WorldWideScience

Sample records for annual drought flow

  1. Annual habit and apomixis as drought adaptations in Selaginella tenerrima

    Directory of Open Access Journals (Sweden)

    J. Kornaś

    1983-12-01

    Full Text Available Selaginella tenerrima A. Braun ex Kuhn, widely distributed in the savanna-woodland and savanna zones of tropical Africa, is strictly annual. Dormant megaspores survive the yearly drought. Apomixis has been confirmed through laboratory cultures. Microsporangia are usually absent or very few. and the sporophyte chromosome number is triploid: 2n = 30.

  2. Joint modelling of annual maximum drought severity and corresponding duration

    Science.gov (United States)

    Tosunoglu, Fatih; Kisi, Ozgur

    2016-12-01

    In recent years, the joint distribution properties of drought characteristics (e.g. severity, duration and intensity) have been widely evaluated using copulas. However, history of copulas in modelling drought characteristics obtained from streamflow data is still short, especially in semi-arid regions, such as Turkey. In this study, unlike previous studies, drought events are characterized by annual maximum severity (AMS) and corresponding duration (CD) which are extracted from daily streamflow of the seven gauge stations located in Çoruh Basin, Turkey. On evaluation of the various univariate distributions, the Exponential, Weibull and Logistic distributions are identified as marginal distributions for the AMS and CD series. Archimedean copulas, namely Ali-Mikhail-Haq, Clayton, Frank and Gumbel-Hougaard, are then employed to model joint distribution of the AMS and CD series. With respect to the Anderson Darling and Cramér-von Mises statistical tests and the tail dependence assessment, Gumbel-Hougaard copula is identified as the most suitable model for joint modelling of the AMS and CD series at each station. Furthermore, the developed Gumbel-Hougaard copulas are used to derive the conditional and joint return periods of the AMS and CD series which can be useful for designing and management of reservoirs in the basin.

  3. Informing Hydrological Drought Response in Headwater Catchments Using Water Storage Estimated From GRACE: Storage-Flow Dynamics

    Science.gov (United States)

    Gaffney, R.; Tyler, S. W.; Harpold, A. A.; Volk, J. M.

    2015-12-01

    Quantifying the relationship between subsurface water storage and streamflow is challenging due to heterogeneity of surface-groundwater interactions in space and time. Hence, point measurements of storage from wells are insufficient to characterize the storage across a catchment, especially in mountainous environments with complex geology. Here, we present a novel approach to quantify the storage-flow relationship for catchments in the Sierra Nevada Mountains. For 23 gages in the Hydro-Climatic Data Network, the 7-day average annual minimum flow (drought flow) was computed for years 2003 to 2015. We then aggregated, for each gage, the associated storage time-series dataset from 1o gridded measurements of monthly Terrestrial Water Storage (TWS) derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Despite the significant mismatch between the spatial scales and temporal resolution, we found a strong empirical correlation between TWS and drought flow. From these relationships, we examined how physical characteristics of each catchment (such as size and geology) impact the observed nonlinear relationship between TWS and drought flow. Furthermore, we show how physical characteristics, such as geology/storage capacity, of catchments affect the sensitivity of decreasing flows to multi-year droughts. This research has the potential to help better quantify the streamflow-storage relationship in small mountainous catchments, as well as, classify catchments that may be more vulnerable to decreasing flows with multi-year droughts.

  4. The influence of inter-annually varying albedo on regional climate and drought

    Science.gov (United States)

    Meng, X. H.; Evans, J. P.; McCabe, M. F.

    2014-02-01

    strengthening of the second mechanism. That is, the second mechanism is stronger in a drought year compared to a normal year and this difference is larger than for the first mechanism. When both mechanisms are active, the second mechanism tends to dominate across the model domain, particularly during the 2002 drought period. The introduction of observed inter-annual variations in albedo produces an enhancement of the first mechanism and a weakening of the second mechanism during the onset of the drought.

  5. The influence of inter-annually varying albedo on regional climate and drought

    KAUST Repository

    Meng, Xianhong

    2013-05-05

    strengthening of the second mechanism. That is, the second mechanism is stronger in a drought year compared to a normal year and this difference is larger than for the first mechanism. When both mechanisms are active, the second mechanism tends to dominate across the model domain, particularly during the 2002 drought period. The introduction of observed inter-annual variations in albedo produces an enhancement of the first mechanism and a weakening of the second mechanism during the onset of the drought. © 2013 Springer-Verlag Berlin Heidelberg.

  6. Correlation between Annual Corn Crop per Hectare in Croatia and Drought Indices for Zagreb-Gric Observatory

    Science.gov (United States)

    Pandzic, Kreso; Likso, Tanja

    2017-04-01

    Correlation coefficients between annual corn crop per hectare in Croatia and 9-month Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI) for Zagreb - Gric for August are shown as significant. The results indicate that there is also a significant correlation between those drought indices and drought damages. Thus a forecast of the indices for August could be used for estimation e.g. annual corn crop per hectare in Croatia. Better results could be expected if statistical relationship between annual corn crops per hectare will be considered on county level instead the whole Croatia and indices calculated for weather stations for the same county. Effective way for reduction of drought damages is irrigation which need to be significantly improved in future in Croatia

  7. Drought

    NARCIS (Netherlands)

    Quevauviller, P.; Lanen, Van Henny A.J.

    2014-01-01

    Drought is one of the most extreme weather-related natural hazards. It differs from other hydrometeorological extremes in several ways. It develops gradually and usually over large areas (transnational), mostly resulting from a prolonged period (from months to years) of below-normal precipitation

  8. Modeling summer month hydrological drought probabilities in the United States using antecedent flow conditions

    Science.gov (United States)

    Austin, Samuel H.; Nelms, David L.

    2017-01-01

    Climate change raises concern that risks of hydrological drought may be increasing. We estimate hydrological drought probabilities for rivers and streams in the United States (U.S.) using maximum likelihood logistic regression (MLLR). Streamflow data from winter months are used to estimate the chance of hydrological drought during summer months. Daily streamflow data collected from 9,144 stream gages from January 1, 1884 through January 9, 2014 provide hydrological drought streamflow probabilities for July, August, and September as functions of streamflows during October, November, December, January, and February, estimating outcomes 5-11 months ahead of their occurrence. Few drought prediction methods exploit temporal links among streamflows. We find MLLR modeling of drought streamflow probabilities exploits the explanatory power of temporally linked water flows. MLLR models with strong correct classification rates were produced for streams throughout the U.S. One ad hoc test of correct prediction rates of September 2013 hydrological droughts exceeded 90% correct classification. Some of the best-performing models coincide with areas of high concern including the West, the Midwest, Texas, the Southeast, and the Mid-Atlantic. Using hydrological drought MLLR probability estimates in a water management context can inform understanding of drought streamflow conditions, provide warning of future drought conditions, and aid water management decision making.

  9. Combining drought survival via summer dormancy and annual biomass productivity in Dactylis glomerata L.

    Directory of Open Access Journals (Sweden)

    Rajae eKallida

    2016-02-01

    Full Text Available Under Mediterranean climates, the best strategy to produce rain-fed fodder crops is to develop perennial drought resistant varieties. Summer dormancy present in native germplasm has been shown to confer a high level of survival under severe drought. Nevertheless it has also been shown to be negatively correlated with annual biomass productivity. The aim of this study was to analyse the correlations between summer dormancy and annual biomass productivity related traits and to identify quantitative trait loci (QTL for these traits in a progeny of a summer dormant cocksfoot parent (Kasbah and a summer active parent (Medly. A total of 283 offspring and the parents were phenotyped for summer dormancy, plant growth rate and heading date in Morocco and for maximum leaf elongation rate (LERm in France. The individuals were genotyped with a total of 325 markers including 59 AFLP, 64 SSR and 202 DArT markers. The offspring exhibited a large quantitative variation for all measured traits. Summer dormancy showed a negative correlation with both plant growth rate (-0.34 p<0.005 and LERm (-0.27 p<0.005. However, genotypes with both a high level of summer dormancy and a high level of plant growth rate were detected in the progeny. One genetic map per parent was built with a total length of 377 and 423 cM for Kasbah and Medly, respectively. Both different and co-localised QTL for summer dormancy and plant growth rate were identified. These results demonstrate that it should be possible to create summer dormant cocksfoot varieties with a high annual biomass productivity.

  10. Combining Drought Survival via Summer Dormancy and Annual Biomass Productivity in Dactylis glomerata L.

    Science.gov (United States)

    Kallida, Rajae; Zhouri, Latifa; Volaire, Florence; Guerin, Adrien; Julier, Bernadette; Shaimi, Naima; Fakiri, Malika; Barre, Philippe

    2016-01-01

    Under Mediterranean climates, the best strategy to produce rain-fed fodder crops is to develop perennial drought resistant varieties. Summer dormancy present in native germplasm has been shown to confer a high level of survival under severe drought. Nevertheless it has also been shown to be negatively correlated with annual biomass productivity. The aim of this study was to analyze the correlations between summer dormancy and annual biomass productivity related traits and to identify quantitative trait loci (QTL) for these traits in a progeny of a summer dormant cocksfoot parent (Kasbah) and a summer active parent (Medly). A total of 283 offspring and the parents were phenotyped for summer dormancy, plant growth rate (PGR) and heading date in Morocco and for maximum leaf elongation rate (LERm) in France. The individuals were genotyped with a total of 325 markers including 59 AFLP, 64 SSR, and 202 DArT markers. The offspring exhibited a large quantitative variation for all measured traits. Summer dormancy showed a negative correlation with both PGR (-0.34 p < 0.005) and LERm (-0.27 p < 0.005). However, genotypes with both a high level of summer dormancy and a high level of PGR were detected in the progeny. One genetic map per parent was built with a total length of 377 and 423 cM for Kasbah and Medly, respectively. Both different and co-localized QTL for summer dormancy and PGR were identified. These results demonstrate that it should be possible to create summer dormant cocksfoot varieties with a high annual biomass productivity. PMID:26904054

  11. Extreme late-summer drought causes neutral annual carbon balance in southwestern ponderosa pine forests and grasslands

    Science.gov (United States)

    Kolb, Thomas; Dore, Sabina; Montes-Helu, Mario

    2013-03-01

    We assessed the impacts of extreme late-summer drought on carbon balance in a semi-arid forest region in Arizona. To understand drought impacts over extremes of forest cover, we measured net ecosystem production (NEP), gross primary production (GPP), and total ecosystem respiration (TER) with eddy covariance over five years (2006-10) at an undisturbed ponderosa pine (Pinus ponderosa) forest and at a former forest converted to grassland by intense burning. Drought shifted annual NEP from a weak source of carbon to the atmosphere to a neutral carbon balance at the burned site and from a carbon sink to neutral at the undisturbed site. Carbon fluxes were particularly sensitive to drought in August. Drought shifted August NEP at the undisturbed site from sink to source because the reduction of GPP (70%) exceeded the reduction of TER (35%). At the burned site drought shifted August NEP from weak source to neutral because the reduction of TER (40%) exceeded the reduction of GPP (20%). These results show that the lack of forest recovery after burning and the exposure of undisturbed forests to late-summer drought reduce carbon sink strength and illustrate the high vulnerability of forest carbon sink strength in the southwest US to predicted increases in intense burning and precipitation variability.

  12. From drought to flooding: understanding the abrupt 2010-11 hydrological annual cycle in the Amazonas River and tributaries

    Science.gov (United States)

    Carlo Espinoza, Jhan; Ronchail, Josyane; Loup Guyot, Jean; Junquas, Clementine; Drapeau, Guillaume; Martinez, Jean Michel; Santini, William; Vauchel, Philippe; Lavado, Waldo; Ordoñez, Julio; Espinoza, Raúl

    2012-06-01

    In this work we document and analyze the hydrological annual cycles characterized by a rapid transition between low and high flows in the Amazonas River (Peruvian Amazon) and we show how these events, which may impact vulnerable riverside residents, are related to regional climate variability. Our analysis is based on comprehensive discharge, rainfall and average suspended sediment data sets. Particular attention is paid to the 2010-11 hydrological year, when an unprecedented abrupt transition from the extreme September 2010 drought (8300 m3 s-1) to one of the four highest discharges in April 2011 (49 500 m3 s-1) was recorded at Tamshiyacu (Amazonas River). This unusual transition is also observed in average suspended sediments. Years with a rapid increase in discharge are characterized by negative sea surface temperature anomalies in the central equatorial Pacific during austral summer, corresponding to a La Niña-like mode. It originates a geopotential height wave train over the subtropical South Pacific and southeastern South America, with a negative anomaly along the southern Amazon and the southeastern South Atlantic convergence zone region. As a consequence, the monsoon flux is retained over the Amazon and a strong convergence of humidity occurs in the Peruvian Amazon basin, favoring high rainfall and discharge. These features are also reported during the 2010-11 austral summer, when an intense La Niña event characterized the equatorial Pacific.

  13. New insights on historic droughts in the UK: Analysis of 200 river flow reconstructions for 1890-2015

    Science.gov (United States)

    Parry, Simon; Barker, Lucy; Hannaford, Jamie; Prudhomme, Christel; Smith, Katie; Svensson, Cecilia; Tanguy, Maliko

    2017-04-01

    Hydrological droughts of the last 50 years in the UK have been well characterised owing to a relatively dense hydrometric network. Prior to this, observed river flow data were generally limited in their spatial coverage and often subject to considerable uncertainty. Whilst qualitative records indicate the occurrence of severe droughts in the late 19th and early 20th centuries, including scenarios which may cause substantial impacts to contemporary water supply systems, existing observations are not sufficient to describe their spatio-temporal characteristics. As such, insights on drought in the UK are constrained and a range of stakeholders including water companies and regulators would benefit from a more thorough assessment of historic drought characteristics and their variability. The multi-disciplinary Historic Droughts project aims to rigorously characterise droughts in the UK to inform improved drought management and communication. Driven by rainfall and potential evapotranspiration data that have been extended using recovered records, lumped catchment hydrological models are used to reconstruct daily river flows from 1890 to 2015 for more than 200 catchments across the UK. The reconstructions are derived within a state-of-the-art modelling framework which allows a comprehensive assessment of model, structure and parameter uncertainty. Standardised and threshold-based indicators are applied to the river flow reconstructions to identify and characterise hydrological drought events. The reconstructions are most beneficial in comprehensively describing well known but poorly quantified late 19th and early 20th century droughts, placing the spatial and temporal footprint of these often extreme events within the context of modern episodes for the first time. Oscillations between drought-rich and drought-poor periods are shown not to be limited to the recent observational past, providing an increased sample size of events against which to test a range of airflow and

  14. INFLUENCE FACTORS AND PREDICTION METHOD ON FLOOD/DROUGHT DURING THE ANNUALLY FIRST RAINY SEASON IN SOUTH CHINA

    Institute of Scientific and Technical Information of China (English)

    HUANG Xian-xiang; YAN Li-jun; SHI Neng

    2007-01-01

    By using the significance test of two-dimensional wind field anomalies and Monte Carlo simulation experiment scheme, the significance features of wind field anomalies are investigated in relation to flood/drought during the annually first rainy season in south China. Results show that western Pacific subtropical high and wind anomalies over the northeast of Lake Baikal and central Indian Ocean are important factors. Wind anomalies over the northern India in January and the northwest Pacific in March may be strong prediction signals. Study also shows that rainfall in south China bears a close relation to the geopotential height filed over the northern Pacific in March.

  15. Decadal drought deaccelerated the increasing trend of annual net primary production in tropical or subtropical forests in southern China

    Science.gov (United States)

    Wang, Wantong; Wang, Jinxia; Liu, Xingzhao; Zhou, Guoyi; Yan, Junhua

    2016-06-01

    Previous investigations have identified that the effects of climate change on net primary production (NPP) of global forests have varied both spatially and temporally, and that warming has increased the NPP for many forests. However, other factors, such as available soil water for plant growth, could limit these incremental responses to warming. In our investigation we have quantified the responses of NPP of tropical or subtropical forests in southern China to warming and drought stress over the past three decades (1981 to 2012) using data from five forest research stations and satellite measurements. NPP, mean annual temperature (MAT) and annual days without rainfall showed an increase of 0.076 g C m-2 a-2 (standardized), 0.057 °C a-1 (standardized) and 0.067 d a-1 (standardized) during the study period, respectively. However, incremental NPP was deaccelerated at a rate of approximately 20.8% per decade. This deacceleration was primarily caused by a decrease in available soil water which resulted from warming (mainly occurring in winter and autumn) and the changes in rainfall pattern. The result indicates that intensifying drought stress would limit future increases of forest NPP in southern China.

  16. 基于年径流的水文干旱指标研究%Hydrological Drought Index Based on Annual Runoff

    Institute of Scientific and Technical Information of China (English)

    袁旭琦; 赵雪花

    2014-01-01

    水文干旱是一种机理复杂、影响深远的干旱现象,相对于气象干旱往往受到的关注较少。基于偏态分布概率的方法,描述水文干旱过程,利用年径流计算水文干旱指标标准径流指数,建立了评价水文干旱等级的标准。结果表明,修正后的标准径流指数能够准确反映汾河上游水文干旱的情况,优于常规指标,并且能为干旱预警提供依据。%Hydrological drought is a complex and influential phenomenon of drought ;it tends to be less concerned with respect to me-teorological drought .In view of skewed probability distribution ,the process of hydrological drought is described .Hydrological drought index-Standardized Runoff Index is calculated with annual runoff dates ,and evaluation criteria of hydrological drought is es-tablished .The results show that the corrected Standard Runoff Index reflects the hydrological drought accurately in the upstream of the Fenhe River .By the way ,it provides a basis for drought warning at the early stage .

