poor survival and wound healing. Conclusion Results suggest that confounding factors such as wounding alters ionizing radiation dose assessment and agents inhibiting these responses may prove therapeutic for radiation combined

  4. Assessment of the occupational radiation exposure doses to workers at INMOL Pakistan (2007-11)

    International Nuclear Information System (INIS)

    The assessment of occupationally exposed medical radiation workers at the Institute of Nuclear Medicine and Oncology (INMOL) (Pakistan)) has been performed. The whole-body radiation exposure doses of 120 workers in nuclear medicine (NM), radiotherapy (RT) and diagnostic radiology (DR) were measured by using the film badge dosimetry technique for the time interval (2007-11) and their results presented. The annual average effective doses in NM, RT and DR were found to be well below the permissible annual limit of 20 mSv (averaged over a period of 5 consecutive y). The declining trend observed in the annual average dose values during the time interval (2007-11) is an indication of ameliorated radiation protection practices at INMOL (Pakistan)). (authors)

  5. New technologies to reduce pediatric radiation doses

    International Nuclear Information System (INIS)

    X-ray dose reduction in pediatrics is particularly important because babies and children are very sensitive to radiation exposure. We present new developments to further decrease pediatric patient dose. With the help of an advanced exposure control, a constant image quality can be maintained for all patient sizes, leading to dose savings for babies and children of up to 30%. Because objects of interest are quite small and the speed of motion is high in pediatric patients, short pulse widths down to 4 ms are important to reduce motion blurring artifacts. Further, a new noise-reduction algorithm is presented that detects and processes signal and noise in different frequency bands, generating smooth images without contrast loss. Finally, we introduce a super-resolution technique: two or more medical images, which are shifted against each other in a subpixel region, are combined to resolve structures smaller than the size of a single pixel. Advanced exposure control, short exposure times, noise reduction and super-resolution provide improved image quality, which can also be invested to save radiation exposure. All in all, the tools presented here offer a large potential to minimize the deterministic and stochastic risks of radiation exposure. (orig.)

  6. Stimulating effects of low doses of radiation

    International Nuclear Information System (INIS)

    Different ionizing radiations cause biochemical and biophysical changes in the cells of the genotypes according to the application of the doses applied to different organs of the plants, and the manner of their application (acute, chronic, or acute and chronic). The sensitivity of different genotypes, and their tissues, depends on the stage at which their tissues were irradiated as well as on the environmental conditions under which the irradiation was made. Relatively strong doses usually cause some genetic changes in the somatic and generative cells. Small doses can, in some genotypes, stimulate the growth of some tissues to some extent. The stimulating effect on the growth of seedlings of the M2 generation, developed from acute seed irradiation of some genotypes of wheat, barley, and inbred lines of maize and their hybrids is described here. 3 refs, 5 tabs

  7. Genes activated by low dose radiation

    International Nuclear Information System (INIS)

    Gene expression profiles were examined in the mouse kidney and testis in order to investigate the molecular mechanisms of the life span-shortening effect of low dose-rate radiation. C57BL/6J male mice (7-8 wks old) were irradiated by cesium-137 gamma-rays for 485 days at rates of 0, 32, 650 and 13,000 nGy/min and organs were excised out. Gene expression was analyzed with cDNA microarray Illumina Sentrix Mouse-6. In the kidney, 4 genes concerning mitochondrial respiration (oxidative phosphorylation) were found to be up-regulated at the middle and high dose rates (expression level changed in >1.6 folds by irradiation). Significantly modulated genes were in 16 clusters, which exerted elevated expression level dose rate-dependently and found to be categorized in cytoplasm/mitochondria/energy pathways by the database ''Gene Ontology''. In the testis, gene expression pattern was different from that in kidney. Clustering analysis and database revealed that up-regulated genes belonged to ''DNA repair'', ''response to DNA damage'', DNA replication'' and ''Mitotic cell cycles''. Thus low dose radiation can cause the cellular oxidative stress by elevated respiratory activity in the kidney, and a type of emergent biological response in the testis. (R.T.)

  8. Occupational exposure to ionising radiation 1990-1996. Analysis of doses reported to the Health and Safety Executive's Central Index of Dose Information

    International Nuclear Information System (INIS)

    The Central Index of Dose Information (CIDI) is the Health and Safety Executive's (HSE's) national database of occupational exposure to ionising radiation. It is operated under contract by the National Radiological Protection Board (NRPB). CIDI receives annually, from Approved Dosimetry Services (ADS) summaries of radiation doses recorded for employees designated as classified persons in the United Kingdom. This is the second analysis of dose summary information to be published. (author)

  9. Low radiation doses - Book of presentations (slides)

    International Nuclear Information System (INIS)

    This document brings together all the available presentations (slides) of the conference on low radiation doses organised by the 'research and health' department of the French society of radiation protection (SFRP). Ten presentations are available and deal with he following topics: 1 - Cyto-toxicity, geno-toxicity: comparative approach between ionizing radiations and other geno-toxic agents (F. Nesslany, Institut Pasteur, Lille); Succession of events occurring after a radio-induced DNA damage (D. Averbeck, IRSN/CEA); Importance of stem cells in the response to ionizing radiations (J. Lebeau, CEA); Relation between energy deposition at the sub-cell scale and early biological effects (C. Villagrasa, IRSN); Natural history of breast cancer: predisposition, susceptibility with respect to irradiation (S. Rivera, IGR); Pediatrics scanner study and the EPI-CT project (M.O Bernier, IRSN); What future for an irradiated cell: survival or apoptosis? (E. Sage, Institut Curie); Differential effect of a 137Cs chronic contamination on the different steps of the atheromatous pathology (T. Ebrahimian, IRSN); Variability of the individual radiosensitivity (S. Chevillard, CEA); What definitions for individual sensitivity? (A. Schmidt, CEA); Low doses: some philosophical remarks (A. Grinbaum, CEA)

  10. ESR radiation dose evaluation on radiation exposure accident in England

    International Nuclear Information System (INIS)

    A technician of nondestructive inspection in England died because of radiation injury even though his exposure record with film badge indicated only 104 mSv of the lifelong exposure dose. After the request of the National Radiation Protection Board of Great Britain, the author conducted measurement of the exposure dose with ESR dosimetry. ESR spectra were measured on tooth enamel and bones of the finger and the upper arm taken from the dead technician. The exposure dose is obtained from the enhancement of the ESR signal intensity of CO2- after international irradiation. 14 and 12 Gy for tooth enamel, 7.2 and 4.2 Gy for the bones of the finger and the upper arm respectively. The bone samples may show smaller dose due to metabolism in the body. The technician is assumed to be exposed about 10 mSv at the fingers and the arms for each time on the inspection of pipings for more than 10 years. He used to wear the film badge on his waist. The author stresses the importance of preservation of extracted tooth as a exposure record for radiation workers. (T.H.)

  11. Ionizing radiation population doses at Sao Paulo city, Brazil: open-pit gamma dose measurement

    International Nuclear Information System (INIS)

    The effects of ionizing radiation to the human beings are well known for high and intermediate doses. As far as low level) radiation doses are concerned, there is no consensus. In order to get a better understanding of such effects it is necessary to assess the low doses with better accuracy. In this work, it was made an estimate of the annual ambient dose equivalent (H*(10)) to which the people are exposed in the city of Sao Paulo. Until now there are no data about it available in the literature. For the purpose of this evaluation, a map with various routes covering the largest and more representative area of the city was designed. The choice of points for data collection was made taking into account mainly the occupancy of the region. A portable gamma spectrometry system was used. It furnishes the rate of H*(10) and the measured gamma spectrum (in the range from 50 to 1670 keV) in the place of interest. The measurements were performed in a short time interval, since the gamma radiation arrives from a great extent of soil. Each measurement was done 1 m above the soil during 300 s. The rates of H*(10) varied from 33.1 to 152.3 nSv.h-1, net values, obtained after subtraction of the cosmic rays contribution. The standard deviation was 22 n Sv.h-1 for an average for the city of Sao Paulo of 96.1(24) nSv.h-1. In addition, average values of H*(10) rates for the city Health Divisions were calculated. Those values are not statistically equivalent and the whole set of data could not be treated as one, as the statistical Student test indicated a non homogeneity of the group of data. Hence it is necessary the accomplishment of a more detailed survey in order to verify the origin of the discrepancy. The mean value of H*(10) rate obtained for the city of Sao Paulo as converted to effective dose. in order to be compared with other places results It could be noticed that the annual average of effective dose for the city of Sao Paulo, 0.522(13) mSv, is superior to the world

  12. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  13. Low Dose Ionizing Radiation Modulates Immune Function

    International Nuclear Information System (INIS)

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a 'Th2 polarized' immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in

  14. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  15. Annual effective dose due to natural radioactivity in drinking water

    International Nuclear Information System (INIS)

    Natural radioactivity concentration in drinking water supply in and round Hyderabad, Secunderabad was determined. The observed gross alpha activity found in water samples vary from 0.027±0.014 Bq/L to 0.042±0.015 Bq/L with average 0.035 Bq/L while beta activity in all the samples are less than 0.076 Bq/l. Contributions of the drinking water samples to total annual effective dose equivalent from 238U, 234U, 230Th, 26Ra, 210Po, 232Th, 228Th 210Pb and 228Ra are 1.14, 1.24, 5.30, 7.07, 30.3, 5.81, 1.82, 38.3 and 38.3 μSvy-1 for adults. The results indicate that the annual effective doses are below the WHO recommended reference level for α and β in food and drinking samples. (author)

  16. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  17. Offsite radiation doses summarized from Hanford environmental monitoring reports for the years 1957-1984

    International Nuclear Information System (INIS)

    Since 1957, evaluations of offsite impacts from each year of operation have been summarized in publicly available, annual environmental reports. These evaluations included estimates of potential radiation exposure to members of the public, either in terms of percentages of the then permissible limits or in terms of radiation dose. The estimated potential radiation doses to maximally exposed individuals from each year of Hanford operations are summarized in a series of tables and figures. The applicable standard for radiation dose to an individual for whom the maximum exposure was estimated is also shown. Although the estimates address potential radiation doses to the public from each year of operations at Hanford between 1957 and 1984, their sum will not produce an accurate estimate of doses accumulated over this time period. The estimates were the best evaluations available at the time to assess potential dose from the current year of operation as well as from any radionuclides still present in the environment from previous years of operation. There was a constant striving for improved evaluation of the potential radiation doses received by members of the public, and as a result the methods and assumptions used to estimate doses were periodically modified to add new pathways of exposure and to increase the accuracy of the dose calculations. Three conclusions were reached from this review: radiation doses reported for the years 1957 through 1984 for the maximum individual did not exceed the applicable dose standards; radiation doses reported over the past 27 years are not additive because of the changing and inconsistent methods used; and results from environmental monitoring and the associated dose calculations reported over the 27 years from 1957 through 1984 do not suggest a significant dose contribution from the buildup in the environment of radioactive materials associated with Hanford operations

  18. Therapeutic effects of low radiation doses

    International Nuclear Information System (INIS)

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses, yet few of these studies meet the required standard. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high. Since no adequate experimental studies have been performed nothing is known about the mechanisms of these therapeutic radiation

  19. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine. Internal dose models and methods have been in use for many years, are well established and can give radiation doses to stylized models representing reference individuals. Kinetic analyses need to be carefully planned, and dose conversion factors should be chosen that are most similar to the subject in question and that can then be tailored to be more patient specific. Such calculations, however, are currently not relevant in patient management in internal emitter therapy, as they are not sufficiently accurate or detailed to guide clinical decision making. Great strides are being made at many centres regarding the use of patient image data to construct individualized voxel based models for more detailed and patient specific dose calculations.These recent advances make it likely that the relevance will soon change to be more similar to that of external beam treatment planning. (author)

  20. Radiation doses from mammography in Australia

    International Nuclear Information System (INIS)

    During 1989-90 the Australian Radiation Laboratory conducted a postal survey of at least 90% of the mammographic facilities in Australia. The primary aim of the survey was to measure the mean glandular dose (MGD) and the X-ray beam half value layer (HVL) for a typical mammograph. The MGD and HVL were measured with a specially designed tissue equivalent monitor. In all, 258 mammographic centres were surveyed. It was found that for centres using film-screen imaging, the average mean glandular dose was 1.83 mGy for centres using grids and 0.84 mGy for centres not using grids. In addition to the MGD and HVL, comprehensive statistical information was collected and data is presented on the types of equipment and techniques used, the number and age of patients and demographic distribution of centres. Results indicate that the use of a grid is the major factor determining dose and several other factors appear to have minor effects. In view of the distribution of MGD, it is recommended that the mean glandular dose per image, for a 5 cm compressed breast thickness, should not exceed 2.0 mGy when a grid is used and 1.0 mGy without a grid. 63 refs., 11 tabs., 15 figs

  1. Annual report of Radiation Effects Research Foundation

    International Nuclear Information System (INIS)

    The Radiation Effects Research Foundation was established in April, 1975, as a private nonprofit Japanese Foundation supported equally by the Government of Japan through the Ministry of Health and Welfare, and the Government of the United States through the National Academy of Sciences under contract with the Energy Research and Development Administration. First, the messages from the chairman and the vice-chairman are described. In the annual report, the review of ABCC-RERF studies of atomic bomb survivors, the summary of research activities, the research projects, the technical report abstracts, the research papers published in Japanese and foreign journals, and the oral presentation and lectures, all from April 1, 1978, to March 31, 1979, are reported. Also the report from the Secretariat and the appendixes are given. The surveys and researches carried out in Hiroshima and Nagasaki have offered very valuable informations to the atomic bomb survivors. Many fears were eliminated, medical interests were given to the serious effects of the exposure to atomic bombs, and many things concerning the cancer induced by radiation were elucidated. The knowledges obtained will save many human lives in future by utilizing them for setting up the health and safety standard in the case of handling ionizing radiation. The progress in researches such as life span study, adult health study, pathology study, genetics program, special cancer program and so on is reported. (Kako, I.)

  2. To understand the radiation dose in color

    International Nuclear Information System (INIS)

    Radiation is particles or electromagnetic waves having high energy, causing health damage to the human body, but cannot be perceived by the five senses of human. For enabling the visual sensing of radiation, the research and development of the functional dye material that changes from colorless body to colored body through irradiation is being promoted. This paper introduces the phenoxazine-based color former of solution type using the color former that changes color to blue through irradiation. The authors examined two types of phenoxazine-based color formers protected with alkyl oxycarbonyl group (-COOR), and mono-alkyl carbamoyl group (CONHR). Phenoxazine-based color former in acetonitrile solvent was revealed to be able to visually confirm the gamma irradiation dose of 10 Gy, but there is a problem of low temporal stability of the solution. (A.O.)

  3. Extremity doses of medical staff involved in interventional radiology and cardiology: Correlations and annual doses (hands and legs)

    International Nuclear Information System (INIS)

    An intensive measurement campaign was launched in different hospitals in Europe within work package 1 of the ORAMED project (Optimization of RAdiation protection for MEDical staff). Its main objective was to obtain a set of standardized data on extremity and eye lens doses for staff in interventional radiology (IR) and cardiology (IC) and to optimize staff protection. The monitored procedures were divided in three main categories: cardiac, general angiography and endoscopic retrograde cholangio-pancreatography(ERCP) procedures. Using a common measurement protocol, information such as the protective equipment used (lead table curtain, transparent lead glass ceiling screen, patient shielding, whole body shielding or special cabin etc.) as well as Kerma Area Product (KAP) values and access of the catheter were recorded. This study was performed with a final database of more than 1300 procedures performed in 34 European hospitals. Its objectives were firstly to determine if the measured extremity doses could be correlated to the KAP values; secondly to check if the doses to the eyes could be linked to the doses to the hands (finger or wrist positions) and finally if the doses to the fingers could be estimated based on the doses to the wrists. General correlations were very difficult to find and their strength was mostly influenced by three main parameters: the X-ray tube configuration, the room collective radioprotective equipment and the access of the catheter. The KAP value can provide a simple mean to estimate the extremity doses of the operator given that it is assessed correctly for the operator when he is actually using the X-ray tube. Moreover, this study showed that the doses to the left finger are strongly correlated to the doses to the left wrist when no ceiling shield is used. It is also possible to estimate the doses to the eyes given the doses to the left finger or left wrist but the X-ray tube configuration and the access have to be considered. The annual

  4. Solid tumor risks after high doses of ionizing radiation

    OpenAIRE

    Sachs, Rainer K; Brenner, David J.

    2005-01-01

    There is increasing concern regarding radiation-related second-cancer risks in long-term radiotherapy survivors and a corresponding need to be able to predict cancer risks at high radiation doses. Although cancer risks at moderately low radiation doses are reasonably understood from atomic bomb survivor studies, there is much more uncertainty at the high doses used in radiotherapy. It has generally been assumed that cancer induction decreases rapidly at high doses due to cell killing. However...

  5. PRDC - A software package for personnel radiation dose calculation

    International Nuclear Information System (INIS)

    To determine effective dose, we usually need to use a very complicated human body model and a sophisticated computer code to transport radiations in the body model and surrounding medium, which is not very easy to practicing health physicists in the field. This study develops and tests a software package, called PRDC (Personnel Radiation Dose Calculation), which calculates effective dose and radiation doses to various organs/tissues and personal dosemeters based on a series of interpolations. (authors)

  6. Evaluation of radiation doses delivered in different chest CT protocols

    OpenAIRE

    Gorycki, Tomasz; Lasek, Iwona; Kamiński, Kamil; Studniarek, Michał

    2014-01-01

    Summary Background There are differences in the reference diagnostic levels for the computed tomography (CT) of the chest as cited in different literature sources. The doses are expressed either in weighted CT dose index (CTDIVOL) used to express the dose per slice, dose-length product (DLP), and effective dose (E). The purpose of this study was to assess the radiation dose used in Low Dose Computer Tomography (LDCT) of the chest in comparison with routine chest CT examinations as well as to ...

  7. JUSTIFICATION OF TRANSITION FROM ZONING OF CONTAMINATED TERRITORIES TO SETTLEMENTS CLASSIFICATION AT AN AVERAGE ANNUAL EFFECTIVE DOSES IN REMOTE PERIOD AFTER THE CHERNOBYL NPP ACCIDENT

    Directory of Open Access Journals (Sweden)

    N. G. Vlasova

    2016-01-01

    Full Text Available In an existing exposure situation (in a remote period after the Chernobyl accident there is a need of the transition from "radioactive area zoning" to "the settlements classification by average annual effective doses to the critical group of persons among the settlement's residents", to ensure the appropriate radiation level and social protection of the settlement's residents, located on the contaminated territory.The comparative allocation analysis of the average annual external and internal effective doses, the average annual effective cumulative doses to residents of settlements, related to the relevant areas (the Council of Ministers of Belarus latest decision, the proposed dose range according to the Catalogue of average annual effective doses of residents of settlements radiation Republic of Belarus confirmed the validity of the transition from "radioactive zoning area" to "the classification of settlements by average annual effective dose."In accordance with the radiation protection principles, it seems reasonable to classify the settlements located on the contaminated territory at the average annual effective dose as follows: < 0.1 mSv / year (not required to carry out radiation protection measures in the agricultural sector;  0.1-1 mSv / year (periodic radiation monitoring should be carried out;  1 mSv / year (it is necessary to apply a complex of protective measures.

  8. A 10-year review of the dose history of radiation workers in the University of Surrey

    International Nuclear Information System (INIS)

    This thesis presents data on internally and externally received doses for radiation workers whose records are kept at the Safety Office of the University of Surrey for the period 1981-1990. The distribution of doses by range is presented and analysed. The patterns of the collective equivalent dose (CED) and the average individual equivalent dose (IED) over the 10-year period are presented. The annual CED is very low, so that even the total for the 10-year period is less than 1 man-Sv. Likewise, the annual average IED is extremely low, well below the average annual dose to the U.K. population from overall sources of ionising radiation. Some relevant aspects of the 1990 ICRP Recommendations are examined and the impact of these to the 'practices' and sources of ionising radiation in the University is given consideration. The results of the 10-year review provide more evidence of over designation of radiation workers in the University. A recommendation is made to reduce the number of workers who are routinely monitored and justification and options are presented. This study is viewed as a useful database which could be of particular importance in the procedure of optimisation of radiation protection in the University of Surrey and U.K. establishments for higher education as a whole. (author)

  9. The current situation of personal dose monitoring in Chinese medicine radiation and undamaged detection

    International Nuclear Information System (INIS)

    The situation of personal dose monitoring in γ(X) external exposure in China is mainly outlined. Thermoluminescent dosimetry (TLD) was adopted for personal dose measurement of the radiation workers. The computer software and data base for the work have been developed and applied. National intercomparison of TLD, monitoring control of personal dose monitoring in field, and technical training were carried out for quality control. In China, the dominant occupational exposures is X-ray diagnosis and it increases year by year, the highest values is about 22.6%. The highest values of annual collective dose and annual average of individual dose (AAID) are 272.8 man·Sv and 3.21 mSv respectively. This work shows that the fraction of the population receiving high dose is decreased with time rapidly. The situation for whole occupational exposures is also described. (3 tabs.)

  10. Design of radiation dose tumor response assays

    International Nuclear Information System (INIS)

    The efficient utilization of animals in a radiation dose response assay for tumor control requires a definition of the goal, e.g., TCD50 or slope. A series of computer modelled ''experiments'' have been performed for each of a number of allocations of dose levels (DL) and number of animals/DL. The authors stipulated that the assumed TCD50 was .85 of true value; assumed slope was correct. They stipulated a binominal distribution of observed tumor control results at each dose level. A pilot assay used 6 tumors at 7 DL (from TCD1-TCD97). The second assay used 30 tumors assigned to 2,3,5 or 9 DL and to selected tumor control probabilities (TCP derived from the pilot run. Results from 100 test runs were combined with the pilot run for each of the combination of DL and TCP values. Logit regression lines were fitted through these ''data'' and the 95% CL around the TCD50 and the TCD37 values and the variances of the slopes were computed. These experiments were repeated using the method suggested by Porter (1980). Results show that a different strategy is needed depending upon the goal, viz. TCD50 or TCD37 vs slope. The differences between the two approaches are discussed

  11. Assessment of Environmental Gamma Radiation Dose Rate in Ardabil and Sarein in 2009

    Directory of Open Access Journals (Sweden)

    M Alighadri

    2011-10-01

    Full Text Available Background and Objectives: Gamma rays, the most energetic photons within the any other wave in the electromagnetic spectrum, pose enough energy to form charged particles and adversely affect human health. Provided that the external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined, environmental gamma dose rate and corresponding annual effective dose were determined in the cities of Ardabil and Sar Ein.Materials and Methods: Outdoor environmental gamma dose rates were measured using an Ion Chamber Survey Meter in 48 selected locations (one in city center and the remaining in cardinal and ordinal directions in Ardabil and Sar Ein. Ten more locations were monitored along the hot springs effluent in Sar Ein. Measurements of gamma radiation dose rate were performed at 20 and 100 cm above the ground for a period of one hour.Results: Average outdoor environmental gamma dose rate were determined as 265, 219, and 208  for Ardabil, Sar Ein, and along the hot spring effluent, respectively. The annual affective dose for Ardabil and Sar Ein residents were estimated to be 1.45 and 1.39 mSv, respectively.Conclusion: Calculated annual effective dose of 1.49 and 1.35 are appreciably higher than the population weighted average exposure to environmental gamma radiation worldwide and that analysis of soil content to different radionuclide is suggested.

  12. Doses to the Norwegian population from naturally occuring radiation and from the Chernobyl fallout

    International Nuclear Information System (INIS)

    The doses to the Norwegian population from naturally occuring radiation are extensively reviewed. The annual population weighted average dose equivalent to the Norwegian population from 222Rn and its daughters is estimated to be between 3.5 and 4.5 mSv. The average concentration of 220Rn daughters in Norwegian dwellings is most probably between 1.0 and 1.5 Bq m-3. The corresponding effective dose equivalent for 220Rn and its daughters is estimated to be between 0.4 and 0.6 mSv. The total annual collective dose equivalent from naturally occuring radiation in Norway is found to be between 21000 and 27000 man Sv. The doses to the Norwegian population from the Chernobyl fallout are briefly discussed. Based on the results of a ''food basket'' project and supplementary data from about 30000 measurements on food samples the first year after the reactor accident, the total annual effective dose equivalent from foodstuffs to an average Norwegian consumer during this first year is estimated to be 0.15 +-0.002 m Sv at the 95% confidence level. The per caput effective dose equivalent from external fallout gamma radiation in the first year after the Chernobyl accident, is approximately 82 μSv in Norway

  13. Radiation dose reduction by chemical decontamination

    International Nuclear Information System (INIS)

    The paper deals with the role of chemical decontamination for reducing radiation exposure during major maintenance activities like in-service inspection of coolant channels and EMCCR works on the Primary Heat Transport System and associated components. In order to achieve the man rem reduction, MAPS has successfully carried out six decontamination campaigns of PHT system, three for MAPS-1 and three for MAPS-2. The complexing agent EDTA used in the first four DCDs was changed over to Nitrilo Tri-Acetic acid (NTA) in the subsequent two DCDs and the beneficial effects of the same on dose reduction are detailed. With the use of Nitrilo Tri-Acetic acid (NTA) as complexing agent, the need to add during the process to augment the loss due to IX pickup and radiation decomposition was avoided as NTA displayed better radiation stability and was not getting picked up in the cation IX. Good decontamination factors were observed in the monel with NTA, as copper and nickel complexes of NTA had lower stability constants than that with EDTA. An overview of all these decontaminations along with the brief description of the process and benefits in terms of dose reduction is described. Further, the chemical decontamination procedures adopted for minimising the loose and the fixed contamination on the seal plugs of the 306 coolant channels of Unit-2 during EMCCR works is also presented. The pressure tubes are rolled into the end fittings which have got seal plugs to prevent the PHT water coming out of the system. The 612 seal plugs made of stainless steel were decontaminated using ∼ 10% diammonium hydrogen citrate maintaining a temperature of 70 to 80 deg C. All the 612 seal plugs were successfully decontaminated in 41 batches. The process details and results obtained are reviewed. (author)

  14. Radiation Protection Group Annual Report 2003

    CERN Document Server

    Silari, M

    2004-01-01

    The RP Annual Report summarises the activities carried out by CERN’s Radiation Protection Group in the year 2003. It includes contribution from the EN section of the TIS/IE Group on environmental monitoring. Chapter 1 reports on the measurements and estimations of the impact on the environment and public exposure due to the Organisation’s activities. Chapter 2 provides the results of the monitoring of CERN’s staff, users and contractors to occupational exposure. Chapter 3 deals with operational radiation protection around the accelerators and in the experimental areas. Chapter 4 reports on RP design studies for the LHC and CNGS projects. Chapter 5 addresses the various services provided by the RP Group to other Groups and Divisions at CERN, which include managing radioactive waste, high-level dosimetry, lending radioactive test sources and shipping radioactive materials. Chapter 6 describes activities other than the routine and service tasks, i.e. development work in the field of instrumentation and res...

  15. Cumulative radiation dose of multiple trauma patients during their hospitalization

    International Nuclear Information System (INIS)

    Objective: To study the cumulative radiation dose of multiple trauma patients during their hospitalization and to analyze the dose influence factors. Methods: The DLP for CT and DR were retrospectively collected from the patients during June, 2009 and April, 2011 at a university affiliated hospital. The cumulative radiation doses were calculated by summing typical effective doses of the anatomic regions scanned. Results: The cumulative radiation doses of 113 patients were collected. The maximum,minimum and the mean values of cumulative effective doses were 153.3, 16.48 mSv and (52.3 ± 26.6) mSv. Conclusions: Multiple trauma patients have high cumulative radiation exposure. Therefore, the management of cumulative radiation doses should be enhanced. To establish the individualized radiation exposure archives will be helpful for the clinicians and technicians to make decision whether to image again and how to select the imaging parameters. (authors)

  16. Study on radiation dose caused by 18F-FDG in PET/CT examination

    International Nuclear Information System (INIS)

    Objective: The aim of this study was to investigate the radiation dose caused by 18F-flu- orodeoxyglucose (FDG) in PET/CT examination and to optimize the concerned radiation protection. Methods: Thirty patients from our conventional PET/CT examination were simple randomly selected, and they all underwent whole body PET/CT imaging. The radioactive dose of injected 18F-FDG was recorded. The internal radiation dose was calculated and the external radiation dose from patients was measured with the 451P-DE-SI ion chamber survey meter. The staff's dose was recorded with thermoluminescent detector (TLD). All dosimetry data were processed and analyzed statistically with Excel 2003. Results: The injected radioactive dose of 18F-FDG was (432.9 ± 51.8) MBq, and effective dose equivalent received per patient was (8.23 ± 0.99) mSv. The correlation coefficient (r) of the dose equivalent rate and distance was -0.994 by power function curve fitting, and that of dose equivalent rate and time was -0.988 by exponential curve fitting. The staff's dose was lower than the annual dose limit. Conclusions: The patient's internal radiation dose caused by 18F-FDG in PET/CT examination is low, nonetheless, the clinician should always consider optimizing and minimizing the necessary radiation received by the patients. The patients having been injected with 18F-FDG should stay in one place to decrease their radiation to the public. From the medical point of view in optimizing radiation exposure, there may still be a potential to lower the injected 18F-FDG activity. (authors)

  17. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  18. Proceedings of the 7th annual meeting of Japanese Society of Radiation Safety Management 2008 Kanazawa

    International Nuclear Information System (INIS)

    This is the program and the proceedings of the 7th annual meeting of Japanese Society of Radiation Safety Management held from December 3rd through the 5th of 2008. The sessions held were: (1) Software, (2) Radiation Education 1 and 2, (3) Radiation Measurement 1 to 3, (4) Radiation Safety Control, (5) Contamination Control, and (6) Exposed Dose and Dose Level Evaluation. Two special sessions held were: (1) 'Handmade Software for Radiation Safety Control' and (2) 'Learning Radiation Safety Control from Latest Accidents'. 3 keynote lectures were held. 2 invited lectures by the researchers from the United States and Russia were also held. Also, the topic of one panel discussion was 'Goals of Academic Societies related to Radiation Control'. In addition, 2 luncheon seminars were held. (S.K.)

