WorldWideScience

Sample records for annual energy-sources technology

  1. Energy research and energy technologies. Fossil energy sources. Annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    After an introduction into the research programme and an overview of the sponsored projects, the main part of the book gives a description of the projects in the research area fossile energy sources. Several indexes provide access to this comprehensive compilation: a project number index, an index of interconnected projects, and an index of companies. The organization plan of ''BEO'', the project group biology, energy, ecology, is appended. (UA) [de

  2. Use of regenerative energy sources and hydrogen technology 2006. Proceedings

    International Nuclear Information System (INIS)

    Lehmann, J.; Luschtinetz, T.

    2006-01-01

    This volume contains 25 contributions, which were held on the 13th symposium ''Use of regenerative energy sources and hydrogen technology'' in Stralsund (Germany). Separate documentation items analysing 16 of the contributions have been prepared for the ENERGY database

  3. Energy Sources Management and Future Automotive Technologies: Environmental Impact

    Directory of Open Access Journals (Sweden)

    Florin Mariasiu

    2012-01-01

    Full Text Available The paper presents the environmental impact created through the introduction of introducing new technologies in transportation domain. New electric vehicles are considered zero-emission vehicles (ZEV. However, electricity produced in power plants is still predominantly based on fossil fuel usage (required for recharge electric vehicle batteries and thus directly affects the quantity of pollutant emissions and greenhouse gases (CO2, NOx and SOx. Given the structure of EU-wide energy sources used for electricity generation, the potential pollutant emissions stemming from these energy sources, related to energy consumption of an electric vehicle, was determined under the projected environmental impact of specific market penetration of electric vehicles. In addition to the overall impact at the EU level, were identified the countries for which the use of electric vehicles is (or not feasible in terms of reaching the lower values ​​of future emissions compared to the present and future European standards.

  4. Renewable Energy Sources - Technologies and Development of the Economy

    International Nuclear Information System (INIS)

    Car, S.

    2010-01-01

    The usage of renewable energy sources is a substitute for usage of fossil fuels, whose quantities are limited, and it represents an essential contribution to the reduction of greenhouse gases; at the same time it has a great economic significance for the development of new industries and creation of new jobs. To speed up gradual transition from fossil to renewable sources, governments of all EU member states harmonise their legislations and subordinate regulations promoting investments in usage of renewable sources and thus creating opportunities for new jobs especially in the production of plants and equipment for utilisation of wind power, solar energy, small hydro power plants, biomass and other kinds of renewable sources. In the last 10 years Croatia has adopted a number of acts and regulations that also stimulate investors to utilise renewable sources, and the source of such subsidies is a higher price of electricity paid by all the consumers. On the other hand, the development of domestic industry and gaining references necessary for gaining new contracts are very difficult because of stiff international competition and foreign sources of finance, which often require purchase of foreign equipment as a condition for contract award. In such conditions the utilisation of renewable sources does not contribute either to economic development or creating new jobs in Croatia, but in the countries in which such equipment is produced.(author).

  5. Program energy research and energy technologies. Annual report 1987. Fossil energy carriers, renewable energy sources, efficient use of energy. Programm Energieforschung und Energietechnologien. Jahresbericht 1987. Fossile Energietraeger, erneuerbare Energiequellen, rationelle Energieverwendung

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    After a general introduction and a short overview of financial contributions in 1987 there is a description of the projects sponsored. The main section contains project descriptions of the partial programmes Fossil Energy Carriers, Renewable Energy Sources and Efficient Use of Energy. The ordering of the wide-ranging material is carried out essentially via two indices: the index of project numbers and the index of companies. Then an overview is given of final reports published in 1987. A list of 1987 patents forms the final section.

  6. Use of regenerative energy sources and hydrogen technology 2014. Proceedings

    International Nuclear Information System (INIS)

    Luschtinetz, Thomas; Lehmann, Jochen

    2014-01-01

    This proceedings contains 38 papers with the following main topics: wind and hydrogen technology, developments in the use of bioenergy, fuel cells, photovoltaics. Two contributions were recorded separately for this database. [de

  7. Public support for energy sources and related technologies: The impact of simple information provision

    International Nuclear Information System (INIS)

    Hobman, Elizabeth V.; Ashworth, Peta

    2013-01-01

    Increasing public awareness and understanding of alternative energy sources and related technologies is an essential component of informed decision-making regarding new options of generating energy for a low carbon future. The current study examined the influence of psychological factors (i.e., pro-environmental beliefs, and subjective norms) and the provision of factual information on public support for a range of energy sources and related technologies. A representative sample of 1907 Australians completed an on-line survey that measured perceptions of a range of climate change and energy issues. Results showed that support for renewables is stronger than support for traditional fossil-fuel based energy sources (i.e., coal or gas) or nuclear energy. The provision of factual information about generation cost and emissions significantly changed support ratings, particularly when cost information was provided. Regression analyses revealed that pro-environmental beliefs were significantly related to support ratings for alternative energy sources. Subjective norms, however, were the strongest positive explanatory factor, suggesting that social mechanisms may be key drivers of support for new and emerging energy sources and related technologies. - Highlights: • We examine support for a wide range of energy sources and technologies. • Support changes when information on cost and emissions is provided. • Pro-environmental beliefs and social norms positively relate to support

  8. Use a renewable energy sources and latest power-saving technologies in the the Republic Kazakstan

    International Nuclear Information System (INIS)

    Gulevich, N.V.

    1996-01-01

    The subject of alternative power in Kazakstan is brought up. Wind-, hydro-, solar power, biogas installation can improve the Republic power base. The main directions of activity of A. Einstein International Power engineering Academy on involving renewable energy sources and latest power-saving technologies to Republic of Kazakstan's fuel-power balance is given. It should be noted that renewable power engineering usually handles reversible energy sources and reserved power cycles. (author)

  9. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2009-01-01

    An analysis of seven different technologies is presented. The technologies integrate fluctuating renewable energy sources (RES) such as wind power production into the electricity supply, and the Danish energy system is used as a case. Comprehensive hour-by-hour energy system analyses are conducted...... of a complete system meeting electricity, heat and transport demands, and including RES, power plants, and combined heat and power production (CHP) for district heating and transport technologies. In conclusion, the most fuel-efficient and least-cost technologies are identified through energy system...

  10. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used...... to relocate electricity production directly from the sources, while heat storage devices can be used to relocate the electricity production from CHP plants and hereby improve the ability to integrate RES. The analyses are done by advanced computer modelling and the results are given as diagrams showing...

  11. An assessment of exploiting renewable energy sources with concerns of policy and technology

    International Nuclear Information System (INIS)

    Shen, Yung-Chi; Lin, Grace T.R.; Li, Kuang-Pin; Yuan, Benjamin J.C.

    2010-01-01

    In recent years, the Taiwanese government has vigorously promoted the development of renewable energy to engage the challenges of gradual depletion of fossil fuels and oil, as well as the intensification of the greenhouse effect. Since the Sustainable Energy Policy Principles were announced in 2008, Taiwanese government has declared that the development of renewable energy should take into account goals that pertain to energy, the environment, and the economy (3E goals). This study aims to assess the 3E goals and renewable energy sources regulated by the Renewable Energy Development Bill that passed in 2009. The fuzzy analytic hierarchy process (FAHP) is used to resolve the multi-goal problem for achieving our research purposes. That is, this research attempts to reveal the suitable renewable energy sources for the purposes of meeting the 3E policy goals. The results first show that environmental goal is the most important to the development of various renewable energy technologies in Taiwan, followed by the economic and energy goals. Additionally, hydropower, solar energy, and wind energy would be the renewable energy sources utilized in meeting the 3E policy goals. (author)

  12. The Investments in Renewable Energy Sources: Do Low Carbon Economies Better Invest in Green Technologies?

    Directory of Open Access Journals (Sweden)

    Antonio Angelo Romano

    2011-01-01

    Full Text Available The aim of this study is to analyse the driving of investment in renewable energy sources in low carbon and high carbon economies. To address these issues, a dynamic panel analysis of the renewable investment in a sample of 29 countries was proposed. Results demonstrate that the dynamic of investments in renewable sources is similar in the two panels, and depends by nuclear power generation, GDP and technological efficiency. Results show that countries try to reduce their environmental footprint, decreasing the CO2 intensity. Based on the estimation results, we think that energy sustainability passes through the use of renewable resources that can complement the nuclear technology on condition that both exceed their limits.

  13. 2017 Annual Technology Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hand, M. M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eberle, Annika [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beiter, Philipp C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turchi, Craig S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Feldman, David J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maness, Michael [Formerly NREL; O' Connor, Patrick [Oak Ridge National Laboratory

    2018-03-26

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), the National Renewable Energy Laboratory annually provides an organized and centralized set of such cost and performance data. The ATB uses the best information from the Department of Energy national laboratories' renewable energy analysts as well as information from the Energy Information Administration for fuel-based technologies. The ATB has been reviewed by experts and it includes the following electricity generation technologies: land-based wind, offshore wind, utility-scale solar photovoltaics (PV), commercial-scale solar PV, residential-scale solar PV, concentrating solar power, geothermal power, hydropower, coal, natural gas, nuclear, and conventional biopower. This webinar presentation introduces the 2017 ATB.

  14. Use of regenerative energy sources and hydrogen technology. Proceedings; Nutzung regenerativer Energiequellen und Wasserstofftechnik 2008. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Luschtinetz, Thomas; Lehmann, Jochen (eds.)

    2008-07-01

    Within the 15th symposium 'Use of regenerative energy sources and hydrogen technology' at 6th to 8th November, 2008, in Stralsund (Federal Republic of Germany), the following lectures were held: (1) Processing of mine gas by means of membrane technology (T. Brinkmann, W. Clemens, A. Dengel, B. Hoting); (2) Energy storage in salt caverns / developments and concrete projects for adiabatic compressed air and for hydrogen storage (F. Crotogino, S. Huebner); (3) Application of an ORC plant in the area of a hybrid wind-hydrogen-plant (J. Eliasz, K. Rychlik); (4) Wind Farm Cluster Management Sysem (A.J. Gesino, C.A. Quintero Marrone, R. Mackensen, M. Wolff, B. Lange, K. Rohrig); (5) Results of a field test of a combination of a wood boiler and Stirling engine (B. Gross); (6) NANOSTIR - Optimisation of solid fuel operated Stirling CHP units by means of nano technological coatings (B. Gross); (7) Fundamental investigations of long-term behaviour / damage behaviour of big PEM stacks (September 2005 - October 2007) (M. Hinz, O. Luschtinetz, J. Lehmann); (8) HyFLEET:CUTE project: Results from the biggest hydrogen bus project in the world (T. Kampet); (9) Comparison of new chains of distribution for biogas and natural gas (M. Klamp); (10) Generation of hydrogen from formic acid at ambient temperature and its use in a H2/O2 fuel cell (B. Loges, A. Boddien, H. Junge, M. Beller); (11) PE membranes out of biological materials (E. Mendieta); (12) Offshore wind power affects generation, network and consumption (A. Miege, J. Lehmann, T. Luschtinetz, C. Sponholz, F. Gamallo); (13) Comparative investigations at fixed and tracking PV systems (R. Mueller, A. Rackwitz); (14) Energetic utilisation of biomass - boundary conditions, state of the art and perspectives (M. Nelles, D. Banemann, N. Engler, A. Schuech); (15) Supply networks - a new method of analysis for an optimized use of regenerative energy (R. Nieberle, A. Simroth); (16) Steam - vapour hybrid power plant supplied with

  15. Use of regenerative energy sources and hydrogen technology 2006. Proceedings; Nutzung regenerativer Energiequellen und Wasserstofftechnik 2006. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, J.; Luschtinetz, T. (eds.)

    2006-07-01

    This volume contains 25 contributions, which were held on the 13th symposium ''Use of regenerative energy sources and hydrogen technology'' in Stralsund (Germany). Separate documentation items analysing 16 of the contributions have been prepared for the ENERGY database.

  16. Renewable energy sources, the internet of things and the third industrial revolution: Smart grid and contemporary information and communication technologies

    Science.gov (United States)

    Kitsios, Aristidis; Bousakas, Konstantinos; Salame, Takla; Bogno, Bachirou; Papageorgas, Panagiotis; Vokas, Georgios A.; Mauffay, Fabrice; Petit, Pierre; Aillerie, Michel; Charles, Jean-Pierre

    2017-02-01

    In this paper, the energy efficiency of a contemporary Smart Grid that is based on Distributed Renewable Energy Sources (DRES) is examined under the scope of the communication systems utilized between the energy loads and the energy sources. What is evident is that the Internet of Things (IoT) technologies that are based on the existing Web infrastructure can be heavily introduced in this direction especially when combined with long range low bandwidth networking technologies, power line communication technologies and optimization methodologies for renewable energy generation. The renewable energy generation optimization will be based on devices embedded in the PV panels and the wind power generators, which will rely on bidirectional communications with local gateways and remote control stations for achieving energy efficiency. Smart meters and DRES combined with IoT communications will be the enabling technologies for the ultimate fusion of Internet technology and renewable energy generation realizing the Energy Internet.

  17. 12. symposium for the use of regenerative energy sources and hydrogen technology. Proceedings

    International Nuclear Information System (INIS)

    Lehmann, J.

    2005-01-01

    Topics of the conference were: renewable energy sources, wind energy, wood fueled space and water heating systems, SOFC fuel cell, storage of wind energy in the form of hydrogen, geothermal energy, usage of waste heat in low-temperature Rankine cycle engines, emissions trading, energy policy, solar hydrogen economy. (uke)

  18. Accelerating the commercialization on new technologies. [free market operation of federal alternate energy sources programs

    Science.gov (United States)

    Kuehn, T. J.; Nawrocki, P. M.

    1978-01-01

    It is suggested that federal programs for hastening the adoption of alternative energy sources must operate within the free market structure. Five phases of the free market commercialization process are described. Federal role possibilities include information dissemination and funding to stimulate private sector activities within these five phases, and federally sponsored procedures for accelerating commercialization of solar thermal small power systems are considered.

  19. New renewable energy sources

    International Nuclear Information System (INIS)

    2001-06-01

    This publication presents a review of the technological, economical and market status in the field of new renewable energy sources. It also deals briefly with the present use of energy, external conditions for new renewable energy sources and prospects for these energy sources in a future energy system. The renewable energy sources treated here are ''new'' in the sense that hydroelectric energy technology is excluded, being fully developed commercially. This publication updates a previous version, which was published in 1996. The main sections are: (1) Introduction, (2) Solar energy, (3) Bio energy, (4) Wind power, (5) Energy from the sea, (6) Hydrogen, (7) Other new renewable energy technologies and (8) New renewable s in the energy system of the future

  20. Energy sources

    International Nuclear Information System (INIS)

    Vajda, Gy.

    1998-01-01

    A comprehensive review is presented of the available sources of energy in the world is presented. About 80 percent of primary energy utilization is based on fossile fuels, and their dominant role is not expected to change in the foreseeable future. Data are given on petroleum, natural gas and coal based power production. The role and economic aspects of nuclear power are analyzed. A brief summary of renewable energy sources is presented. The future prospects of the world's energy resources are discussed, and the special position of Hungary regarding fossil, nuclear and renewable energy and the country's energy potential is evaluated. (R.P.)

  1. Energy sources

    International Nuclear Information System (INIS)

    Anon.

    1972-01-01

    A study carried out around 1970 on the world energy future is described. One method is based on world energy evaluations extrapolated to 1985 and 2000. The other one is prospective and tries to account for changes in life style and technology and relations with the developing countries [fr

  2. New primary energy source by thorium molten-salt reactor technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kato, Yoshio; Furuhashi, Akira; Numata, Hiroo; Mitachi, Koushi; Yoshioka, Ritsuo; Sato, Yuzuru; Arakawa, Kazuto

    2005-01-01

    Among the next 30 years, we have to implement a practical measure in the global energy/environmental problems, solving the followings: (1) replacing the fossil fuels without CO 2 emission, (2) no severe accidents, (3) no concern on military, (4) minimizing wastes, (5) economical, (6) few R and D investment and (7) rapid/huge global application supplying about half of the total primary energy till 50 years later. For this purpose the following system was proposed: THORIMS-NES [Thorium Molten-Salt Nuclear Energy Synergetic System], which is composed of (A) simple fission Molten-Salt power stations (FUJI), and (B) fissile-producing Accelerator Molten-Salt Breeder (AMSB). It has been internationally prepared a practical Developmental Program for its huge-size industrialization of Th breeding fuel cycle to produce a new rational primary energy. Here it is explained the social meaning, the conceptual system design and technological bases, especially, including the molten fluoride salt technology, which was developed as the triple-functional medium for nuclear-engineering, heat-transfer and chemical engineering. The complex function of this system is fully achieved by the simplified facility using a single phase molten-salt only. (author)

  3. A Review of Organic Photovoltaic Energy Source and Its Technological Designs

    Directory of Open Access Journals (Sweden)

    Egidius Rutatizibwa Rwenyagila

    2017-01-01

    Full Text Available This study reviews and describes some of the existing research and mechanisms of operation of organic photovoltaic (OPV cells. Introduced first are problems that exist with traditional fossil fuels that result in most of the world energy challenges such as environmental pollution. This is followed by the description of baseline organic solar cell (OSC structures and materials. Then, some of the existing modelling approaches that have implemented either a one- or a two-dimensional drift-diffusion model to examine OSC structures are reviewed, and their reproducibility is examined. Both experimental and modelling approaches reviewed are particularly important for more and better designed research to probe practical procedural problems associated with OSCs that hinder the commercialization of OPV technology.

  4. 2016 Annual Technology Baseline (ATB) - Webinar Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen; Feldman, David; Sigrin, Benjamin; Lantz, Eric; Stehly, Tyler; Augustine, Chad; Turchi, Craig; Porro, Gian; O' Connor, Patrick; Waldoch, Connor

    2016-09-13

    This deck was presented for the 2016 Annual Technology Baseline Webinar. The presentation describes the Annual Technology Baseline, which is a compilation of current and future cost and performance data for electricity generation technologies.

  5. 2016 Annual Technology Baseline (ATB)

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen; Feldman, David; Sigrin, Benjamin; Lantz, Eric; Stehly, Tyler; Augustine, Chad; Turchi, Craig; O' Connor, Patrick; Waldoch, Connor

    2016-09-01

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  6. Public perceptions of the risks of an unfamiliar technology: The case of using nuclear energy sources for space missions

    International Nuclear Information System (INIS)

    Maharik, M.

    1992-01-01

    This thesis addresses the public perception of the risk of a technology not widely known to lay people. Its aims were (a) to characterize public perceptions of the risk of using nuclear energy in space and decisions related to this risk, and (b) to extend the mental model methodology to studying public perception of unfamiliar, risky technologies. A model of the physical processes capable of creating risks from using nuclear energy sources in space was first constructed. Then, knowledge and beliefs related to this topic were elicited from three different groups of people. The generality of the findings were examined in a constructive replication with environmentally-oriented people. The possibility of involving the public in decision-making processes related to engineering macro-design was then investigated. Finally, a communication regarding these risk processes was developed and evaluated in an experiment comparing it with communications produced by NASA. Recommendations related to the design and targeting of risk communication, and to public participation in decision making on using new and risky technologies, are derived

  7. Public perceptions of the risks of an unfamiliar technology: The case of using nuclear energy sources for space missions

    Science.gov (United States)

    Maharik, Michael

    This thesis addresses the public perception of the risk of a technology not widely known to laypeople. Its aims were (1) to characterize public perceptions of the risk of using nuclear energy in space and decisions related to this risk, and (2) to extend the 'mental model' methodology to studying public perception of unfamiliar, risky technologies. A model of the physical processes capable of creating risks from using nuclear energy sources in space was first constructed. Then, knowledge and beliefs related to this topic were elicited from three different groups of people. The generality of the findings was examined in a constructive replication with environmentally-oriented people. The possibility of involving the public in decision-making processes related to engineering macro-design was then investigated. Finally, a communication regarding these risk processes was developed and evaluated in an experiment comparing it with communications produced by NASA. Although they included large portions of the expert model, people's beliefs also had gaps and misconceptions. Respondents often used scientific terms without a clear understanding of what they meant. Respondents' mental models sometimes contained scattered and inconsistent entries. The impact of pre-existing mental models was clearly seen. Different groups of people had different patterns of knowledge and beliefs. Nevertheless, respondents expressed reasonable and coherent opinions on choices among engineering options. The CMU brochure, derived from the study of readers' existing mental models, provided a better risk communication tool than NASA's material, reflecting primarily experts' perspective. The better performance of subjects reading either brochure generally reflected adding knowledge on issues that they had not previously known, rather than correcting wrong beliefs. The communication study confirmed a hypothesis that improving knowledge on risk processes related to the use of a technology causes a more

  8. 2015 Plan. Project 4: electric power supply, technologies, cost and availability. Sub-project alternative energy sources: solar, eolic, shale, ocean, hydrogen, organic wastes, peat and lignite

    International Nuclear Information System (INIS)

    1993-07-01

    Several aspects of solar, eolic and ocean energy and shale, peat lignite, hydrogen and organic waste in Brazil are described, including reserves, potential, technology economy and environment. Based in data and information presented in this report, the necessity of a more detailed survey with the potential of alternative energy sources in Brazil, emphasizing the more promiser regions is also mentioned. (C.G.C.)

  9. Renewable energy sources and ecology

    International Nuclear Information System (INIS)

    Panajotova, Yu.

    1998-01-01

    The share of renewable energy sources (RES) in the world energy balance is estimated from 1-2 to 10% of the total primary energy sources consumption. In EU since 1990 until now the power energy production from these sources is growing continuously by over 3% annually. The features of the updated Environmental Strategy for Bulgaria (ESB) elaborated with the World Bank in 1994 are: increasing the energy efficiency; utilising RES; granting preference to the regional energy concept and establishing regional energy centres based on the EU experience. In ESB the basic priorities are linked with disease factors - pollutants as lead in the air and soils (from leaded petrol, resp. from metallurgical enterprises), dust particles in the air (from household heating, industry and thermo-electric power stations) and sulfur dioxide and other gases (also from energy sector and industry). There is consistent policy for harmonization of the Bulgarian standards with those of the WHO. Among the implemented projects preference is granting to ones concerning new energy saving technologies and RES. Bulgaria got an environmental protection law harmonized with the international legislation and adapted to the economic situation inflicted by the market economy transition. The development of RES needs high investment cost and has low efficiency factor compared to the classical methods of energy production. Implementation of Environmental Action Programme (EAP) in Bulgaria with an international co-operation includes: solid wastes management; water sources management; water pollution problems; soil degradation; transport and environment; nuclear safety and nuclear waste problems and full value utilization of the RES. The Ministry of Environment and local Authorities have to develop their policies and implementing them by a range of activities to identify pollution control strategies, to identify areas where the greatest environmental benefits can be achieved at least cost and to incorporate the

  10. Risks of energy sources

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.; Pop-Jordanova, N.

    1989-09-01

    The paper is devoted to comparative health and environmental risks of different energy sources and their influence to public perception, social acceptability and decision-making. The technical heights of the risks, expressed in the number of fatalities of labor and public per unit energy output, from fossil, nuclear and renewable sources are analysed and compared. The complete energy cycle from mining to waste disposal, as well as the future trends, are taken into account. A comparison of the risks of different energy systems with the anticipated global and national energy shares by source is also presented. Furthermore, detailed studies of the non-technical dimensions of the energy risks are performed. Using a modified attitude-behaviour model, the cognitive structure underlying the positions towards different energy options is investigated. Estimating the diverse acting of the risk components, the consequent changes in the rank ordering of the energy sources are deduced. Finally, adding the psychological components nuclear reaches the highest place. In this respect, a unified multidimensional space for the representation of various technological risks is introduced. It affords a comparison of the risks not only by their technical height, but also by other characteristics (involuntary, fearfulness etc.). Finally, it was pointed out that in considering the risk characteristics and constraints, as well as the external fields, a system approach has to be used, taking into account the risks simultaneously with the benefits. 12 refs, 4 figs, 2 tabs

  11. Energy sources and power plants

    International Nuclear Information System (INIS)

    Schulz, Detlef; Schulz, Karen

    2013-01-01

    Energy is obtained from various energy sources (coal, petroleum, natural gas, nuclear fuels, wind energy, solar energy, hydro power, biomass, geothermal energy). These differ in each case with respect to their availability, methods of their production and the required power plant technologies. As technologies of the future fuel cells and nuclear fusion are traded. [de

  12. Energy research and energy technologies. Renewable energy sources -rational use of energy. Report of the year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    At first introductory explanations of the main focus of the programme and an overview of the supported projects are given. The main part contains the project descriptions of the main focuses of support: Renewable energy sources and rational use of energy are described. Several registers have been prepared in order to access the extensive material: Register of project numbers; register of joint projects; register of companies. Finally the organisational plan of the project carrier Biology, Energy, Ecology (BC BEE) is explained. (UA) [de

  13. 2005 annual nuclear technology conference

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    This year's Annual Nuclear Technology Conference of the Deutsches Atomforum and Kerntechnische Gesellschaft was held in Nuremberg on May 10-12, 2005. More than 1 100 participants from eighteen countries make this specialized event one of the largest international conventions in the field of the peaceful uses of nuclear power, whose attendance has steadily increased over the past few years. The first day of the conference was devoted to plenary lectures traditionally dealing mainly with political and economic problems of the use of nuclear power. The partner country of JK 2005 was Switzerland. Traditionally, the program of the three-day conference was organized in the proven format of plenary sessions on the first day, followed by technical sessions, specialized sessions, poster sessions, and special events on the following days. For the third time, the ''Nuclear Campus'' was organized which successfully made the world of nuclear technology transparent to high school and university students in lectures and an exhibition. The meeting was accompanied by a technical exhibition with meeting points of manufacturers, suppliers, and service industries. (orig.)

  14. Institute for Energy Technology, Annual Report 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The annual report gives a brief account of the activities of Institute for Energy Technology and presents a fairly comprehensive anasis of the budgetary dispositions in 1981 and, for comparison, 1980. (RF)

  15. Diversification of energy sources

    Science.gov (United States)

    1975-01-01

    The concept of energy source diversification was introduced as a substitution conservation action. The current status and philosophy behind a diversification program is presented in the context of a national energy policy. Advantages, disadvantages (constraints), and methods of implementation for diversification are discussed. The energy source systems for diversification are listed and an example impact assessment is outlined which deals with the water requirements of the specific energy systems.

  16. DESIGN OF ALTERNATIVE ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    Popa Stefania

    2013-11-01

    Full Text Available By energy sources we understand technologies and materials used to obtain various forms of energy necessary for the development of society. These sources must be in adequate quantities and be conveniently exploited in terms of technical, economic and sustainable perspective. Alternative energy uses the inherent power of natural sources like wind, tides, the sun. Alternative energy is a term used for some energy sources and energy storage technologies. Generally it indicates energies that are nontraditional and have low impact to the environment. The alternative energy term is used in contrast with the term fossil fuel according to some sources, while other sources use it with the meaning of renewable energy purposes.

  17. Technology Deployment Annual Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Keith Arterburn

    2009-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties.

  18. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  19. Chemical Technology Division annual technical report 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1997 are presented

  20. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  1. A Comprehensive Tool for Exploring the Availability, Scalability and Growth Potential of Conventional and Renewable Energy Sources and Technologies

    Science.gov (United States)

    Jack-Scott, E.; Arnott, J. C.; Katzenberger, J.; Davis, S. J.; Delman, E.

    2015-12-01

    It has been a generational challenge to simultaneously meet the world's energy requirements, while remaining within the bounds of acceptable cost and environmental impact. To this end, substantial research has explored various energy futures on a global scale, leaving decision-makers and the public overwhelmed by information on energy options. In response, this interactive energy table was developed as a comprehensive resource through which users can explore the availability, scalability, and growth potentials of all energy technologies currently in use or development. Extensive research from peer-reviewed papers and reports was compiled and summarized, detailing technology costs, technical considerations, imminent breakthroughs, and obstacles to integration, as well as political, social, and environmental considerations. Energy technologies fall within categories of coal, oil, natural gas, nuclear, solar, wind, hydropower, ocean, geothermal and biomass. In addition to 360 expandable cells of cited data, the interactive table also features educational windows with background information on each energy technology. The table seeks not to advocate for specific energy futures, but to succinctly and accurately centralize peer-reviewed research and information in an interactive, accessible resource. With this tool, decision-makers, researchers and the public alike can explore various combinations of energy technologies and their quantitative and qualitative attributes that can satisfy the world's total primary energy supply (TPES) while making progress towards a near zero carbon future.

  2. Uranium as an energy source: resources, production and reserves from the point of view of technological development

    International Nuclear Information System (INIS)

    Lersow, M.

    2008-01-01

    A reliable evaluation of the uranium resources available in the future and associated strategic reserves must take into account trends in prospecting, degree of technological development of the different stages of the nuclear fuel cycle (starting with the mining industry and preparation), but in particular also the specific raw material and energy yield of future generations of fuel and reactor technology. Uranium deposits are categorised with regard to ore content and probable production costs. The intensified prospecting following the increase in the uranium price will lead to discovery of further reserves and thus continue to follow the historical trend. Uranium production is subject to increasingly stringent legal boundary conditions - mining and preparation are approved according to strict international standards to minimise the environmental effects during operation and to restore and recultivate the sites after closure. New or extended/modernised uranium production sites are based on modern semi- or fully automated technologies. Exposure to radiation and environmental effects are minimised by avoidance of tailings (in situ leaching), by relocation of preparation partial processes underground or by storage of the residues from conventional plants according to international standards. In addition to a rough prediction based on currently available data trends in resource development, uranium production, fuel production and the energy yield from uranium including the option of utilisation of transuranic elements for energy production in order to minimise the radioactive waste are discussed and applied qualitatively to estimation of the reserves. (orig.)

  3. Alternate energy sources

    International Nuclear Information System (INIS)

    Stevens-Guille, P.D.

    1975-01-01

    The author highlights the interesting points made by the speeches during the conference on Energy and its Future in Southern Africa. He also draws attention to potential alternate energy sources such as power from tides, ocean waves, ocean temperature differences and geothermal power

  4. Nontraditional renewable energy sources

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1997-01-01

    The paper considers the application possibilities of nontraditional renewable energy sources to generate electricity, estimates the potential of nontraditional sources using energy of Sun, wind, biomass, as well as, geothermal energy and presents the results of economical analysis of cost of electricity generated by solar electrical power plants, geothermal and electrical plants and facilities for power reprocessing of biomass. 1 tab

  5. Energy system analysis of CAES technologies in the Danish energy system with high penetration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Salgi, Georges Garabeth; Lund, Henrik

    2006-01-01

    countries. However, plans to expand wind power locally and in the neighbouring countries could restrain the export option and create transmission congestion challenges. This results in a need to increase the flexibility of the local electricity system. Compressed Air Energy Storage (CAES) has been proposed...... effect on reducing excess electricity production, the storage capacity of CAES has to be increased significantly compared to current technology. It is thus concluded that, seen from a local energy system balance perspective, CAES has little potential for reducing excess electricity production...

  6. Biomass as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, M.; Naveau, H.; Declerck, C.; Vanacker, L.; Mahy, D.; Schepens, G.

    The object of this paper is to evaluate the possible production and utilization of biomass as an energy source in Belgium. Four conversion methods are considered - methanation, fermentation, incineration and gasification - from a technological and economic viewpoint.

  7. Hazards Control Department annual technology review, 1984

    International Nuclear Information System (INIS)

    Griffith, R.V.; Anderson, K.J.

    1985-01-01

    The Annual Technology Review covers the period from October 1983 to September 1984. Topics reviewed include Nuclear Criticality Information System, nuclear dosimetry, personnel dosimetry, laser chemistry, electric filters and neutron spectrometry. Individual papers are indexed and abstracted for the data base. (DT)

  8. Alternative Energy Sources

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2012-01-01

    Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near and intermediate future (20-50 years).   The two first chapters on energy demand and supply and environmental effects, set the tone as to why the widespread use of alternative energy is essential for the future of human society. The third chapter exposes the reader to the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The sections on exergy give a succinct, quantitative background on the capability/potential of each energy source to produce power on a global scale. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy. The following five chapters (seventh to eleventh) include detailed descriptions of the most common renewable energy sources – wind, solar, geothermal, biomass, hydroelectric – and some of the less common sources...

  9. Renewable energy sources (promotion)

    International Nuclear Information System (INIS)

    Cook, F.

    1986-01-01

    Permission to present a Bill to establish an independent commission directly responsible for the research, development and demonstration of clean, renewable, alternative sources of energy (to nuclear energy) is requested. The paragraphs of the preamble to the Bill are summarized by the Member seeking permission. The main reason for promoting renewable energy sources is opposition to the nuclear industry. One objection was raised. However, permission was granted to present the Bill and it was read for the first time with a second reading ordered for 7 March 1986. The Bill itself is not reprinted but the permission and question are reported verbatim. (U.K.)

  10. Alternative energy sources

    International Nuclear Information System (INIS)

    Chapman, P.

    1978-01-01

    It is suggested that the development of alternative energy sources has made them more attractive than nuclear power, due to their characteristics, such as small scale and short lead times, moderate costs and minimal environmental impact. The objectives of energy policy are discussed in relation to forecasts of energy demand. Tables show (a) projected useful energy demands UK; (b) patterns of end-use of energy; (c) costs of heating fuels; (d) net present value of gas purchases; (e) useful-energy by end-use analysis; and (f) primary fuel summary 2025. The contributions of hydro, nuclear, waves, solar, oil, gas and coal are estimated to 2025. (U.K.)

  11. Alternative energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Ruiter, J P [N. V. Kema te Arnhem, NL

    1975-01-01

    A review of alternative energy sources is presented. Solar energy may be used by collecting the heat for direct use or by converting it to electricity. Flat-plate and concentrating collectors are described. Wind energy is an indirect form of solar energy, and has been used for many years in the Netherlands. Calculations of the efficiency of windmills, and of the useful available wind energy along the Netherlands' coastline, are provided. The conversion of organic waste to useable energy is described, including techniques of pyrolysis, combustion, and biological conversion. Tidal energy and ocean-thermal-gradient power plants are briefly described. Geothermal energy is a particularly attractive resource. The average temperature gradient is about 30/sup 0/C/km, ranging from 10/sup 0/C/km in South Africa to 150/sup 0/C/km in Italy. In the Netherlands it ranges from 20-50/sup 0/C/km. The various types of geothermal systems (steam, water, geopressured) are reviewed, and presently operating geothermal power plants are described. A comparison is made of the costs of various energy sources, and 27 references are provided.

  12. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2001-01-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  13. Energy policy and renewable energy sources

    International Nuclear Information System (INIS)

    2000-01-01

    According to Shell, by 2050, renewable energy sources may supply over 50% of the energy, worldwide. This concentration on renewable energy sources is primarily due to the intensified environmental demands. The UN climate panel has estimated that to avoid irreversible climate change it is necessary to reduce the global emissions of CO2 by 50 to 60% during the next 100 years. Biomass energy includes a number of biological raw materials from forestry and agriculture. The forests provide wood, wood chips, bark, branches and treetops, and from agriculture, straw. Although biomass energy is not entirely pollution-free, it is renewable and CO2-neutral as long as growth and consumption are in balance. In Norway, the total annual growth of available biomass corresponds to about 80 TWh. The technical potential is estimated to 30 TWh per year, allowing for operationally reasonable ways of producing the biomass. However, there is competition for the biomass since it is used by the wood processing industry. The use of biomass and waste for energy generation varies considerably among the Nordic countries. In Denmark, agriculture dominates and large quantities of straw are burned in cogeneration plants. Sweden and Finland have well-developed forest industries, and the wood processing industry in these countries uses much more biomass fuel (bark, fibre mud, black liquor) than the Norwegian wood processing industry. In Norway, more energy can be obtained by retrofitting old hydroelectric plants such as by installing a flexible liner in existing tunnels. This improves energy flexibility and increases energy production without negative environmental consequences. The potential for wind power is larger in Norway than in Denmark and Germany. The cost of wind power has fallen considerably as a consequence of the technological development of the sector

  14. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately

  15. Electrical energy supply with permanent energy sources

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    It can be shown that there are no chances for solar and wind power plants in Northern Europe when estimating the investment costs and the floor space required. However, the decentralized utilization of the plants which is likely to become very interesting in a few years shows other results. As a complete annual balance by traditional stores would cause a considerably uneconomic increase of the investment costs supplementary energy sources are inevitable. The author points out how the various primary energy sources in question can be utilized and combined with each other. He describes the converters for the permanent (regenerative) energy sources, the available electrochemical stores and their application as well as the fundamental structures of the energy supply systems. Finally some advice is given regarding the recycling of energy and the operation by the consumers.