  17. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress.

    Science.gov (United States)

    Huang, Wei; Yang, Shi-Jian; Zhang, Shi-Bao; Zhang, Jiao-Lin; Cao, Kun-Fang

    2012-04-01

    Resurrection plants could survive severe drought stress, but the underlying mechanism for protecting their photosynthetic apparatus against drought stress is unclear. Cyclic electron flow (CEF) has been documented as a crucial mechanism for photoprotection in Arabidopsis and tobacco. We hypothesized that CEF plays an important role in protecting photosystem I (PSI) and photosystem II (PSII) against drought stress for resurrection plants. To address this hypothesis, the effects of mild drought stress on light energy distribution in PSII and P700 redox state were examined in a resurrection plant Paraboea rufescens. Cyclic electron flow was not activated below the photosynthetic photon flux density (PPFD) of 400 μmol m⁻² s⁻¹ in leaves without drought stress. However, CEF was activated under low light in leaves with mild drought stress, and the effective quantum yield of PSII significantly decreased. Meanwhile, non-photochemical quenching (NPQ) was significantly stimulated not only under high light but also under low light. Compared with the control, the fraction of overall P700 that cannot be oxidized in a given state (PSI acceptor side limitation) under high light was maintained at low level of 0.1 in leaves with water deficit, indicating that the over-reduction of the PSI acceptor side was prevented by the significant stimulation of CEF. Furthermore, methyl viologen could significantly increase the PSII photo-inhibition induced by high light compared with chloramphenicol. These results suggested that CEF is an important mechanism for protecting PSI and PSII from drought stress in resurrection plants.

  18. Annual flow duration curves assessment in ephemeral small basins

    Science.gov (United States)

    Pumo, D.; Viola, F.; La Loggia, G.; Noto, L. V.

    2014-11-01

    Flow duration curve (FDC) represents a comprehensive signature of temporal runoff variability often used to synthesize catchment rainfall-runoff responses. A new model, the ModABa (MODel for Annual flow duration curves assessment in ephemeral small BAsins), is here introduced. It can be thought as a wide mosaic whose tesserae are frameworks, models or conceptual schemes separately developed in different studies and harmoniously interconnected with the final aim of reproducing the annual FDC in intermittent small catchments. Two separated seasons within the hydrological year are distinguished: a dry season, characterized by absence of streamflow, and a non-zero season. Streamflow is disaggregated into a subsurface component and a surface component that, in turn, is considered formed by two different contributions: impervious runoff and surface runoff from permeable areas induced by heavy rains. The FDCs of the two streamflow components are first separately and differently computed, and then combined to obtain the non-zero FDC. This last, together with the estimated probability of null streamflow, allows the annual FDC assessment through the theory of total probability. The ModABa is here tested on a small Italian catchment and the results show how the model, once calibrated, is able to accurately reproduce the empirical FDC for the analyzed case, starting from easily derivable parameters and commonly available climatic data. In this sense, the model reveals itself as a valid tool, potentially suitable for predictions at ungauged basins in a regionalization framework.

  19. Influence of Lateral Flow on the Predisposition of Aspen Mortality during Drought

    Science.gov (United States)

    Tai, X.; Mackay, D. S.; Anderegg, W.; Sperry, J. S.

    2014-12-01

    Lateral subsurface flow can be critical to understanding the spatial soil moisture availability to plants, and when, where, and how drought are influencing individual plants. The concentration of intensive aspen damage in certain hillslopes with higher temperature and lower soil moisture suggests that soil augmentation/reduction from lateral redistribution could help explain the survivability of some aspen through its influence on soil water availability during drought. It remains unclear how lateral water redistribution helps to limit hydraulic impairment of aspen located in different topographic positions during a drought event. This study employed an integrated ecohydrology model, TREES, combining plant-water balance and canopy physiology, to examine the potential effects of lateral flow on hydraulic and metabolic performance of aspen, by exposing trees to a set of soil water conditions associated with different levels of water stress. Sap flux, soil moisture, meteorological and plant hydraulic data from aspen trees in Colorado that died (SAD) and those that lived were used to parameterize the model. Our goal was to quantify the extent to which lateral flow explained sudden aspen dieback. The results indicate that the predisposition of tree mortality is related to the level of soil water augmentation. A reduction of 30% soil water content could introduce 21.55% increase in the loss of hydraulic conductivity (PLC), 23.6% loss in canopy transpiration, 21.7% loss in GPP. It would also cause the frequency of greater than 50% PLC to increase from 42.1% of the time to 51% of the time, and the frequency of hitting the 88% PLC pressure to increase from 11% to 14% of the time. On the other hand, an augment of 30% soil water content could introduce 20.2% reduction in PLC, 16.4% gain in canopy transpiration, 16.5% gain in GPP. The frequency of greater than 50% PLC is reduced to 31% of the time and the frequency of hitting the 88% PLC pressure is reduced to 6% of the time

  20. Flows, droughts, and aliens: factors affecting the fish assemblage in a Sierra Nevada, California, stream.

    Science.gov (United States)

    Kiernan, Joseph D; Moyle, Peter B

    2012-06-01

    The fishes of Martis Creek, in the Sierra Nevada of California (USA), were sampled at four sites annually over 30 years, 1979-2008. This long-term data set was used to examine (1) the persistence and stability of the Martis Creek fish assemblage in the face of environmental stochasticity; (2) whether native and alien fishes responded differently to a natural hydrologic regime (e.g., timing and magnitude of high and low flows); and (3) the importance of various hydrologic and physical habitat variables in explaining the abundances of native and alien fish species through time. Our results showed that fish assemblages were persistent at all sample sites, but individual species exhibited marked interannual variability in density, biomass, and relative abundance. The density and biomass of native fishes generally declined over the period of study, whereas most alien species showed no significant long-term trends. Only alien rainbow trout increased in both density and biomass at all sites over time. Redundancy analysis identified three hydrologic variables (annual 7-day minimum discharge, maximum winter discharge, and number of distinct winter floods) and two habitat variables (percentage of pool habitat and percentage of gravel substrate) that each explained a significant portion of the annual variation in fish assemblage structure. For alien taxa, their proportional contribution to the total fish assemblage was inversely related to mean annual streamflow, one-day maximum discharge in both winter and spring, and the frequency of springtime floods. Results of this study highlight the need for continuous annual monitoring of streams with highly variable flow regimes to evaluate shifts in fish community structure. Apparent successes or failures in stream management may appear differently depending on the time series of available data.

  1. Constraining Annual Water Balance Estimates with Basin-Scale Observations from the Airborne Snow Observatory during the Current Californian Drought

    Science.gov (United States)

    Bormann, K.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.; Deems, J. S.; Patterson, V.; McGurk, B. J.

    2015-12-01

    One of the great unknowns in mountain hydrology is how much water is stored within a seasonal snowpack at the basin scale. Quantifying mountain water resources is critical for assisting with water resource management, but has proven elusive due to high spatial and temporal variability of mountain snow cover, complex terrain, accessibility constraints and limited in-situ networks. The Airborne Snow Observatory (ASO, aso.jpl.nasa.gov) uses coupled airborne LiDAR and spectrometer instruments for high resolution snow depth retrievals which are used to derive unprecedented basin-wide estimates of snow water mass (snow water equivalent, SWE). ASO has been operational over key basins in the Sierra Nevada Mountains in California since 2013. Each operational year has been very dry, with precipitation in 2013 at 75% of average, 2014 at 50% of average and 2015 - the lowest snow year on record for the region. With vastly improved estimates of the snowpack water content from ASO, we can now for the first time conduct observation-based mass balance accounting of surface water in snow-dominated basins, and reconcile these estimates with observed reservoir inflows. In this study we use ASO SWE data to constrain mass balance accounting of basin annual water storages to quantify the water contained within the snowpack above the Hetch Hetchy water supply reservoir (Tuolumne River basin, California). The analysis compares and contrasts annual snow water volumes from observed reservoir inflows, snow water volume estimates from ASO, a physically based model that simulates the snowpack from meteorological inputs and a semi-distributed hydrological model. The study provides invaluable insight to the overall volume of water contained within a seasonal snowpack during a severe drought and how these quantities are simulated in our modelling systems. We envisage that this research will be of great interest to snowpack modellers, hydrologists, dam operators and water managers worldwide.

  2. Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy).

    Science.gov (United States)

    Battipaglia, Giovanna; DE Micco, Veronica; Brand, Willi A; Saurer, Matthias; Aronne, Giovanna; Linke, Petra; Cherubini, Paolo

    2014-02-01

    Erica arborea (L) is a widespread Mediterranean species, able to cope with water stress and colonize semiarid environments. The eco-physiological plasticity of this species was evaluated by studying plants growing at two sites with different soil moistures on the island of Elba (Italy), through dendrochronological, wood-anatomical analyses and stable isotopes measurements. Intra-annual density fluctuations (IADFs) were abundant in tree rings, and were identified as the key parameter to understand site-specific plant responses to water stress. Our findings showed that the formation of IADFs is mainly related to the high temperature, precipitation patterns and probably to soil water availability, which differs at the selected study sites. The recorded increase in the (13) C-derived intrinsic water use efficiency at the IADFs level was linked to reduced water loss rather than to increasing C assimilation. The variation in vessel size and the different absolute values of δ(18) O among trees growing at the two study sites underlined possible differences in stomatal control of water loss and possible differences in sources of water uptake. This approach not only helped monitor seasonal environmental differences through tree-ring width, but also added valuable information on E. arborea responses to drought and their ecological implications for Mediterranean vegetation dynamics. © 2013 John Wiley & Sons Ltd.

  3. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow.

    Science.gov (United States)

    Rajsekhar, Deepthi; Gorelick, Steven M

    2017-08-01

    In countries where severe drought is an anticipated effect of climate change and in those that heavily depend on upstream nations for fresh water, the effect of drier conditions and consequent changes in the transboundary streamflow regime induced by anthropogenic interventions and disasters leads to uncertainty in regional water security. As a case in point, we analyze Jordan's surface water resources and agricultural water demand through 2100, considering the combined impacts of climate change and land-use change driven by the Syrian conflict. We use bias-corrected regional climate simulations as input to high-resolution hydrologic models to assess three drought types: meteorological (rainfall decrease), agricultural (soil moisture deficit), and hydrologic (streamflow decline) under future scenarios. The historical baseline period (1981-2010) is compared to the future (2011-2100), divided into three 30-year periods. Comparing the baseline period to 2070-2100, average temperature increases by 4.5°C, rainfall decreases by 30%, and multiple drought-type occurrences increase from ~8 in 30 years to ~25 in 30 years. There is a significant increase in the contemporaneous occurrence of multiple drought types along with an 80% increase in simultaneous warm and dry events. Watershed simulations of future transboundary Yarmouk-Jordan River flow from Syria show that Jordan would receive 51 to 75% less Yarmouk water compared to historical flow. Recovery of Syrian irrigated agriculture to pre-conflict conditions would produce twice the decline in transboundary flow as that due to climate change. In Jordan, the confluence of limited water supply, future drought, and transboundary hydrologic impacts of land use severely challenges achieving freshwater sustainability.

  4. Variable coupling between sap-flow and transpiration in pine trees under drought conditions

    Science.gov (United States)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grunzweig, Jose M.; Yakir, Dan

    2016-04-01

    Changes in diurnal patterns in water transport and physiological activities in response to changes in environmental conditions are important adjustments of trees to drought. The rate of sap flow (SF) in trees is expected to be in agreement with the rate of tree-scale transpiration (T) and provides a powerful measure of water transport in the soil-plant-atmosphere system. The aim of this five-years study was to investigate the temporal links between SF and T in Pinus halepensis exposed to extreme seasonal drought in the Yatir forest in Israel. We continuously measured SF (20 trees), the daily variations in stem diameter (ΔDBH, determined with high precision dendrometers; 8 trees), and ecosystem evapotranspiration (ET; eddy covariance), which were complemented with short-term campaigns of leaf-scale measurements of H2O and CO2 gas exchange, water potentials, and hydraulic conductivity. During the rainy season, tree SF was well synchronized with ecosystem ET, reaching maximum rates during midday in all trees. However, during the dry season, the daily SF trends greatly varied among trees, allowing a classification of trees into three classes: 1) Trees that remain with SF maximum at midday, 2) trees that advanced their SF peak to early morning, and 3) trees that delayed their SF peak to late afternoon hours. This classification remained valid for the entire study period (2010-2015), and strongly correlated with tree height and DBH, and to a lower degree with crown size and competition index. In the dry season, class 3 trees (large) tended to delay the timing of SF maximum to the afternoon, and to advance their maximum diurnal DBH to early morning, while class 2 trees (smaller) advanced their SF maximum to early morning and had maximum daily DBH during midday and afternoon. Leaf-scale transpiration (T), measurements showed a typical morning peak in all trees, irrespective of classification, and a secondary peak in the afternoon in large trees only. Water potential and

  5. Assessment of temporal hydrologic anomalies coupled with drought impact for a transboundary river flow regime: The Diyala watershed case study

    Science.gov (United States)

    Al-Faraj, Furat A. M.; Scholz, Miklas

    2014-09-01

    Recent increases in human activities in shared river basins have unquestionably raised concerns about potential hydrological impacts, especially impacts of dams and large-scale water withdrawal schemes in the highlands. Anthropogenic pressures twinned with drought impacts have exacerbated water management challenges. This article assesses the cumulative consequences of upstream anthropogenic pressures and drought spells on temporal river flow regimes for the downstream country. The size and complexity of problems confronting transboundary river watersheds makes it necessary to use a representative example basin to study the problems and potential solutions. The Diyala (Sīrvān) river basin, which shares dozens of transboundary watersheds between Iraq and Iran, has been selected as a representative case study. A subset of the Indicators of Hydrologic Alteration (IHA) was utilised and climate variability was considered in assessing the combined effect of various forms of upstream human-river regulations and climatic conditions on natural flow regimes in the downstream state. Findings indicated that the anthropogenic river-regulation coupled with the impact of drought periods have noticeably modified the natural flow paradigm. The yearly average runoffs, which are no longer available for the downstream country, have soared to very high levels, particularly over the last fifteen years. More adverse impacts were detected in the non-rainy season. Findings reveal also that damming and considerable water diversion to large-scale irrigation projects in the upstream state are the main regulations affecting the management of shared water resources in the downstream country.

  6. Hydrological drought severity explained by climate and catchment characteristics

    Science.gov (United States)

    Van Loon, A. F.; Laaha, G.

    2015-07-01

    Impacts of a drought are generally dependent on the severity of the hydrological drought event, which can be expressed by streamflow drought duration or deficit volume. For prediction and the selection of drought sensitive regions, it is crucial to know how streamflow drought severity relates to climate and catchment characteristics. In this study we investigated controls on drought severity based on a comprehensive Austrian dataset consisting of 44 catchments with long time series of hydrometeorological data (on average around 50 year) and information on a large number of physiographic catchment characteristics. Drought analysis was performed with the variable threshold level method and various statistical tools were applied, i.e. bivariate correlation analysis, heatmaps, linear models based on multiple regression, varying slope models, and automatic stepwise regression. Results indicate that streamflow drought duration is primarily controlled by storage, quantified by the Base Flow Index or by a combination of catchment characteristics related to catchment storage and release, e.g. geology and land use. Additionally, the duration of dry spells in precipitation is important for streamflow drought duration. Hydrological drought deficit, however, is governed by average catchment wetness (represented by mean annual precipitation) and elevation (reflecting seasonal storage in the snow pack and glaciers). Our conclusion is that both drought duration and deficit are governed by a combination of climate and catchment control, but not in a similar way. Besides meteorological forcing, storage is important; storage in soils, aquifers, lakes, etc. influences drought duration and seasonal storage in snow and glaciers influences drought deficit. Consequently, the spatial variation of hydrological drought severity is highly dependent on terrestrial hydrological processes.

  7. Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma

    Science.gov (United States)

    Esralew, Rachel A.; Smith, S. Jerrod

    2010-01-01

    Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage

  8. Performance of the Enhanced Vegetation Index to Detect Inner-annual Dry Season and Drought Impacts on Amazon Forest Canopies

    NARCIS (Netherlands)

    Brede, B.; Verbesselt, J.; Dutrieux, L.; Herold, M.

    2015-01-01

    The Amazon rainforests represent the largest connected forested area in the tropics and play an integral role in the global carbon cycle. In the last years the discussion about their phenology and response to drought has intensified. A recent study argued that seasonality in greenness expressed as E

  9. Performance of the Enhanced Vegetation Index to Detect Inner-annual Dry Season and Drought Impacts on Amazon Forest Canopies

    NARCIS (Netherlands)

    Brede, B.; Verbesselt, J.; Dutrieux, L.; Herold, M.