  19. Natural radiation doses for cosmic and terrestrial components in Costa Rica

    International Nuclear Information System (INIS)

    A study of external natural radiation, cosmic and terrestrial components, was carried out with in situ measurements using NaI scintillation counters while driving along the roads in Costa Rica for the period July 2003-July 2005. The geographical distribution of the terrestrial air-absorbed dose rates and the total effective dose rates (including cosmic) are represented on contour maps. Information on the population density of the country permitted the calculation of the per capita doses. The average effective dose for the total cosmic component was 46.88±18.06 nSv h-1 and the average air-absorbed dose for the terrestrial component was 29.52±14.46 nGy h-1. The average total effective dose rate (cosmic plus terrestrial components) was 0.60±0.18 mSv per year. The effective dose rate per capita was found to be 83.97 nSv h-1 which gives an annual dose of 0.74 mSv. Assuming the world average for the internal radiation component, the natural radiation dose for Costa Rica will be 2.29 mSv annually

  20. Annual effective dose computation with estimation of radium equivalent activity and external hazard index in a building made of norm

    International Nuclear Information System (INIS)

    Measurements of radioactivity in technologically enhanced naturally occurring radioactive materials (TENORMs) are important from radiation protection point of view because more than 50% of the total dose to human population from natural sources of radiation is contributed by these materials. The main contribution is due to inhalation of 222Rn, 220Rn and their progeny. The radiometric analysis data of the building material made of fly ash received from GCNEP, Haryana was used to calculate the dose to an individual residing in the campus comprising of township and office. The average Annual excess Effective Dose to an individual residing in township with a 0.8 Indoor occupancy factor (7008 hr) was found to be 0.56 mSv/year. The average Annual excess Effective Dose to an individual residing in an office for 2000 hr occupancy was found to be 0.16 mSv/year

  1. Consideration of Radiation Dose Terms of the Korea Nuclear Safety Act for Evaluation of Dose Limit of Radiation Workers

    International Nuclear Information System (INIS)

    'Peepok-bangsaseolyang' is a term defined as the sum of the radiation doses exposed externally and internally according to Subparagraph 19 of Article 2 of the Korea Nuclear Safety Act (KNSA). Table 1 of Enforcement Decree of the KNSA provides effective dose limit and equivalent dose limit for radiation workers. Dose limit is the upper limit of Peepok-bangsaseolyang according to Subparagraph 5 of Article 2 of Enforcement Decree of the KNSA. Notice of Korea Nuclear Safety and Security (KNSSC) No.2012-29 defines effective dose and equivalent dose. To utilize these requirements for dose limit of radiation workers, a simple diagram of all kind of radiation doses described in the KNSA, called 'dose pedigree of Peepok-bangsaseolyang' has been developed. This dose pedigree of Peepok-bangsaseolyang is described herein, and, in order to be available more effectively in our regulatory system, some suggestions are presented

  2. Determinants of personal ultraviolet-radiation exposure doses on a sun holiday

    DEFF Research Database (Denmark)

    Petersen, B; Thieden, E; Philipsen, P A;

    2013-01-01

    A great number of journeys to sunny destinations are sold to the Danish population every year. We suspect that this travel considerably increases personal annual ultraviolet-radiation (UVR) exposure doses. This is important because such exposure is the main cause of skin cancer, and studies have...... shown a correlation between intermittent solar UVR exposure and malignant melanoma....

  3. Molecular mechanism of adaptive response to low dose radiation

    International Nuclear Information System (INIS)

    Adaptive response is a term used to describe the ability of a low, priming dose of ionizing radiation to modify the effects of a subsequent higher, challenge dose. Molecular mechanism of adaptive response to low dose radiation is involved in signal transduction pathway, reactive oxygen species, DNA damage repair

  4. Radiation dose determination by using powder Seydisehir alumina

    International Nuclear Information System (INIS)

    Thermoluminescence dosimeters (TLDs) is a passive dose measurement method used for the supervision, quality control and calibration during radiation dose measurements. Nowadays TLDs, including alumina, are largely used and investigated due to high sensitivity, physical and chemical stability, and re-usefulness. In this work, powder form of Seydisehir alumina is used as a thermoluminescence material and α and β radiation doses were measured.

  5. Estimated Radiation Doses to the Israeli Population from Nuclear Medicine Diagnostic Procedures

    International Nuclear Information System (INIS)

    Nuclear medicine diagnostic procedures were analyzed with the purpose of estimating their contribution to the individual and collective radiation doses to the Israeli population. An annual average of thirty nuclear medicine diagnostic procedures per 1,000 population were performed in Israel around the year 1998. The estimated mean effective dose per procedure due to nuclear medicine was 10.9 mSv and the annual collective effective dose resulting from these procedures - 2,000 man-Sv or 0.3 mSv per capita. The level of radiation doses to the Israeli population resulting from nuclear medicine diagnostic is mainly due to the relatively high number of procedures per capita and to the frequent use of high activity, especially Tl-201, for cardiology imaging procedures

  6. Effects of Low Dose Radiation on Mammals 1

    OpenAIRE

    Okumura, Yutaka; Mine, Mariko; Kishikawa, Masao

    1991-01-01

    Radiation has been applied widely to clinics, researches and industries nowadays. Irradiation by atomic bomb produced many victims in Hiroshima and Nagasaki. Radiation effects on animals and human belings have been reported extensively, especially at a dose range of high amount of radiation. As radiation effects at low dose have not been well studied, it is believed that even a small amount of radiation produces hazardous effects. However, it might not be true. Beneficial effects of a low dos...

  7. Terrestrial gamma radiation dose measurement and health hazard along river Alaknanda and Ganges in India

    Directory of Open Access Journals (Sweden)

    Prerna Sharma

    2014-10-01

    Full Text Available Direct measurement of absorbed dose rate in air due to exposure from outdoor terrestrial γ radiation and assessment of consequent public health hazard continues to be of environmental and public concern. Present study was aimed to establish a baseline data of annual effective dose and to assess the associated health risk from outdoor terrestrial γ radiation along the river Alaknanda and Ganges of India. Terrestrial γ radiation exposure doses (excluding cosmic radiation were measured using a Plastic Scintillation Counter. Absorbed dose rates in air were measured at eight designated locations from Nandprayag to Allahabad along the river. From the average absorbed dose rates, annual effective dose (AED and excess life time cancer risks (ELCR were calculated by standard method. Results showed that absorbed dose rates in air ranged between 81.33 ± 2.34 nSv.h−1 and 144 ± 5.77 nSv.h−1 and calculated AED ranged between 0.10 ± 0.012 mSv.y−1 to 0.18 ± 0.007 mSv.y−1 at the designated locations along these rivers. Calculated ELCR were found in the range of 0.375 × 10−3 to 0.662 × 10−3. Present study measured the outdoor γ radiation levels along the rivers. The calculated annual effective doses and life time cancer risk were found higher than the world average value at higher altitudes. But the measured doses and calculated risks at plains were close to that of reported average values.

  8. Doses in radiation accidents investigated by chromosome aberration analysis

    International Nuclear Information System (INIS)

    Results from cytogenetic investigations into 55 cases of suspected over-exposure to radiation during 1977 are reviewed. This report is the seventh in an annual series (previous results were published in NRPB-R5, R10, R23, R35, R41 and R57) which together contain data on 327 studies. Results from all investigations have been pooled for general analysis. Brief accounts are given in an appendix of the circumstances behind the past year's investigations and, where possible, physical estimates of dose have been included for comparison. Two cases are described in more detail: the first concerned a non-classified worker who put an iridium-192 source in his pocket and took it home; and the second involved the accidental contamination of two people with tritium gas. In a second appendix, the confidence limits on cytogenetic dosimetry for X- and γ-ray over-exposures are given and the derivation of these limits is discussed. (author)

  9. Low radiation dose effects - is it a myth or reality?

    International Nuclear Information System (INIS)

    The effects of low-level radiation are very difficult to observe and highly controversial. The radiation doses that result from chronic exposures but does not manifest in deterministic effects could be categorised as low radiation doses. These doses result in only potential stochastic effects which are probabilistic in nature. On the other hand, high radiation doses result in both deterministic effects and stochastic effects. Stochastic effects from higher doses are extrapolated linearly to the low doses on the basis of a hypothesis that the dose response curve is linear at all doses. This is what is termed as 'Linear No Threshold (LNT)' hypothesis. Based on this hypothesis, all regulatory agencies stipulate regulatory limits for radiation workers and for members of public. Particularly, the optimisation principle of radiation protection 'as low as reasonably achievable (ALARA)' is insisted on by regulatory bodies resulting in the often asked question as to whether it is really evidence based hypothesis or fear based regulatory concern. Many studies of high background areas in India, Iran, Brazil, etc. have not resulted in proof of excess cancer risk at radiation doses encountered in these areas of high background. Studies on large population of radiation workers who have received higher radiation doses than stipulated in the earlier periods of radiation safety limits have also not shown any increase in cancer incidence ascribable to radiation dose. On the contrary studies have shown, documented by many reputed scientific journals, American Nuclear Society, World Nuclear Agency and BEIR Committee that at low radiation doses the dose response curve is not only nonlinear but also shows a threshold for any harmful effect. (author)

  10. Evaluation of radiation dose to working operator in three types of interventional fluoroscopic procedures

    International Nuclear Information System (INIS)

    Objective: To assess the level of radiation exposures of operators in three typical types of interventional fluoroscopic procedures. Methods: Alderson Radiation Therapy (ART) phantom was used to stimulate the practices of diagnosis and therapy using TLDs for dose measurement. The radiation exposures of eye lens, neck, and breast were measured when the lead shielding of machine was on/off and the equivalent dose and effective dose to the eye lens were estimated. Results: Radiation exposure of head was obviously reduced by 85% -90% when the lead shielding was on. The doses in different procedures were different.In cerebral angiography the dose equivalent of eye len was the highest in the three procedures. The annual effective dose for the operators was smaller in peripheral vascular interventions than that in cardiovascular interventional therapy and that in cerebral angiography. Conclusions: The operators involved in intervention will receive an annual effective dose of less than 20 mSv as recommended by the ICRP under the protection conditions provided by the current study, except for eye lens. Attention should be paid to the protection of the eyes of operators. (authors)

  11. Perception of Radiation Risk by Japanese Radiation Specialists Evaluated as a Safe Dose Before the Fukushima Nuclear Accident.

    Science.gov (United States)

    Miura, Miwa; Ono, Koji; Yamauchi, Motohiro; Matsuda, Naoki

    2016-06-01

    From October to December 2010, just before the radiological accident at the Fukushima Daiichi nuclear power plant, 71 radiation professionals from radiation facilities in Japan were asked what they considered as a "safe dose" of radiation for themselves, their partners, parents, children, siblings, and friends. Although the 'safe dose' they noted varied widely, from less than 1 mSv y to more than 100 mSv y, the average dose was 35.6 mSv y, which is around the middle point between the legal exposure dose limits for the annual average and for any single year. Similar results were obtained from other surveys of members of the Japan Radioisotope Association (36.9 mSv y) and of the Oita Prefectural Hospital (36.8 mSv y). Among family members and friends, the minimum average "safe" dose was 8.5 mSv y for children, for whom 50% of the responders claimed a "safe dose" of less than 1 mSv. Gender, age and specialty of the radiation professional also affected their notion of a "safe dose." These findings suggest that the perception of radiation risk varies widely even for radiation professionals and that the legal exposure dose limits derived from regulatory science may act as an anchor of safety. The different levels of risk perception for different target groups among radiation professionals appear similar to those in the general population. The gap between these characteristics of radiation professionals and the generally accepted picture of radiation professionals might have played a role in the state of confusion after the radiological accident. PMID:27115222

  12. Radiation dose measurements for staff members involved in holmium-166 preclinical trial

    International Nuclear Information System (INIS)

    Aim: Neutron-activated holmium-166 (166Ho) is an excellent radionuclide for internal radiation therapy (Eβmax = 1.84 MeV) with an appropriate half-life (26.8 h), which emits photons (81 keV, 6.2%) suitable to be detected by gamma cameras. Preparing and injecting radiopharmaceuticals containing beta/gamma emitting holmium-166 implies a risk of exceeding the upper limit for skin and hand radiation equivalent doses (500 mSv/an). This study was aimed to estimate the whole body and finger exposure for staff responsible for dose preparation, dose dispensing, and dose injection of holmium-166 therapy. Methods: To measure the finger dose from external exposure, all staff members wore TLD dosimeters. Personal dose equivalents Hp(10) were measured using electronic personal dosimeters (EPD MK2, Thermo Fischer Scientific) placed on the left side of the chest. During our study, staff members administered more than 40 166Ho-based therapies for preclinical trial. Appropriate radiation safety procedures and shielding were applied at each stage. Results: In this study, the whole body doses were 2.80 ± 1.56 nSv MBq−1 for one 166Ho-therapy preparation/formulation, and 2.68 ± 1.70 nSv MBq−1 for one intravenous injection. Maximum finger doses were 2.9 ± 0.2 μSv MBq−1 and 2.5 ± 0.3 μSv MBq−1 for preparation and injection, respectively (activities injected: 72 ± 3 MBq). Conclusion: Extrapolated annual doses from 300 166Ho radionuclide therapies were lower than the annual limit doses for skin and the whole body, 500 mSv and 20 mSv, respectively, reported in the European Directive EURATOM 96/29 when applying appropriate radiation protection standards. However, these doses have to be added to other diagnostic or therapeutic protocols, performed in preclinical facilities. - Highlights: • Radiation measurements for staff performing 166 Holmium radionuclide therapy was evaluated. • Hand exposure was estimated using TLD dosimeter. • Whole body doses was evaluated using EPD

  13. On the use of age-specific effective dose coefficients in radiation protection of the public

    International Nuclear Information System (INIS)

    Current radiation protection standards for the public include a limit on effective dose in any year for individuals in critical groups. This paper considers the question of how the annual dose limit should be applied in controlling routine exposures of populations consisting of individuals of all ages. We assume that the fundamental objective of radiation protection is limitation of lifetime risk and, therefore, that standards for controlling routine exposures of the public should provide a reasonable correspondence with lifetime risk, taking into account the age dependence of intakes and doses and the variety of radionuclides and exposure pathways of concern. Using new calculations of the per capita (population-averaged) risk of cancer mortality per unit activity inhaled or ingested in the U.S. Environmental Protection Agency's Federal Guidance Report No. 13, we show that applying a limit on annual effective dose only to adults, which was the usual practice in radiation protection of the public before the development of age-specific effective dose coefficients, provides a considerably better correspondence with lifetime risk that applying the annual dose limit to the critical group of any age. (author)

  14. On the use of age-specific effective dose coefficients in radiation protection of the public

    International Nuclear Information System (INIS)

    Current radiation protection standards for the public include a limit on effective dose in any year for individuals in critical groups. This paper considers the question of how the annual dose limit should be applied in controlling routine exposures of populations consisting of individuals of all ages. The authors assume that the fundamental objective of radiation protection is limitation of lifetime risk and, therefore, that standards for controlling routine exposures of the public should provide a reasonable correspondence with lifetime risk, taking into account the age dependence of intakes and doses and the variety of radionuclides and exposure pathways of concern. Using new calculations of the per capita (population-averaged) risk of cancer mortality per unit activity inhaled or ingested in the US Environmental Protection Agency's Federal Guidance Report No. 13, the authors show that applying a limit on annual effective dose only to adults, which was the usual practice in radiation protection of the public before the development of age-specific effective dose coefficients, provides a considerably better correspondence with lifetime risk than applying the annual dose limit to the critical group of any age

  15. Direct determination of internal radiation dose in human blood

    CERN Document Server

    Tanır, Ayse Güneş

    2014-01-01

    The purpose of this study is to measure the internal radiation dose using a human blood sample. In the literature, there is no process that allows the direct measurement of the internal radiation dose received by a person. The luminescence counts from a blood sample having a laboratory-injected radiation dose and the waste blood of the patient injected with a radiopharmaceutical for diagnostic purposes were both measured. The decay and dose-response curves were plotted for the different doses. The doses received by the different blood aliquots can be determined by interpolating the luminescence counts to the dose-response curve. This study shows that the dose received by a person can be measured directly, simply and retrospectively by using only a very small amount of blood sample. The results will have important ramifications for the medicine and healthcare fields in particular. This will also be very important in cases of suspicion of radiation poisoning, malpractice and so on.

  16. Risk of cancer subsequent to low-dose radiation

    International Nuclear Information System (INIS)

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident

  17. Dose planning and dose delivery in radiation therapy

    International Nuclear Information System (INIS)

    A method has been developed for calibration of CT-numbers to volumetric electron density distributions using tissue substitutes of known elemental composition and experimentally determined electron density. This information have been used in a dose calculation method based on photon and electron interaction processes. The method utilizes a convolution integral between the photon fluence matrix and dose distribution kernels. Inhomogeneous media are accounted for using the theorems of Fano and O'Connor for scaling dose distribution kernels in proportion to electron density. For clinical application of a calculated dose plan, a method for prediction of accelerator output have been developed. The methods gives the number of monitor units that has to be given to obtain a certain absorbed dose to a point inside an irregular, inhomogeneous object. The method for verification of dose distributions outlined in this study makes it possible to exclude the treatment related variance contributions, making an objective evaluation of dose calculations with experiments feasible. The methods for electron density determination, dose calculation and prediction of accelerator output discussed in this study will all contribute to an increased accuracy in the mean absorbed dose to the target volume. However, a substantial gain in the accuracy for the spatial absorbed dose distribution will also follow, especially using CT for mapping of electron density together with the dose calculation algorithm. (au)

  18. Low-dose radiation epidemiology studies: status and issues.

    Science.gov (United States)

    Shore, Roy E

    2009-11-01

    Although the Japanese atomic bomb study and radiotherapy studies have clearly documented cancer risks from high-dose radiation exposures, radiation risk assessment groups have long recognized that protracted or low exposures to low-linear energy transfer radiations are key radiation protection concerns because these are far more common than high-exposure scenarios. Epidemiologic studies of human populations with low-dose or low dose-rate exposures are one approach to addressing those concerns. A number of large studies of radiation workers (Chernobyl clean-up workers, U.S. and Chinese radiological technologists, and the 15-country worker study) or of persons exposed to environmental radiation at moderate to low levels (residents near Techa River, Semipalatinsk, Chernobyl, or nuclear facilities) have been conducted. A variety of studies of medical radiation exposures (multiple-fluoroscopy, diagnostic (131)I, scatter radiation doses from radiotherapy, etc.) also are of interest. Key results from these studies are summarized and compared with risk estimates from the Japanese atomic bomb study. Ideally, one would like the low-dose and low dose-rate studies to guide radiation risk estimation regarding the shape of the dose-response curve, DDREF (dose and dose-rate effectiveness factor), and risk at low doses. However, the degree to which low-dose studies can do so is subject to various limitations, especially those pertaining to dosimetric uncertainties and limited statistical power. The identification of individuals who are particularly susceptible to radiation cancer induction also is of high interest in terms of occupational and medical radiation protection. Several examples of studies of radiation-related cancer susceptibility are discussed, but none thus far have clearly identified radiation-susceptible genotypes. PMID:19820457

  19. Dose conversion factors for external photon radiation

    International Nuclear Information System (INIS)

    Dose conversion factors for radionuclides have been computed and tabulated for two situations: photon doses resulting from immersion in contaminated air, and exposure to a contaminated land surface. Computed dose conversion factors relates absorbed dose rate in human tissue to activity concentration. Tabulated dose conversion factors includes contributions from naturally occurring radionuclides as well as manmade radionuclides: activation products, fission products, actinides. (Auth.)

  20. Dose conversion factors for external photon radiation

    International Nuclear Information System (INIS)

    Dose conversion factors for radionuclides have been computed and tabulated for two situations: photon doses resulting from immersion in contaminated air, and exposure to a contaminated land surface. Computed dose conversion factors relates absorbed dose rate in human tissue to activity concentration. Tabulated dose conversion factors includes contributions from naturally occuring radionuclides as well as manmade radionuclides: activation products, fission products, actinides. (author)

  1. Current issues in carcinogenic effect of low-dose radiation

    International Nuclear Information System (INIS)

    A review of publications dealing with study of radiation sources and biological evaluation of increasing doses of people irradiation under occupational and usual living conditions is presented. The existing natural and artifial irradiation sources are considered. It is noted that all types of ionizing radiations are characterized by high carcinogenic efficiency and can induce benign and malignant tumors practically in all organs. Statistically reliable data in experimental and epidemiological investigations were recorded under the effect of large and mean doses. Minor radiation doses not responsible for visible functional and morphological changes in early periods can cause pathological changes in delayed periods. The data on carcinogenic effect of relatively small radiation doses are available

  2. Personal monitoring and assessment of doses received by radiation workers

    International Nuclear Information System (INIS)

    The Personal Radiation Monitoring Service operated by the Australian Radiation Laboratory is outlined and the types of monitors used for assessment of doses received by radiation workers are described. The distribution of doses received by radiation workers in different occupational categories is determined. From these distributions, the average doses received have been assessed and the maximum likely additional increase in cancer deaths in Australia as a result of occupational exposure estimated. This increase is shown to be very small. There is, however, a considerable spread of doses received by individuals within occupational groups

  3. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    This study intends to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (DHS) and (ii) Dynamic Cannula Screw (DCS) and to evaluate entrance surface Air kerma (ESAK) dose and organ doses and effective doses. Calibrated Thermoluminescence dosimeters (TLD-GR200A) were used. The mean patients’ doses were 0.46 mGy and 0.07 mGy for DHS and DCS procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean organ and effective dose for patients and staff were higher in DHS compared to DCS. Orthopedic surgeons were exposed to unnecessary radiation doses due to the lack of protection measures. The radiation dose per hip procedure is within the safety limit and less than the previous studies

  4. Radiation Doses to Hanford Workers from Natural Potassium-40

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lynch, Timothy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weier, Dennis R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-01

    The chemical element potassium is an essential mineral in people and is subject to homeostatic regulation. Natural potassium comprises three isotopes, 39K, 40K, and 41K. Potassium-40 is radioactive, with a half life of 1.248 billion years. In most transitions, it emits a β particle with a maximum energy of 0.560 MeV, and sometimes a gamma photon of 1.461 MeV. Because it is ubiquitous, 40K produces radiation dose to all human beings. This report contains the results of new measurements of 40K in 248 adult females and 2,037 adult males performed at the Department of Energy Hanford Site in 2006 and 2007. Potassium concentrations diminish with age, are generally lower in women than in men, and decrease with body mass index (BMI). The average annual effective dose from 40K in the body is 0.149 mSv y-1 for men and 0.123 mSv y-1 women respectively. Averaged over both men and women, the average effective dose per year is 0.136 mSv y-1. Calculated effective doses range from 0.069 to 0.243 mSv y-1 for adult males, and 0.067 to 0.203 mSv y-1 for adult females, a roughly three-fold variation for each gender. The need for dosimetric phantoms with a greater variety of BMI values should be investigated. From our data, it cannot be determined whether the potassium concentration in muscle in people with large BMI values differs from that in people with small BMI values. Similarly, it would be important to know the potassium concentration in other soft tissues, since much of the radiation dose is due to beta radiation, in which the source and target tissues are the same. These uncertainties should be evaluated to determine their consequences for dosimetry.

  5. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  6. Occupational radiation exposure at commercial nuclear power reactors 1979. Annual report

    International Nuclear Information System (INIS)

    This report summarizes the occupational radiation exposure information that has been reported to the U.S.N.R.C. by commercial nuclear power reactors during the years 1969 through 1979. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and Regulatory Guide 1.16. Data on workers terminating their employment at nuclear power facilities was obtained from reports submitted pursuant to 10 CFR 20.408. The annual reports submitted by the 67 nuclear power plants that had completed at least one full year of operation as of December 31, 1979, indicated that the number of personnel monitored during 1979 was 109,160 persons and the annual collective dose incurred by these individuals was 39,759 man-rems. The average annual dose for each worker that received a measurable dose was 0.6 rems, and the average collective dose per reactor was 593 man-rems. The termination reports revealed that some 43,600 individuals completed their employment with one or more reactor facilities during 1979. Approximately 3,200 of these workers could be considered transients and they received an average dose of about 1 rem

  7. Proceedings of the 8th annual meeting of Japanese Society of Radiation Safety Management 2009 Nagasaki

    International Nuclear Information System (INIS)

    This is the program and the proceedings of the 8th annual meeting of Japanese Society of Radiation Safety Management held from December 2nd through the 4th of 2009. The sessions held were: (1) Exposure Reduction and Dose Level Evaluation/ Shielding Design 1 and 2, (2) Standardization Activities regarding Radiation Protection, (3) Emission and Drainage Control/Contamination Inspection/Waste Handling and Clearance, (4) Radiation Measurement 1 and 2, (5) Education Method/Radiation and Utilization of Radioactive Isotopes, and (6) Safety Control of Radiation Source. Two keynote lectures held were: (1) 'Acknowledgment of Radiation Risk' and 'Trend in Radiation Safety Administration'. The topic of one international symposium held was 'International Strategy for Radiation Risk Control'. One special session held was 'Toward Standardization of Safety Handling Law of Radioactive Iodine' by the ad hoc committee. Also, 47 poster sessions were held. (S.K.)

  8. Radiation doses from contaminant aerosol deposition to the human body

    International Nuclear Information System (INIS)

    Nearly all assessments of radiation doses received following accidental airborne releases have focused on the contributions originating from the plume and from ground deposition. Very little thought has however been given to doses received from deposition directly onto humans. The results of recent experimental investigations of aerosol deposition to and clearance from human skin and clothing have been used to model the doses potentially received in an accident situation. It was found that both the skin dose from β-emitters and the whole body dose from γ-emitters may be significant compared with doses received through other pathways, such as external radiation from the environment. (au)

  9. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  10. Individual monitoring of external radiation - dose quantities and their relevance to radiation protection

    International Nuclear Information System (INIS)

    External exposures due to the use of ionising radiation are the major contributor to doses to radiation workers. X-and gamma rays from radiation sources and radiation generating equipment's from the main component of dose. This is because of their penetrating power and wider abundance due to their use in medical, industrial research and agriculture fields. Although in some cases, beta radiation and neutrons also form some significant component to dose, their overall contribution remains much lower

  11. Follow up on a workloaded interventional radiologist's occupational radiation doses - a study case

    International Nuclear Information System (INIS)

    During many interventional procedures, patients' radiation doses are high, affecting radiologist's radiation doses. We checked occupational doses of a workloaded interventional radiologist during seven years

  12. The principles of dose limitation in radiation protection: Dose limits and intervention reference levels

    International Nuclear Information System (INIS)

    The paper discusses the biological effects of ionizing radiation, the systems of dose limitations, and the quantification and acceptance of the risks involved in exposures amounting to the dose limit level and the intervention reference level. According to the concept of biological radiation effects, the dose limits and intervention reference levels do not mark the threshold between safety and danger; rather, they should be viewed as the lower limit of an unacceptable dose range, or a dose range below which interference in case of radiation accidents seems to be unnecessary. (HSCH)

  13. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  14. Measurement of 226Ra, 228Ra, 137CS and 40K in edible parts of two types of leafy vegetables cultivated in Tehran province-Iran and resultant annual ingestion radiation dose

    International Nuclear Information System (INIS)

    The sources of radioactivity in the environment have natural; terrestrial and extraterrestrial. and anthropogenic origins. Plants may get radioactive nuclides in two ways: (i) by the deposition of radioactive fallout, (ii) by absorption from the soil. Materials and Methods: The Concentrations of the natural radionuclides (226Ra, 228Ra, 40K) and the artificial radionuclide (137CS) in leek and parsley in Tehran province-Iran were determined using high-purity Ge detectors. Also the effective dose due to the ingestion of such vegetables by the population of Tehran province was studied. Results: The average value of radionuclide concentrations in parsley samples were measured 177.69 ± 12.47 mBq kg-1fresh for 226Ra; 349.62 ± 28.42 mBq kg-1fresh for 228Ra; 187364.6 mBq kg1fresh for 40K. The average value of radionuclide concentrations in leek samples were measured 94.31 ± 6.46 mBq kg-1fresh for 226Ra; 207.47 ± 19.46 mBq kg-1fresh for 228Ra; 174555 ± 1704.21 mBq kg-1fresh for 40K. The concentrations of 137Cs in most of Parsley and Leek samples were below the minimum detectable activity. Conclusion: The Average 226Ra and 228Ra activities in 29 leek and parsley samples were about 2.63 and 6.78 times the reference values, respectively. The annual effective dose resulting from the studied radionuclides for the adult population in Tehran province were found to be safe in comparison with normal background areas.

  15. Stimulation of biological activities using low radiation doses

    International Nuclear Information System (INIS)

    Hormesis is the excitation, or stimulation, by low doses of any agent in any system; high doses inhibit but low doses stimulate. Don Luckey from the University of Florida identified the phenomenon of radiation hormesis, in 1982. After nearly ten years of data surveys and animal tests in many universities to examine the truth about radiation hormesis, we realized the scientific significance of the stimulating effects caused by low levels of radiation exposure. Stimulation with Ionizing radiation presented evidence of increased vigor in plants, bacteria, invertebrates and vertebrates. Most physiologic reactions in living cells are stimulated by low doses of ionizing radiation. This stimulating effect includes enzyme induction, photosynthesis, respiration and growth. Radiation stimulation to the immune system decreases infection and premature death in radiation exposed individuals. (author)

  16. Radiation doses of employees of a nuclear medicine department after implementation of more rigorous radiation protection methods

    International Nuclear Information System (INIS)

    The appropriate radiation protection measures applied in departments of nuclear medicine should lead to a reduction in doses received by the employees. During 1991-2007, at the Department of Nuclear Medicine of Pomeranian Medical University (Szczecin, Poland), nurses received on average two-times higher (4.6 mSv) annual doses to the whole body than those received by radiopharmacy technicians. The purpose of this work was to examine whether implementation of changes in the radiation protection protocol will considerably influence the reduction in whole-body doses received by the staff that are the most exposed. A reduction in nurses' exposure by ∼63% took place in 2008-11, whereas the exposure of radiopharmacy technicians grew by no more than 22% in comparison with that in the period 1991-2007. Proper reorganisation of the work in departments of nuclear medicine can considerably affect dose reduction and bring about equal distribution of the exposure. (authors)

  17. Energies, health, medicine. Low radiation doses; Energies, sante, medecine. Les faibles doses de rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  18. Study on External Exposure Doses Received by the Cuban Population from Environmental Radiation Sources

    International Nuclear Information System (INIS)

    The results are described of the study carried out with the aim of assessing doses received by the Cuban population due to the external exposure to environmental radiation sources. Contributions of cosmic radiation's ionising and indirectly ionising components to these doses, as well as the fraction resulting from terrestrial radiation, were also assessed as part of this study. Measurements made enabled us to estimate representative effective average doses received by the Cuban population from external exposure to cosmic and terrestrial radiation. Both outdoor and indoor permanency were taken into account for this estimate as well as the distribution of the Cuban population by altitude. The average representative dose due to cosmic radiation was estimated to be 298 ± 17 μSv per year, while the dose received by terrestrial radiation represented 180 ± 14 μSv per year, for a total annual dose of 78 ± 20 μSv. These values are within the range of those reported throughout the world by other authors. (author)

  19. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.;

    1977-01-01

    Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved in...... polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent of...... dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods of at...

  20. Radiation doses in patients under full-mouth radiographic examination

    International Nuclear Information System (INIS)

    Radiation doses received by tissues of the head and neck as a result of a full-mouth radiographic examination are studied. Simulations are carried out by irradiating the head and neck section of an anthropomorphic phantom. The radiation doses are determined through the use of thermoluminescent dosimeters

  1. Occupational exposure assessment and radiation dose estimation of vegetable-plant farmers to 222Rn in greenhouses of Shouguang county, China

    International Nuclear Information System (INIS)

    This study aims to: assess exposure levels of radon and explore seasonal variations of radon concentrations in greenhouses in Shouguang county. Estimate annual radon radiation dose level for vegetable-plant farmers working in greenhouses. During detection period, the annual mean radon concentration was approximately 286 Bq m-3. The annual radon radiation dose of farmers is 3.3 mSv a-1. Both obvious seasonal variations in average radon concentrations and radon radiation dose in greenhouses are observed. Both levels are much higher in winter and spring than in summer and autumn. (author)

  2. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    Science.gov (United States)

    Lubis, L. E.; Badawy, M. K.

    2016-03-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care.