  16. 7. Kassel symposium on energy systems technology: Renewable energy sources and efficient utilization of energy; 7. Kasseler Symposium Energie-Systemtechnik: Erneuerbare Energien und rationelle Energieverwendung

    Energy Technology Data Exchange (ETDEWEB)

    Caselitz, P. (comp.)

    2002-07-01

    This proceedings volume comprises 17 papers on the following subjects: Methane hydrates, compounds of gas and water; Compressed air stroage gas turbine power plants / Scheduled application for load levelling between varying wind power production and power demand; Modern pumped storage power stations in the GW range - the PSW Goldisthal example; Lead batteries - new developments and future applications; Alkaline battery systems for hybrid electric road vehicles; Lighium systems and their applications; Zinc/air cells; Hydrogen storage - metal hydride storage, compressed gas storage, LNG storage; Carbon nanofibres for hydrogen storage; Double-layer condensers - technology, cost, perslpectives; Supercondensers in motor vehicles; Superconducting magnetic energy stores; Flywheel storage - status report; Decentralized energy storage in the European integrated supply grid - the EU project DISPOWER; Intercontinental integration of power supply - perspectives of full-scale power supply on the basis of renewable energy sources in Europe; High-volgate direct-current transmission in the European power suppply grid; Superconductivity and energy transport - status and perspectives. [German] Dieser Tagungsband enthaelt 17 Vortraege mit folgenden Themen: Methanhydrate: Verbindung aus Gas und Wasser (Erwin Suess); Druckluftspeicher-Gasturbinen-Kraftwerke / Geplanter Einsatz beim Ausgleich flukturierender Windenergie-Produktion und aktuellem Strombedarf (Fritz Crotogino); Moderne Pumpspeicherwerke im Gigawattbereich - PSW Goldisthal (Wolfgang Bogenrieder); Bleibatterien - neue Entwicklungen und zukuenftige Einsatzbereiche (Reiner Wagner); Alkalische Batteriesysteme fuer Hybrid-Elektrostrassenfahrzeuge (Detlef Ohms, Gunter Schaedlich); Lithiumsysteme - Einsatzbereiche (Dietmar Rahner); Zink/Luft-Zellen (Michael Bruesewitz); Wasserstoffspeicher - Metallhydridspeicher, Druckgasspeicher, Fluessiggasspeicher (Andreas Otto); Kohlenstoff-Nanofasern zur Wasserstoffspeicherung (Juergen Garche

  17. Building technologies program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, S.E.

    1996-05-01

    The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

  18. 2007 annual meeting on nuclear technology. Report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    This year's Annual Nuclear Technology Conference (JK) organized by the Deutsches Atomforum e.V. (DAtF) and the Kerntechnische Gesellschaft e.V. (KTG) was held in Karlsruhe on May 22-24. The attendance of more than 1,200 persons from 21 nations, and the increase in participation over the past few years, underline the role of this specialized congress as one of the leading international events in the field of the peaceful uses of nuclear power. The first day of the conference, with its plenary presentations, traditionally focused mainly on political and economic problems of the use of nuclear power. The situation of nuclear power in the United Kingdom, the key country of this year's meeting, was covered in depth. As usual, the program of the three-day event was organized as follows: plenary sessions on the first day were followed by topical sessions, technical sessions, and special events on the other days. This year, the conference featured a record program of 251 papers presented at these sessions. The 'Nuclear Power Campus' was arranged very successfully for the 5th time as an event comprising lectures and a 'hands-on' exhibition explaining the world of nuclear power in a transparent way to students from schools and universities. The special commitment to young scientists and to the preservation of competence in the nuclear field were emphasized at the JK 2007, among other things, in a workshop on 'Preservation of Competence in Nuclear Technology'. Nearly 20 young scientists presented results of their scientific work. The Annual Meeting on Nuclear Technology was accompanied by a specialized exhibition with meeting points of industry organized by 33 manufacturers, vendors, and service companies. (orig.)

  19. Chemical Technology Division Annual Report 2000

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. F.; Einziger, R. E.; Green, D. W.

    2001-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory (ANL), one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base through developing industrial technology and transferring that technology to industry. The Chemical Technology Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by ANL's mission. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to ANL and other organizations. The Division is multi-disciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia, urban planning, and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. In this annual report we present an overview of the technical programs together with representative highlights. The report is not intended to be comprehensive or encyclopedic, but to serve as an indication of the condition

  20. Non conventional energy sources and energy conservation

    International Nuclear Information System (INIS)

    Bueno M, F.

    1995-01-01

    Geographically speaking, Mexico is in an enviable position. Sun, water, biomass and geothermal fields main non conventional energy sources with commercial applications, are presents and in some cases plentiful in national territory. Moreover the coastal tidal power which is in research stage in several countries. Non conventional energy sources are an alternative which allow us to reduce the consumption of hydrocarbons or any other type of primary energetic, are not by oneself choices for the energy conservation, but energy replacements. At the beginning of this year, CONAE created the Direction of Non conventional Energy Sources, which main objective is to promote and impulse programs inclined towards the application of systems based in renewable energy sources. The research centers represent a technological and consultative support for the CONAE. They have an infrastructure developed along several years of continuous work. The non conventional energy sources will be a reality at the same time that their cost be equal or lower than the cost for the traditional generating systems. CONAE (National Commission for Energy Conservation). (Author)

  1. Management of development of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Inić Branimir P.

    2014-01-01

    Full Text Available The aim of the paper: 'Management of development of renewable energy sources is to point out the possible solutions for neutralizing the threat of energy shortages. The paper outlines major short and long term energy problems facing humanity. The increase of world human population is, inevitably, accompanied by higher energy consumption. Reserves decrease of nonrenewable energy sources like oil, gas, and coal is a major threat to maintaining current living conditions, and thus requires solutions in order to neutralize the threat. This is why the management of development of renewable energy sources is an imperative for Serbia. The paper emphasizes the use of solar energy, because the annual average of solar radiation in Serbia is about 40% higher than the European average, however, the actual use of the sun's energy to generate electricity in Serbia is far behind the countries of the European Union. Solar energy is clean, renewable, and the fact that 4.2 kilowatt-hours are received daily per square meter averaged over the entire surface of the planet, makes it an almost unused energy source, Compared to EU countries, the price of non-renewable derived energy is, on average, higher in Serbia. Taking this into consideration, the use of solar energy, as an unused resource, imposes itself as indispensable.

  2. 2006 annual nuclear technology conference Aachen

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    This year's ANNUAL NUCLEAR TECHNOLOGY CONFERENCE (JK) was organized in Aachen by the Deutsches Atomforum e.V. (DAtF) and the Kerntechnische Gesellschaft e.V. (KTG). The attendance by more than 1,200 participants from 17 nations underlines the role of this specialized congress as one of the leading events in the field of nuclear power use. For several years in a row, the number of participants has been increasing steadily. The first conference day offered plenary presentations traditionally dealing mainly with political and economic issues of the use of nuclear power, including a presentation by the President of the DAtF. The lead countries of JK 2006 were Belgium and Finland with contributions to the plenary day and special meetings on selected topics. The traditional proven scheme of the three-day meeting offered plenary sessions on the first day, and technical sessions, topical sessions, poster sessions, and special events on the following days. The 'Nuclear Power Campus' was run most successfully for the fourth time, presenting to high school students and university freshmen the world of nuclear power in a transparent way. The special commitment to the young generation was stressed at JK 2006 also by the 'Competence Preservation in Nuclear Technology' workshop. Nearly 2 dozen young scientists used the forum to present results of their work. The meeting was accompanied by a technical exhibition with meeting points established by vendors, suppliers, and service providers. (orig.)

  3. Annual meeting on nuclear technology 2005. Proceedings

    International Nuclear Information System (INIS)

    2005-03-01

    The proceedings of the annual meeting on nuclear technology 2005 covers the following issues: (1) reactor physics and methods of calculation: design and transients; method development and validation; (2): thermodynamics and fluid dynamics: analytical thermohydraulics for existing reactors; experiments and operational behavior; analytical methods for innovative reactors; (3) Safety of nuclear installations - methods, analysis, results: special problems; PSA and in-vessel phenomena; ex-vessel phenomena; (4) front end and back end of the fuel cycle, radioactive waste, storage: intermediate storage of fuel elements, waste treatment, (5) fuel elements and core components: fuel elements, new methods in the interpretation, manufacturing and service; (6) operation of nuclear installations: experience with the operation of NPPs; management systems, digital instrumentation and control of NPPs revision management; (7) decommissioning of nuclear installations: concepts and strategies for decommissioning and dismantling; experiences with decommissioning projects; (8) fusion technology: fusion facilities; materials and test facility; cryo technique and simulations; (9) research reactors: building new and backfitting of existing research reactors; current development; dismantling of research reactors; (10) advanced reactor concepts, energy systems, energy economics; (11) communication with the public; (12) component materials, fabrication and service behavior: degradation effects of component materials; component behavior; (13): radiation protection: PSA and in-vessel phenomena, ex-vessel phenomena.

  4. Carmanah Technologies Corporation 2004 annual report

    International Nuclear Information System (INIS)

    2005-01-01

    British Columbia-based Carmanah Technologies is a world leader in the design, manufacture and supply of patented solar-powered light emitting diode (LED) lighting solutions. As a leading alternative energy manufacturer, it was the first company to integrate LEDs with solar chargers and battery power storage. Carmanah products have high-end assembly, minimal size, maximized performance and field-proven reliability. The products have been used in public transit applications, roadway lighting, and for general aviation lighting solutions. In 2004, their products saved the equivalent of 6,705 metric tonnes of carbon dioxide. This annual report includes information on the company's net earnings and investor profiles. The company has large markets for its products with little competition. It has a strong management team and its funding places it in a position to capitalize on current and emerging technologies. The company's energy resource activities were described and an operations review was presented along with consolidated financial statements and common share information such as assets, liabilities, revenues, expenses and cash flows. Revenue and expenditure statements were summarized by source. tabs., figs

  5. Renewable energy sources. Erneuerbare Energien

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    To judge future trends in work on the exploitation of renewable energy sources for overall energy supply, it is necessary to know the following: the rules that nature abides by, the principles of technical exploitation of these energies, and the basic data for the current state of development. The above information is compiled in this publication for those renewable energy sources on which topical discussion centres: solar radiation and wind. For the remaining renowable energy sources (e.g. biomass, tidal power, geothermal energy), some examples of use are mentioned and advanced literature is indicated. (orig./HSCH).

  6. Alternate energy sources

    International Nuclear Information System (INIS)

    Andrei, L.

    1996-01-01

    The paper is a pleading in favor of hydroelectric power which in Romania originated more than 100 y ago. The hydroelectric potential of this country amounts to about 40 TWh / year. The hydroelectric yield is currently 15.5 TWh / year, 11.5 TWh / year of which being supplied by the Danube Power Plants. The hydroelectric power has a number of advantages: it is renewable, can be stocked and distributed according to the daily, weekly or seasonal energy demand, the energetic output is 82-89 %, if the project is carefully worked out the hydroelectric system has a small environmental impact, the service life can reach over 80 years, while the maintaining and operation costs are low. Some drawbacks are listed: the problems related to the population relocation, the environmental effects, especially the forest clearing, salt enrichment of affected soils. Arguments are presented from the economic point of view, backed up by ecological and technological advantages in favor of developing the micro hydroelectric power facilities

  7. Physics and Advanced Technologies 2001 Annual Report

    International Nuclear Information System (INIS)

    Jacobs, R

    2002-01-01

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  8. Canadian Fusion Fuels Technology Project annual report 93/94

    International Nuclear Information System (INIS)

    1994-01-01

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today's advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report

  9. Sustainable Energy Technologies annual report 2003

    International Nuclear Information System (INIS)

    2003-01-01

    Calgary based Sustainable Energy Technologies is a public company that develops and manufactures alternative energy products that enable distributed renewable energy resources to be integrated with the existing electrical infrastructure. The company has moved from a development stage company to one that manufactures power electronic products that can compete globally and which will play an important role in the transition to a cleaner world. Achievements in the past year have included a joint effort with RWE Piller GmbH to develop a power electronics platform for a fuel cell inverter. Ten inverters were delivered to Nuvera Fuel Cells and were reported to have performed very well in the Avanti distributed generation fuel cell. The universality of the inverter was demonstrated when the same power electronics platform was used to support a 5 kW grid interactive converter for the solar power market. During the 18-month period ending on March 31, 2003, the company invested $1.5 million to create their first two commercial product lines, without net investment of shareholder equity. The objective for the future is to generate cash flow and earnings from sales into the solar power market and to build a leadership role in the stationary fuel cell industry. The major challenge will lie in product support and customer service. As the customer base expands, the company will invest in product-tracking software. This annual report includes an auditor's report, consolidated financial statements including balance sheets, statements of income and deficit, statements of cash flows, and notes to the consolidated financial statements. tabs

  10. Chemical Technology Division annual technical report, 1996

    International Nuclear Information System (INIS)

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R ampersand D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division's activities during 1996 are presented

  11. Chemical Technology Division annual technical report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  12. 3rd Annual Disruptive Technology Conference

    Science.gov (United States)

    2006-09-07

    Panel -- The Warfighter’s Perspective The Impact of Disruptive Technologies on Joint Warfighting MG Michael Vane, USA, Vice Director for Force...Structure, Resources & Assessment, Joint Staff, J-8 Panel -- Perspectives of Change: Identifying the Emerging Commercial Disruptive Technologies Decision...Mark Lucas, Board Member OSGeo, RadiantBlue Technologies Panel -- The Search for Disruptive Technologies - a “Blue Force” Multiplier Advanced

  13. Renewable Energy Sources Brno '93

    International Nuclear Information System (INIS)

    1993-01-01

    The proceedings contain 27 contributions dealing with unconventional energy sources. The numbers of contributions in the individual classes of topics indicate that interest has mostly concentrated on the direct utilization of solar energy, whereas wind energy, hydroelectric energy and geothermal energy receive less attention and the use of biomass is at the margin of interest. (J.B.)

  14. Physics of the Cosmos Program Annual Technology Report

    Science.gov (United States)

    Pham, Bruce Thai; Cardiff, Ann H.

    2015-01-01

    What's in this Report? What's New? This fifth Program Annual Technology Report (PATR) summarizes the Programs technology development activities for fiscal year (FY) 2015. The PATR serves four purposes.1. Summarize the technology gaps identified by the astrophysics community;2. Present the results of this years technology gap prioritization by the PCOS Technology Management Board (TMB);3. Report on newly funded PCOS Strategic Astrophysics Technology (SAT) projects; and4. Detail progress, current status, and activities planned for the coming year for all technologies supported by PCOS Supporting Research and Technology (SRT) funding in FY 2015. .

  15. Overview of renewable energy sources development in France

    International Nuclear Information System (INIS)

    Lengyel, J.; Lepy, S.; Roudergues, J.M.

    2009-01-01

    Generation from Renewable Energy Sources is booming. As for any conventional generation technology, RES specific technical features can be accommodated by the electric system with no tremendous difficulty, provided the grid can be aptly adapted and developed. (authors)

  16. Renewable energy sources, finance and sustainability outlook and latest evolution

    International Nuclear Information System (INIS)

    Paesani, P.

    2008-01-01

    Environment-related reasons, pressure by public opinion, and above all the strong belief that green technologies will be highly profitable pave the way to higher investments of private finance on renewable energy sources [it

  17. Canadian Fusion Fuels Technology Project annual report 93/94

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today`s advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report.

  18. 1997 Annual report. Technological Research Direction

    International Nuclear Information System (INIS)

    Instituto Nacional de Investigaciones Nucleares

    1998-01-01

    This document describes the results for one year of work. Here is presented the goals of the Technological Research Direction of the National Institute of Nuclear Research in Mexico, which is promoting and developing the production of high technologies in the nuclear sciences and related disciplines as well as to generate the technologies, products, quality insume for academic organizations, health, industrial and commercial that are required. (Author)

  19. International Technology Exchange Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES`s goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM`s policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM`s training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  20. International Technology Exchange Division: 1993 Annual report

    International Nuclear Information System (INIS)

    1993-01-01

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES's goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM's policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM's training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  1. Accelerator Technology Division annual report, FY 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects

  2. Alternative energy sources: ECC report

    International Nuclear Information System (INIS)

    Renwick, Lord; Stoddart, Lord; Lauderdale, Earl of

    1988-01-01

    The European Communities Committee Report on Alternative Energy Resources was debated. Six alternative energy sources were first described - wind power, biomass, geothermal energy, solar energy, wave and tidal power. Combined heat and power was also mentioned. General questions concerning alternative energy sources were then considered. In particular, their potential contribution to the energy demand was assessed. The evidence presented to the committee suggested that they would only make a small contribution in the near future and could not be considered as a substitute for coal and nuclear power. However, by the year 2030 it would be possible for 18% of the national electricity demand to be met by alternative energy sources. The economic and environmental issues were assessed briefly and the report's conclusions were summarized. An independent review of wave power was called for in view of conflicting evidence presented to the committee. The debate which followed lasted three hours and is reported verbatim. Other issues raised included energy conservation, public attitudes to energy, the environment, government and private funding of research and development of nuclear power, including fusion. (U.K.)

  3. New renewable energy sources; Nye fornybare energikilder. Revidert utgave 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This publication presents a review of the technological, economical and market status in the field of new renewable energy sources. It also deals briefly with the present use of energy, external conditions for new renewable energy sources and prospects for these energy sources in a future energy system. The renewable energy sources treated here are ''new'' in the sense that hydroelectric energy technology is excluded, being fully developed commercially. This publication updates a previous version, which was published in 1996. The main sections are: (1) Introduction, (2) Solar energy, (3) Bio energy, (4) Wind power, (5) Energy from the sea, (6) Hydrogen, (7) Other new renewable energy technologies and (8) New renewables in the energy system of the future.

  4. Hazards Control Department annual technology review, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, R.V.; Anderson, K.J. (eds.)

    1988-07-01

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  5. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  6. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators

  7. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators.

  8. Action plan for renewable energy sources

    International Nuclear Information System (INIS)

    2000-03-01

    energy sources in relation to other energy sources. The objective in the long term is to make them as competitive as possible in the open energy market. Among those measures of crucial importance included in the Action Plan, we can mention development and commercialisation of new technology as well as several financial measures, of which taxation and investment aid are considered to have the greatest effect. In addition, the Action Plan presents several administrative measures for the promotion of renewable energy sources. A separate assessment of the environmental impact of the Action Plan has been made resulting in an environmental impact statement (EIS) that contains a detailed account of the environmental impacts of the use of renewable energy sources and the use of peat in energy production. The most important environmental impact of the implementation of the Action Plan will be a reduction in greenhouse gas emissions. As a result of the intensified measures to be taken in accordance with the Action Plan, carbon dioxide emissions are estimated to be reduced at least by 2 million tons per year compared with the outlook presented in the Energy Strategy. Further, the use of waste, which otherwise would have been transported to tips, in energy production is estimated to reduce methane emissions by 1 million ton per year (C0 2 equivalent). The reduction might be even much bigger in the next few years. To ensure that the objectives of the Action Plan will be achieved, the contribution by the State (tax subsidies, investment aid and other forms of aid) should be approx. FIM 500 million on an average per year in the next ten years. In 1998, the State's contribution exceeded FIM 300 million. Further, financing amounting to approx. FIM 200 million is channelled to the research on and the development of energy production technology, which in the future to a larger extent than now will be channelled to the development of such forms of energy production technology that are using

  9. 2013 Geothermal Technologies Office Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    For the Geothermal Technologies Office (GTO), 2013 was a year of major achievements and repositioning to introduce major initiatives. Read all about our progress and successes this year, and as we look ahead, our new opportunities and initiatives.

  10. Technology Deployment Annual Report 2013 December

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2014-01-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In a multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily

  11. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  12. 2014 Annual Report, Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    In 2014, the Geothermal Technologies Office (GTO) made significant gains—increased budgets, new projects, key technology successes, and new staff. The Fiscal Year (FY) 2015 budget is at $55 million—roughly a 20% increase over FY 2014, and a strong vote of confidence in what the sector is doing to advance economically competitive renewable energy. GTO also remains committed to a balanced portfolio, which includes new hydrothermal development, EGS, and targeted opportunities in the low-temperature sector.

  13. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  14. Technology Deployment Annual Report 2014 December

    Energy Technology Data Exchange (ETDEWEB)

    Arterburn, George K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    This report is a summary of key Technology Deployment activities and achievements for 2014, including intellectual property, granted copyrights, royalties, license agreements, CRADAs, WFOs and Technology-Based Economic Development. Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In our multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational instiutitons throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically

  15. Chemical Technology Division annual technical report 1989

    International Nuclear Information System (INIS)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing 99 Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL)

  16. Unused energy sources inducing minimal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Voss, A [Inst. fur Reaktorentwicklung, Kernforschungsanlage Julich GmbH, German Federal Republic

    1974-01-01

    The contribution of hydroelectricity to the growing worldwide energy demand is not expected to exceed 6%. As the largest amount of hydroelectric potential is located in developing nations, it will find its greatest development outside the currently industrialized sphere. The potential of 60 GW ascribed to tidal and geothermal energy is a negligible quantity. Solar energy represents an essentially inexhaustible source, but technological problems will preclude any major contribution from it during this century. The environmental problems caused by these 'new' energy sources are different from those engendered by fossil and nuclear power plants, but they are not negligible. It is irresponsible and misleading to describe them as pollution-free.

  17. 2012 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-26

    The 2012 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting was held May 14-18, 2012 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Program: a total of 309 individual activities were reviewed for Vehicle Technologies, by a total of 189 reviewers. A total of 1,473 individual review responses were received for the technical reviews.

  18. Chemical Technology Division. Annual technical report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  19. Chemical Technology Division. Annual technical report, 1995

    International Nuclear Information System (INIS)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems

  20. Accelerator Technology Division annual report, FY 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; Φ Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  1. 2015 Annual Report - Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-01

    Over the past year, the U.S. Department of Energy’s (DOE’s) Geothermal Technologies Office (GTO) supported a number of exciting initiatives and research and development (R&D)activities! The GTO budget was increased in Fiscal Years (FY) 2015-2016, providing the opportunity to invest in new technologies and initiatives, such as the DOE-wide Subsurface Crosscut Initiative, and the Small Business Vouchers (SBV)Program, which is focused on growing our small business and national laboratory partnerships. These efforts will continue to advance geothermal as an economically competitive renewable energy.

  2. Water as a sustainable energy source. Recommendations and energy payback periods of eight technologies; Water als duurzame energiebron. Aanbevelingen en energieterugverdientijden van acht technologieen

    Energy Technology Data Exchange (ETDEWEB)

    Van de Berg, M.; Geurts, F.; Stolk, N. [Ecofys, Utrecht (Netherlands)

    2010-02-15

    The spatial effects of six energy technologies based on water are described: thermal energy storage, tidal energy, tidal energy based on height of fall, wave energy, aquatic biomass and osmosis energy (blue energy) [Dutch] De omgevingseffecten van zes energietechnologieen met water worden beschreven: warmte-koude opslag, getijdenstroming, getijdenenergie op verval, golfenergie, aquatische biomassa en osmose-energie (blue energy)

  3. Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology

    International Nuclear Information System (INIS)

    Zhao, Yang; Noori, Mehdi; Tatari, Omer

    2017-01-01

    The integration of wind energy in the electricity sector and the adoption of electric vehicles in the transportation sector both have the potential to significantly reduce greenhouse gas emissions individually as well as in tandem with Vehicle-to-Grid technology. This study aims to evaluate the greenhouse gas emission savings of mitigating intermittency resulting from the introduction of wind power through Vehicle-to-Grid technologies, as well as the extent to which the marginal electricity consumption from charging an electric vehicle fleet may weaken this overall environmental benefit. To this end, the comparisons are conducted in seven independent system operator regions. The results indicate that, in most cases, the emission savings of a combination of wind power and Vehicle-to-Grid technology outweighs the additional emissions from marginal electricity generation for electric vehicles. In addition, the fluctuations in newly-integrated wind power could be balanced in the future using EVs and V2G technology, provided that a moderate portion of EV owners is willing to provide V2G services. On the other hand, such a combination is not favorable if the Vehicle-to-Grid service participation rate is less than 5% of all electric vehicle owners within a particular region. - Highlights: • The environmental benefit of vehicle to grid systems as grid stabilizer is analyzed. • Emission savings of vehicle to grid and impacts of electric vehicles are compared. • Seven independent system operator regions are studied. • Uncertainty and sensitivity analysis are performed through a Monte Carlo Simulation.

  4. 2016 Geothermal Technologies Office Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-01

    This report highlights project successes and continued efforts in all of our program areas – EGS, Hydrothermal, Low-Temperature, and Systems Analysis – which are flanked by useful tools and resources and links to more information. Such highlights include FORGE and EGS successes, projects reducing geothermal costs and risks, and advancements in technology research and development.

  5. Chemical Technology Division annual technical report, 1985

    International Nuclear Information System (INIS)

    1986-04-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1985 are presented. In this period, CMT conducted research and development in areas that include the following: (1) advanced batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) advanced fuel cells with molten carbonate or solid oxide electrolytes; (3) corrosion-protective coatings for high-strength steel; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methodologies for recovery of energy from municipal waste; (6) nuclear technology related to waste management, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and proof of breeding in a light water breeder reactor; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL

  6. Chemical Technology Division annual technical report, 1994

    International Nuclear Information System (INIS)

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  7. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  8. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  9. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains paper on the following topics: coal combustion/coal processing; advanced electric power generation systems; combined nitrogen oxide/sulfur dioxide control technologies; and emerging clean coal issues and environmental concerns. These paper have been cataloged separately elsewhere

  10. Annual Technology Transfer Report FY 2017

    Science.gov (United States)

    2018-04-01

    The U.S. Department of Transportation (U.S. DOT) is the Federal steward of the Nation's transportation system. U.S. DOT consists of multiple modal operating administrations (OAs) that carry out mission-related research, development, and technology (R...

  11. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  12. Chemical Technology Division, Annual technical report, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  13. Chemical Technology Division annual technical report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  14. Nuclear power, useful energy source

    International Nuclear Information System (INIS)

    Sorin, F.

    2003-01-01

    This article is a reprint of an article published in a newspaper named 'Liberation Champagne' from October 7, 2003. It makes a brief analysis of the future world energy needs, of the need to fight against the global warming and to find a substitution to fossil fuels on the way to depletion. The mankind has to face a contradictory problem: increasing the energy production and saving the fossil fuels. The only solution is to accelerate the development of nuclear energy and of renewable energy sources. This is also the only way to fulfill the Kyoto protocol commitments. Short paper. (J.S.)

  15. Antimatter as an Energy Source

    International Nuclear Information System (INIS)

    Jackson, Gerald P.

    2009-01-01

    Antiprotons and positrons are constantly generated in space, and periodically manufactured by humans here on Earth. Harvesting of these particles in space and forming stable antimatter atoms and molecules would create a significant energy source for power and propulsion. Though dedicated fabrication of these particles on Earth consumes much more energy than could be liberated upon annihilation, manufactured antimatter represents a high-density energy storage mechanism well suited for spacecraft power and propulsion. In this paper the creation, storage, and utilization of antimatter is introduced. Specific examples of electrical energy generation and deep-space propulsion based on antimatter are also reviewed.

  16. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  17. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  18. Chemical technology division: Annual technical report 1987

    International Nuclear Information System (INIS)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs

  19. Chemical Technology Division annual technical report, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    Highlights of the Chemical Technology (CMT) Divisions's activities during 1988 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries (mainly lithium-alloy/metal sulfide, sodium/metal chloride, and sodium/sulfur); (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for recovery of energy from municipal waste and techniques for treatment of hazardous chemical water; (6) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing /sup 99/Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 53 figs., 16 tabs

  20. Chemical Technology Division annual technical report, 1986

    International Nuclear Information System (INIS)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO 2 recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs

  1. Chemical Technology Division annual technical report 1984

    International Nuclear Information System (INIS)

    1985-02-01

    In this period, CMT conducted research and development in the following areas: (1) advanced batteries - mainly lithium alloy/metal sulfide and sodium/sulfur for electric vehicles; (2) aqueous batteries - mainly improved lead-acid and nickel/iron for electric vehicles; (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamic plants and the technology for pressurized fluidized-bed combustors; (5) methodologies for recovery of energy from municipal waste; (6) solid and liquid desiccants that allow moisture to be removed with a minium of energy; (7) nuclear technology related to waste management, proof of breeding for a light water reactor, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (8) physical chemistry of selected materials in environments simulating those of fission, fusion, and other energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting abundant raw materials to desired products; materials chemistry of liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; atmospheric chemistry, most notably SO 2 oxidation mechanisms; and the thermochemistry of zeolites, related silicates, and inorganic compounds

  2. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors

  3. Biological and chemical technologies research. FY 1995 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  4. Perspectives for drive technologies and biogenic energy sources in the transport sector through to the year 2050; Perspektiven fuer Antriebstechnologien und biogene Energietraeger im Verkehr bis 2050

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, Karin; Mueller-Langer, Franziska [DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig (Germany)

    2016-08-01

    The supply and use of biofuels as well as perspectively also other renewable energy resources were and will be strongly driven by policies and respective frame conditions. On national and EU level these are set and foreseeable until 2020. However with regard to reaching the 2050-targets no defined measures are in place. In depency how the strategic focus will be led with regard to energy resources and related technologies different scenarios are possible to meet the energy demand in transport until 2050. This is especially true for transport sector like aviation where only very limited alternatives to conventional jetfuel are possible.

  5. Chemical Technology Division annual technical report, 1990

    International Nuclear Information System (INIS)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs

  6. Chemical Technology Division annual technical report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  7. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature super-conductors. The Division's wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by governmental and industrial

  8. A comparative table of various energy sources

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This table provides wide informations on the technological facets of various sources of primary energy. One of the outstanding features of this table is that it exposes and compares various technological problems involved in the energy conversion processes. The primary energy sources treated here are the solar energy (heat and light are treated separately), the geothermal energy, coal (gasification and liquefaction are treated separately), oil, natural gas, oceano-energy (tidal energy, temperature difference, and wave energy are treated separately), organic wastes, oil shale, tar sand, hydraulic power, wind power, biomass, uranium, thorium, and deuterium and lithium. On the other hand, the comparisons are made in three major items, i.e. charactersitics as natural resources, conversion or refinement to secondary energy sources, and economical characteristics. The first item includes the estimated and recognized amount of deposits, easiness of mining, storage, and transportation, and cleanliness and safety. As for conversion characteristics, the easiness, controlability, efficiency, cleanliness, and safety of various conversion processes are compared. Finally, as for economical problems, cost comparisons are made for gathering or mining those resources, including required energy input, man power, required facilities, and site conditions. (Aoki, K.)

  9. Comparative table of various energy sources

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    This table provides wide informations on the technological facets of various sources of primary energy. One of the outstanding features of this table is that it exposes and compares various technological problems involved in the energy conversion processes. The primary energy sources treated here are the solar energy (heat and light are treated separately), the geothermal energy, coal (gasification and liquefaction are treated separately), oil, natural gas, oceano-energy (tidal energy, temperature difference, and wave energy are treated separately), organic wastes, oil shale, tar sand, hydraulic power, wind power, biomass, uranium, thorium, and deuterium and lithium. On the other hand, the comparisons are made in three major items, i.e. charactersitics as natural resources, conversion or refinement to secondary energy sources, and economical characteristics. The first item includes the estimated and recognized amount of deposits, easiness of mining, storage, and transportation, and cleanliness and safety. As for conversion characteristics, the easiness, controlability, efficiency, cleanliness, and safety of various conversion processes are compared. Finally, as for economical problems, cost comparisons are made for gathering or mining those resources, including required energy input, man power, required facilities, and site conditions.

  10. Laser technologies for laser accelerators. Annual report

    International Nuclear Information System (INIS)

    1985-01-01

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO 2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO 2 , excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO 2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  11. Chemical Technology Division annual technical report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  12. Chemical Technology Division annual technical report, 1992

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO 2 in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel' ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  13. 1982 annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The objective of this programme is to study the technological problems related to ''Post Jet'' experimental machines and, in a longer range, to assess the engineering aspects of Fusion Power Reactor Plants. According to the decision taken by the Council of Ministers on the JRC multiannual programme (1980-1983), the work performed on 1982 concerns four projects, namely: The Project 1: ''Fusion Reactor Studies''concerns mainly the NET (Next European Torus) studies which have been continued in the framework of the European participation to INTOR (INternational TOkamak Reactor). This represents a collaborative effort to design a major fusion experiment beyond the-upcoming generation of large tokamaks. The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. The Project 4: ''Cyclotron Operation and Experiments''has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  14. RENEWABLE ENERGY SOURCES IN POLAND - CONDITIONS AND POSSIBILITES OF DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, L.; Mokrzycki, E.; Ney, R.

    2007-07-01

    The paper describes the state of the art in renewable energy sources development. The obligation resulting from the membership of Poland in the European Union as well as from other international agreements in the scope of renewable energy sources development are described. The production of electricity, heat and biofuels in Poland is given and the perspectives of development of particular renewable energy sources in Poland are discussed in the view of potential reserves and other constrains. The economic aspects of renewable energy technologies are shown. The environmental pros and cons of biomass energy development are described. Arguments for development of renewable energy sources use are stated: the decrease of dependence from primary energy sources, the decrease the emission of green house gases and the recovery of agricultural regions of the country. In conclusion it is stated that the significance of renewable energy sources in Polish conditions is constrained to local societies. Their development should be adjusted to conditions predominating in a given region and that wider consumption of renewable energy sources should develop in conformity with sustainable development, so it is necessary to reach agreement between local societies, institutions dealing with environment protection and representatives of power sector. (auth)

  15. Superconducting technology program Sandia 1996 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1997-02-01

    Sandia's Superconductivity Technology Program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) Process development and characterization of thallium-based high-temperature superconducting closed system wire and tape, (2) Investigation of the synthesis and processing of thallium-based thick films using two-zone processing, and (3) Cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY96 in each of these areas

  16. 1981 Annual Status Report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The work perfomed on 1981 concerns four projects, namely: - The project 1: ''Reactor Studies''. During 1981 this activity was made in support to the European participation to the INTOR (INternational TOkamak Reactor) studies. This represents a collaborative effort among Europe, Japan; USA and USSR, under the auspices of IAEA, to design a major fusion experiment beyond the upcoming generation of large tokamaks. - The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. - The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. - The Project 4: ''Cyclotron Operation and Experiments'' has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  17. Physics and Advanced Technologies 2003 Annual Report

    International Nuclear Information System (INIS)

    Hazi, A; Sketchley, J

    2005-01-01

    The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the best science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004 as

  18. Environmental protection congress M-V. Use of regenerative energy sources and hydrogen technology 2010. Proceedings; Klimaschutzkongress M-V. Nutzung regenerativer Energiequellen und Wasserstofftechnik 2010. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Luschtinetz, Thomas; Lehmann, Jochen (eds.)