    2015-01-01

    The Amazon rainforests represent the largest connected forested area in the tropics and play an integral role in the global carbon cycle. In the last years the discussion about their phenology and response to drought has intensified. A recent study argued that seasonality in greenness expressed as

  10. Performance of the Enhanced Vegetation Index to Detect Inner-annual Dry Season and Drought Impacts on Amazon Forest Canopies

    NARCIS (Netherlands)

    Brede, B.; Verbesselt, J.; Dutrieux, L.; Herold, M.

    2015-01-01

    The Amazon rainforests represent the largest connected forested area in the tropics and play an integral role in the global carbon cycle. In the last years the discussion about their phenology and response to drought has intensified. A recent study argued that seasonality in greenness expressed as E

  11. The Impact of Sustained Drought Conditions on a Ground Water Pollutant: Relating the Rise in Trichloroethylene Concentrations in Ground Water to Diminished Flow

    Science.gov (United States)

    Steffy, D. A.; Nicols, A.; Baucom, T.; Lagrone, R.

    2008-12-01

    Cold Water Spring (CWS) located in the Ridge and Valley Province of the Southern Appalachian Mountains in northeastern Alabama is exhibiting the effects of a local sustained drought. CWS is fed by groundwater from the lower Paleozoic Knox Group, a regional carbonate aquifer. A precipitation-based metric of short- term meteorological drought, the Palmer Drought Severity Index (PDSI), calculated by the National Drought Mitigation Center depicts the magnitude of the drought as increasing in the region since early in the year 2003. Flow of the CWS has been diminishing since the onset of the local drought, and is linearly correlated at 0.6 to the PDSI. The CWS water is contaminated with trichloroethylene (TCE) suspected to be released from a nearby abandoned industrial source. There is a rise in TCE contamination as CWS started to diminish, however, a direct correlation of the TCE concentration to PDSI is not statistically evident. The lack of a statistical correlation between TCE concentration in ground water and the PDSI supports our hypothesis that mobilization of free-phase TCE and its dissolution during periods of drought are multifunctional processes. A lowering of the water table changes the balance of capillary and buoyancy forces which in turn mobilizes the TCE ganglia making it available for dissolution.

  12. The study on Sanmenxia annual flow forecasting in the Yellow River with mix regression model

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiaohui; LIU Changming; WANG Yu; WANG Hongrui

    2004-01-01

    This paper established mix regression model for simulating annual flow, in which annual runoff is auto-regression factor, precipitation, air temperature and water consumption are regression factors; we adopted 9 hypothesis climate change schemes to forecast the change of annual flow of Sanmenxia Station. The results show: (1) When temperature is steady, the average annual runoff will increase by 8.3% if precipitation increases by 10%; when precipitation decreases by 10%, the average annual runoff will decrease by 8.2%; when precipitation is steady, the average annual runoff will decrease by 2.4% if temperature increases 1 ℃; if temperature decreases 1 ℃, runoff will increase by 1.2%. The mix regression model can well simulate annual runoff. (2) As to 9 different temperature and precipitation scenarios, scenario 9 is the most adverse to the runoff of Sanmenxia Station of Yellow River; i.e. temperature increases 1℃and precipitation decreases by 10%. Under this condition, the simulated average annual runoff decreases by 10.8%. On the contrary, scenario 1 is the best to the enhancement of runoff; i.e. when temperature decreases 1 ℃ precipitation will increase by 10%, which will make the annual runoff of Sanmenxia increase by 10.6%.

  13. Cyclic electron flow, NPQ and photorespiration are crucial for the establishment of young plants of Ricinus communis and Jatropha curcas exposed to drought.

    Science.gov (United States)

    Lima Neto, M C; Cerqueira, J V A; da Cunha, J R; Ribeiro, R V; Silveira, J A G

    2017-07-01

    Although plant physiological responses to drought have been widely studied, the interaction between photoprotection, photorespiration and antioxidant metabolism in water-stressed plants is scarcely addressed. This study aimed to evaluate the physiological adjustments preserving photosynthesis and growth in two plant species with different tolerance to drought: Jatropha curcas and Ricinus communis. We measured stress indicators, gas exchange, photochemistry of PSII and PSI, antioxidant enzymes, cyclic electron flow and photorespiration. Physiological stress indicators associated with reduction in growth confirmed R. communis as sensitive and J. curcas as tolerant to drought. Drought induced loss of photosynthesis in R. communis, whereas J. curcas maintained higher leaf gas exchange and photochemistry under drought. In addition, J. curcas showed higher dissipation of excess energy and presented higher cyclic electron flow when exposed to drought. Although none of these mechanisms have been triggered in R. communis, this species showed increases in photorespiration. R. communis displayed loss of Rubisco content while the Rubisco relative abundance did not change in J. curcas under drought. Accordingly, the in vivo maximum Rubisco carboxylation rate (Vcmax ) and the maximum photosynthetic electron transport rate driving RuBP regeneration (Jmax ) were less affected in J. curcas. Both species displayed an efficient antioxidant mechanism by increasing activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD). Overall, we suggest that the modulation of different photoprotective mechanisms is crucial to mitigate the effects caused by excess energy, maintaining photosynthetic apparatus efficiency and promoting the establishment of young plants of these two species under drought. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Annual precipitation gray forecast in disaster year of Chedaren debris flow

    Institute of Scientific and Technical Information of China (English)

    MENG Fanqi; LI Guangjie

    2009-01-01

    The Chedaren ravine belongs to high-prone areas of debris flow in Jilin Province,which threaten the local people's life and security seriously. The authors used the residual correction theory to amend the GM (1, 1) model and forecast annual precipitation in disaster year of the Chedaren ravine; it provides scientific foundation for early warning of debris flow disaster in the rainy season based on weather forecast. The prediction results show that annual precipitation is 724.7 mm in 2009; the region will probably occur large-scale debris flow during the rainy season.

  15. Performance of the Enhanced Vegetation Index to Detect Inner-annual Dry Season and Drought Impacts on Amazon Forest Canopies

    Science.gov (United States)

    Brede, B.; Verbesselt, J.; Dutrieux, L.; Herold, M.

    2015-04-01

    The Amazon rainforests represent the largest connected forested area in the tropics and play an integral role in the global carbon cycle. In the last years the discussion about their phenology and response to drought has intensified. A recent study argued that seasonality in greenness expressed as Enhanced Vegetation Index (EVI) is an artifact of variations in sun-sensor geometry throughout the year. We aimed to reproduce these results with the Moderate-Resolution Imaging Spectroradiometer (MODIS) MCD43 product suite, which allows modeling the Bidirectional Reflectance Distribution Function (BRDF) and keeping sun-sensor geometry constant. The derived BRDF-adjusted EVI was spatially aggregated over large areas of central Amazon forests. The resulting time series of EVI spanning the 2000-2013 period contained distinct seasonal patterns with peak values at the onset of the dry season, but also followed the same pattern of sun geometry expressed as Solar Zenith Angle (SZA). Additionally, we assessed EVI's sensitivity to precipitation anomalies. For that we compared BRDF-adjusted EVI dry season anomalies to two drought indices (Maximum Cumulative Water Deficit, Standardized Precipitation Index). This analysis covered the whole of Amazonia and data from the years 2000 to 2013. The results showed no meaningful connection between EVI anomalies and drought. This is in contrast to other studies that investigate the drought impact on EVI and forest photosynthetic capacity. The results from both sub-analyses question the predictive power of EVI for large scale assessments of forest ecosystem functioning in Amazonia. Based on the presented results, we recommend a careful evaluation of the EVI for applications in tropical forests, including rigorous validation supported by ground plots.

  16. Methods for estimating selected low-flow statistics and development of annual flow-duration statistics for Ohio

    Science.gov (United States)

    Koltun, G.F.; Kula, Stephanie P.

    2013-01-01

    This report presents the results of a study to develop methods for estimating selected low-flow statistics and for determining annual flow-duration statistics for Ohio streams. Regression techniques were used to develop equations for estimating 10-year recurrence-interval (10-percent annual-nonexceedance probability) low-flow yields, in cubic feet per second per square mile, with averaging periods of 1, 7, 30, and 90-day(s), and for estimating the yield corresponding to the long-term 80-percent duration flow. These equations, which estimate low-flow yields as a function of a streamflow-variability index, are based on previously published low-flow statistics for 79 long-term continuous-record streamgages with at least 10 years of data collected through water year 1997. When applied to the calibration dataset, average absolute percent errors for the regression equations ranged from 15.8 to 42.0 percent. The regression results have been incorporated into the U.S. Geological Survey (USGS) StreamStats application for Ohio (http://water.usgs.gov/osw/streamstats/ohio.html) in the form of a yield grid to facilitate estimation of the corresponding streamflow statistics in cubic feet per second. Logistic-regression equations also were developed and incorporated into the USGS StreamStats application for Ohio for selected low-flow statistics to help identify occurrences of zero-valued statistics. Quantiles of daily and 7-day mean streamflows were determined for annual and annual-seasonal (September–November) periods for each complete climatic year of streamflow-gaging station record for 110 selected streamflow-gaging stations with 20 or more years of record. The quantiles determined for each climatic year were the 99-, 98-, 95-, 90-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, 2-, and 1-percent exceedance streamflows. Selected exceedance percentiles of the annual-exceedance percentiles were subsequently computed and tabulated to help facilitate consideration of the

  17. Possible effect of ENSO on annual sediment discharge of debris flows in the Jiangjia Ravine based on Morlet wavelet transforms

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The multi-time-scale structures of an annual sediment discharge series of debris flow in the Jiangjia Ravine and the Southern Oscillation index are analysed using the method of Morlet wavelet transformations. The possible effects of El Nino episodes on the annual sediment discharge are discussed by comparing the period variations of ENSO and the discharge. The results show that the annual sediment discharge series of debris flow is related to El Nino episodes. Generally, the annual sediment discharge of debris flow is less than usual during an El Nino episode and debris flow is less active. On the contrary, the annual sediment discharge of debris flows is greater than usual during a La Nina episode and debris flows are more frequent. There is a relationship between the annual sediment discharges of debris flow in the Jiangjia Ravine and the summer Southern Oscillation index, with both having quasi-periodic variations of 2 and 5-6 years.

  18. Hydrological drought frequency analysis of the Yom River, Thailand

    Directory of Open Access Journals (Sweden)

    Kanokporn Sawatpru

    2016-06-01

    Full Text Available The Yom River is subjected to flood and drought annually each for half a year. Several works suggested storing water during the surplus season for use in the dry season. None of them, however, quantified the precise amounts of suggested storage along the river with acceptable risk. In an attempt to quantify storage, we performed frequency analyses to find out severity of streamflow droughts along the river. A deficit volume, the amount of flow being less than a selected threshold level, was used to characterize a drought event. The Weibull distribution model was chosen for analysis after comparison with lognormal and Pareto models to the empirical distribution. Results show a more severe drought condition toward the downstream section of the river where paddy fields get larger. A large deep groundwater irrigation project located about the mid-section of the river mitigates drought along this section. Drought is more severe further downstream from the project, one reason being the baseflow is cut off by the groundwater abstraction. This presented method can help to quantify severity of hydrological drought along any river therefore its drought management can be undertaken.

  19. An analysis of non-normal Markovian extremal droughts

    Science.gov (United States)

    Sharma, T. C.

    1998-03-01

    In many arid and semi-arid environments of the world, years of extended droughts are not uncommon. The occurrence of a drought can be reflected by the deficiency of the rainfall or stream flow sequences below the long-term mean value, which is generally taken as the truncation level for the identification of the droughts. The commonly available statistics for the above processes are mean, coefficient of variation and the lag-one serial correlation coefficient, and at times some indication of the probability distribution function (pdf) of the sequences. The important elements of a drought phenomenon are the longest duration and the largest severity for a desired return period, which form a basis for designing facilities to meet exigencies arising as a result of droughts. The sequences of drought variable, such as annual rainfall or stream flow, may follow normal, log-normal or gamma distributions, and may evolve in a Markovian fashion and are bound to influence extremal values of the duration and severity. The effect of the aforesaid statistical parameters on the extremal drought durations and severity have been analysed in the present paper. A formula in terms of the extremal severity and the return period T in years has been suggested in parallel to the flood frequency formula, commonly cited in the hydrological texts.

  20. From meteorological to hydrological drought using standardised indicators

    Science.gov (United States)

    Barker, Lucy J.; Hannaford, Jamie; Chiverton, Andrew; Svensson, Cecilia

    2016-06-01

    Drought monitoring and early warning (M & EW) systems are a crucial component of drought preparedness. M & EW systems typically make use of drought indicators such as the Standardised Precipitation Index (SPI), but such indicators are not widely used in the UK. More generally, such tools have not been well developed for hydrological (i.e. streamflow) drought. To fill these research gaps, this paper characterises meteorological and hydrological droughts, and the propagation from one to the other, using the SPI and the related Standardised Streamflow Index (SSI), with the objective of improving understanding of the drought hazard in the UK. SPI and SSI time series were calculated for 121 near-natural catchments in the UK for accumulation periods of 1-24 months. From these time series, drought events were identified and for each event, the duration and severity were calculated. The relationship between meteorological and hydrological drought was examined by cross-correlating the 1-month SSI with various SPI accumulation periods. Finally, the influence of climate and catchment properties on the hydrological drought characteristics and propagation was investigated. Results showed that at short accumulation periods meteorological drought characteristics showed little spatial variability, whilst hydrological drought characteristics showed fewer but longer and more severe droughts in the south and east than in the north and west of the UK. Propagation characteristics showed a similar spatial pattern with catchments underlain by productive aquifers, mostly in the south and east, having longer SPI accumulation periods strongly correlated with the 1-month SSI. For catchments in the north and west of the UK, which typically have little catchment storage, standard-period average annual rainfall was strongly correlated with hydrological drought and propagation characteristics. However, in the south and east, catchment properties describing storage (such as base flow index, the

  1. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors

    Science.gov (United States)

    Blauhut, Veit; Stahl, Kerstin; Stagge, James Howard; Tallaksen, Lena M.; De Stefano, Lucia; Vogt, Jürgen

    2016-07-01

    Drought is one of the most costly natural hazards in Europe. Due to its complexity, drought risk, meant as the combination of the natural hazard and societal vulnerability, is difficult to define and challenging to detect and predict, as the impacts of drought are very diverse, covering the breadth of socioeconomic and environmental systems. Pan-European maps of drought risk could inform the elaboration of guidelines and policies to address its documented severity and impact across borders. This work tests the capability of commonly applied drought indices and vulnerability factors to predict annual drought impact occurrence for different sectors and macro regions in Europe and combines information on past drought impacts, drought indices, and vulnerability factors into estimates of drought risk at the pan-European scale. This hybrid approach bridges the gap between traditional vulnerability assessment and probabilistic impact prediction in a statistical modelling framework. Multivariable logistic regression was applied to predict the likelihood of impact occurrence on an annual basis for particular impact categories and European macro regions. The results indicate sector- and macro-region-specific sensitivities of drought indices, with the Standardized Precipitation Evapotranspiration Index (SPEI) for a 12-month accumulation period as the overall best hazard predictor. Vulnerability factors have only limited ability to predict drought impacts as single predictors, with information about land use and water resources being the best vulnerability-based predictors. The application of the hybrid approach revealed strong regional and sector-specific differences in drought risk across Europe. The majority of the best predictor combinations rely on a combination of SPEI for shorter and longer accumulation periods, and a combination of information on land use and water resources. The added value of integrating regional vulnerability information with drought risk prediction

  2. Hydrogeological framework, numerical simulation of groundwater flow, and effects of projected water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma

    Science.gov (United States)

    Ryter, Derek W.; Correll, Jessica S.

    2016-01-14

    This report describes a study of the hydrology, hydrogeological framework, numerical groundwater-flow models, and results of simulations of the effects of water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma. The purpose of the study was to provide analyses, including estimating equal-proportionate-share (EPS) groundwater-pumping rates and the effects of projected water use and droughts, pertinent to water management of the Beaver-North Canadian River alluvial aquifer for the Oklahoma Water Resources Board.

  3. Regionalization procedures for hydrological drought assessment in Cevennes region, France

    Science.gov (United States)

    Dewaele, Helene; Vasiliades, Lampros; Esteves, Michel; Loukas, Athanasios

    2014-05-01

    Nowadays, low flow characteristics have been extensively studied for the design of hydrotechnical projects and water resources planning and management. Information on the magnitude and frequency of low flows is very important for hydrological drought analysis at operational level in public water supply systems. In this study, several low flow characteristics are derived and analysed for hydrological drought assessment at 26 watersheds located at Cevennes area, Southern France. The reliability of two statistical regionalisation techniques (the Principal Component Analysis and the L-moment approach) is tested on low flows characteristics for defining homogeneous regions in the study area and application of the methods to ungauged watersheds. The Threshold Level Method (TLM) is applied to estimate duration and deficit of the main hydrological drought events derived from flow duration curves at the study hydrometric stations using daily streamflow data for the period 1988 to 2008. Furthermore, the two regionalisation techniques are also applied in two other low flows indices, the annual minimum 7-days flow and the annual minimum 30-days flow. Finally, a regional analysis is performed in order to understand better the hydrological behavior of each watershed and the possible interactions between the hydrological regime and the descriptive hydrogeomorphologic characteristics.