  3. Radiation risk evaluation and reference doses in interventional radiology

    International Nuclear Information System (INIS)

    In interventional radiology, there are two potential hazards to the patient. These are somatic risks and, for certain procedures, deterministic injuries. The task of radiation protection in interventional radiology is to minimise somatic risks and avoid deterministic injuries. Radiation protection tools and protocols must be developed to achieve these two objectives. Reference doses have been proposed as a method of identifying high dose centres and equipment. The role of reference doses in interventional radiology will be discussed. There are two approaches to reference doses in interventional radiology. These are the measurement of patient entrance skin dose or skin dose rate, or image intensifier input dose rate. Alternatively, dose area product or effective dose to the patient may be monitored. These two main approaches have their advantages and disadvantages. (author)

  4. Radiation dose of CT coronary angiography in clinical practice: Objective evaluation of strategies for dose optimization

    International Nuclear Information System (INIS)

    Background: CT coronary angiography (CTCA) is an evolving modality for the diagnosis of coronary artery disease. Radiation burden associated with CTCA has been a major concern in the wider application of this technique. It is important to reduce the radiation dose without compromising the image quality. Objectives: To estimate the radiation dose of CTCA in clinical practice and evaluate the effect of dose-saving algorithms on radiation dose and image quality. Methods: Effective radiation dose was measured from the dose-length product in 616 consecutive patients (mean age 58 ± 12 years; 70% males) who underwent clinically indicated CTCA at our institution over 1 year. Image quality was assessed subjectively using a 4-point scale and objectively by measuring the signal- and contrast-to-noise ratios in the coronary arteries. Multivariate linear regression analysis was used to identify factors independently associated with radiation dose. Results: Mean effective radiation dose of CTCA was 6.6 ± 3.3 mSv. Radiation dose was significantly reduced by dose saving algorithms such as 100 kV imaging (−47%; 95% CI, −44% to −50%), prospective gating (−35%; 95% CI, −29% to −40%) and ECG controlled tube current modulation (−23%; 95% CI, −9% to −34%). None of the dose saving algorithms were associated with a significant reduction in mean image quality or the frequency of diagnostic scans (P = non-significant for all comparisons). Conclusion: Careful application of radiation-dose saving algorithms in appropriately selected patients can reduce the radiation burden of CTCA significantly, without compromising the image quality.

  5. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    Science.gov (United States)

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures. PMID:26581473

  6. Effect of low doses of gamma radiation in tomato seeds

    International Nuclear Information System (INIS)

    Tomato dry seeds of the hybrid 'Gladiador' Fl were exposed to low doses of gamma radiation from 60Co source at 0. 509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments of different radiation doses were applied as follows: 0 (control); 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  7. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  8. Radiation dose distributions due to sudden ejection of cobalt device.

    Science.gov (United States)

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. PMID:27423021

  9. Evaluation of Patient Radiation Dose during Orthopedic Surgery

    International Nuclear Information System (INIS)

    The number of orthopedic procedures requiring the use of the fluoroscopic guidance has increased over the recent years. Consequently the patient exposed to un avoidable radiation doses. The aim of the current study was to evaluate patient radiation dose during these procedures.37 patients under went dynamic hip screw (DHS) and dynamic cannulated screw (DCS) were evaluated using calibrated Thermolumincent Dosimeters (TLDs), under carm fluoroscopic machines ,in three centers in Khartoum-Sudan. The mean Entrance Skin Dose (ESD) was 7.9 m Gy per procedure. The bone marrow and gonad organ exposed to significant doses. No correlation was found between ESD and Body Mass Index (BMI), or patient weight. Well correlation was found between kilo voltage applied and ESD. Orthopedic surgeries delivered lower radiation dose to patients than cardiac catheterization or hysterosalpingraphy (HSG) procedures. More study should be implemented to follow radiation dose before surgery and after surgery

  10. The researches of medical and environmental radiation protection dose

    OpenAIRE

    盧, 暁光

    2013-01-01

    Nowadays, with the development of modern radiation science, application of radiation exposure has been paid more and more attention in various fields. Although there are many benefits for human by the use of radiation in such as medical diagnose and treatment, utilization of nuclear power, more efforts should be made to radiation hazards and their control that are often neglected. The researches in this study were intended to meet the requirements with the center of radiation protection dose ...

  11. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    Full Text Available When ionizing radiation traverses biological material, some energy depositions occur and ionize directly deoxyribonucleic acid (DNA molecules, the critical target. A classical paradigm in radiobiology is that the deposition of energy in the cell nucleus and the resulting damage to DNA are responsible for the detrimental biological effects of radiation. It is presumed that no radiation effect would be expected in cells that receive no direct radiation exposure through nucleus. The risks of exposure to low dose ionizing radiation are estimated by extrapolating from data obtained after exposure to high dose radiation. However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose radiation than they do to high dose radiation. Moreover, recent experimental evidences from many laboratories reveal the fact that radiation effects also occur in cells that were not exposed to radiation and in the progeny of irradiated cells at delayed times after radiation exposure where cells do not encounter direct DNA damage. Recently, the classical paradigm in radiobiology has been shifted from the nucleus, specifically the DNA, as the principal target for the biological effects of radiation to cells. The universality of target theory has been challenged by phenomena of radiation-induced genomic instability, bystander effect and adaptive response. The new radiation biology paradigm would cover both targeted and non-targeted effects of ionizing radiation. The mechanisms underlying these responses involve biochemical/molecular signals that respond to targeted and non-targeted events. These results brought in understanding that the biological response to low dose radiation at tissue or organism level is a complex process of integrated response of cellular targets as well as extra-cellular factors. Biological understanding of

  12. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40K, 238U plus daughters and 232Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus

  13. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  14. ''Low dose'' and/or ''high dose'' in radiation protection: A need to setting criteria for dose classification

    International Nuclear Information System (INIS)

    The ''low dose'' and/or ''high dose'' of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; ''What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?''. This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. (author)

  15. Low dose radiation and plant growth

    International Nuclear Information System (INIS)

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated

  16. Low dose radiation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated.

  17. Estimation of Ga-67 radiation dose to a breast-fed infant

    International Nuclear Information System (INIS)

    Full text: The quality assurance programs for the practice of nuclear medicine in Colombia include optimization of public exposure by the radioactive sources used in medical diagnosis and treatment. Precautionary measures notwithstanding, occasionally members of the public receive doses larger than expected; usually there is no direct data to evaluate dose. We briefly describe the process to estimate the radiation dose absorbed by a 5-month-old baby that was inadvertently breast-fed for 48 hours by his 22-year-old mother that was administered 296 MBq of radioactive Ga-67 citrate. After the intravenous administration, the Ga-67 is commonly observed in the intestine, and other organs, and in the breasts of lactating women, thus possibly leading to radiation exposure of the infant's lower intestine. We had 256x256 single photon emission computed tomography (SPECT) images, and whole-body 1024 x 256 planar images, taken 48h and 72 h after Ga-67 intake. The images were obtained with a Siemens E-cam gamma camera, a 20% energy window was placed at the 93, 184 and 296 keV gamma photopeaks. From these images we calculated the concentration of Ga-67 in mother's milk (using Medical Internal Radiation Dose MIRD methodology). Hence, the dose absorbed by the baby. The radioactivity in breast milk per liter was 4% of the injected activity. The dose absorbed by the infant's lower intestine was 11 mGy. The effective dose to the infant was estimated as 7 mSv, which is above the annual limit to the general public (1 mSv/year). Hence, an infant breast-fed by a mother undergoing Ga-67 treatment may easily receive a radiation dose in excess of the annual upper limit. From the viewpoint of radiation protection it is extremely important to convey to the mother the necessity of abiding by the standard medical recommendation of discontinuing breast feeding for at least 2 weeks after Ga-67 intake. (author)

  18. Implementation of dose management system at radiation protection board of Ghana Atomic Energy Commission.

    Science.gov (United States)

    Hasford, F; Amoako, J K; Darko, E O; Emi-Reynolds, G; Sosu, E K; Otoo, F; Asiedu, G O

    2012-01-01

    The dose management system (DMS) is a computer software developed by the International Atomic Energy Agency for managing data on occupational exposure to radiation sources and intake of radionuclides. It is an integrated system for the user-friendly storage, processing and control of all existing internal and external dosimetry data. The Radiation Protection Board (RPB) of the Ghana Atomic Energy Commission has installed, customised, tested and using the DMS as a comprehensive DMS to improve personnel and area monitoring in the country. Personnel dose records from the RPBs database from 2000 to 2009 are grouped into medical, industrial and education/research sectors. The medical sector dominated the list of monitored institutions in the country over the 10-y period representing ∼87 %, while the industrial and education/research sectors represent ∼9 and ∼4 %, respectively. The number of monitored personnel in the same period follows a similar trend with medical, industrial and education/research sectors representing ∼74, ∼17 and ∼9 %, respectively. Analysis of dose data for 2009 showed that there was no instance of a dose above the annual dose limit of 20 mSv, however, 2.7 % of the exposed workers received individual annual doses >1 mSv. The highest recorded individual annual dose and total collective dose in all sectors were 4.73 mSv and 159.84 man Sv, respectively. Workers in the medical sector received higher individual doses than in the other two sectors, and average dose per exposed worker in all sectors is 0.25 mSv. PMID:21335631

  19. Implementation of dose management system at radiation protection board of Ghana Atomic Energy Commission

    International Nuclear Information System (INIS)

    The dose management system (DMS) is a computer software developed by the International Atomic Energy Agency for managing data on occupational exposure to radiation sources and intake of radionuclides. It is an integrated system for the user-friendly storage, processing and control of all existing internal and external dosimetry data. The Radiation Protection Board (RPB) of the Ghana Atomic Energy Commission has installed, customised, tested and using the DMS as a comprehensive DMS to improve personnel and area monitoring in the country. Personnel dose records from the RPBs database from 2000 to 2009 are grouped into medical, industrial and education/research sectors. The medical sector dominated the list of monitored institutions in the country over the 10 y period representing ∼87 %, while the industrial and education/research sectors represent ∼9 and ∼4 %, respectively. The number of monitored personnel in the same period follows a similar trend with medical, industrial and education/research sectors representing ∼74, ∼17 and ∼9 %, respectively. Analysis of dose data for 2009 showed that there was no instance of a dose above the annual dose limit of 20 mSv, however, 2.7 % of the exposed workers received individual annual doses >1 mSv. The highest recorded individual annual dose and total collective dose in all sectors were 4.73 mSv and 159.84 man Sv, respectively. Workers in the medical sector received higher individual doses than in the other two sectors, and average dose per exposed worker in all sectors is 0.25 mSv. (authors)

  20. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. The authors have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiations. 5 references, 3 tables

  1. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs

  2. Status of eye lens radiation dose monitoring in European hospitals

    OpenAIRE

    Carinou, Eleftheria; Ginjaume Egido, Mercè; O'Connor, Una; Kopec, Renata; Sans Merce, Marta

    2014-01-01

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey hig...

  3. Investigation of radiation skin dose in interventional cardiology

    International Nuclear Information System (INIS)

    Background - The study investigated the radiation skin doses for interventional patients in cardiology; two procedures which have the highest radiation dose are Radiofrequency Catheter Ablation (RFCA) and Percutaneous Transluminal Coronary Angioplasty (PTCA). Methods and Results - 56 patients were randomly selected and investigated; 23 patients in the RFCA group and 33 in the PTCA group. Skin and effective dose were calculated from Dose Area Product (DAP). Thermoluminescent Dosimetry was the second method of dose measurement used. Patients were followed-up for a three month period to check for possible skin reactions resulting from the radiation dose during the procedure. Radiation skin doses in 14 patients were calculated to be more than 1 Gy, including three patients who received more than 2 Gy, the threshold dose for deterministic effects of radiation. 7 patients (12.5%) reported skin reactions as a result of the radiation received to their backs during the procedure. Mean DAP and estimated effective doses were 105 Gycm2 and 22.5 mSv for RFCA, and 32 Gycm2 and 6.2 mSv for PTCA procedures respectively. Conclusion - Complex procedures in Interventional Cardiology can exceed the threshold level for deterministic effects in the skin. (author)

  4. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    International Nuclear Information System (INIS)

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs

  5. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Peloquin, R.A. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs.

  6. Reduction of the radiation dose received by interventional cardiologists following training in radiation protection

    International Nuclear Information System (INIS)

    The University General Hospital of Alexandroupolis was established in 2003 to cover Eastern Macedonia and Thrace Districts of Northern Greece. The hospital has two interventional cardiology units and the occupational radiation exposure of the cardiologists was the highest of all specialties using ionising radiation. In order to aid in decreasing the radiation dose levels, a seminar was organised for all personnel working in interventional radiology field. After this, an important reduction of the radiation dose of the cardiologists was noted. Training in radiation protection is essential to reduce the radiation doses and consequently the deterministic and stochastic effects of ionising radiation of cardiologists working in interventional radiology. (authors)

  7. A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk

    Science.gov (United States)

    Richmond, Robert; Cruz, Angela; Jansen, Heather; Bors, Karen

    2003-01-01

    Predicting risk of human cancer following exposure of an individual or a population to ionizing radiation is challenging. To an approximation, this is because uncertainties of uniform absorption of dose and the uniform processing of dose-related damage at the cellular level within a complex set of biological variables degrade the confidence of predicting the delayed expression of cancer as a relatively rare event. Cellular biodosimeters that simultaneously report: 1) the quantity of absorbed dose after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing cancer by the cells absorbing that dose would therefore be useful. An approach to such a multiparametric biodosimeter will be reported. This is the demonstration of a dose responsive field effect of enhanced expression of keratin 18 (K18) in cultures of human mammary epithelial cells irradiated with cesium-1 37 gamma-rays. Dose response of enhanced K18 expression was experimentally extended over a range of 30 to 90 cGy for cells evaluated at mid-log phase. K18 has been reported to be a marker for tumor staging and for apoptosis, and thereby serves as an example of a potential marker for cancer risk, where the reality of such predictive value would require additional experimental development. Since observed radiogenic increase in expression of K18 is a field effect, ie., chronically present in all cells of the irradiated population, it may be hypothesized that K18 expression in specific cells absorbing particulate irradiation, such as the high-LET-producing atomic nuclei of space radiation, will report on both the single-cell distributions of those particles amongst cells within the exposed population, and that the relatively high dose per cell delivered by densely ionizing tracks of those intersecting particles will lead to cell-specific high-expression levels of K18, thereby providing analytical end points that may be used to resolve both the quantity and

  8. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.; Pejtersen, K.; Pedersen, Walther Batsberg

    1977-01-01

    dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods of at...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and...

  9. 10 CFR 20.1004 - Units of radiation dose.

    Science.gov (United States)

    2010-01-01

    ... beta radiation 1 1 Alpha particles, multiple-charged particles, fission fragments and heavy particles... 10 Energy 1 2010-01-01 2010-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions §...

  10. Assessment of dose level of ionizing radiation in army scrap

    International Nuclear Information System (INIS)

    Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy radiation. Ionizing radiation is widely used in industry and medicine. Any human activity of nuclear technologies should be linked to the foundation of scientific methodology and baseline radiation culture to avoid risk of radiation and should be working with radioactive materials and expertise to understand, control practices in order to avoid risks that could cause harm to human and environment. The study was conducted in warehouses and building of Sudan air force Khartoum basic air force during September 2010. The goal of this study to estimate the radiation dose and measurement of radioactive contamination of aircraft scrap equipment and increase the culture of radiological safety as well as the concept of radiation protection. The results showed that there is no pollution observed in the contents of the aircraft and the spire part stores outside, levels of radiation dose for the all contents of the aircraft and spire part within the excitable level, except temperature sensors estimated radiation dose about 43 μSv/h outside of the shielding and 12 μSv/h inside the shielding that exceeded the internationally recommended dose level. One of the most important of the identification of eighteen (18) radiation sources used in temperature and fuel level sensors. These are separated from the scrap, collected and stored in safe place. (Author)

  11. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  12. Doses and biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Basic values and their symbols as well as units of physical dosimetry are given. The most important information about biological radiation effects is presented. Polish radiation protection standards are cited. (A.S.)

  13. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  14. Preliminary results of measurement of natural environmental radiation levels and doses to population in China

    International Nuclear Information System (INIS)

    In this paper the preliminary results of measurement of natural environmental radiation levels in China with RSS-111 high pressure ionization chamber and estimated doses to population are reported. A total of 2,723 indoor locales throughout China were measured. The results showed that the average absorbed dose rates in air due to gamma radiation for indoors and outdoors were 11.0 x 10-8 Gy.h-1 and 7.4 x 10-8 Gy.h-1, respectively, and those due to cosmic rays were 3.2 x 10-8 Gy.h-1 and 3.7 x 10-8 Gy.h-1, respectively. The annual average effective dose equivalent to population was 919 μSv, including 630 μSv from natural gamma radiation and 289 μSv from cosmic rays

  15. Patient radiation doses for electron beam CT

    International Nuclear Information System (INIS)

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDIvol) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDIvol to an effective dose

  16. Recent research on the effects of low dose radiation: implications to radiation protection

    International Nuclear Information System (INIS)

    Radiation protection specialists unanimously agree that radiation at high dose levels can cause cancer. At low dose levels, the results are not conclusive. Specialists accept the Linear-No-Threshold (LNT) dose-effect relationship as a practical approach in radiation protection. That means that the dose-effect relation is linear without a threshold; any dose however small will have some deleterious effect. Application of LNT without appreciating that it is just a pragmatic concept leads to unreasonable fear about radiation. This adversely impact acceptance of nuclear power as a source of energy

  17. Project Radiation protection, Annual report 1994

    International Nuclear Information System (INIS)

    According to the action plan for the period 1991-1995, the main objective of this project during 1994 was to provide operational basis, methods and procedures for solving the radiation protection problems that might appear under routine working conditions and handling of radiation sources. The aim was also to provide special methods for action in case of accidents that could affect the employed staff and the population. Overall activity was directed to maintaining and providing personnel, instrumentation, and methods for the following special radiation protection measures: operational control of the radiation field and contamination; calibration of the radiation and dosimetry instruments-secondary dosimetry metrology laboratory; instrumentation and measuring systems for radiation protection; control of environmental transfer of radioactive material; medical radiation protection

  18. The influence of geology on terrestrial gamma radiation dose rate in Pahang state, Malaysia

    International Nuclear Information System (INIS)

    Terrestrial gamma radiation dose (TGRD) rate measurements have been made in Pahang state, Malaysia. Significant variations were found between TGRD measurements and the underlying geological formations. In some cases revealing significant elevations of TGRD. The acid-intrusive geological formation has the highest mean TGRD measurement of 367 nGy/h-1. This is more than six times the world average value of 59 nGy/h-1, while the quaternary geological formation has the lowest mean gamma radiation dose rate of 99 nGy h-1. The annual effective dose equivalent outdoor to the population was 0.216 mSv. The lifetime equivalent dose and relative lifetime cancer risks for an individual living in Pahang state were 81 mSv and 4.7 x 10-3 respectively. These values are more than two times the world average of 34 mSv and 1.95 x 10-3 respectively. (author)

  19. Surveillance of Environmental Radiation in Finland. Annual Report 2010; Ympaeristoen saeteilyvalvonta Suomessa. Vuosiraportti 2010

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, R.

    2011-07-01

    This report is the national summary of the results obtained in surveillance of environmental radioactivity in Finland in 2010. The Finnish Radiation and Nuclear Safety Authority (STUK) has produced most of the results, but also the Finnish Meteorological Institute and the Defence Forces Research Institute of Technology have delivered results to this report, on gross beta activity in outdoor air and on airborne radioactive substances, respectively. The surveillance programme on environmental radioactivity contains continuous and automated monitoring of external dose rate in air, regular monitoring of radioactive substances and gross beta activity in outdoor air, radioactive substances in deposition, in surface and drinking water, milk, foodstuffs, and in human body. Also a summary of radioactivity surveillance of the Baltic Sea was added in this report since 2002. In 2009, the programme for the surveillance of environmental radiation was expanded to monitor the occurrence of artificial radionuclides in sludge from the wastewater treatment plant in Helsinki. Sludge is a sensitive indicator of radionuclides that enter the environment since many radionuclides in wastewater are enriched during the water treatment process. The results of 2010 show that artificial radionuclides in the environment originate from the Chernobyl accident in 1986 and from atmospheric nuclear tests performed in 1950's and 1960's. In addition to these, very small amounts of short-lived artificial radioisotopes in outdoor air at three monitoring stations were detected in 2010 (60Co, 54Mn and 241Am). Their concentrations were, however, so small that their appearance had no impact to human health or the environment. The average annual dose of Finns, received from different radiation sources, is about 3.7 millisievert (mSv). Majority of this annual dose is caused by natural radionuclides in soil and bedrock, and by the cosmic radiation. The exposure to radiation of artificial radionuclides

  20. Low-dose radiation: a cause of breast cancer

    International Nuclear Information System (INIS)

    It is likely that the breast is the organ most sensitive to radiation carcinogenesis in postpubertal women. Studies of different exposed populations have yielded remarkably consistent results, in spite of wide differences in underlying breast cancer rates and conditions of exposure. Excess risk is approximately proportional to dose, and is relatively independent of ionization density and fractionization of dose. This implies that the risk associated with low-dose exposures to ionizing radiation can be estimated with some confidence from higher-dose data. Excess risk is heavily dependent on age at exposure but relatively independent of population differences in normal risk. The temporal patterns after exposure of both radiation-induced and naturally occurring breast cancer are similar, suggesting a strong influence of factors other than radiation on radiation-induced breast cancer. Uncertainties remain about risks from exposures before puberty and after menopause

  1. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1/5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  2. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  3. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  4. Proceedings of the 2nd annual meeting of Japanese Society of Radiation Safety Management 2003 Tsukuba

    International Nuclear Information System (INIS)

    This is the program and the proceedings of the 2nd annual meeting of Japanese Society of Radiation Safety Management held from December 3rd through the 5th of 2003. The sessions held were: (1) Research on Low-level Waste, (2) Topics related to Detector, Measurement, and Instrument, (3) Dose Level and Imaging Plate, (4) Radiation, (5) Safety Education and Safety Evaluation. The poster sessions held were: (1) Safety Education, Safety Evaluation, Shielding, and so on, (2) Control System and Control Technology, (3) Detector and Radiation Measurement, (4) Topics Related to Imaging Plate, (5) Environment and Radiation Measurement, and (6) Radiation Control. Symposia held were: (1) 'Regarding Basic Concept to Incorporate International Exemption Level in Regulation' as the keynote lecture and (2) 'Regarding Correspondence Associated with Legal Revision and Radiation Safety Regulation'. Regarding these topics, after the explanation from each area, panel discussions were held. (S.K.)

  5. Monitoring of radiation exposure. Annual report 2000; Saeteilyn kaeyttoe ja muu saeteilytoiminta. Vuosiraportti 2000

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, E. [ed.

    2001-03-01

    At the end of 2000, there were 1,779 valid safety licenses in Finland for the use of radiation. In addition, there were 2,038 responsible parties for dental x-ray diagnostics. The registry Radiation and Nuclear Safety Authority (STUK) listed 13,754 radiation sources and 270 radionuclide laboratories. In the year 2000 360 inspections were made concerning the safety licences and 53 concerning dental x-ray diagnostics. The import of radioactive substances amounted to 175,836 GBq and export to 74,420 GBq. Short-lived radionuclides produced in Finland amounted to 55,527 GBq. In the year 2000 there were 10,846 workers monitored for radiation exposure at 1,171 work sites. Of these employees, 27% received an annual dose exceeding the recording level. The annual effective dose limit was not exceeded. The total dose recorded in the dose registry(sum of the individual dosemeter readings) was 6.5 Sv in 2000.

  6. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  7. Radiation doses to rodents inhabiting a radioactive waste receiving area

    International Nuclear Information System (INIS)

    A study was conducted of the gamma ray doses to four species of native rodents inhabiting a low level radioactive liquid waste disposal area. Absorbed doses of radiation were measured with lithium fluoride thermoluminescent dosimeters that were implanted subcutaneously. The absorbed radiation doses and 137Cs body burdens were significantly higher for western harvest mice (Reithrodontomys megalotis) than for deer mice (Peromyscus maniculatus), pinon mice (P. truei) and the least chipmunk (Eutamias minimus), reflecting differences in mobility and habitat preferences of the respective species. The average dose received by harvest mice was 26 mrad/day, which was 26% of the highest gamma dose detected at the ground surface in the study plot, although the maximum dose received by individual mice was as high as 45% of the maximum dose rates in the plot. (author)

  8. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    Science.gov (United States)

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  9. Radiation doses to patients in haemodynamic procedures

    International Nuclear Information System (INIS)

    Interventional radio-cardiology gives high doses to patients due to high values of fluoroscopy times and large series of radiographic images. The main objective of the present work is the determination of de dose-area product (DAP) in patients of three different types of cardiology procedures with X-rays. The effective doses were estimated trough the organ doses values measured with thermoluminescent dosimeters (TLDs-100), suitable calibrated, placed in a phantom type Rando which was submitted to the same radiological conditions corresponding to the procedures made on patients. The values for the effective doses in the procedures CAD Seldinger was 6.20 mSv on average and 1.85mSv for pacemaker implants. (author)

  10. Health hazards of low doses of ionizing radiations. Vo. 1

    International Nuclear Information System (INIS)

    Exposure to high doses of ionizing radiation results in clinical manifestations of several disease entities that may be fatal. The onset and severity of these acute radiation syndromes are deterministic in relation to dose magnitude. Exposure to ionizing radiations at low doses and low dose rates could initiate certain damage in critical molecules of the cell, that may develop in time into serious health effects. The incidence of such delayed effects in low, and is only detectable through sophisticated epidemiological models carried out on large populations. The radiation damage induced in critical molecules of cells may develop by stochastic biochemical mechanisms of repair, residual damage, adaptive response, cellular transformation, promotion and progression into delayed health effects, the most important of which is carcinogenesis. The dose response relationship of probabilistic stochastic delayed effects of radiation at low doses and low dose rates, is very complex indeed. The purpose of this review is to provide a comprehensive understanding of the underlying mechanisms, the factors involved, and the uncertainties encountered. Contrary to acute deterministic effects, the occurrence of probabilistic delayed effects of radiation remains to be enigmatic. 7 figs

  11. Low doses of radiation: epidemiological investigations

    International Nuclear Information System (INIS)

    Influence of small dozes of radiation was investigated with the help epidemiologic evidence. Correlation analysis, regression analysis and frequency analysis were used for investigating morbidity of various cancer illnesses. The pollution of the environment and the fallout of radionuclides in 1962 and 1986 years have an influence upon morbidity of cancer. Influence of small dozes of radiation on health of the population is multifactorial. Therefore depending on other adverse external conditions the influence of radiation in small dozes can be increased or is weakened. Such character of influence of radiation in small dozes proposes the differentiated approach at realization of preventive measures. Especially it concerns regions with favorable ecological conditions.

  12. A family of statistical distributions for modelling occupational radiation doses in low dose occupations

    International Nuclear Information System (INIS)

    New statistical distributions have been defined to describe occupational exposures to ionising radiation. These distributions are particularly useful in modelling occupations where most doses are low. The maximum likelihood method was used for parameter estimation and has been adapted to allow doses that are recorded as zero to be included in the calculations. The method can then be applied to estimate true doses from the complete set of recorded dose values when the a priori dose distribution and the dose measurement distributions have been derived previously. This application is important in epidemiological cohort studies where it can improve the accuracy of excess relative risk estimates. (authors)

  13. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2

  14. Occupational radiation exposure at Commercial Nuclear Power reactors 1983. Volume 5. Annual report

    International Nuclear Information System (INIS)

    This report presents an updated compilation of occupational radiation exposure at commercial nuclear power reactors for the years 1969 through 1983. The summary based on information received from the 75 light-water-cooled reactors (LWRs) and one high temperature gas-cooled reactor (HTGR). The total number of personnel monitored at LWRs in 1983 was 136,700. The number of workers that received measurable doses during 1983 and 85,600 which is about 1000 more than that found in 1982. The total collective dose at LWRs for 1983 is estimated to be 56,500 man-rems (man-cSv), which is about 4000 more man-rems (man-cSv) than that reported in 1982. This resulted in the average annual dose for each worker who received a measurable dose increasing slightly to 0.66 rems (cSv), and the average collective dose per reactor increasing by about 50 man-rems (man-cSv), and the average collective dose per reactor increasing by about 50 man-rems (man-cSv) to a value of 753 man-rems (man-cSv). The collective dose per megawatt of electricity generated by each reactor also increased slightly to an average value of 1.7 man-rems (man-cSv) per megawatt-year. Health implications of these annual occupational doses are discussed

  15. Survey of radioactive level and radiation dose to the miner in Zhejiang bone coal mine

    International Nuclear Information System (INIS)

    According to the research program on comparison the effect of nuclear energy and other energies on health, environment and climate change, radioactivity level and radiation dose to the miner in Zhejiang Bone Coal Mine was investigated. The first stage, started from December 2002 to July 2004, conducted 4 times measurement. The results show that 238U, 226Ra, 232Th, 40K contents in bone coal are 786 Bq/kg, 734 Bq/kg, 16 Bq/kg and 620 Bq/kg respectively. The annual average of 222Rn content is 141 Bq/m3 in the mine, with the highest value in summer and the lowest in winter-spring under the natural ventilation. the annual average γ dose rate is 549 nGy/h. The second stage investigation in July 2005 was carried out for three mines. It is found that the 222Rn content in mine is the major contributor to the annual effective dose to miners. the dose to the miner can be maintained below 2 mSv/a under well controlled ventilation, while the dose may exceed 28 mSv/a if the ventilation dose not work well. It is necessary to improve ventilation in order to safeguard miner's health. (authors)

  16. Radiation Research Department annual report 2002

    International Nuclear Information System (INIS)

    The report presents a summary of the work of the Radiation Research Department in 2002. The departments research and development activities are organized in two research programmes: 'Radiation Physics' and 'Radioecology and Tracer Studies'. In addition the department is responsible for the task 'Dosimetry'. Lists of publications, committee memberships and staff members are included. (au)

  17. Radiation Research Department annual report 2002

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2003-01-01

    The report presents a summary of the work of the Radiation Research Department in 2002. The department’s research and development activities are organized in two research programmes: ”Radiation Physics” and ”Radioecology and Tracer Studies”. In additionthe department is responsible for the task...... ”Dosimetry”. Lists of publications, committee memberships and staff members are included....

  18. Radiation dose due to nuclear medicine practice in Ghana

    International Nuclear Information System (INIS)

    The Ghanaian population who underwent nuclear medicine procedures within the period 1990-1993 has been characterized by age and sex. Males received 40% of the procedures while females received 60%. About two-thirds of the procedures annually were performed on patients over the age of thirty years. The mean annual collective dose was found to be 2.7 man-Sv during the four-year period examined. This translated into a per capita dose of 0.2μSv per year for nuclear medicine procedures over the period. (author). 4 refs.; 6 tabs

  19. Optical tomography for measuring dose distribution in radiation therapy

    Directory of Open Access Journals (Sweden)

    Kauppinen Matti

    2014-01-01

    Full Text Available The dosimetry is used to verify the dose magnitude with artificial samples (phantoms before giving the planned radiation therapy to the patient. Typically, dose distribution is measured only in a single point or on a two-dimensional matrix plane. New techniques of radiation therapy ensure more detailed planning of radiation dose distribution which will lead to the need of measuring the radiation dose distribution three-dimensionally. The gel dosimetry is used to indicate and determine the ionizing radiation three-dimensionally. The radiation causes changes in chemical properties of the gel. The radiation dose distribution is defined by measuring the chemical changes. A conventional method is the magnetic resonance imaging and a new possibility is optical computed tomography (optical-CT. The optical-CT is much cheaper and more practical than magnetic resonance imaging. In this project, an optical-CT based method device was built by aiming at low material costs and a simple realization. The constructed device applies the charge coupled device camera and fluorescent lamp technologies. The test results show that the opacity level of the radiated gel can be measured accurately enough. The imaging accuracy is restricted by the optical distortion, e. g. vignetting, of the lenses, the distortion of a fluorescent lamp as the light source and a noisy measuring environment.