    2010-07-01

    Within the Environmental Protection Congress M-V from 4th to 6th November, 2010, in Stralsund (Federal Republic of Germany) the following lectures were held: (1) Conception for climate production in Stralsund (Matthias Ahlhaus); (2) Regenerative energies in the power land North Rhine Westfalia (Frank-Michael Baumann); (3) Heat storages - Supporting pillars of the comprehensive utilization of regenerative ideas (Juergen Buehl); (4) Logistics analysis of rice straw for power exploitations and potential green house gas mitigations - An example in Thailand (Mitra Kami Delivand); (5) The Heatpipe-Reformer registered - Development, start-up and testing (Andreas Dengel); (6) The ecological cost of the use of biomass of plants for energy production (Bohdan Deptula); (7) Hydrogen as fuel and energy storage: Strategy and implementation in NIP (Oliver Ehret); (8) The ORGA test: Development of a testing procedure for a practical evaluation of the fermenter biology and NaWaRo biogas plants (Nils Engler); (9) Large scale integration of offshore wind power through wind farm clusters (Alejandro J. Gesino); (10) NANOSITR - Healt, coldness and electricity from one biomass vessel (Bodo Gross); (11) OPTISTRAHL - A two-stage washer unit for biogas (Bodo Gross); (12) Innovation development for renewable energies (Bernward Janzing); (12) Strategic action options for energy supply utilities at renewable energies (Patrick Kemnitz); (13) Hydrogen - An option for a sustainable storage of wind power (Martin Kleimaier); (14) Small parabolic trough power plants - Actual technology and outlook (Joachim Krueger); (15) A photocatalytic generation of hydrogen: Efficient iron-based water reduction catalysts (Sebastian Losse); (16) Environmental assessment of municipal solid waste management in Sri Lanka and India in a life cycle perspective (Samanthi Nirmala M. Menikpura); (17) High temperature low sag conductors in power system with wind power farms (Olgierd Malyszka); (18) Wind

  19. 2006 annual nuclear technology conference - opening address

    International Nuclear Information System (INIS)

    Hohlefelder, W.

    2006-01-01

    The Energy Summit organized by Federal Chancellor Merkel set the right course in energy research. The funds to be made available by the federal government for energy research and innovation are to be raised by more than 30% by 2009. However, the Red-Green ban on research into reactor development still needs to be lifted. For Germany, 2005 was a year of change. As far as energy policy is concerned, it was a year more of disenchantment, as the diametrally opposed positions held by CDU/CSU and SPD in matters nuclear mean that, for the time being, the current regulations about residual plant lifetimes will continue to be valid. The Energy Summit as the first round in a process at the end of which, in 2007, there is to be a complete energy policy concept for the next few decades, does raise hopes. Clear emphasis must be given to worldwide developments, however. The assumption that others would follow Germany's 'good' example in opting out of the use of nuclear power has turned out to be naive. Ultimate clarity about which technology will turn out to be a bridge or an interim technology will be obtained in retrospect only. We should buy time now by extending nuclear power plant life so as to be able later to decide more freely about our options. The repository question, which is still considered a point of dispute, is less a technical than a political problem. The sequence of steps to be taken for solution is outlined in great detail and with high precision in the nuclear agreement. Following the ruling by the Lueneburg higher administrative court, Konrad can be installed and commissioned by 2013. After handling the so-called points of doubt, exploration of Gorleben can be completed. Nuclear power is an important building block in the energy mix in peaceful coexistence of various energy resources in accordance with their respective possible uses. For this reason, the renewables and nuclear power should no longer by played off one against the other. Both of them have a

  20. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  1. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  2. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  3. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  4. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  5. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  6. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  7. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, J; Smulek, W; Godlewska-Para, E [eds.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods.

  8. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods.

  9. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    International Nuclear Information System (INIS)

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  10. 2008 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Dagan, Ron; Sanchez Espinoza, Victor Hugo; Faber, Wolfgang; Berlepsch, Thilo v.; Spann, Holger; Schaffrath, Andreas; Schubert, Bernd; Rieger, Udo; Christ, Bernhard G.; Gulden, Werner; Bogusch, Edgar

    2008-01-01

    Summary report on these 5 - out of 11 - Sections of the Annual Conference on Nuclear Technology held in Hamburg on May 27-29, 2008: - Reactor Physics and Methods of Calculation - Thermodynamics and Fluid Dynamics - Safety of Nuclear Installations - Methods, Analysis, Results - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage - Fusion Technology. Other Sections will be covered in reports in further issues of atw. (orig.)

  11. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  12. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators.

  13. Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review

    Directory of Open Access Journals (Sweden)

    Wajahat Ullah Khan Tareen

    2018-06-01

    Full Text Available This study summarizes an analytical review on the comparison of three-phase static compensator (STATCOM and active power filter (APF inverter topologies and their control schemes using industrial standards and advanced high-power configurations. Transformerless and reduced switch count topologies are the leading technologies in power electronics that aim to reduce system cost and offer the additional benefits of small volumetric size, lightweight and compact structure, and high reliability. A detailed comparison of the topologies, control strategies and implementation structures of grid-connected high-power converters is presented. However, reducing the number of power semiconductor devices, sensors, and control circuits requires complex control strategies. This study focuses on different topological devices, namely, passive filters, shunt and hybrid filters, and STATCOMs, which are typically used for power quality improvement. Additionally, appropriate control schemes, such as sinusoidal pulse width modulation (SPWM and space vector PWM techniques, are selected. According to recent developments in shunt APF/STATCOM inverters, simulation and experimental results prove the effectiveness of APF/STATCOM systems for harmonic mitigation based on the defined limit in IEEE-519.

  14. Technological research on alternative energy sources in Brazil: the case of biodiesel; Pesquisas tecnologicas sobre fontes alternativas de energia no Brasil: o caso do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marcia Franca; Souza, Cristina Gomes de; Peixoto, Jose Antonio Assuncao [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This article aims to map the main characteristics of research projects promoted in Brazil on biodiesel, as part of the National Program for Production and Use of Biodiesel (PNPB), aiming to identify issues, such as: what are the types of plants studied, which is being searched and what the different partners involved. The survey was made on the basis of data available on the web site of the government www.biodiesel.gov.br, and showed the existence of 118 searches registered on the subject. The contents of the study addresses initially some relevant information on biodiesel and its peculiarities in Brazil. In the following sections are identified actions taken by the Brazilian government to create an environment to encourage technological development related to biodiesel, with emphasis on the PNPB and its lines of research. Finally, the results obtained from the database found are presented and discussed. Among other information, the study reveals that: the plants most studied are castor bean, soybeans and cotton, and the research on the biodiesel has focused on improvements in its characterization and quality control as well as in the production of the fuel itself. (author)

  15. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutula, Raymond A. [DOE Solar Energy Technologies Program, Washington, D.C. (United States)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  16. 2009 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-01

    Annual Merit Review and Peer Evaluation Meeting to review the FY2008 accomplishments and FY2009 plans for the Vehicle Technologies Program, and provide an opportunity for industry, government, and academic to give inputs to DOE on the Program with a structured and formal methodology.

  17. Institute for Energy Technology -Annual report 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Research at Institutt for energiteknikk (IFE) comprises both nuclear and non-nuclear activities. The main nuclear program is centered on the OECD Halden Reactor Project. 19 participating countries and about 100 organisations is involved in the project. The Project is operated by a staff of 280 persons. In the autumn of 1996 the participating organizations reached agreement to continue their research collaboration for a further 3-year period (1997 to 1999). An extensive experimental program was carried out in 1996 using the Halden reactor (HBWR), partly for the joint international program, and partly for contract work for member countries. The main aim of this work is to improve the safety and reliability of existing nuclear power plants. The experimental equipment in the Halden reactor makes it ideal for simulating various operating conditions in different types of rectors. Processes such as corrosion in fuel cladding materials and fracture propagation in irradiated materials under the influence of additives in the coolant water can be studied. In an on-going study, fuel of Russian origin is being compared with modern western fuel. The results, being the first of their kind that are openly available, form an important bases for safety assessments of Russian VVER reactors. The man-machine laboratory is used to study how new technologies influence the operator and to develop computer based systems for improving the safety and accessibility of complex processes

  18. 1980 Annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1981-01-01

    According to the decisions taken by the Council of Ministers on the JRC multiannual programme (1980-83), the 1980 activity has been oriented toward four projects which cover a broad range of fields, namely: - the Project 1: 'Reactor Studies'. The main effort was oriented toward the NET/INTOR studies. JRC Ispra is acting as reference nucleus for NET preliminary design. For the moment being this work was made in support to the European participation to INTOR. In 1980 the conceptual design of a demonstration power reactor (FINTOR-D) was also achieved. - The Project 2: 'Blanket Technology' has the aim to investigate structural materials behaviour in fusion conditions. Items like tritium outgassing and permeation from structurals an materials compatibility were investigated. - The Projet 3: 'Material sorting and development'. Its aim is to assess mechanical properties and radiation damage of standard and advanced materials suited for reactor structures. - The Projet 4: 'Cyclotron construction and operation' has the task to install and exploit a cyclotron to simulate demages to materials in a fusion ambient

  19. Annual report 1974. Sodium technology development programme

    International Nuclear Information System (INIS)

    1975-01-01

    The sodium technology development program comprises a number of separate research programs in the field of designing and testing parts and components for the SNR-300 reactor. Design studies and theoretical studies on cold trapping and the behavior of hydrogen in sodium circuits are reported. A preliminary test program for fighting sodium fires is completed. Results of research done on vibration measurements and counter-current mixing in a dummy tube bundle of a S.N.R. spiralized steam generator with counter-current flow are reported briefly. Research done in the field of heat transfer, pressure drop and bubble dynamics of a straight pipe steam generator are also briefly reported. To determine the influence of spiral diameter of the spiralized pipe on heat transfer in a spiralized pipe heat exchanger, a second testsection will be built in 1975. Research was reported on pump viscoseals, bearing stability, rotordynamics and bearing materials for sodium pumps. Research done on the properties of SNR-construction materials at high temperature and long time exposure and corrosion in sodium are reported. Fundamental research on corrosion accompanied this research. The report closes with results of weldability, mechanized-welding and remote welding of sodium-wetted surfaces

  20. Chemical Technology Division annual technical report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  1. Chemical Technology Division annual technical report, 1993

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing 99 Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support

  2. Institute for Energy Technology -Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Research at Institutt for energiteknikk (IFE) comprises both nuclear and non-nuclear activities. The main nuclear program is centered on the OECD Halden Reactor Project. 19 participating countries and about 100 organisations is involved in the project. The Project is operated by a staff of 280 persons. In the autumn of 1996 the participating organizations reached agreement to continue their research collaboration for a further 3-year period (1997 to 1999). An extensive experimental program was carried out in 1996 using the Halden reactor (HBWR), partly for the joint international program, and partly for contract work for member countries. The main aim of this work is to improve the safety and reliability of existing nuclear power plants. The experimental equipment in the Halden reactor makes it ideal for simulating various operating conditions in different types of rectors. Processes such as corrosion in fuel cladding materials and fracture propagation in irradiated materials under the influence of additives in the coolant water can be studied. In an on-going study, fuel of Russian origin is being compared with modern western fuel. The results, being the first of their kind that are openly available, form an important bases for safety assessments of Russian VVER reactors. The man-machine laboratory is used to study how new technologies influence the operator and to develop computer based systems for improving the safety and accessibility of complex processes.

  3. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  4. Burning plasmas in ITER for energy source

    International Nuclear Information System (INIS)

    Inoue, Nobuyuki

    2002-01-01

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  5. Burning plasmas in ITER for energy source

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Nobuyuki [Atomic Energy Commission, Tokyo (Japan)

    2002-10-01

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  6. Survey lecture on renewable energy sources. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Meliss, M

    1977-01-01

    The essay deals with utilizable regenerative energy sources: geothermal energy, tidal energy, solar energy, running water energy, and wind energy. Tests for the development of these sources have been carried out, but only one of them has a considerable share in meeting the energy demand--that gained from running water. The others are only of regional importance (geothermal energy, tidal energy) or have lost the importance they once had (wind energy, biochemical energy in the form of wood). The latest discussions about the restrictions on fossil and nuclear energy sources and the environmental effects of the technologies necessary for their utilization have increased the interest in the ''inexhaustible'' energy sources. This is why the author outlines the possible importance of renewable energy sources.

  7. Water Science and Technology Board annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This annual report of the Water Science and Technology Board (WSTB) summarizes the activities of the Board and its subgroups during 1988, its sixth year of existence. Included are descriptions of current and recently completed projects, new activities scheduled to begin in 1989, and plans for the future. The report also includes information on Board and committee memberships, program operational features, and reports produced during the past several years. This annual report is intended to provide an introduction to the WSTB and summary of its program for the year.

  8. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    1999-04-01

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  9. Future prospects for renewable energy sources in a global frame

    International Nuclear Information System (INIS)

    Lund, P.

    1992-06-01

    The objective of this study has been to evaluate the possibilities of some new energy sources (solar, wind) in the future world energy supply. We intend to prepare future projections accounting for limitations in infrastructure, time and material inputs. One underlying assumption in the analyses is that new technologies will see an early market introduction in the near future which would continue up to year 2020. During these 30 years, there will still be technological developments leading to a much better manufacturability, mass production, and hence reduced costs. In year 2020, the industrial and economic infrastructure of new energy sources would be mature for a major penetration into the world energy market starting to substitute existing energy sources mainly for environmental reasons. This scenario will be suported by more factual information and data in the following chapters. Each new energy technology will be handled separately. (Quittner)

  10. SMD Technology Development Story for NASA Annual Technology report

    Science.gov (United States)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  11. Modeling of renewable hybrid energy sources

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragos

    2009-12-01

    Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.

  12. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  13. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  14. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  15. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  16. Water Science and Technology Board annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report summarizes the activities of the Water Science and Technology Board (WSTB) and its subgroups during 1989, it seventh year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1990, and plans for the future. The report also includes information on Board and committee memberships, program operational features, and reports produced during the past several years. This annual report is an introduction to the WSTB and its program for the year. 4 figs.

  17. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  18. INL Control System Situational Awareness Technology Annual Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gordon Rueff; Bryce Wheeler; Todd Vollmer; Tim McJunkin; Robert Erbes

    2012-10-01

    The overall goal of this project is to develop an interoperable set of tools to provide a comprehensive, consistent implementation of cyber security and overall situational awareness of control and sensor network implementations. The operation and interoperability of these tools will fill voids in current technological offerings and address issues that remain an impediment to the security of control systems. This report provides an FY 2012 update on the Sophia, Mesh Mapper, Intelligent Cyber Sensor, and Data Fusion projects with respect to the year-two tasks and annual reporting requirements of the INL Control System Situational Awareness Technology report (July 2010).

  19. Proceedings of the first annual Nuclear Criticality Safety Technology Project

    International Nuclear Information System (INIS)

    Rutherford, D.A.

    1994-09-01

    This document represents the published proceedings of the first annual Nuclear Criticality Safety Technology Project (NCSTP) Workshop, which took place May 12--14, 1992, in Gaithersburg, Md. The conference consisted of four sessions, each dealing with a specific aspect of nuclear criticality safety issues. The session titles were ''Criticality Code Development, Usage, and Validation,'' ''Experimental Needs, Facilities, and Measurements,'' ''Regulation, Compliance, and Their Effects on Nuclear Criticality Technology and Safety,'' and ''The Nuclear Criticality Community Response to the USDOE Regulations and Compliance Directives.'' The conference also sponsored a Working Group session, a report of the NCSTP Working Group is also presented. Individual papers have been cataloged separately

  20. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  1. 1998 annual report of Petroleum Technology Alliance Canada

    International Nuclear Information System (INIS)

    1999-01-01

    Key accomplishments of the Petroleum Technology Alliance of Canada (PTAC) during 1998 are summarized. PTAC is an association that facilitates collaborative research and technology development in the conventional oil and gas industry. Accomplishments in 1998 included the launch of 21 new research and development projects, increased memberships, and 16 successful workshops which focused on PTAC research and development initiatives in environmental impacts, conventional heavy oil, well completions, inactive well management and well abandonment. A financial statement attesting to the PTAC's financial health is included with this annual report. 2 tabs

  2. CSIR Division of Mining Technology annual review 1993/94

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Division of Mining Technology of the CSIR (Council for Scientific and Industrial Research) works in partnership with the mining industry to solve problems threatening the health, safety and well-being of the workforce, and the productivity of mining operations through the development and implementation of knowledge and technology. The annual review describes the Division's research projects in the following field: rock engineering (for gold, platinum and coal mining); mining environment; occupational hygiene; surface environment; and mining equipment and systems (systems and equipment, orebody information, coal mining and causes of accidents). Details are also given of the Division's publications, research and consultancy services and information centre.

  3. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  4. Potential of renewable and alternative energy sources

    Science.gov (United States)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  5. New renewable energy sources; Nye fornybare energikilder

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This booklet describes in simple terms the so-called new renewable energy sources: solar energy, biomass, wind power and wave power. In addition, there are brief discussions on hydrogen, ocean thermal energy conversion (OTEC), tidal power, geothermal energy, small hydropower plants and energy from salt gradients. The concept of new renewable energy sources is used to exclude large hydropower plants as these are considered conventional energy sources. The booklet also discusses the present energy use, the external frames for new renewable energy sources, and prospects for the future energy supply.

  6. Laser Science and Technology Program Annual Report - 2000

    International Nuclear Information System (INIS)

    Chen, H-L

    2001-01-01

    The Laser Science and Technology (LSandT) Program Annual Report 2001 provides documentation of the achievements of the LLNL LSandT Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (ALandC), Laser Optics and Materials (LOandM), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journals in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LSandT Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LSandT beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LSandT is committed to this activity

  7. Market-based support schemes for renewable energy sources

    NARCIS (Netherlands)

    Fagiani, R.

    2014-01-01

    The European Union set ambitious goals regarding the production of electricity from renewable energy sources and the majority of European governments have implemented policies stimulating investments in such technologies. Support schemes differ in many aspects, not only in their effectivity and

  8. Water Science and Technology Board Annual Report 2001-2002

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-10-01

    This annual report marks the twentieth anniversary of the Water Science and Technology Board (WSTB) (1982-2002). The WSTB oversees studies of water issues. The principal products of studies are written reports. These reports cover a wide range of water resources issues of national concern. The following three recently issued reports illustrate the scope of the WSTB's studies: Envisioning the Agenda for Water Resources Research in the Twenty-first Century. The Missouri River Ecosystem: Exploring the Prospects for Recovery, and Assessing the TMDL Approach to Water Quality Management. The WSTB generally meets three times each year where discussions are held on ongoing projects, strategic planning, and developing new initiatives. The meetings also foster communication within the water resources community. The annual report includes a discussion on current studies, completed studies 2001-2002, and future plans, as well as a listing of published reports (1983-2002).

  9. Second annual clean coal technology conference: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-09

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately.

  10. 2015 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-11-01

    The 2015 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 8-12, 2015, in Arlington, Virginia. The review encompassed all of the work done by the FCTO and the VTO: 258 individual activities were reviewed for VTO, by 170 reviewers. A total of 1,095 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  11. 2014 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    The 2014 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 16-20, 2014, in Washington, DC. The review encompassed all of the work done by the FCTO and the VTO: a total of 295 individual activities were reviewed for VTO, by a total of 179 reviewers. A total of 1,354 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  12. 2013 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    The 2013 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held May 13-17, 2013, in Crystal City, Virginia. The review encompassed all of the work done by the FCTO and the VTO: a total of 287 individual activities were reviewed for VTO, by a total of 187 reviewers. A total of 1,382 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  13. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  14. Annual report of Institute of Nuclear Chemistry and Technology 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations

  15. Energy Sources | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Sources Energy Sources Many opportunities exist to improve the efficiency of energy supply systems at the central plant and then evaluate potential renewable energy sources and systems. Central Plant Begin by evaluating energy efficiency at the central plant through: Fuel Sources Heat Pumps and Combined

  16. Power conditioning system for energy sources

    Science.gov (United States)

    Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  17. Sustaining with efficiency the renewable energy sources

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    European energy policy requires actions, in favour of a more widespread diffusion of renewable energy sources. Is essential to have an efficient financial support to reduce costs. Are presented an estimated of electric power from renewable energy sources and some criticism. Is proposed a modification of green certificates market based on bilateral tradable agreements [it

  18. Microinstallations Based on Renewable Energy Sources in the Construction Sector

    Science.gov (United States)

    Kurzak, Lucjan

    2017-10-01

    The focus of this paper is on the status and prognoses of the use of microinstallations based on renewable energy sources to supply heat and power. The technologies that have been important in Europe and Poland for microgeneration of electricity include photovoltaic systems, micro wind turbines and co-generation systems. Solar collectors, heat pumps and biomass have also been used to generate heat. Microinstallations for renewable energy sources represent the initial point and the foundation for the development of micro networks, intelligent networks and the whole prosumer energy sector.

  19. Environmental Science and Technology Department annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A; Gissel Nielsen, G; Gundersen, V; Nielsen, O J; Oestergaard, H; Aarkrog, A [eds.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department`s contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department`s educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.).

  20. Environmental Science and Technology Department annual report 1994

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department's contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department's educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.)

  1. 2011 annual meeting on nuclear technology fully on line

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY, in its familiar structure of 3 days of conferencing about topics from politics, economy, and technology, was the forum for presentations and discussions in the field of nuclear power. Participants accepted the new concept. This was borne out in particular by the great interest shown in the pre-conference evening with its keynote address, but also by the success of the plenary day, which included a press forum and a panel discussion as components of active communication making the plenary day much more attractive. The 2011 Annual Meeting on Nuclear Technology will be held again at the Berlin Congress Center (bcc) in Alexanderplatz on May 17-19. From September 1, some first important information is available under www.kerntechnik.info, for instance, the call for Papers. All other information about the program will be published in due course. All steps of importance to participants, from registration for the meeting to booking hotel accommodation, can be handled online. (orig.)

  2. 2011 annual meeting on nuclear technology. Pt. 4. Topical sessions

    International Nuclear Information System (INIS)

    Schoenfelder, Christian; Dams, Wolfgang

    2011-01-01

    Summary report on the Topical Session of the Annual Conference on Nuclear Technology held in Berlin, 17 to 19 May 2011: - Nuclear Competence in Germany and Europe. The Topical Session: - Sodium Cooled Fast Reactors -- will be covered in a report in a further issue of atw. The reports on the Topical Sessions: - CFD-Simulations for Safety Relevant Tasks; and - Final Disposal: From Scientific Basis to Application; - Characteristics of a High Reliability Organization (HRO) Considering Experience Gained from Events at Nuclear Power Stations -- have been covered in atw 7, 8/9, and 10 (2011). (orig.)

  3. Compressed air energy storage technology program. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kannberg, L.D.

    1981-06-01

    All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

  4. Economics of alternative energy sources

    International Nuclear Information System (INIS)

    Ryle, M.

    1977-01-01

    It is stated that an important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a programme which does not seem feasible. By incorporating relatively cheap short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy should become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance. (author)

  5. Economics of alternative energy sources.

    Science.gov (United States)

    Ryle, M

    1977-05-12

    An important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a progamme which does not seem feasible. By incorporating relatively cheap, short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance.

  6. Environmental impacts of renewable energy sources

    International Nuclear Information System (INIS)

    Abbasi, S.A.; Abbasi, N.

    1997-01-01

    The global attention has always been focused on the adverse environmental impacts of conventional energy sources. In contrast nonconventional energy sources, particularly the renewable ones, have enjoyed a clean image vis a vis environmental impacts. The only major exception to this general trend has been large hydropower projects; experience has taught that they can be disastrous for the environment. The belief now is that mini hydro and microhydro projects are harmless alternatives. But are renewable energy sources really as benign as is widely believed? The present essay addresses this question in the background of Lovin's classical paradigm which had postulated the hard (malignant) and soft (benign) energy concepts in the first place. It then critically evaluates the environmental impacts of major renewable energy sources. It then comes up with the broad conclusion that renewable energy sources are not the panacea they are popularly perceived to be; indeed in some cases their adverse environmental impacts can be as strongly negative as the impacts of conventional energy sources. The paper also dwells on the steps needed to utilize renewable energy sources without facing environmental backlashes of the type experienced from hydropower projects

  7. 2017 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    The 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 5-9, 2017, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 263 individual activities were reviewed for VTO by 191 reviewers. Exactly 1,241 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  8. 2016 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-12-01

    The 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 6-9, 2016, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 226 individual activities were reviewed for VTO, by 171 reviewers. A total of 1,044 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  9. 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY. Pt. 3. Section reports

    International Nuclear Information System (INIS)

    Arnold, Uwe; Baumann, Erik; Fischer, Ulrich; Bohnstedt, Angelika; Gehring, Michael; Roedig, Manfred; Willschuetz, Hans-Georg; Goers, Stefan; Schoenfelder, Christian

    2010-01-01

    Summary report on these 6 - out of 12 - Sessions of the Annual Conference on Nuclear Technology held in Berlin on May 3 to 6, 2010: - Decommissioning of Nuclear Installations (Session 7), - Fusion Technology (Session 8), - Energy Industry and Economics (Session 10), - Radiation Protection (Session 11), - New Build and Innovations (Session 12), and - Education, Expert Knowledge, Know-how-Transfer (Session 13). The other Sessions: - Reactor Physics and Methods of Calculation (Session 1), - Thermodynamics and Fluid Dynamics (Session 2), - Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 4), - Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 5), - Operation of Nuclear Installations (Session 6) have been covered in atw issues 10 and 11 (2010). (orig.)

  10. 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY. Pt. 4. Section reports

    International Nuclear Information System (INIS)

    Berlepsch, Thilo v.; Hering, Wolfgang

    2011-01-01

    Summary report on 2 Sessions of Section: - New Build and Innovations (Section 12) of the ANNUAL MEETING On NUCLEAR TECHNOLOGY held in Berlin on May 4 to 6, 2010. The other Sections 'Reactor Physics and Methods of Calculation (Section 1)', 'Thermodynamics and Fluid Dynamics (Section 2)', 'Safety of Nuclear Installations - Methods, Analysis, Results (Section 3)', 'Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Section 4)', 'Front End of the Fuel Cycle, Fuel Elements and Core Components (Section 5)', 'Operation of Nuclear Installations (Section 6)', 'Decommissioning of Nuclear Installations (Section 7)', 'Fusion Technology (Section 8)', 'Energy Industry and Economics (Section 10)', 'Radiation Protection (Section 11)', 'New Build and Innovations (Session New Build and Innovations, Section 12)', and 'Education, Expert Knowledge, Know-how-Transfer (Section 13)' have been covered in atw issues 10, 11 and 12 (2010). (orig.)

  11. 2009 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Schaffrath, Andreas; Hartmann, Miks; Hoffmann, Petra Britt; Stieglitz, Robert; Hoehne, Thomas; Weiss, Frank-Peter; Hollands, Thorsten; Sanchez Espinoza, Victor Hugo; Tietsch, Wolfgang; Sonnenburg, H.G.

    2009-01-01

    Summary report on these 3 - out of 13 - Sessions of the Annual Conference on Nuclear Technology held in Dresden on May 12 to 14, 2009: Thermodynamics and Fluid Dynamics (Session 2), Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), and, Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 4). The other Sessions Reactor Physics and Methods of Calculation (Session 1), Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 5), Operation of Nuclear Installations (Session 6), Decommissioning of Nuclear Installations (Session 7), Fusion Technology (Session 8), Research Reactors, Neutron Sources (Session 9), Energy Industry and Economics (Session 10), Radiation Protection (Session 11), New Build and Innovations (Session 12), and Education, Expert Knowledge, Know How Transfer (Session 13) have be covered in reports in further issues of atw. (orig.)

  12. Renewable energy sources for tenable development

    International Nuclear Information System (INIS)

    Manazza, G.

    1992-01-01

    Planning criteria for feasible tenable development strategies for industrialized and developing countries are discussed. Attention is given to the role to be played by industrial countries in renewable energy source development and technology transfer to curb the onslaught of global greenhouse effects related environmental problems. The paper cautions against the use of the expression 'tenable' in combination with 'growth'. It recommends, instead, the substitution of the expression, 'tenable growth', which implies the indefinite growth of something which is physical, with 'tenable development', a preferred term, since it denotes the realization of an optimum strategy, compatible with environmental ecosystems, for the betterment of living conditions. An assessment is made of the overall social-economic impacts of such a strategy on the proposed European free trade market and on developing countries struggling to survive in a fiercely competitive world. Here, the paper notes that, for the effective implementation of a tenable development strategy, it is of prime importance to make optimum use of the education system to instil a new set of social values and modify individual behaviour relative to the development and use of natural resources

  13. Renewable energy sources and nuclear installations

    International Nuclear Information System (INIS)

    Hirschberg, S.; Bauer, Ch.; Burgherr, P.; Stucki, S.; Vogel, F.; Biollaz, S.; Schulz, T.; Durisch, W.; Hardegger, P.; Foskolos, K.; Meier, A.; Schenler, W.

    2005-02-01

    This comprehensive work report for the Swiss Federal Office of Energy (SFOE) made by the Paul Scherrer Institute PSI takes a look at work done in connection with the updating of the office's Energy Perspectives. In particular, the topic of electricity is reviewed in the light of pending important decisions in the area of nuclear energy and the newer renewable sources of energy. The report makes an attempt to estimate the effect on Swiss power production that the new renewables and new nuclear installations could have in the next 30-40 years and to what costs this could be done and which obstacles would have to overcome. The renewable energy sources include small hydro, wind, photovoltaics, solar thermal power plants, biogas, geothermal energy, wave-power and solar chemistry. The methods used include literature study and contacts with internal PSI experts on the various areas involved. The most important system characteristics were noted and learning curves for the various technologies were taken into account. Ecological and social factors were also considered

  14. Renewable energy sources in agriculture

    International Nuclear Information System (INIS)

    Campiotti, C.A.; Balducchi, R.; Bernardini, A.; Dondi, F.; Di Carlo, F.; Genovese, A.; Scoccianti, M.; Bibbiani, C.

    2009-01-01

    Greenhouse crop evolution if from one hand improves the quality of products and productive cycles, from another hand cause negative effects on the natural resources, the environment and the economy of the country. Although renewable energies already feature to some extent in the European Union's regional, the 2007-2013 Structural Funds package could be the occasion to increase the weight given to RES within the energy programmes for less favoured regions (particularly in ex-objective 1 areas). In those areas, greenhouse crop sector is particularly developed as agriculture industrial activity. According to numerous investigations, agricultural greenhouse consumption for greenhouse acclimatization represents approximately between 2% to 6% of the E U's-27 total energy consumption. This report is intended to give a general overview to the potential of renewable energy and technology in Italy, particularly geothermal, wind and solar (thermic and photovoltaic) as energy for greenhouse crop sector. RES have a high potential for developing of indigenous resources, service activities, new job creation and reducing Co2 emissions. [it

  15. Biogas: A renewable energy source

    International Nuclear Information System (INIS)

    Imiere, E.E.; Ojih, V.B.; Esiekpe, L.E.; Okafor, M.C.; Attoh, V. A.

    2011-01-01

    Biogas refers to a gas produced by the biological breakdown of organic matter in the absence of oxygen. Biogas can be used as a fuel in any country for any heating purpose such as cooking. By means of digesters, the energy in the gas can be converted to electricity and heat. Biogas like natural gas can also be used to power motor vehicle. Biogas is a renewable fuel which qualifies it for a renewable energy subsidy. It is non-toxic, environment-friendly and serve as a means of combating global warming. Biogas is presently being used in U.S.A, U.K, China, Sweden, Brazil, and India amongst others for domestic purposes, transportation and power generation. In this regard, this paper discusses biogas production. It also presents a model design of domestic biogas plant suitable for Nigerian households. The paper recommends that Nigerian Government should intensify efforts in educating the masses on this novel technology for a sustainable global development. A biogas plant designed for Nigerian household discussed in this paper is also recommended.

  16. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  17. Power Electronics as Efficient Interface of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Kjær, Søren Bækhøj

    2004-01-01

    The global electrical energy consumption is steadily rising and consequently there is a demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective...... renewable energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface...... to the grid and this paper will first briefly discuss three different alternative/ renewable energy sources. Next, various configurations of the wind turbine technology are presented, as this technology seems to be most developed and cost-effective. Finally, the developments and requirements from the grid...

  18. Particle accelerators and lasers high energy sources

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  19. Alternative energy sources in the Czech Republic

    International Nuclear Information System (INIS)

    1999-10-01

    The hereby presented report was elaborated for the Royal Netherlands Embassy in Prague, Czech Republic by the Netherlands Chamber of Commerce in Prague from July to October 1999. The report is constituted so as to provide a complete introductory overview of the situation in the Czech Republic relating to alternative energy sources. For the purposes of this report, the term alternative energy sources is conceived as renewable energy sources and combined generation of heat and electricity. Renewable energy sources comprise sun, water, wind, geothermal energy and energy generated from biomass or waste. The report features a glimpse at the history of alternative energy sources' utilisation in the Czech Republic, a description of the current state and an extrapolation of existing trends into expectable medium- and long-run developments. The report also includes an insight into the relevant legal framework and a general scan of market opportunities. The objective of the report is to prepare a solid starting platform for Dutch companies which specialise in renewable energy sources and/or cogeneration and which may be interested in extending their scope of activities to the Czech Republic

  20. Environmental Science and Technology Department annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department`s contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department`s educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au).

  1. Environmental Science and Technology Department annual report 1992

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department's contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department's educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au)

  2. Environmental Science and Technology department. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. [eds.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department`s contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department`s education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  3. Environmental Science and Technology department. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. (eds.)

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  4. Environmental Science and Technology department. Annual report 1991

    International Nuclear Information System (INIS)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.)

  5. 77 FR 41873 - In the Matter of Alternative Energy Sources, Inc., Arlington Hospitality, Inc., Consolidated Oil...

    Science.gov (United States)

    2012-07-16

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of Alternative Energy Sources, Inc., Arlington Hospitality, Inc., Consolidated Oil & Gas, Inc., CSMG Technologies, Inc., Dakotah... Alternative Energy Sources, Inc. because it has not filed any periodic reports since the period ended...

  6. Health impacts of different energy sources

    International Nuclear Information System (INIS)

    1982-01-01

    Energy is needed to sustain the economy, health and welfare of nations. As a consequence of this, energy consumption figures are frequently used as an index of a nation's advancement. As a result of the global energy crisis, almost every nation has had to develop all its available energy resources and plan its future use of energy. The planners of national and international energy policies are however often faced with a problem of 'public acceptance' arising from the potential health and environmental impacts of developing energy resources. The public's desire to preserve the quality of man's health and his environment frequently results in opposition to many industrial innovations, including the generation and use of energy. Reliable, quantitative data and information are needed on the risks to health and the environment of different contemporary energy systems, to improve public understanding, and to serve as the basis from which national planners can choose between different energy supply options. With the exception of nuclear energy, even in technologically advanced countries little systematic research and development has been done on the quantitative assessment of the effects on health and the environment of the conventional energy sources. The need for this information has only been realized over the past decade as the climate and environment in many regions of the world has deteriorated with the unabated release of pollutants from factories and energy generating plants in particular. A number of countries have started national environmental health research programmes to monitor and regulate toxic emissions from industry and energy plants. Energy-related environmental health research has been supported and co-ordinated by various international organizations such as the International Atomic Energy Agency (IAEA), World Health Organization (WHO) and United Nations Environment Programme (UNEP). WHO has supported expert reviews on the potential health risks posed

  7. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  8. Water Science and Technology Board annual report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In 1982, the National Research Council chose to recognize the importance of water resource issues by establishing the Water Science and Technology Board (WSTB). During the five years since its first meeting in November 1982, the WSTB has grown and matured. The WSTB has met 14 times to provide guidance and plan activities. Under the WSTB's direction, committees of experts have conducted approximately 30 studies on a broad array of topics, from dam safety to irrigation-induced water quality problems to ground water protection strategies. Studies have ranged in scope from the oversight of specific agency projects and programs to broader scientific reviews, such as a disciplinary assessment of the hydrologic sciences initiated in 1987. In all cases, studies have the general theme of ultimately improving the scientific and technological bases of programs of water management and environmental quality. This fifth annual report of the WSTB summarizes the Board's accomplishments during 1987, its current activities, and its plans for the future. The report also includes information on Board and committee memberships, program organizations, and the reports produced. The report should provide the reader with a basic understanding of the WSTB's interests, achievements, and capabilities. The WSTB welcomes inquiries and suggestions concerning its activities and will provide more detailed information on any aspects of its work to those interested.