  4. Floods and droughts on the lower Vistula

    Directory of Open Access Journals (Sweden)

    Marzenna Sztobryn

    2013-06-01

    Full Text Available The study analyses floods and droughts on the lower Vistula based on the data (water levels and flow rates recorded in stations of the Institute of Meteorology and Water Management – National Research Institute (IMGW-PIB in Warsaw, Kępa Polska, Toruń and Tczew. It also includes the causes of flooding and drought in the lower Vistula with the hydrological characteristics from the years 1951–2010. The variability in maximum and minimum annual and monthly flow rates has been analysed for the aforementioned period as well. In addition, the authors have analysed changes in the shape of the flood wave after passing through the reservoir and cascade in Włocławek based on the hydrograph of May and June 2010. It has been found that the flood wave is flattened and extended. This phenomenon is favourable from the point of view of flood actions.

  5. From meteorological to hydrological drought using standardised indicators

    Directory of Open Access Journals (Sweden)

    L. J. Barker

    2015-12-01

    Full Text Available Drought monitoring and early warning (M&EW systems are a crucial component of drought preparedness. M&EW systems typically make use of drought indicators such as the Standardised Precipitation Index (SPI, but such indicators are not widely used in the UK. More generally, such tools have not been well developed for hydrological (i.e. streamflow drought. To fill these research gaps, this paper characterises meteorological and hydrological droughts, and the propagation from one to the other using the SPI and the related Standardised Streamflow Index (SSI, with the objective of improving understanding of the drought hazard in the UK. SPI and SSI time series were calculated for 121 near-natural catchments in the UK for accumulation periods of 1–24 months. From these time series, drought events were identified and for each event, the duration and severity was calculated. The relationship between meteorological and hydrological drought was examined by cross-correlating the one month SSI with various SPI accumulation periods. Finally, the influence of climate and catchment properties on the drought characteristics and propagation were investigated. Results showed that at short accumulation periods meteorological drought characteristics showed little spatial variability, whilst hydrological drought characteristics showed fewer but longer and more severe droughts in the south and east than in the north and west of the UK. Propagation characteristics showed a similar spatial pattern with catchments underlain by productive aquifers, mostly in the south and east, having longer SPI accumulation periods strongly correlated with the one-month SSI. For catchments in the north and west of the UK, which typically have little catchment storage, standard-period annual average rainfall was strongly correlated to drought and propagation characteristics. However, in the south and east, catchment properties describing storage, such as base flow index, percentage of

  6. A global evaluation of streamflow drought characteristics

    Directory of Open Access Journals (Sweden)

    A. K. Fleig

    2006-01-01

    Full Text Available How drought is characterised depends on the purpose and region of the study and the available data. In case of regional applications or global comparison a standardisation of the methodology to characterise drought is preferable. In this study the threshold level method in combination with three common pooling procedures is applied to daily streamflow series from a wide range of hydrological regimes. Drought deficit characteristics, such as drought duration and deficit volume, are derived, and the methods are evaluated for their applicability for regional studies. Three different pooling procedures are evaluated: the moving-average procedure (MA-procedure, the inter-event time method (IT-method, and the sequent peak algorithm (SPA. The MA-procedure proved to be a flexible approach for the different series, and its parameter, the averaging interval, can easily be optimised for each stream. However, it modifies the discharge series and might introduce dependency between drought events. For the IT-method it is more difficult to find an optimal value for its parameter, the length of the excess period, in particular for flashy streams. The SPA can only be recommended as pooling procedure for the selection of annual maximum series of deficit characteristics and for very low threshold levels to ensure that events occurring shortly after major events are recognized. Furthermore, a frequency analysis of deficit volume and duration is conducted based on partial duration series of drought events. According to extreme value theory, excesses over a certain limit are Generalized Pareto (GP distributed. It was found that this model indeed performed better than or equally to other distribution models. In general, the GP-model could be used for streams of all regime types. However, for intermittent streams, zero-flow periods should be treated as censored data. For catchments with frost during the winter season, summer and winter droughts have to be analysed

  7. A global evaluation of streamflow drought characteristics

    Directory of Open Access Journals (Sweden)

    A. K. Fleig

    2005-11-01

    Full Text Available How drought is characterised depends on the region under study, the purpose of the study and the available data. In case of regional applications or global comparison a standardisation of the methodology is preferable. In this study several methods to derive streamflow drought characteristics are evaluated based on their application to daily streamflow series from a wide range of hydrological regimes. Drought deficit characteristics, such as drought duration and deficit volume, are derived with the threshold level method. When it is applied to daily time series an additional pooling procedure is required and three different pooling procedures are evaluated, the moving average procedure (MA-procedure, the inter event time method (IT-method, and the sequent peak algorithm (SPA. The MA-procedure proved to be a flexible approach for the different series, and its parameter, the averaging interval, can easily be optimised for each stream. However, it modifies the discharge series and might introduce dependency between drought events. For the IT-method it is more difficult to find an optimal value for its parameter, the length of the excess period, in particular for flashy streams. The SPA can only be recommended for the selection of annual maximum series of deficit characteristics and for very low threshold levels due to the high degree of pooling. Furthermore, a frequency analysis of deficit volume and duration is conducted based on partial duration series of drought events. According to extreme value theory, excesses over a certain limit are Generalized Pareto (GP distributed. It was found that this model indeed performed better than or equally to other distribution models. In general, the GP-model could be used for streams in all regime types. However, for intermittent streams, zero-flow periods should be treated as censored data. For catchments with frost during the winter season, summer and winter droughts have to be analysed separately.

  8. 鄱阳湖流域水文变化特征成因及旱涝规律%Annual Variations in Climatic and Hydrological Processes and Related Flood and Drought Occurrences in the Poyang Lake Basin

    Institute of Scientific and Technical Information of China (English)

    郭华; HU Qi; 张奇; 王艳君

    2012-01-01

    本研究分析了1960-2008年鄱阳湖流域的气候和水文变化特征,用水量和能量平衡关系解释和印证了这些特征,并由此揭示了鄱阳湖流域水文变化特征的成因及干旱和洪涝发生的规律.得到以下主要结论:1)正常或偏湿年份鄱阳湖流域6月份容纳水量能力已达到饱和,若6-7月降水量超出正常年份,则流域超饱和,洪涝发生.长江中上游降水量7月份的异常偏多会对鄱阳湖流域的洪涝起触发和强化作用.2)鄱阳湖流域7-10月蒸发量大于降水量,特别是7-8月蒸发量大于降水量的一倍以上,所以若4-6月流域降水量少于平均年同期量的20%以上,则累积效应使秋旱发生.当初冬(11月)降水偏少时,秋旱可持续到来年的初春,形成严重的春旱.长江中上游降水量对鄱阳湖流域的春旱没有直接影响,但7-8月降水量偏少时则对秋旱起重要的强化作用.3)长江对鄱阳湖流域的水文过程和旱涝的发生、发展的影响主要在7-8月的“长江与鄱阳湖耦合作用”时期和9-10月的“弱长江作用”期.%Observational data from 1960-2008 were analyzed to obtain the mean annual climate and hydrological variations in the Poyang Lake basin, China. These variations were explained by the surface water and energy budgets, and the characteristics of these variations and the budgets were further used to deduce the rhythms of flood and drought developments in the lake basin. Some conclusions can be drawn as follows. (1) The precipitation in the lake basin increases at a large rate from January to June, reaching the annual maximum in late June. Amplifying monthly precipitation, particularly from April to June, coupled with weak surface evaporation and transpiration (ET), saturates the soils and produces a large amount of surface runoff which raises the lake level. In July, rainfall decreases sharply with clear sky and high ET, which reduces surface runoff and reverses the hydrological

  9. Mean annual water-budget components for the Island of Oahu, Hawaii, for drought conditions, 1998-2002 rainfall and 2010 land cover

    Science.gov (United States)

    Engott, John A.

    2015-01-01

    The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of drought conditions (1998-2002 rainfall) and 2010 land cover, as described in USGS Scientific Investigations Report (SIR) 2015-5010. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model subareas were generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets that characterize the spatial distribution of rainfall, fog interception, irrigation, reference evapotranspiration, direct runoff, soil type, and land cover. These spatial data sets characterize the spatial distribution of hydrologic and physical conditions that the model uses to compute groundwater recharge and other water-budget components.The model-subarea data set (387,533 polygons) was subsequently intersected with the 0-ft elevation contour of the top of the basalt aquifer to produce the 395,955 polygons in this shapefile. This metadata file describes the process of merging these spatial data sets, The shapefile attribute information associated with each polygon present an estimate of mean annual rainfall, fog interception, irrigation, septic-system leachate, runoff, canopy evaporation, actual evapotranspiration, storm-drain capture, net precipitation, total evapotranspiration, recharge, and seepage from reservoirs and cesspools. This shapefile also includes select geographic and land-cover attributes of the polygons. Brief descriptions of the water-budget components and attributes are included in this metadata file. Refer to USGS SIR 2015-5010 (doi:10.3133/sir20155010) for further details of the methods and sources used to determine these components and attributes.

  10. Modeling of hydrological drought durations and magnitudes: Experiences on Canadian streamflows

    Directory of Open Access Journals (Sweden)

    Tribeni C. Sharma

    2014-07-01

    New hydrological insights for the region: Approach based on the extreme number theorem predicted satisfactorily drought durations at monthly and annual time scales and was also found comparable to Markov chain of order-one for predicting monthly drought durations. The approach was found less satisfactory for predicting drought durations at weekly time scale but the performance was found to improve with the use of Markov chain of order-two. At annual, monthly, and weekly time scales, the relationship (magnitude = intensity × duration proved satisfactory for predicting drought magnitudes with the assumption that truncated normal distribution performs well for modeling the drought intensity. For predicting drought magnitudes at monthly and weekly time scales, the Markov chain proved more satisfactory with one order lower than the order that was used for predicting drought durations. Markov chain of order-one modeled durations satisfactorily at weekly time scale with uniform truncation levels corresponding to flows equivalent to 90% and 95%.

  11. Drought and climatic change impact on streamflow in small watersheds.

    Science.gov (United States)

    Tigkas, Dimitris; Vangelis, Harris; Tsakiris, George

    2012-12-01

    The paper presents a comprehensive, thought simple, methodology, for forecasting the annual hydrological drought, based on meteorological drought indications available early during the hydrological year. The meteorological drought of 3, 6 and 9 months is estimated using the reconnaissance drought index (RDI), whereas the annual hydrological drought is represented by the streamflow drought index (SDI). Regression equations are derived between RDI and SDI, forecasting the level of hydrological drought for the entire year in real time. Further, using a wide range of scenarios representing possible climatic changes and drought events of varying severity, nomographs are devised for estimating the annual streamflow change. The Medbasin rainfall-runoff model is used to link meteorological data to streamflow. The later approach can be useful for developing preparedness plans to combat the consequences of drought and climate change. As a case study, the area of N. Peloponnese (Greece) was selected, incorporating several small river basins.

  12. Magnitude of flood flows for selected annual exceedance probabilities for streams in Massachusetts

    Science.gov (United States)

    Zarriello, Phillip J.

    2017-05-11

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Transportation, determined the magnitude of flood flows at selected annual exceedance prob­abilities (AEPs) at streamgages in Massachusetts and from these data developed equations for estimating flood flows at ungaged locations in the State. Flood magnitudes were deter­mined for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs at 220 streamgages, 125 of which are in Massachusetts and 95 are in the adjacent States of Connecticut, New Hamp­shire, New York, Rhode Island, and Vermont. AEP flood flows were computed for streamgages using the expected moments algorithm weighted with a recently computed regional skew­ness coefficient for New England.Regional regression equations were developed to estimate the magnitude of floods for selected AEP flows at ungaged sites from 199 selected streamgages and for 60 potential explanatory basin characteristics. AEP flows for 21 of the 125 streamgages in Massachusetts were not used in the final regional regression analysis, primarily because of regulation or redundancy. The final regression equations used general­ized least squares methods to account for streamgage record length and correlation. Drainage area, mean basin elevation, and basin storage explained 86 to 93 percent of the variance in flood magnitude from the 50- to 0.2-percent AEPs, respec­tively. The estimates of AEP flows at streamgages can be improved by using a weighted estimate that is based on the magnitude of the flood and associated uncertainty from the at-site analysis and the regional regression equations. Weighting procedures for estimating AEP flows at an ungaged site on a gaged stream also are provided that improve estimates of flood flows at the ungaged site when hydrologic characteristics do not abruptly change.Urbanization expressed as the percentage of imperviousness provided some explanatory power in the regional regression; however, it was not statistically

  13. Drought and flood effects on macrobenthic communities in the estuary of Australia's largest river system

    Science.gov (United States)

    Dittmann, Sabine; Baring, Ryan; Baggalley, Stephanie; Cantin, Agnes; Earl, Jason; Gannon, Ruan; Keuning, Justine; Mayo, Angela; Navong, Nathavong; Nelson, Matt; Noble, Warwick; Ramsdale, Tanith

    2015-11-01

    Estuaries are prone to drought and flood events, which can vary in frequency and intensity depending on water management and climate change. We investigated effects of two different drought and flow situations, including a four year long drought (referred to as Millennium drought) and a major flood event, on the macrobenthic community in the estuary and coastal lagoon of the Murray Mouth and Coorong, where freshwater inflows are strictly regulated. The analysis is based on ten years of annual monitoring of benthic communities and environmental conditions in sediment and water. The objectives were to identify changes in diversity, abundance, biomass and distribution, as well as community shifts and environmental drivers for the respective responses. The Millennium drought led to decreased taxonomic richness, abundance and biomass of macrobenthos as hypersaline conditions developed and water levels dropped. More taxa were found under very high salinities than predicted from the Remane diagram. When a flood event broke the Millennium drought, recovery took longer than from a shorter drought followed by small flows. A flow index was developed to assess the biological response subject to the duration of the preceding drought and flow volumes. The index showed higher taxonomic richness, abundance and biomass at intermediate and more continuous flow conditions. Abundance increased quickly after flows were restored, but the benthic community was initially composed of small bodied organisms and biomass increased only after several years once larger organisms became more abundant. Individual densities and constancy of distribution dropped during the drought for almost all macrobenthic taxa, but recoveries after the flood were taxon specific. Distinct benthic communities were detected over time before and after the drought and flood events, and spatially, as the benthic community in the hypersaline Coorong was split off with a salinity threshold of 64 identified by LINKTREE

  14. Is worst-case scenario streamflow drought underestimated in British Columbia? A multi-century perspective for the south coast, derived from tree-rings

    Science.gov (United States)

    Coulthard, Bethany; Smith, Dan J.; Meko, David M.

    2016-03-01

    Recent streamflow droughts in south coastal British Columbia have had major socioeconomic and ecological impacts. Increasing drought severity under projected climate change poses serious water management challenges, particularly in the small coastal watersheds that serve as primary water sources for most communities in the region. A 332-year dendrohydrological record of regionalized mean summer streamflow for four watersheds is analyzed to place recent drought magnitudes in a long-term perspective. We present a novel approach for optimizing tree-ring based reconstructions in small watersheds in temperate environments, combining winter snow depth and summer drought sensitive proxies as model predictors. The reconstruction model, estimated by regression of observed flows on Tsuga mertensiana ring-width variables and a tree-ring derived paleorecord of the Palmer Drought Severity Index, explains 64% of the regionalized streamflow variance. The model is particularly accurate at estimating lowest flow events, and provides the strongest annually resolved paleohydrological record in British Columbia. The extended record suggests that since 1658 sixteen natural droughts have occurred that were more extreme than any within the instrumental period. Flow-duration curves show more severe worst-case scenario droughts and a higher probability of those droughts in the long-term reconstruction than in the hydrometric data. Such curves also highlight the value of dendrohydrology for probabilistic drought assessment. Our results suggest current water management strategies based on worst-case scenarios from historical gauge data likely underestimate the potential magnitudes of natural droughts. If the low-flow magnitudes anticipated under climate change co-occur with lowest possible natural flows, streamflow drought severities in small watersheds in south coastal British Columbia could exceed any of those experienced in the past ∼350 years.

  15. Effects of Planting Density on Transpiration, Stem Flow and Interception for Two Clones Differing in Drought Tolerance in a High Productivity Eucalyptus Plantation in Brazil

    Science.gov (United States)

    Hubbard, R. M.; Hakemada, R.; Ferraz, S.

    2015-12-01

    Eucalypt plantations cover about 20 M hectares worldwide and expansion is expected to mainly occur in marginal growing areas where dry conditions may lead to water conflicts. One of the principal reasons for the expansion of Eucalyptus plantations is rapid wood growth but these forests also transpire large amounts of water. Genotype selection and planting density, are key factors regulating carbon and water tradeoffs at a stand scale, but few studies have examined these simultaneously especially in highly productive clonal plantations. Our goal in this study was to examine the effects of planting density on carbon and water interactions using a drought tolerant and drought sensitive eucalyptus clone. This work is part of a larger study (TECHS project - Tolerance of Eucalyptus Clones to Hydric and Thermal Stresses) and is located in a flat Oxisol in southeast of Brazil. A drought tolerant (E. grandis x E. camaldulensis (Grancam) and drought sensitive clone E. grandis x E. urophylla (Urograndis) were planted at four densities ranging from 600 to 3.000 stem ha-1. We measured transpiration using thermal heat dissipation probes, wood growth, canopy interception and stemflow during a full year (21 to 33 months old). Precipitation during the study period was 738 mm. Independently of genetics, growth increased with increasing density. Transpiration also increased with planting density and ranged from 515-595 mm at wider spacing to 735-978 mm at tighter spacing. Interception increased with planting density representing 18-22% of precipitation versus 13-14% in wider spacing while stem flow represented 2-5% in denser spacing and 1-2% at broader spacing. When density was higher than 1.250 and 1.750 stems ha-1 in Urograndis and Grancam clones, respectively, the water balance were negative. On a stand scale, results show both genetics and spacing can be used as silvicultural tools to better manage the tradeoff between wood growth and water consumption.