  20. Assessment of the Annual Additional Effective Doses amongst Minamisoma Children during the Second Year after the Fukushima Daiichi Nuclear Power Plant Disaster.

    Directory of Open Access Journals (Sweden)

    Masaharu Tsubokura

    Full Text Available An assessment of the external and internal radiation exposure levels, which includes calculation of effective doses from chronic radiation exposure and assessment of long-term radiation-related health risks, has become mandatory for residents living near the nuclear power plant in Fukushima, Japan. Data for all primary and secondary children in Minamisoma who participated in both external and internal screening programs were employed to assess the annual additional effective dose acquired due to the Fukushima Daiichi nuclear power plant disaster. In total, 881 children took part in both internal and external radiation exposure screening programs between 1st April 2012 to 31st March 2013. The level of additional effective doses ranged from 0.025 to 3.49 mSv/year with the median of 0.70 mSv/year. While 99.7% of the children (n = 878 were not detected with internal contamination, 90.3% of the additional effective doses was the result of external radiation exposure. This finding is relatively consistent with the doses estimated by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR. The present study showed that the level of annual additional effective doses among children in Minamisoma has been low, even after the inter-individual differences were taken into account. The dose from internal radiation exposure was negligible presumably due to the success of contaminated food control.

  1. BZNF-1 wide range pocket intelligent radiation dose rate meter

    International Nuclear Information System (INIS)

    The functional performance, operational principles and technical means as well as the experimental results of the packet intelligent radiation dose ratemeter using G-M detector and a single chip microcomputer are described

  2. Low dose ionizing radiation induced acoustic neuroma: A putative link?

    Directory of Open Access Journals (Sweden)

    Sachin A Borkar

    2012-01-01

    Full Text Available Although exposure to high dose ionizing radiation (following therapeutic radiotherapy has been incriminated in the pathogenesis of many brain tumors, exposure to chronic low dose ionizing radiation has not yet been shown to be associated with tumorigenesis. The authors report a case of a 50-year-old atomic reactor scientist who received a cumulative dose of 78.9 mSv over a 10-year period and was detected to have an acoustic neuroma another 15 years later. Although there is no proof that exposure to ionizing radiation was the cause for the development of the acoustic neuroma, this case highlights the need for extended follow-up periods following exposure to low dose ionizing radiation.

  3. Online Radiation Dose Measurement System for ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration

    2012-01-01

    Particle detectors and readout electronics in the high energy physics experiment ATLAS at the Large Hadron Collider at CERN operate in radiation field containing photons, charged particles and neutrons. The particles in the radiation field originate from proton-proton interactions as well as from interactions of these particles with material in the experimental apparatus. In the innermost parts of ATLAS detector components will be exposed to ionizing doses exceeding 100 kGy. Energetic hadrons will also cause displacement damage in silicon equivalent to fluences of several times 10e14 1 MeV-neutrons per cm2. Such radiation doses can have severe influence on the performance of detectors. It is therefore very important to continuously monitor the accumulated doses to understand the detector performance and to correctly predict the lifetime of radiation sensitive components. Measurements of doses are important also to verify the simulations and represent a crucial input into the models used for predicting future ...

  4. Estimating radiation doses from reactor accidents

    International Nuclear Information System (INIS)

    In order to plan for emergency response to reactor accidents involving large radiation releases, it is necessary to determine the medical resources, such as diagnostic laboratory tests, hospital facilities and convalescent care, needed to care for a large population exposed to radiation. A determination of the needed medical resources is difficult because of the widely varying sensitivity humans exhibit to radiation exposure and because of the large number of assumptions involved in predicting radiation dispersion. This paper demonstrates a simple method for approximating medical needs in response to a severe reactor accident. The method requires a model for radiation dispersion from the accident and data for population distribution surrounding the reactor. With this information, tables developed in this paper may be used to project medical needs. The needs identified by this methodology may be compared against the actual medical resources of nearby communities to determine the size of the area impacted

  5. Radiation Dose Management In Nuclear Power Plants

    International Nuclear Information System (INIS)

    According to the US experience, the factors contributing to savings in radiation exposures for the period of 1985 to 1994 are (in the order of rank) (1) radiation protection guidelines, (2) reductions in unscheduled special maintenance, (3) reductions in source of exposure through material replacement, (4) primary chemistry control, cobalt substitution, decontamination, and preconditioning, (5) shutdown chemistry control guidelines, and (6) automated in-service inspection methods, and heat stress management guide. This illustrates that for successful radiation management, various factors must be included and integrated in the spirit of optimization. These factors are good planning and programming, use of technology, the culture to support ALARA among the management and workers, and the process of carrying out the actual tasks in details. Not only the control of radiation field through the implementation of technology is important but also the proper control of human involvement in radiation zone based on good planned programs and supportive culture is very important

  6. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  7. The radiation dose to accompanying nurses, relatives and other patients in a nuclear medicine department waiting room

    International Nuclear Information System (INIS)

    The radiation dose to accompanying nurses, relatives and other patients in a nuclear medicine department waiting room was assessed at 5 min intervals by observing the seating arrangement. The total radiation dose to each person was calculated, using fixed values of dose rate per 100 MBq activity for radionuclides, and applying the inverse square law. Radioactive decay and attenuation effects due to intervening persons were also taken into account. The median radiation doses to accompanying nurses, relatives and other patients were 2.3, 2.0 and 0.2 μSv with maximum values of 17, 33 and 5 μSv respectively. In all cases, the radiation dose received by patients was less than 0.2% of the radiation dose resulting from their own investigation. Also, the maximum radiation dose received by an accompanying norse or friend was less than 1% of their appropriate annual dose limit. Similar values were obtained with calculations based on a 15 min time interval. The radiation doses received by those in a nuclear medicine department waiting room are small, and separate waiting room facilities for radioactive patients are unnecessary. (author)

  8. Depth dose and angular dose distribution experiments with high energy electron-photon radiation

    International Nuclear Information System (INIS)

    India's first synchrotron radiation source, Indus-1, is commissioned at the Centre for Advanced Technology (CAT), Indore. Radiation environment of this facility is quite different in comparison to that of nuclear or irradiator facilities and proton or heavy ion accelerator facilities. The primary particle accelerated being the electron, the radiation environment mainly comprises of Bremsstrahlung photons followed by photo-neutrons, whereas electron contamination too exists within the containment area. Due to the complex nature of the radiation viz. high energy, broad energy spectrum, pulsed, mixed field, sharp angular distribution etc. quantification of radiation dose becomes a difficult task. In this paper, experiments on depth dose and angular dose distribution done with 450 MeV electron-photon radiation are described

  9. Assessment of annual average effective dose status in the cohort of medical staff in Lithuania during 1991-2013.

    Science.gov (United States)

    Samerdokiene, Vitalija; Mastauskas, Albinas; Atkocius, Vydmantas

    2015-12-01

    The use of radiation sources for various medical purposes is closely related to irradiation of the medical staff, which causes harmful effects to health and an increased risk of cancer. In total, 1463 medical staff who have been occupationally exposed to sources of ionising radiation (IR) had been monitored. Records with annual dose measurements (N = 19 157) were collected and regularly analysed for a 23-y period: from 01 January 1991 to 31 December 2013. The collected annual average effective dose (AAED) data have been analysed according to different socio-demographic parameters and will be used in future investigation in order to assess cancer risk among medical staff occupationally exposed to sources of IR. A thorough analysis of data extracted from medical staff's dose records allows one to conclude that the average annual effective dose of Lithuanian medical staff occupationally exposed to sources of IR was consistently decreased from 1991 (1.75 mSv) to 2013 (0.27 mSv) (p < 0.0001). PMID:25614631

  10. Assessment of annual average effective dose status in the cohort of medical staff in Lithuania during 1991-2013

    International Nuclear Information System (INIS)

    The use of radiation sources for various medical purposes is closely related to irradiation of the medical staff, which causes harmful effects to health and an increased risk of cancer. In total, 1463 medical staff who have been occupationally exposed to sources of ionising radiation (IR) had been monitored. Records with annual dose measurements (N = 19 157) were collected and regularly analysed for a 23-y period: from 01 January 1991 to 31 December 2013. The collected annual average effective dose (AAED) data have been analysed according to different socio-demographic parameters and will be used in future investigation in order to assess cancer risk among medical staff occupationally exposed to sources of IR. A thorough analysis of data extracted from medical staff's dose records allows one to conclude that the average annual effective dose of Lithuanian medical staff occupationally exposed to sources of IR was consistently decreased from 1991 (1.75 mSv) to 2013 (0.27 mSv) (p < 0.0001). (authors)

  11. Internal dose assessment in radiation accidents

    International Nuclear Information System (INIS)

    Although numerous models have been developed for occupational and medical internal dosimetry, they may not be applicable to an accident situation. Published dose coefficients relate effective dose to intake, but if acute deterministic effects are possible, effective dose is not a useful parameter. Consequently, dose rates to the organs of interest need to be computed from first principles. Standard bioassay methods may be used to assess body contents, but, again, the standard models for bioassay interpretation may not be applicable because of the circumstances of the accident and the prompt initiation of decorporation therapy. Examples of modifications to the standard methodologies include adjustment of biological half-times under therapy, such as in the Goiania accident, and the same effect, complicated by continued input from contaminated wounds, in the Hanford 241Am accident. (author)

  12. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  13. Evaluation of occupational and patient radiation doses in orthopedic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Salman bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P.O. Box 422, Alkharj (Saudi Arabia); Habiballah, B.; Abdelaziz, I. [Sudan Univesity of Science and Technology, College of Medical Radiologic Sciences, P.O. Box 1908, Khartoum (Sudan); Alzimami, K. [King Saud University, College of Applied Medical Sciences, Radiological Sciences Department, P.O. Box 10219, 11433 Riyadh (Saudi Arabia); Osman, H. [Taif University, College of Applied Medical Science, Radiology Department, Taif (Saudi Arabia); Omer, H. [University of Dammam, Faculty of Medicine, Dammam (Saudi Arabia); Sassi, S. A., E-mail: Abdelmoneim_a@yahoo.com [Prince Sultan Medical City, Department of Medical Physics, Riyadh (Saudi Arabia)

    2014-08-15

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  14. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  15. Radiation dose specification for equipment qualification

    International Nuclear Information System (INIS)

    The methodology of radiological conditions calculation for the purpose of Equipment Qualification (EQ) is described in the paper and is illustrated with the example of calculation that was performed in the frame of Equipment Qualification Parameters determination for NPP Krsko. The complete process is explained what include: identification and calculation of fission product inventory; release, dilution and removal in the containment; leakage to the containment annulus; deposition in the containment sump; influence of the recirculating radioactive fluid outside containment. The analysis is focused on the evaluation of accident doses in the containment, but it is also accompanied with the calculation of doses outside containment during recirculation phase of LOCA and with discussion of normal operating doses determination. In addition, the paper emphasize the specific problems that came up during the implementation in the NEK EQ program, i.e., the influence of the beta particle energy, calculation of Bremsstrahlung effect and the impact of the enclosure volume size on the dose. The methodology is consistent with US NRC requirements and involves the usage of several computer codes (ORIGEN - fission product inventory calculation, ELISA dose calculation in the containment atmosphere, DIDOS and QUADUE calculation of doses from concentrated radioactive sources).(author)

  16. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.)

  17. Iodine 131 therapy patients: radiation dose to staff

    International Nuclear Information System (INIS)

    Metastasis to the skeletal system from follicular thyroid carcinoma may be treated with an oral dose of 131I-NaI. Radiation exposures to hospital personnel attending these patients were calculated as a function of administered dose, distance from the patient and time after administration. Routine or emergency patient handling tasks would not exceed occupational radiation protection guidelines for up to 30 min immediately after administration. The emergency handling of several patients presents the potential for exceeding these guidelines. (author)

  18. Radiation doses to personnel during common angiographic procedures involving DSA

    International Nuclear Information System (INIS)

    In this study, the radiation doses received by the staff are monitored during common angiographic procedures involving digital subtraction angiography (DSA). Doses are assessed by direct measurement using lithium fluoride thermoluminescent dosemeters (TLDs). The entrance surface dose (mGy) at the different locations on each of the staff for the three different procedures are given. As the result, on the whole, the main operator, who is standing closest to the x-ray tube and patient, receive the highest dose while the radiographer receives the lowest dose

  19. Radiation doses to personnel in clinics for gynecologic oncology

    International Nuclear Information System (INIS)

    Radium or Cesium is used for radiotherapy of gynecologic cancer at six clinics in Sweden. This report gives a survey of the radiation doses the personnel is exposed to. The measurement were performed using TL-dosimeters. The dose equivalents for different parts of the body at specific working moments was deduced as well as the effective dose equivalent and the collective dose equivalent. 1983 the total collective dose equivalent for the six clinics was 1.3 manSv, which corresponds to 3.9 manmSv/g equivalent mass of Radium used at the treatments. (With 11 tables and 10 figures) (L.E.)

  20. 210Po radiation dose due to cigarette smoking

    International Nuclear Information System (INIS)

    The level of 210Po in eight brands of cigarettes and four brands of bidis popular in and around Nagercoil town was determined to evaluate the annual effective dose. The 210Po activity in a full cigarette ranged from 32.8±3.6 to 68.4±5.9 mBq and from 34.3±3.5 to 62.9±5.8 mBq in a bidi. In tobacco, the highest 210Po content was recorded in the brand C4 (23.0±1.2 mBq) whereas for bidis it was the highest in the brand B2 (21.1±1.1 mBq). The activity in mainstream varied from 15.2±0.75 to 36.8±2.1 mBq in a cigarette and from 20.7±3.1 to 39.8±4.0 mBq in a bidi. With regard to 210Po activity concentration, not much specificity was noted with respect to the tobacco brand. The data showed a relatively wide range of activity concentration of 210Po in the different cigarette/bidi brands and even within the same brand. The bidis showed a higher activity when compared to cigarettes. The popular brands concentrated more activity than the fine brands. Smokers who smoke one pack (10 cigarettes/bidis) per day may inhale about 100-300 mBq d-1 (0.1-0.3 Bq d-1) of 210Po. In this study, radiation dose values in the range of 153.5-372.9 μSv Y-'1 from cigarettes and from 209.2 to 402.7 μSvY-1 from bidis was estimated for the whole body. (author)

  1. Changes in the annual dose limits and their potential impact on the IAEA (International Atomic Energy Agency) transport regulations

    International Nuclear Information System (INIS)

    The International Commission on Radiological Protection (ICRP) has already recommended a change in the annual dose limit for members of the public, not yet incorporated by the International Atomic Energy Agency (IAEA), the World Health Organization (WHO) and the International Labor Organization (ILO) in the Basic Safety Standards for Radiation Protection. In addition, information from different sources could imply a reduction of the annual dose limits for occupational exposures in the near future. After a brief description of how the annual dose limits were employed in the IAEA Transport Regulations, both for the limitation or control of actual exposures and for taking safety decisions in relation with potential exposures (e.g., for requiring a Type B instead of a Type A package), this paper analyzes how changes in the annual dose limits could affect some parts of the IAEA Transport Regulations and discuss potential areas of conflict between design and operational aspects of the transport of radioactive materials as well as some difficulties associated with changes on requirements dealing with protection and safety. Finally, the areas of interest for the new revision of the IAEA Transport Regulations are described in this context

  2. Offsite radiation doses summarized from Hanford environmental monitoring reports for the years 1957-1984. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Price, K.R.; McCormack, W.D.

    1986-02-01

    Since 1957, evaluations of offsite impacts from each year of operation have been summarized in publicly available, annual environmental reports. These evaluations included estimates of potential radiation exposure to members of the public, either in terms of percentages of the then permissible limits or in terms of radiation dose. The estimated potential radiation doses to maximally exposed individuals from each year of Hanford operations are summarized in a series of tables and figures. The applicable standard for radiation dose to an individual for whom the maximum exposure was estimated is also shown. Although the estimates address potential radiation doses to the public from each year of operations at Hanford between 1957 and 1984, their sum will not produce an accurate estimate of doses accumulated over this time period. The estimates were the best evaluations available at the time to assess potential dose from the current year of operation as well as from any radionuclides still present in the environment from previous years of operation. There was a constant striving for improved evaluation of the potential radiation doses received by members of the public, and as a result the methods and assumptions used to estimate doses were periodically modified to add new pathways of exposure and to increase the accuracy of the dose calculations. Three conclusions were reached from this review: radiation doses reported for the years 1957 through 1984 for the maximum individual did not exceed the applicable dose standards; radiation doses reported over the past 27 years are not additive because of the changing and inconsistent methods used; and results from environmental monitoring and the associated dose calculations reported over the 27 years from 1957 through 1984 do not suggest a significant dose contribution from the buildup in the environment of radioactive materials associated with Hanford operations.

  3. Radiation Research Department annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P. (eds.)

    2004-06-01

    This report presents a summary of the work of the Radiation Research Department in 2003. The main research areas were dosimetry, nuclear emergency preparedness, radioecology, and radioanalytical techniques. Lists of publications, committee memberships and staff members are included. (au)

  4. Radiation Research Department annual report 2003

    DEFF Research Database (Denmark)

    Majborn, Benny; Damkjær, A.; Nielsen, Sven Poul

    2004-01-01

    This report presents a summary of the work of the Radiation Research Department in 2003. The main research areas were dosimetry, nuclear emergency preparedness, radioecology, and radioanalytical techniques. List of publications, committee memberships andstaff members are included....

  5. Radiation Research Department annual report 2003

    International Nuclear Information System (INIS)

    This report presents a summary of the work of the Radiation Research Department in 2003. The main research areas were dosimetry, nuclear emergency preparedness, radioecology, and radioanalytical techniques. Lists of publications, committee memberships and staff members are included. (au)

  6. Radiation Research Department annual report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P. (eds.)

    2003-06-01

    The report presents a summary of the work of the Radiation Research Department in 2002. The departments research and development activities are organized in two research programmes: 'Radiation Physics' and 'Radioecology and Tracer Studies'. In addition the department is responsible for the task 'Dosimetry'. Lists of publications, committee memberships and staff members are included. (au)

  7. High-dose preoperative radiation for cancer of the rectum: Impact of radiation dose on patterns of failure and survival

    International Nuclear Information System (INIS)

    A variety of dose-time schedules are currently used for preoperative radiation therapy of rectal cancer. An analysis of patients treated with high-dose preoperative radiation therapy was undertaken to determine the influence of radiation dose on the patterns of failure, survival, and complications. Two hundred seventy-five patients with localized rectal cancer were treated with high-dose preoperative radiation therapy. One hundred fifty-six patients received 45 Gy (low-dose group). Since 1985, 119 patients with clinically unfavorable cancers were given a higher dose, 55 Gy using a shrinking field technique (high-dose group). All patients underwent curative resection. Median follow-up was 66 months in the low-dose group and 28 months in the high-dose group. Patterns of failure, survival, and complications were analyzed as a function of radiation dose. Fourteen percent of the total group developed a local recurrence; 20% in the low-dose group as compared with 6% in the high-dose group. The actuarial local recurrence rate at 5 years was 20% for the low-dose group and 8% for the high-dose group, and approached statistical significance with p = .057. For tethered/fixed tumors the actuarial local recurrence rates at 5 years were 28% and 9%, respectively, with p = .05. Similarly, for low-lying tumors (less than 6 cm from the anorectal junction) the rates were 24% and 9%, respectively, with p = .04. The actuarial rate of distant metastasis was 28% in the low-dose group and 20% in the high-dose group and was not significantly different. Overall actuarial 5-year survival for the total group of patients was 66%. No significant difference in survival was observed between the two groups, despite the higher proportion of unfavorable cancers in the high-dose group. The incidence of complications was 2%, equally distributed between the two groups. High-dose preoperative radiation therapy for rectal cancer results in excellent local control rates. 27 refs., 2 figs., 8 tabs

  8. Weighting of secondary radiations in organ dose calculations

    International Nuclear Information System (INIS)

    The current system of dose quantities in radiological protection is based, in addition to the absorbed dose, on the concepts of equivalent dose and effective dose. This system has been developed mainly with uniform whole-body exposures in mind. Conceptual and practical problems arise when the system is applied to more general exposure situations where the radiation quality is altered within the human body. In this article these problems are discussed, using proton beam radiotherapy as a specific example, and a proposition is made that dose equivalent quantities should be used instead of equivalent doses when organ doses are of interest. The calculations of out-of-field organ doses in proton therapy show that the International Commission on Radiological Protection-prescribed use of the proton weighting factor generally leads to an underestimation of the stochastic risks, while the use of neutron weighting factors in the way as practised in the literature leads to a significant overestimation of these risks. (authors)

  9. Radiation shielding and dose rate distribution for the building of the high dose rate accelerator

    International Nuclear Information System (INIS)

    A high dose rate electron accelerator was established at Osaka Laboratory for Radiation Chemistry, Takasaki Establishment, JAERI in the fiscal year of 1975. This report shows the fundamental concept for the radiation shielding of the accelerator building and the results of their calculations which were evaluated through the model experiments. After the construction of the building, the leak radiation was measured in order to evaluate the calculating method of radiation shielding. Dose rate distribution of X-rays was also measured in the whole area of the irradiation room as a data base. (author)

  10. Radiation Dose-Volume Effects in the Esophagus

    International Nuclear Information System (INIS)

    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose-volume measures derived from three-dimensional conformal radiotherapy for non-small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented.

  11. Mutation process at low or high radiation doses

    International Nuclear Information System (INIS)

    A concise review is given of the status of research on the genetic effects of low-level radiation in general. The term ''low dose'' is defined and current theories on low dose are set out. Problems and their solutions are discussed. (author)

  12. Estimation of radiation dose received by the radiation worker during F-18 FDG injection process

    OpenAIRE

    Jha, Ashish Kumar; Zade, Anand; Rangarajan, Venkatesh

    2011-01-01

    Background: The radiation dosimetric literature concerning the medical and non-medical personnel working in nuclear medicine departments are limited, particularly radiation doses received by radiation worker in nuclear medicine department during positron emission tomography (PET) radiopharmaceutical injection process. This is of interest and concern for the personnel. Aim: To measure the radiation dose received by the staff involved in injection process of Fluorine-18 Fluorodeoxyglucose (FDG)...

  13. The dose makes the poison. Even for radiation

    International Nuclear Information System (INIS)

    The dose makes the poison, a quote by Paracelsus a doctor who lived half a millennium ago, is still valid today. Nevertheless this general accepted fact is being excluded in relation to ionizing radiation, which is wrongly considered as radioactive radiation. Here applies the LNT-Hypothesis (Linear No Threshold), agreed on by the ICRP, the Commission on Radiological Protection, a dose-to-effect relationship, which is based on the EU directives and the German Radiation Protection Ordinance. The LNT-hypothesis states, that even every smallest dose of radiation already provides a potentiality of danger and was introduced as precaution assuming that self-healing mechanisms even through weak radiation of damaged cells can be excluded and every damage caused by radiation inevitably leads to cell mutation and with it to cancer development. Without any further knowledge assumptions were made, that the same mechanism for cancer development applies for high and small doses. This assumption turned out to be wrong, as it is increasingly reported on findings which show, that smaller doses of ionized radiation demonstrably does not cause any damage, but on the contrary can even be healthy.

  14. Radiation dose modeling using IGRIP and Deneb/ERGO

    International Nuclear Information System (INIS)

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb's ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood

  15. Radiation dose to the lens and cataract formation

    International Nuclear Information System (INIS)

    The purpose of this work was to determine the radiation tolerance of the lens of the eye and the incidence of radiation-induced lens changes in patients treated by fractionated supervoltage radiation therapy for orbital tumors. Forty patients treated for orbital lymphoma and pseudotumor with tumor doses of 20--40 Gy were studied. The lens was partly shielded using lead cylinders in most cases. The dose to the germinative zone of the lens was estimated by measurements in a tissue equivalent phantom using both film densitometry and thermoluminescent dosimetry. Opthalmological examination was performed at 6 monthly intervals after treatment. The lead shield was found to reduce the dose to the germinative zone of the lens to between 36--50% of the tumor dose for Cobalt beam therapy, and to between 11--18% for 5 MeV x-rays. Consequently, the lens doses were in the range 4.5--30 Gy in 10--20 fractions. Lens opacities first appeared from between 3 and 9 years after irradiation. Impairment of visual acuity ensued in 74% of the patients who developed lens opacities. The incidence of lens changes was strongly dose-related. None was seen after doses of 5 Gy or lower, whereas doses of 16.5 Gy or higher were all followed by lens opacities which impaired visual acuity. The largest number of patients received a maximum lens dose of 15 Gy; in this group the actuarial incidence of lens opacities at 8 years was 57% with visual impairment in 38%. The adult lens can tolerate a total dose of 5 Gy during a fractionated course of supervoltage radiation therapy without showing any changes. Doses of 16.5 Gy or higher will almost invariably lead to visual impairment. The dose which causes a 50% probability of visual impairment is approximately 15 Gy. 10 refs., 4 figs., 1 tab

  16. The effects of small doses of radiation

    International Nuclear Information System (INIS)

    The following topics were discussed in outline at a two day conference organized by I.B.C. Technical Services Ltd, February 1989, in London: radiation carcinogenesis mechanisms, environmental exposure, occupational exposure trends and comparisons, ICRP risk assessment and use of data including that of A-Bomb survivors, the ankylosing spondylitis study, UKAEA and AWE mortality studies, Sellafield, leukemia clusters and radiation hormesis. (UK)

  17. Estimated radiation doses from thorium and daughters contained in thoriated welding electrodes

    International Nuclear Information System (INIS)

    The collective radiation dose commitment to the general U.S. population estimated for the annual distribution, use, and disposal of one million thoriated welding electrodes was found to range between 7.9 x 102 to 6.4 x 103 man-rem to the bone (56 to 5.4 x 102 man-rem to the whole body). These values represent the potential dose received by the general U.S. population over a 50-year period following exposure during one year

  18. Radioactivity in Soil and Building Materials and Gamma Radiation Doses Committed to Alexandria Population

    International Nuclear Information System (INIS)

    The natural radionuclides (238 U, 232Th, and40 K) contents of soil samples at various locations in Alexandria, building materials, commonly used in Alexandria and road construction materials have been determined by low background spectroscopy using HPGeD of coaxial type. From the measured radionuclide contents, estimation have been made of the absorbed dose rate of gamma radiation in indoor and outdoor air. Finally, calculations have been carried out of the annual effective dose equivalent for the Alexandria population. The estimated value is 0.56 m Sv from indoor and 0.06 m Sv from outdoor

  19. Radiation dose distributions and their optimization

    International Nuclear Information System (INIS)

    The current situation in the radiotherapy treatment of carcinoma of the larynx is discussed from a physicist's point of view and in the light of the results of one series of patients. The results suggest that the spatial distribution of dose obtainable with supervoltage irradiation for treatment of T1 to T4 No Mo cases is not far from the ideal, and that it is not difficult to prescribe an optimal distribution. A significant difference in the rate of local cure was found between those treated to a CRE value greater than 1,750 and those treated to less than 1,750. Methods are suggested of optimizing the dose distribution in time by increasing the effect on tumor cells without exceeding an acceptable tolerance dose to normal tissues

  20. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  1. Radiation Dose-Response Relationships and Risk Assessment

    International Nuclear Information System (INIS)

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  2. Environmental policy. Ambient radioactivity levels and radiation doses in 1996

    International Nuclear Information System (INIS)

    The report is intended as information for the German Bundestag and Bundesrat as well as for the general population interested in issues of radiological protection. The information presented in the report shows that in 1996, the radiation dose to the population was low and amounted to an average of 4 millisievert (mSv), with 60% contributed by natural radiation sources, and 40% by artificial sources. The major natural source was the radioactive gas radon in buildings. Anthropogenic radiation exposure almost exclusively resulted from application of radioactive substances and ionizing radiation in the medical field, for diagnostic purposes. There still is a potential for reducing radiation doses due to these applications. In the reporting year, there were 340 000 persons occupationally exposed to ionizing radiation. Only 15% of these received a dose different from zero, the average dose was 1.8 mSv. The data show that the anthropogenic radiation exposure emanating from the uses of atomic energy or applications of ionizing radiation in technology is very low. (orig./CB)

  3. Sensors of absorbed dose of ionizing radiation based on mosfet

    OpenAIRE

    Perevertaylo V. L.

    2010-01-01

    The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  4. Radiation Dose from Lunar Neutron Albedo

    Science.gov (United States)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  5. Natural Radioactivity Measurements and Radiation Dose Estimation in Some Sedimentary Rock Samples in Turkey

    Directory of Open Access Journals (Sweden)

    I. Akkurt

    2014-01-01

    Full Text Available The natural radioactivity existed since creation of the universe due to the long life time of some radionuclides. This natural radioactivity is caused by γ-radiation originating from the uranium and thorium series and 40K. In this study, the gamma radiation has been measured to determine natural radioactivity of 238U, 232Th, and 40K in collected sedimentary rock samples in different places of Turkey. The measurements have been performed using γ-ray spectrometer containing NaI(Tl detector and multichannel analyser (MCA. Absorbed dose rate (D, annual effective dose (AED, radium equivalent activities (Raeq, external hazard index (Hex, and internal hazard index (Hin associated with the natural radionuclide were calculated to assess the radiation hazard of the natural radioactivity in the sedimentary rock samples. The average values of absorbed dose rate in air (D, annual effective dose (AED, radium equivalent activity (Raeq, external hazard index (Hex, and internal hazard index (Hin were calculated and these were 45.425 nGy/h, 0.056 mSv/y, 99.014 Bq/kg, 0.267, and 0.361, respectively.