  9. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    International Nuclear Information System (INIS)

    NONE

    1998-01-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy's Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation

  10. 2006 annual nuclear technology conference Aachen; Jahrestagung Kerntechnik 2006

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-07-15

    This year's ANNUAL NUCLEAR TECHNOLOGY CONFERENCE (JK) was organized in Aachen by the Deutsches Atomforum e.V. (DAtF) and the Kerntechnische Gesellschaft e.V. (KTG). The attendance by more than 1,200 participants from 17 nations underlines the role of this specialized congress as one of the leading events in the field of nuclear power use. For several years in a row, the number of participants has been increasing steadily. The first conference day offered plenary presentations traditionally dealing mainly with political and economic issues of the use of nuclear power, including a presentation by the President of the DAtF. The lead countries of JK 2006 were Belgium and Finland with contributions to the plenary day and special meetings on selected topics. The traditional proven scheme of the three-day meeting offered plenary sessions on the first day, and technical sessions, topical sessions, poster sessions, and special events on the following days. The 'Nuclear Power Campus' was run most successfully for the fourth time, presenting to high school students and university freshmen the world of nuclear power in a transparent way. The special commitment to the young generation was stressed at JK 2006 also by the 'Competence Preservation in Nuclear Technology' workshop. Nearly 2 dozen young scientists used the forum to present results of their work. The meeting was accompanied by a technical exhibition with meeting points established by vendors, suppliers, and service providers. (orig.)

  11. The evolution of the support scheme for promoting renewable energy sources in Romania

    Directory of Open Access Journals (Sweden)

    Atănăsoae Pavel

    2016-01-01

    Full Text Available The paper presents an analysis of the evolution of the support scheme for promoting renewable energy sources in Romania, following: the annual mandatory quotas of green certificate purchase and those achieved; the price of green certificates; the evolution of the RES-E installed capacity and implicitly of the investments in renewable energy sources; the structure of the installed power in RES-E (wind power plants, photovoltaic power plants, hydroelectric power plants with an installed capacity that is not larger than 10 MW, biomass power plants; the contribution of the renewable energy sources to the production of electricity in Romania.

  12. Opportunities for renewable energy sources in Central Asia countries

    Energy Technology Data Exchange (ETDEWEB)

    Obozov, A.J. [Project KUN (Kyrgyzstan); Loscutoff, W.V. [National Renewable Energy Lab., Golden, CO (United States)

    1998-07-01

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  13. Renewable energy sources for electricity generation in selected developed countries

    International Nuclear Information System (INIS)

    1992-05-01

    The objectives of this report are to analyze the present status and to assess the future of selected renewable energy sources (RE) other than hydropower, i.e. wind, solar, biomass, tidal and geothermal, already in use or expected to be used for electricity generation. The report focuses on grid connected technologies leaving stand-alone power plants unconsidered. This report provides recent information on environmental impacts, costs and technical potentials related to the implementation of electricity technologies using these energy sources. The study is limited to six OECD countries, i.e. Australia, the Federal Republic of Germany, Japan, Sweden, the United Kingdom and the United States of America. The situation in other OECD countries is addressed where appropriate, but no comprehensive information is provided. Nevertheless, efforts are made to determine the technical potential of the renewable energy sources for ''Rest of OECD''. The time horizons in this report are 2010 and 2030. While detailed information is provided for the period until 2010, the technical potential for 2030 is discussed only qualitatively. Scenario analysis and the design of national energy and electric systems assuming different sets of objectives and boundary conditions are outside the scope of this study. Nevertheless, the information given in this report should provide input data for such a systems analysis. All the information given in this report is based on literature surveys. Any figure given is contingent on the fact that it has appeared in a paper or a publicly available technical report. 251 refs, figs and tabs

  14. Engineering economics of alternative energy sources

    International Nuclear Information System (INIS)

    Denno, K.

    1990-01-01

    This textbook presents a comprehensive picture of the economic aspects, feasibility and adaptability of alternative energy sources and their interconnections. The author intends for this treatment of energy sources to be total and complete. It therefore includes such topics as low temperature and high temperature fuel cells, rechargeable storage batteries (including lead acid, nickel-cadmium, lithium, and sodium-sulfur), Redox flows cells energy system in compatibility with fuel cells and storage batteries, MHD energy systems using non-fossil renewable fuels, solar energy system using direct thermal units and photovoltaic generators, wind energy conversion systems, tidal ocean wave energy converters, geothermal energy, and ocean thermal energy conversion systems. The book is structured so that each major energy source is given one chapter. Each chapter begins with a discussion of the basic structural components of the energy source, as well as operational and fuel characteristics. This is followed by an economic analysis, which includes incremental energy cost curves and economic coordination equations for each possible system of operation. Where appropriate, economic scheduling of generation is applied to several modes of system consumption (e.g., localized dispersed systems, interconnected load centers, and central systems)

  15. Petroleum coke as energy source: an update

    International Nuclear Information System (INIS)

    Pinelli, G.

    2008-01-01

    A previous review presented a critical evaluation of the use of petroleum coke as energy source. After some years, with reference to increased petroleum coke production, that paper is revised. In particular, the attention is now focused on world petroleum coke market trends and, in regard to petroleum coke used as fuel, on new Italian environment laws. [it

  16. Third party financing of renewable energy sources

    International Nuclear Information System (INIS)

    1994-01-01

    The Institut of Energy Saving and Diversification (IDAE) hosted the third party on financing Renewable Energy Sources in Spain. The main aspects were : 1) Experiences in renewable energy. 2) Financing of small hydro-power projects. 3) Third party financing of biomass projects. 4) Financing of wind energy projects

  17. Energy production from renewable energy sources

    International Nuclear Information System (INIS)

    2001-04-01

    This table summarizes the electricity and heat produced in France and in overseas departments from renewable energy sources for 1998 (revised), 1999 (temporary) and 2000 (estimated): hydraulic, wind, solar photovoltaic and thermal, geothermal, solid municipal wastes, wood and wood wastes, biogas, ethanol and ester bio-fuels. (J.S.)

  18. Third party financing of renewable energy sources

    International Nuclear Information System (INIS)

    IDAE.

    1994-01-01

    IDAE (Institute of Energy Saving and Diversification) Hosted the Third party on financing renewable energy sources. The meeting was articulated into chapters: 1.- Experiences in the renewable energy field. 2.- Third party financing of small hydro-power projects. 3.- Third party financing of biomass projects. 4.- Third party financing of wind energy projects

  19. Renewable energy sources offering flexibility through electricity markets

    DEFF Research Database (Denmark)

    Soares, Tiago

    governments. Renewable energy sources are characterized by their uncertain and variable production that limits the current operation and management tools of the power system. Nevertheless, recent developments of renewable energy technologies enable these resources to provide, to some extent, ancillary......All over the world, penetration of renewable energy sources in power systems has been increasing, creating new challenges in electricity markets and for operation and management of power systems, since power production from these resources is by nature uncertain and variable. New methods and tools...... in both energy and reserve markets. In this context, the main contribution of this thesis is the design and development of optimal offering strategies for the joint participation of renewables in the energy and reserve markets. Two distinct control policies for the splitting of available wind power...

  20. Grass-cellulose as energy source for biological sulphate removal from acid mine effluents

    CSIR Research Space (South Africa)

    Greben, HA

    2008-11-01

    Full Text Available The biological sulphate removal technology requires carbon and energy sources to reduce sulphate to sulphide. Plant biomass, e.g. grass, is a sustainable source of energy when cellulose is utilised during anaerobic degradation, producing volatile...

  1. Prospects of renewable-energy sources in Pakistan

    International Nuclear Information System (INIS)

    Zaigham, N.A.; Nayyar, Z.A.

    2005-01-01

    Pakistan, despite the enormous potential of its energy resources, remains energy- deficient and has to rely heavily on imports to satisfy its needs. Moreover, a very large part of the rural areas does not have the electrification facilities, because they are either too remote and/or too expensive to connect to the national grid. Pakistan obtains its energy requirements from a variety of traditional and commercial sources. Share of various primary energy-sources in energy-supply mix remained during last few years as oil: 43.5%, gas: 41.5%, LPG: 0.3%, coal: 4.5%, hydro-electricity: 9.2%, and nuclear electricity: 1.1%. The electric-power generation included 71.9% thermal, 25.2% hydel and 2.9% nuclear. While there is no prospect for Pakistan to reach self-sufficiency in hydrocarbons, a good option is the exploitation and utilization of the huge coal-reserves of Thar and the other renewable energy sources. Pakistan has wide spectrum of high potential renewable energy sources, conventional as well as non-conventional, which have not been adequately explored, exploited and developed. 'Thus, the primary energy supplies today are not enough to meet even the present demand. So, Pakistan, like other developing countries of the region, is facing a serious challenge of energy deficit. The development of the renewable energy sources can play an important role in meeting this challenge. Present observations, based on reviewing the geological setup, geographical position, climatological cycles and the agricultural/industrial/ urbanization activities, reveal that there are bright prospects for the exploitation of various renewable-energy sources, which include mega and macro/micro-hydel, biomass, biogas, wind, solar, co-generation, city and other solid wastes, utilization of low-head canal levels, sea wave and tide and geothermal energies etc. Technologically, all these renewable-energy sources are viable and consequently suited to efforts for poverty alleviation and cleaner

  2. Surgical Ablation of Atrial Fibrillation Using Energy Sources.

    Science.gov (United States)

    Brick, Alexandre Visconti; Braile, Domingo Marcolino

    2015-01-01

    Surgical ablation, concomitant with other operations, is an option for treatment in patients with chronic atrial fibrillation. The aim of this study is to present a literature review on surgical ablation of atrial fibrillation in patients undergoing cardiac surgery, considering energy sources and return to sinus rhythm. A comprehensive survey was performed in the literature on surgical ablation of atrial fibrillation considering energy sources, sample size, study type, outcome (early and late), and return to sinus rhythm. Analyzing studies with immediate results (n=5), the percentage of return to sinus rhythm ranged from 73% to 96%, while those with long-term results (n=20) (from 12 months on) ranged from 62% to 97.7%. In both of them, there was subsequent clinical improvement of patients who underwent ablation, regardless of the energy source used. Surgical ablation of atrial fibrillation is essential for the treatment of this arrhythmia. With current technology, it may be minimally invasive, making it mandatory to perform a procedure in an attempt to revert to sinus rhythm in patients requiring heart surgery.

  3. Controlling hazardous energy sources (lockout/tagout)

    Science.gov (United States)

    Dominguez, Manuel B.

    1991-10-01

    The minimum requirements as established by the Occupational Safety and Health Administration (OSHA) standard 29 CFR 1910.147 are discussed for preventing the unexpected operation of equipment or release of energy which could cause injury to personnel, damage to equipment, harm to the environment, or loss or compromise of test data. Safety requirements both for government and contractor personnel are explained for potentially hazardous energy sources during work operations at LeRC (Cleveland and Plum Brook Stations). Basic rules are presented to ensure protection against harmful exposures, and baseline implementation requirements are discussed from which detailed lockout/tagout procedures can be developed for individual equipment items. Examples of energy sources covered by this document include electrical, pneumatic, mechanical, chemical, cryogenic, thermal, spring tension/compression suspended or moving loads, and other potentially hazardous sources. Activities covered by this standard include, but are not limited to, construction, maintenance, installation, calibration, inspection, cleaning, or repair.

  4. Conventional and unconventional energy sources for mankind

    International Nuclear Information System (INIS)

    Sethna, H.N.

    1981-01-01

    Plenty of industrial nations of the world is founded on the fact that only 1% of their energy requirement is met by muscle power, both of human and animal origin, while 99% comes mostly from fossil fuels. However, fossil fuels are not an eternal source and hence to conserve it, other sources must also be used. Availability of energy sources such as coal, biogas, solar energy, wind, tidal energy is examined and their draw-backs are pointed out. Another energy source i.e. nuclear energy can however substantially contribute to the energy scene. Fission reactors can contribute nearly 25% of the world energy requirements within two decades. Breeder reactors, if successfully developed, can meet the energy requirements of the world for few thousands of years. Fusion reactors, if successful for commercial exploitation, will form almost an inexhaustible source of energy. An added advantage is that they produce much less radioactive waste than that produced by fission reactors. (author)

  5. Understanding and accepting fusion as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  6. Understanding and accepting fusion as an alternative energy source

    International Nuclear Information System (INIS)

    Goerz, D.A.

    1987-01-01

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs

  7. Forest biomass as an energy source

    Science.gov (United States)

    P.E. Laks; R.W. Hemingway; A. Conner

    1979-01-01

    The Task Force on Forest Biomass as an Energy Source was chartered by the Society of American Foresters on September 26, 1977, and took its present form following an amendment to the charter on October 5, 1977. It built upon the findings of two previous task forces, the Task Force on Energy and Forest Resources and the Task Force for Evaluation of the CORRIM Report (...

  8. Renewable energy sources - the opportunity for a safer future

    International Nuclear Information System (INIS)

    Prodrom, Andrei; Federenciuc, Dumitru; Ignat, Vasile; Dobre, Paul

    2004-01-01

    The researches have shown that the potential of renewable energy sources is huge as they can in principle meet many times the world's energy demand. Renewable energy sources such as biomass, wind, solar, hydropower and geothermal can provide energy services based on the use of local available resources. Starting from this fact, a transition to renewable-based energy systems is looking increasingly likely as their costs have dropped while the price of oil and gas continue to fluctuate. In the past 30 years, the sales of solar and wind energy systems continued to increase because the capital and electricity production costs decreased simultaneously with the performance enhancement. It is becoming clear that future growth in the energy sector will be primarily in the renewable energy systems and to some extent natural gas-based systems and not in conventional oil and coal sources. It is also important to have governmental assistance and popular support in developing these alternate energy sources, that among others, reduce local and global atmospheric emissions, provide commercially attractive options, particularly in developing countries and rural areas and create the transition to the energy sector of the future. This paper tries to approach the renewable energy sources currently analyzed by the experts, emphasizing their strengths and weaknesses. The conventional energy sources based on oil, coal and natural gas have proven to be highly effective drivers of economic progress but at the same time damaging to the environment and human health. Furthermore they tend to be cyclical in nature, due to the effects of oligopoly in production and distribution. These traditional fossil fuel-based energy sources are facing increasing pressure on environmental issues, among these the future reduction of greenhouse gas specified in the Kyoto Protocol. Renewable energy sources currently supply between 15 - 20% of world's total energy demand. This supply is dominated by biomass

  9. Health and economic costs of alternative energy sources

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Manne, A.S.

    1977-01-01

    National energy policy requires realistic totaling of costs in assessing energy alternatives. The Biomedical and Environmental Assessment Division (BEAD) at Brookhaven is estimating biomedical and environmental costs of energy production and use. All forms of energy, including new technologies, are being considered. Beginning with a compilation of pollutants from the energy system, the various paths to man are traced and health effects evaluated. Excess mortality and morbidity in the U.S. attributable to a total fuel cycle to produce 6.6x10 9 kwh - about a year's production of a 1000-MWe power plant - are being estimated. Where enough information is available, estimates are quantitative. In some instances only the nature of the potential hazard can be described. This assessment aims at providing initial estimates of relative impacts to identify where the important health hazards in each fuel cycle arise, thereby identifying key areas for judging the total costs of alternative energy sources, and those areas of research likely to improve the accuracy of the estimates. It was thus estimated that the production of electric power from all sources in the U.S. in 1975 was associated with between two to nineteen thousand deaths and twenty-nine to fourty-eight thousand disabilities; this is roughly between 0.2 and 2% of total deaths in U.S. ages 1-74. The estimated health effects associated with a total fuel cycle standardized to produce 10 10 kwh electric power were: from coal estimated deaths 20-200, estimated disabilities 300-500; from oil estimated deaths 3-150, estimated disabilities 150-300; from gas estimated deaths 0.2, estimated disabilities 20; from nuclear estimated deaths 1-3, estimated disabilities 8-30. The differences in the year 2000 between health impacts of the U.S. energy system under normal growth expectations and under conditions of a nuclear moratorium were estimated. On the assumption that the nuclear moratorium would require 320 additional 1000-MWe

  10. Energy sources for gynecologic laparoscopic surgery: a review of the literature.

    Science.gov (United States)

    Law, Kenneth S K; Abbott, Jason A; Lyons, Stephen D

    2014-12-01

    A range of energy sources are used in gynecologic laparoscopy. These energy sources include monopolar electrosurgery, bipolar electrosurgery (including "advanced bipolar" devices that incorporate tissue feedback monitoring), and various types of laser and ultrasonic technologies. Gynecologists using these tools should be aware of the potential benefits and potential dangers of these instruments. This review provides an overview of the biophysics of these energy sources, their tissue effects, and the complications that may arise. It aims to highlight any potential advantages or disadvantages of various energy sources, as reported by clinical and laboratory studies. Literature relating to energy sources used in gynecologic laparoscopy was reviewed. While laboratory-based studies have reported differences between various energy sources, these differences may not be clinically significant. The choice of instrumentation may depend on the nature of the surgical task being performed, but other factors, such as the surgeon's training/experience, cost, and industry marketing, may also influence the decision. TAn awareness of the pros and cons of each energy modality and their relative efficacy profiles is paramount. It is important that surgeons have an understanding of the biophysics of these technologies in order to understand their limitations and potential dangers and to utilize the most appropriate energy source(s) in the appropriate clinical setting, in order to both minimize the risk of inadvertent injuries during gynecologic laparoscopy and to maximize cost-efficient delivery of health care.

  11. Prospects for inertial fusion as an energy source

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1989-01-01

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs

  12. Annual report 2015 of the Institute for Nuclear and Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas

    2016-07-01

    The annual report of the Institute for Nuclear and Energy Technologies of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for nuclear fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies.

  13. 75 FR 56651 - ITS Joint Program Office; Trucking Industry Mobility & Technology Coalition Annual Meeting

    Science.gov (United States)

    2010-09-16

    ... DEPARTMENT OF TRANSPORTATION ITS Joint Program Office; Trucking Industry Mobility & Technology... Transportation. ACTION: Notice. The Trucking Industry Mobility & Technology Coalition (TIMTC) Annual [[Page 56652...: Beating Gridlock with a Smart Grid; U.S. DOT Truck Technology Initiatives; and State and Federal...

  14. Renewable energy sources and Estonian national interests

    International Nuclear Information System (INIS)

    Veski, Rein

    2002-01-01

    There is only one national level document, The Long-term National Development Plan for the Fuel and Energy sector, regulating the development of renewable energy for Estonia. It was approved by the Parliament (Riigikogu) in 1998. This document planned a 2/3 (66,7%) increase in the share of renewable (according to the document: peat, biofuels and other renewables) to the year 2010 against 1996. At the same time a decrease of the share of domestic oil shale was planned 1/5 to the year 2010 against 1995. That means the use of domestic energy sources, both renewable and non-renewable, will decrease by 16,8% altogether. In reality the rapid projected growth of renewables in Estonia (+66,7% between 1996 and 2010) was changed with decrease of 20% by 2000. So the security of supply must shift to the first place in Estonia. It is also an issue of national sovereignty. Estonia is rich in renewable energy sources, mainly in wood, peat and wind, to achieve the goals set in the National Development Plan. Forest resources amount 352,7, total felling 6,44, allowed felling 7,81 million cubic meters solid volume in 2000. The future of fuel peat usage in Estonia is uncertain, as most of the EU member states, which have burned up their peat resources and/or drained their mires do not consider peat as a renewable fuel. Obviously Estonia has to explain its opinion about the renewability of its resources. Although progress is needed in all directions of additional use of all renewable energy sources in tactical consideration finance must be directed first to guarantee better use of wastes of woodworking and timber industry

  15. Indian energy sources in 1980's

    Science.gov (United States)

    Chaturvedi, A. C.

    Indian energy sources for electrical power generation are surveyed with a view to the development of the available hydroelectric resources. The capital-intensive nature of hydroelectric projects and their long gestation periods have impeded the rapid exploitation of the hydroelectric resources in the country, which are expected to provide 37% of the 16,200 MW capacity anticipated by 2001. Alternative sources of power such as solar and wind energy, biogas conversion and the use of industrial waste heat to produce electricity are discussed with case studies presented.

  16. Renewable energy sources. European Commission papers

    International Nuclear Information System (INIS)

    1997-05-01

    The ''Directive on the Promotion of Electricity from Renewable Sources of Energy in the Internal Electricity Market'' was adopted in September 2001. Its purpose is to promote an increase in the contribution of renewable energy sources to electricity production in the internal market for electricity and to create a basis for a future Community framework. Energie-Cites provides in this document a summary of its opinion on the Green Paper and on Alterner II and gives a proposal for an Action Plan concerning the White Paper. (A.L.B.)

  17. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  18. Cyanate as energy source for nitrifiers

    DEFF Research Database (Denmark)

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico

    2015-01-01

    recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 using cyanate as the sole source of energy and reductant; to our knowledge, the first...... organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family...

  19. Weber's dictionary. Pocket edition. Vol. 2. Renewable energy sources. Webers Taschenlexikon. Bd. 2. Erneuerbare Energie

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R

    1986-01-01

    Reserves of our major energy sources natural gas, petroleum and coal are limited. Their combustion essentially contributes to air pollution widh all its health hazards and environmental impacts. Apart from the fact that power plants supplying energy with the help of nuclear fission are disputed, uranium reserves are limited, too. The developmental state of nuclear fusion, an the other hand, still defies concrete statements as the future availability of fusion-based energy. Considering above facts it is evident that renewable energy sources will be gaining in importance. The book above all intends to give a consistent survey on the forms and capacities of renewable energy sources, existing technologies and technologies currently being developed, historical aspects, the social and environmental compatibility of renewable energy sources, economic aspects, and future prospects. The dictionary contains 197 independent alphabetically arranged and basically coherent chapters which are to provide the basis for profound reflections on the subject.

  20. 2008 annual meeting on nuclear technology: topical sessions. Pt. 2. Construction of the final repository KONRAD

    International Nuclear Information System (INIS)

    Broeskamp, H.

    2008-01-01

    Summary report by Dipl.-Ing. Holger Broeskamp on the Topical Session ''Constructing the Final Repository KONRAD'' of the Annual Conference on Nuclear Technology held in Hamburg, May 27-29, 2008. (orig.)

  1. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  2. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  3. Assessment on health and energy sources

    International Nuclear Information System (INIS)

    Acket, C.; Yvon, M.

    2013-01-01

    After having recalled some issues related to the prevention of environmental health risks and mentioned in the preparation of the debate on energy transition in France, this document gathers actual objective elements for an assessment of health impact of the different energy sources. It discusses the impacts on health (mortality, sicknesses and diseases) of fossil fuels (coal and its wastes, gas), of renewable energies, of nuclear energy. For this last one, the document outlines the lack of documentation for various topics, discusses some results published on the dose impact of nuclear operation, and comment the issue of waste storage. It also recalls the main accidents (Three Mile Island, Chernobyl, and Fukushima) and some of the known and assessed impacts. The third part proposes comparisons between the different energy sources in terms of deadly accidents, of pollution and greenhouse effect (current and late mortality), of released radioactivity (release sources and collective dose). In conclusion, the authors outline that the impact on health of environmental risks must be one of the essential issues for the definition of energy policy, and discuss the resulting implications. Various data are provided in appendix: energy in France and in the world, origins of radioactivity

  4. Integrating renewable energy sources in the Portuguese power system

    International Nuclear Information System (INIS)

    Martins, Nuno; Cabral, Pedro; Azevedo, Helena

    2012-01-01

    The integration of large amounts of renewable energy is an important challenge for the future management of electric systems, since it affects the operation of the electric power system and the design of the transmission and distribution network infrastructure. This is specially due to the connection requirements of the renewable energy technologies, to the extension and adjustment of the grid infrastructure and to the identification of new solutions for operational reserve, in order to maintain the overall system flexibility and security. In this paper, the impact of high penetration of intermittent energy sources, expected in long term in the Portuguese Power System, is analysed and the operational reserve requirements to accomplish a reliable and reasonable electrical energy supply are identified. It was concluded that pumped storage power plants, special power plants with regulating capabilities, will have an important task to provide the operational reserve requirements of the Portuguese Power System. This technology assumes a fundamental role not only to ensure the adequate levels of security of supply but also to allow the maximum exploitation of the installed capacity in renewable energy sources. (authors)

  5. White paper for the exploitation of the renewable energy sources

    International Nuclear Information System (INIS)

    Barra, L.; Avella, R.; Braccio, G.; Caserta, G.; Chiado' Rana, M.; Ciciolla, C.; Conte, G.; De Lillo, A.; Gerardi, V.; Giuliani, G.; Pignatelli, V.; Pirazzi, L.; Ricci, A.; Sarno, A.; Sonnino, A.; Viggiano, D.; Pazzi, V.; Silvestrini, G.; Morselli, F.; Gomboli, M.

    1998-01-01

    The Italian government attributes at the renewable energy sources a remarkable strategy. Therefore supports the progressive integration of this energy sources in energy market and develop the co-operation with Mediterranean area countries [it

  6. Third annual women in science and technology conference

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This report presents discussions presented at the conference for women in science and technology. Topics include balancing careers with the family, choices concerning graduate schools, and sexual harassment.

  7. Third annual women in science and technology conference

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report presents discussions presented at the conference for women in science and technology. Topics include balancing careers with the family, choices concerning graduate schools, and sexual harassment.

  8. FY2015 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-29

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  9. FY2014 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-12-01

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  10. FY2016 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-07-03

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  11. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  12. Can renewable energy sources sustain affluent society?

    International Nuclear Information System (INIS)

    Trainer, F.E.

    1995-01-01

    Figures commonly quoted on costs of generating energy from renewable sources can give the impression that it will be possible to switch to renewables as the foundation for the continuation of industrial societies with high material living standards. Although renewable energy must be the sole source in a sustainable society, major difficulties become evident when conversions, storage and supply for high latitudes are considered. It is concluded that renewable energy sources will not be able to sustain present rich world levels of energy use and that a sustainable world order must be based on acceptance of much lower per capita levels of energy use, much lower living standards and a zero growth economy. (Author)

  13. Kansas Energy Sources: A Geological Review

    Science.gov (United States)

    Merriam, D.F.; Brady, L.L.; Newell, K.D.

    2012-01-01

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U. S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer. ?? 2011 International Association for Mathematical Geology.

  14. Renewable energy sources: the case of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J

    1979-04-01

    Industrial nations have based their economic and social development on the use of fossil fuels (coal, petroleum, and natural gas). This trend is being followed by many developing countries, which have neither the natural resources nor the manpower to adopt this path. As a result, one finds in many of these countries islands of prosperity (based on consumption patterns copied from industrial nations surrounded by a sea of poverty. The problems resulting from this dual social structure are obvious in many parts of the world. It is argued here that renewable energy sources are a natural basis for the development of the poorer countries and that intelligent use of hydropower, biomass, and direct solar energy can shortut many of the problems faced today by industrial nations. The case of Brazil is analyzed as one of the countries in which these solutions are being tried. 5 references, 3 figures, 6 tables.

  15. Promotion of renewable energy sources in Romania

    International Nuclear Information System (INIS)

    Turcu, Ioan

    2005-01-01

    Romania's climate and geographical conditions offer the following types of renewable energy sources: solar energy, wind energy, hydro energy, biomass and geothermal energy. These are here considered within the country's energy balance on medium and long term. Romania has a significant renewable energy potential. Unfortunately at present this potential is not used but to a small extent, except for hydraulic energy and biomass (especially as firewood), the latter being used in the great majority of cases in low performance installations. Government Decision No. 443/2003 on the promotion of electric energy generation from RES and Government Decision No. 1535/2003 regarding the Strategy of RES, establish the legal framework necessary for the promotion of RES in Romania. Consequently, an Action Plan defining actions, measures, responsibilities and financial sources has been settled. (author)

  16. Modeling the power of renewable energy sources in the context of classical electricity system transformation

    Directory of Open Access Journals (Sweden)

    Rafał Kasperowicz

    2017-10-01

    Full Text Available Many regions, not only in the Europe, introduce plans for the modernization of energy systems so that in a few or several years most of the demand for electricity was being able to cover using renewable energy sources. The aim of this paper is to present the possibility of estimation of appropriate power supply based on the renewable energy sources in the context of the whole energy system in the annual balance, taking into account the technical and the economic optimization strategies. The article presents also the simplified structure of the 100% renewable energy system supported by energy storage systems and the production of synthetic fuels.

  17. The future of coal as an energy source

    International Nuclear Information System (INIS)

    Wells, W.L.

    1991-01-01

    This paper reports on the future of such coal as an energy source which the author believes, is inextricably related to its economic and environmental acceptability. Technologies have been - and are being - developed that will help assure that coal retains its traditional share of the United States energy market. In addition, there are some 900 million tons per year of coal equivalent oil and gas currently being consumed (22.5 quads of 12.500 BTU/lb coal) in the United States that may be considered for potential coal conversion. Lastly, one can see trends emerging that may justify reconsideration of coal as a source of hydrocarbon to substitute for petrochemical industry feedstocks in addition to its customary role as a BTU supplier. The balance of this report will provide a background on environmental and legislative initiatives and discuss some of these technologies and new directions for coal research in the 1990s and beyond

  18. 46 CFR 111.10-5 - Multiple energy sources.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...

  19. SWOT analysis of the renewable energy sources in Romania - case study: solar energy

    Science.gov (United States)

    Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.

    2016-08-01

    The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.

  20. Annual Report 2003 of the Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The INCT 2003 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies, nucleonic control systems and accelerators.

  1. Annual Report 2003 of the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    2004-01-01

    The INCT 2003 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies, nucleonic control systems and accelerators

  2. The Annual Review of Information Science and Technology: Its Aims and Impact.

    Science.gov (United States)

    Cuadra, Carlos A.

    The major aims of the "Annual Review of Information Science and Technology" are (1) to describe and appraise progress in information science and technology; (2) to provide a systematic, dependable tool that can relieve professionals from winnowing through a wealth of literature in their field each year; (3) to direct the reader to…

  3. Renewable energy annual 1995

    International Nuclear Information System (INIS)

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic

  4. Renewable energy annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  5. Economic aspects and potentials of renewable energy sources in Germany

    International Nuclear Information System (INIS)

    Mannsbart, W.; Reichert, J.

    1992-01-01

    While there is a high theoretical potential for renewable energy sources in Germany, assessing theoretical potentials is more or less like playing with numbers; severe technical shortcomings and economic factors prevent then from being fully achieved. Unsuitable azimuth and slope of roofs, shading, absence of central hot water systems limit the application of collectors. The present storage technology is not suitable for a solar share higher than 50%. Individual space heating is not feasible under local climatic conditions. The broad application of biomass fuels fails because of limited resources. Feeding high amounts of fluctuating electricity generated by wind and photovoltaic systems into utility grids causes stability and storage problems. Insufficient training of installation personnel, lack of incentives for multi-family housing owners and high investment costs hinder the market penetration of renewable energy sources. Drastic cost reductions can only be expected from mass production. Therefore, appropriate policy measures - raised energy prices, as well as, subsidies or tax reliefs are necessary for market breakthrough

  6. Comparing the health impacts of different energy sources

    International Nuclear Information System (INIS)

    Hamilton, L.D.

    1982-01-01

    Assessing health impacts of different energy sources requires synthesis of research results from many different disciplines into a rational framework. Information is often scanty; qualitatively different risks, or energy systems with substantially different end uses, must be put on a common footing. Historically institutional constraints have inhibited agencies from making incisive intercomparisons necessary for formulating energy policy; this has exacerbated public controversy over appropriate energy sources. Risk assessment methods reviewed include examples drawn from work of the Biomedical and Environmental Assessment Division at Brookhaven National Laboratory and elsewhere. Uncertainty over the mechanism and size of air pollution health damage is addressed through a probabilistic health-damage function, using sulphate-particle exposure as an indicator. This facilitates intercomparison through analysis of each step in the whole fuel cycle between a typical coal and nuclear power plant. Occupational health impacts, a significant fraction of overall damage, are illustrated by accident trends in coal-mining. In broadening comparisons to include new technologies, one must include the impact of manufacturing the energy-producing device as part of an expanded fuel cycle, via input/output methods. Throughout the analysis, uncertainties must be made explicit in the results, including uncertainty of data and uncertainty in choice of appropriate models and methods. No single method of comparative risk assessment is fully satisfactory; each has its limitations. Several methods must be compared if decision-making is to be realistic. (author)

  7. 1998 Chemical Technology Division Annual Technical Report. Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-01-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented

  8. Technology and Risk Sciences Program. FY99 Annual Report

    International Nuclear Information System (INIS)

    Regens, James L.

    2000-01-01

    In making the transition from weapons production to environmental restoration, DOE has found that it needs to develop reliable means of defining and understanding health and environmental risks and of selecting cost-efficient environmental management technologies so that cleanup activities can be appropriately directed. Through the Technology and Risk Sciences Project, the Entergy Spatial Analysis Research Laboratory attempts to provide DOE with products that incorporate spatial analysis techniques in the risk assessment, communication, and management processes; design and evaluate methods for evaluating innovative environmental technologies; and collaborate and access technical information on risk assessment methodologies, including multimedia modeling and environmental technologies in Russia and the Ukraine, while in addition training and developing the skills of the next generation of scientists and environmental professionals

  9. Technology and Risk Sciences Program. FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Regens, James L.

    2000-01-01

    In making the transition from weapons production to environmental restoration, DOE has found that it needs to develop reliable means of defining and understanding health and environmental risks and of selecting cost-efficient environmental management technologies so that cleanup activities can be appropriately directed. Through the Technology and Risk Sciences Project, the Entergy Spatial Analysis Research Laboratory attempts to provide DOE with products that incorporate spatial analysis techniques in the risk assessment, communication, and management processes; design and evaluate methods for evaluating innovative environmental technologies; and collaborate and access technical information on risk assessment methodologies, including multimedia modeling and environmental technologies in Russia and the Ukraine, while in addition training and developing the skills of the next generation of scientists and environmental professionals.

  10. Ghana Space Science and Technology Institute (GSSTI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Ghana Space Science and Technology Institute (GSSTI) of the Ghana Atomic Energy Commission was established to exploit space science and technology for socio-economic development of Ghana. The report gives the structure of GSSTI and the detailed activities of the year. Various activities include: training and seminars, projects and workshops. Publications and their abstracts are also listed. The report also highlights some of the challenges, provides some recommendations and points to some expectation for the following year.