  16. Drought Water Right Curtailment

    Science.gov (United States)

    Walker, W.; Tweet, A.; Magnuson-Skeels, B.; Whittington, C.; Arnold, B.; Lund, J. R.

    2016-12-01

    California's water rights system allocates water based on priority, where lower priority, "junior" rights are curtailed first in a drought. The Drought Water Rights Allocation Tool (DWRAT) was developed to integrate water right allocation models with legal objectives to suggest water rights curtailments during drought. DWRAT incorporates water right use and priorities with a flow-forecasting model to mathematically represent water law and hydrology and suggest water allocations among water rights holders. DWRAT is compiled within an Excel workbook, with an interface and an open-source solver. By implementing California water rights law as an algorithm, DWRAT provides a precise and transparent framework for the complicated and often controversial technical aspects of curtailing water rights use during drought. DWRAT models have been developed for use in the Eel, Russian, and Sacramento river basins. In this study, an initial DWRAT model has been developed for the San Joaquin watershed, which incorporates all water rights holders in the basin and reference gage flows for major tributaries. The San Joaquin DWRAT can assess water allocation reliability by determining probability of rights holders' curtailment for a range of hydrologic conditions. Forecasted flow values can be input to the model to provide decision makers with the ability to make curtailment and water supply strategy decisions. Environmental flow allocations will be further integrated into the model to protect and improve ecosystem water reliability.

  17. The Influences of Drought and Land-Cover Conversion on Inter-Annual Variation of NPP in the Three-North Shelterbelt Program Zone of China Based on MODIS Data.

    Science.gov (United States)

    Peng, Dailiang; Wu, Chaoyang; Zhang, Bing; Huete, Alfredo; Zhang, Xiaoyang; Sun, Rui; Lei, Liping; Huang, Wenjing; Liu, Liangyun; Liu, Xinjie; Li, Jun; Luo, Shezhou; Fang, Bin

    2016-01-01

    Terrestrial ecosystems greatly contribute to carbon (C) emission reduction targets through photosynthetic C uptake.Net primary production (NPP) represents the amount of atmospheric C fixed by plants and accumulated as biomass. The Three-North Shelterbelt Program (TNSP) zone accounts for more than 40% of China's landmass. This zone has been the scene of several large-scale ecological restoration efforts since the late 1990s, and has witnessed significant changes in climate and human activities.Assessing the relative roles of different causal factors on NPP variability in TNSP zone is very important for establishing reasonable local policies to realize the emission reduction targets for central government. In this study, we examined the relative roles of drought and land cover conversion(LCC) on inter-annual changes of TNSP zone for 2001-2010. We applied integrated correlation and decomposition analyses to a Standardized Evapotranspiration Index (SPEI) and MODIS land cover dataset. Our results show that the 10-year average NPP within this region was about 420 Tg C. We found that about 60% of total annual NPP over the study area was significantly correlated with SPEI (p<0.05). The LCC-NPP relationship, which is especially evident for forests in the south-central area, indicates that ecological programs have a positive impact on C sequestration in the TNSP zone. Decomposition analysis generally indicated that the contributions of LCC, drought, and other Natural or Anthropogenic activities (ONA) to changes in NPP generally had a consistent distribution pattern for consecutive years. Drought and ONA contributed about 74% and 23% to the total changes in NPP, respectively, and the remaining 3% was attributed to LCC. Our results highlight the importance of rainfall supply on NPP variability in the TNSP zone.

  18. The Influences of Drought and Land-Cover Conversion on Inter-Annual Variation of NPP in the Three-North Shelterbelt Program Zone of China Based on MODIS Data.

    Directory of Open Access Journals (Sweden)

    Dailiang Peng

    Full Text Available Terrestrial ecosystems greatly contribute to carbon (C emission reduction targets through photosynthetic C uptake.Net primary production (NPP represents the amount of atmospheric C fixed by plants and accumulated as biomass. The Three-North Shelterbelt Program (TNSP zone accounts for more than 40% of China's landmass. This zone has been the scene of several large-scale ecological restoration efforts since the late 1990s, and has witnessed significant changes in climate and human activities.Assessing the relative roles of different causal factors on NPP variability in TNSP zone is very important for establishing reasonable local policies to realize the emission reduction targets for central government. In this study, we examined the relative roles of drought and land cover conversion(LCC on inter-annual changes of TNSP zone for 2001-2010. We applied integrated correlation and decomposition analyses to a Standardized Evapotranspiration Index (SPEI and MODIS land cover dataset. Our results show that the 10-year average NPP within this region was about 420 Tg C. We found that about 60% of total annual NPP over the study area was significantly correlated with SPEI (p<0.05. The LCC-NPP relationship, which is especially evident for forests in the south-central area, indicates that ecological programs have a positive impact on C sequestration in the TNSP zone. Decomposition analysis generally indicated that the contributions of LCC, drought, and other Natural or Anthropogenic activities (ONA to changes in NPP generally had a consistent distribution pattern for consecutive years. Drought and ONA contributed about 74% and 23% to the total changes in NPP, respectively, and the remaining 3% was attributed to LCC. Our results highlight the importance of rainfall supply on NPP variability in the TNSP zone.

  19. Numerical Simulation of Groundwater Flow, Resource Optimization, and Potential Effects of Prolonged Drought for the Citizen Potawatomi Nation Tribal Jurisdictional Area, Central Oklahoma

    Science.gov (United States)

    Ryter, Derek W.; Kunkel, Christopher D.; Peterson, Steven M.; Traylor, Jonathan P.

    2015-08-13

    A hydrogeological study including two numerical groundwater-flow models was completed for the Citizen Potawatomi Nation Tribal Jurisdictional Area of central Oklahoma. One numerical groundwater-flow model, the Citizen Potawatomi Nation model, encompassed the jurisdictional area and was based on the results of a regional-scale hydrogeological study and numerical groundwater flow model of the Central Oklahoma aquifer, which had a geographic extent that included the Citizen Potawatomi Nation Tribal Jurisdictional Area. The Citizen Potawatomi Nation numerical groundwater-flow model included alluvial aquifers not in the original model and improved calibration using automated parameter-estimation techniques. The Citizen Potawatomi Nation numerical groundwater-flow model was used to analyze the groundwater-flow system and the effects of drought on the volume of groundwater in storage and streamflow in the North Canadian River. A more detailed, local-scale inset model was constructed from the Citizen Potawatomi Nation model to estimate available groundwater resources for two Citizen Potawatomi Nation economic development zones near the North Canadian River, the geothermal supply area and the Iron Horse Industrial Park.

  20. Estimation of the annual flow and stock of marine debris in South Korea for management purposes.

    Science.gov (United States)

    Jang, Yong Chang; Lee, Jongmyoung; Hong, Sunwook; Mok, Jin Yong; Kim, Kyoung Shin; Lee, Yun Jeong; Choi, Hyun-Woo; Kang, Hongmook; Lee, Sukhui

    2014-09-15

    The annual flow and stock of marine debris in the Sea of Korea was estimated by summarizing previous survey results and integrating them with other relevant information to underpin the national marine debris management plan. The annual inflow of marine debris was estimated to be 91,195 tons [32,825 tons (36% of the total) from sources on land and 58,370 tons (64%) from ocean sources]. As of the end of 2012, the total stock of marine debris on all South Korean coasts (12,029 tons), the seabed (137,761 tons), and in the water column (2451 tons) was estimated to be 152,241 tons. In 2012, 42,595 tons of marine debris was collected from coasts, seabeds, and the water column. This is a very rare case study that estimated the amount of marine debris at a national level, the results of which provide essential information for the development of efficient marine debris management policies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The European 2015 drought from a climatological perspective

    Science.gov (United States)

    Ionita-Scholz, Monica; Tallaksen, Lena; Kingston, Daniel; Stagge, James

    2016-04-01

    The summer drought of 2015 affected a large portion of continental Europe and was one of the worst droughts since the heat wave of 2003. The summer was characterized by exceptionally high temperatures in many parts of the central and eastern part of Europe, with daily maximum temperatures 2 °C warmer compared to the seasonal mean (1971-2000) over most of western Europe, and more than 3 °C warmer in the east. Combined with a lack of precipitation, these conditions resulted in high evapotranspiration, strongly affecting soil moisture content and vegetation. Further, it led to record low river flows in several major European rivers, e.g. the Elbe River recorded its lowest flow in the last 60 years. Understanding how the 2015 drought event developed and the factors that contributed to it may help improve seasonal forecasting models and assess the risk of this kind of event occurring in the future. This paper analyses the European summer drought of 2015 by placing it into historical context with past historical droughts and by discussing the role of the main contributing factors controlling the occurrence and persistence of this event: temperature and precipitation anomalies, blocking episodes and sea surface temperatures. Large parts of central Europe experienced a severe lack of precipitation, with widespread areas of negative 3-month Standardized Precipitation Index (SPI3) values present from May onwards. During summer, values dropped as low as -3 in Eastern Europe - corresponding to an annual probability of 0.1. Similar to the 2003 summer drought, the upper level atmospheric circulation over continental Europe was characterized by a large positive 500hPa geopotential height anomaly bordered by a large negative anomaly to the north and west (i.e. over the central North Atlantic Ocean extending to northern Scandinavia) and another center of positive geopotential height anomalies over Greenland and northern Canada. Simultaneously, summer sea surface temperature (SST

  2. Methods for estimating selected low-flow frequency statistics and mean annual flow for ungaged locations on streams in North Georgia

    Science.gov (United States)

    Gotvald, Anthony J.

    2017-01-13

    The U.S. Geological Survey, in cooperation with the Georgia Department of Natural Resources, Environmental Protection Division, developed regional regression equations for estimating selected low-flow frequency and mean annual flow statistics for ungaged streams in north Georgia that are not substantially affected by regulation, diversions, or urbanization. Selected low-flow frequency statistics and basin characteristics for 56 streamgage locations within north Georgia and 75 miles beyond the State’s borders in Alabama, Tennessee, North Carolina, and South Carolina were combined to form the final dataset used in the regional regression analysis. Because some of the streamgages in the study recorded zero flow, the final regression equations were developed using weighted left-censored regression analysis to analyze the flow data in an unbiased manner, with weights based on the number of years of record. The set of equations includes the annual minimum 1- and 7-day average streamflow with the 10-year recurrence interval (referred to as 1Q10 and 7Q10), monthly 7Q10, and mean annual flow. The final regional regression equations are functions of drainage area, mean annual precipitation, and relief ratio for the selected low-flow frequency statistics and drainage area and mean annual precipitation for mean annual flow. The average standard error of estimate was 13.7 percent for the mean annual flow regression equation and ranged from 26.1 to 91.6 percent for the selected low-flow frequency equations.The equations, which are based on data from streams with little to no flow alterations, can be used to provide estimates of the natural flows for selected ungaged stream locations in the area of Georgia north of the Fall Line. The regression equations are not to be used to estimate flows for streams that have been altered by the effects of major dams, surface-water withdrawals, groundwater withdrawals (pumping wells), diversions, or wastewater discharges. The regression

  3. Regression Method for Estimating Long-Term Mean Annual Ground-Water Recharge Rates from Base Flow in Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.

    2008-01-01

    A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370

  4. The annual pattern of sap flow in tow Eucalyptus species established in the vicinity of gold-mine tailings dams in central South Africa

    CSIR Research Space (South Africa)

    Dye, P

    2016-08-01

    Full Text Available of contaminants. The annual pattern of hourly sap flow in four contiguous Eucalyptus dunnii trees (aged three years) was followed over a full year in a species trial situated near Carltonville. The annual pattern of hourly sap flow was also recorded in four...

  5. Diurnal and Seasonal Changes in Stem Radius Increment and Sap Flow Density Indicate Different Responses of Two Co-existing Oak Species to Drought Stress

    Directory of Open Access Journals (Sweden)

    MÉSZÁROS, Ilona

    2011-01-01

    Full Text Available Using continuous monitoring of stem radius combined with sap flow measurements weassessed the effects of environmental conditions on tree radial growth and water status of two coexistingoak species (Quercus petraea and Quercus cerris at high resolution time in growingseasons of 2008 and 2009. The forest (95–100 yr is situated in a xeric site in the transition zonebetween forested and forest-steppe regions in north-eastern Hungary, Bükk mountains (47o90’N,20o46’E, elevation 320–340 m a.s.l.. Weather conditions in the growing season of 2008 (totalrainfall 354 mm, mean daily temperature 17.0 oC was less extreme than in 2009 (total rainfall299 mm, temperature 17.9 oC. Rainfall strongly determined the course of radial growth incrementin trees. Radial growth of trees was limited in 2009 due to the drought in spring. The maximumradial increment of both species was achieved three weeks earlier (4th week of June than in 2008(4th week of July. We used dendrometer monitoring data for estimation of stem (tree waterdeficit (W by measuring water-related changes in stem radius (Zweifel et al. 2005. Themagnitude of tree water deficit variation (W was always smaller in Q. cerris than in Q. petraea.In contrast, Quercus cerris always exhibited larger daytime averages and maxima of sap flowdensity. In August of 2009 when drought became severe there were larger increases in tree waterdeficit (W (50–55 % in both species compared to July as it could be expected from the extentof decreases in sap flow density (24–28%. Our data suggested that due to the low SWC thetranspiration was supported mainly from the inner water storage of trees during prolonged droughtwhich resulted in high stem water deficit (W.

  6. Comparison of two hydrological drought indices

    Directory of Open Access Journals (Sweden)

    Abhishek A. Pathak

    2016-09-01

    Full Text Available Drought is a naturally occurring periodical event associated with significant decrease of water availability over a region. Drought, being a complex in nature it is difficult to define, quantify and monitor. Drought is mainly classified into meteorological drought, hydrological drought and agricultural drought. Among these classifications, assessment of hydrological drought has more importance in the water resources management perspective. Objective of this study is to analyse multi-time step hydrological drought by Stream flow Drought Index (SDI and Standardized Runoff Index (SRI. To obtain these indices, 36 years (1972–2007 of daily discharge data, measured in Ghataprabha river basin (a sub basin of Krishna river is considered. Results of both indices indicate moderate drought between 1986–1988 and 2001–2005 continuously. While comparing both indices, there is a good correlation between 9-month SRI and SDI is observed and it increases for 12-month SRI and SDI. This study may help to choose the appropriate drought indices among SRI and SDI for different lengths of drought studies.

  7. Risk analysis and evaluation of agricultural drought disaster in the major grain-producing areas, China

    Directory of Open Access Journals (Sweden)

    Zongtang Xie

    2016-09-01

    Full Text Available The analysis and evaluation of agricultural drought risk can assist in reducing regional disasters and agricultural drought losses. Because of the uncertainties and incomplete agricultural drought information, this paper employed an information diffusion technology and information matrix to identify a drought disaster risk distribution and to quantify the relationship between the annual drought-affected rate and the grain production losses in China's major grain-producing areas. From the assessment results, provincial drought disaster risk spatial distribution maps for each major grain-producing area in China were obtained. These risk patterns showed that the probability of drought fell when the annual drought-covered rate and the annual drought-affected rate increased, and that the high risk areas were located primarily in China's northern and central provinces. These results can provide the basis for the development of effective drought mitigation strategies which would be able to inform possible drought situations and allow for easier decision-making on drought resistance strategies. The fuzzy relationship between the annual drought-affected rate and the drought-caused grain production losses provides vital information for the development of disaster compensation plans. Furthermore, the results of this study indicated that the proposed methods had superior detection stability and higher precision. We hope that by conducting such agricultural drought risk analysis, the results are able to provide the basis for the development of drought mitigation strategies to reduce future losses.

  8. A stream-gaging network analysis for the 7-Day, 10-year annual low flow in New Hampshire streams

    Science.gov (United States)

    Flynn, Robert H.

    2003-01-01

    The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations. A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990. To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the

  9. Non-stationarity in annual and seasonal series of peak flow and precipitation in the UK

    Directory of Open Access Journals (Sweden)

    I. Prosdocimi

    2013-10-01

    Full Text Available When designing or maintaining an hydraulic structure, an estimate of the frequency and magnitude of extreme events is required. The most common methods to obtain such estimates rely on the assumption of stationarity, i.e. the assumption that the process under study is not changing. The public perception and worry of a changing climate have led to a wide debate on the validity of this assumption. In this work trends for annual and seasonal maxima in peak river flow and catchment-average daily rainfall are explored. Assuming a 2-parameters log-normal distribution, a linear regression model is applied, allowing the mean of the distribution to vary with time. For the river flow data, the linear model is extended to include an additional variable, the 99th percentile of the daily rainfall for a year. From the fitted models, dimensionless magnification factors are estimated and plotted on a map, shedding light on whether or not geographical coherence can be found in the significant changes. The implications of the identified trends from a decision making perspective are then discussed, in particular with regard to the Type I and Type II error probabilities. One striking feature of the estimated trends is that the high variability found in the data leads to very inconclusive test results. Indeed, for most stations it is impossible to make a statement regarding whether or not the current design standards for the 2085 horizon can be considered precautionary. The power of tests on trends is further discussed in the light of statistical power analysis and sample size calculations.