  6. Assessment of annual whole-body occupational radiation exposure in education, research and industrial sectors in Ghana (2000-09)

    International Nuclear Information System (INIS)

    Institutions in the education, research and industrial sectors in Ghana are quite few in comparison to the medical sector. Occupational exposure to radiation in the education, research and industrial sectors in Ghana have been analysed for a 10 y period between 2000 and 2009, by extracting dose data from the database of the Radiation Protection Inst. (Ghana)) Atomic Energy Commission. Thirty-four institutions belonging to the three sectors were monitored out of which ∼65 % were in the industrial sector. During the 10 y study period, monitored institutions ranged from 18 to 23 while the exposed workers ranged from 246 to 156 between 2000 and 2009. Annual collective doses received by all the exposed workers reduced by a factor of 2 between 2000 and 2009. This is seen as a reduction in annual collective doses in education/research and industrial sectors by ∼39 and ∼62 %, respectively, for the 10 y period. Highest and least annual collective doses of 182.0 man mSv and 68.5 man mSv were all recorded in the industrial sector in 2000 and 2009, respectively. Annual average values for dose per institution and dose per exposed worker decreased by 49 and 42.9 %, respectively, between 2000 and 2009. Average dose per exposed worker for the 10 y period was least in the industrial sector and highest in the education/research sector with values 0.6 and 3.7 mSv, respectively. The mean of the ratio of annual occupationally exposed worker (OEW) doses for the industrial sector to the annual OEW doses for the education/research sector was 0.67, a suggestion that radiation protection practices are better in the industrial sector than they are in the education/research sector. Range of institutional average effective doses within the education/research and industrial sectors were 0.059-6.029, and 0.110-2.945 mSv, respectively. An average dose per all three sectors of 11.87 mSv and an average dose per exposed worker of 1.12 mSv were realised for the entire study period. The entire

  7. Two pediatric cases of high dose radiation-induced meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Miho [National Yokosuka Hospital, Kanagawa (Japan); Nagashima, Goro; Fujimoto, Tsukasa; Aoyagi, Masaru; Takasato, Yoshio

    2001-10-01

    There have been many reports of low dose radiation-induced meningiomas, and the number of reports of high dose radiation-induced meningiomas has been increasing recently. In this report, we present two cases of pediatric radiation-induced meningiomas, one 14 years after 36 Gy of radiation therapy for medulloblastoma and the other 8 years after 20 Gy of local radiation therapy for germinoma. Both patients underwent surgical removal of the meningiomas. The case of medulloblastoma was later revealed to be basal cell phacomatosis syndrome. Basal cell phacomatosis syndrome is a disease that occurs as a result of abnormality of chromosome 9. We speculate that the occurrence of radiation-induced meningioma may have been related to the basic genetic vulnerability of the patients. (author)

  8. Plants as warning signal for exposure to low dose radiation

    International Nuclear Information System (INIS)

    The stamen-hair system of Tradescantia for flower colour has proven to be one of the most suitable materials to study the frequency of mutations induced by low doses of various ionizing radiations and chemical mutagens. The system has also been used successfully for detecting mutagenic synergisms among chemical mutagens and ionizing radiations as well as for studying the variations of spontaneous mutation frequency. In this study of radiobiology, the main objective is to observe somatic mutation (occurrence of pink cells from blue cells) induced on stamen hairs of five Tradescantia sp. available in Malaysia after exposure to low doses of chronic gamma irradiation using Gamma Green House. Pink cells appeared only on Tradescantia Pallida Purpurea stamen hairs after 13 days of exposure to irradiation with different doses of gamma rays. The highest number of stamens with pink cells was recorded from flowers irradiated with the highest dose of 6.37 Gy with 0.07 Gy/ h of dose rate. The lowest number of stamens with pink cells was recorded with an average of 0.57, irradiated with the lowest dose of 0.91 Gy with 0.01 Gy/ h of dose rate. There were no pink cells observed on Tradescantia Spathaceae Discolor after exposure to different doses of gamma rays. Similar negative results were observed for the control experiments. The principal cells in this assay are the mitotic stamen hair cells developing in the young flower buds. After exposure to radiation, the heterozygous dominant blue character of the stamen hair cell is prevented, resulting in the appearance of the recessive pink color. Furthermore, no pink cell appears on all species of Tradescantia spathaceae after irradiated with different doses of gamma rays. The sensitivity of the Tradescantia has been used widely and has demonstrated the relation between radiation dose and frequency of mutation observed at low doses which can contribute to the effects of low doses and their consequences for human health. This system

  9. Molecular targets for radioprotection by low dose radiation exposure

    International Nuclear Information System (INIS)

    Adaptive response is a reduced effect from a higher challenging dose of a stressor after a smaller inducing dose had been applied a few hrs earlier. Radiation induced fibrosarcoma (RIF) cells did not show such an adaptive response, i.e. a reduced effect from a higher challenging dose (2 Gy) of a radiation after a priming dose (1 cGy) had been applied 4 or 7 hrs earlier, but its thermoresistant clone (TR) did. Since inducible HSP70 and HSP25 expressions were different between these two cell lines, the role of inducible HSP70 and HSP25 in adaptive response was examined. When inducible hsp70 or hsp25 genes were transfected to RIF cells, radioresistance in clonogenic survival and reduction of apoptosis was detected. The adaptive response was also acquired in these two cell lines, and inducible hsp70 transfectant showed more pronounced adaptive response than hsp25 transfectant. From these results, inducible HSP70 and HSP25 are at least partly responsible for the induction of adaptive response in these cells. Moreover, when inducible HSP70 or HSP25 genes were transfected to RIF cells, coregulation of each gene was detected and heat shock factor (HSF) was found to be responsible for these phenomena. In continuation of our earlier study on the involvement of heat shock protein (HSP) 25 and HSP70 in the induction of adaptive response, we have now examined the involvement of these proteins in the induction of the adaptive response, using an animal model system. C57BL6 mice were irradiated with 5 cGy of gamma radiation 3 times for a week (total of 15cGy) and a high challenge dose (6Gy) was given on the day following the last low dose irradiation. Survival rate of the low dose pre-irradiated mice was increased to 30%. Moreover, high dose-mediated induction of apoptosis was also reduced by low dose pre-irradiation. To elucidate any link existing between HSP and induction of the adaptive response, reverse transcriptase (RT)-polymerase chain reaction (PCR) analysis was performed

  10. Radon continuous monitoring in Altamira Cave (northern Spain) to assess user's annual effective dose

    International Nuclear Information System (INIS)

    In this work, we present the values of radon concentration, measured by continuous monitoring during a complete annual cycle in the Polychromes Hall of Altamira Cave in order to undertake more precise calculations of annual effective dose for guides and visitors in tourist caves. The 222Rn levels monitored inside the cave ranges from 186 Bq m-3 to 7120 Bq m-3, with an annual average of 3562 Bq m-3. In order to more accurately estimate effective dose we use three scenarios with different equilibrium factors (F=0.5, 0.7 and 1.0) together with different dose conversion factors proposed in the literature. Neither effective dose exceeds international recommendations. Moreover, with an automatic radon monitoring system the time remaining to reach the maximum annual dose recommended could be automatically updated

  11. Radon continuous monitoring in Altamira Cave (northern Spain) to assess user's annual effective dose.

    Science.gov (United States)

    Lario, J; Sánchez-Moral, S; Cañaveras, J C; Cuezva, S; Soler, V

    2005-01-01

    In this work, we present the values of radon concentration, measured by continuous monitoring during a complete annual cycle in the Polychromes Hall of Altamira Cave in order to undertake more precise calculations of annual effective dose for guides and visitors in tourist caves. The (222)Rn levels monitored inside the cave ranges from 186 Bq m(-3) to 7120 Bq m(-3), with an annual average of 3562 Bq m(-3). In order to more accurately estimate effective dose we use three scenarios with different equilibrium factors (F=0.5, 0.7 and 1.0) together with different dose conversion factors proposed in the literature. Neither effective dose exceeds international recommendations. Moreover, with an automatic radon monitoring system the time remaining to reach the maximum annual dose recommended could be automatically updated. PMID:15701381

  12. ISFSI site boundary radiation dose rate analyses

    International Nuclear Information System (INIS)

    Across the globe nuclear utilities are in the process of designing and analysing Independent Spent Fuel Storage Installations (ISFSI) for the purpose of above ground spent-fuel storage primarily to mitigate the filling of spent-fuel pools. Using a conjoining of discrete ordinates transport theory (DORT) and Monte Carlo (MCNP) techniques, an ISFSI was analysed to determine neutron and photon dose rates for a generic overpack, and ISFSI pad configuration and design at distances ranging from 1 to ∼1700 m from the ISFSI array. The calculated dose rates are used to address the requirements of 10CFR72.104, which provides limits to be enforced for the protection of the public by the NRC in regard to ISFSI facilities. For this overpack, dose rates decrease by three orders of magnitude through the first 200 m moving away from the ISFSI. In addition, the contributions from different source terms changes over distance. It can be observed that although side photons provide the majority of dose rate in this calculation, scattered photons and side neutrons take on more importance as the distance from the ISFSI is increased. (authors)

  13. Doses to the red bone marrow of young people and adults from radiation of natural origin

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, G M [Childhood Cancer Research Group, University of Oxford, Richards Building, Old Road Campus, Headington, Oxford OX3 7LG (United Kingdom); Fell, T P, E-mail: Gerald.Kendall@ccrg.ox.ac.uk [Health Protection Agency, CRCE, Chilton, Didcot OX11 0RQ, Oxon (United Kingdom)

    2011-09-01

    Natural radiation sources comprise cosmic rays, terrestrial gamma rays, radionuclides in food and inhaled isotopes of radon with their decay products. These deliver doses to all organs and tissues including red bone marrow (RBM), the tissue in which leukaemia is thought to originate. In this paper we calculate the age-dependent annual RBM doses from natural radiation sources to young people and to adults at average levels of exposure in the UK. The contributions to dose are generally less complex than in the case of doses to foetuses and young children where it is necessary to take into account transfer of radionuclides across the placenta, intakes in mother's milk and changes in gut uptake in young infants. However, there is high uptake of alkaline earths and of similar elements in the developing skeleton and this significantly affects the doses from radioisotopes of these elements, not just in the teens and twenties but through into the fifth decade of life. The total equivalent dose to the RBM from all natural sources of radiation at age 15 years is calculated to be about 1200 {mu}Sv a year at average UK levels, falling to rather less than 1100 {mu}Sv per year in later life; the gentle fall from the late teens onwards reflects the diminishing effect of the high uptakes of radioisotopes of the alkaline earths and of lead in this period. About 60% of the equivalent dose is contributed by the low linear energy transfer (LET) component. Radionuclides in food make the largest contribution to equivalent doses to RBM and much the largest contribution to the absorbed dose from high LET radiation (mainly alpha particles).

  14. Doses to the red bone marrow of young people and adults from radiation of natural origin

    International Nuclear Information System (INIS)

    Natural radiation sources comprise cosmic rays, terrestrial gamma rays, radionuclides in food and inhaled isotopes of radon with their decay products. These deliver doses to all organs and tissues including red bone marrow (RBM), the tissue in which leukaemia is thought to originate. In this paper we calculate the age-dependent annual RBM doses from natural radiation sources to young people and to adults at average levels of exposure in the UK. The contributions to dose are generally less complex than in the case of doses to foetuses and young children where it is necessary to take into account transfer of radionuclides across the placenta, intakes in mother's milk and changes in gut uptake in young infants. However, there is high uptake of alkaline earths and of similar elements in the developing skeleton and this significantly affects the doses from radioisotopes of these elements, not just in the teens and twenties but through into the fifth decade of life. The total equivalent dose to the RBM from all natural sources of radiation at age 15 years is calculated to be about 1200 μSv a year at average UK levels, falling to rather less than 1100 μSv per year in later life; the gentle fall from the late teens onwards reflects the diminishing effect of the high uptakes of radioisotopes of the alkaline earths and of lead in this period. About 60% of the equivalent dose is contributed by the low linear energy transfer (LET) component. Radionuclides in food make the largest contribution to equivalent doses to RBM and much the largest contribution to the absorbed dose from high LET radiation (mainly alpha particles).

  15. A program for synchrotron radiation dose calculations

    International Nuclear Information System (INIS)

    The computer program PHOTON was obtained from Brookhaven National Laboratory (courtesy D. Chapman, NSLS), and has now been installed at APS VAX. In the following a brief description of the program and how to access to it is described with an example. A detailed manual for the program is also available. The program is developed to calculate the transmitted and scattered spectra of the synchrotron radiation, as it passes through series of filters. The source can be a bending magnet or a wiggler. This can be generated for any bending magnet or a wiggler source by varying ring energy, the critical energy and opening angles of the radiation beam. Monochromatic beams to white radiation can be treated. Filter materials can be pure elements or composites. The absorption cross-sections of all elements for covering 10-2 to 106 keV are now included in a table, which can be accessed by giving the atomic symbol

  16. Radiation dose computation for renal dynamic radionuclide-imaging

    International Nuclear Information System (INIS)

    Objective: To study the internal radiation dose in kidney and bladder for the renal dynamic radionuclide-imaging. Methods: A double compartment chain related to kidney-bladder excretion model was set out. The correlative mathematical expressions were educed to simulate the absorbed radionuclide medicament for renal dynamic imaging's transfer and excretion. The total disintegration amount in kidney, bladder and other organs was counted. Monte Carlo methods were used to calculate the radionuclide disintegration radial energy deposited in kidney and bladder, and their effective doses were calculated according to the radiation quality factor. Results: To take 131I-OIH and 99Tcm-DTPA imaging agents for example, the internal radiation dose in kidney was 0.058 mGy/MBq(for 131I-OIH) and 0.0054 mGy/MBq(for 99Tcm-DTPA), respectively, while the internal radiation dose in bladder is 0.40 mGy/MBq(for 131I-OIH) and 0.033 mGy/MBq(for 99Tcm. DTPA), respectively. Conclusions: The internal radiation doses in kidney and bladder are very low for renal dynamic radionuclide- imaging at the conventional dose. (authors)

  17. Effective UV radiation dose in polyethylene exposed to weather

    Science.gov (United States)

    González-Mota, R.; Soto-Bernal, J. J.; Rosales-Candelas, I.; Calero Marín, S. P.; Vega-Durán, J. T.; Moreno-Virgen, R.

    2009-09-01

    In this work we quantified the effective UV radiation dose in orange and colorless polyethylene samples exposed to weather in the city of Aguascalientes, Ags. Mexico. The spectral distribution of solar radiation was calculated using SMART 2.9.5.; the samples absorption properties were measured using UV-Vis spectroscopy and the quantum yield was calculated using samples reflectance properties. The determining factor in the effective UV dose is the spectral distribution of solar radiation, although the chemical structure of materials is also important.

  18. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    The Section 32 of the Finnish Radiation Act (592/91) defines the requirements to be applied to the monitoring of the radiation exposure and working conditions in Finland. The concepts relevant to the monitoring and guidelines for determining the necessity of the monitoring as well as its organizing are given in the guide. Instructions for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK) are given, also procedures for situations leading to exceptional exposures are described. (9 refs.)

  19. Status of eye lens radiation dose monitoring in European hospitals.

    Science.gov (United States)

    Carinou, Eleftheria; Ginjaume, Merce; O'Connor, Una; Kopec, Renata; Sans Merce, Marta

    2014-12-01

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers. PMID:25222935

  20. Status of eye lens radiation dose monitoring in European hospitals

    International Nuclear Information System (INIS)

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers. (paper)

  1. Direct determination of radiation dose in human blood

    CERN Document Server

    Tanir, Ayse Gunes; Sahiner, Eren; Bolukdemir, Mustafa Hicabi; Koc, Kemal; Meric, Niyazi; Kelec, Sule Kaya

    2014-01-01

    Our purpose is to measure the internal radiation dose (ID) using human blood sample. In the literature, there is no process that allows the direct measurement of ID received by a person. This study has shown that it is possible to determine ID in human blood exposed to internal or external ionizing radiation treatment both directly and retrospectively. OSL technique was used to measure the total dose from the blood sample. OSL counts from the waste blood of the patient injected with a radiopharmaceutical for diagnostic or treatment purposes and from a blood sample having a laboratory-injected radiation dose were both used for measurements. The decay and dose-response curves (DRC) were plotted for different doses. The doses received by different blood aliquots have been determined by interpolating the natural luminescence counts to DRC. In addition, OSL counts from a healthy blood sample exposed to an external radiation source were measured. The blood aliquots were given different 0-200Gy beta doses and their ...

  2. Dose Rate of Environmental Gamma Radiation in Java Island

    International Nuclear Information System (INIS)

    The dose rate Monitoring of environmental gamma radiation at some locations in Java Island in the year 2005 / 2006 has been carried out. The dose rate measurement of gamma radiation is carried out by using the peripheral of Portable Gamma of Ray Spectrometer with detector of NaI(Tl), Merck Exploranium, Model GR-130- MINISPEC, while to determine its geographic position is used by the GPS (Global Positioning System), made in German corporation of GPS III Plus type. The division of measurement region was conducted by dividing Java Island become 66 parts with same distance, except in Jepara area that will built PLTN (Nuclear Energy Power), distance between measurement points is more closed. The results of dose rate measurement are in 66 locations in Java Island the range of (19.24 ± 4.05) nSv/hour until (150.78 ± 12.26) nSv/hour with mean (51.93 ± 36.53) nSv/h. The lowest dose rate was in location of Garut, while highest dose rate was in Ujung Lemah Abang, Jepara location. The data can be used for base line data of dose rate of environmental gamma radiation in Indonesia, specially in Java Island. The mean level of gamma radiation in Java monitoring area (0.46 mSv / year) was still lower than worldwide average effective dose rate of terrestrial gamma rays 0.5 mSv / year (report of UNSCEAR, 2000). (author)

  3. Radiation dose estimates for carbon-11-labelled PET tracers

    International Nuclear Information System (INIS)

    Introduction: Carbon-11-labelled positron emission tomography (PET) tracers commonly used in biomedical research expose subjects to ionising radiation. Dosimetry is the measurement of radiation dose, but also commonly refers to the estimation of health risk associated with ionising radiation. This review describes radiation dosimetry of carbon-11-labelled molecules in the context of current PET research and the most widely used regulatory guidelines. Methods: A MEDLINE literature search returned 42 articles; 32 of these were based on human PET data dealing with radiation dosimetry of carbon-11 molecules. Radiation burden expressed as effective dose and maximum absorbed organ dose was compared between tracers. Results: All but one of the carbon-11-labelled PET tracers have an effective dose under 9 μSv/MBq, with a mean of 5.9 μSv/MBq. Data show that serial PET scans in a single subject are feasible for the majority of radiotracers. Conclusion: Although differing in approach, the two most widely used regulatory frameworks (those in the USA and the EU) do not differ substantially with regard to the maximum allowable injected activity per PET study. The predictive validity of animal dosimetry models is critically discussed in relation to human dosimetry. Finally, empirical PET data are related to human dose estimates based on homogenous distribution, generic models and maximum cumulated activities. Despite the contribution of these models to general risk estimation, human dosimetry studies are recommended where continued use of a new PET tracer is foreseen.

  4. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  5. Dose dependence on stochastic radiobiological effect in radiation risk estimation

    International Nuclear Information System (INIS)

    The analysis of the results in dose -- effect relationship observation has been carried out on the cell and organism levels, with the aim to obtain more precise data on the risk coefficients at low doses. The results are represented by two contrasting groups of dose dependence on effect: a downwards concave and a J-shaped curve. Both types of dependence are described by the equation solutions of an assumed unified protective mechanism, which comprises two components: constitutive and adaptive or inducible ones. The latest data analysis of the downwards concave dependence curves shows a considerable underestimation of radiation risk in all types of cancer, except leukemia, for a number of critical groups in a population, at low doses comparing to the ICRP recommendations. With the dose increase, the decrease of the effect value per dose unit is observed. It may be possibly related to the switching of the activity of the adaptive protective mechanism, with some threshold dose values being exceeded

  6. Intensity modulated radiation therapy (IMRT) for better dose targeting

    International Nuclear Information System (INIS)

    Full text: Intensity modulated radiation therapy generally implies the use of inverse planning using preselected organ dose constraints and dose volume histogram analysis. Then modulated beams are created by multi leaf collimator (MLC) sequences. This new method of modulating each beam produces fine resolution dose maps around the target volume. New and exciting tumour visualisation techniques using PET and MRS imaging may ensure that the new technology in dose delivery is matched by improved biological aided targeting images which better specifying the tumour volume. Implementing IMRT into the clinic is a complex and time consuming task however some examples of clinical sites which lend themselves to IMRT over conventional radiotherapy will be shown. One vendors approach (the pinnacle radiotherapy planning computer) is described. It maintains forward computation of the final dose map to ensure integrity of the inverse planning process. Planning dose tool calculations are compared with film dosimetry results. These comparisons ensure accurate doses are delivered to the patient

  7. Visualization of radiation dose big data acquired by monitoring posts

    International Nuclear Information System (INIS)

    Currently, in Fukushima Prefecture, 3625 radiation dose monitoring posts is available, and the radiation data is acquired every 10 minutes. However, an effective visualization of such an enormous amount of data has not been sufficiently performed. In this study, pull out the meaningful information from the big data, to achieve an effective visualization. By comparing the physical attenuation with the radiation dose changes, we can predict the trend of environment attenuation. We visualize the influence of the environment by plotting the results to the map. As a result, the difference in the increase or decrease depending on the location appeared. Under the influence of snow cover, a phenomenon that radiation dose is reduced in winter were also seen. We considered that these results will be effective for the policies of decontamination and the estimation of the amount of snow as water resources. (author)

  8. Development of PC version code system for radiation dose estimation

    International Nuclear Information System (INIS)

    Since a direct access from a radiation work site to a main frame computer is usually difficult, evaluation of radiation sources and/or doses are often carried out by handcalculations with less accuracy. So considering a recent remarkable progress of PC (Personal computer), we have developed an interactive code system of PC version to calculate dose equivalent values with high accuracy. It consists of a radiation source calculation code ORIGEN-2 and point kernel shielding calculation codes, QAD-CGGP2 and G33-GP2. With the present system, you can easily obtain dose equivalent values at any detector point starting from radiation source estimation. Validity of these codes have been verified individually on a main frame computer through various benchmark calculations. Thus we verified the present PC version system by comparing the PC calculations with those using a main frame computer. Excellent agreement was obtained between them. (author)

  9. Space radiation absorbed dose distribution in a human phantom.

    Science.gov (United States)

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  10. Space radiation absorbed dose distribution in a human phantom

    Science.gov (United States)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  11. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, Norman Jay [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  12. Uncertainty of dose measurement in radiation processing

    DEFF Research Database (Denmark)

    Miller, A.

    1996-01-01

    running debate and presents the author's view, which is based upon experience in radiation processing dosimetry. The origin of all uncertainty components must be identified and can be classified according to Type A and Type B, but it is equally important to separate the uncertainty components into those...

  13. Overview of ICRP Committee 2: doses from radiation exposure.

    Science.gov (United States)

    Harrison, J D; Paquet, F

    2016-06-01

    The focus of the work of Committee 2 of the International Commission on Radiological Protection (ICRP) is the computation of dose coefficients compliant with Publication 103 A set of reference computational phantoms is being developed, based on medical imaging data, and used for radiation transport calculations. Biokinetic models used to describe the behaviour of radionuclides in body tissues are being updated, also leading to changes in organ doses and effective dose coefficients. Dose coefficients for external radiation exposure of adults calculated using the new reference phantoms were issued as Publication 116, jointly with the International Commission on Radiation Units and Measurements. Forthcoming reports will provide internal dose coefficients for radionuclide inhalation and ingestion by workers, and associated bioassay data. Work is in progress to revise internal dose coefficients for members of the public, and, for the first time, to provide reference values for external exposures of the public. Committee 2 is also working with Committee 3 on dose coefficients for radiopharmaceuticals, and leading a cross-Committee initiative to give advice on the use of effective dose. PMID:26984902

  14. Biological dosimetry of ionizing radiation in the high dose range

    International Nuclear Information System (INIS)

    The report reviews briefly methods of dose evaluation after exposure to high doses of ionizing radiation. Validation of two methods also is described: micronucleus (Mn) frequency estimation according Muller and Rode and premature chromosome condensation (PCC) combined with painting of 3 pairs of chromosomes in human lymphocytes. According to Muller and Rode, micronucleus frequency per binucleated cells with at least one Mn linearly increases with dose up to 15 Gy and is suitable end-point for biological dosimetry. These authors, however, examined cells from only one donor. The data reported below were obtained for 5 donors; they point to a considerable individual variation of thus measured response to irradiation. Due to the high degree of inter-donor variability, there is no possibility to apply this approach in biological dosimetry in the dose range 5 - 20 Gy gamma 60Co radiation. A linear response up to 10 Gy was observed only in the case of certain donors. In contrast, determination of the dose-effect relationship with the PCC method gave good results (small inter-individual variation, no plateau effect up to dose 10 Gy), so that with a calibration curve it could be used for dose estimation after exposure to doses up to 10 Gy of X or gamma 60Co radiation. (author)

  15. Dose dependent rearrangement of cellular membranes induced by ionizing radiation

    International Nuclear Information System (INIS)

    The radiation-induced effects at dose rate of 0.35 Gy/min (in vivo) and of ultra-low doses (in vitro) on the cell membranes structural state were shown. The modifications of the membrane protein and lipid components and their dynamic state were revealed at experimental irradiation conditions by fluorescent probe analysis. The principal component analysis of the research data indicates the dose-dependent decrease of plasma membrane structural orderliness of the small intestine enterocytes with the increase of the ionizing irradiation acute dose of 0.5, 1.0, 2.0, 3.0 Gy at dose rate of 0.35 Gy/min. The complex response of the biological structure - the erythrocytes plasma membrane, on the ionizing radiation action at ultra-low doses that occurred through macromolecular structural rearrangements was also demonstrated. The features of the structural rearrangement of the cellular membranes depending on the ionizing radiation dose (dose rate) are found out

  16. Radiation doses from dental radiography at private practioneers

    International Nuclear Information System (INIS)

    This investigation was made in January 1975 together with a seminar group from the faculty of odontology in Stockholm. Every four private practising dentists in Stockholm and its environs were selected by haphazard to get an enquiry equipment etc. Every forty private practising dentists were then selected by haphazard to get a visit. 32 x-ray plants were investigated. The radiation doses showed a great spreading. The mean value of the radiation doses to the irradiated organs had been reduced about 5 times compared to a similar investigation, which was made in 1960. The use of long metal tubes and high-speed film gave the lowest dose values, while a short cone of bakelite and a low-speed film gave the highest dose values. Fluctuations in the dose values seemed also to depend on the technique. The reasons for this may be variations in the settings of the instruments and in the dark room technique. (M.S.)

  17. Radiation dose assessments for materials with elevated natural radioactivity

    International Nuclear Information System (INIS)

    The report provides practical information needed for evaluating the radiation dose to the general public and workers caused by materials containing elevated levels of natural radionuclides. The report presents criteria, exposure scenarios and calculations used to assess dose with respect to the safety requirements set for construction materials in accordance with the Finnish Radiation Act. A method for calculating external gamma exposure from building materials is presented in detail. The results for most typical cases are given as specific dose rates in table form to enable doses to be assessed without computer calculation. A number of such dose assessments is presented, as is the corresponding computer code. Practical investigation levels for the radioactivity of materials are defined. (23 refs.)

  18. Time-dependent radiation dose simulations during interplanetary space flights

    Science.gov (United States)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  19. Study of external exposure doses received by Cuban population due to terrestrial component of the environmental radiation sources

    International Nuclear Information System (INIS)

    The work presents the results of the study carried out to evaluate the doses that the Cuban population receives for the external exposition to the terrestrial component of the environmental sources of radiation. Starting from the carried out measurements it was possible to estimate the doses effective representative annual stockings that the Cuban population receives for external exposition to the terrestrial radiation, considering the permanency in indoors and outdoors. The dose received due to this component was 180±14 mSv/year. These values are in the range of those reported internationally. (author)

  20. Radiation-dose consequences of acid rain

    International Nuclear Information System (INIS)

    Acid rain causes accelerated mobilization of many materials in soils. Natural and anthropogenic radionuclides, especially Ra and Cs, are among these materials. Generally, a decrease in soil pH by 1 unit will cause increases in mobility and plant uptake by factors of 2 to 7. Several simulation models were tested with most emphasis on an atmospherically driven soil model that predicts water and nuclide flow through a soil profile. We modelled a typical, acid rain sensitive soil using meterological data from Geraldton, Ontario. The results, within the range of effects on the soil expected from acidification, showed direct proportionality between the mobility of the nuclides and dose. Based on the literature available, a decrease in pH of 1 unit may increase the mobility of Ra and Cs by a factor or 2 or more. This will lead to increases in plant uptake and ultimate dose to man of about the same extent

  1. An assessment of annual whole-body occupational radiation exposure in Ireland (1996-2005)

    International Nuclear Information System (INIS)

    Whole-body occupational exposure to artificial radiation sources in Ireland for the years 1996-2005 has been reviewed. Dose data have been extracted from the database of the Radiological Protection Inst. of Ireland, which contains data on >95% of monitored workers. The data have been divided into three sectors: medical, industrial and education/ research. Data on exposure to radon in underground mines and show caves for the years 2001-05 are also presented. There has been a continuous increase in the number of exposed workers from 5980 in 1996 to 9892 in 2005. Over the same time period, the number of exposed workers receiving measurable doses has decreased from 676 in 1996 to 189 in 2005 and the collective dose has also decreased from 227.1 to 110.3 man milli-sievert (man mSv). The collective dose to workers in the medical sector has consistently declined over the 10-y period of the study while that attributable to the industrial sector has remained reasonably static. In the education/research sector, the collective dose typically represents 5% or less of the total collective dose from all practices. Over the 10 y of the study, a total of 77914 annual dose records have been accumulated, but only 4040 (1 mSv and 21 of these exceeded 5 mSv. Most of the doses >1 mSv were received by individuals working in diagnostic radiology (which also includes interventional radiology) in hospitals and site industrial radiography. There has been only one instance of a dose above the annual dose limit of 20 mSv. Evaluating the data for the period 2001-05 separately, the average annual collective dose from the medical, industrial and educational/research sectors are ∼60, 70 and 2 man mSv with the average dose per exposed worker who received a measurable dose being 0.32, 0.79 and 0.24 mSv, respectively. Diagnostic radiology and site industrial radiography each represents >60% of the collective dose in their respective sectors. Available data on radon exposure in one underground mine

  2. Radiation Protection Institute Annual Report for 2013

    International Nuclear Information System (INIS)

    The report covers the activities of the Radiation Protection Institute (RPI) of the Ghana Atomic Energy Commission for the year 2013. The report is grouped under the following headings: establishment, vision and mission; personnel and organization; major activities and research projects; IAEA, Technical Cooperation and AFRA projects; ongoing research projects and programs; income and expenditure statements, physical development and human resource development, training courses, meetings and conferences. (A. B.)

  3. Radiation Protection Institute Annual Report for 2012

    International Nuclear Information System (INIS)

    The report covers the activities of the Radiation Protection Institute (RPI) of the Ghana Atomic Energy Commission for the year 2012. It is grouped under the following topics: vision and mission; personnel, major activities, research projects, IAEA Technical Cooperation and AFRA projects; ongoing research projects and programs. Also included are income and expenditure statements, physical and human resource development; IAEA training courses, national and IAEA training courses and meetings hosted; and publications. (A. B.)