  11. 9th Annual Science and Engineering Technology Conference

    Science.gov (United States)

    2008-04-17

    does it all: TV, Internet,  Phone,  Music , Data, Computing Source: “Millennial: About them” Navy Recruiting Command briefing, 7 Feb 2008 Millennials...global actors – Technology investment geared to empower the individual - personal transportation, communications, finance, entertainment , health care...gadgets are poised for debut in U.S. and European markets Technology Review November 06, 2006 Sony : 1,000,000:1 OLED TV on sale in 2007 Engadget

  12. Biomass as an energy source: an Asian-Pacific perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kyi, Lwin [Energy Resources Section, Environment and Natural Resources Management Division, Economic and Social Commission for Asia and the Pacific, United Nations Building, Bangkok (Thailand)

    1995-12-01

    Biomass is the most commonly used renewable source of energy in the region covered by the Economic and Social Commission for Asia and the Pacific, making up an average of 50% of energy supplies in the developing countries. However, experience over the past one and a half decades in rural energy supply in the ESCAP region suggests that biomass resources are unlikely to compete with conventional supplies in meeting expanded rural energy needs for fuel, electricity and fertilizers. Nevertheless, biomass, especially wood and agricultural residues, will remain the main energy source in most countries of the region for the next two decades. The development of biomass energy systems in the ESCAP region is at different stages for different types of biomass resources. Efforts have been concentrated in six areas: direct combustion, gasification, co-generation, anaerobic digestion, densification and dendrothermal processes. Among the biomass technologies presently being promoted in the region, biogas and cooking stove programmes are the largest in terms of scale, operations and coverage. Co-generation is promising as its economic advantages make it attractive to industrial consumers, particularly the booming food and fibre production and processing industries, which produce enough biomass feedstock to warrant installing co-generation facilities. Despite its potential, the production of liquid fuel from energy crops is presently taking place in only a few countries. The major constraints on extending the use of biomass include the difficulty of assessing resources, poor local acceptance of technology (mainly for social and economic reasons), lack of financial resources and manpower, environmental concerns, the absence of up-to-date local technology and the lack of after-sales services. Appropriate technologies to develop and harness the region`s vast biomass resource base to augment energy supplies, particularly in rural areas, has been a major issue in the developing

  13. Biomass as an energy source: an Asian-Pacific perspective

    International Nuclear Information System (INIS)

    Lwin Kyi

    1995-01-01

    Biomass is the most commonly used renewable source of energy in the region covered by the Economic and Social Commission for Asia and the Pacific, making up an average of 50% of energy supplies in the developing countries. However, experience over the past one and a half decades in rural energy supply in the ESCAP region suggests that biomass resources are unlikely to compete with conventional supplies in meeting expanded rural energy needs for fuel, electricity and fertilizers. Nevertheless, biomass, especially wood and agricultural residues, will remain the main energy source in most countries of the region for the next two decades. The development of biomass energy systems in the ESCAP region is at different stages for different types of biomass resources. Efforts have been concentrated in six areas: direct combustion, gasification, co-generation, anaerobic digestion, densification and dendrothermal processes. Among the biomass technologies presently being promoted in the region, biogas and cooking stove programmes are the largest in terms of scale, operations and coverage. Co-generation is promising as its economic advantages make it attractive to industrial consumers, particularly the booming food and fibre production and processing industries, which produce enough biomass feedstock to warrant installing co-generation facilities. Despite its potential, the production of liquid fuel from energy crops is presently taking place in only a few countries. The major constraints on extending the use of biomass include the difficulty of assessing resources, poor local acceptance of technology (mainly for social and economic reasons), lack of financial resources and manpower, environmental concerns, the absence of up-to-date local technology and the lack of after-sales services. Appropriate technologies to develop and harness the region's vast biomass resource base to augment energy supplies, particularly in rural areas, has been a major issue in the developing

  14. International Drug Discovery Science and Technology--BIT's Seventh Annual Congress.

    Science.gov (United States)

    Bodovitz, Steven

    2010-01-01

    BIT's Seventh Annual International Drug Discovery Science and Technology Congress, held in Shanghai, included topics covering new therapeutic and technological developments in the field of drug discovery. This conference report highlights selected presentations on open-access approaches to R&D, novel and multifactorial targets, and technologies that assist drug discovery. Investigational drugs discussed include the anticancer agents astuprotimut-r (GlaxoSmithKline plc) and AS-1411 (Antisoma plc).

  15. Annual meeting on nuclear technology '92. Technical session 'Nuclear energy discussion'

    International Nuclear Information System (INIS)

    1992-05-01

    The report contains the six special papers red at the 1992 annual conference on nuclear engineering at Karlsruhe, all of which are individually retrievable from the database. They deal with the following subjects: historical development of the basic trends of technology criticism; communication problems in connection with the conveying of technical facts; psycho-sociological patterns of technology anxiety-mental infection or risk consciousness; field of tension between technology and journalism; handling of insecurities; ethical justifiability of nuclear energy use. (HSCH) [de

  16. Laser and Plasma Technology Division, Annual Reports 1996 and 1997

    International Nuclear Information System (INIS)

    Venkatramani, N.

    1999-04-01

    This report describes the activity of the Laser and Plasma Technology Division of Bhabha Atomic Research Centre during the two year period 1996- 1997. This division is engaged in the research and development of high power beams mainly laser, plasma and electron beams. Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of Department of Atomic Energy. This involves development and technology readiness study of laser, plasma and electron beam devices. In addition, studies are also carried out on related physical phenomenon with a view to gain better understanding of the devices. This report has been compiled from individual reports of various groups/sections working in the division. A list of publications by the several members of the division is also included. (author)

  17. Water Science and Technology Board. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1991. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Restoration of aquatic ecosystems - science, technologies and public policy; Water transfers in the West - efficiency, equity and the environment; Opportunities in the hydrologic sciences; and Ground water models - scientific and regulatory applications. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  18. Laser and Plasma Technology Division annual report 1995

    International Nuclear Information System (INIS)

    Venkatramani, N.

    1996-01-01

    This report describes the activity of the Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Mumbai during the period 1995. This division is engaged in the research and development of high power beams namely lasers, plasma and electron beams which are characterized by high power density. This division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad program objectives of the division are (1) development and technology readiness studies of laser, plasma and electron beam devices; (2) studies on related physical phenomena with a view to gain better understanding of the devices and (3) improvements in technology and exploration of new areas. This report has been compiled from individual reports of various groups/sections with marginal editing. At the end of each section; a list of publications by the staff members in the field indicated by the title of the section is given. refs., figs., tabs

  19. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  20. Water Science and Technology Board annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

  1. Water Science and Technology Board annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

  2. Advanced fusion technology research and development. Annual report to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    2001-01-01

    OAK-B135 The General Atomics (GA) Advanced Fusion Technology program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility, the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility. The report summarizes GA's FY00 work in the areas of Fusion Power Plant Studies, Next Step Options, Advanced Liquid Plasma Facing Surfaces, Advanced Power Extraction Study, Plasma Interactive Materials, Radiation Testing of Magnetic Coil, Vanadium Component Demonstration, RF Technology, Inertial Fusion Energy Target Supply System, ARIES Integrated System Studies, and Spin-offs Brochure. The work in these areas continues to address many of the issues that must be resolved for the successful construction and operation of next-generation experiments and, ultimately, the development of safe, reliable, economic fusion power plants

  3. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  4. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    Science.gov (United States)

    1994-01-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.

  5. Fusion technology. Annual report of the. Association Cea/EURATOM

    International Nuclear Information System (INIS)

    Magaud, P.; Le Vagueres, F.

    1996-01-01

    In 1996, the French EURATOM-CEA Association made significant contributions to the European technology programme. This work is compiled in this report as follows: the ITER CEA activities and related developments are described in the first section; blankets and material developments for DEMO, long term safety studies are summarised in the second part; the Underlying Technology activities are compiled in the third part of this report. In each section, the tasks are sorted out to respect the European presentation. For an easy reading, appendix 4 gives the list of tasks in alphabetical order with a page reference list. The CEA is in charge of the French Technology programme. Three specific organizational directions of the CEA, located on four sites (see appendix 5) are involves in this programme: Advanced Technologies Direction (DTA), for Material task; Nuclear Reactors Direction (DRN), for Blanket design, Neutronic problems, Safety tasks; Physical Sciences Direction (DSM) uses the competence of the Tore Supra team in the Magnet design and plasma Facing Component field. The CEA programme is completed by collaborations with Technicatome, COMEX-Nucleaire and Ecole Polytechnique. The breakdown of the programme by Directions is presented in figure 1. The allocation of tasks is given in appendix 2 and in appendix 3, the related publications. (author)

  6. Laser and Plasma Technology Division annual report 1993

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1994-01-01

    This report describes the activities of the Laser and Plasma Technology Division during the year 1993. This Division is engaged in the research and development of high power beams namely laser, plasma and electron beams, which are characterized by high power density, normally in excess of 1 kW/mm 2 . Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad programme objectives of the Division are : (1) Development and technology readiness studies of laser, plasma and electron beam devices, (2) Studies on related physical phenomena with a view to gain better understanding of the devices, and (3) Improvements in technology and exploration of new areas. This report covers the activities of the Division during 1993 and describes how successfully the objectives have been met. The activities described in the report are diverse in nature. The report has been compiled from individual reports of various groups/sections with marginal editing. (author). refs., tabs., figs

  7. Laser and Plasma Technology Division annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venkatramani, N; Verma, R L [eds.; Bhabha Atomic Research Centre, Bombay (India). Laser and Plasma Technology Div.

    1994-12-31

    This report describes the activities of the Laser and Plasma Technology Division during the year 1993. This Division is engaged in the research and development of high power beams namely laser, plasma and electron beams, which are characterized by high power density, normally in excess of 1 kW/mm{sup 2}. Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad programme objectives of the Division are : (1) Development and technology readiness studies of laser, plasma and electron beam devices, (2) Studies on related physical phenomena with a view to gain better understanding of the devices, and (3) Improvements in technology and exploration of new areas. This report covers the activities of the Division during 1993 and describes how successfully the objectives have been met. The activities described in the report are diverse in nature. The report has been compiled from individual reports of various groups/sections with marginal editing. (author). refs., tabs., figs.

  8. Effective Land Use for Renewable Energy Sources

    NARCIS (Netherlands)

    Dijkman, Teunis

    2009-01-01

    The aim of this research is to determine the energy densities for different methods to produce renew-able energy. Energy density is defined here as the energy that is annually produced on a certain area. Using low, average, and high energy density scenari

  9. Active pipe-embedded structures in buildings for utilizing low-grade energy sources: A review

    International Nuclear Information System (INIS)

    Xu, Xinhua; Wang, Jinbo; Wang, Shengwei; Xiao, Fu

    2010-01-01

    Low-grade energy sources such as geothermal energy, favorable ambient air and industrial waste heat etc. exist widely. Sufficient utilization of these low-grade energy sources may reduce our daily dependence on high-grade energy sources such as electricity resulting in reduced emission of green house gas for environmental conservation. Active pipe-embedded structure as floor/ceiling usually with water as the medium to carry heat or coolth may utilize these low-grade energy sources for providing space air-conditioning. Compact arrangement of pipes in the structure may significantly enlarge heat transfer surface between the slab mass and water in the pipe allowing substantial heat flows even for relatively small temperature differences. Application of the heat or coolth storage capacity of this structure for preheating or pre-cooling is also one among the advantages of this structure for shifting load and exploiting the nighttime cheap electricity tariff in some regions. This paper presents the technology of the active pipe-embedded structure for utilizing widely existing low-grade energy sources following by a comprehensive review on the heat transfer calculation models of this structure and its practical applications in real building systems for space air-conditioning. This review shows that more works on the active structure, especially simple and transient models for dynamic and accurate performance prediction and easy integration with existing building energy simulation packages, are worthwhile for further promoting the practical application wherever the low-grade energy sources are favorable. (author)

  10. ENEA programm in the field of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, G; Ambrosini, G

    1989-09-01

    In consideration of Italy's strong dependence on imported energy and in view of the targets established by the Italian National Energy Plan, renewable sources, especially solar, are expected to play a strategic role in Italy, due to Italy's favourable geographical position. The Italian Energy Plan has allocated a central task to ENEA (Italian Commission for Alternative Energy Sources), that has to take care of research and development activities, pursue demonstration programs, promote Italian industry for the development of technologies in the energy sector and finally to qualify the Italian industry. ENEA has also the task to provide advice and support to the Public Administration in initiatives in the field of new types of energy and energy saving.

  11. Economic costs and benefits of the renewable energy sources

    International Nuclear Information System (INIS)

    De Leo, G. A.

    2001-01-01

    In this work it has been analysed the potential diffusion of renewable energy sources and co-generation in the Italian market on the basis of the level of maturation of the different technologies, predicted market growth and environmental impacts associated to them. A sensitivity analysis on external costs generated by global climate changes has allowed everybody to assess how possible errors in estimating the potential impact of greenhouse gasses can affect the estimate of the economic performances of different scenarios of energetic development. On the basis of these considerations, it can be outlined a potential doubling of energy production by renewable energies in the next 10 years, with specific reference of small hydroelectric, biogass and eolic power plants [it

  12. Renewable energy sources cost benefit analysis and prospects for Italy

    International Nuclear Information System (INIS)

    Ariemma, A.; Montanino, G.

    1992-01-01

    In light of Italy's over-dependency on imported oil, and due to this nation's commitment to the pursuit of the strict environmental protection policies of the European Communities, ENEL (the Italian National Electricity Board) has become actively involved in research efforts aimed at the commercialization of renewable energy sources - photovoltaic, wind, biomass, and mini-hydraulic. Through the use of energy production cost estimates based on current and near- future levels of technological advancement, this paper assesses prospects for the different sources. The advantages and disadvantages of each source in its use as a suitable complementary energy supply satisfying specific sets of constraints regarding siting, weather, capital and operating costs, maintenance, etc., are pointed out. In comparing the various alternatives, the paper also considers environmental benefits and commercialization feasibility in terms of time and outlay

  13. The Potential of Renewable Energy Sources in Latvia

    Directory of Open Access Journals (Sweden)

    Sakipova S.

    2016-02-01

    Full Text Available The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.

  14. US Department of Energy first annual clean coal technology conference

    International Nuclear Information System (INIS)

    1992-11-01

    The first public review of the US DOE/Industry co-funded program to demonstrate the commercial readiness of Clean Coal Technologies (CCT) was held at Cleveland, Ohio Sept. 22--24, 1992. The objectives were to provide electric utilities, independent power producers, and potential foreign users information on the DOE-supported CCT projects including status, results, and technology performance potential; to further understanding of the institutional, financial, and technical considerations in applying CCTs to Clean Air Act compliance strategies; to discuss to export market, financial and institutional assistance, and the roles of government and industry in pursuing exports of CCTs; and to facilitate meetings between domestic and international attendees to maximize export opportunities

  15. Water Science and Technology Board. Annual report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1993-1994. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Alternatives for ground water cleanup; Managing wastewater in coastal urban areas; and, Water transfers in the West - efficiency, equity and the environment. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  16. Water Science and Technology Board. Annual report 1992-1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1992. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Managing wastewater in coastal urban areas; Ground water vulnerability assessment; Water transfers in the West - efficiency, equity and the environment; and Opportunities in the hydrologic sciences. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  17. Laser and Plasma Technology Division : annual report (1990-91)

    International Nuclear Information System (INIS)

    1991-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Bombay during the period 1990-91 is presented. The R and D activities are reported under the headings: 1) Laser Activities, 2) Thermal Plasma Activities, and 3) Electron Beam Activities. List of publications including journal articles, papers published in symposia, conferences etc. is given at the end. (original). figs

  18. Laser and Plasma Technology Division annual report 1994

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1995-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Bombay during the period 1994 is presented. The activities are reported under the headings: 1) laser activities, 2) thermal plasma activities, 3) electron beam activity. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. (author). refs., tabs., figs

  19. Laser and Plasma Technology Division : annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Bombay during 1991 is presented. The R and D activities are reported under the headings (1) Laser Activities, (2) Thermal Plasma Activities, (3) Electron Beam Activities and (4) Divisional Workshop Activities. List of publications is given at the end of each activity heading

  20. Laser and Plasma Technology Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Venkatramani, N; Verma, R L [eds.; Bhabha Atomic Research Centre, Bombay (India). Laser and Plasma Technology Div.

    1996-12-31

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Bombay during the period 1994 is presented. The activities are reported under the headings: (1) laser activities, (2) thermal plasma activities, (3) electron beam activity. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. (author). refs., tabs., figs.

  1. Environmental Science and Technology Department annual report 1996

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs

  2. Environmental Science and Technology Department annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O. J.; Oestergaard, H.; Aarkrog, A. [eds.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs.

  3. Environmental Science and Technology Department annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A. [eds.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs.

  4. Environmental Science and Technology Department annual report 1995

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs

  5. Laser and Plasma Technology Division annual report 1992

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1993-01-01

    The report describes the research and development (R and D) activities of Laser and Plasma technology Division, Bhabha Atomic Research Centre, Bombay during 1992. The broad programme objectives of the Division are: (1) development and technology readiness studies of laser, plasma and electron beam devices, (2) studies on related physical phenomena with a view to gain better understanding of the devices, and (3) improvements in technology and exploration of new areas. The R and D activities are reported under the sections entitled: (1) Laser Activities, (2) Thermal Plasma Activities, and (3) Electron Beam Activities. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. Some of the highlights of R and D work during 1992 are:(1) fabrication of an electron beam sustained CO 2 laser, (2) commissioning of a 6.5 m high LMMHD (Liquid Metal Magneto-hydrodynamic) generator loaded with 1.5 tons of mercury, (3) fabrication of electron beam processing equipment, and (4) study of the magnetic properties of vanadium nitride films produced by reactive sputtering in an indigenously developed DC magnetron sputtering equipment. (author). 56 figs., 6 tabs

  6. Importance of biomass energy sources for Turkey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Various agricultural residues such as grain dust, crop residues and fruit tree residues are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. Selection of a particular biomass for energy requirements is influenced by its availability, source and transportation cost, competing uses and prevalent fossil fuel prices. Utilization of biomass is a very attractive energy resource, particularly for developing countries since biomass uses local feedstocks and labor. Like many developing countries, Turkey relies on biomass to provide much of its energy requirement. More efficient use of biomass in producing energy, both electrical and thermal, may allow Turkey to reduce petroleum imports, thus affecting its balance of payments dramatically. Turkey has always been one of the major agricultural countries in the world. The importance of agriculture is increasing due to biomass energy being one of the major resources in Turkey. Biomass waste materials can be used in Turkey to provide centralized, medium- and large-scale production of process heat for electricity production. Turkey's first biomass power project is under development in Adana province, at an installed capacity of 45 MW. Two others, at a total capacity of 30 MW, are at the feasibility study stage in Mersin and Tarsus provinces. Electricity production from biomass has been found to be a promising method in the nearest future in Turkey

  7. Ames Infusion Stories for NASA Annual Technology Report

    Science.gov (United States)

    Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Ethiraj

    2015-01-01

    These are short (2-page) high-level summaries of technologies that have been infused - i.e., taken the next level. For example, 3DMAT started off as a Center Innovation Fund (CIF) project and graduated to the Game-changing Program (GCD), where it is being prepared for use in Orion. The Nano Entry System similarly started as CIF and graduated to GCD. The High Tortuosity Carbon Dioxide Conversion Device also started off as CIF and then received an award for further development from the NASA Innovative Advanced Concepts program (NIAC).

  8. Environmental Science and Technology Department annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au).

  9. Environmental Science and Technology Department annual report 1993

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au)

  10. Living laboratory for Nikola Tesla. Living laboratories, Tesla, Second Life, sustainable construction technologies and renewable energy sources; Wohnlabor fuer Nikola Tesla. Ueber Wohnlabors, Tesla, Second Life, nachhaltige Bautechnologien und erneuerbare Energie

    Energy Technology Data Exchange (ETDEWEB)

    Redi, Ivan; Redi, Andrea; Jovanovic, Branimir (and others)

    2008-07-01

    Adventure is the opposite of conventional teaching. Adventure is the moment when experience alone is not enough. Sometimes, courageous people challenge the nature of things, helping us to get new insights and achieve a new viewpoint. The experience-oriented ''work in progress'' university is an adventure of this kind. The book looks into the Tesla laboratory and the Wardenclyffe Tower, both of which could not be completed for financial reasons, and addresses them from today's state of technology. The conceptional section is based on the ''Tesla doctrine'' which comprises fundamental philosophical statements on civilisatory progress. The book presents the results of the investigation. The 16 architectural projects presented here were developed live on the online platform. Second Life, ORTLOS Sim. (orig.)

  11. Enviromental Science and Technology Department. Annual report 1990

    International Nuclear Information System (INIS)

    Jensen, A.; Helms Joergensen, J.; Nielsen, O.J.; Nilsson, K.; Aarkrog, A.

    1991-03-01

    Selected activities of the Environmental Science and Technology Department during 1990 are presented. The research in the department is predominantly experimental, and the research topics emphaized are introduced and reviewed in eight chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Biology, 4. Nutrient Efficiency in Plant Production, 5. Chemistry of the Geosphere, 6. Ecology and Mineral Cycling, 7. Other Acitvities, 8. Large Facilities. The department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department as well as activities within education and training. Lists of scientific and technical staff members, visiting scientists, Ph.D. students, publications, lectures and poster presentations are included in the report. (author)

  12. Enviromental Science and Technology Department. Annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A; Helms Joergensen, J; Nielsen, O J; Nilsson, K; Aarkrog, A

    1991-03-01

    Selected activities of the Environmental Science and Technology Department during 1990 are presented. The research in the department is predominantly experimental, and the research topics emphaized are introduced and reviewed in eight chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Biology, 4. Nutrient Efficiency in Plant Production, 5. Chemistry of the Geosphere, 6. Ecology and Mineral Cycling, 7. Other Acitvities, 8. Large Facilities. The department`s contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department as well as activities within education and training. Lists of scientific and technical staff members, visiting scientists, Ph.D. students, publications, lectures and poster presentations are included in the report. (author).

  13. Compressed air energy storage technology program. Annual report for 1979

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, W.V.

    1980-06-01

    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

  14. Annual meeting on nuclear technology '96. Technical session: Energy costs

    International Nuclear Information System (INIS)

    1996-08-01

    The two papers of this session deal with the costs of two different energy generation systems, one is based on photovoltaic energy conversion, and the other is the nuclear fuel cycle and nuclear energy generation. The author shows that the costs of these two energy systems in Germany are much more governed by decisions taken in the political domain than is the case in other countries. Although German science and technology in these two engineering fields hold a top rank worldwide, the high costs that seem inevitable in Germany are expected to be a major reason why the photovoltaic industry will have to leave the country and go abroad to exploit the better chances there. (DG) [de

  15. Program Annual Technology Report: Physics of the Cosmos Program Office

    Science.gov (United States)

    Pham, Bruce Thai; Cardiff, Ann H.

    2017-01-01

    From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? PCOS focuses on that last question. Scientists investigating this broad theme use the universe as their laboratory, investigating its fundamental laws and properties. They test Einstein’s General Theory of Relativity to see if our current understanding of space-time is borne out by observations. They examine the behavior of the most extreme environments – supermassive black holes, active galactic nuclei, and others – and the farthest reaches of the universe, to expand our understanding. With instruments sensitive across the spectrum, from radio, through infrared (IR), visible light, ultraviolet (UV), to X rays and gamma rays, as well as gravitational waves (GWs), they peer across billions of light-years, observing echoes of events that occurred instants after the Big Bang. Last year, the LISA Pathfinder (LPF) mission exceeded expectations in proving the maturity of technologies needed for the Laser Interferometer Space Antenna (LISA) mission, and the Laser Interferometer Gravitational-Wave Observatory (LIGO) recorded the first direct measurements of long-theorized GWs. Another surprising recent discovery is that the universe is expanding at an ever-accelerating rate, the first hint of so-called “dark energy,” estimated to account for 75% of mass-energy in the universe. Dark matter, so called because we can only observe its effects on regular matter, is thought to account for another20%, leaving only 5% for regular matter and energy. Scientists now also search for special polarization in the cosmic microwave background to support the notion that in the split-second after the Big Bang, the universe inflated faster than the speed of light! The most exciting aspect of this grand enterprise today is the extraordinary rate at which we can harness technologies to enable these key discoveries.

  16. Outlook for costs by energy source

    International Nuclear Information System (INIS)

    Williams, L.J.; Fortune, J.; Booras, G.

    1994-01-01

    This paper will develop information useful for evaluation future cost trends for generation technology choices within the US electric utility industry. The major forces influencing costs are: environmental constraints and other regulatory requirements, technology choice and future improvements, fuel market and other economic conditions. (TEC). 11 refs., 10 figs

  17. Wearable energy sources based on 2D materials.

    Science.gov (United States)

    Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan

    2018-05-08

    Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.

  18. Limits and Prospects of Renewable Energy Sources in Italy

    International Nuclear Information System (INIS)

    Coiante, D.

    2008-01-01

    The Italian energy balance for year 2005 is discussed with particular attention on renewable energy production. The potentials of renewable sources are evaluated in terms of energy density that can be obtained from occupied plant area. About 20000 km 2 of sunny barren lands are present in South of Italy, particularly suitable for photovoltaic plants and that corresponds to a potential production of 144 Mtep of primary energy. Therefore, in theory, the photovoltaic energy potential is comparable with energy balance. The grid connection limit due to intermittent power generation of photovoltaic and wind energy systems is considered in relation with the stability of grid power level. Assuming a 25% maximum grid penetration of intermittent power with respect to capacity of active thermoelectric generators, the renewable energy contribution amounts to about 2% of annual energy balance. In front of expectations for a larger contribution, the practical result is the renewable energy production of present systems is marginal, unsuitable for counteracting the global climate crisis. The conclusion is that, for exploiting the large renewable energy potential, is necessary to implement the plants with an energy storage system able to overcome the source intermittency. Without this improvement, the expectations on renewable energy sources could be disappointed. [it

  19. Annual Report of the Institute of Nuclear Chemistry and Technology 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The INCT 2000 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators.

  20. Annual Report of the Institute of Nuclear Chemistry and Technology 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The INCT 2000 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  1. 2008 annual meeting on nuclear technology. Pt. 1. Section reports; JAHRESTAGUNG KERNTECHNIK 2008. T. 1. Sektionsberichte

    Energy Technology Data Exchange (ETDEWEB)

    Dagan, Ron; Sanchez Espinoza, Victor Hugo [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Reaktorsicherheit; Rohde, U.; Kliem, Soeren [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany); Faber, Wolfgang; Berlepsch, Thilo v.; Spann, Holger [E.ON Kernkraft GmbH, Hannover (Germany); Schaffrath, Andreas [TUEV Nord SysTec GmbH und Co. KG, Hamburg (Germany); Schubert, Bernd [Vattenfall Europe Nuclear Energy GmbH, Hamburg (Germany); Rieger, Udo [Vattenfall Nuclear Energy GmbH, Hamburg (Germany); Christ,, Bernhard G. [NUKEM Technologies GmbH, Alzenau (Germany); Gulden, Werner [Fusion for Energy, Barcelona (Spain); Bogusch, Edgar [AREVA NP GmbH, Erlangen (Germany)

    2008-08-15

    Summary report on these 5 - out of 11 - Sections of the Annual Conference on Nuclear Technology held in Hamburg on May 27-29, 2008: - Reactor Physics and Methods of Calculation - Thermodynamics and Fluid Dynamics - Safety of Nuclear Installations - Methods, Analysis, Results - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage - Fusion Technology. Other Sections will be covered in reports in further issues of atw. (orig.)

  2. XXXVIII Annual meeting of the Argentine Association of Nuclear Technology (AATN 2011)

    International Nuclear Information System (INIS)

    2011-01-01

    The 38th Annual meeting of the Argentine Association of Nuclear Technology was organized by the AATN (Asociacion Argentina de Tecnologia Nuclear) in Buenos Aires, Argentine, between the 14 and 18 November of 2011. In this event 146 papers in 16 Sessions, with 13 Plenary Conferences and 3 Roundtables were presented. [es

  3. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Science.gov (United States)

    2011-11-16

    ... present ``Treatment of Cancer with Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr. Pastan is an NIH Distinguished Investigator and Chief, Laboratory of Molecular Biology, National Cancer Institute Center for Cancer Research. This annual series honors Dr. Philip S. Chen, Jr. for his almost 50...

  4. Fusion reactors: physics and technology. Annual progress report

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-08-01

    Fusion reactors are designed to operate at full power and generally at steady state. Yet experience shows the load variations, licensing constraints, and frequent sub-system failures often require a plant to operate at fractions of rated power. The aim of this study has been to assess the technology problems and design implications of startup and fractional power operation on fusion reactors. The focus of attention has been tandem mirror reactors (TMR) and we have concentrated on the plasma and blanket engineering for startup and fractional power operation. In this report, we first discuss overall problems of startup, shutdown and staged power operation and their influence on TMR design. We then present a detailed discussion of the plasma physics associated with TMR startup and various means of achieving staged power operation. We then turn to the issue of instrumentation and safety controls for fusion reactors. Finally we discuss the limits on transient power variations during startup and shutdown of Li 17 Pb 83 cooled blankets

  5. 2006 annual nuclear technology conference on energy policy

    International Nuclear Information System (INIS)

    Westerwelle, G.

    2006-01-01

    Liberals have clear ideas about the relations between the economy and the environment. Good ecology is also long-term economy, and there is no contradiction between the economy and the environment. New technologies, more investments into research, cooperation with industry and the public are required to bring about a new environmental policy in Germany. Energy policy needs a new beginning free from ideology. This is elaborated in 7 theses: - The key to successful economic development, more growth and employment is to be found in sustainable energy supply. - The 3 guiding principles of sustainable energy supply are (1) economic soundness, (2) continuity of supply, (3) environmental compatibility. - The supply situation is the more secure, the richer the energy mix, and the more sources from all over the world are used. - Taxes, levies, and costs due to shifting are a burden on energy prices and endanger the economic viability of energy supply. - We need a sensible energy mix composed of fossil energy resources, nuclear power, and renewable energies. - A rich energy mix combined with a powerful expansion of renewables, more measures to improve efficiency and save energy make Germany less dependent on international raw material purchases. - Climate change is a reality. Enhancing research and development efforts is our response. (orig.)

  6. Identifying barriers in the diffusion of renewable energy sources

    International Nuclear Information System (INIS)

    Eleftheriadis, Iordanis M.; Anagnostopoulou, Evgenia G.

    2015-01-01

    Rapid diffusion of renewable energy sources (RES) in the electricity power sector is crucial if the EU wants to fulfill its 2050 CO 2 reduction commitments. For this reason, identifying and alleviating all barriers that hinder the development of RES is necessary to the successful deployment of these technologies. This paper discusses the main barriers in the diffusion of wind and photovoltaic (PV) solar power in the Greek electricity sector by drawing on the literature of technological innovation systems and system functions. Furthermore, we provide an explanation of the different diffusion rates between the two technologies. Inadequate financial resources, low grid capacity, delays in the issuance of building permits, opposition from local communities to the construction of wind farms and the lack of a stable institutional framework are among the most important barriers that inhibit the diffusion of the wind and PV solar power. The nature of the barriers identified in this study calls for policy intervention. - Highlights: • Firms in the Greek wind and solar power sectors assess RES barriers. • Lack of financial resources is the most important RES barrier. • Lack of a stable institutional framework negatively affects RES deployment. • The support of the public sector is crucial to the diffusion of RES. •Wind power faces strong legitimization barriers

  7. Energy efficiency and renewable energy sources in Nordic homes

    Energy Technology Data Exchange (ETDEWEB)

    Hyysalo, S; Rinkinen, J [Aalto Univ. School of Economics, Helsinki (Finland). Dept. of Management and International Business; Heiskanen, E [National Consumer Research Centre, Helsinki (Finland)

    2011-07-01

    The role of citizens as innovators, adaptors of existing technologies and diffusers of new climate-relevant innovations has been studied extensively in recent years. Since the late 1970s, sociological and demographic research on residential energy use has consistently found great variations in energy use among similar households. It has been suggested that these variations constitute a source of innovative low-carbon practices. Yet, while there are many generic technologies available for end-use efficiency and renewables, their slow rate of diffusion suggests that they are not as such applicable to local conditions. Citizens have a key role in their adoption and adaptation to local conditions, as well in their diffusion to other users. Against this backdrop, the track 4 of NCF called for poster presentations of innovative new products, modifications of existing products, news ways of make use of existing technologies as well as such living practices that reduce energy use or enable the utilization of renewable energy sources in domestic settings in the Nordic countries. (orig.)

  8. ACCELERATING THE ADOPTION PROCESS OF RENEWABLE ENERGY SOURCES AMONG SMES

    Directory of Open Access Journals (Sweden)

    Mirjam Leloux

    2015-07-01

    Full Text Available By 2020, intermittent renewable small scale energy sources (e.g. wind and solar energy are expected to represent about 17% of the EU’s total electricity consumption. All national overriding energy policy objectives are to ensure competitive, secure and sustainable energy for the economy and for society. Renewable energy, allied with energy efficiency, is often found crucial to meet these goals of secure sustainable and competitive energy supplies reducing dependency on expensive fossil imports and underpinning the move towards a low carbon economy while delivering green jobs to the economy. This all contributes to national competitiveness and the jobs and economic growth agenda. However, a straight forward implementation of renewable energy options is not easy, due to various barriers and obstacles. For most SMEs, the concept of generating their own renewable energy is still more of academic than genuine interest. In general, several barriers are experienced, such as high capital investments, slow return on investment, and the lack of knowledge of the benefits. There is a need for education on the benefits and drawbacks of sustainable energy, as well as a greater contribution to costs for this to work. In this paper we describe the intermediate outcomes of a European Partnership under the name of GREAT (Growing Renewable Energy Applications and Technologies, funded under the INTERREG IVB NWE Programme. GREAT aims to encourage communities and small to medium size enterprises (SMEs in Ireland, the United Kingdon, Belgium and The Netherlands to develop technological solutions for Smart Grid, Renewable Energy and Distributive Generation; research and develop policy issues for regulatory authorities and provide structured co-operation opportunities between SMEs and research institutes / technology developers. We developed GREAT spreadsheets to facilitate SMEs in each country to calculate the return-on-investment of renewable energy sources, such as

  9. Annual Technology Baseline (Including Supporting Data); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate; Cory, Karlynn; Hand, Maureen; Parkhill, Linda; Speer, Bethany; Stehly, Tyler; Feldman, David; Lantz, Eric; Augusting, Chad; Turchi, Craig; O' Connor, Patrick

    2015-07-08

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  10. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  11. 2009 annual conference on nuclear technology opening address

    International Nuclear Information System (INIS)

    Hohlefelder, Walter

    2009-01-01

    To Germany, 2009 first and foremost is an election year. The course will be reset. At any rate, reassessing nuclear power policy in Germany in the sense of plant life extension and real progress in solving the energy problem is indispensable. One major reason is the change in boundary conditions since 2000, the year of the agreement between the Red-Green federal government and the nuclear power plant licensees. Climate change, security of power supply, and overcoming the worldwide financial and economic crisis are important points to be mentioned. The world of nuclear power, too, has changed. Besides Finland, also Switzerland, the United Kingdom, Sweden, Italy, and Poland are European countries intending to build new nuclear power plants. Premature shutdown of 7 out of the 17 German nuclear power plants in the next legislative term of the German federal parliament would have grave consequences for the security of supply and would greatly jeopardize the objectives of climate protection. In addition, it would weaken Germany's position as a center of industry. It is important, therefore, to negotiate a sensible approach after the national elections. Like the politically motivated alliance of coal and nuclear in the 1970s and 1980s, a model encompassing renewables, efforts towards energy efficiency, and nuclear power could be possible. As nuclear power has lost its divisive effect on society, despite ongoing discussions, the necessary reassessment must be put on the agenda also in Germany. One major issue is real progress in the waste management problem. This dialog will have to be carried on in a committed as well as unbiased way particularly in the weeks and months to come. We need all power technologies, nuclear included. (orig.)