  10. Estimating drought risk across Europe from reported drought impacts, hazard indicators and vulnerability factors

    Science.gov (United States)

    Blauhut, V.; Stahl, K.; Stagge, J. H.; Tallaksen, L. M.; De Stefano, L.; Vogt, J.

    2015-12-01

    Drought is one of the most costly natural hazards in Europe. Due to its complexity, drought risk, the combination of the natural hazard and societal vulnerability, is difficult to define and challenging to detect and predict, as the impacts of drought are very diverse, covering the breadth of socioeconomic and environmental systems. Pan-European maps of drought risk could inform the elaboration of guidelines and policies to address its documented severity and impact across borders. This work (1) tests the capability of commonly applied hazard indicators and vulnerability factors to predict annual drought impact occurrence for different sectors and macro regions in Europe and (2) combines information on past drought impacts, drought hazard indicators, and vulnerability factors into estimates of drought risk at the pan-European scale. This "hybrid approach" bridges the gap between traditional vulnerability assessment and probabilistic impact forecast in a statistical modelling framework. Multivariable logistic regression was applied to predict the likelihood of impact occurrence on an annual basis for particular impact categories and European macro regions. The results indicate sector- and macro region specific sensitivities of hazard indicators, with the Standardised Precipitation Evapotranspiration Index for a twelve month aggregation period (SPEI-12) as the overall best hazard predictor. Vulnerability factors have only limited ability to predict drought impacts as single predictor, with information about landuse and water resources as best vulnerability-based predictors. (3) The application of the "hybrid approach" revealed strong regional (NUTS combo level) and sector specific differences in drought risk across Europe. The majority of best predictor combinations rely on a combination of SPEI for shorter and longer aggregation periods, and a combination of information on landuse and water resources. The added value of integrating regional vulnerability information

  11. Mean annual water-budget components for the Island of Oahu, Hawaii, for drought conditions, 1998-2002 rainfall and 2010 land cover

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu,...

  12. Determination of limited drought flow in main control section of Weihe River basin%渭河流域主要控制断面旱限流量确定

    Institute of Scientific and Technical Information of China (English)

    张艳玲; 孙夏利; 顾钊

    2013-01-01

    Drought limit flow is a hydrological characteristics index to evaluate river dry levels and an important basis to start the response level of drought emergency and to do a good job in drought water emergency scheduling.The paper calculated the intake discharge by analyzing the water demand of hydrological downstream cross section.Taking the sum of intake discharge and channel ecological discharge as the initial value,the drought limit discharge was comprehensively determined.Based on the analysis of drought limit flow in the main control section of Weihe River basin,the drought limit flows of tuoshi,Weijiabu,Xianyang,Litong,Huaxian are 6.0,11.0,10.0,50.0,12.0 m3/s,the result can provide reliable basis for the scientific,reasonable judgment of hydrologic drought level and drought relief command decision.%旱限流量是评估河流干旱等级的水文特征指标,是启动抗旱应急响应等级的重要依据,是做好抗旱水量应急调度的重要基础.依据水文断面下游主要取用水需求,分析计算各取水口取用水量,以取用水量与河道生态流量之和作为初值,综合确定旱限流量.通过对渭河流域主要控制断面旱限流量的分析研究,确定拓石、魏家堡、咸阳、临潼、华县的旱限流量分别为:16.0、11.0、10.0、50.0、12.0 m3/s,为科学合理判断水文干旱等级及进行抗旱指挥决策提供可靠依据.

  13. The twenty-first century Colorado River hot drought and implications for the future

    Science.gov (United States)

    Udall, Bradley; Overpeck, Jonathan

    2017-03-01

    Between 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. At least one-sixth to one-half (average at one-third) of this loss is due to unprecedented temperatures (0.9°C above the 1906-1999 average), confirming model-based analysis that continued warming will likely further reduce flows. Whereas it is virtually certain that warming will continue with additional emissions of greenhouse gases to the atmosphere, there has been no observed trend toward greater precipitation in the Colorado Basin, nor are climate models in agreement that there should be a trend. Moreover, there is a significant risk of decadal and multidecadal drought in the coming century, indicating that any increase in mean precipitation will likely be offset during periods of prolonged drought. Recently published estimates of Colorado River flow sensitivity to temperature combined with a large number of recent climate model-based temperature projections indicate that continued business-as-usual warming will drive temperature-induced declines in river flow, conservatively -20% by midcentury and -35% by end-century, with support for losses exceeding -30% at midcentury and -55% at end-century. Precipitation increases may moderate these declines somewhat, but to date no such increases are evident and there is no model agreement on future precipitation changes. These results, combined with the increasing likelihood of prolonged drought in the river basin, suggest that future climate change impacts on the Colorado River flows will be much more serious than currently assumed, especially if substantial reductions in greenhouse gas emissions do not occur.Plain Language SummaryBetween 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. Approximately one-third of the flow loss is due to high temperatures now common in the basin, a result of human caused climate change

  14. Response of ecosystem productivity to dry/wet conditions indicated by different drought indices.

    Science.gov (United States)

    Wang, Haiyan; He, Bin; Zhang, Yafeng; Huang, Ling; Chen, Ziyue; Liu, Junjie

    2017-08-28

    Various climatic and hydrological variables such as precipitation, soil moisture, stream flow, and water level can be used to assess drought conditions, however, the response of ecosystem productivity to such metrics is not very clear. In this study, we examined the sensitivity of GPP anomalies to five drought indicators: the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), deficit of soil moisture (DSM), and the difference between precipitation (P) and evapotranspiration (ET) (D(P-ET)). The global spatial distributions of drying and wetting trends from 2000 to 2014 determined by these five indices were similar. Additionally, the percent of drought-impacted areas decreased over the study period, indicating a reduction in drought conditions. GPP increased over the study period in the Northern Hemisphere (NH) but decreased in the Southern Hemisphere (SH), resulting in a net increase in global GPP. GPP anomalies were more sensitive to drought indices in the SH than in the NH. Among the five indices, GPP anomalies were most closely correlated with SPI in the NH (R=0.60, P<0.05) and SPEI in the SH (R=0.93, P<0.01). Regionally speaking, annual and seasonal GPP anomalies were most sensitive to DSM and PDSI, highlighting the importance of soil moisture observations to regional drought monitoring and assessment. The results of this study are important for evaluating the impacts of drought on ecosystem production and the global carbon cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling.

    Science.gov (United States)

    Hoover, David L; Rogers, Brendan M

    2016-05-01

    Climate extremes, such as drought, may have immediate and potentially prolonged effects on carbon cycling. Grasslands store approximately one-third of all terrestrial carbon and may become carbon sources during droughts. However, the magnitude and duration of drought-induced disruptions to the carbon cycle, as well as the mechanisms responsible, remain poorly understood. Over the next century, global climate models predict an increase in two types of drought: chronic but subtle 'press-droughts', and shorter term but extreme 'pulse-droughts'. Much of our current understanding of the ecological impacts of drought comes from experimental rainfall manipulations. These studies have been highly valuable, but are often short term and rarely quantify carbon feedbacks. To address this knowledge gap, we used the Community Land Model 4.0 to examine the individual and interactive effects of pulse- and press-droughts on carbon cycling in a mesic grassland of the US Great Plains. A series of modeling experiments were imposed by varying drought magnitude (precipitation amount) and interannual pattern (press- vs. pulse-droughts) to examine the effects on carbon storage and cycling at annual to century timescales. We present three main findings. First, a single-year pulse-drought had immediate and prolonged effects on carbon storage due to differential sensitivities of ecosystem respiration and gross primary production. Second, short-term pulse-droughts caused greater carbon loss than chronic press-droughts when total precipitation reductions over a 20-year period were equivalent. Third, combining pulse- and press-droughts had intermediate effects on carbon loss compared to the independent drought types, except at high drought levels. Overall, these results suggest that interannual drought pattern may be as important for carbon dynamics as drought magnitude and that extreme droughts may have long-lasting carbon feedbacks in grassland ecosystems.

  16. Drought Monitoring for Rice Production in Cambodia

    Directory of Open Access Journals (Sweden)

    Nyda Chhinh

    2015-10-01

    Full Text Available Rice production underpins the national economy and the most rural livelihoods in Cambodia, but it is negatively impacted by repeated droughts. The research reported on in this paper focuses on relationships between drought occurrences in Cambodia’s most drought-prone province (Kampong Speu and (i damage to the annual rice harvest between 1994 and 2011, and (ii the Niño 3.4 index. Droughts were identified using the Standardised Precipitation Index (SPI. In seven of the years between 1994 and 2006 droughts damaged >1000 ha of rice in the Kampong Speu province. Furthermore, in 11 years >200 ha of rice were damaged. A critical success index of 0.66 obtained for an analysis of SPI-defined drought and area rice damage in the province indicates a strong statistical relationship. A statistically significant correlation (r = −0.455 was achieved between Niño 3.4 and 12-month SPI values lagged by three months, this indicates the importance of ENSO linkages in explaining drought in this region. Late season droughts lead to greater rice damage than early- and mid-season droughts.

  17. Multivariate drought frequency estimation using copula method in Southwest China

    Science.gov (United States)

    Hao, Cui; Zhang, Jiahua; Yao, Fengmei

    2015-12-01

    Drought over Southwest China occurs frequently and has an obvious seasonal characteristic. Proper management of regional droughts requires knowledge of the expected frequency or probability of specific climate information. This study utilized k-means classification and copulas to demonstrate the regional drought occurrence probability and return period based on trivariate drought properties, i.e., drought duration, severity, and peak. A drought event in this study was defined when 3-month Standardized Precipitation Evapotranspiration Index (SPEI) was less than -0.99 according to the regional climate characteristic. Then, the next step was to classify the region into six clusters by k-means method based on annual and seasonal precipitation and temperature and to establish marginal probabilistic distributions for each drought property in each sub-region. Several copula types were selected to test the best fit distribution, and Student t copula was recognized as the best one to integrate drought duration, severity, and peak. The results indicated that a proper classification was important for a regional drought frequency analysis, and copulas were useful tools in exploring the associations of the correlated drought variables and analyzing drought frequency. Student t copula was a robust and proper function for drought joint probability and return period analysis, which is important for analyzing and predicting the regional drought risks.

  18. Multivariate drought frequency estimation using copula method in Southwest China

    Science.gov (United States)

    Hao, Cui; Zhang, Jiahua; Yao, Fengmei

    2017-02-01

    Drought over Southwest China occurs frequently and has an obvious seasonal characteristic. Proper management of regional droughts requires knowledge of the expected frequency or probability of specific climate information. This study utilized k-means classification and copulas to demonstrate the regional drought occurrence probability and return period based on trivariate drought properties, i.e., drought duration, severity, and peak. A drought event in this study was defined when 3-month Standardized Precipitation Evapotranspiration Index (SPEI) was less than -0.99 according to the regional climate characteristic. Then, the next step was to classify the region into six clusters by k-means method based on annual and seasonal precipitation and temperature and to establish marginal probabilistic distributions for each drought property in each sub-region. Several copula types were selected to test the best fit distribution, and Student t copula was recognized as the best one to integrate drought duration, severity, and peak. The results indicated that a proper classification was important for a regional drought frequency analysis, and copulas were useful tools in exploring the associations of the correlated drought variables and analyzing drought frequency. Student t copula was a robust and proper function for drought joint probability and return period analysis, which is important for analyzing and predicting the regional drought risks.

  19. Increasing Hydrologic Drought Severity in Northwestern U.S. Mountain Rivers: Causal Influences and Implications for Drought Projection

    Science.gov (United States)

    Luce, Charles; Kormos, Patrick; Wenger, Seth; Berghuijs, Wouter

    2017-04-01

    One of the expected consequences of a warming climate in the snow covered mountains of the western U.S. is an earlier snowmelt runoff pulse, leading to longer recession times through a dry summer and, consequently, lower summer low-flows. Given the historical decline in snowpacks and advancing timing of streamflows in the region, we tested for trends in low flows in free-flowing rivers in the region since the late 1940s, and further examined the degree to which the low flows have been affected by temperature-driven trends in snowmelt timing versus trends driven by precipitation changes that have also been observed in the region. We found statistically significant declines in monthly mean flows in late summer as well as in 7Q10, the annual weekly minimum flow with a 10-year return interval (after correcting for autocorrelation in time series and testing for field significance). We further examined the relative contribution of temperature driven timing changes versus precipitation trends affecting low flows. While temperature effects are observable, precipitation declines have outweighed the effects of earlier snowmelt on low flows on all rivers so far. The finding is given more weight by contrasting the geography of snowpack sensitivity with basins where drought has become more severe. Given that the region has experienced about 1°C in warming and a 20% decline in mountain precipitation over that period, it is not a surprising finding. An important implication is that water supply and water quality managers cannot interpret historical trends in low-flows as direct analogs for continuing low flow declines related to warming, rather there is a need to explicitly consider uncertainty in future precipitation and local snowpack sensitivity to warming. Related implications relative to drought impacts on forests are discussed.

  20. Assessing the changes of return periods of floods and droughts in response to climate change using a hydrologic modeling approach

    Science.gov (United States)

    Chien, H.

    2015-12-01

    When accessing the impacts of climate change on water resources, it is important to estimate changes in the frequencies and magnitudes of projected floods and droughts in response to climate change, considering that most disasters result from these hydrological extremes. The objective of this study is to estimate the changes of return periods of floods and droughts based on projected future streamflows in the Illinois River Watershed according to various climate change models. Future streamflows are simulated by combining data from 59 climate model scenarios with the Soil and Water Assessment Tool (SWAT) hydrologic model. Subsequently, a Gumbel distribution (Extreme Value Type I) is fitted to the annual maximum simulated streamflow to derive the number of return periods of future hydrological extremes. The annual minimum 7-day average streamflow has been adopted for drought analysis. A Weibull distribution (Extreme Value Type Ш) is used to analyze the return periods of low flows. The 10-year and 100-year return periods of floods and droughts from 2020 to 2049 and from 2070 to 2099 are analyzed in comparison to streamflows from 1975 to 2004. Results indicate that average streamflow predicted from 33 (2020-2049) and 29 (2070-2099) climate scenarios are expected to decrease. The majority of the 10-year and 100-year return periods of floods in 2020-2049 and 2070-2099 increase; however 10-year and 100-year return periods for droughts tend to decrease.

  1. Quantifying drylands' drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime.

    Science.gov (United States)

    Ruppert, Jan C; Harmoney, Keith; Henkin, Zalmen; Snyman, Hennie A; Sternberg, Marcelo; Willms, Walter; Linstädter, Anja

    2015-03-01

    Projected global change will increase the level of land-use and environmental stressors such as drought and grazing, particularly in drylands. Still, combined effects of drought and grazing on plant production are poorly understood, thus hampering adequate projections and development of mitigation strategies. We used a large, cross-continental database consisting of 174 long-term datasets from >30 dryland regions to quantify ecosystem responses to drought and grazing with the ultimate goal to increase functional understanding in these responses. Two key aspects of ecosystem stability, resistance to and recovery after a drought, were evaluated based on standardized and normalized aboveground net primary production (ANPP) data. Drought intensity was quantified using the standardized precipitation index. We tested effects of drought intensity, grazing regime (grazed, ungrazed), biome (grassland, shrubland, savanna) or dominant life history (annual, perennial) of the herbaceous layer to assess the relative importance of these factors for ecosystem stability, and to identify predictable relationships between drought intensity and ecosystem resistance and recovery. We found that both components of ecosystem stability were better explained by dominant herbaceous life history than by biome. Increasing drought intensity (quasi-) linearly reduced ecosystem resistance. Even though annual and perennial systems showed the same response rate to increasing drought intensity, they differed in their general magnitude of resistance, with annual systems being ca. 27% less resistant. In contrast, systems with an herbaceous layer dominated by annuals had substantially higher postdrought recovery, particularly when grazed. Combined effects of drought and grazing were not merely additive but modulated by dominant life history of the herbaceous layer. To the best of our knowledge, our study established the first predictive, cross-continental model between drought intensity and drought

  2. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa.