  4. Emissions and doses from sources of ionising radiation in the Netherlands: radiation policy monitoring

    International Nuclear Information System (INIS)

    In 1997 the Ministry of Housing, Spatial Planning and the Environment requested RIVM to develop an information system for policy monitoring. One of the motives was that the European Union requires that the competent authorities of each member state ensure that dose estimates due to practices involving exposure to ionising radiation are made as realistic as possible for the population as a whole and for reference groups in all places where such groups may occur. Emissions of radionuclides and radiation to the environment can be classified as follows: (1) emissions to the atmosphere, (2) emissions to the aquatic system and (3) emission of external radiation from radioactive materials and equipment that produces ionising radiation. Released radioactivity is dispersed via exposure pathways, such as the atmosphere, deposition on the ground and farmland products, drinking water, fish products, etc. This leads to radiation doses due to inhalation, ingestion and exposure to external radiation. To assess the possible radiation doses different kinds of models are applied, varying from simple multiplications with dispersion coefficients, transfer coefficients and dose conversion coefficients to complex dispersion models. In this paper an overview is given of the human-induced radiation doses in the Netherlands. Also, trends in and the effect of policy on the radiation dose of members of the public are investigated. This paper is based on an RIVM report published recently. A geographical distribution of radiation risks due to routine releases for a typical year in the Netherlands was published earlier

  5. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  6. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  7. Measurement of radiation dose in cerebral CT perfusion study

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate radiation dose in cerebral perfusion studies with a multi-detector row CT (MDCT) scanner on various voltage and current settings by using a human head phantom. Following the CT perfusion study protocol, continuous cine scans (1 sec/rotation x 60 sec) consisting of four 5-mm-thick contiguous slices were performed three times at variable tube voltages of 80 kV, 100 kV, 120 kV, and 140 kV with the same tube current setting of 200 mA and on variable current settings of 50 mA, 100 mA, 150 mA, and 200 mA with the same tube voltage of 80 kV. Radiation doses were measured using a total of 41 thermoluminescent dosimeters (TLDs) placed in the human head phantom. Thirty-six TLDs were inside and three were on the surface of the slice of the X-ray beam center, and two were placed on the surface 3 cm caudal assuming the lens position. Average radiation doses of surface, inside, and lens increased in proportion to the increases of tube voltage and tube current. The lowest inside dose was 87.6±15.3 mGy, and the lowest surface dose was 162.5±6.7 mGy at settings of 80 kV and 50 mA. The highest inside dose was 1,591.5±179.7 mGy, and the highest surface dose was 2,264.6±123.7 mGy at 140 kV-200 mA. At 80 kV-50 mA, the average radiation dose of lens was the lowest at 5.5±0.0 mGy. At 140 kV-200 mA the radiation dose of lens was the highest at 127.2±0.6 mGy. In cerebral CT perfusion study, radiation dose can vary considerably. Awareness of the patient's radiation dose is recommended. (author)

  8. Radiation-induced cancer from low doses of ionizing radiation: risk analysis using the cell dose concept

    International Nuclear Information System (INIS)

    High doses of ionizing radiations are known to bear the risk of cancer to the exposed individual. In order to appreciate potential carcinogenesis from low doses also, the action of ionizing radiation in the human body has to be considered in holistic approach: energy depositions to individual cells trigger effects within a hierachical structure of interacting levels of biological systems, consisting consecutively of atoms, molecules, cells and organ tissue. The present paper describes the cell dose concept which is an essential factor in assessing the risk due to the ionizing radiation to the cells and tissues. Low dose of ionizing radiation induces adaptive response in individual cells which could be linked to the action of molecular radicals. Enzyme activities in bone marrow cells and bilayer lipid membranes and radicals are directly related to radiation effects. Temporary improvements of the detoxification of molecular radicals also improve the cellular defence. The risk analysis calls for more attention as it is important for radiation protection and other beneficial effects due to low doses of irradiation. (author). 18 refs

  9. Radiation doses to members of the public from the Olympic Dam uranium mining operation

    International Nuclear Information System (INIS)

    The Olympic Dam project is a large underground mine with associated processing plant and smelter, producing copper, uranium and precious metals. It operates on the world's largest known uranium resource, and one of the largest copper resources. Current annual mine production is approximately 11 million tonnes of ore, with approximately 250 000 tonnes of refined copper and 4100 tonnes of uranium oxide being produced annually. There is no surface drainage of precipitation and consequently the only significant pathways for radiation exposure for members of the public from project operations are airborne ones: inhalation of radon decay products, and inhalation of radioactive dusts. The most highly exposed members of the public (critical group) are the residents of Olympic Dam village. The radiological aspects of the project are regulated under several pieces of legislation, which include requirements to comply with relevant recommended ICRP and IAEA dose limits: that is, for public exposure an average effective dose of 1 mSv in a year to members of the relevant critical group. A comprehensive program to monitor airborne concentrations of these contaminants and associated meteorological parameters is in place. Radon decay products are measured continuously at four sites, with hourly recording of concentrations. High volume dust monitoring is undertaken at three sites, with subsequent radionuclide analysis of the collected dust. Wind speed and direction is also measured continuously. From these results, estimates of doses to members of the public at Olympic Dam village and at Roxby Downs are made. Standard dose conversion factors are used to convert measured atmospheric concentrations to dose. Atmospheric dispersion modelling has also been used to estimate doses from inhalation of radon decay products. The estimated dose from all radon decay products obtained from atmospheric dispersion modelling was 24 μSv per annum. The annual total dose from inhalation of radioactive

  10. Techniques and radiation dose in CT examinations of adult patients

    International Nuclear Information System (INIS)

    The use of CT in medical diagnosis delivers radiation dose to patients that are higher than those from other radiological procedures. Lake of optimized protocols could be an additional source of increased dose. The aim of this study was to measure radiation doses in CT examination of the adults in three Sudanese hospitals. Details were obtained from approximately 160 CT examination carried out in 3 hospitals (3 CT scanners). Effective dose was calculated for each examination using CT dose indices. exposure related parameters and CT D1- to- effective dose conversion factors. CT air kerma index (CT D1) and dose length products (DLP) determined were below the established international reference dose levels. The mean effective doses in this study for the head, chest, and abdomen are 0.82, 3.7 and 5.4 mGy respectively. These values were observed that the effective dose per examination was lower in Sudan than in other countries. The report of a CT survey done in these centers indicates that the mean DLP values for adult patients were ranged from 272-460 mGy cm (head) 195-995 mGy cm (chest), 270-459 mGy cm (abdomen). There are a number of observed parameters that greatly need optimization, such as minimize the scan length, without missing any vital anatomical regions, modulation of exposure parameters (kV, mA, exposure time, and slice thickness) based on patient size and age. Another possible method is through use of contrast media only to optimize diagnostic yield. The last possible method is the use of radio protective materials for protection however, in order to achieve the above optimization strategies: there is great demand to educate CT personnel on the effects of scan parameter settings on radiation dose to patients and image quality required for accurate diagnosis. (Author)

  11. Estimation of Fetal Dose during Radiation Therapy of Pregnant Patient

    International Nuclear Information System (INIS)

    To evaluate the effectiveness of a simple and practical shielding device to reduce the fetal dose for a pregnant patient undergoing radiation therapy of brain metastasis. The dose to the fetus was evaluated by simulating the treatments using the anthropomorphic phantom. The prescription dose at mid-brain is 300 cGy x 10 fractions with 6 MV photon with 18 x 22 cm2 field size. The additional shielding devices to reduce the fetal dose are a shielding wall, cerrobend plates and lead (Pb) sheets over acrylic bridge. Various points of measurement with off-field distance were detected by using ion-chamber (30, 40, 50, and 60 cm) with and without the shielding devices and TLD (30, 40, 50, 60, and 70 cm) only with the shielding devices. The doses to the fetus without shielding were 3.20, 3.21, 1.44, 0.90 cGy at the distances of 30, 40, 50, and 60 cm from the treatment field edge. With shielding, the doses were reduced to 0.88, 0.60, 0.35, 0.25 cGy, and the ratio of the shielding effect varied from 70% to 80%. TLD results were 1.8, 1.2, 0.8, 1.2, and 0.8 cGy (70 cm). The total dose to the fetus was expected to be under 1 cGy during the entire treatment. The essential point during radiation therapy of pregnant patient would be minimizing the fetal dose. 10 cGy to 20 cGy is the threshold dose for fetal radiation effects. Our newly developed device reduced the fetal dose far below the safe level. Therefore, our additional shielding devices are useful and effective to reduce the fetal dose.

  12. Radiation protection, 1975. Annual EPA review of radiation protection activities

    International Nuclear Information System (INIS)

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  13. Reduction of patient radiation dose in Spiral CT scan

    International Nuclear Information System (INIS)

    To optimize patient radiation dose in Spiral CT scan of dento-maxillo-facial region by measuring the absorbed dose in the phantom and to evaluate reliability of dose estimation methods using CTDI (CT Dose Index, FDA, USA). Spiral CT scanning with 'pitchs' (ratio of table speed to slice thickness per rotation) more than 1 was used for dose measurements. The dose was measured using a human phantom (Alderson Research Laboratories, USA) in the CT scan with a 3rd generation CT scanner of Somatom Plus (Siemens, Germany) for bone imaging. CTDI for this CT scanner were 9.2 mGy/100 mA at the center in an acrylic resin phantom with diameter of 16 cm and 8.5 mGy/100 mA at 1 cm depth from the phantom surface. X-ray tube voltage of 120 kV and tube current of 85 mA was used. Slice thickness was varied from 1 to 3 mm and table speed per rotation was also varied from 1 to 5 mm per rotation. X-Omat-V (Eastman Kodak, USA) films and TLD (Thermo-Luminescent-Dosimetry) dosimeters of the type of MSO-S (Kyokko, Japan) were used in the dosimetry. Patients radiation dose reduced with increasing the pitch of SPIRAL scan. Measured dose was uniformly distributed and well corresponded to the dose calculated using CTDI. However, measured doses on scanning with 1 mm slice thickness were always higher than those with 2 to 5 mm slice thickness. The lowest radiation dose was obtained with scanning with 2 mm slice thickness and table speed of 4 mm per rotation which give the dose of about 4 mGy per one CT examination in the imaged tissues. The highest dose per one CT examination was measured in 'dental CT' for the mandibular region with 1 mm slice thickness and table speed of 1 mm per rotation which gave 12 mGy by film dosimetry and 9 mGy by TLD dosimetry. SPIRAL scan with pitch more than 1 was effective for reduction of patient radiation dose without reducing the image quality. CTDI was also useful to estimate the dose except scans with 1 mm slice thickness. (author)

  14. Radiation doses to the staff of a nuclear cardiology department

    International Nuclear Information System (INIS)

    The last years, new radiopharmaceuticals are used in a Nuclear Medicine (NM) Department. Nowadays, Single Photon Emission Computed Tomography (SPECT) is a method of routine imaging, a fact that has required increased levels of radioactivity in certain patient examinations. The staff that is more likely to receive the greatest radiation dose in a NM Department is the technologist who deals with performance of patient examination and injection of radioactive material and the nurse who is caring for the patients visiting the Department some of which being totally helpless. The fact that each NM Dept possesses equipment with certain specifications, deals with various kind of patients, has specific design and radiation protection measures which can differ from other NM Depts and uses various examination protocols, makes essential the need to investigate the radiation doses received by each member of the staff, so as to continuously monitor doses and take protective measures if required, control less experienced staff and ensure that radiation dose levels are kept as low as possible at all times. The purpose of the current study was to evaluate radiation dose to the nuclear cardiology department staff by thermoluminescent dosemeters (TLDs) placed on the the skin at thyroid and abdominal region as well as evaluating protection measures taken currently in the Dept

  15. A method of estimating fetal dose during brain radiation therapy

    International Nuclear Information System (INIS)

    Purpose: To develop a simple method of estimating fetal dose during brain radiation therapy. Methods and Materials: An anthropomorphic phantom was modified to simulate pregnancy at 12 and 24 weeks of gestation. Fetal dose measurements were carried out using thermoluminescent dosimeters. Brain radiation therapy was performed with two lateral and opposed fields using 6 MV photons. Three sheets of lead, 5.1-cm-thick, were positioned over the phantom's abdomen to reduce fetal exposure. Linear and nonlinear regression analysis was used to investigate the dependence of radiation dose to an unshielded and/or shielded fetus upon field size and distance from field isocenter. Results: Formulas describing the exponential decrease of radiation dose to an unshielded and/or shielded fetus with distance from the field isocenter are presented. All fitted parameters of the above formulas can be easily derived using a set of graphs showing their correlation with field size. Conclusion: This study describes a method of estimating fetal dose during brain radiotherapy, accounting for the effects of gestational age, field size and distance from field isocenter. Accurate knowledge of absorbed dose to the fetus before treatment course allows for the selection of the proper irradiation technique in order to achieve the maximum patient benefit with the least risk to the fetus

  16. Evaluation of radiation dose to patients during abdominal embolizations

    Directory of Open Access Journals (Sweden)

    Livingstone Roshan

    2005-12-01

    Full Text Available BACKGROUND: Abdominal embolization procedures performed using digital subtraction angiography (DSA is on the increase in the present-day scenario owing to their diagnostic and therapeutic values. These procedures involve prolonged fluoroscopy times and may tend to impart high radiation dose to patients if adequate radiation safety measures are not taken. AIM: To evaluate radiation dose imparted to patients and the work practices involved therein during abdominal embolization procedures. MATERIALS AND METHODS: Forty-two patients who underwent abdominal embolizations performed using DSA equipment were included in the study. Dose area product (DAP was measured using DAP meter and values obtained were used for calculating entrance surface dose (ESD. Work practices of personnel involved in conducting the procedure were evaluated based on the choice of field sizes, selection of appropriate fluoro-modes, and optimization techniques. RESULTS AND CONCLUSIONS: The mean ESD values during hepatic embolization, renal embolization, splenic artery embolization and transarterial chemoembolization (TACE were 1.2, 1.01, 1.19, and 1.03, respectively. No deterministic effects of radiation, such as transient or main erythema, were noticed for a few patients whose doses exceeded the threshold doses.

  17. Low dose radiation and diabetes mellitus

    International Nuclear Information System (INIS)

    Induction of hormesis and adaptive response by low-dose radiatio (LDR) has been extensively indicated. It's mechanism may be related with the protective protein and antioxidants that LDR induced, which take effects on the diabetes mellitus (DM) and other diseases. This review will summarize available dat with emphasis on three points: the preventive effect of LDR on the development of diabetes, the therapeutic effect of LDR on diabetic complications and possible mechanisms by which LDR prevents the development of diabetes and diabetic complications. Finally, the perspectives of LDR clinical, diabetes-related implication are discussed. (authors)

  18. Determination of natural radioactivity in rock salt and radiation doses due to its ingestion

    International Nuclear Information System (INIS)

    The Khewera Mines located in Pakistan contain the world's second largest reserves of rock salt. Rock salt is used in Pakistan in food recipes. It was decided to investigate the concentrations of naturally occurring radionuclides in rock salt from the Khewera Mines. Samples of rock salt were collected from 10 different locations and analysed by gamma spectrometry. The mean activity concentrations of 226Ra, 232Th and 40K were 790 ± 262, 640 ± 162 and 23 000 ± 6000 mBq kg-1, respectively. The mean annual effective dose due to the intake of natural radionuclides from rock salt for adults was estimated to be 0.0638 ± 0.015 mSv, which is lower than the average annual effective dose of 0.29 mSv received per caput worldwide due to the ingestion of natural radionuclides, as reported by the United Nations Scientific Committee on the Effects of Atomic Radiation in 2000. (note)

  19. Estimates of dose equivalent rates from natural background radiation

    International Nuclear Information System (INIS)

    Environmental monitoring in Khartoum is being conducted using thermoluminescent dosimetry.The purpose of the study is to estimate dose-equivalent rates from natural background radiation.TL phosphorus LiF.Mg, Cu, P and CaSO4:Mn were used to measure the exposure over land for natural background radiation of terrestrial origin plus cosmic radiation and at position over the Blue Nile to account for natural background radiation of extraterrestrial origin (cosmic rays).The associated dose-equivalent rates have been determined.It was found that the dose-equivalent rates from cosmic radiation obtained through this work using the two types of the TLD phosphorus GR-200 A and CaSO4 are 0.295 mSv per year and 0.265 mSv per year, respectively.While the dose-equivalent rates from total natural background radiation obtained through this work are 0.395 mSv per year using GR-200 A and CaSO4 phosphorus, respectively. (Author)

  20. Radiation Dose Testing on Juno High Voltage Cables

    Science.gov (United States)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10(exp -6) torr and cooled to -50(deg)C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  1. Metaphase chromosome aberrations as markers of radiation exposure and dose

    International Nuclear Information System (INIS)

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes ''paints'' to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with 144Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to 60Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness

  2. The influence on the healthy condition of professional workers for long-term exposure to low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Objective: To Study the influence on the professional workers for long-term exposure to low-dose ionizing radiation, and provide scientific basis for further radiation protection. Method: 530 radiation-exposed and 87 healthy workers were chosen for the clinical examination and laboratory test. Results: Personal annual effective doses were 1.47mSv, the symptoms of neurasthenia, skin lesion and lens opacity were more serrious than those of the control group, the prevalence increased as working period prolonged. The leukocyte and platelet count was lower than that of the control group. The aberration rate of lymphocytes chromosomas and the rate of micronucles were both significantly higher than that of the control group, and the rate increase as working period prolonged. Conclusion: Long-term and low-dose radiation exposure may cause certain radiant injures and radiation protection should be further improved. (authors)

  3. Dose Definition and Physical Dose Evaluation for the Human Body in External Radiation Accidents

    International Nuclear Information System (INIS)

    For the bone marrow type of radiation sickness, it is possible to describe the injury to whole-body haematopoietic tissue using stem cell dose. In the case of highly non-uniform exposure, an extra-high local dose to certain parts of the body or absorbed dose to critical organs should be additionally described. To obtain objective dosimetric data from objects carried by the irradiated victims, the watch is an easily available accident dosemeter. Watch rubies can be used as thermoluminescence dosemeters, and the watch glass can be used in electron spin resonance dose measurement. (author)

  4. 40 CFR Appendix A to Part 197 - Calculation of Annual Committed Effective Dose Equivalent

    Science.gov (United States)

    2010-07-01

    ... Alpha particles, fission fragments, heavy nuclei 20 1 All values relate to the radiation incident on the... (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR... Dose Equivalent Unless otherwise directed by NRC, DOE shall use the radiation weighting factors...

  5. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  6. Methodology for assessing doses and radiation impact on marine organisms

    International Nuclear Information System (INIS)

    Environmental protection is one of the key issues in the prospective policy and strategy of radiation protection. In this context, numerous efforts have been made for developing the framework for the protection of non-human species from ionizing radiation, especially in European countries and Unite States. The present report summarizes knowledge so far attained on the assessment of doses and radiation impact on marine organisms. Special attention was directed to the methodology for calculating absorbed doses of marine organisms, based on which a case study was also carried out for estimating absorbed dose rate of several species of marine organisms inhabiting in the coastal sea off Rokkasho-Mura, Aomori Prefecture where a spent nuclear fuel reprocessing plant came into operation. (author)

  7. Low-level radiation doses - a hazard to health?

    International Nuclear Information System (INIS)

    The health hazard induced by low radiation doses can be understood only if we gain an understanding of the fate of the radiation-sensitive structural element within the biological system which it undergoes in the radiation field, and its significance for the total system. In the low-level dose range, single absorption events occur in individual cells as sensitive elements; such single events cause an acute, temporary thymidine kinase inhibition. During this reaction, the affected cell reveals to be resistant to a second event. These observations question the generality of a linear realation between dose and biological effect. We may even have to consider a beneficial effect of single absorption events in the affected cells. (orig./HP)

  8. Local dose enhancement in radiation therapy: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  9. Radiation dose to personnel during percutaneous renal calculus removal

    International Nuclear Information System (INIS)

    Radiation dose to the radiologist and other personnel was measured during 102 procedures for percutaneous removal of renal calculi from the upper collecting system. A mobile C-arm image intensifier was used to guide entrance to the kidney and stone removal. Average fluoroscopy time was 25 min. Exposure to personnel was monitored by quartz-fiber dosimeters at the collar level above the lead apron. Average radiation dose to the radiologist was 10 mrem (0.10 mSv) per case; to the surgical nurse, 4 mrem (0.04 mSv) per case; to the radiologic technologist, 4 mrem (0.04 mSv) per case; and to the anesthesiologist, 3 mrem (0.03 mSv) per case. Radiation dose to the uroradiologic team during percutaneous nephrostolithotomy is similar to that from other interventional fluoroscopic procedures and is within acceptable limits for both physicians and assisting personnel

  10. Radiation dose to personnel during percutaneous renal calculus removal

    Energy Technology Data Exchange (ETDEWEB)

    Bush, W.H.; Jones, D.; Brannen, G.E.

    1985-12-01

    Radiation dose to the radiologist and other personnel was measured during 102 procedures for percutaneous removal of renal calculi from the upper collecting system. A mobile C-arm image intensifier was used to guide entrance to the kidney and stone removal. Average fluoroscopy time was 25 min. Exposure to personnel was monitored by quartz-fiber dosimeters at the collar level above the lead apron. Average radiation dose to the radiologist was 10 mrem (0.10 mSv) per case; to the surgical nurse, 4 mrem (0.04 mSv) per case; to the radiologic technologist, 4 mrem (0.04 mSv) per case; and to the anesthesiologist, 3 mrem (0.03 mSv) per case. Radiation dose to the uroradiologic team during percutaneous nephrostolithotomy is similar to that from other interventional fluoroscopic procedures and is within acceptable limits for both physicians and assisting personnel.

  11. Radiation-induced stress effects following low dose exposure

    International Nuclear Information System (INIS)

    Complete text of publication follows. Recent advances in our understanding of effects of radiation on living cells suggest that fundamentally different mechanisms are operating at low doses compared with high doses. Also, acute low doses appear to involve different response mechanisms compared with chronic low doses. Both genomic instability and so called 'bystander effects' show many similarities with well known cellular responses to oxidative stress. These predominate following low dose exposures and are maximally expressed at doses as low as 5mGy. At the biological level this is not surprising. Chemical toxicity has been known for many years to show these patterns of dose response. Cell signaling and coordinated stress mechanisms appear to dominate acute low dose exposure to chemicals. Adaptation to chemical exposures is also well documented although mechanisms of adaptive responses are less clear. In the radiation field adaptive responses also become important when low doses are protracted or fractionated. Recent data from our group concerning bystander effects following multiple low dose exposures suggest that adaptive responses can be induced in cells which only receive signals from irradiated neighbours. We have data showing delayed and bystander effects in humans, rodents 3 fish species and in prawns following in vitro and/or in vivo irradiation of haematopoietic tissues and, from the aquatic groups, gill and skin/fin tissue. Bystander signals induced by radiation can be communicated from fish to fish in vivo and are detectable as early as the eyed egg stage, i.e. as soon as tissue starts to develop. Using proteomic approaches we have determined that the bystander and the direct irradiation proteomes are different. The former show significant upregulation of 5 proteins with anti-oxidant, regenerative and restorative functions while the direct radiation proteome has 2 upregulated proteins both involved in proliferation. These data have implications for

  12. Radiation Doses in Some Cardiac Catheterization and Angiography Procedures

    International Nuclear Information System (INIS)

    Interventional radiology involves diagnostic and therapeutic procedures that range from simple to complex. Patients can be subjected to varying radiation doses. The study aims to determine the variation in patient entrance doses of pediatric and adult patients who underwent selected cardiac catheterization and angiography procedures at King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. It is also aimed to investigate the methods for optimizing radiation protection. A total of 761 pediatric patients and 114 adult patients for cardiac catheterization and 320 adults for angiography were included in the study. Results showed that pulmonary and PDA are high dose procedures yielding to an average effective dose of 10 and 8.2 mSv respectively. DAP values showed a good correlation with effective doses for diagnostic and COA dilatation with r2 equal to 0.81 and 0.70 respectively. PTCA procedure delivered a maximum skin dose that exceeded the threshold dose for skin erythemia with a value of 4.5 Gy. Percutaneous Transhepatic Choleangiography (PTC) and Transjugular Intrahepatic Portosystemic Shunts (TIPSS) delivered the maximum skin dose of 983 and 735 mGy. The study recommends that a review of the protocols and setting of image quality criteria for pediatric especially for age groups 0 and 1 and adult patients should be made in order that fluoroscopy time , peak kilovoltage and number of cine series be reduced. (author)

  13. Assessment of radiation dose in digital storage phosphor radiography

    International Nuclear Information System (INIS)

    This paper reports on digital storage phosphor radiography that is able to produce images of constant optical density over a wide range of exposure dose by adjusting reading sensitivity. Since overexposed images are not as-readily recognized as with the conventional film-screen technique, a method capable of determining radiation dose is necessary to detect overexposures (due to, e.g., handling errors or technical defects). A formula was designed that calculates the radiation dose in the film plane from image sensitivity (S-factor), latitude (L-factor), and average gray value over the region of interest. To verify the formula, 106 measurements with variation of dose, L-factor, S-factor, and the readout algorithm were made with the Digiscan storage phosphor system (Siemens)

  14. Early radiation dose-response in lung: an ultrastructural study

    International Nuclear Information System (INIS)

    A systematic fine-structural study of dog lungs was undertaken to ascertain the radiation dose response in the lungs of large animals. The capillary endothelium appeared to be the initial site of the post-irradiation pulmonary damage. This subpheural response included diffuse septal thickening, fibrosis, edema, and reduced alveolar lumina. The deep parenchymal response involved perivascular fibrosis, which was associated with perivascular hyperplasia of Type II pneumocytes, increased number and sizes of lamellar bodies, increased production and release of lamellar surfactant. No changes of alveolar luminar size were noted. The most significant changes were observed in those dose zones exposed to greater than 2400 rad, suggesting the possibility of an identifiable dose-response relationship. Early detection of radiation pneumonitis by electron microscopy is demonstrated, and qualitative and quantitative correlation of injury with both postirradiation time and dose is presented

  15. Thioredoxin: Inducible radioprotective protein by low-dose radiation

    International Nuclear Information System (INIS)

    Thioredoxin (TRX), that has many biological activities, is radioprotector and a key protein in regulating cellular functions through redox reaction. We observed time course and dose dependent alteration of TRX gene expression in human peripheral lymphocytes after low-dose irradiation. TRX mRNA level increased to a peak, 5.7-fold higher than the control at maximum, 6 h after irradiation, and then decreased. The optimum radiation dose for enhancement of induction of the TRX mRNA was 0.25 Gy. The TRX protein, also increased to a peak, a 3-fold increase at maximum, with the same timing as that for TRX mRNA. Induction of the expression of TRX gene mess followed after ionizing irradiation of lymphocytes from human donors. The similarity of time course between TRX gene expression and induction of radioadaptive response by low-dose radiation suggests that TRX may be involved in adaptive response. (author)

  16. Exposure to low dose radiation and its effect

    International Nuclear Information System (INIS)

    The title subjects are easily explained. As an introduction, the concept of the ICRP Recommendation (2007) is explained briefly on its use of radiation protection and management. Natural radiation dose to ordinary Japanese is said to be the average 1.5 mSv/y in contrast to the whole world people, 2.4. Medical radiation dose to Japanese is estimated to amount to 2.3 mSv/y, to American, 3.0, and to people of medically advanced nations, 1.92. There are areas always exposed to the natural high dose radiation like Ramsar 10.2 mSv/y (Iran). The effect of such natural low dose has been shown to be all insignificant on cancer mortality in Yangjian area (3.3 mSv/y) in China, on lung cancer risk due to radon in Japan Misasa spa area (>10 mSv/y), and on cancer mortality among 176 thousands nuclear industry workers in Japan (average accumulated dose 12 mSv), etc. There have been such reports as increased bladder cancer in Chernobyl, increased leukemic relative risk of infants whose fathers worked in Sellafield nuclear facility, and acute death/health-injury of residents in the past Lou-Lan area where Chinese nuclear bombs were tested. Fallout data from 1955 to 2011 shows the process of radioactive materials fallen and peaks were due to nuclear tests and Chernobyl/Fukushima Accidents. Basic studies on low dose effect involve those of the radioadoptive response, radiation hormesis, bystander effect and cluster injury of DNA. In low dose-carcinogenesis relationship, presented are models of linear non-threhold (LNT), those estimating lower risk than LNT like linear quadratic (LQ) model, and higher risk like supra-linear model. Risks leading to cancer formation include the occupation and others like medical doctors, tobacco smoking and various anxieties/stresses. (T.T.)

  17. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian national dose registry of radiation workers

    International Nuclear Information System (INIS)

    The purpose of our study was to assess the risk of cardiovascular disease (CVD) mortality in a Canadian cohort of 337 397 individuals (169 256 men and 168 141 women) occupationally exposed to ionizing radiation and included in the National Dose Registry (NDR) of Canada. Material and Methods: Exposure to high doses of ionizing radiation, such as those received during radiotherapy, leads to increased risk of cardiovascular diseases. The emerging evidence of excess risk of CVDs after exposure to doses well below those previously considered as safe warrants epidemiological studies of populations exposed to low levels of ionizing radiation. In the present study, the cohort consisted of employees at nuclear power stations (nuclear workers) as well as medical, dental and industrial workers. The mean whole body radiation dose was 8.6 mSv for men and 1.2 mSv for women. Results: During the study period (1951 - 1995), as many as 3 533 deaths from cardiovascular diseases have been identified (3 018 among men and 515 among women). In the cohort, CVD mortality was significantly lower than in the general population of Canada. The cohort showed a significant dose response both among men and women. Risk estimates of CVD mortality in the NDR cohort, when expressed as excess relative risk per unit dose, were higher than those in most other occupational cohorts and higher than in the studies of Japanese atomic bomb survivors. Conclusions: The study has demonstrated a strong positive association between radiation dose and the risk of CVD mortality. Caution needs to be exercised when interpreting these results, due to the potential bias introduced by dosimetry uncertainties, the possible record linkage errors, and especially by the lack of adjustment for non-radiation risk factors. (authors)

  18. Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials

    International Nuclear Information System (INIS)

    Synchrotron radiation is an innovative tool for the treatment of brain tumors. In the stereotactic synchrotron radiation therapy (SSRT) technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high atomic number (Z) element and it is irradiated in stereotactic conditions from several entrance angles. The aim of this work was to assess dosimetric properties of the SSRT for preparing clinical trials at the European Synchrotron Radiation Facility (ESRF). To estimate the possible risks, the doses received by the tumor and healthy tissues in the future clinical conditions have been calculated by using Monte Carlo simulations (PENELOPE code). The dose enhancement factors have been determined for different iodine concentrations in the tumor, several tumor positions, tumor sizes, and different beam sizes. A scheme for the dose escalation in the various phases of the clinical trials has been proposed. The biological equivalent doses and the normalized total doses received by the skull have been calculated in order to assure that the tolerance values are not reached.

  19. Radiation dose distribution to CEGB workers in 1978

    International Nuclear Information System (INIS)

    The ICRP system of dose limitation requires that few if any workers are exposed at the dose limit of 5 rem per year. The dose limit was fixed on the assumption that risks would be acceptable if doses were distributed among classified workers in a manner comparable with a reference log-normal distribution published by the United Nations Scientific Committee on the Effects of Ionizing Radiation. Although it is well-known from earlier publications that the doses to classified workers at CEGB nuclear sites are low, a further analysis shows that they are distributed according to a log-normal function with parameters showing a distribution of risks considerably better than those considered acceptable by ICRP. In 1978 the collective dose to 6,856 classified workers on CEGB nuclear sites was 1,635 man-rem. The mean individual dose was 0.24 rem, corresponding to 0.41 man-rem per MW. The log normal distribution of individual doses shows a median dose of 0.15 rem, compared with a median dose of 0.5 rem in the UNSCEAR reference distribution. (author)

  20. Radiation Dose from Voiding Cystourethrography (VCUG) Examination in Children

    International Nuclear Information System (INIS)

    Introduction: The purpose of this study is to determine entrance skin dose (ESD) from fluoroscopy and radiography procedures in voiding cystourethrography (VCUG) studies of pediatric patients by dose-area product (DAP) recording. Methods: Radiation doses received by 70 patients underwent VCUG procedures were determined by the DAP Meter, Wellh?fer Dosimetrie GmbH, Germany) directly coupled to the x-ray tube window (Philips Omni Diagnost Eleva) and an electrometer connected to a computer for data collection. The study revealed the radiation dose for VCUG and the baseline data on the entrance skin dose, ESD, dose area-product (DAP) and the effective dose, E, to establish local reference dose levels for VCUG in pediatric patients. Results: The mean(minimum-maximum) ESD, DAP and the effective dose of pediatric patients in 4 age ranges were 3.41(1-9) mGy, 46.58 (21.90-158.90) cGycm2 and 0.10(0.05-0.33) mSv for 0- 1 years, 6.80(2-16) mGy, 115.55 (20.70-258.70)cGycm2 and 0.24(0.04-0.54) mSv for >1-5 years, 11.76 (3-23) mGy, 292.28 (88.90-593.50)cGycm2 and 0.61(0.19-1.25) mSv for >5-10 years, and 20.50(10-42) mGy, 575.98(255.60-1247.80) cGycm2 and 1.12(0.54-2.62) mSv for >10-15 years respectively. Discussion: The dose levels for VCUG as recommended by the national reference doses (NRDs) of UK are classified at patient age of 0-1 years, 90 cGy.cm2, >1-5 years, 110 cGy.cm2, >5-10 years, 210 cGy.cm2 and >10-15 years, 470 cGy.cm2 respectively. Conclusions: The mean DAP of pediatric patients were higher than the dose level as recommended by NRD at the age range >1-5, >5-10 and >10-15 years. The limitation in this study was the non uniform in the number of patients at the higher age. Attempts could be made to lower the radiation dose to avoid the higher risk of developing radiation-induced cancer in children. (author)

  1. Hematological effects of low dose radiation

    International Nuclear Information System (INIS)

    Results of an analysis of the leukemia incidence in children of Belarus in 1979-2006 are discussed in the present report. It was found that approximately 244 (95% CI from 149 to 348) additional leukemias manifested in children of Belarus in 1986-1997. Assuming radiation origin of additional leukemias the following risks were established in the report for this period: RR = 1.28 (95% CI from 1.17 to 1.39); ERR = 17.7% per 1 mSv (95% CI from 10.8 to 25.2% per 1 mSv), EAR = 57/104 PYSv (95% CI from 34.8 to 81.3/ 104 PYSv), AR = 21.6% (95%CI is from 13.2 to 30.8%). (authors)

  2. Ovarian radiation dose during dynamic cystourethrography using videorecording and photofluorography

    Energy Technology Data Exchange (ETDEWEB)

    Westby, M.; Sandbu, J.; Jahren, R.; Asmussen, M.