  12. 7th Annual Science and Engineering Technology Conference/DoD Technology Exposition Volume 1

    Science.gov (United States)

    2006-04-20

    Disruptive Technologies • Army Approach to Disruptive Technologies and Transition Mr. Dennis Schmidt, Director, Science & Technology Integration, Office of...the Assistant Secretary of the Army for Research and Technology • Navy Approach to Disruptive Technologies and Transition Mr. Lewis DeSandre, Program...Manager, ONR 351 • Air Force Approach to Disruptive Technologies and Transition Colonel Mark Stephen, Associate Deputy Assistant Secretary (Science

  13. Annual Science and Engineering Technology Conference/DOD Technology Exposition (7th). Volume 2. Wednesday - Thursday

    Science.gov (United States)

    2006-04-20

    Disruptive Technologies • Army Approach to Disruptive Technologies and Transition Mr. Dennis Schmidt, Director, Science & Technology Integration, Office of...the Assistant Secretary of the Army for Research and Technology • Navy Approach to Disruptive Technologies and Transition Mr. Lewis DeSandre, Program...Manager, ONR 351 • Air Force Approach to Disruptive Technologies and Transition Colonel Mark Stephen, Associate Deputy Assistant Secretary (Science

  14. 3. report of study group 6.2 ''new market for gas - technology evaluation'': factor analysis on penetration of gas cooling; biogas, a renewable energy source; micro- and mini- combined heat and power generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Over the past ten years, the hoped for growth of an international air conditioning market fueled by natural gas, has not lived up to expectations. The purpose of this report is to assess causal factors and to pinpoint any key areas for corrective action, if our successes are to be enhanced. We started by evaluating the conditions in the Japanese market that allowed for the most successful penetration of the gas cooling market in the world, and then built a model that describes those conditions. Next we examined the market criteria and constructed models for two cities in the U.S., and for France and Spain, and then compared the results against the Japanese model. Biogas is the name given to a gas mixture with high methane content resulting from the bacteriological fermentation of organic material in an anaerobic environment. In addition to combustible methane gas, the mixture contains carbon dioxide, water and lesser amounts of other components. Today, there is an increased demand in some of the worlds' markets for environmentally friendly and sustainable energy systems. The fact that biogas is just as clean as natural gas and is renewable can be used by the natural gas industry in their efforts to increase gas demand. As natural gas can benefit from biogas, biogas can also benefit from natural gas. Biogas needs the support of the resources of the natural gas industry, such as infrastructure, marketing and research to become one, albeit small, part of our energy supply. IGU SG 6.2 presents in this paper a short description of the possible uses of biogas, a description of the biogas process, the different technologies for production, cleaning and upgrading biogas to natural gas quality, and some of the marketing concepts that have been successfully employed. A world-wide trend towards decentralized power generation is being observed in those countries where electricity is generated in centralized fossil-fuelled power stations. This is due to a variety of

  15. Domestic energy sources urged as Middle East situation heats up

    International Nuclear Information System (INIS)

    Rodgers, L.M.

    1990-01-01

    This article discusses the alternatives to foreign oil as an energy source for the US in the light of the invasion of Kuwait by Iraq. Topics addressed include the responses of organizations representing various energy sources, the public response of the Department of Energy, the response of conservation advocates, and the Administration's reaction

  16. Urges use of renewable energy sources to generate electric power

    International Nuclear Information System (INIS)

    Santizo, Rodolfo

    2001-01-01

    The article discusses the following issues of generation of electric power through renewable energy sources like geothermal and wind energy. The author that is the actual Deputy Minister of Energy and Mines explains the needs of Guatemala in the sector of energy in promoting the renewable energy sources such as wind and geothermal energy because Guatemala has a potential generation by this sources

  17. Advanced energy sources and conversion techniques. Proceedings of a seminar. Volume 1. [35 papers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1958-11-01

    The Seminar was organized as a series of tutorial presentations and round table discussions on a technical level to implement the following: (a) to identify and explore present and projected needs for energy sources and conversion techniques for military applications; (b) to exchange information on current and planned efforts in these fields; (c) to examine the effect of anticipated scientific and technological advances on these efforts; and (d) to present suggested programs aimed at satisfying the military needs for energy sources and conversion techniques. Volume I contains all of the unclassified papers presented at the Seminar. (W.D.M.)

  18. Renewable energy sources in the Colombian energy policy, analysis and perspectives

    International Nuclear Information System (INIS)

    Ruiz, B.J.; Rodriguez-Padilla, V.

    2006-01-01

    In this work; five basic elements for the formulation of a policy on renewable energy sources for Colombia, are discussed. A balance of the institutions of the energy sector related to the formulation, elaboration and execution of plans, programs and projects on renewable energy sources is carried out. The technology costs that take advantage of such sources are compared and the 967 Law issued in 2001 and its regulatory decree are analyzed. This law promotes the efficient and rational use of energy and also promotes the alternative energies

  19. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  20. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  1. The challenge to keep nuclear fusion alive as a future energy source

    International Nuclear Information System (INIS)

    D'haeseleer, W.D.

    1999-01-01

    Few people are preoccupied with the energy issue. Indeed, inflation-corrected energy prices (in euros) are currently lower than before the first oil crisis of 1973; the annual growth rate of primary-energy use in the industrialized world has diminished considerably compared to before 1970, and oil and gas production is characterized by increased exploration activity and a wider geographical spread. Nevertheless, there is a real energy issue. If the greenhouse effect turns out to be real, then mankind should at least slow down the consumption of fossil fuels. Given the fact that world energy consumption (especially by the developing countries) will rise in the future, and that nuclear fission power has become unpopular in the western world, the idea reigning in some circles to cope with this situation by total reliance on energy savings and renewable energy sources comes close to wishful thinking. A realistic analysis makes it clear that there will be a need for large workhorses for electricity generation to keep the overall electricity grid sufficiently robust. From a global and long-term perspective, the logical conclusion is the following: because mankind cannot count on the continued use of fossil fuels (due to the finiteness of the resources combined with the possible climate change effects), our generation has the responsibility to develop alternative energy sources for the distant future. Many parallel lines of research and development therefore need be pursued; because of the uncertainties with other alternative sources, it would be irresponsible to kill some of these development lines. This holds for renewable sources, the nuclear fission breeder, and for nuclear fusion. A major hurdle for the survival of long term energy research and development is the liberalization of the electricity market. Because of the revolutionary changes taking place, utilities concentrate on cost cutting and short-term survival. In addition, they are no longer supposed to take

  2. Research and technology: 1994 annual report of the John F. Kennedy Space Center

    Science.gov (United States)

    1994-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1994 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The Technology Programs and Commercialization Office (DE-TPO), (407) 867-3017, is responsible for publication of this report and should be contacted for any desired information regarding the advanced technology program.

  3. 27-Level DC–AC inverter with single energy source

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2012-01-01

    Highlights: ► This paper reports a novel 27-level DC–AC inverter using only single renewable energy source. ► The efficiency of the inverter is very high. The output waveform is almost sinusoidal. ► The cost is low as the number of power switches required is only 12. - Abstract: A novel design of multilevel DC–AC inverter using only single renewable energy source is presented in this paper. The proposed approach enables multilevel output to be realised by a few cascaded H-bridges and a single energy source. As an illustration, a 27-level inverter has been implemented based on three cascaded H-bridges with a single energy source and two capacitors. Using the proposed novel switching strategy, 27 levels can be realized and the two virtual energy sources can be well regulated. Experimental results are included to demonstrate the effectiveness of the proposed inverter.

  4. Methane hydrates. An overlooked energy source

    International Nuclear Information System (INIS)

    Avella, R.; Castellazzi, L.; Bassano, C.

    2001-01-01

    A virtually unthought-of world energy reserve, at least twice as large as known fossil-fuel reserves, opens new opportunities and deserves investments in research on methods for discovering and exploiting deposits, and in the development of relevant technologies [it

  5. Fuel cells as renewable energy sources

    International Nuclear Information System (INIS)

    Cacciola, G.; Passalacqua, E.

    2001-01-01

    The technology level achieved in fuel cell (FC) systems in the last years has significantly increased the interest of various manufacturing industries engaged in energy production and distribution even under the perspectives that this technology could provide. Today, the fuel cells (FCs) can supply both electrical and thermal energy without using moving parts and with a high level of affordability with respect to the conventional systems. FCs can utilise every kind of fuel such as hydrocarbons, hydrogen available from the water through renewable sources (wind, solar energy), alcohol etc. Thus, they may find application in many field ranging from energy production in large or small plants to the cogeneration systems for specific needs such as for residential applications, hospitals, industries, electric vehicles and portable power sources. Low temperature polymer electrolyte fuel cells (PEFC, DMFC) are preferred for application in the field of transportation and portable systems. The CNR-ITAE research activity in this field concerns the development of technologies, materials and components for the entire system: electrocatalysts, conducting supports, electrolytes, manufacturing technologies for the electrodes-electrolyte assemblies and the attainment of fuel cells with high power densities. Furthermore, some activities have been devoted to the design and realisation of PEFC fuel cell prototypes with rated power lower than I kW for stationary and mobile applications [it

  6. BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Beata Gołuchowska

    2015-06-01

    Full Text Available The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES, including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the process of co-combustion with coal. This process may contribute, inter alia, to the reduction in the emissions of carbon, nitrogen and sulfur oxides. The article presents the characteristics of the biomass burned in power boilers of one of the largest Polish power plants, located in Opole Province (Southern Poland. Besides, the impact of biomass on the installation of co-combustion, as well as the advantages and disadvantages of the co-combustion process not only in technological, but also environmental, economic and social aspects were described.

  7. Renewable energy for rural development to protect environmental pollution from energy sources

    International Nuclear Information System (INIS)

    Mathur, A.N.

    2001-01-01

    Energy is the key input for technological industrial, social and economical development of a nation. The present energy scenario is heavily biased towards the conventional energy sources, such as petroleum products, coal, atomic energy, etc., which are finite in nature and causes environmental pollution. The energy utilization pattern is also meant for the energy requirement in urban areas. To meet the growing energy requirement of rural areas through the conventional energy sources will cause serious harmful effect on the environmental pollution. The man's thurst to use more energy after about 150 thousand years ago, invention of wheel, use of petroleum products for power generation and invention of steam and coal has brought him to use the energy sources for his comfort irrespective of the environmental consideration. The extensive use of energy operated devices in domestic, industrial, transport and for agriculture sectors in urban and rural areas have resulted in economical development of the society

  8. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  9. Integration of new distributed energy sources

    International Nuclear Information System (INIS)

    Pleym, Anngjerd; Bakken, Bjoern H.; Hetland, Jens

    2001-01-01

    In years with average runoff, Norway will be a net importer of electric power. The use of electric energy is not declining and so the gap between supply and demand is increasing. A large-scale increase of the production of new hydroelectric power is unlikely for political reasons. Gas power by today's technology is controversial and basing the national energy supply on import is undesirable. It is possible to concentrate on decentralized electricity production in small units. On the supply side, increased taxation can be used to reduce consumption; but this may hit unfairly. Direct regulation to limit consumption is undesirable in a free market. One solution on the consumer side may be a more flexible energy use by way of new technology, incorporating thermal energy. Research and development in a united energy sector is needed to realize the potential of small combined heating and power units connected to the existing system. Some efforts have already been made

  10. Research and development in alternative energy sources

    International Nuclear Information System (INIS)

    Lamptey, J.; Moo-Young, M.; Sullivan, H.F.

    1990-01-01

    This paper comprehensively discusses the various bioconversion and thermochemical processes. It recommends that the most urgent research and development issues should relate to direct microbial conversion systems for starch and cellulosic material and to basic biomass combustion rates and mechanisms. An overview of some of the major renewable energy resources and conversion technologies along with the potentials and problems associated with these are also presented.(author). 235 refs., 2 tabs

  11. A review of net metering mechanism for electricity renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this work, an overview of the net metering mechanism for renewable energy sources for power generation (RES-E) systems is carried out. In particular, the net metering concept is examined with its benefits and misconceptions. Furthermore, a survey of the current operational net metering schemes in different countries in the world, such as, in Europe, USA, Canada, Thailand and Australia, is carried out. The survey indicated that there are different net metering mechanisms depending on the particularities of each country (or state in the case of USA). Especially, in Europe, only five countries are using net metering in a very simple form, such as, any amount of energy produced by the eligible RES-E technology is compensated from the energy consumed by the RES-E producer, which results to either a less overall electricity bill or to an exception in payment energy taxes. In the USA and the USA territories, any customer’s net excess generation is credited to the customer’s next electricity bill for a 12-month billing cycle at various rates or via a combination between rates. The actual type of net excess generation (NEG) credit is decided by a number of set criteria, such as the type of RES-E technology, the RES-E capacity limit, the type of customer and the type of utility. Regarding any excess credit at the end of the 12-month billing cycle, this is either granted to the utilities, or carries over indefinitely to the customer’s next electricity bill, or is reconciled annually at any rate, or provides an option to the customer to choose between the last two options.

  12. The likely adverse environmental impacts of renewable energy sources

    International Nuclear Information System (INIS)

    Abbasi, S.A.; Abbasi, Naseema

    2000-01-01

    The global attention has always been focused on the adverse environmental impacts of conventional energy sources. In contrast nonconventional energy sources, particularly the renewable ones, have enjoyed a 'clean' image vis a vis environmental impacts. The only major exception to this general trend has been large hydropower projects; experience has taught us that they can be disastrous for the environment. The belief now is that minihydel and microhydel projects are harmless alternatives. But are renewable energy sources really as benign as is widely believed? The present essay addresses this question in the background of Lovin's classical paradigm, which had postulated the hard (malignant) and soft (benign) energy concepts in the first place. It critically evaluates the environmental impacts of major renewable energy sources. It then comes up with the broad conclusion that renewable energy sources are not the panacea they are popularly perceived to be; indeed in some cases their adverse environmental impacts can be as strongly negative as the impacts of conventional energy sources. The paper also dwells on the steps we need to take so that we can utilise renewable energy sources without facing environmental backlashes of the type we got from hydropower projects. (Author)

  13. Hydropower and biomass as renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2001-01-01

    When talking about renewable energy sources today, the most important and economical energy sources for Turkey are hydropower and biomass.The present study gives a review of production, consumption, and economics of hydropower and biomass as renewable energy sources in Turkey. Turkey has a total gross hydropower potential of 433 GW, but only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country could be tapped. On the other hand, biomass (wood and wastes) energy is the second most important renewable energy source for Turkey. However, the biomass energy sources of Turkey are limited. In 1998, the biomass share of the total energy consumption of the country is 10%. In this study, the potential of important biomass energy sources and animal solid wastes of the country were determined. The effects of hydropower and biomass usage on the environment were also discussed. Considering total cereal products and fatty seed plants, approximately 50-60 million tons per year of biomass and 8-10 million tons of solid matter animal waste are produced, and 70% of total biomass is seen as being usable for energy. Some useful suggestions and recommendations are also presented. The present study shows that there is an important potential for hydropower and biomass energy sources in Turkey. (author)

  14. Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, B.

    2011-03-01

    This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

  15. 5. annual clean coal technology conference: powering the next millennium. Vol.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increased demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains papers presented at the plenary session and panel sessions on; international markets for clean coal technologies (CCTs); role of CCTs in the evolving domestic electricity market; environmental issues affecting CCT deployment; and CCT deployment from today into the next millennium. In addition papers presented at the closing plenary session on powering the next millennium--CCT answers the challenge are included. Selected papers have been processed for inclusion in the Energy Science and Technology database.

  16. Strategy on renewable energy sources in Romania

    International Nuclear Information System (INIS)

    Chadjivassiliadis, J.

    1996-01-01

    The key to successful development of renewable energies in Romania requires a combination of political commitment and decision making as well as support mechanism including well defined government targets, technological advances and public acceptance. Overall short, medium and long term targets and required funding are recommended while expected benefits are estimated. Public funds in the form of grants and subsidies to promote and support RES constitute one of the best investments in the national economy. Commercial investments in RES will contribute to the country's balance of payments as well as towards the environmental protection. Therefore these actions may be supported through a special fund, in particular designed for RES and energy conservation investments. As a first step towards the commercialization of RES a short term action plan needs to be implemented for achieving the set forth long term objectives. This plan includes promising projects for the demonstration of technologically and economically viable applications in each RES sector as well as institutional and other soft measures .The RES promotional policy measures have to be translated into concrete legislation providing the necessary framework into which the sector will operate with transparency and open competitiveness. One of the key policies for RES strategy is to organize a flexible and efficient scheme for the implementation of the policy adopted by the government. The total rural population, together with the urban population living in medium sized towns will be considered as the primary market segment for RES applications (about 61 % of total population). (author). 1 fig., 2 tabs., 18 refs

  17. Introduction of the national centre for research and application of renewable energy sources

    OpenAIRE

    Smitkova, Miroslava; Eleschova, Zaneta; Hajducek, Peter; Janicek, Frantisek; Minovski, Dragan; Sarac, Vasilija

    2011-01-01

    Slovak University of Technology in Bratislava acquired financial support from the European Fund for Regional Development for the establishment of the National Centre for Research and Application of Renewable Energy Sources in the framework of the “Operation Program Research and Development”. Slovak University of Technology in Bratislava (STU) is a research oriented university contributing to the development and spreading of scientific knowledge. Paper deals with the presentation o...

  18. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  19. www.kerntechnik.info = annual meeting on nuclear technology on the web

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The ANNUAL MEETING ON NUCLEAR TECHNOLOGY can be found under the new Internet address of www.kerntechnik.info as of now. The Web site offers systematic access to all important information and features about this largest European specialized meeting of its kind. Pages showing the program of the Conference with its plenary session, topical sessions, technical sessions, and the ''Nuclear Power Campus'' and ''Competency Workshop'' special events, are updated continuously. In addition, contributions to the technical sessions may be submitted on line at an early point in time; registrating for the meeting as well as booking hotel accommodation are also possible on line. The next ANNUAL MEETING ON NUCLEAR TECHNOLOGY will be held at the Berlin Congress Center in Berlin/Germany on May 4-6, 2010. (orig.)

  20. Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1998-03-01

    The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by the program.

  1. Dynamic droop scheme considering effect of intermittent renewable energy source

    DEFF Research Database (Denmark)

    Wang, Yanbo; Chen, Zhe; Deng, Fujin

    2016-01-01

    This paper presents a dynamic droop control scheme for islanded microgrids dominated by intermittent renewable energy sources, which is able to perform desirable power sharing in the presence of renewable energy source fluctuation. First, allowable maximum power points of wind generator and PV...... flexibility and effectiveness in the presence of the renewable energy sources fluctuation....... controller of each DG unit is activated through local logic variable inferred by wind speed and solar insolation information. Simulation results are given for validating the droop control scheme. The proposed dynamic droop scheme preserves the advantage of conventional droop control method, and provides...

  2. Economic feasibility constraints for renewable energy source power production

    International Nuclear Information System (INIS)

    Biondi, L.

    1992-01-01

    Suitable analysis criteria for use in economic feasibility studies of renewable energy source power plants are examined for various plant types, e.g., pumped storage hydroelectric, geothermal, wind, solar, refuse-fuelled, etc. The paper focusses on the impacts, on operating cost and rate structure, of the necessity, depending on demand characteristics, to integrate renewable energy source power production with conventional power production in order to effectively and economically meet peak power demand. The influence of commercialization and marketing trends on renewable energy source power plant economic feasibility are also taken into consideration

  3. Nuclear energy such as an alternative energy source

    International Nuclear Information System (INIS)

    Domingos, D.B.; Stecher, L.C.; Menzel, F.; Coelho, T.S.; Giariola, R.S

    2013-01-01

    Nuclear power is still an unknown subject to many and ends up being left out when it comes to alternative energy sources and environmental preservation. Unfamiliarity and the disclosures information that are not always correct end up not to show the public the true risks and benefits of this source. The strength of public opinion is the main barrier to the advancement of this technology. So, this paper aims to demystify the villain aspect of nuclear energy that could become a major source for power generation. For this, will be made a historical retrospective of the theories that enabled the field of nuclear fission, the authors and key points, such as will be described how nuclear fission reaction is produced, controlled and sustained and how energy is produced, will be also made an argument on key facts that lead public opinion to stand up against nuclear power, as the generation of radioactive waste and nuclear weapons. Are presented possible solutions beyond the learning and improvements resulting from the occurred accidents. After these analyzes was observed that, besides being a potentially clean source for power generation, it can be safe in order that the waste generated are already safely managed and intelligence groups also monitor terrorist groups, seeking to ensure global security in relation to nuclear weapons and, at the issue of accidents, each event has brought learning and became the nuclear industry today, one of the safest. (author)

  4. Solid waste as an energy source for the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Meier, P.M.; McCoy, T.H.

    1976-06-01

    This report, one of a series prepared for the BNL study of the Energy Future of the Northeastern United States, presents an assessment of the potential contribution of energy recovery from municipal refuse to energy supply in the region. A brief review of the present and likely future quantity and composition of municipal refuse and the technologies available for energy recovery (Chapters II and III) is followed by a comparison of the potential contributions to energy supply of the various recovery options including direct firing in utility boilers, pyrolysis to oil or gas, and steam generation for industrial process heat or district space heating (Chapter IV). The relationship of refuse energy recovery to market conditions for alternative energy sources is considered in Chapter V, which also includes an analysis of the impact of haul costs, interest rates, and delivered prices of the major fuels. Institutional barriers to implementation of energy recovery are reviewed in Chapter VI, and the environmental implications of the concept are addressed in Chapter VII. In the concluding chapters, scenarios of energy recovery are developed for 1985 and 2000, and the sensitivity of overall energy yield to projections and assumptions is examined. Although even under the most optimistic assumptions, refuse energy recovery is found to contribute only some 5 percent of total regional consumption, the economic and environmental benefits, coupled with the increasing difficulty of finding other refuse disposal alternatives, make energy recovery a very attractive policy choice for helping to relieve future energy supply difficulties in the Northeast. (auth)

  5. Nuclear energy such as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, D.B.; Stecher, L.C.; Menzel, F.; Coelho, T.S.; Giariola, R.S, E-mail: douglasborgesdomingos@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear power is still an unknown subject to many and ends up being left out when it comes to alternative energy sources and environmental preservation. Unfamiliarity and the disclosures information that are not always correct end up not to show the public the true risks and benefits of this source. The strength of public opinion is the main barrier to the advancement of this technology. So, this paper aims to demystify the villain aspect of nuclear energy that could become a major source for power generation. For this, will be made a historical retrospective of the theories that enabled the field of nuclear fission, the authors and key points, such as will be described how nuclear fission reaction is produced, controlled and sustained and how energy is produced, will be also made an argument on key facts that lead public opinion to stand up against nuclear power, as the generation of radioactive waste and nuclear weapons. Are presented possible solutions beyond the learning and improvements resulting from the occurred accidents. After these analyzes was observed that, besides being a potentially clean source for power generation, it can be safe in order that the waste generated are already safely managed and intelligence groups also monitor terrorist groups, seeking to ensure global security in relation to nuclear weapons and, at the issue of accidents, each event has brought learning and became the nuclear industry today, one of the safest. (author)

  6. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Opening address

    Energy Technology Data Exchange (ETDEWEB)

    Gueldner, Ralf [Deutsches Atomforum e.V. (DAtF), Berlin (Germany)

    2016-06-15

    The 47{sup th} Annual Meeting on Nuclear Technology (AMNT 2016) was an excellent opportunity for a comprehensive outlook on nuclear technology, fostering international exchange in industry, research, politics and administration. Ralf Gueldner, President of the German Atomic Forum (DAtF) talked about important decisions in nuclear energy in Germany in 2016. Finally, Gueldner noticed that even with a phase out, Germany needs nuclear expertise and competent people for the upcoming challenges and international cooperation. In this context, also publicly-financed education and research are indispensable.

  7. Renewable energy sources in the Republic of Bulgaria - present and future

    International Nuclear Information System (INIS)

    Kolev, K.

    1999-01-01

    Despite of the huge potential of renewable energy sources (RES) no significant attention has been paid to its development till recently because of the low prices of energy. About 1997 energy production via RES was 1100268 MWh, including 472500 by small hydroelectric station, 380000 by geothermal waters, 225000 by biomass, 22750 by solar collectors and 18 by wind turbines. The geothermal water energy production is traditional and well spread all over the country but needs new technologies and investments. The biomass as lignite, coal bricks, logs and wood pellets is wide-used by as many as 81 % of inquired households in the small towns and villages with total annual consumption of 2 mill. t. The production of more effective water heaters as well as stoves and fireplaces is necessary. The industrial boilers on biomass combustion are of 45 MW for the whole country. There are programmes for application of energy units on biogas produced on basis of animal wastes but unsuccessfully till now. Using of wind power could be efficient in some seaside regions as well as in mountain areas but very few wind turbines imported from abroad are in operation. In result of a state programme 50000 m 2 plate sunny collectors are installed in Burgas region till now and about 5000 m 2 are put in operation every year. Most of them are imported from Greece but the domestic production is increasing fast. Electricity production by photovoltaic cells is still in experimental stage and is not of economic importance because of the high prices. Using of the passive sunny energy has big potential and would save up to 30 % of energy consumption for house heating but could be effective at better thermal insulation of the buildings only. The first small hydroelectric stations were put in operation during 1912-1930 in mountain and semi-mounting regions. After the communist era in market economy conditions of development of the private sector the building of about one thousand of such facilities will

  8. Hydrogen - the energy source of the future

    International Nuclear Information System (INIS)

    Aakervik, Anne-Lise

    2001-01-01

    The use of hydrogen is an excellent way of reducing the emission of greenhouse gases. It causes no emission when used in fuel cells. Iceland has set itself the goal of becoming the world's first hydrogen society without emission of carbon dioxide and other greenhouse gases. In the USA, California has decided to concentrate on cars that do not pollute. Hydrogen power is then an interesting alternative. Germany, Japan and the USA are all concentrating on hydrogen. The world production of hydrogen is 50 million tons, 90 per cent of which is made from fossil material, 4 per cent by electrolysis of water. The largest consumers of hydrogen are the petroleum industry and the fertilizer industry. The sale of hydrogen in the refining industry has increased recently and is expected to rise substantially when the fuel cell technology is commercialized. At present, storage of hydrogen is the major problem. Gas storage at atmospheric pressure is inconvenient because of the large volumes required. Alternatives are storage as compressed gas under high pressure, liquid gas at low temperature, storage in metal hydrides or carbon materials, or chemically bound in methanol or ammonia

  9. Utilization of Wastes as an Alternative Energy Source for ...

    African Journals Online (AJOL)

    MBI

    2013-04-19

    Apr 19, 2013 ... converting solid waste to energy source, ranging from very simple systems of ... defined by modern systems of waste management, notably: -. Municipal Waste; Household Waste,. Commercial Waste and Demolition Waste.

  10. Environmental impact of non-conventional energy sources

    International Nuclear Information System (INIS)

    Abbasi, S.A.; Abbasi, Naseema; Nipaney, P.C.; Ramasamy, E.V.

    1995-01-01

    Whereas the global attention has always been focused on the adverse environmental impacts of conventional energy sources, only a few studies have been conducted on the clean environment image of the non-conventional energy sources, particularly the renewable ones. The question whether the non-conventional sources are really as benign as they are made out to be is addressed in the present paper in the background of a classical paradigm developed by Lovin which had postulated the hard (malignant) and soft (benign) energy concepts in the first place. It then assesses the likely environmental impacts of several major non-conventional energy sources and comes up with the note of caution that in many cases the adverse impacts may not be insubstantial; indeed in some cases they can be as strongly negative as the impacts of the conventional energy sources. (author). 31 refs

  11. Comparative studies of energy sources in gynecologic laparoscopy.

    Science.gov (United States)

    Law, Kenneth S K; Lyons, Stephen D

    2013-01-01

    Energy sources incorporating "vessel sealing" capabilities are being increasingly used in gynecologic laparoscopic surgery although conventional monopolar and bipolar electrosurgery remain popular. The preference for one device over another is based on a combination of factors, including the surgeon's subjective experience, availability, and cost. Although comparative clinical studies and meta-analyses of laparoscopic energy sources have reported small but statistically significant differences in volumes of blood loss, the clinical significance of such small volumes is questionable. The overall usefulness of the various energy sources available will depend on a number of factors including vessel burst pressure and seal time, lateral thermal spread, and smoke production. Animal studies and laboratory-based trials are useful in providing a controlled environment to investigate such parameters. At present, there is insufficient evidence to support the use of one energy source over another. Copyright © 2013 AAGL. All rights reserved.

  12. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Energy Sources

    Science.gov (United States)

    Introduction to changes in basal energy sources with urbanization, overview of terrestrial leaf litter dynamics in urban streams, overview of how urbanization can affect primary production, respiration, and dissolved organic carbon quantity and quality.

  13. Cost-Efficient and Sustainable Deployment of Renewable Energy Sources towards the 20% Target by 2020, and beyond. D2.6. Synthesis Report on Possible Valleys of Opportunity for Cooperation Mechanisms in Europe, Based on Wind, Biomass and Solar Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Longa, F. [ECN Policy Studies, Amsterdam (Netherlands)

    2013-02-15

    This document concludes the work carried out within Work Package 2 of the RES4Less project with a synthesis of the main results. The aim of WP2 is to identify so called Valleys of Opportunity (VoO) for an enhanced deployment of Renewable Energy Sources (RES) across Europe, based on cooperation among Member States (MS). The general expectation is that Valleys of Opportunity will be located in areas where RES resources are more abundant. Specifically, Northern countries could exploit their large wind potential, especially within the North Sea basin. Eastern countries could benefit from the presence of large and to some extent untapped biomass resources. Southern countries could take advantage of the fact that the amount of daily sun-hours is relatively large, making the deployment of Solar-based technologies economically attractive. In order to establish a preliminary set of candidate VoOs that look attractive from an economical perspective, a methodology has been developed to systematically analyze RES surpluses in EU, characterize them in terms of costs and technology composition, and determine which member states could be interested in exploiting them. The analysis has been applied to the renewable electricity (RES-E) sector using ECN model RESolve-E and its satellite model RES4Less. The results of the modelling exercise provide a starting point towards the identification of realizable VoOs. The subsequent steps in the analysis are: (a) Elaborate on the model outcomes focusing on a specific technology and a specific region; (b) Conduct a reality check on the model outcomes against known actual plans and expected developments, and eventually complement any shortcomings by drawing information from additional sources; (c) Narrow down candidate VoOs to more realistic VoOs by considering practical barriers, constraints and restrictions that are not address by the model but are very likely to come into play; (d) Identify an interesting case study to bring forward for an

  14. Effects of renewable energy sources on the Swedish Environmental Objectives; Foernybara energikaellors inverkan paa de svenska miljoemaalen

    Energy Technology Data Exchange (ETDEWEB)

    Molander, Sverker; Ahlborg, Helen; Arvidsson, Rickard; Hammar, Linus; Kushnir, Duncan; Wallin, Are; Westerdahl, Jenny

    2010-11-15

    This report describes the negative impacts from renewable energy sources on the Swedish environmental objectives. The result is presented as a set of conceptual cause-effect diagrams showing the links between the life-cycles of the energy sources to specific environmental objectives. The energy sources covered in the report are hydro power, wind power, thin-film solar cells, silicon-based solar cells, heat pumps, biofuels from crops (such as ethanol and rape seed methyl ester), biofuels from waste (i.e. biogas) and biofuels from the forest (such as wood pellets and chips). No environmental impacts have been quantified in this report, and no comparisons between the energy sources have been performed. However, what has been shown is that the above mentioned energy sources may influence many of the Swedish environmental goals, and that this influence will increase if the current Swedish goals for renewable energies are realized. More detailed studies of the renewable energy sources influences on the environmental goals are thus required in order to avoid negative environmental impacts from future developments of renewable energy sources. This report has, based on current scientific knowledge, tried to point out the most important possible influences from renewable energy technologies, and is therefore a starting point for further studies. The report also gives some recommendations for further research

  15. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  16. Annual conference on nuclear technology. Nuclear power 2001: option for the future

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Dresden Palace for Culture was the venue of the ANNUAL MEETING ON NUCLEAR TECHNOLOGY on May 15-17, 2001, the first to be held in Dresden and the first also to be held in one of the new German federal states. Although no nuclear plant is in operation in East Germany after the Greifswald Nuclear Power Station was decommissioned, nuclear technology continues to play an important role especially in research and university teaching in this part of Germany. The organizers of the conference, Deutsches Atomforum e.V. (DAtF) and Kerntechnische Gesellschaft e.V. (KTG), welcomed more than 1000 participants from nineteen countries. The three-day program, with its traditional, proven structure, featured plenary sessions on the first day, and specialized sessions, technical sessions, poster sessions, and other events on the following days. The partner country at the Annual Meeting on Nuclear Technology was Russia, with a session specially devoted to selected topics of the country. The conference was accompanied by a technical exhibition with company meeting points of vendors, suppliers, and service industries. A video film forum was arranged for the interested public which featured contributions about nuclear research, nuclear power plant operation, transport and storage as well as decommissioning. Another major event was a workshop on 'Preserving Competence in Nuclear Technology'. The plenary day is described in this summary report, while the results of the technical sessions as seen by the rapporteurs are printed elsewhere in this issue of atw 8/9, 2001. (orig.) [de

  17. 2010 annual meeting on nuclear technology. Workshop on ''Preservation of competence in nuclear technology''

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang

    2010-01-01

    Within the two-day workshop on ''Preservation of Competence in Nuclear Technology'', 21 young scientists competed for the ''Competence Prize'' awarded by Siempelkamp Nukleartechnik for the twelfth time. They reported about their term papers, diploma or doctoral theses focusing on reactor technology and reactor safety, the development of innovative reactor systems, and waste management. For the first time, contributions this year were presented also from the field of radiation protection. The jury composed of Prof. T. Schulenberg (Karlsruhe Institute of Technology), Prof. M.K. Koch (Ruhr University, Bochum), and Dr. W. Steinwarz (Siempelkamp Nukleartechnik) assessed the advance compacts as well as the oral presentations. The winner of the 2010 Competence Prize is Heiko Herbell of the Karlsruhe Institute of Technology. Cornelia Heintze of the Dresden-Rossendorf Research Center, and Carola Hartel of the GSI Helmholtz Center for Heavy Ion Research won the second and third prizes. (orig.)

  18. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Workshop: Preserving competence in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Steinwarz, Wolfgang

    2017-10-15

    On the 19{sup th} workshop ''Preserving Competence in Nuclear Technology'' 17 young scientists presented the results from their thesis work for a diploma, mastership or a PhD covering a broad spectrum of technical areas. This demonstrated again the strong engagement of the younger generation for the nuclear technology and the significant support by the involved German institutions. The jury awarded Thomas Schaefer (Helmholtz-Zentrum Dresden- Rossendorf) with the Siempelkamp Competence Price 2017.

  19. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  20. Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid

    International Nuclear Information System (INIS)

    Perera, A.T.D.; Nik, Vahid M.; Mauree, Dasaraden; Scartezzini, Jean-Louis

    2017-01-01

    Highlights: • A novel method introduced to optimize Electrical Hubs. • Novel dispatch based on fuzzy control and finite state machines. • Evaluating sensitivity of three performance indices for system autonomy. • Multi objective optimization considering system autonomy-cost. • Electrical Hubs can cover above 60% of the demand using wind and Solar PV. - Abstract: A paradigm change in energy system design tools, energy market, and energy policy is required to attain the target levels in renewable energy integration and in minimizing pollutant emissions in power generation. Integrating non-dispatchable renewable energy sources such as solar and wind energy is vital in this context. Distributed generation has been identified as a promising method to integrate Solar PV (SPV) and wind energy into grid in recent literature. Distributed generation using grid-tied electrical hubs, which consist of Internal Combustion Generator (ICG), non-dispatchable energy sources (i.e., wind turbines and SPV panels) and energy storage for providing the electricity demand in Sri Lanka is considered in this study. A novel dispatch strategy is introduced to address the limitations in the existing methods in optimizing grid-integrated electrical hubs considering real time pricing of the electricity grid and curtailments in grid integration. Multi-objective optimization is conducted for the system design considering grid integration level and Levelized Energy Cost (LEC) as objective functions to evaluate the potential of electrical hubs to integrate SPV and wind energy. The sensitivity of grid curtailments, energy market, price of wind turbines and SPV panels on Pareto front is evaluated subsequently. Results from the Pareto analysis demonstrate the potential of electrical hubs to cover more than 60% of the annual electricity demand from SPV and wind energy considering stringent grid curtailments. Such a share from SPV and wind energy is quite significant when compared to direct grid

  1. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitch [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  2. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--pulse power technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  3. 46{sup th} Annual meeting on nuclear technology (AMNT) 2015. Opening address

    Energy Technology Data Exchange (ETDEWEB)

    Gueldner, Ralf [DAtF, Berlin (Germany)

    2015-07-15

    The Annual Meeting on Nuclear Technology (ANMT) is the only one in Germany and also in Europe which is dedicated so holistically to nuclear technology and at the same time specifically promotes the international exchange of expertise. Main topics, which have been addressed in the Opening Adress by Ralf Gueldner, President of the DAtF (German Atomic Forum), are ''Final Repository Commission - Contribution and participation of the nuclear industry'', ''New attempt at alternative interim storage'', ''Future of the electricity market and the electricity supply'', ''Nuclear energy in the world - between departure and economic challenges'', ''Nuclear expertise in Germany'', ''The challenge of preserving skills'' and ''Nuclear technology in top-level research''.