    Science.gov (United States)

    Williams, David J; Gutiérrez, José-María; Calvete, Juan J; Wüster, Wolfgang; Ratanabanangkoon, Kavi; Paiva, Owen; Brown, Nicholas I; Casewell, Nicholas R; Harrison, Robert A; Rowley, Paul D; O'Shea, Mark; Jensen, Simon D; Winkel, Kenneth D; Warrell, David A

    2011-08-24

    recently evolved from this discipline, offering fresh hope for the victims of snakebites by providing an exciting insight into the complexities, nature, fundamental properties and significance of venom constituents. Such a rational approach brings with it the potential to design new immunising mixtures from which to raise potent antivenoms with wider therapeutic ranges. This addresses a major practical limitation in antivenom use recognised since the beginning of the 20th century: the restriction of therapeutic effectiveness to the specific venom immunogen used in production. Antivenomic techniques enable the interactions between venoms and antivenoms to be examined in detail, and if combined with functional assays of specific activity and followed up by clinical trials of effectiveness and safety, can be powerful tools with which to evaluate the suitability of current and new antivenoms for meeting urgent regional needs. We propose two mechanisms through which the Global Snakebite Initiative might seek to end the antivenom drought in Africa and Asia: first by establishing a multidisciplinary, multicentre, international collaboration to evaluate currently available antivenoms against the venoms of medically important snakes from specific nations in Africa and Asia using a combination of proteomic, antivenomic and WHO-endorsed preclinical assessment protocols, to provide a validated evidence base for either recommending or rejecting individual products; and secondly by bringing the power of proteomics to bear on the design of new immunising mixtures to raise Pan-African and Pan-Asian polyvalent antivenoms of improved potency and quality. These products will be subject to rigorous clinical assessment. We propose radically to change the basis upon which antivenoms are produced and supplied for the developing world. Donor funding and strategic public health alliances will be sought to make it possible not only to sustain the financial viability of antivenom production

  3. Phloem transport and drought.

    Science.gov (United States)

    Sevanto, Sanna

    2014-04-01

    Drought challenges plant water uptake and the vascular system. In the xylem it causes embolism that impairs water transport from the soil to the leaves and, if uncontrolled, may even lead to plant mortality via hydraulic failure. What happens in the phloem, however, is less clear because measuring phloem transport is still a significant challenge to plant science. In all vascular plants, phloem and xylem tissues are located next to each other, and there is clear evidence that these tissues exchange water. Therefore, drought should also lead to water shortage in the phloem. In this review, theories used in phloem transport models have been applied to drought conditions, with the goal of shedding light on how phloem transport failure might occur. The review revealed that phloem failure could occur either because of viscosity build-up at the source sites or by a failure to maintain phloem water status and cell turgor. Which one of these dominates depends on the hydraulic permeability of phloem conduit walls. Impermeable walls will lead to viscosity build-up affecting flow rates, while permeable walls make the plant more susceptible to phloem turgor failure. Current empirical evidence suggests that phloem failure resulting from phloem turgor collapse is the more likely mechanism at least in relatively isohydric plants.

  4. [Spatio-temporal variation of drought condition during 1961 to 2012 based on composite index of meteorological drought in Altay region, China].

    Science.gov (United States)

    Wu, Yan-feng; Bake, Batur; Li, Wei; Wei, Xiao-qin; Wozatihan, Jiayinaguli; Rasulov, Hamid

    2015-02-01

    Based on the daily meteorological data of seven stations in Altay region, China, this study investigated the temporal ( seasonal, inter-annual and decadal) and spatial variations of drought by using composite index of meteorological drought, as well as trend analysis, M-K abrupt analysis, wavelet analysis and interpolation tools in ArcGIS. The results indicated that the composite index of meteorological drought could reflect the drought condition in Altay region well. Although the frequency and the covered area of both inter-annual and seasonal droughts presented decreasing trends in the recent 52 a, the drought was still serious when considering the annual drought. The frequencies of inter-annual and spring droughts had no abrupt changes, whereas the frequencies of inter-summer, autumn and winter droughts had abrupt changes during the past 52 a. A significant periodic trend was also observed for the frequencies of inter-annual and seasonal droughts. The distribution of frequency and covered area suggested that the conditions of drought were heavily serious in Qinghe County, moderately serious in Altay City, Fuyun County, Buerjin County and Fuhai County, and slightly serious in Habahe County and Jimunai County.

  5. Drought Risk Assessment for Greater New York Area: A Paleo View

    Science.gov (United States)

    Ceylan, G.; Devineni, N.

    2014-12-01

    The Delaware River provides half of New York City's drinking water, is a habitat for wild trout, American shad and the federally endangered dwarf wedge mussel. It has suffered four 100-year floods in the last seven years. A drought during the 1960s stands as a warning of the potential vulnerability of the New York City area to severe water shortages if a similar drought were to recur. The water releases from three New York City dams on the Delaware River's headwaters impact not only the reliability of the city's water supply, but also the potential impact of floods, and the quality of the aquatic habitat in the upper river. The goal of this work is to influence the Delaware River water release policies (FFMP/OST) to further benefit river habitat and fisheries without increasing New York City's drought risk, or the flood risk to down basin residents. The Delaware water release policies are constrained by the dictates of two US Supreme Court Decrees (1931 and 1954) and the need for unanimity among four states: New York, New Jersey, Pennsylvania, and Delaware -- and New York City. Coordination of their activities and the operation under the existing decrees is provided by the Delaware River Basin Commission (DRBC). Questions such as the probability of the system approaching drought state based on the current FFMP plan and the severity of the 1960s drought are addressed using long record paleo-reconstructions of flows. For this study, we developed reconstructed total annual flows (water year) for 3 reservoir inflows using regional tree rings going back up to 1754 (a total of 246 years). The reconstructed flows are used with a simple reservoir model to quantify droughts. We observe that the 1960s drought is by far the worst drought based on 246 years of simulations (since 1754). However, there are intermediate drought warning periods and proper adaptation would be sufficient during these periods. Modified release rules that aid thermal relief to wild trout in the upper

  6. Not all droughts are created equal: The impacts of interannual drought pattern and magnitude on grassland carbon cycling

    Science.gov (United States)

    Hoover, David L; Rogers, Brendan M.

    2016-01-01

    Climate extremes, such as drought, may have immediate and potentially prolonged effects on carbon cycling. Grasslands store approximately one-third of all terrestrial carbon and may become carbon sources during droughts. However, the magnitude and duration of drought-induced disruptions to the carbon cycle, as well as the mechanisms responsible, remain poorly understood. Over the next century, global climate models predict an increase in two types of drought: chronic but subtle ‘press-droughts’, and shorter term but extreme ‘pulse-droughts’. Much of our current understanding of the ecological impacts of drought comes from experimental rainfall manipulations. These studies have been highly valuable, but are often short term and rarely quantify carbon feedbacks. To address this knowledge gap, we used the Community Land Model 4.0 to examine the individual and interactive effects of pulse- and press-droughts on carbon cycling in a mesic grassland of the US Great Plains. A series of modeling experiments were imposed by varying drought magnitude (precipitation amount) and interannual pattern (press- vs. pulse-droughts) to examine the effects on carbon storage and cycling at annual to century timescales. We present three main findings. First, a single-year pulse-drought had immediate and prolonged effects on carbon storage due to differential sensitivities of ecosystem respiration and gross primary production. Second, short-term pulse-droughts caused greater carbon loss than chronic press-droughts when total precipitation reductions over a 20-year period were equivalent. Third, combining pulse- and press-droughts had intermediate effects on carbon loss compared to the independent drought types, except at high drought levels. Overall, these results suggest that interannual drought pattern may be as important for carbon dynamics as drought magnitude and that extreme droughts may have long-lasting carbon feedbacks in grassland ecosystems.

  7. Bi-Annual Report 2010-2011: Shaping pulse flows to meet environmental and energy objectives

    Energy Technology Data Exchange (ETDEWEB)

    Jager, Yetta [ORNL

    2010-10-01

    This report describes a bioenergetic model developed to allocate seasonal pulse flows to benefit salmon growth. The model links flow with floodplain inundation and production of invertebrate prey eaten by juvenile Chinook salmon. A unique quantile modeling approach is used to describe temporal variation among juvenile salmon spawned at different times. Preliminary model outputs are presented and future plans to optimize flows both to maximize salmon growth and hydropower production are outlined.

  8. Enhanced Methane Emissions during Amazonian Drought by Biomass Burning

    OpenAIRE

    Saito, Makoto; Kim, Heon-Sook; Ito, Akihiko; Yokota, Tatsuya; Maksyutov, Shamil

    2016-01-01

    The Amazon is a significant source of atmospheric methane, but little is known about the source response to increasing drought severity and frequency. We investigated satellite observations of atmospheric column-averaged methane for the 2010 drought and subsequent 2011 wet year in the Amazon using an atmospheric inversion scheme. Our analysis indicates an increase in atmospheric methane over the southern Amazon region during the drought, representing an increase in annual emissions relative t...

  9. Changes in number and distribution of hippoptamus (Hippopotamus amphibius in the Sabie River, Kruger National Park, during the 1992 drought

    Directory of Open Access Journals (Sweden)

    P.C. Viljoen

    1995-09-01

    Full Text Available The 1991/92 drought in Southern Africa and the effect of the resultant reduced flow of the Sabie River on hippopotami was investigated. Hippopotami are counted annually in the Kruger National Park's (KNP major rivers as part of the park's monitoring pro- gramme. Two additional aerial surveys were conducted to document changes in hippopotamus population densities in the Sabie River during the drought period. The hippopotamus population decreased during the drought by 12.6 to 672 animals between July 1991 and October 1992. The highest and lowest hippopotamus densities recorded were 11.6 and 2.2 animals/km river length respectively in different river sections. Only 12 hippopotamus mortalities were recorded at the end of the 1992 dry season (October.

  10. Fighting Against Drought

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2010-01-01

    @@ The severe drought in southwest China continues and has worsened shortages of drinking water,as recent rainfall in these areas has been far from adequate,said China's drought relief authorities on April 8. The drought situation is looking quite grave,said Chen Lei,Deputy Director of the Office of State Flood Control and Drought Relief Headquarters(SFDH).

  11. Sensitivity analysis of the threshold level approach on streamflow drought evaluation

    Science.gov (United States)

    Loukas, Athanasios; Vasiliades, Lampros; Sarailidis, George

    2016-04-01

    Nowadays, streamflow drought characteristics have been widely studied for the design of hydrotechnical projects and water resources planning and management. Furthermore, information on the magnitude and frequency of low flows is very important for streamflow drought analysis at operational level in public water supply systems. The objective of this study is to investigate the sensitivity of the threshold level approach in the derivation of low flow severity-duration-frequency (SDF) curves. Low flow severity is defined as the total water deficit volume to the target threshold for a given drought duration. Four (4) threshold level methods (fixed, seasonal, monthly and daily) were employed and compared to assess the sensitivity of the threshold level method (fixed or variable) in the estimation of derived streamflow deficits and durations at Yermasoyia watershed, Cyprus using a thirty year daily discharge dataset. The 50th and 70th percentile values of the flow duration curve are selected as the threshold choices for all study methods which are suitable for semiarid catchments where zero runoff occurs during summer months. Then, the four threshold approaches are applied and three pooling procedures are applied to derive independent sequences of low-flow events. Application of the three pooling algorithms showed that the inter-event time and volume criterion is the most unbiased pooling method and this method was selected to estimate the duration and the deficit volume or severity of the identified drought events. Finally, the SDF curves are developed based on annual maximum severities for fixed durations at 30, 60, 90, 180 and 360 days. Based on individual probabilistic analysis, the best theoretical probability distribution is selected for each threshold method and then the SDF curves for the four thresholds were developed to quantify the relationship among the severities, durations, and frequencies or return periods. These curves also integrate the return period

  12. InfoDROUGHT: Technical reliability assessment using crop yield data at the Spanish-national level

    Science.gov (United States)

    Contreras, Sergio; Garcia-León, David; Hunink, Johannes E.

    2017-04-01

    Drought monitoring (DM) is a key component of risk-centered drought preparedness plans and drought policies. InfoDROUGHT (www.infosequia.es) is a a site- and user-tailored and fully-integrated DM system which combines functionalities for: a) the operational satellite-based weekly-1km tracking of severity and spatial extent of drought impacts, b) the interactive and faster query and delivery of drought information through a web-mapping service. InfoDROUGHT has a flexible and modular structure. The calibration (threshold definitions) and validation of the system is performed by combining expert knowledge and auxiliary impact assessments and datasets. Different technical solutions (basic or advanced versions) or deployment options (open-standard or restricted-authenticated) can be purchased by end-users and customers according to their needs. In this analysis, the technical reliability of InfoDROUGHT and its performance for detecting drought impacts on agriculture has been evaluated in the 2003-2014 period by exploring and quantifying the relationships among the drought severity indices reported by InfoDROUGHT and the annual yield anomalies observed for different rainfed crops (maize, wheat, barley) at Spain. We hypothesize a positive relationship between the crop anomalies and the drought severity level detected by InfoDROUGHT. Annual yield anomalies were computed at the province administrative level as the difference between the annual yield reported by the Spanish Annual Survey of Crop Acreages and Yields (ESYRCE database) and the mean annual yield estimated during the study period. Yield anomalies were finally compared against drought greenness-based and thermal-based drought indices (VCI and TCI, respectively) to check the coherence of the outputs and the hypothesis stated. InfoDROUGHT has been partly funded by the Spanish Ministry of Economy and Competiveness through a Torres-Quevedo grant, and by the H2020-EU project "Bridging the Gap for Innovations in

  13. How useful are meteorological drought indicators to assess agricultural drought impacts across Europe?

    Science.gov (United States)

    Bachmair, Sophie; Tanguy, Maliko; Hannaford, Jamie; Stahl, Kerstin

    2016-04-01

    Drought monitoring and early warning (M&EW) is an important component of agricultural and silvicultural risk management. Meteorological indicators such as the Standardized Precipitation Index (SPI) are widely used in operational M&EW systems and for drought hazard assessment. Meteorological drought yet does not necessarily equate to agricultural drought given differences in drought susceptibility, e.g. crop-specific vulnerability, soil water holding capacity, irrigation and other management practices. How useful are meteorological indicators such as SPI to assess agricultural drought? Would the inclusion of vegetation indicators into drought M&EW systems add value for the agricultural sector? To answer these questions, it is necessary to investigate the link between meteorological indicators and agricultural impacts of drought. Crop yield or loss data is one source of information for drought impacts, yet mostly available as aggregated data at the annual scale. Remotely sensed vegetation stress data offer another possibility to directly assess agricultural impacts with high spatial and temporal resolution and are already used by some M&EW systems. At the same time, reduced crop yield and satellite-based vegetation stress potentially suffer from multi-causality. The aim of this study is therefore to investigate the relation between meteorological drought indicators and agricultural drought impacts for Europe, and to intercompare different agricultural impact variables. As drought indicators we used SPI and the Standardized Precipitation Evaporation Index (SPEI) for different accumulation periods. The focus regarding drought impact variables was on remotely sensed vegetation stress derived from MODIS NDVI (Normalized Difference Vegetation Index) and LST (Land Surface Temperature) data, but the analysis was complemented with crop yield data and text-based information from the European Drought Impact report Inventory (EDII) for selected countries. A correlation analysis

  14. Anticipation of drought impacts in the Ebro basin using remote sensing data

    Science.gov (United States)

    Lines, Clara; Werner, Micha; Bastiaanssen, Wim

    2017-04-01

    For an effective mitigation of drought impacts, managers should be able to detect drought processes that will lead to impacts with enough anticipation to allow the necessary measures to be undertaken. Drought indicators and thresholds are commonly used to detect and classify drought conditions and trigger mitigation actions. However, the indicators and thresholds selected as triggers are only rarely connected to the specific impacts that need to be avoided. The aim of this research is to identify global earth observation data sets that can anticipate drought impacts at basin scale and therefore be used as indicators of early stages of drought. The performance of a broad range of parameters was assessed in the Ebro basin for the period 2000-2012. These were the Standard Precipitation Index (SPI), the Normalized Difference Vegetation Index (NDVI), Evapotranspiration (ET), Soil Moisture (SM), Land Surface Temperature (LST), Gross Primary Production (GPP) and the in situ hydrologic indicators currently used in the basin. Since impact data at a suitable temporal and spatial scale was not available to be used as benchmark for the tests, a data set of drought and impact occurrence was compiled by a comprehensive review of local news records. In addition annual crop yield data was used as alternative benchmark data. Early signs of drought impact were detected up to 6 months in advance with respect to the impacts reported in the newspaper, with SPI, NDVI and ET showing the best correlation-anticipation relationships. SM and LST offer also good anticipation, but with weaker correlations, while GPP presents moderate positive correlations only for some of the rainfed areas. Although water levels and flows from in situ stations provided better anticipation than remote sensing indicators in most of the areas, correlations were found to be weaker. The indicators show a consistent behaviour with respect to the different levels of crop yield in rainfed areas among the analysed

  15. MHD coal-fired flow facility. Annual technical progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Alstatt, M.C.; Attig, R.C.; Brosnan, D.A.

    1981-03-01

    The University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Faclity (CFFF) and the Energy Conversion Facility (ECF).