    The ovarian radiation dose in dynamic cystourethrography was estimated by thermoluminescence dosimetry in a phantom and in 26 patients. The urodynamic examination technique was standardized and included fluoroscopy with videorecording and rapid sequence 100 mm fluorography. The examination was performed in the lateral position with dosimeters in the vagina, uterine cavity and rectum. The total dose in the midline was 13 mGy per examination, which compares with 12 mGy in urography.

  3. Ovarian radiation dose during dynamic cystourethrography using videorecording and photofluorography

    International Nuclear Information System (INIS)

    The ovarian radiation dose in dynamic cystourethrography was estimated by thermoluminescence dosimetry in a phantom and in 26 patients. The urodynamic examination technique was standardized and included fluoroscopy with videorecording and rapid sequence 100 mm fluorography. The examination was performed in the lateral position with dosimeters in the vagina, uterine cavity and rectum. The total dose in the midline was 13 mGy per examination, which compares with 12 mGy in urography. (orig.)

  4. Total ionizing dose radiation performance of ONO antifuse fpga

    International Nuclear Information System (INIS)

    The ONO antifuse configuration was discribed. The Conduction mechanism of electron-hole pairs due to ionizing in the ONO material was analyzed.The TID(Total Ionizing Dose) Radiation performance of ONO antifuse FPGA (A1460A and A40MX04) were test ,the current as a function of total dose and function failure point were obtained. All of results proved that this ONO antifuse have better TID performance than general single SiO2. (authors)

  5. Effects of sterilising doses of gamma radiation on drugs

    International Nuclear Information System (INIS)

    Effects of gamma radiation on drugs in solid state and aqueous solution were studied after application of doses of 2.5 and 5.0 Mrad (dose rate 0.1 Mrad/hour). Whereas solid substances only showed colour changes dissolved substances were decomposed to a somewhat higher degree than by heating in an autoclave at a temperature of 120 0C. (author)

  6. Radiation dose from Chernobyl forests: assessment using the 'forestpath' model

    International Nuclear Information System (INIS)

    Contaminated forests can contribute significantly to human radiation dose for a few decades after initial contamination. Exposure occurs through harvesting the trees, manufacture and use of forest products for construction materials and paper production, and the consumption of food harvested from forests. Certain groups of the population, such as wild animal hunters and harvesters of berries, herbs and mushrooms, can have particularly large intakes of radionuclides from natural food products. Forestry workers have been found to receive radiation doses several times higher than other groups in the same area. The generic radionuclide cycling model 'forestpath' is being applied to evaluate the human radiation dose and risks to population groups resulting from living and working near the contaminated forests. The model enables calculations to be made to predict the internal and external radiation doses at specific times following the accident. The model can be easily adjusted for dose calculations from other contamination scenarios (such as radionuclide deposition at a low and constant rate as well as complex deposition patterns). Experimental data collected in the forests of Southern Belarus are presented. These data, together with the results of epidemiological studies, are used for model calibration and validation

  7. Radiation doses and associated parameters in the Western Australian mineral sand industry

    International Nuclear Information System (INIS)

    Since 1983 companies involved in the mining and processing of mineral sands in Western Australia have been required to comply with radiation protection provisions contained within codes of practice adopted under the Mines Regulation Act (1976). Since 1986 the Department of Minerals and Energy of Western Australia has been directly administering the provisions of the Commonwealth of Australia publication: Code of Practice on Radiation Protection in the Mining and Milling of Radioactive Ores (1987). This Code requires monitoring, assessment and reporting of the radiation doses received by workers. Reports of the results of monitoring and association radiation protection activities are submitted on an annual basis to the Department of Minerals and Energy. This paper summarises those monitoring results and identifies any trends in radiological conditions in the mineral sands industry work environment since 1986. Over the last seven years the number of employees in the industry has increased by 73%; the number of designated employees has decreased by 20% and the collective effective dose equivalent to the designated employee workforce has decreased by 74%. Reasons for this improvement will be described. The parameters and assumptions used in determining radiation doses for employees in this industry are reviewed and the implications of the recently adopted ICRP Task Group Lung Model for intake of thorium dust will be discussed. 16 refs., 5 tabs., 6 figs

  8. Update on radiation safety and dose reduction in pediatric neuroradiology

    International Nuclear Information System (INIS)

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  9. Radiation dose required for the vulcanization of natural rubber latex

    International Nuclear Information System (INIS)

    The radiation dose required for the vulcanization of natural rubber latex was optimized. To enhance the crosslinking, several sensitizers were used. Among the sensitizers, n-butyl acrylate (n-BA) alone was found to be the best one. The effects of concentration of n-BA, mixing and standing time of latex with n-BA on the tensile properties of latex film were investigated. 12 kGy radiation dose, 5 phr n-BA and 30-40 min of mixing time were found to be the optimum conditions for irradiation. (author)

  10. Radiation processing and high-dose dosimetry at ANSTO

    International Nuclear Information System (INIS)

    The Radiation Technology group at ANSTO is part of the Physics Division and provides services and advice in the areas of gamma irradiation and high-dose dosimetry. ANSTO's irradiation facilities are designed for maximum dose uniformity and provide a precision irradiation service unique in Australia. Radiation Technology makes and sells reference and transfer standard dosimeters which are purchased by users and suppliers of commercial irradiation services in Australia and the Asia-Pacific region. A calibration service is also provided for dosimeters purchased from other suppliers

  11. Justification of permissible doses of radiation during prolonged space flights

    Science.gov (United States)

    Grigoryev, Y. G.; Abel, K.; Varteres, V.; Nilolov, N.; Karpfel, Z.; Prislichka, M.

    1974-01-01

    Maximum permissible radiation doses for astronauts are reported based on chronic radiation experiments with dogs and actual measurements during space flights. Observed were clinical conditions, peripheral blood and marrow, the state of the cardiovascular system, higher nervous activity, the state of the vestibular analyzer, the organ of vision, spermatogenic function and the ability to reproduce, the state of immunity and a number of biological indices in blood and tissues. The following maximum permissible doses are determined as preliminary values: 1 year of flight - 200 rem; 2 years of flight - 250 rem; 3 years of flight - 275 rem.

  12. Update on radiation safety and dose reduction in pediatric neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, Mahadevappa [Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2015-09-15

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  13. Annual cycle of solar radiation in a deciduous forest

    International Nuclear Information System (INIS)

    Periodic solar radiation measurements within and above an east Tennessee Liriodendron forest and continuous records of insolation from a nearby NOAA weather station were used to derive an approximation of the animal radiation regime within and above the deciduous forest. The interaction of changing solar elevations, insolation, and forest phenology are shown to control the radiation climate within the forest. Maximum radiation penetrates the forest in early spring as solar paths rise higher in the sky each day just prior to leaf expansion. After leaf expansion begins, average radiation received within the forest decreases rapidly despite continued increases in solar elevations and daily insolation. This forest attains full leaf in early June and from then until the advent of leaf abscission near the autumnal equinox, forest structure remains relatively static. Solar elevations and daily insolation decline following the summer solstice, however, and as a result, average radiation penetrating the forest slowly declines throughout the summer reaching an annual minimum in early autumn. With leaf fall, slightly increased amounts of radiation penetrate the forest but as within-forest solar paths continue to lengthen, radiation within the forest again declines. Minimum amounts of solar radiation penetrate the leafless forest around the winter solstice

  14. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  15. Effect of staff training on radiation dose in pediatric CT

    International Nuclear Information System (INIS)

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice

  16. Measurement of radiation dose in paediatric micturating cystourethrography

    International Nuclear Information System (INIS)

    Paediatrics and children have been recognized that they have a higher risk of developing cancer from the radiation than adults. Therefor, increased attention has been directed towards the dose to the patients. Micturating Cystourethrography (MCU) is a commonly use ed fluoroscopic procedure in children and commonly used to detect the vesicoureteric reflux (VUR) and show urethral and bladder and abnormalities. This study aims to measure the pediatric patients undergoing MCU. The study was carried out in two hospitals in Khartoum. The entrance surface dose (ESD) was determined determined by indirect method for 45 children. Furthermore, the mean ESD, sd and range resulting from MCU procedures has been estimated to be 0.7±.5 (0.2-2.5) mGy for the total patient population. The radiation dose to the patients is well within established safety limits, in the light of the current practice. The radiation dose results of this study are appropriate for adoption as the local initial dose reference level (DRL) value for this technique. The data presented in this study showed our doses to be approximately 50% lower than the lower mean values presented in the literature.(Author)

  17. Problems linked to effects of ionizing radiations low doses

    International Nuclear Information System (INIS)

    The question of exposure to ionizing radiations low doses and risks existing for professional and populations has been asked again, with the recommendations of the International Commission of Radiation Protection (ICRP) to lower the previous standards and agreed as guides to organize radiation protection, by concerned countries and big international organisms. The sciences academy presents an analysis which concerned on epidemiological and dosimetric aspects in risk estimation, on cellular and molecular aspects of response mechanism to irradiation. The observation of absence of carcinogen effects for doses inferior to 200 milli-sieverts and a re-evaluation of data coming from Nagasaki and Hiroshima, lead to revise the methodology of studies to pursue, to appreciate more exactly the effects of low doses, in taking in part, particularly, the dose rate. The progress of molecular and cellular biology showed that the extrapolation from high doses to low doses is not in accordance with actual data. The acknowledge of DNA repair and carcinogenesis should make clearer the debate. (N.C.). 61 refs., 9 annexes

  18. Radiation dose evaluation during X-ray examinations in human medicine, dentistry, veterinary medicine and border controls using ionizing radiation

    International Nuclear Information System (INIS)

    The report on radiation dose evaluation during X-ray examinations includes the following chapters: (1) Scope of the project. (2) Measuring instruments. (3) Part I: Radiation dose evaluation during X-ray examinations in human medicine, dentistry, veterinary medicine. (4) Radiation dose evaluation during X-ray examinations during border controls using ionizing radiation. (5) Summary of results.

  19. Radiation doses in adults and children in standardized diagnostic radiology

    International Nuclear Information System (INIS)

    For comparison of radiation exposure and risk in different diagnostic procedures for adults and children dose measurements and calculations of organs with special risk were carried out. Parameters of image formation influencing image quality as well as of exposure concerning infants and children are recorded and discussed as to radiation exposure and protection. Conclusions are drawn with respect to systems of image formation and to standards of examination and quality assurance

  20. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  1. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  2. Environmental policy. Ambient radioactivity levels and radiation doses in 1998

    International Nuclear Information System (INIS)

    The report contains information on the natural (background) radiation exposure (chapter II), the natural radiation exposure as influenced by anthropogenic effects (chapter III), the anthropogenic radiation exposure (chapter IV), and the radiation doses to the environment and the population emanating from the Chernobyl fallout (chapter V). The natural radiation exposure is specified referring to the contributions from cosmic and terrestrial background radiation and intake of natural radioactive substances. Changes of the natural environment resulting from anthropogenic effects (technology applications) inducing an increase in concentration of natural radioactive substances accordingly increase the anthropogenic radiation exposure. Indoor air radon concentration in buildings for instance is one typical example of anthropogenic increase of concentration of natural radioactivity, primarily caused by the mining industry or by various materials processing activities, which may cause an increase in the average radiation dose to the population. Measurements so far show that indoor air concentration of radon exceeds a level of 200 Bq/m3 in less than 2% of the residential buildings; the EUropean Commission therefore recommends to use this concentration value as a maximum value for new residential buildings. Higher concentrations are primarily measured in areas with relevant geological conditions and abundance of radon, or eg. in mining areas. (orig./CB)

  3. Calibration of high-dose radiation facilities (Handbook)

    International Nuclear Information System (INIS)

    In India at present several high intensity radiation sources are used. There are 135 teletheraphy machines and 65 high intensity cobalt-60 sources in the form of gamma chambers (2.5 Ci) and PANBIT (50 Ci). Several food irradiation facilities and a medical sterilization plant ISOMED are also in operation. The application of these high intensity sources involve a wide variation of dose from 10 Gy to 100 kGy. Accurate and reproducible radiation dosimetry is essential in the use of these sources. This handbook is especially compiled for calibration of high-dose radiation facilities. The first few chapters discuss such topics as interaction of radiation with matter, radiation chemistry, radiation processing, commonly used high intensity radiation sources and their special features, radiation units and dosimetry principles. In the chapters which follow, chemical dosimeters are discussed in detail. This discussion covers Fricke dosimeter, FBX dosimeter, ceric sulphate dosimeter, free radical dosimetry, coloured indicators for irrdiation verification. A final chapter is devoted to practical hints to be followed in calibration work. (author)

  4. The relevance of radiation induced bystander effects for low dose radiation carcinogenic risk

    International Nuclear Information System (INIS)

    Full text: Where epidemiology studies lack the ability to prescribe radiation doses, customise sample sizes and replicate findings, radiobiology experiments provide greater flexibility to control experimental conditions. This control simplifies the process of answering questions concerning carcinogenic risk after low dose radiation exposures. However, the flexibility requires critical evaluation of radiobiology findings to ensure that the right questions are being asked, the experimental conditions are relevant to human exposure scenarios and that the data are cautiously interpreted in the context of the experimental model. In particular, low dose radiobiology phenomena such as adaptive responses, genomic instability and bystander effects need to be investigated thoroughly, with continual reference to the way these phenomena might occur in the real world. Low dose radiation induced bystander effects are of interest since their occurrence in vivo could complicate the shape of the radiation dose-response curve in the low dose range for a number of biological endpoints with subsequent effects on radiation-induced cancer risk. Conversely, radiation-induced abscopal effects implicate biological consequences of radiation exposure outside irradiated volumes, and complicate the notion of effective dose calculations. Achieving a consensus on the boundaries that distinguish the radiobiology phenomena of bystander and abscopal effects will aid progress towards understanding their relevance to in vivo radiation exposures. A proposed framework for discussing bystander effects and abscopal effects in their appropriate context will be outlined, with a discussion on the future investigation of radiation-induced bystander effects. Such frameworks can assist the integration of results from experimental radiobiology to risk evaluation and management practice. This research was funded by the Low Dose Radiation Research Program, BioI. and Environ. Research, US Dept. of Energy, Grant DE

  5. The assessment of personal dose due to external radiation

    International Nuclear Information System (INIS)

    The fundamental basis of thermoluminescent dosimetry (TLD) is discussed and a number of considerations in the measurement of thermoluminescence described, with particular reference to CaSO4:Dy. The steps taken to convert a thermoluminescence measurement to an exposure and then an absorbed dose are outlined. The calculation of effective dose equivalents due to external exposure to γ-radiation in a number of situations commonly encountered in a uranium mine is discussed. Factors which may affect the accuracy of external dose assessments are described

  6. Implementation of ICRP-60 recommendations on dose limits to radiation workers in India

    International Nuclear Information System (INIS)

    The handling of radioactive material and radiation generating plants in India is regulated by the Atomic Energy Act, 1962 and rules issued under the Act. The Atomic Energy Regulatory Board enforces the rules. Currently, there are about 40,000 radiation workers in the country. Nearly half of them are employed in nuclear installations. During 1989, the Board considered the impact of restricting the maximum individual exposure to different values of dose limits. Through this analysis, the Board alerted all radiation users including persons responsible for radiation safety in nuclear facilities. When ICRP published ICRP-60, the Board issued directives to all radiation installations reducing the dose limit to occupational workers in a phased manner (40 mSv for 1991, 35 mSv for 1992 and 30 mSv for 1993). To meet the recommendations of ICRP-60, AERB issued a directive for the five year block 1994-1998, restricting the cumulative effective dose constraint to one hundred milliSievert (100 mSv) for individual radiation workers. Also, the annual effective dose to individual workers in any calendar year during the five-year block was restricted to thirty milliSievert (30 mSv). The stipulations of AERB are thus more conservative than those of ICRP. There was near total compliance with the dose limits by radiation installations in the country. For instance, in 1989, the number of radiation workers in nuclear power plants, who exceeded the dose level of 20 mSv/year was 9% of the total. This declined gradually to 2.2% in 1993 and 0.3% in 1997. During 1998, only 9 out of 10,145 exceeded 20 mSv/year. This has been achieved by the concerted efforts of the management, health physics staff and radiation workers. The health physicists regulated the radiation doses to workers by issuing work permits when the workers are assigned any job in high radiation areas. Appropriate training programmes are also in place. The broad guidelines to regulate radiation exposures in nuclear facilities

  7. Hanford Site Annual Report Radiological Dose Calculation Upgrade Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.

    2010-02-28

    Operations at the Hanford Site, Richland, Washington, result in the release of radioactive materials to offsite residents. Site authorities are required to estimate the dose to the maximally exposed offsite resident. Due to the very low levels of exposure at the residence, computer models, rather than environmental samples, are used to estimate exposure, intake, and dose. A DOS-based model has been used in the past (GENII version 1.485). GENII v1.485 has been updated to a Windows®-based software (GENII version 2.08). Use of the updated software will facilitate future dose evaluations, but must be demonstrated to provide results comparable to those of GENII v1.485. This report describes the GENII v1.485 and GENII v2.08 dose exposure, intake, and dose estimates for the maximally exposed offsite resident reported for calendar year 2008. The GENII v2.08 results reflect updates to implemented algorithms. No two environmental models produce the same results, as was again demonstrated in this report. The aggregated dose results from 2008 Hanford Site airborne and surface water exposure scenarios provide comparable dose results. Therefore, the GENII v2.08 software is recommended for future offsite resident dose evaluations.

  8. Characteristics of radiation dose rate distribution in living environment

    International Nuclear Information System (INIS)

    Natural radiation survey has been performed to characterize the gamma and cosmic ray dose rate distribution in living environment. Various places/environments which we encounter in our daily life were measured with high precision dose rate meter equipped with a pulse height spectrum-to-dose rate converter and a 7.6 cm diameter spherical NaI (Tl) scintillation detector. Several aspects of dose rate distribution have been found through these data; typical and interesting examples are as follows. (1) Gamma ray dose rates were measured inside and outside wooden houses in snowy season and in snowless season to see the effect of snow cover to the diminution of terrestrial gamma ray dose rate. The snow cover turned to be less effective inside a house than outside for the diminution of gamma ray dose rate. (2) Gamma ray dose rates were measured in a 2-storied concrete residence during its construction. The dose rate increased with progressing the construction, which implies that the indoor gamma ray dose rate depends not only on the building material but also on the building structure, that is the solid angle to the natural gamma ray sources such as the floor, ceiling and walls. (3) Continuous measurement was performed while a person made a business trip to Tokyo. Both gamma and cosmic ray dose rate showed a marked variation from place to place, which was found to be caused by the change of environmental conditions such as the nature and geometrical arrangement of the surrounding materials. Based on these data it was known that the gamma ray dose rate generally shows upward tendency and the cosmic ray dose rate downward in artificial environment compared with natural environment. (author)

  9. Estimating Annual Individual Doses for Evacuees Returning Home to Areas Affected by the Fukushima Nuclear Accident.

    Science.gov (United States)

    Yajima, Kazuaki; Kurihara, Osamu; Ohmachi, Yasushi; Takada, Masashi; Omori, Yasutaka; Akahane, Keiichi; Kim, Eunjoo; Torikoshi, Masami; Yonehara, Hidenori; Yoshida, Satoshi; Sakai, Kazuo; Akashi, Makoto

    2015-08-01

    To contribute to the reconstruction and revitalization of Fukushima Prefecture following the 2011 nuclear power disaster, annual individual doses were estimated for evacuees who will return home to Tamura City, Kawauchi Village, and Iitate Village in Fukushima. Ambient external dose rates and individual doses obtained with personal dosimeters were measured at many residential and occupational sites throughout the study areas to obtain fundamental data needed for the estimation. The measurement results indicated that the ratio of individual dose based on a personal dosimeter to the ambient external dose measurement was 0.7 with 10% uncertainty. Multiplying the ambient external dose by 0.7 may be an appropriate measure of the effective dose to an individual in the investigated area. Annual individual doses were estimated for representative lifestyles and occupations based on the ambient external dose rates at the measurement sites, taking into account the relationship between the ambient external dose and individual dose. The results were as follows: 0.6-2.3 mSv y in Tamura, 1.1-5.5 mSv y in Kawauchi, and 3.8-17 mSv y in Iitate. For all areas investigated, the estimated dose to outdoor workers was higher than that to indoor workers. Identifying ways to reduce the amount of time that an outdoor worker spends outdoors would provide an effective measure to reduce dose. PMID:26107433

  10. Effect of radiation dose on patients' immune response

    International Nuclear Information System (INIS)

    This paper studies the relations between dose delivered and changes in T-cell subsets as an expression of the effect of radiation therapy on patients' immune response. One hundred twenty-eight patients were studied before and 6 weeks after irradiation. Blood samples were analyzed by flow cytometry. A dose effect was noted wherein the OKT4 helper/OKT8 suppressor cell ratio was reduced by more than 10% in 79% of patients receiving a dose greater than 6,000 cGy as compared with 54% of patients given a lower dose (P = .01). Several variables, including sex, age, tumor site, and cancer burden, were analyzed. Male subjects showed a greater reduction of OKT4 helper cells at doses greater than 6,000 cGy-73%, versus 47% in female subjects (P = .05)

  11. Assessment of annual effective dose from natural radioactivity intake through wheat grain produced in Faisalabad, Pakistan

    International Nuclear Information System (INIS)

    Wheat is staple food of the people of Pakistan. Phosphate fertilizers, used to increase the yield of wheat, enhance the natural radioactivity in the agricultural fields from where radionuclides are transferred to wheat grain. A study was, therefore, carried out to investigate the uptake of radioactivity by wheat grain and to determine radiation doses received by human beings from the intake of foodstuffs made of wheat grain. Wheat was grown in a highly fertilized agricultural research farm at the Nuclear Institute of Agriculture and Biology (NIAB), Faisalabad, Pakistan. The activity concentration of 40K, 226Ra and 232Th was measured in soil, single superphosphate (SSP) fertilizer, and wheat grain using an HPGe-based gamma-ray spectrometer. Soil to wheat grain transfer factors determined for 40K, 226Ra and 232Th were 0.118 ± 0.021, 0.022 ± 0.004 and 0.036 ± 0.007, respectively, and the annual effective dose received by an adult person from the intake of wheat products was estimated to be 217 μSv. (author)

  12. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    At high radiation doses, breaks in the DNA are considered the critical lesions in initiation of radiation- induced cancer. However, at the very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation may play a role in radiation responses. DNA methylation is the addition of a methyl group to cytosine in the DNA, usually where a cytosine is adjacent to a guanine (CpG). Methylation affects the way in which genes are read, and is inherited from cell to cell on replication. It is known that high dose radiation can cause changes in methylation in the genome but less is known about the effect of low dose radiation on methylation. We developed a sensitive assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-1(LINE1) that comprise a very large proportion of the mouse and human genomes. Using bisulphite modification followed by quantitative real-time polymerase chain reaction (PCP) and high- resolution melt analysis, a very large pool of DNA sequences from throughout the genome can be studied indicating gain or loss of methylation. We validated the assay in vitro using the chemical demethylating agent 5'-aza-2' -deoxycytidine with changes at as few as 3% of CpG's being reproducibly detected. We have demonstrated a difference in the baseline levels of in vivo DNA methylation between male and female mice and between different tissues. Our initial results suggest no significant short-term or long-term changes in global DNA methylation after low dose whole-body X-radiation of 10 -Gy or 10 mGy, with a significant transient increase in DNA methylation observed 1 day after a high dose of 1 Gy. If the low radiation doses tested are inducing changes in global DNA methylation, these would appear to be smaller than the natural variation observed between the sexes and following the general stress

  13. Effect of low dose ionizing radiation upon concentration of

    Energy Technology Data Exchange (ETDEWEB)

    Viliae, M.; Kraljeviae, P.; Simpraga, M.; Miljaniae, S.

    2004-07-01

    It is known that low dose ionizing radiation might have stimulating effects (Luckey, 1982, Kraljeviae, 1988). This fact has also been confirmed in the previous papers of Kraljeviae et al. (2000-2000a; 2001). Namely, those authors showed that irradiation of chicken eggs before incubation by a low dose of 0.15 Gy gamma radiation increases the activity aspartateaminotrasferases (AST) and alanine-aminotransferases (ALT) in blood plasma of chickens hatched from irradiated eggs, as well as growth of chickens during the fattening period. Low doses might also cause changes in the concentration of some biochemical parameters in blood plasma of the same chickens such as changes in the concentration of total proteins, glucose and cholesterol. In this paper, an attempt was made to investigate the effects of low dose gamma radiation upon the concentration of sodium and potassium in the blood plasma of chickens which were hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy. Obtained results were compared with the results from the control group (chickens hatched from nonirradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from heart, and later from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of sodium and potassium was determined spectrophotometrically by atomic absorbing spectrophotometer Perkin-Elmer 1100B. The concentration of sodium and potassium in blood plasma of chickens hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy indicated a statistically significant increase (P>0.01) only on the first day of the experiment. Obtained results showed that irradiation of eggs on the 19th day of incubation by dose of 0.15 Gy gamma radiation could have effects upon the metabolism of electrolytes in chickens. (Author)

  14. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm3). 15 references, 7 figures, 6 tables

  15. Evaluation of radiation doses and dose conversion coefficients for pediatric cardiac catheterization procedures

    International Nuclear Information System (INIS)

    Pediatric cardiac catheterization covers both diagnostic and therapeutic procedures that range from simple to complex and can subject pediatric patients to varying radiation doses. There is limited information on radiation doses delivered by pediatric cardiac catheterization procedures and there is no recommended reference dose levels established yet. The study aims to determine the variation in patient radiation doses in terms of dose area product values and effective doses; determine factors that contribute to high doses to optimize protection; and determine the effective dose conversion coefficient. It is also aimed to provide data to help in the establishment of reference dose levels. A total of 761 pediatric patients belonging to age groups 0, 1, 5 and 10 years who undergo diagnostic and three selected therapeutic procedures at King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia are included in the study. Therapeutic procedures include COA, PDA and pulmonary procedures. Fluoroscopy and cine radiography are used in all procedures. Patient demography (weight, age, gender and height), radiographic technique factors, fluoroscopy and cine time, frame rate, and dose area product values are taken from patients records. Results show that the kVp varies by ± 1 kVp between procedures and by ± 6 kVp between AP and oblique + lateral projection for all procedures. The mA for lateral and oblique is about 40-70% higher than for AP. Effective doses for each procedure are estimated from the DAP values. The mean DAP and effective dose per procedure are analyzed for correlation with patient equivalent cylindrical diameter, weight, fluoroscopy time and number of frames. Initial results show that age group 0 and 1 year old have the highest mean value for effective dose (11.3 and 13.8 mSv respectively) for pulmonary procedure. Pooling all ages for each procedure, the pulmonary and PDA procedures gave the highest mean values for effective dose (10 and 8.2 m

  16. Low doses effects of ionizing radiation on Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    The exposure of living cells to low doses of ionizing radiation induce in response the activation of cellular protection mechanisms against subsequent larger doses of radiation. This cellular adaptive response may vary depending on radiation intensity and time of exposure, and also on the testing probes used whether they were mammalian cells, yeast, bacteria and other organisms or cell types. The mechanisms involved are the genome activation, followed by DNA repair enzymes synthesis. Due to the prompt cell response, the cell cycle can be delayed, and the secondary detoxification of free radicals and/or activation of membrane bound receptors may proceed. All these phenomena are submitted to intense scientific research nowadays, and their elucidation will depend on the complexity of the organism under study. In the present work, the effects of low doses of ionizing radiation (gamma rays) over a suspension of the yeast Saccharomyces cerevisiae (Baker's yeast) was studied, mainly in respect to survival rate and radio-adaptive response. At first, the yeast surviving curve was assessed towards increasing doses, and an estimation of Lethal Dose 50 (LD50) was made. The irradiation tests were performed at LINAC (electrons Linear Accelerator) where electron energy reached approximately 2.65 MeV, and gamma-radiation was produced for bremsstrahlung process over an aluminium screen target. A series of experiments of conditioning doses was performed and an increment surviving fraction was observed when the dose was 2.3 Gy and a interval time between this and a higher dose (challenging dose) of 27 Gy was 90 minutes. A value of 58 ± 4 Gy was estimated for LD50, at a dose rate of 0.44 ± 0.03 Gy/min These quantities must be optimized. Besides data obtained over yeast survival, an unusual increasing amount of tiny yeast colonies appeared on the agar plates after incubation, and this number increased as increasing the time exposure. Preliminary results indicate these colonies as

  17. 14. annual meeting of the European Society of Radiation Biology

    International Nuclear Information System (INIS)

    Under the aspect of clinical application, findings of fundamental experiments on animals and cells are reported in which highly different radiation sources and doses were used. Novel and interesting results were obtained, in particular, with the application of pions and fast neutrons in the irradiation of tumour cells. (AJ)

  18. Cancer risk from low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auvinen, A.

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.).

  19. Detecting ionizing radiation with optical fibers down to biomedical doses

    Science.gov (United States)

    Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.

    2013-10-01

    We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.

  20. Cancer risk from low doses of ionizing radiation

    International Nuclear Information System (INIS)

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.)

  1. Problems of dose rate in radiation protection regulation

    International Nuclear Information System (INIS)

    Some modern problems of Radiation Safety Standards are discussed. It is known that Standards are based on the Linear-Non-Threshold Concept (LNTC) of radiation risk, which is now called by many experts as conservative. It is thought it is necessary to include in the Standards such factor as dose rate or duration of irradiation. Some model of effects of radiation exposure with taking into account the reparation of cell damage is presented. The practical method for assessment of effects of duration of irradiation on detriments is proposed.(author)

  2. A consideration of low dose radiation effects on human health

    International Nuclear Information System (INIS)

    On March 11, 2011, an earthquake categorized as 9 Mw occurred off the northeast coast of Japan. The subsequent destructive tsunami disabled emergency units of Fukushima Dai'ichi Nuclear Power Plant and caused partial meltdown of reactors and explosions. Resulting radiation releases forced large evacuations, bore concerns about food and water and fears against human health. In this manuscript, we described the effect of radiation, especially low dose radiation below 100 mSv, on cancer risk, focusing on fetuses and children. (author)

  3. Secondary radiation dose during high-energy total body irradiation

    International Nuclear Information System (INIS)

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: 56Mn in the stainless steel and 187W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.)