  4. Energy models for commercial energy prediction and substitution of renewable energy sources

    International Nuclear Information System (INIS)

    Iniyan, S.; Suganthi, L.; Samuel, Anand A.

    2006-01-01

    In this paper, three models have been projected namely Modified Econometric Mathematical (MEM) model, Mathematical Programming Energy-Economy-Environment (MPEEE) model, and Optimal Renewable Energy Mathematical (OREM) model. The actual demand for coal, oil and electricity is predicted using the MEM model based on economic, technological and environmental factors. The results were used in the MPEEE model, which determines the optimum allocation of commercial energy sources based on environmental limitations. The gap between the actual energy demand from the MEM model and optimal energy use from the MPEEE model, has to be met by the renewable energy sources. The study develops an OREM model that would facilitate effective utilization of renewable energy sources in India, based on cost, efficiency, social acceptance, reliability, potential and demand. The economic variations in solar energy systems and inclusion of environmental constraint are also analyzed with OREM model. The OREM model will help policy makers in the formulation and implementation of strategies concerning renewable energy sources in India for the next two decades

  5. Annual Proceedings of Selected Research and Development Papers Presented at the Annual Convention of the Association for Educational Communications and Technology (31st, Orlando, FL, 2008)

    Science.gov (United States)

    Simonson, Michael, Ed.

    2008-01-01

    For the thirty-first year, the Research and Theory Division of the Association for Educational Communications and Technology (AECT) sponsored the publication of these Proceedings. Papers were presented at the annual AECT Convention in Orlando, Florida. This year's Proceedings has two sections--Section 1 includes research and development papers and…

  6. 2012 annual meeting on nuclear technology. Workshop on 'Preservation of competence in nuclear technology'

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang

    2012-01-01

    Within the 2-day workshop on 'Preservation of Competence in Nuclear Technology,' 31 young scientists competed for the 'Competence Prize' awarded by Siempelkamp Nukleartechnik for the 14th time. They reported about their papers focusing on nuclear technology, reactor technology, innovative reactor systems, radioactive waste management, radiological protection and energy supply systems. The jury composed of Prof. J. Starflinger (Universitaet Stuttgart, IKE), Prof. M.K. Koch (Ruhr-Universitaet Bochum, LEE), and Dr. W. Steinwarz (Siempelkamp Nukleartechnik) assessed the advance compacts as well as the oral presentations. The winner of the 2012 Competence Prize is Dipl.-Ing.(M.S.) Thomas M. Fesich (University Stuttgart). Dr.-Ing. Oliver Czaikowski (Techn. University Clausthal) and Dipl.-Ing. Mario Kuschewski (Universitaet Stuttgart) won the second and third prizes. (orig.)

  7. Impacts of non-nuclear energy sources on the environment

    International Nuclear Information System (INIS)

    Tavkaya, E.

    2006-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal) , which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. If humankind is going to have a future on this planet, at least a high-technology future, with a significant population of several billions of humans continuing to inhabit the Earth, it is absolutely inevitable that we will have to find another energy source. Table 1: The environmental effects for some energy systems; SOURCES: Fossil fuels (petroleum, natural gas and coal) ENVIRONMENTAL EFFECTS : - Ozone layer depletion - Changes of atmospheric conditions - Decrease of air quality (Coal , petroleum) - Acid rains and destroy of forests (coal, petroleum ) - Pollution from toxic wastes (coal ash, slag and smoke hole gases) - Pollution of surface water - Seaside and sea pollutions (petroleum) - Terrain devolution - Large amount of fuel and transportation requirements - Sources depletion SOURCES: Hydroelectric ENVIRONMENTAL EFFECTS - Large area requirements - Population situation changes - Erosion and usage changes - Ecosystem changes and health effects - Disappearing of biological variety - Downfall of dams - Leave out of production SOURCES: Renewable (sun, wind, geothermal, biomass) ENVIRONMENTAL EFFECTS : - Decrease of air quality (geothermal, biomass) - Large area usage - Ecologic system changes - Fabrication effects (CO 2 effect due to production of photovoltaic cells that work with sun) - Noise (wind) SOURCES: Nuclear (All energy chain) ENVIRONMENTAL EFFECTS : - Radioactive oscillation because of serious reactor accident - Radiation of waste storage. In this study, the environmental effects for some energy systems are investigated with all details

  8. The EIB and the financing of renewable energy sources

    International Nuclear Information System (INIS)

    Marty-Gauque, H.

    2004-01-01

    As a financial institution o the European Union, The European Investment Bank is working and to add substance to the commitments made by the Union and its Member States at Kyoto and subsequently at Johannesburg. Over the last two years, renewable energy sources have attracted funding of more than 1.1 billion from the bank, equivalent to 14% of the total loans granted to the energy sector 7.8 billion), compared to an average o 7.9 % over the previous five years. In order to obviate the detrimental characteristics presented by these investments from a financial viewpoint, in March, 2004 the bank set up a 'CCFF' (Climate Change Financing Facility) of 500 million. Additionally, along with the other financial institutions, the EIB is looking into he possibility of supporting the establishment of European carbon credit trading hubs. Where the economic assessment of these projects is concerned, the bank has decided to take account of external environmental and technological factors when calculating the internal profitability levels for renewable energy projects. Moreover, in order to deal with the problem of who exactly should bear the related risks, the bank is able to offer structured financing. For projects located outside the European Union, venture capital and technical assistance instruments make it possible to promote the emergence of innovative projects. Although we are witnessing the sustained growth of loans from the EIB in this sector, additional efforts still need to be made by the legislature in order to strengthen the framework for such projects including emissions quotas, mechanisms for ensuring the solvency of environmental on-costs and international trading rules adapted to take account of the possible distortion of competition, etc. (author)

  9. Topical problems connected with the German act on electricity from renewable energy sources (StrEG)

    International Nuclear Information System (INIS)

    Pohlmann, M.

    1998-01-01

    The German act (StrEG) intended to enhance the use of renewable energy sources for electricity generation and to promote the relevant technologies raises some problems in connection with constitutional law that still await judicial review by the German Federal Constitutional Court. In addition, doubts as to the lawfulness of provisions of the act have been emerging in connection with EC laws governing the regime of subsidies and state aid. The article here summarizes the current situation. (orig./CB) [de

  10. Thermal Power Systems, Point-Focusing Distributed Receiver Technology Project. Annual technical report, Fiscal Year 1978. Volume II. Detailed report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-15

    Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. This Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change it to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs. Accomplishments on point-focusing technology in FY 1978 are detailed.

  11. Analysis of petroleum company investments in nonpetroleum energy sources. Book I

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P. Jr.; Ryan, T.C.

    1979-12-12

    The purpose of this report is to analyze the investment strategies of US oil companies and the depth of their present and future investments in nonpetroleum energy sources. For purposes of this study, the nonpetroleum energy sources to be discussed are coal, uranium/nuclear, synthetics from coal, oil shale, geothermal, and solar. To gather necessary subjective data, the authors interviewed the managements of more than forty companies, the majority of which are directly involved in the production of various forms of energy. Others are substantial energy users. Interviews were also held with various federal and state regulatory agencies, with federal legislative groups, and with representatives of industry associations. These interviews were not intended to be a survey; their purpose was rather to explore the perceptions of petroleum company managements concerning nonpetroleum energy sources and the reasons for their company's participation, or lack of participation, in the development of these resources. Quantitative data came from reports prepared by federal investigative and regulatory agencies, from testimony given before investigative and regulatory bodies, from public company reports (annual reports, quarterly reports, 10-K's, 8-K's, registration statements, press releases, etc.), from industry, research and investment organizations, from universities, and from a variety of publications.

  12. Alberta Office of Coal Research and Technology: Annual review 1991-1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Annual report of the Office, established in 1984 to coordinate the government funding needed to identify, investigate and develop coal-related technologies. Background is given along with coal research strategy and research priorities. Short explanations are given of the various research projects being undertaken in mining, preparation and upgrading, combustion, liquefaction/co-processing, gasification, environment, enhanced oil recovery, the Western Canadian Low-Sulfur to Coal Program, and the Coal Research Contractor's Conference. Project expenditures are then listed by title and year, along with other statistics. A listing of the status of projects supported by the Office is also included, along with a list of publications currently available.

  13. The Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    Directory of Open Access Journals (Sweden)

    P. Justin eRossi

    2016-04-01

    Full Text Available This review summarizes the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized; these advances were presented at the 3rd Annual Deep Brain Stimulation Think Tank. The Think Tank’s contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and members of industry. Presentations and discussions covered a broad range of topics, including policy and advocacy considerations for the future of DBS, connectomic approaches to DBS targeting, developments in electrophysiology and related strides toward responsive DBS systems, and recent developments in sensor and device technologies.

  14. Soldering Technology (6th) Proceedings of Annual Seminar, 17-18 February 1982.

    Science.gov (United States)

    1982-02-01

    aspect oF health and safety during this presentation. We are hoping that the work conducted by Van 2 Der Molen in the USA will clarify this issue. FLUX... Der Molen , PROC. OF 5th ANNUAL SEMINAR SOLDERING TECHNOLOGY, Naval Weapons Centre, China Lake, California, February 1981. 3. Burge, Perks, O’Brien...developed a new and innovative solution, which we believe to be a significant advance in the state of the art. In this new design (Fig.l) a FM DER

  15. 2003 East Tennessee Technology Park Annual Illness and Injury Surveillance Report

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23

    Annual Illness and Injury Surveillance Program report for 2003 for the East Tennessee Technology Park (K-25).The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  16. Nuclear power: an eco friendly energy source for sustainable development

    International Nuclear Information System (INIS)

    Obaidurrahman, K.; Singh, Om Pal

    2009-01-01

    When viewed from a large set of criteria such as abundance of energy resources, environmental impacts, low fuel inventory, quantum of waste generated and green house gas emissions, nuclear power can be considered as a large scale sustainable energy source. Among all energy sources, nuclear energy has perhaps the lowest impact on the environment, especially in relation to kilowatt-hr produced, because nuclear plants do not emit harmful gases and produce small quantity of waste. In other words, nuclear energy is the most environmental friendly electricity source. There are no significant adverse effects to water, land, habitat, species and air resources. The present paper discusses the sustainability and feasibility of nuclear power as an eco friendly energy source in the changing and challenging competitive power market. (author)

  17. The potential of new renewable energy sources in Switzerland

    International Nuclear Information System (INIS)

    Dietrich, P.; Kaiser, T.; Wokaun, A.

    2010-01-01

    This article presents and discusses the results of an evaluation made by the so-called 'Swiss Energy Trialogue' ETS on the potential offered by new renewable energy sources in Switzerland. The evaluation forecasts an important contribution to Swiss energy supply by renewable energy sources by the year 2050. The authors are of the opinion that, in spite of a considerable increase in the offers of renewable energy and the full use of energy saving potential, a discrepancy will exist between estimates of energy needs and the actual energy available from renewable resources if large-scale power generation facilities are not built. Activities proposed by the Swiss government are discussed and analysed. In particular, possible contributions to be made by renewable energy sources are examined. Suggestions made by ETS concerning possible courses of action are discussed

  18. [Applications of GIS in biomass energy source research].

    Science.gov (United States)

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  19. Mathematical modelling of electricity market with renewable energy sources

    International Nuclear Information System (INIS)

    Marchenko, O.V.

    2007-01-01

    The paper addresses the electricity market with conventional energy sources on fossil fuel and non-conventional renewable energy sources (RESs) with stochastic operating conditions. A mathematical model of long-run (accounting for development of generation capacities) equilibrium in the market is constructed. The problem of determining optimal parameters providing the maximum social criterion of efficiency is also formulated. The calculations performed have shown that the adequate choice of price cap, environmental tax, subsidies to RESs and consumption tax make it possible to take into account external effects (environmental damage) and to create incentives for investors to construct conventional and renewable energy sources in an optimal (from the society view point) mix. (author)

  20. Choosing the Energy Sources Needed for Utilities in the Design and Refurbishment of Buildings

    Directory of Open Access Journals (Sweden)

    Pavel Atănăsoae

    2018-03-01

    Full Text Available This paper presents a method for choosing the energy sources that are needed for the following building utilities following building: lighting, domestic hot water, heating, ventilation, and air conditioning. The novelty of this paper consists of applying the concept of the energy hub and considering the cost of carbon dioxide emissions when selecting the available energy sources in the building’s location. The criterion for selecting the energy sources is the minimum overall cost of all forms of energy that are consumed in the building over its estimated lifetime. In order to estimate the overall costs, it is necessary to know the power that is installed and provided by the energy production technologies that are inside the building, as well as the capacity of energy that is required from outside energy sources. An office building that was proposed for refurbishment has been investigated as a case study. In the paper, we have analysed four scenarios. The results indicate that more favourable alternative solutions can be obtained compared to the traditional scenario (Scenario 4—heat and electricity by public utility networks. The overall costs are 46.17% (212,671 EUR lower in Scenario 1, 25.35% (116,770 EUR lower in Scenario 2, and 10.89% (50,150 EUR lower in Scenario 3. Additionally, the carbon dioxide emissions are 22.98% (49 tonnes CO2/year lower in Scenario 1 and 8.91% (19 tonnes CO2/year lower in Scenario 2. Thus, renewable energy sources can occupy a growing share of the total energy consumption of the building. The proposed algorithm can be used for both the refurbishment of existing buildings and the design of new buildings.

  1. Policy Enabling Environment for Corporate Renewable Energy Sourcing

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-09

    Interest in renewable energy (RE) procurement in new markets is on the rise. Corporations are increasing their commitments to procuring RE, motivated by an interest in using clean energy sources and reducing their energy expenses. Many large companies have facilities and supply chains in multiple countries, and are interested in procuring renewable energy in the grids where they use energy. The policy environment around the world plays a key role in shaping where and how corporations will invest in renewables. This fact sheet details findings from a recent 21st Century Power Partnership report, Policies to Enable Corporate Renewable Energy Sourcing Internationally.

  2. Renewable energy sources, subsidised indefinitely?; Erneuerbare Energien. Ein ewiger Subventionstatbestand?

    Energy Technology Data Exchange (ETDEWEB)

    Muehlhaeuser, Kurt; Roth, Hans [Stadtwerke Muenchen GmbH, Muenchen (Germany)

    2012-08-15

    The German Renewables Act, EEG, specified a guaranteed reimbursement rate for electric power from renewable energy sources. Normally, the reimbursement rate is far higher than the market value of the power generated and thus makes the plant economically interesting for its owner. It remains to be seen if the renewable energy sources with the biggest potential, i.e. wind power and solar power, will have to be subsidized indefinitely, or whether they can find their place in the electricity market also without the EEG and other funding mechanisms.

  3. Australian Nuclear Science and Technology Organisation (ANSTO) Annual Report 1997-1998

    International Nuclear Information System (INIS)

    1998-09-01

    This is the 46th Annual Report of ANSTO or its predecessor, AAEC outlining the quality services being delivered and the development of knowledge in areas where ANSTO's nuclear science and technology and related capabilities are of strategic and technical benefit. ANSTO is reporting against established performance indicators within the the five core scientific business areas: International strategic relevance of Nuclear Science; Core nuclear facilities operation and development; Applications of Nuclear Science and Technology to the understanding of natural processes; Treatment and management of man-made and naturally occurring radioactive substances; and Competitiveness and ecological sustainability of industry. Also presented are the objectives, outcomes and activities which supports the core scientific areas by providing best practice corporate support, safety management, information and human resource management for ANSTO staff

  4. Australian Nuclear Science and Technology Organisation (ANSTO) Annual Report 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the 46th Annual Report of ANSTO or its predecessor, AAEC outlining the quality services being delivered and the development of knowledge in areas where ANSTO`s nuclear science and technology and related capabilities are of strategic and technical benefit. ANSTO is reporting against established performance indicators within the the five core scientific business areas: International strategic relevance of Nuclear Science; Core nuclear facilities operation and development; Applications of Nuclear Science and Technology to the understanding of natural processes; Treatment and management of man-made and naturally occurring radioactive substances; and Competitiveness and ecological sustainability of industry. Also presented are the objectives, outcomes and activities which supports the core scientific areas by providing best practice corporate support, safety management, information and human resource management for ANSTO staff

  5. 2009 annual meeting on nuclear technology. Pt. 1. Section reports; JAHRESTAGUNG KERNTECHNIK 2009. T. 1. Sektionsberichte

    Energy Technology Data Exchange (ETDEWEB)

    Schaffrath, Andreas [TUeV NORD SysTec GmbH und Co. KG, Hamburg (Germany); Hartmann, Miks; Hoffmann, Petra Britt [Areva NP GmbH, Erlangen (Germany); Stieglitz, Robert [Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen (Germany); Hoehne, Thomas [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Weiss, Frank-Peter [Forschungszentrum Dresden-Rossendorf, Inst. fuer Sicherheitsforschung, Dresden (Germany); Hollands, Thorsten [Ruhr-Univ. Bochum (RUB), Energy Systems and Energy Economics (LEE), Bochum (Germany); Sanchez Espinoza, Victor Hugo [Forschungszentrum Karlsruhe, Inst. fuer Reaktorsicherheit, Eggenstein-Leopoldshafen (Germany); Tietsch, Wolfgang [Westinghouse Electric Germany GmbH, Mannheim (Germany); Sonnenburg, H.G. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Muenchen (Germany)

    2009-08-15

    Summary report on these 3 - out of 13 - Sessions of the Annual Conference on Nuclear Technology held in Dresden on May 12 to 14, 2009: Thermodynamics and Fluid Dynamics (Session 2), Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), and, Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 4). The other Sessions Reactor Physics and Methods of Calculation (Session 1), Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 5), Operation of Nuclear Installations (Session 6), Decommissioning of Nuclear Installations (Session 7), Fusion Technology (Session 8), Research Reactors, Neutron Sources (Session 9), Energy Industry and Economics (Session 10), Radiation Protection (Session 11), New Build and Innovations (Session 12), and Education, Expert Knowledge, Know How Transfer (Session 13) have be covered in reports in further issues of atw. (orig.)

  6. Incentive policies for promoting wind power production in Brazil: Scenarios for the Alternative Energy Sources Incentive Program (PROINFA) under the New Brazilian electric power sector regulation

    International Nuclear Information System (INIS)

    Dutra, Ricardo Marques; Szklo, Alexandre Salem

    2008-01-01

    The Alternative Energy Sources Incentive Program (PROINFA) was designed in 2002 to stimulate the electricity generation from three energy sources (wind, biomass and small-scale hydro) in Brazil. The Program was divided into two phases. The first one uses feed-in tariffs for promoting the development of 3300 MW. The second one that was originally based on feed-in tariffs was modified in 2003, in order to be based on biddings for renewables. These biddings are capped to limit their impact on the final electricity tariff. Due to this bound, the highest-cost power option promoted by PROINFA (wind power generation) might have development problems. Simulating different scenarios for the biddings, it was verified that the only way to reach the original goal set by PROINFA (10% of the annual electricity consumption provided by alternative sources up to 2020) and, simultaneously, not overcome the bidding bound is to promote biomass-fired power generation alone, during the Program's second phase. However, this action contradicts one of the targets of the Program, which is to diversify the energy matrix. An alternative option could be biddings for renewables according to specific criteria (complementarities, industrial and technological development and cost), based not only on their cost-effectiveness. (author)

  7. Valuation of environmental and societal trade-offs of renewable energy sources

    International Nuclear Information System (INIS)

    Kosenius, Anna-Kaisa; Ollikainen, Markku

    2013-01-01

    Use of renewable energy sources is one solution to decrease green house gas emissions and the use of polluting fossil fuels. Renewables differ in their environmental and societal impacts, and to design sound renewable energy policy, societies need to assess the trade-offs between alternative sources. To enable the evaluation and comparison of renewable energy production alternatives in Finland, this paper applies the choice experiment to elicit the monetary information on people's preferences for four renewable energy sources: wind power, hydro power and energy from crops and wood, and considers four impacts of energy production: effects on biodiversity, local jobs, carbon emissions and household's electricity bill. The nested logit analysis reveals that higher income, male gender, young age, and pro-environmental attitude increase the probability to choose renewable energy instead of the current energy mix. Wind power is, on average, the most popular renewable energy technology, but regional differences exist. Biodiversity deterioration should be avoided. The national aggregate willingness to pay, based on stated preferences rather than preferences revealed by actual market behavior, for a combination of renewable energy technologies that corresponds to Finland's climate change and energy policy is over 500 million Euros. - Highlights: • Preferences for renewable energy sources are elicited with choice experiment. • Wind power is the most popular source in general. • Regional differences exist: energy from wood is favored in rural areas. • Biodiversity deterioration should be avoided

  8. A potential of utilizing renewable energy sources and the state support in Slovakia

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2007-04-01

    Full Text Available The renewable energy sources are domestic sources of energy that help to enhance the safety of energy supplies and the diversification of energy sources. The utilization of such sources complies with the environmental acceptability requirement and leads to a reduction in greenhouse gas emissions. The renewable energy is proved to be commercially viable for a growing list of consumers and uses. The renewable energy technologies provide many benefits that go well beyond the energy alone. More and more, the renewable energies contribute to the three pillars of the sustainable development in the economy, environment and the society.Several renewable energy technologies are established in world markets, building global industries and infrastructures. Other renewables become competitive in growing markets, and some are widely recognised as the lowest cost option for stand-alone and offgrid applications. An increased utilization of renewable energy sources in the heat and electricity generation is one of priority tasks of the Slovak Republic to boost the use of domestic energy potential and thus to decrease the Slovakia’s dependence on imported fossil fuels.

  9. On the global and regional potential of renewable energy sources

    NARCIS (Netherlands)

    Hoogwijk, Monique Maria

    2004-01-01

    In this thesis, the central research question is: what can be the contribution of renewable energy sources to the present and future world and regional energy supply system. The focus is on wind, solar PV and biomass energy (energy crops) for electricity generation. For the assessment of the

  10. Autonomous hydrogen power plants with renewable energy sources

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.; Izosimov, D.B.; Tumanov, V.L.

    2006-01-01

    One studies the principles to design independent hydrogen power plants (IHPP) operating on renewable energy sources and the approaches to design a pilot IHP plant. One worded tasks of mathematical simulation and of calculations to substantiate the optimal configuration of the mentioned plants depending on the ambient conditions of operation and on peculiar features of a consumer [ru

  11. Analyses of High-Energy Sources with ESA Gaia

    Czech Academy of Sciences Publication Activity Database

    Hudec, R.; Šimon, Vojtěch; Hudcová, Věra

    2010-01-01

    Roč. 1248, - (2010), s. 583-584 ISSN 1551-7616. [X-ray astronomy 2009. Bologna, 07.09.2009-11.09.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : high-energy sources * gamma-ray bursts * low-dispersion spectra Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. State of art and perspectives of using renewable energy sources

    International Nuclear Information System (INIS)

    Berkovskij, B.M.; Mikhalevich, A.A.

    1996-01-01

    State of art of renewable energy sources for the beginning of the nineties and perspectives up to 2020 are considered by the forecast of the European Commission. The program of the World Sun Summit up to 1996-2005 is presented

  13. Eddy energy sources and flux in the Red Sea

    KAUST Repository

    Zhan, Peng; Subramanian, Aneesh C.; Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2015-01-01

    the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied

  14. Modeling of an autonomous microgrid for renewable energy sources integration

    DEFF Research Database (Denmark)

    Serban, I.; Teodorescu, Remus; Guerrero, Josep M.

    2009-01-01

    The frequency stability analysis in an autonomous microgrid (MG) with renewable energy sources (RES) is a continuously studied issue. This paper presents an original method for modeling an autonomous MG with a battery energy storage system (BESS) and a wind power plant (WPP), with the purpose...

  15. Active Power Deficit Estimation in Presence of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2015-01-01

    The inertia of the power system is reduced in the presence of Renewable Energy Sources (RESs) due to their low or even no contribution in the inertial response as it is inherently available in the Synchronous Machines (SMs). The total inertia of the grid becomes unknown or at least uncertain...

  16. Sugar as an energy source for growing ducklings | Olver | South ...

    African Journals Online (AJOL)

    South African Journal of Animal Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 19, No 2 (1989) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Sugar as an energy source for growing ducklings.

  17. Energy sources of yoghurt bacteria and enhancement of their ...

    African Journals Online (AJOL)

    The energy sources of yoghurt bacteria (Streptococcus thermophilus and Lactobacillus bulgaricus) were examined with a focus on probable impact of sucrose on their galactose uptake. Yoghurt bacteria were isolated from samples of yoghurt which were purchased from different outlets and kept under refrigeration ...

  18. A credit line appropriated for energy efficiency and renewable energy sources in Bulgaria

    International Nuclear Information System (INIS)

    Iliev, I.

    2008-01-01

    The credit line was developed by the European Bank for Reconstruction and Development (EBRD) in co-operation with the Bulgarian government. In this financial project several bulgarian banks are involved. The purpose of this project is to support mainly the private enterprises in the sector of energy efficiency and renewable energy sources. The main steps of the applying process are discussed and useful practical information is given. In Bulgaria till now 125 projects are successful financed with total amount about 72 million Euro. The projects will generate annually more than 457 000 MWh electric power and 615 285 MWh thermal power, as well as an annual reduction of about 494 200 t CO 2 emissions is expected

  19. Renewable energy sources for the world's poor: a review of current international development assistance programs

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, J. H.

    1979-10-01

    Foreign assistance funding of the creation, testing, and use of renewable energy sources concerning worldwide efforts to provide energy for Third World development is examined. Donor agencies and developing nations give serious attention to technologies that have been considered exotic and marginal: small-scale hydroelectric generation, solar water heating and distillation, biomass conversion to methane gas and alcohol, wind power, photovoltaic-powered small-scale irrigation, and village-level solar-powered absorption refrigeration. An initial effort to assist in the international coordination of donor activity and in the sharing of information generated by foreign-assistance projects that use renewable energy sources is reported. The report mainly provides information about specific development projects. It contains only a few of the projects that have been approved and funded by 1 June 1979. (MCW)

  20. Structure of production costs of different energy sources (fossile fuels and nuclear energy) (group 11)

    International Nuclear Information System (INIS)

    Girard, Ph.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the structure of the costs of the different energy sources. This analysis shows some common features between the energy sources. The cost is very dependent on the partial costs of technological constraints due to exploration, production, transport and distribution. For primary energies the market appears to be not very competitive, the price depends strongly on the market power of the operator and benefits are generally important. In France, taxes play a role to assure competitiveness of gas and coal against oil. Uranium fuel presents the lowest production and transformation costs at the same energy content. Transport costs are important for natural gas which implies a strong mutual dependence between gas producers and consumers. The irreplaceable use of oil in transport assures regular high revenues for oil companies. (A.C.)

  1. Market for new coal powerplant technologies in the US: 1997 annual energy outlook results

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J. [Dept. of Energy, Washington, DC (United States). Energy Information Administration

    1997-12-31

    Over the next 20 years, the combination of slow growth in the demand for electricity, even slower growth in the need for new capacity, especially baseload capacity, and the competitiveness of new gas-fired technologies limits the market for new coal technologies in the US. In the later years of the 1997 Annual Energy Outlook projections, post-2005, when a significant amount of new capacity is needed to replace retiring plants and meet growing demand, some new coal-fired plants are expected to be built, but new gas-fired plants are expected to remain the most economical choice for most needs. The largest market for clean coal technologies in the United States may be in retrofitting or repowering existing plants to meet stricter environmental standards, especially over the next 10 years. Key uncertainties include the rate of growth in the demand for electricity and the level of competing fuel prices, particularly natural gas. Higher than expected growth in the demand for electricity and/or relatively higher natural gas prices would increase the market for new coal technologies.

  2. 2007 annual meeting on nuclear technology. Report; Jahrestagung Kerntechnik 2007. Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-07-15

    This year's Annual Nuclear Technology Conference (JK) organized by the Deutsches Atomforum e.V. (DAtF) and the Kerntechnische Gesellschaft e.V. (KTG) was held in Karlsruhe on May 22-24. The attendance of more than 1,200 persons from 21 nations, and the increase in participation over the past few years, underline the role of this specialized congress as one of the leading international events in the field of the peaceful uses of nuclear power. The first day of the conference, with its plenary presentations, traditionally focused mainly on political and economic problems of the use of nuclear power. The situation of nuclear power in the United Kingdom, the key country of this year's meeting, was covered in depth. As usual, the program of the three-day event was organized as follows: plenary sessions on the first day were followed by topical sessions, technical sessions, and special events on the other days. This year, the conference featured a record program of 251 papers presented at these sessions. The 'Nuclear Power Campus' was arranged very successfully for the 5th time as an event comprising lectures and a 'hands-on' exhibition explaining the world of nuclear power in a transparent way to students from schools and universities. The special commitment to young scientists and to the preservation of competence in the nuclear field were emphasized at the JK 2007, among other things, in a workshop on 'Preservation of Competence in Nuclear Technology'. Nearly 20 young scientists presented results of their scientific work. The Annual Meeting on Nuclear Technology was accompanied by a specialized exhibition with meeting points of industry organized by 33 manufacturers, vendors, and service companies. (orig.)

  3. Innovative utilization of renewable energy sources to combat climate change

    Energy Technology Data Exchange (ETDEWEB)

    Harju-Jeantly, T.; Nuortio, K.; Hotta, A.; Coda-Zabetta, E.; Palonen, J.; Kokki, S. (Foster Wheeler Energia Oy, Varkaus (Finland)), Email: kalle.nuortimo@fwfin.com, Email: arto.hotta@fwfin.com, Email: juha.palonen@fwfin.com, Email: sami.kokki@fwfin.com

    2009-07-01

    Global warming has become a difficult challenge for both legislators and technologists. The need to reduce atmospheric CO{sub 2} has resulted in several new global and local agreements (the Kyoto protocol, Bali agreement etc., EU-emission trading directive) all driving tightening environmental legislation. /1/ Foster Wheeler as a global supplier of power equipment, has taken the challenge to respond to these environmental, social and political challenges. Products such as state-of-the-art boilers and gasifiers for heat and electricity generation from biomass are offered and further developed. Generally, biomass is considered to be a clean renewable energy source. Emissions are lower when firing biomass instead of fossil fuel, and the amount of SO{sub 2} released to the atmosphere is minimal due to the low sulfur content of the fuel. Life-cycle CO{sub 2} emissions are zero. /2/ Even though biomass can locally have a fairly large contribution in energy production, it will not be a global solution alone to mitigate the climate problem. Biomass currently accounts for about 10 % of world primary energy use, two thirds of which is used for small scale cooking and heating in developing countries. Biomass production is subject to a range of sustainability constraints, such deforestation etc. Coal will remain an important source for energy also in the future. Therefore it is important to develop clean coal solutions. The first, already existing solutions is to burn coal in high efficiency large Circulating Fluidized Bed (CFB) boilers and cofire biomass. This way the biomass can be burned with much better efficiency than in small biomass fired plants. The co-firing of biomass in CCS (Carbon Capture and Storage) power plant will even enable a carbon negative solution for coal firing. The future solution will be CCS. A possible future solution to combat global warming and ensure sustainable power production can be large power plants fuelled by algae combined with CCS. Algae

  4. Thorium as an energy source. Opportunities for Norway

    Energy Technology Data Exchange (ETDEWEB)

    2008-01-15

    -term commitment in university education and basic science. All these should be included in the country level strategy aiming to develop new sustainable energy sources. However, to meet the challenge related to the new nuclear era in Europe, Norway should secure its competence within nuclear sciences and nuclear engineering fields. This includes additional permanent staff at the universities and research institutes and appropriate funding for new research and development as well as a high quality research-based Master and PhD education. Concluding Remarks: The Thorium Report Committee finds that the current knowledge of thorium based energy generation and the geology is not solid enough to provide a final assessment regarding the potential value for Norway of a thorium based system for long term energy production. The Committee recommends that the thorium option be kept open in so far it represents an interesting complement to the uranium option to strengthen the sustainability of nuclear energy (author)

  5. Thorium as an energy source. Opportunities for Norway

    International Nuclear Information System (INIS)

    2008-01-01

    -term commitment in university education and basic science. All these should be included in the country level strategy aiming to develop new sustainable energy sources. However, to meet the challenge related to the new nuclear era in Europe, Norway should secure its competence within nuclear sciences and nuclear engineering fields. This includes additional permanent staff at the universities and research institutes and appropriate funding for new research and development as well as a high quality research-based Master and PhD education. Concluding Remarks: The Thorium Report Committee finds that the current knowledge of thorium based energy generation and the geology is not solid enough to provide a final assessment regarding the potential value for Norway of a thorium based system for long term energy production. The Committee recommends that the thorium option be kept open in so far it represents an interesting complement to the uranium option to strengthen the sustainability of nuclear energy (author)

  6. INCOME AND ENERGY SOURCES AMONG AGRARIAN HOUSEHOLDS IN NIGERIA: IMPLICATIONS FOR LOW CARBON ENERGY DEVELOPMENT IN LESS DEVELOPED COUNTRIES

    Directory of Open Access Journals (Sweden)

    M. Mkpado

    2012-07-01

    Full Text Available Low-carbon power comes from sources that produce fewer greenhouse gases than do traditional means of power generation. It includes zero carbon power generation sources, such as wind power, solar power, geothermal power and (except for fuel preparation nuclear power, as well as sources with lower-level emissions such as natural and petroleum gas, and also technologies that prevent carbon dioxide from being emitted into the atmosphere, such as carbon capture and storage. This article correlated value of income from different sources to energy sources used by agrarian households in Nigeria and drew implications for low carbon development in Africa. It analysis included use of wind power for irrigation purposes, harnessing solar energy for lightening and possible cost implications. Secondary data were collected from Community Based Monitoring System Nigeria Project. Descriptive statistics, correlation and qualitative analysis were employed. The average annual income of agrarian households from different sources such as crop farming, livestock farming, petty trading, forest exploitation, remittance and labour per day was below the poverty line of $1 per day. The source of energy that had the highest number of significant correlation was electrical energy (low carbon electrical energy. It showed the possibility of pooling resources as farmers group to attract grants or equity financing to build wind mills for irrigation. The study recommended use of energy efficient bulbs to reduce CO2 emissions. This requires creating awareness among rural dwellers of the need to make such change.

  7. Risk knowledge and risk attitudes regarding nuclear energy sources in space

    International Nuclear Information System (INIS)

    Maharik, M.; Fischhoff, B.

    1993-01-01

    A series of four studies examined the relationship between how much people know about the risks of using nuclear energy sources in space and how they feel about the technology. The authors found that the more people know, the more favorable they are -- except for two groups of people selected from organizations with strong pro-industry or pro-environment positions. These results suggest that a technology will get a more favorable hearing if it can get its message out -- providing that it has a legitimate story to tell and that the situation has not become too polarized already. The limits to these conclusions are discussed. 19 refs., 3 figs., 1 tab

  8. Summary for Policy Makers: Intergovernmental Panel on Climate Change Special Report Renewable Energy Sources (SRREN)

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu, Dan; Bruckner, Thomas; Christensen, John; Devernay, Jean-Michel; Faaij , Andre; Fischedick, Manfred; Goldstein, Barry; Hansen, Gerrit; Huckerby , John; Jager-Waldau, Arnulf; Kadner, Susanne; Kammen, Daniel; Krey, Volker; Kumar, Arun; Lewis , Anthony; Lucon, Oswaldo; Matschoss, Patrick; Maurice, Lourdes; Mitchell , Catherine; Moomaw, William; Moreira, Jose; Nadai, Alain; Nilsson, Lars J.; Nyboer, John; Rahman, Atiq; Sathaye, Jayant; Sawin, Janet; Schaeffer, Roberto; Schei, Tormod; Schlomer, Steffen; Sims, Ralph; von Stechow, Christoph; Verbruggen, Aviel; Urama, Kevin; Wiser, Ryan; Yamba, Francis; Zwickel, Timm

    2011-05-08

    The Working Group III Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) presents an assessment of the literature on the scientific, technological, environmental, economic and social aspects of the contribution of six renewable energy (RE) sources to the mitigation of climate change. It is intended to provide policy relevant information to governments, intergovernmental processes and other interested parties. This Summary for Policymakers provides an overview of the SRREN, summarizing the essential findings. The SRREN consists of 11 chapters. Chapter 1 sets the context for RE and climate change; Chapters 2 through 7 provide information on six RE technologies, and Chapters 8 through 11 address integrative issues.