  4. Prenatal radiation exposure. Dose calculation; Praenatale Strahlenexposition. Dosisermittlung

    Energy Technology Data Exchange (ETDEWEB)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P. [University Hospital Witten/Herdecke, Wuppertal (Germany). Dept. of Diagnostic and Interventional Radiology; Roeser, A. [University Hospital Witten/Herdecke, Wuppertal (Germany). Dept. of Radiotherapy and Radio-Oncology

    2015-05-15

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  5. Radiation doses at high altitudes and during space flights

    International Nuclear Information System (INIS)

    There are three main sources of the radiation exposure during space flight and at high altitudes: galactic cosmic radiation; solar cosmic radiation; and the radiation of Earth's radiation belts. The first is coming to the Earth's surroundings from the deep cosmos, the second from the Sun. Two radiation belts are centered at thousands of km from the Earth's surface. All the three sources are briefly characterized to give a general idea on their composition, their variations over time and the level of exposure due to them. Radiation doses during space flights will be discussed in the second part of the invited paper, including the possible radiation barriers of long time space exploration missions. Particular attention will be devoted to the quantitative and qualitative characterization of radiation exposure on near-Earth orbits, both theoretical estimation as well as experimental data will be presented. Some remarks on radiation protection philosophy on the board of space vehicles will be also given. The problems concerning the radiation protection of air crew and passengers of subsonic and supersonic air transport will be discussed in the last part of the lecture. General characteristics of on-board radiation fields and their variations with the flight altitude, geomagnetic parameters of a flight and the solar activity will be presented, both based on the theoretical estimation and experimental studies. The questions concerning of aircrew and passengers radiation protection arising after the publication of ICRP 60 recommendations will be also arisen. Activities of different international bodies in this field will be mentioned, the approaches how to manage and check this type of radiation exposure will be presented and discussed. Some examples based on the author's personal experience will be given. (author)

  6. Systematic review on physician's knowledge about radiation doses and radiation risks of computed tomography

    International Nuclear Information System (INIS)

    Background: The frequent use of computed tomography is a major cause of the increasing medical radiation exposure of the general population. Consequently, dose reduction and radiation protection is a topic of scientific and public concern. Aim: We evaluated the available literature on physicians' knowledge regarding radiation dosages and risks due to computed tomography. Methods: A systematic review in accordance with the Cochrane and PRISMA statements was performed using eight databases. 3091 references were found. Only primary studies assessing physicians' knowledge about computed tomography were included. Results: 14 relevant articles were identified, all focussing on dose estimations for CT. Overall, the surveys showed moderate to low knowledge among physicians concerning radiation doses and the involved health risks. However, the surveys varied considerably in conduct and quality. For some countries, more than one survey was available. There was no general trend in knowledge in any country except a slight improvement of knowledge on health risks and radiation doses in two consecutive local German surveys. Conclusions: Knowledge gaps concerning radiation doses and associated health risks among physicians are evident from published research. However, knowledge on radiation doses cannot be interpreted as reliable indicator for good medical practice.

  7. Assessment of terrestrial gamma radiation doses for some Egyptian granite samples

    International Nuclear Information System (INIS)

    External exposures of population to ionising radiation due to naturally occurring radionuclides in sixty-three granite samples from three different locations in south eastern desert of Egypt were considered in this article. Average outdoor gamma dose rates in air were 190, 290 and 330 nGy h-1 for Elba, Qash Amir and Hamra Dome granites, respectively. The corresponding doses in indoor air are 270, 400 and 470 nGy h-1, respectively. These average values give rise to annual effective dose (outdoor, indoor and in total) 0.24, 1.4 and 1.6 mSv for Elba granite. For Qash Amir and Hamra Dome granites the corresponding values were 0.35, 2 and 2.3 mSv and 0.41, 2.3 and 2.7 mSv, respectively. (authors)

  8. Determination of eye lens doses and identification of risk groups among radiation exposed workers. An Austrian pilot study

    International Nuclear Information System (INIS)

    On European level, in 2014 the dose limit for the lens of the eye of radiation exposed workers has been reduced from 150 to 20 mSv per year (2013/59/Euratom). Data about eye lens exposition measured under realistic operational conditions of Austrian radiation exposed workers is sparse and there is no information to verify, if all professional groups identified to be at risk for elevated eye doses will remain below the new annual dose limit. Therefore, financed by the Austrian Workers Compensation Board, AUVA, a pilot study has been initiated to answer this question. Based on published information professional groups of radiation exposed workers and operational tasks with an enhanced risk of elevated eye lens doses have been identified. By dosimetric measurements with volunteers (forehead dose meters and parallel measurements with whole-body TL-dose meters above and under the lead apron) realistic lens doses will be estimated during selected radiation exposed tasks. Comparison of yielded doses will show whether a TLD outside the apron could serve as an alternative to forehead dose meters dedicated to measure eye lens doses. Measurements with leaded protective eyewear based on IEC61331 yield results for lead equivalent in good agreement with manufacturers' information. Results for eye lens doses determined by use of a RANDO head phantom and a standardized phantom simulating a body in a typical exposition situation for interventional radiologists show that wearing of leaded goggles allows for a 90% dose reduction. Under such conditions the eye lens dose is dominated by backscatter and stray radiation from the operator's head and patient body. This has to be considered for the evaluation of protective effectiveness for leaded eye wear.

  9. Radiation dose - the marine environment, a cause for concern

    International Nuclear Information System (INIS)

    The paper is concerned with the disposal of radioactivity into a marine environment, and the risks associated with a radiation dose to the general public. The Black report and the Holliday report are discussed; as well as risk factors, radiological protection, the recommendations of the International Commission on Radiological Protection, and marine disposal of radionuclides. (U.K.)

  10. Dose loading mathematical modelling of moving through heterogeneous radiation fields

    International Nuclear Information System (INIS)

    Software component for management of data on gamma exposition dose spatial distribution was created in the frameworks of the Ukryttya information model creation. Availability of state-of-the-art programming technologies (NET., ObjectARX) for integration of different models of radiation-hazardous condition to digital engineer documentation system (AutoCAD) was shown on the basis of the component example

  11. Use of glasses as radiation detectors for high doses

    International Nuclear Information System (INIS)

    Glass samples were tested in relation to the possibility of use in high dose dosimetry in medical and industrial areas. The main characteristics were determined: detection threshold, reproducibility, response to gamma radiation of 137Cs and 6 Co and thermal decay at ambient temperature, with the use of optical absorption and thermoluminesce techniques. (author)

  12. Megagray Dosimetry (or Monitoring of Very Large Radiation Doses)

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Uribe, R.M.; Miller, Arne

    A number of suitably calibrated plastic and dyed films and solid-state systems can provide mapping of very intense radiation fields with high spatial resolution and reasonable limits of uncertainty of absorbed dose assessment. Although most systems of this type suffer from rate dependence and...

  13. Integrated Worker Radiation Dose Assessment for the K Basins

    International Nuclear Information System (INIS)

    This report documents an assessment of the radiation dose workers at the K Basins are expected to receive in the process of removing spent nuclear fuel from the storage basins. The K Basins (K East and K West) are located in the Hanford 100K Area

  14. Population doses from naturally occurring radiation in Norway

    International Nuclear Information System (INIS)

    The main purpose of this work was to study the radiological consequences of the introduction of building materials with high concentrations of radioactivity and to analyse the impact of a reduction of the ventilation rates in houses on the population dose from inhalation of natural airborne radioactivity. The general problems of radioactivity in building materials are discussed. Measurements of radioactivity in building materials from different parts of the country are reported, together with theoretical calculations of the gamma doses in houses. These calculations are compared with experimental results and earlier measurements of the indoor gamma radiation in Norway. Measurements of the outdoor gamma radiation in different parts of Norway are presented. These results are used together with earlier measurements of the gamma radiation inside houses to calculate the average, and variations of population dose from this radiation. An experimental study on the radon concentrations inside different types of dwellings, and a discussion of the respiratory dose received by the inhalation of radon daughters is presented. Some factors that may have influence upon the radon concentrations are also discussed. A method for measurement of radon and thoron daughters in air is discussed. The possible radiological effects of an increased radon concentration in houses are discussed. (Auth.)

  15. Radiation Dose from Medical Imaging: A Primer for Emergency Physicians

    Directory of Open Access Journals (Sweden)

    Jesse G.A. Jones, MD

    2012-05-01

    Full Text Available Introduction: Medical imaging now accounts for most of the US population’s exposure to ionizingradiation. A substantial proportion of this medical imaging is ordered in the emergency setting. We aimto provide a general overview of radiation dose from medical imaging with a focus on computedtomography, as well as a literature review of recent efforts to decrease unnecessary radiation exposureto patients in the emergency department setting.Methods: We conducted a literature review through calendar year 2010 for all published articlespertaining to the emergency department and radiation exposure.Results: The benefits of imaging usually outweigh the risks of eventual radiation-induced cancer inmost clinical scenarios encountered by emergency physicians. However, our literature review identified3 specific clinical situations in the general adult population in which the lifetime risks of cancer mayoutweigh the benefits to the patient: rule out pulmonary embolism, flank pain, and recurrent abdominalpain in inflammatory bowel disease. For these specific clinical scenarios, a physician-patientdiscussion about such risks and benefits may be warranted.Conclusion: Emergency physicians, now at the front line of patients’ exposure to ionizing radiation,should have a general understanding of the magnitude of radiation dose from advanced medicalimaging procedures and their associated risks. Future areas of research should include thedevelopment of protocols and guidelines that limit unnecessary patient radiation exposure.

  16. Epistemological problems in assessing cancer risks at low radiation doses

    International Nuclear Information System (INIS)

    Historically, biology has not been subjected to any epistemological analysis as has been the case with mathematics and physics. Our knowledge of the effects in biological systems of various stimuli proves to be dualistic in a complementary (although not mutually exclusive) way, which bears resemblance to the knowledge of phenomena in quantum physics. The dualistic limbs of biological knowledge are the action of stimuli and the response of the exposed, biological system. With regard to radiogenic cancer, this corresponds to the action of the ionizations and the response of the exposed mammal to that action, respectively. The following conclusions can be drawn from the present analysis: Predictions as to radiogenic cancer seem often if not always to have neglected the response variability (variations in radiosensitivity) in individuals or among individuals in populations, i.e. the predictions have been based exclusively on radiation doses and exposure conditions. The exposed individual or population, however, must be considered an open statistical system, i.e. a system in which predictions as to the effect of an agent are only conditionally possible. The knowledge is inverse to the size of the dose or concentration of the active agent. On epistemological grounds, we can not gain knowledge about the carcinogenic capacity of very low (non-dominant) radiation doses. Based on the same principle, we can not predict cancer risks at very low (non-dominant) radiation doses merely on the basis of models, or otherwise interpolated or extrapolated high-dose effects, observed under special exposure conditions

  17. Individual radiation doses registration, management and information system

    International Nuclear Information System (INIS)

    Full text: One of the important parts of dose monitoring is proper recording of radiation doses and share of information with responsible personal and customers. International organizations stressing the necessity for harmonization of dose record keeping systems and specifying the data they may contain. Constant control on process of dosimeters issue, return, reading, data evaluation and personal dose calculation is essential part of quality system in dosimetry service. Keeping records of dosimeters wearing terms and conditions, damages, and other discharges can help dosimetry service to work with customers more efficiently. Analytical information, including time of analyses, the analyst names and analytical techniques used, analytical results, and quality assurance/quality control of such analyses could be used to improve quality of dosimetry service. The individual radiation doses registration, management and information system is developed and now is under implementation in Latvian Radiation Safety Centre. This system is more than just a computer based data storage system and displays results of all analyses, including laboratory reports and different summary tables or interpretive reports. Each step of dosimeters processing in the dosimetric laboratory is controlled and recorded. Contract and the other customer related information is stored in the system. Database uses standard MS Windows software, which makes it fully compatible with most computers. System is flexible, has friendly interface, possibility for modification of reports according to user requirements. Internet access option implemented in the system simplifies process information delivery to the customers. (author)

  18. On the radiation dose required to cure intracranial germinoma

    Energy Technology Data Exchange (ETDEWEB)

    Shibamoto, Yuta [Kyoto Univ. (Japan). Inst. for Frontier Medical Sciences

    1999-09-01

    Despite its high radiosensitivity, intracranial germinoma has most often been treated with a radiation dose of 50 Gy. Relatively old literature suggested that 50 Gy was appropriate, but several newer studies indicate that 40-45 Gy may be sufficient. Regarding this issue, we conducted a phase II study in which the total dose to the primary site was planned to be 40 Gy to tumors <2.5 cm in diameter, 45 Gy to 2.5-4 cm tumors, and 50 Gy to tumors >4 cm, using 1.6-1.8 Gy daily fractions. Thirty-eight patients were enrolled. Within a median follow-up period of 116 months, no patients developed local recurrence, and only two developed CSF dissemination. Intracranial germinoma <4 cm in diameter can be cured with radiation doses of 40-45 Gy. Radiotherapy alone with these reduced doses should be compared with the ongoing protocols of chemotherapy plus further reduced dose (24-30 Gy) radiation in future studies. (author)

  19. Proceedings of the 4th annual meeting of Japanese Society of Radiation Safety Management 2005 Kyoto

    International Nuclear Information System (INIS)

    This is the program and the proceedings of the 4th annual meeting of Japanese Society of Radiation Safety Management held from November 23rd through the 25th of 2005. The sessions held were: (1) Medical Exposure, (2) Environmental Measurement and Radiation Source Handling, (3) Radiation Measurement and Influence of Electromagnetic Waves, (4) Utilization of Irradiation, (5) Countermeasures against Contamination and Inspection of Contamination, (6) Imaging Plate, (7) Controlled Measurement and Dose Evaluation, (8) Working Environment Measurement 1, (9) Working Environment Measurement 2, (10) Establishment of Software and System, (11) Radiation Education 1, (12) Radiation Education 2, and (13) Exposure Reduction and Safety Control. The poster sessions held were: (1) Exposure Reduction and Radiation Evaluation, (2) Radiation Measurement and Influence of Electromagnetic Waves, (3) Education Training, (4) Safety Control, (5) Software, Data Handling, and Shielding Calculation, and (6) Environmental Radioactivity. The keynote lectures held were: (1) 'Situation of Medical Exposure' and (2) 'Cosmic Radiation While Boarding on Airplanes'. The symposia held were: (1) 'Food Irradiation' and (2) 'Life Science'. (S.K.)

  20. Dose build up correction for radiation monitors in high-energy Bremsstrahlung photon radiation fields

    International Nuclear Information System (INIS)

    Conventional radiation monitors have been found to underestimate the personal dose equivalent in the high-energy Bremsstrahlung photon radiation fields encountered near electron storage rings. Depth-dose measurements in a water phantom were carried out with a radiation survey meter in the Bremsstrahlung photon radiation fields from a 450 MeV electron storage ring to find out the magnitude of the underestimation. Dose equivalent indicated by the survey meter was found to build up with increase in thickness of water placed in front of the meter up to certain depth and then reduce with further increase in thickness. A dose equivalent build up factor was estimated from the measurements. An absorbed dose build up factor in a water phantom was also estimated from calculations performed using the Monte Carlo codes, EGS-4 and EGSnrc. The calculations are found to be in very good agreement with the measurements. The studies indicate inadequacy of commercially available radiation monitors for radiation monitoring within shielded enclosures and in streaming high-energy photon radiation fields from electron storage rings, and the need for proper correction for use in such radiation fields. (authors)

  1. Assessment of annual whole-body occupational radiation exposure in medical practice in Ghana (2000-09)

    International Nuclear Information System (INIS)

    Occupational exposure to radiation in medical practice in Ghana has been analysed for a 10-y period between 2000 and 2009. Monitored dose data in the medical institution in Ghana from the Radiation Protection Inst.'s database were extracted and analysed in terms of three categories: diagnostic radiology, radiotherapy and nuclear medicine. One hundred and eighty medical facilities were monitored for the 10-y period, out of which ∼98 % were diagnostic radiology facilities. Only one nuclear medicine and two radiotherapy facilities have been operational in the country since 2000. During the 10-y study period, monitored medical facilities increased by 18.8 %, while the exposed workers decreased by 23.0 %. Average exposed worker per entire medical institution for the 10-y study period was 4.3. Annual collective dose received by all the exposed workers reduced by a factor of 4 between 2000 and 2009. This is seen as reduction in annual collective doses in diagnostic radiology, radiotherapy and nuclear medicine facilities by ∼76, ∼72 and ∼55 %, respectively, for the 10-y period. Highest annual collective dose of 601.2 man mSv was recorded in 2002 and the least of 142.6 man mSv was recorded in 2009. Annual average values for dose per institution and dose per exposed worker decreased by 79 and 67.6 %, respectively between 2000 and 2009. Average dose per exposed worker for the 10-y period was least in radiotherapy and highest in diagnostic radiology with values 0.14 and 1.05 mSv, respectively. Nuclear medicine however recorded average dose per worker of 0.72 mSv. Correspondingly, range of average effective doses within the diagnostic radiology, radiotherapy and nuclear medicine facilities were 0.328-2.614, 0.383-0.728 and 0.448-0.695 mSv, respectively. Throughout the study period, an average dose per medical institution of 3 mSv and an average dose per exposed worker of 0.69 mSv were realised. Exposed workers in diagnostic radiology primarily received most of the

  2. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    Science.gov (United States)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence

  3. Dose response curves for effects of low-level radiation

    International Nuclear Information System (INIS)

    The linear dose-response model used by international committees to assess the genetic and carcinogenic hazards of low-level radiation appears to be the most reasonable interpretation of the available scientific data that are relevant to this topic. There are, of course, reasons to believe that this model may overestimate radiation hazards in certain instances, a fact acknowledged in recent reports of these committees. The linear model is now also being utilized to estimate the potential carcinogenic hazards of other agents such as asbestos and polycyclic aromatic hydrocarbons. This model implies that there is no safe dose for any of these agents and that potential health hazards will increase in direct proportion to total accumulated dose. The practical implication is the recommendation that all exposures should be kept 'as low as reasonably achievable, economic and social factors being taken into account'. (auth)

  4. Effect of low-dose radiation on ocular circulation

    International Nuclear Information System (INIS)

    We treated 6 eyes of unilateral age-related macular degeneration by low-dose radiation. Each eye received daily dose of 2 Gy by 4MV lineac totalling 20 Gy over 2 weeks. Color doppler flowmetry was used to determine the mean blood flow velocity (Vmean) and vascular resistive index (RI) in the short posterior ciliary artery, central retinal artery and ophthalmic artery in the treated and fellow eyes before and up to 6 months of treatment. There were no significant differences in Vmean and RI before and after treatment. The findings show the absence of apparent influence of low-dose radiation on the ocular circulation in age-related macular degeneration. (author)

  5. Impact of dose calculation algorithm on radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhou; Chen; Ying; Xiao; Jun; Li

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimizing the normal tissue complication probability.Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems.The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work.The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic.Further,the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups.All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy.

  6. Improving radiation sterilization dose of bone tissue in Uruguay

    International Nuclear Information System (INIS)

    Full text: Since 2002 our tissue banks policy is to deliver radiosterilized bones in order to deliver safety and reliable tissues for clinical uses.The objective of this paper is to demonstrate that sterile or most clean environment for bone tissue retrieval, the INDT maintains the low bioburden and it could decrease the radiation sterilization dose of processed bone tissue following Good Processing Practices. Bones were retrieved from cadaveric and brain death multiorganic donors with informed consent, according to 14.005 and 17.668 Transplant Laws and 160/06 Decret. Between 2005 and 2007, 157 long bones (mostly femur and tibia) were retrieved. 101 structural bones were used for patients with tumors, total hip revision replacement and trauma surgery, and 10 kg. were used in spine, benign tumors and bucomaxillary surgery. All batches were radiosterilized in a Gamma cell unit. Radiation dose was determined according tissue bioburden. The bioburden were analyzed during 1 year simultaneously in (Ezeiza CNEA and INDT microbiological Lab), and then by our microbiological Lab. after quality certification. The proceeding of Radiation as well as the radiation dose determination were monitorized by AIEA/URU/7/005 Project. Bioburden was studied using AIEA Code of Practice approved technique. The Co-60 source used were the Energy Committee - Ezeiza Plant in Bs. As. And since June 2007 Uruguay got a Radiation Unit (Gamma cell 220 Excel) through AIEA URU 2005/003 RQ-URU/7/005 Project. In 2002 bioburden was between 0.1 and 0.3 CFU/cc for frozen bones and freeze dried bones, showing a radiation dose lower than 25 kGy. During the period 2005 - 2007 the bioburden rate was about 0.1 CFU/cc and the radiation dose between 15.2- 25 kGy. We point out that we keep bioburden and radiation sterilization dose in the same rate and the Good Processing Practices are the key to warranty microbiologically safety tissues. (Author)

  7. A simple model to estimate radiation doses to aircrew during air flights in Brazil and abroad

    International Nuclear Information System (INIS)

    The objective of this article is to present the results obtained from the development of a simple model used to estimate cosmic radiation doses from crew members taking into consideration the variation of the dose rates with the altitude and the latitude, airplane cruise velocity and other important parameters such as, cruise height, takeoff time, landing time, takeoff angle, landing angle. The model was incorporated into a Brazilian computer program developed using the “mathematica” symbolic software. The data used to calculate the dose rates with altitude and latitude by the authors takes into consideration the mean solar activity from January 1958 to December 2008 (51 years). Twenty two data including international and national American flights were used to test the program and the results between them compared, showing good agreement. The program also gives excellent results for the doses expected for the crew members of three Brazilian national flights (between capitals cities in Brazil) when compared with the doses values measured for these flights using a radiation detector. According to the results the doses expected for the Brazilian crews of domestic flights can, in some cases, depending on the number of annual flights, overcome the limit of 1 mSv/year established by the Brazilian competent authority in Brazil (Brazilian Nuclear Energy Commission- CNEN) for public annual exposure. In the case of the simulated international flights the results shows a good agreement with the results found in literature especially when considered the different database series used by the authors and by the other references for the solar activity. (authors)

  8. Methionine Uptake and Required Radiation Dose to Control Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Iuchi, Toshihiko, E-mail: tiuchi@chiba-cc.jp [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hatano, Kazuo [Division of Radiation Oncology, Tokyo Bay Advanced Imaging and Radiation Oncology Clinic, Makuhari, Chiba (Japan); Uchino, Yoshio [Division of Nuclear Medicine, Chiba Ryogo Center, Chiba (Japan); Itami, Makiko [Division of Surgical Pathology, Chiba Cancer Center, Chiba (Japan); Hasegawa, Yuzo; Kawasaki, Koichiro; Sakaida, Tsukasa [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hara, Ryusuke [Division of Radiation Oncology, Chiba Cancer Center, Chiba (Japan)

    2015-09-01

    Purpose: The purpose of this study was to retrospectively assess the feasibility of radiation therapy planning for glioblastoma multiforme (GBM) based on the use of methionine (MET) positron emission tomography (PET), and the correlation among MET uptake, radiation dose, and tumor control. Methods and Materials: Twenty-two patients with GBM who underwent MET-PET prior to radiation therapy were enrolled. MET uptake in 30 regions of interest (ROIs) from 22 GBMs, biologically effective doses (BEDs) for the ROIs and their ratios (MET uptake:BED) were compared in terms of whether the ROIs were controlled for >12 months. Results: MET uptake was significantly correlated with tumor control (odds ratio [OR], 10.0; P=.005); however, there was a higher level of correlation between MET uptake:BED ratio and tumor control (OR, 40.0; P<.0001). These data indicated that the required BEDs for controlling the ROIs could be predicted in terms of MET uptake; BED could be calculated as [34.0 × MET uptake] Gy from the optimal threshold of the MET uptake:BED ratio for tumor control. Conclusions: Target delineation based on MET-PET was demonstrated to be feasible for radiation therapy treatment planning. MET-PET could not only provide precise visualization of infiltrating tumor cells but also predict the required radiation doses to control target regions.

  9. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    Science.gov (United States)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  10. Radiation doses on persons dealing with forest fire extinguishing in radiation-contaminated areas

    International Nuclear Information System (INIS)

    The paper reports the results of research on natural fire danger in the forest fund of Belarus and describes the impact of wildfires breaking out in radiation-contaminated areas on external doses on persons dealing with forest fire extinguishing

  11. Radiation induced damage to the cells of pig hairs: a biological indicator of radiation dose and dose distribution in skin

    International Nuclear Information System (INIS)

    Radiation damage to the matrix cells of actively growing pig hairs resulted in a transient reduction in diameter. This was clearly dose dependent for doses in the range 0.5-5 Gy for 250 kV X rays and 3-8 Gy surface dose for 90Sr β rays. While the relationship between the percentage reduction in hair diameter and the X ray dose was linear between 0.5 and 5 Gy, the skin surface dose for β rays and the percentage reduction in hair diameter was found to be best fitted by a quadratic equation. Differences in the effect produced by X and β ray irradiation can be attributed to the absorption of β rays with depth in the dermis and a correction for this has been applied. This system would appear to have considerable potential for use as a biological dosemeter. (author)

  12. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    Directory of Open Access Journals (Sweden)

    Sudha Rana

    2010-01-01

    Full Text Available Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation.

  13. Feasibility of radiation dose range capable to cause subacute course of radiation syndrome

    Directory of Open Access Journals (Sweden)

    Krasnyuk V.I.

    2013-12-01

    Full Text Available There had been analysed cases of radiation syndrome which clinical picture takes an intermediate place between the acute radiation syndrome (ARS and the chronic radiation syndrome (CRS, and differs from them because of a subacute. This variant of disease can develop as a result of the fractioned or prolonged radiation lasting from several days to several weeks. Development of primary reaction took place only in the extremely hard cases which ends with an early fatality. After the general radiation the marrow failure was characterized by directly expressed formation and restoration period, specific features of which were defined by the radiation duration, a total dose and dose derivative. The most typical outcomes of a subacute radiation syndrome are death from infectious complications in the period of an eruptive phase or leukosis development in the remote period.

  14. Genome instability induced by extreme low dose/low dose rate heavy ion radiation

    International Nuclear Information System (INIS)

    We irradiated normal human fibroblasts (HFL III) with carbon ions (290 MeV/u, 70 keV/um) at very low dose (1 mGy total dose) and low dose rate (1 mGy/6 h) and observed the growth kinetics for several months by continuous culturing. The growth of carbon irradiated cells started to slow down much earlier than that of non-irradiated control cells before reaching senescence. On the other hand, HFL III cells irradiated at the same dose and the dose rate of gamma-rays were slightly accelerated their growth. Our measurements on DNA double strand break (DSB) such as gamma-H2AX foci revealed a higher number of foci in carbon irradiated cells than in gamma-irradiated cells at a cell passage near senescence. Taken together, our results suggest that high linear energy transfer (LET) radiation causes different effects than low LET radiation even at very low doses and that the effect of single low dose irradiation can affect the stability of genome many generations after irradiation. (author)

  15. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: (i) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  16. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose-response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: 1) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either. In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  17. Characterisation of mine waste and radiation dose reconstruction of a historical mine of Konongo- Odumase in the Ashanti Region, Ghana

    International Nuclear Information System (INIS)

    Mine waste has been identified as one of the potential sources of radiation exposure to the population living in the vicinity of the mines. However, radiation exposure from NORM in historical mine wastes are not being regulated for radiation exposure levels in Ghana. Whilst the radiation exposure poses radiation detriments and requires measures to address, very little is being done in Ghana in particular. Data on the historical mines in Ghana are non-existent in terms of their NORM activity concentrations and radiation doses. The historical mine of Konongo-Odumase; medium scale mines has produced large volumes of tailings and wastes that may contain radionuclides with enhanced concentrations. Some of the radionuclides are soluble in water and have the tendency to leach into water bodies and farm lands. This study has been carried out to determine the radiation dose levels to the population living in this area and reconstruct radiation doses that the population would have received some years after the mine ceased operation and 30 years from the present time. Direct gamma spectrometry technique was used to determine the current activity concentration of 238U, 232Th, 40K and 137Cs in soil and water samples from the historical mine site prior to dose reconstruction. The mean activity concentrations measured for 238U, 232Th, 40K and 137Cs in the soil were 8.86 ± 1.03 Bq/kg, 21.59 ± 0.80 Bq/kg, 199.91 ± 4.42 Bq/kg and 2.80± 0.43 Bq/kg respectively. For the water samples the mean activity concentrations were 1.59 Bq/L, 4.44 Bq/L and 14.39 Bq/L for 238U, 232Th and 40K respectively. 137Cs values in water samples were below MDA. The annual effective doses to the public were estimated to be 0.34 mSv, 0.36 mSv and 0.24 mSv for the abandoned shaft, milling and tailing sites respectively. The results obtained in this study are well below typical world average values. The radiological hazard assessment due to 226Ra, 232Th and 40K indicate that the radium equivalent activity

  18. Research on dose setting for radiation sterilization of medical device

    International Nuclear Information System (INIS)

    Objective: To establish the radiation sterilization dose for medical devices using data of bioburden on the medical device. Methods: Firstly determination of recovery ratio and correction coefficient of the microbiological test method was used according to ISO11737 standard, then determination of bioburden on the products, finally the dose setting was completed based on the Method 1 in ISO11137 standard. Results: Fifteen kinds of medical devices were tested. Bioburden range was from 8.6-97271.2 CFU/device, recovery ration range 54.6%-100%, correction co-efficiency range 1.00-1.83, D10 distribution from 1.40 to 2.82 kGy, verification dose (dose at SAL = 10-2) range 5.1-17.6 kGy and sterilization dose (dose at SAL 10-6) range 17.5-32.5 kGy. Conclusion: One hundred samples of each kind of product were exposed to the pre-determined verification dose and then the sterility test was performed. Each sterility test showed positive number was not greater than two. This indicated that the sterilization dose established for each kind of product was statistically acceptable

  19. Radiation doses from computed tomography practice in Johor Bahru, Malaysia

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bakar, K. A.; Haron, M. R.; Kayun, Z.

    2016-04-01

    Radiation doses for Computed Tomography (CT) procedures have been reported, encompassing a total of 376 CT examinations conducted in one oncology centre (Hospital Sultan Ismail) and three diagnostic imaging departments (Hospital Sultanah Aminah, Hospital Permai and Hospital Sultan Ismail) at Johor hospital's. In each case, dose evaluations were supported by data from patient questionnaires. Each CT examination and radiation doses were verified using the CT EXPO (Ver. 2.3.1, Germany) simulation software. Results are presented in terms of the weighted computed tomography dose index (CTDIw), dose length product (DLP) and effective dose (E). The mean values of CTDIw, DLP and E were ranged between 7.6±0.1 to 64.8±16.5 mGy, 170.2±79.2 to 943.3±202.3 mGy cm and 1.6±0.7 to 11.2±6.5 mSv, respectively. Optimization techniques in CT are suggested to remain necessary, with well-trained radiology personnel remaining at the forefront of such efforts.

  20. Fallout, radiation doses near Dounreay, and childhood leukaemia

    International Nuclear Information System (INIS)

    Possible explanations for the recently reported increased incidence of childhood leukaemia around Dounreay were examined in the light of changes in the national incidence of leukaemia that occurred during the period of exposure to fallout from international testing of nuclear weapons in the atmosphere. It was concluded that the increase could not be accounted for by underestimate of the risk of leukaemia per unit dose of radiation at low doses and low dose rates, nor by underestimate of the relative biological efficiency of high compared with low linear energy transfer radiation. One possible explanation was underestimation of doses to the red bone marrow due to the discharges at Dounreay relative to dose from fallout, though investigation of ways in which this might have occurred did not suggest anything definite. Other explanations included a misconception of the site of origin of childhood leukaemia, outbreaks of an infectious disease and exposure to other, unidentified environmental agents. These findings weigh against the hypothesis that the recent increase in childhood leukaemia near Dounreay might be accounted for by radioactive discharges from nuclear plants, unless the doses to the stem cells from which childhood leukaemia originates have been grossly underestimated. (author)