  9. Nuclear Technology Division annual progress report for period ending June 30, 1974

    International Nuclear Information System (INIS)

    1975-01-01

    Abstracts of research projects are presented concerning nuclear properties, general reactor development and support, test reactor operations support, LOFT support, PBF support, FEFPL support, TRSP support, techniques and instrumentation, non-nuclear energy sources, and related activities of division personnel. (U.S.)

  10. Annual report of Nuclear Technology and Education Center. April 1, 2007-March 31, 2008

    International Nuclear Information System (INIS)

    2009-03-01

    This annual report summarizes the activities of Nuclear Technology and Education Center (NuTEC) of Japan Atomic Energy Agency (JAEA) in the fiscal year 2007. This is the third year since the inauguration of JAEA, and NuTEC now flexibly designs and carries out training courses upon request while carrying out the annually scheduled training programs. During this period, the number of trainees completing the domestic training courses was 466, and that for staff technical training was 694. Three prep-examination training courses for '1st class radiation protection supervisor', 'Nuclear fuel protection supervisor' and 'Professional engineer on nuclear and radiation' which were opened only for staff members were newly opened to the public. JAEA continued its cooperative activities with universities; cooperation with graduate school of University of Tokyo, cooperative graduate school program with 14 graduate schools and 1 under-graduate school, and Nuclear HRD Program initiated by MEXT and METI implemented since 2007. Joint course has started networking 3 universities utilizing the Japan Nuclear Education Network, and trial experimental courses for students from newly participating universities were offered. International cooperation was also conducted as scheduled. Joint training course and Instructor training program were carried out bilaterally with Indonesia, Thailand and Vietnam. Human Resources Development Workshop under the Forum for Nuclear Cooperation in Asia was arranged, and Asian Nuclear Training and Education Program to enhance the matching of the needs and available training program of the participating countries were discussed. (author)

  11. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting.

    Science.gov (United States)

    Sherman, James H; Munyikwa, Tichafa; Chan, Stephen Y; Petrick, Jay S; Witwer, Kenneth W; Choudhuri, Supratim

    2015-11-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The meeting session described herein focused on the technology of RNA interference (RNAi) in agriculture. The general process by which RNAi works, currently registered RNAi-based plant traits, example RNAi-based traits in development, potential use of double stranded RNA (dsRNA) as topically applied pesticide active ingredients, research related to the safety of RNAi, biological barriers to ingested dsRNA, recent regulatory RNAi science reviews, and regulatory considerations related to the use of RNAi in agriculture were discussed. Participants generally agreed that the current regulatory framework is robust and appropriate for evaluating the safety of RNAi employed in agricultural biotechnology and were also supportive of the use of RNAi to develop improved crop traits. However, as with any emerging technology, the potential range of future products, potential future regulatory frameworks, and public acceptance of the technology will continue to evolve. As such, continuing dialogue was encouraged to promote education of consumers and science-based regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.

    2000-06-13

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  13. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W

    2000-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  14. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1997-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  15. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1995

    International Nuclear Information System (INIS)

    Hawsey, R.A.; Turner, J.W.

    1996-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1995 Annual Program Review held August 1-2, 1995. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems

  16. ORNL Superconducting Technology Program for Electric Power Systems--Annual Report for FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, RA

    2002-02-18

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. A new part of the wire research effort was the Accelerated Coated Conductor Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 2001 Annual Program Review held August 1-3, 2001. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference/Cryogenic Engineering Conference (July 2001) are included in this report as well. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  17. Renewable energy sources. Transformation of the Energy Market; Foernybara Energikaellor. Hela elmarknaden i foeraendring

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    This report describes and analyzes renewable energy seen as emerging markets, focusing on wind, solar and wave power. The conclusions are that: Wind and solar energy has reached critical mass. They are already large markets, and has a high growth rate. There are growth areas that may become among the world's largest industries in the future. This summary report and the underlying studies of wind, solar and wave power show that there is a large potential market for renewable energy sources. Wind power is already a market worth around 36.5 billion Euro. Solar energy is growing strongly and solar cells in 2008 had a market worth around 24 billion Euro. Wave power is at present a very small market and the in the actual development stage the potential of wave power is uncertain. But if the wave would become commercially viable, it could represent a significant part of the world's energy capacity, with associated large investments. In the foreseeable future, all areas have a continuing need for public support to be commercially viable. Despite the already extensive market renewable energy sources represent a relatively small share of energy and electricity in the world. For large-scale electricity generation, there is still a need for public support. Renewable energy means new business opportunities that fundamentally can change structure and competition in the electricity market. A potential of this magnitude involves major business opportunities for involved companies, but also challenges. There are several factors affecting this development, Such as new technology, deregulation, support systems and consumer preferences. The growth of renewable energy sources is not only a question of technical development and relative prices of a homogeneous product, but a question of which actors and business models that will be viable in a rapidly changing market. Swedish industry is well placed to benefit from the growing markets. Many Swedish companies have significant

  18. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  19. Annual report of Nuclear Technology and Education Center. April 1, 2008 - March 31, 2009

    International Nuclear Information System (INIS)

    2010-03-01

    This annual report summarizes the activities of Nuclear Technology and Education Center (NuTEC) of Japan Atomic Energy Agency (JAEA) in the fiscal year 2008. This year is the 50th anniversary of NuTEC since the starting of the first training course in January, 1958 at the Radioisotope-School in Tokyo. On this occasion, a commemorative symposium was held and attended by around 150 participants. NuTEC flexibly designed and conducted out new training courses upon requests while conducting the annually scheduled training programs. In spite of some cancellations in an economic downturn, the number of trainees who completed the domestic training courses was 404, and that of those who completed the staff technical training courses was 862. As a result, the total number of trainees during this period grew over the previous fiscal year. 'Nuclear Training for METI Inspectors' was newly offered and also 'Qualification Course for the 3rd class radiation protection supervisor' was held at Tsuruga Technical High School. JAEA continued its cooperative activities with universities; cooperation with graduate school of University of Tokyo, cooperative graduate school program with 14 graduate schools and one under-graduate school, and newly began to cooperate with Tsuyama National College of Technology. JAEA also continued cooperative activities with Nuclear HRD Program initiated by MEXT and METI implemented in 2007. The joint course has continued networking with five universities including newly two universities utilizing the Japan Nuclear Education Network (JNEN). International cooperation was also conducted as scheduled. The joint training course and the instructor training program were conducted bilaterally with Indonesia, Thailand and Vietnam. JAEA exchanged a memorandum with CEA/INSTN and initiated preparatory work for on internship student from INSTN. Moreover, JAEA newly joined European Nuclear Education Network (ENEN) and began to prepare for new international training

  20. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  1. The renewable energies sources in France 1970-2000

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this report is to describe the energy production from renewable sources in France since 1970. In France the rate of using renewable energy sources is unequal. Some of them as hydro energy show a confirmed industrial and commercial interest when other techniques have not still reach the same level of maturity. The renewable energy sources chosen to calculate the electric and thermal production of France are: for electric power, hydro energy, wind energy, solar energy, geothermal energy, the urban wastes, the wood wastes, the harvesting residues, the biogas. For the thermal production, the thermal solar energy, the geothermal energy, the urban wastes, the wood and wood wastes, the harvesting residues, the biogas and bio fuels. The figures are marked in thirty tables. (N.C.)

  2. Energy sources and nuclear energy. Comparative analysis and ethical reflections

    International Nuclear Information System (INIS)

    Hoenraet, C.

    1999-01-01

    Under the authority of the episcopacy of Brugge in Belgium an independent working group Ethics and Nuclear Energy was set up. The purpose of the working group was to collect all the necessary information on existing energy sources and to carry out a comparative analysis of their impact on mankind and the environment. Also attention was paid to economical and social aspects. The results of the study are subjected to an ethical reflection. The book is aimed at politicians, teachers, journalists and every interested layman who wants to gain insight into the consequences of the use of nuclear energy and other energy sources. Based on the information in this book one should be able to objectively define one's position in future debates on this subject

  3. Economic dispatch optimization for system integrating renewable energy sources

    Science.gov (United States)

    Jihane, Kartite; Mohamed, Cherkaoui

    2018-05-01

    Nowadays, the use of energy is growing especially in transportation and electricity industries. However this energy is based on conventional sources which pollute the environment. Multi-source system is seen as the best solution to sustainable development. This paper proposes the Economic Dispatch (ED) of hybrid renewable power system. The hybrid system is composed of ten thermal generators, photovoltaic (PV) generator and wind turbine generator. To show the importance of renewable energy sources (RES) in the energy mix we have ran the simulation for system integrated PV only and PV plus wind. The result shows that the system with renewable energy sources (RES) is more compromising than the system without RES in terms of fuel cost.

  4. Methods for comparative risk assessment of different energy sources

    International Nuclear Information System (INIS)

    1992-10-01

    The environmental and health aspects of different energy systems, particularly those associated with the generation of electricity, are emerging as significant issues for policy formulation and implementation. This, together with the growing need of many countries to define their energy programmes for the next century, has provided the basis for a renewed interest in the comparative risk assessment of different energy sources (fossil, nuclear, renewables). This document is the outcome of a Specialists Meeting on the procedural and methodological issues associated with comparative health and environmental risks of different energy sources. After an introductory chapter outlining the issues under consideration the papers presented at the Meeting, which have been indexed separately, are given. Refs, figs and tabs

  5. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  6. Legislation on renewable energy sources in Central America

    International Nuclear Information System (INIS)

    Rebollo, Jose

    2000-01-01

    This paper presents the development of renewable energy in Central America and the cooperation given by the European Comission in the promotion of renewable energy sources. Also discuss the current situation in energy demand in Central America and possible solutions linked to legislation that promotes the inversion of the private sector. The legal framework in each country of Central America is presented and its impact in the increasing of generation of energy through tax reductions, trading and prices

  7. Legal Framework of Renewable Energy Sources in the European Union

    OpenAIRE

    Milto, Yuliya

    2017-01-01

    The thesis analyses the following issues: historical development of energy and renewable energy sources legislation in the European Economic Community (EEC): the role of energy crisis of 1973 – 1974 in development of renewable energy legislation; international cooperation in the field of energy and renewable energy between EEC and third countries and membership of the EEC in international energy organizations dealing with energy; the European Union renewable energy policy and legal fra...

  8. Perspectives of Use of Alternative Energy Sources in Air Transport

    Directory of Open Access Journals (Sweden)

    Luboš Socha

    2017-01-01

    Full Text Available The problem of environmental load is also reflected in air transport. Usage of fossil fuels, which are dominant nowadays, has a negative impact on the environment and also its resources are limited. Therefore, the article focuses on the prospective of use of other energy sources in aviation, such as alternative fuels (synthetic fuels, biofuels, alcohol, methane, hydrogen, solar energy and the use of fuel cells. Also, the paper briefly summarizes the approach of aircraft manufacturers to the use alternative sources.

  9. Environmental problems connected to the use of renewable energy sources

    International Nuclear Information System (INIS)

    Mottana, A.; Pignotti, S.

    2000-01-01

    The development of FER (renewable energy sources) can represent a fundamental answer to the growing energy need and the requirement for a new environmental quality. Also the renewable sources, however, have an environmental cost, whose amount can be considered of little importance at a world balance, but can have a large impact at a local level. Among FER the author has chosen hydroelectric source, biomass and wind energy, since they are most effective according to the aims of this discussion [it

  10. Hydrogen is an energy source for hydrothermal vent symbioses.

    Science.gov (United States)

    Petersen, Jillian M; Zielinski, Frank U; Pape, Thomas; Seifert, Richard; Moraru, Cristina; Amann, Rudolf; Hourdez, Stephane; Girguis, Peter R; Wankel, Scott D; Barbe, Valerie; Pelletier, Eric; Fink, Dennis; Borowski, Christian; Bach, Wolfgang; Dubilier, Nicole

    2011-08-10

    The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.

  11. Energy sources for future. Change to a sustainable energy system

    International Nuclear Information System (INIS)

    Morris, C.

    2005-01-01

    Can Germany give up gasoline and power from coal or nuclear energy and how much does it cost? The book does away with all common misunderstandings due to renewable energy sources and describes a compatible model for a sustainable energy mixing in future. Nevertheless fossil fuels are not denounced but seen as a platform for the advanced system. The author explains first why objections to renewable energy sources base on bad information, and pursues quite an other argumentation as such authors emphasizing the potential of these energy sources. Than he shows in detail the possibility of the optimal energy mixing for biomass, solar power, wind power, geothermal energy, hydropower and energy efficiency. The environment will reward us for this and instead buying expensive resources from foreign countries we will create work places at home. The number of big power plants - taking into account safety risks - will decrease and small units of on-site power generation feeded with this renewable sources will play more and more an important role. (GL) [de

  12. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Mattia Filippini

    2015-05-01

    Full Text Available A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of the renewable energy source to make it fit the electrical network. The configuration consists of a combination of three-phase multilevel converters and single-phase inverters, which are designed to provide flexibility, high power quality and high efficiency. A detailed analysis and simulation is performed to identify the properties in conjunction with the electrical grid requirements and the potential challenges encountered during operation. An optimized operation example of wind generation combined with solar PV generation is presented to exemplify the flexibility and benefits of the proposed configuration.

  13. The fractal nature materials microstructure influence on electrochemical energy sources

    Directory of Open Access Journals (Sweden)

    Mitić V.V.

    2015-01-01

    Full Text Available With increasing of the world energy crisis, research for new, renewable and alternative energy sources are in growth. The focus is on research areas, sometimes of minor importance and applications, where the different synthesis methods and microstructure properties optimization, performed significant improvement of output materials’ and components’ electro-physical properties, which is important for higher energy efficiency and in the electricity production (batteries and battery systems, fuel cells and hydrogen energy contribution. Also, the storage tanks capacity improvement, for the energy produced on such way, which is one of the most important development issues in the energy sphere, represents a very promising research and application area. Having in mind, the results achieved in the electrochemical energy sources field, especially electrolyte development, these energy sources, materials fractal nature optimization analysis contribution, have been investigated. Based on materials fractal structure research field, particularly electronic materials, we have performed microstructure influence parameters research in electrochemistry area. We have investigated the Ho2O3 concentration influence (from 0.01wt% to 1wt% and sintering temperature (from 1320°C to 1380°C, as consolidation parameters, and thus, also open the electrochemical function fractalization door and in the basic thermodynamic parameters the fractal correction introduced. The fractal dimension dependence on additive concentration is also investigated. [Projekat Ministarstva nauke Republike Srbije, br. 172057: Directed synthesis, structure and properties of multifunctional materials

  14. A multivariate-utility approach for selection of energy sources

    International Nuclear Information System (INIS)

    Ahmed, S; Husseiny, A.A.

    1978-01-01

    A deterministic approach is devised to compare the safety features of various energy sources. The approach is based on multiattribute utility theory. The method is used in evaluating the safety aspects of alternative energy sources used for the production of electrical energy. Four alternative energy sources are chosen which could be considered for the production of electricity to meet the national energy demand. These are nuclear, coal, solar, and geothermal energy. For simplicity, a total electrical system is considered in each case. A computer code is developed to evaluate the overall utility function for each alternative from the utility patterns corresponding to 23 energy attributes, mostly related to safety. The model can accommodate other attributes assuming that these are independent. The technique is kept flexible so that virtually any decision problem with various attributes can be attacked and optimal decisions can be reached. The selected data resulted in preference of geothermal and nuclear energy over other sources, and the method is found viable in making decisions on energy uses based on quantified and subjective attributes. (author)

  15. Consumption of forest chips as an energy source as part of the national action plan for renewable energy

    International Nuclear Information System (INIS)

    Ylitalo, E.

    2004-01-01

    A specific Action Plan for Renewable Energy was introduced in 1999 in order to increase the utilisation of renewable energy sources in Finland. The Plan was renewed in 2002, taking into account a revision of the goals defined in the statements given by the Parliament in the de-bate on national Climate Strategy and the decision on building a new nuclear power plant. The main reason for increasing the consumption of renewable energy is the aim of decreasing emissions of greenhouse gases caused by fossil fuels. The renewed Action Plan includes aims and means of how to increase the consumption of renewable energy in practice in the future. Specific goals for separate renewable energy sources were set for the years 2005, 2010 and 2025. Proportional targets were set for the consumption of forest chips: in 2010 consumption is expected to be four times larger than in 2001 and in 2025 seven times larger. In Finland, the most important source for renewable energy is wood and wood waste, which currently makes up approximately 20 per cent of total energy consumption. Wood waste (incl. waste liquor and solid wood waste) produced by the forest industries can be considered as being fully utilized at the moment. Therefore, the most important means of increasing the consumption of wood energy in the future is in the utilisation of forest chips resources. Since 2000, the Finnish Forest Re-search Institute has compiled statistics on the consumption of forest chips and forest industry by-products used in energy generation. One aim of these statistics is to monitor the fruition of the Action Plan mentioned. In 2003, the volume of forest chips consumed in energy generation was 2.1 mill. m3, i.e. approximately five per cent of all energy sources consumed. According to the statistics, the consumption of forest chips has doubled during the period 2000-2003 with an annual average increase of 0.4 mill. m 3 . The goals set in the Action Plan can be considered to be high. In order to achieve

  16. The promotion in Romania of electricity from renewable energy sources - present and future

    International Nuclear Information System (INIS)

    Stanciulescu, Georgeta; Popescu, Mihaela; Caracasian, Lusine; Anton, Bogdan

    2004-01-01

    The paper deals with the present situation and prospects of electricity generation from renewable energy sources in Romania. The following subject matters are addressed: Legal framework; - Regulatory framework; - Ministry of Economy and Commerce - competence and responsibilities; - ANRE - competence and responsibilities; - Targets by 2010; - Benefits of Electricity from RES; - Costs, by technology, for E-RES; - Renewable support mechanisms; - RES, technical and economical potential for Romania; - Sensitivity Analysis. In conclusion, one stresses that the existing legal and regulatory framework which sets up responsibilities and dead lines regarding the promotion of E-RES and it's access on the market: - ensures a transparent, nondiscriminatory and objective treatment for the E-RES producers; - gives some facilities concerning the authorization process and ensures the take over of the electricity produced from renewable sources to the national grid; -sets up state aids granting conditions for investments and operation of the renewable energy sources; - requires some improvements regarding the financial support for promoting E-RES, guarantee of origin and trade. Depending on the chosen support scheme, the institutional framework will be developed in order to comply with the legal requirements and dead-lines. The technologies for E-RES generation will be implemented depending on: - the RES potential; - the commercial maturity of the technology, i.e. the technologies implied in hydro, wind, biomass, solar, waves and tide energy generation

  17. Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change (IPCC)

    Energy Technology Data Exchange (ETDEWEB)

    Edenhofer, O. (Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)); Pichs Madruga, R. (Centro de Investigaciones de la Economia Mundial (CIEM), Hanoi (Viet Nam)); Sokona, Y. (African Climate Policy Centre, United Nations Economic Commission for Africa, Addis Ababa (Ethiopia)) (and others)

    2012-07-01

    Climate change is one of the great challenges of the 21st century. Its most severe impacts may still be avoided if efforts are made to transform current energy systems. Renewable energy sources have a large potential to displace emissions of greenhouse gases from the combustion of fossil fuels and thereby to mitigate climate change. If implemented properly, renewable energy sources can contribute to social and economic development, to energy access, to a secure and sustainable energy supply, and to a reduction of negative impacts of energy provision on the environment and human health. This Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) impartially assesses the scientific literature on the potential role of renewable energy in the mitigation of climate change for policymakers, the private sector, academic researchers and civil society. It covers six renewable energy sources - bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. The authors also compare the levelized cost of energy from renewable energy sources to recent non-renewable energy costs. (Author)

  18. Institute of Gas Technology. Annual report for the fiscal year ended August 31, 1992

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This annual report included: messages from the chairman and from the president of the IGT; updates on natural gas and the environment, technology transfer, energy, the sustaining member ship program (SMP), and education and information; a list of the board of trustees, executive committee and officers, members and contributers; and a brief of financial highlights if the IGT. The Institute's research and development programs included projects in environmental protection, site remediation, and clean power generation. Energy-related projects fell into three broad categories: gas distribution and operations, energy supply, and energy utilization. IGT is working toward bringing innovative processes and technologies developed in the laboratory into the marketplace. In the seven years since the SMP funds project began, more than sixty IGT Member Companies and International Associates have supported its efforts with their dues. For more than fifty years, IGT has fulfilled its charter missions of providing energy and environment related educational programs and services and disseminating technical and scientific information. These projects and the sources of their funding are described in detail in this report

  19. TRACE Authored Papers from the First through Ninth Annual Conferences on Rehabilitation Engineering Technology (1977-1986).

    Science.gov (United States)

    Brady, Mary; And Others

    Brief papers authored by staff of the Trace Research and Development Center on Communication, Control, and Computer Access for Handicapped Individuals and presented at the first through ninth annual conferences on rehabilitation engineering technology are presented. Papers have the following titles and authors: "The Data Routing Module:…

  20. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Key topic / Enhanced safety and operation excellence

    Energy Technology Data Exchange (ETDEWEB)

    Traichel, Anke [NUKEM Technologies Engineering Services GmbH, Alzenau (Germany). Dept. of Safety Engineering and Assessment / Proposals Engineering

    2017-04-15

    Summary report on the Key Topic ''Enhanced Safety and Operation Excellence'' Technical Session ''Safety, IT, Hazards and PSA'' of the 47th Annual Meeting on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016.

  1. 48{sup th} Annual meeting on nuclear technology (AMNT). Key topic / Outstanding know-how and sustainable innovations

    Energy Technology Data Exchange (ETDEWEB)

    Raetzke, Christian [CONLAR - Consulting on Nuclear Law, Licensing and Regulation, Leipzig (Germany)

    2017-08-15

    Summary report on the Key Topic Outstanding Know-How and Sustainable Innovations, Focus Session: International Regulation: Leveraging the Experience of Established Nuclear Countries for Regulations and Projects in Newcomer Countries, of the 48th Annual Meeting on Nuclear Technology (AMNT 2017) held in Berlin, 16 to 17 May 2017.

  2. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    NARCIS (Netherlands)

    Deeb, Wissam; Giordano, James J.; Rossi, Peter J.; Mogilner, Alon Y.; Gunduz, Aysegul; Judy, Jack W.; Klassen, Bryan T.; Butson, Christopher R.; van Horne, Craig; Deny, Damiaan; Dougherty, Darin D.; Rowell, David; Gerhardt, Greg A.; Smith, Gwenn S.; Ponce, Francisco A.; Walker, Harrison C.; Bronte-Stewart, Helen M.; Mayberg, Helen S.; Chizeck, Howard J.; Langevin, Jean-Philippe; Volkmann, Jens; Ostrem, Jill L.; Shute, Jonathan B.; Jimenez-Shahed, Joohi; Foote, Kelly D.; Wagle Shukla, Aparna; Rossi, Marvin A.; Oh, Michael; Pourfar, Michael; Rosenberg, Paul B.; Silburn, Peter A.; de Hemptine, Coralie; Starr, Philip A.; Denison, Timothy; Akbar, Umer; Grill, Warren M.; Okun, Michael S.

    2016-01-01

    This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with

  3. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Key Topics / Enhanced safety and operation excellence

    Energy Technology Data Exchange (ETDEWEB)

    Bohnstedt, Angelika [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Programm Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE); Baumann, Erik [AREVA GmbH, Erlangen (Germany). Radiation Protection

    2016-12-15

    Summary report on the Key Topic 'Enhanced Safety and Operation Excellence' Focus Session 'Radiation Protection' of the 47{sup th} Annual Meeting on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016. Other Sessions of AMNT 2016 have been and will be covered in further issues of atw.

  4. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Key topic / Outstanding know-how and sustainable innovations

    Energy Technology Data Exchange (ETDEWEB)

    Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany). Bereich Reaktorsicherheitsforschung

    2016-07-15

    Summary report on the Technical Session: ''Reactor Physics, Thermo- and Fluid-Dynamics'' of the 47th Annual Conference on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016. Other Sessions of AMNT 2016 will be covered in further issues of atw.

  5. 46{sup th} Annual meeting on nuclear technology (AMNT 2015). Key Topic / Enhanced safety and operation excellence / Radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Erik [AREVA GmbH, Erlangen (Germany). Radiation Protection; Bohnsted, Angelika [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Safety Research for Nuclear Waste Management, Radiation Protection

    2015-10-15

    Summary report on the Focus Session 'Radiation Protection' of the 46{sup th} Annual Conference on Nuclear Technology (AMNT 2015) held in Berlin, 5 to 7 May 2015. Other Sessions of AMNT 2015 have been covered in atw 7 and 8 (2015) and will be covered in further issues of atw.

  6. Using the renewable energy sources in the market conditions

    International Nuclear Information System (INIS)

    Kozlov, V.B.

    2000-01-01

    Raper studies the peculiarities of financing of projects for the renewable energy sources (RES) in cooperation with the Kyoto protocol as to the regulating principles of purchase (sale) of quotas for greenhouse gas release. The records of the results obtained in the West European countries and USA as to payment of green electricity generated on the basis of RES application is analyzed. Preliminary estimation of cost ratio of quotas for releases of greenhouse gases for conventional power plants and RES based ones is presented [ru

  7. Use of non-conventional energy sources for power generation

    International Nuclear Information System (INIS)

    Umapathaiah, R.; Sharma, N.D.

    1999-01-01

    India being a developing country, cannot afford to meet the power and energy demand only from conventional sources. Power generation can be augmented by using non-conventional energy sources. Sufficient importance must be given for recovery of energy from industrial/urban waste. Solar heating system must replace industrial and domestic sectors. Solar photovoltaic, biogas plant, biomass based gasified system must also be given sufficient place in energy sector. More thrust has to be given for generation of power by using sugar cane which is a perennial source

  8. Optimal portfolio selection between different kinds of Renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Zakerinia, MohammadSaleh; Piltan, Mehdi; Ghaderi, Farid

    2010-09-15

    In this paper, selection of the optimal energy supply system in an industrial unit is taken into consideration. This study takes environmental, economical and social parameters into consideration in modeling along with technical factors. Several alternatives which include renewable energy sources, micro-CHP systems and conventional system has been compared by means of an integrated model of linear programming and three multi-criteria approaches (AHP, TOPSIS and ELECTRE III). New parameters like availability of sources, fuels' price volatility, besides traditional factors are considered in different scenarios. Results show with environmental preferences, renewable sources and micro-CHP are good alternatives for conventional systems.

  9. Practical Investigation for Road Lighting using Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Maged A. Abu Adma

    2017-12-01

    Full Text Available Abstract - Hybrid renewable energy systems are recently used to counteract the limitations of solar and wind as solo renewable energy sources due to adverse weather conditions. This study explains a design of a fully independent -off grid- hybrid solar and wind road lighting system according to geography and weather conditions recorded from the National Research Institute of Astronomy and Geophysics. The computerized model is designed step by step by the aid of Simulink-Matlab and the simulation was successfully run to show the performance of each module.

  10. How to classify the hydro power renewable energy sources

    International Nuclear Information System (INIS)

    Kalchevski, S.

    2006-01-01

    In this report various classifications of hydropower renewable energy sources (HRES) used in several countries like: USA, China, Russia, EU and Bulgaria are given and discussed. The existence of numerous differences and peculiarities in the various national classifications all over the world require the creation of a common unification. In particular the peculiarity and heterogeneity of HRES in Bulgaria demands a creation of specific regulations about. There is a necessity in a creation of a new law of RES and preparation of united EU energy policy

  11. Energy source completion for geothermal district heating systems

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    Geothermal district heating systems differs from the others mainly in the part of energy source completion and its connection to the heat distribution systems rather known problem. Even rather known problematic in the countries where geothermal energy is in wide application, new appearances of mistakes are always present due to the fact that necessary literature is difficult to be found. Essentials of the geothermal well completion and connection of geothermal source to the district heating distribution system are summarized in the paper and several examples of geothermal projects in flow are presented. (Author)

  12. Fiscal Policy for Renewable Energy Sources and Its Economic Impact

    OpenAIRE

    Helbra Tenrini, Rita; Suryo Nugroho, Sidiq

    2014-01-01

    Indonesia is the largest producers of palm oil. Along with the increasing demand for renewable energy source, palm oil will turn to be a very important commodity in the future. The palm oil industry will gain more value-added if they export the commodities in processed materials rather than raw materials. On the other hands palm oil industry more likely to export raw material, because there’s no incentives for them to export processed materials. Therefore, to give an incentive to palm oil ind...

  13. On the physics of power, energy and economics of renewable electric energy sources - Part II

    International Nuclear Information System (INIS)

    Skoglund, Annika; Leijon, Mats; Waters, Rafael; Rehn, Alf; Lindahl, Marcus

    2010-01-01

    Renewable Energy Technologies (RETs) are often recognized as less competitive than traditional electric energy conversion systems. Obstacles with renewable electric energy conversion systems are often referred to the intermittency of the energy sources and the relatively high maintenance cost. However, due to an intensified discourse on climate change and its effects, it has from a societal point of view, become more desirable to adopt and install CO 2 neutral power plants. Even if this has increased the competitiveness of RETs in a political sense, the new goals for RET installations must also be met with economical viability. We propose that the direction of technical development, as well as the chosen technology in new installations, should not primarily be determined by policies, but by the basic physical properties of the energy source and the associated potential for inexpensive energy production. This potential is the basic entity that drives the payback of the investment of a specific RET power plant. With regard to this, we argue that the total electric energy conversion system must be considered if effective power production is to be achieved, with focus on the possible number of full loading hours and the Degree of Utilization. This will increase the cost efficiency and economical competitiveness of RET investments, and could enhance faster diffusion of new innovations and installations without over-optimistic subsidies. This paper elaborates on the overall problem of the economy of renewable electric energy conversion systems by studying the interface between physics, engineering and economy reported for RET power plants in different scientific publications. The core objective is to show the practical use of the Degree of Utilization and how the concept is crucial for the design and economical optimization disregarding subsidies. The results clearly indicate that the future political regulative frameworks should consider the choice of renewable energy

  14. Technology for the Stars: Extending Our Reach. [Research and Technology: 1995 Annual Report of the Marshall Space Flight Center.

    Science.gov (United States)

    1996-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Studies, Research, Technology, and Technology Transfer projects are summarized in this report. The focus of the report is on the three spotlights at MSFC in 1995: space transportation technology, microgravity research, and technology transfer.

  15. Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling

    Directory of Open Access Journals (Sweden)

    Jan Skovajsa

    2017-01-01

    Full Text Available The article deals with the use of modern materials and technologies that can improve the thermal comfort in buildings. The article describes the design and usage of a special accumulation device, which is composed of thermal panels based on phase change materials (PCMs. The thermal panels have an integrated tube heat exchanger and heating foils. The technology can be used as a passive or active system for heating and cooling. It is designed as a “green technology”, so it is able to use renewable energy sources, e.g., photovoltaic (PV panels, solar thermal collectors and heat pumps. Moreover, an interesting possibility is the ability to use thermoelectric coolers. In the research, measurements of the different operating modes were made, and the results are presented in the text. The measurement approves that the technology improves the thermal capacity of the building, and it is possible to use it for active heating and cooling.

  16. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    International Nuclear Information System (INIS)

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H.

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford's Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste

  17. Australian Nuclear Science and Technology Organisation (ANSTO). Annual Report 1998-1999

    International Nuclear Information System (INIS)

    1999-09-01

    The 1998/1999 Annual Report summarises ANSTO's performance and progress made on several major infrastructure projects and its research and development program. On 3 May 1999, the Government announced its support for a Replacement Research Reactor at Lucas Heights; the site licence has been granted by ARPANSA and the request for tender distributed to four pre qualified vendors. A significant effort during the year under review was directed towards the Replacement Research Reactor Project. Main objectives and achievements are also reported against established performance indicators within the the five core scientific business areas: International strategic relevance of Nuclear Science; Core nuclear facilities operation and development; Applications of Nuclear Science and Technology to the understanding of natural processes; Treatment and management of man-made and naturally occurring radioactive substances; and Competitiveness and ecological sustainability of industry. Also presented are the objectives and activities which supports the core scientific areas by providing best practice corporate support, safety management, information and human resource management for ANSTO staff. The organization has developed its 1999/2000 Operational Plan predominantly on a project-based approach

  18. Australian Nuclear Science and Technology Organisation (ANSTO). Annual Report 1998-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The 1998/1999 Annual Report summarises ANSTO's performance and progress made on several major infrastructure projects and its research and development program. On 3 May 1999, the Government announced its support for a Replacement Research Reactor at Lucas Heights; the site licence has been granted by ARPANSA and the request for tender distributed to four pre qualified vendors. A significant effort during the year under review was directed towards the Replacement Research Reactor Project. Main objectives and achievements are also reported against established performance indicators within the the five core scientific business areas: International strategic relevance of Nuclear Science; Core nuclear facilities operation and development; Applications of Nuclear Science and Technology to the understanding of natural processes; Treatment and management of man-made and naturally occurring radioactive substances; and Competitiveness and ecological sustainability of industry. Also presented are the objectives and activities which supports the core scientific areas by providing best practice corporate support, safety management, information and human resource management for ANSTO staff. The organization has developed its 1999/2000 Operational Plan predominantly on a project-based approach.

  19. Legislation framework for Croatian renewable energy sources development

    Directory of Open Access Journals (Sweden)

    Raguzin Igor

    2007-01-01

    Full Text Available The energy sector reform in the Republic of Croatia (started 2001, which comprises restructuring, liberalization, privatization, and changes in the overall energy sector, has a significant effect on the possibilities of introducing and increasing the share of renewable energy sources (RES. The adoption of a new legislative framework within the context of reforming Croatia’s energy sector is of key importance for further development and for the future or RES utilization. The Electricity Market Act sets out the le- gal obligation to purchase electricity produced from RES in the manner that a quota or a minimum obligatory share of RES in electricity production is determined by a Government ordinance combined with Tariff system for the production of electricity from renewable energy sources and co-generation. Consequently, on the one hand, incentive funds needed to cover increased costs of production from RES will be collected from customers through the supplier and distributed to privileged producers (feed-in-tariffs, purchase is guaranteed to RES producers on known terms through the Market Opera- tor. On the other hand, RES investment projects will be encouraged by pur- pose-specific government subsidy and by the Environmental Protection and Energy Efficiency Fund (out of public budget. By applying new energy legislation and associated by-laws (coming into force in 2007, RES projects in Croatia will be provided with a complete and stable legal framework as well as support through incentive measures which will equitably value environmental, social and other benefits of RES use.

  20. The analysis of security cost for different energy sources

    International Nuclear Information System (INIS)

    Jun, Eunju; Kim, Wonjoon; Chang, Soon Heung

    2009-01-01

    Global concerns for the security of energy have steadily been on the increase and are expected to become a major issue over the next few decades. Urgent policy response is thus essential. However, little attempt has been made at defining both energy security and energy metrics. In this study, we provide such metrics and apply them to four major energy sources in the Korean electricity market: coal, oil, liquefied natural gas, and nuclear. In our approach, we measure the cost of energy security in terms of supply disruption and price volatility, and we consider the degree of concentration in energy supply and demand using the Hirschman-Herfindahl index (HHI). Due to its balanced fuel supply and demand, relatively stable price, and high abundance, we find nuclear energy to be the most competitive energy source in terms of energy security in the Korean electricity market. LNG, on the other hand, was found to have the highest cost in term of energy security due to its high concentration in supply and demand, and its high price volatility. In addition, in terms of cost, we find that economic security dominates supply security, and as such, it is the main factor in the total security cost. Within the confines of concern for global energy security, our study both broadens our understanding of energy security and enables a strategic approach in the portfolio management of energy consumption.