  16. Towards Remotely Sensed Composite Global Drought Risk Modelling

    Science.gov (United States)

    Dercas, Nicholas; Dalezios, Nicolas

    2015-04-01

    Drought is a multi-faceted issue and requires a multi-faceted assessment. Droughts may have the origin on precipitation deficits, which sequentially and by considering different time and space scales may impact soil moisture, plant wilting, stream flow, wildfire, ground water levels, famine and social impacts. There is a need to monitor drought even at a global scale. Key variables for monitoring drought include climate data, soil moisture, stream flow, ground water, reservoir and lake levels, snow pack, short-medium-long range forecasts, vegetation health and fire danger. However, there is no single definition of drought and there are different drought indicators and indices even for each drought type. There are already four operational global drought risk monitoring systems, namely the U.S. Drought Monitor, the European Drought Observatory (EDO), the African and the Australian systems, respectively. These systems require further research to improve the level of accuracy, the time and space scales, to consider all types of drought and to achieve operational efficiency, eventually. This paper attempts to contribute to the above mentioned objectives. Based on a similar general methodology, the multi-indicator approach is considered. This has resulted from previous research in the Mediterranean region, an agriculturally vulnerable region, using several drought indices separately, namely RDI and VHI. The proposed scheme attempts to consider different space scaling based on agroclimatic zoning through remotely sensed techniques and several indices. Needless to say, the agroclimatic potential of agricultural areas has to be assessed in order to achieve sustainable and efficient use of natural resources in combination with production maximization. Similarly, the time scale is also considered by addressing drought-related impacts affected by precipitation deficits on time scales ranging from a few days to a few months, such as non-irrigated agriculture, topsoil moisture

  17. The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica l.) and oak (Quercus robur L.) on a dry site in the Netherlands

    NARCIS (Netherlands)

    Werf, van der G.W.; Sass-Klaassen, U.; Mohren, G.M.J.

    2007-01-01

    Climate change is expected to result in more extreme weather conditions over large parts of Europe, such as the prolonged drought of 2003. As water supply is critical for tree growth on many sites in North-Western Europe, such droughts will affect growth, species competition, and forest dynamics. To

  18. Major Mesoamerican droughts of the past millennium

    Science.gov (United States)

    Stahle, D. W.; Diaz, J. Villanueva; Burnette, D. J.; Paredes, J. Cerano; Heim, R. R., Jr.; Fye, F. K.; Acuna Soto, R.; Therrell, M. D.; Cleaveland, M. K.; Stahle, D. K.

    2011-03-01

    Ancient Montezuma baldcypress (Taxodium mucronatum) trees found in Barranca de Amealco, Queretaro, have been used to develop a 1,238-year tree-ring chronology that is correlated with precipitation, temperature, drought indices, and crop yields in central Mexico. This chronology has been used to reconstruct the spring-early summer soil moisture balance over the heartland of the Mesoamerican cultural province, and is the first exactly dated, annually resolved paleoclimatic record for Mesoamerica spanning the Late Classic, Post Classic, Colonial, and modern eras. The reconstruction indicates that the Terminal Classic drought extended into central Mexico, supporting other sedimentary and speleothem evidence for this early 10th century drought in Mesoamerica. The reconstruction also documents severe and sustained drought during the decline of the Toltec state (1149-1167) and during the Spanish conquest of the Aztec state (1514-1539), providing a new precisely dated climate framework for Mesoamerican cultural change.

  19. Projection of drought hazards in China during twenty-first century

    Science.gov (United States)

    Liang, Yulian; Wang, Yongli; Yan, Xiaodong; Liu, Wenbin; Jin, Shaofei; Han, Mingchen

    2017-06-01

    Drought is occurring with increased frequency under climate warming. To understand the behavior of drought and its variation in the future, current and future drought in the twenty-first century over China is discussed. The drought frequency and trend of drought intensity are assessed using the Palmer Drought Severity Index (PDSI), which is calculated based on historical meteorological observations and outputs of the fifth Coupled Model Intercomparison Project (CMIP5) under three representative concentration pathway (RCP) scenarios. The simulation results of drought period, defined by PDSI class, could capture more than 90% of historical drought events. Projection results indicate that drought frequency will increase over China in the twenty-first century under the RCP4.5 and RCP8.5 scenarios. In the mid-twenty-first century (2021-2050), similar patterns of drought frequency are found under the three emission scenarios, and annual drought duration would last 3.5-4 months. At the end of the twenty-first century (2071-2100), annual drought duration could exceed 5 months in northwestern China as well as coastal areas of eastern and southern China under the RCP8.5 scenario. Drought is slightly reduced over the entire twenty-first century under the RCP2.6 scenario, whereas drought hazards will be more serious in most regions of China under the RCP8.5 scenario.

  20. Assessing the Effects of Climate Change on Drought Risk for the Nile River Basin

    Science.gov (United States)

    Strzepek, K. M.; Boehlert, B. B.; Vogel, R. M.

    2012-12-01

    Approximately 90 percent of the Nile River runoff is generated within two regions—the Ethiopian highlands and the Lake Victoria and Equatorial Lakes—that have historically contrasting precipitation regimes. As a result of uncorrelated interannual rainfall variability, meteorological droughts in one region are typically offset by wetter periods in the other, thus having a moderating effect on downstream Nile river flow to Sudan and Egypt. Under climate change, the drivers of these contrasting rainfall regimes (including the annual migration of the Inter Tropical Convergence Zone) may be fundamentally altered such that droughts become correlated between these regions, leading to unprecedented low flows in the downstream Nile. The water management challenges that would result are likely to be exacerbated if climate change increases drought occurrence and intensity across the basin. In this research, we first assess the effect of climate change on drought frequency and intensity across eight Nile subbasins by applying the Standardized Precipitation Index (SPI) and the Palmer Drought Severity Index (PDSI) to the full suite of 22 Intergovernmental Panel on Climate Change General Circulation Models for three IPCC-SRES emissions scenarios (B1, A1B, and A2 from the Special Report on Emissions Scenarios (SRES)). We then use these outputs to evaluate how climate change affects the correlation of drought occurrence and intensity between the Ethiopian highlands and the Lake Victoria and Equatorial Lakes regions. In the first inquiry, we find that the frequency of drought over the next century based on precipitation alone (SPI) is projected to increase in the northern Nile basin, and decrease in the southern regions. Drought frequencies based on both precipitation and temperature (PDSI) are projected to increase across most of the Nile basin, however, with almost universally experienced increases in drought risk by the late 21st century. For both measures, the Ethiopia

  1. Bivariate Drought Analysis Using Streamflow Reconstruction with Tree Ring Indices in the Sacramento Basin, California, USA

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2016-03-01

    Full Text Available Long-term streamflow data are vital for analysis of hydrological droughts. Using an artificial neural network (ANN model and nine tree-ring indices, this study reconstructed the annual streamflow of the Sacramento River for the period from 1560 to 1871. Using the reconstructed streamflow data, the copula method was used for bivariate drought analysis, deriving a hydrological drought return period plot for the Sacramento River basin. Results showed strong correlation among drought characteristics, and the drought with a 20-year return period (17.2 million acre-feet (MAF per year in the Sacramento River basin could be considered a critical level of drought for water shortages.

  2. Evaluation of drought regimes and impacts in the Limpopo basin

    Science.gov (United States)

    Alemaw, B. F.; Kileshye-Onema, J.-M.

    2014-01-01

    Drought is a common phenomenon in the Limpopo River basin. In essence, droughts are long-term hydro-meteorological events affecting vast regions and causing significant non-structural damages. In the interest of riparian states' joint integrated water resources development and management of the Limpopo basin, inter regional drought severity and its impacts should be understood. The study focussed on case studies in the basin which is subdivided into four homogeneous regions owing to topographic and climate variations based on the previous work of the same authors. Using the medium range time series of the Standardized Precipitation Index (SPI) as an indicator of drought, for each homogeneous region monthly and annual Severity-Area-Frequency (SAF) curves and maps of probability of drought occurrence were constructed. The results indicated localized severe droughts in higher frequencies, while only moderate to severe low frequency droughts may spread over wider areas in the basin. The region-level Drought-Severity Indices can be used as indicators for planning localized interventions and drought mitigation efforts in the basin. The approach can also be used to develop improved drought indicators, to assess the relationship between drought hazard and vulnerability and to enhance the performance of methods currently used for drought forecasting. Results on the meteorological drought linkage with hydrological and vegetation or agricultural drought indices are presented as means of validation of the specific drought regimes and their localized impact in each homogeneous region. In general, this preliminary investigation reveals that the western part of the basin will face a higher risk of drought when compared to other regions of the Limpopo basin in terms of the medium-term drought. The Limpopo basin is water stressed and livelihood challenges remain at large, thus impacts of droughts and related resilience options should be taken into account in the formulation of

  3. Evaluation of drought regimes and impacts in the Limpopo basin

    Directory of Open Access Journals (Sweden)

    B. F. Alemaw

    2014-01-01

    Full Text Available Drought is a common phenomenon in the Limpopo River basin. In essence, droughts are long–term hydro-meteorological events affecting vast regions and causing significant non-structural damages. In the interest of riparian states' joint integrated water resources development and management of the Limpopo basin, inter regional drought severity and its impacts should be understood. The study focussed on case studies in the basin which is subdivided into four homogeneous regions owing to topographic and climate variations based on the previous work of the same authors. Using the medium range time series of the Standardized Precipitation Index (SPI as an indicator of drought, for each homogeneous region monthly and annual Severity-Area-Frequency (SAF curves and maps of probability of drought occurrence were constructed. The results indicated localized severe droughts in higher frequencies, while only moderate to severe low frequency droughts may spread over wider areas in the basin. The region-level Drought-Severity Indices can be used as indicators for planning localized interventions and drought mitigation efforts in the basin. The approach can also be used to develop improved drought indicators, to assess the relationship between drought hazard and vulnerability and to enhance the performance of methods currently used for drought forecasting. Results on the meteorological drought linkage with hydrological and vegetation or agricultural drought indices are presented as means of validation of the specific drought regimes and their localized impact in each homogeneous region. In general, this preliminary investigation reveals that the western part of the basin will face a higher risk of drought when compared to other regions of the Limpopo basin in terms of the medium-term drought. The Limpopo basin is water stressed and livelihood challenges remain at large, thus impacts of droughts and related resilience options should be taken into account in the

  4. Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach

    Science.gov (United States)

    Joshi, Nitin; Gupta, Divya; Suryavanshi, Shakti; Adamowski, Jan; Madramootoo, Chandra A.

    2016-12-01

    In this study, seasonal trends as well as dominant and significant periods of variability of drought variables were analyzed for 30 rainfall subdivisions in India over 141 years (1871-2012). Standardized precipitation index (SPI) was used as a meteorological drought indicator, and various drought variables (monsoon SPI, non-monsoon SPI, yearly SPI, annual drought duration, annual drought severity and annual drought peak) were analyzed. Discrete wavelet transform was used in conjunction with the Mann-Kendall test to analyze trends and dominant periodicities associated with the drought variables. Furthermore, continuous wavelet transform (CWT) based global wavelet spectrum was used to analyze significant periods of variability associated with the drought variables. From the trend analysis, we observed that over the second half of the 20th century, drought occurrences increased significantly in subdivisions of Northeast and Central India. In both short-term (2-8 years) and decadal (16-32 years) periodicities, the drought variables were found to influence the trend. However, CWT analysis indicated that the dominant periodic components were not significant for most of the geographical subdivisions. Although inter-annual and inter-decadal periodic components play an important role, they may not completely explain the variability associated with the drought variables across the country.

  5. Mapping Drought Sensitivity of Ecosystem Functioning in Mountainous Watersheds: Spatial Heterogeneity and Geological-Geomorphological Control

    Science.gov (United States)

    Wainwright, H. M.; Steefel, C. F.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Sarah, T.

    2016-12-01

    Mountainous watersheds in the Upper Colorado River Basin play a critical role in supplying water and nutrients to western North America. Ecosystem functioning in those regions - including plant dynamics and biogeochemical cycling - is known to be limited by water availability. Under the climate change, early snowmelt and increasing temperature are expected to intensify the drought conditions in early growing seasons. Although the impact of early-season drought has been documented in plot-scale experiments, ascertaining its significance in mountainous watersheds is challenging given the highly heterogeneous nature of the systems with complex terrain and diverse plant functional types (PFTs). The objectives of this study are (1) to map the regions where the plant dynamics are relatively more sensitive to drought conditions based on historical satellite and climate data, and (2) to identify the environmental controls (e.g., geomorphology, elevation, geology, snow and PFT) on drought sensitivity. We characterize the spatial heterogeneity of drought sensitivity in four watersheds (a 15 x 15 km domain) near the Rocky Mountain Biological Laboratory in Colorado, USA. Following previous plot-scale studies, we first define the drought sensitivity based on annual peak NDVI (Landsat 5) and climatic datasets. Non-parametric tree-based machine learning methods are used to identify the significant environmental controls, using high-resolution LiDAR digital elevation map and peak snow-water-equivalent distribution from NASA airborne snow observatory. Results show that the drought sensitivity is negatively correlated with elevation, suggesting increased water limitations in lower elevation (less snow, higher temperature). The drought sensitivity is more spatially variable in shallow-rooted plant types, affected by local hydrological conditions. We also found geomorphological and geological controls, such as high sensitivity in the steep well-drained glacial moraine regions. Our

  6. Projected seasonal meteorological droughts over Europe until 2100

    Science.gov (United States)

    Spinoni, Jonathan; Vogt, Jürgen; Naumann, Gustavo; Barbosa, Paulo; Dosio, Alessandro

    2017-04-01

    In the last decades, droughts have become increasingly recurrent and intense over large areas of Europe. Due to the projected temperature increase and longer dry periods, meteorological droughts are expected to become more frequent and severe in the next decades, potentially causing relevant impacts in many economic sectors and the environment. To investigate future drought patterns over Europe, we computed a combined indicator based on the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), and the Reconnaissance Drought Indicator (RDI). All indicators were computed at a 3-month accumulation period to focus on seasonal droughts using temperature and precipitation from an ensemble of eleven bias-adjusted simulations from the EURO-CORDEX experiment as input data. The combined indicator focuses on the predominance of drought conditions over normal conditions and was applied to obtain frequency and severity of drought events at 0.11° spatial resolution over Europe from 1981 to 2100. The analysis was performed for two representative concentration pathways (RCP), the moderate emission scenario RCP4.5 and the extreme RCP8.5. Excluding winter droughts, which are likely to be less frequent and severe over Central and Northern Europe for both scenarios, the other seasons show increased drought frequency and severity over entire Europe, markedly larger as the century passes especially under the RCP8.5. The largest increases are projected for spring droughts over the Iberian Peninsula and North-Eastern Scandinavia and for summer droughts over Western Europe. Under the RCP8.5, at least six out of eleven simulations project a statistically significant positive trend from 1981 to 2100 of drought frequency for the Mediterranean area, the Iberian Peninsula, and Turkey. On an annual scale, most simulations project a continuous increase of both drought frequency and severity for entire Europe, excluding Iceland and Central

  7. Canopy Transpiration and Stomatal Responses to Prolonged Drought by a Dominant Desert Species in Central Asia

    Directory of Open Access Journals (Sweden)

    Daxing Gu

    2017-06-01

    Full Text Available In arid and semiarid lands, canopy transpiration and its dynamics depend largely on stomatal sensitivity to drought. In this study, the sap flow of a dominant species, Haloxylon ammodendron growing in Central Asian deserts, was monitored using Granier-type sensors, from which the canopy stomatal conductance was derived. The responses of canopy transpiration and stomatal conductance to environmental variables during the second half of the growing season, when annual prolonged drought occurred, was analyzed for four continuous years, from 2013 to 2016. A soil water content (SWC of 3% was identified as the lower soil water threshold for this species, below which the plant lost the ability for stomatal regulation on water loss and suffered the risk of mortality. Above this threshold, the sensitivity of canopy transpiration to vapor pressure deficit, VPD (K, was linearly correlated with SWC, which mainly resulted from different stomatal behaviors at varying drought intensities. Stomatal sensitivity to VPD (m/Gsref increased linearly with soil moisture deficit, inducing a shift from more anisohydric to a more isohydric stomatal behavior. The flexibility of stomatal behavior regarding soil drought was one key element facilitating the survival of H. ammodendron in such an extreme dry environment.

  8. Lessons learned for applying a paired-catchment approach in drought analysis

    Science.gov (United States)

    Van Loon, Anne; Rangecroft, Sally; Coxon, Gemma; Agustín Breña Naranjo, José; Van Ogtrop, Floris; Croghan, Danny; Van Lanen, Henny

    2017-04-01

    Ongoing research is looking to quantify the human impact on hydrological drought using observed data. One potentially suitable method is the paired-catchment approach. Paired catchments have been successfully used for quantifying the impact of human actions (e.g. forest treatment and wildfires) on various components of a catchment's water balance. However, it is unclear whether this method could successfully be applied to drought. In this study, we used a paired-catchment approach to quantify the effects of reservoirs, groundwater abstraction and urbanisation on hydrological drought in the UK, Mexico, and Australia. Following recommendations in literature, we undertook a thorough catchment selection and identified catchments of similar size, climate, geology, and topography. One catchment of the pair was affected by either reservoirs, groundwater abstraction or urbanisation. For the selected catchment pairs, we standardised streamflow time series to catchment area, calculated a drought threshold from the natural catchment and applied it to the human-influenced catchment. The underlying assumption being that the differences in drought severity between catchments can then be attributed to the anthropogenic activity. In some catchments we had local knowledge about human influences, and therefore we could compare our paired-catchment results with hydrological model scenarios. However, we experienced that detailed data on human influences usually are not well recorded. The results showed us that it is important to account for variation in average annual precipitation between the paired catchments to be able to transfer the drought threshold of the natural catchment to the human-influenced catchment. This can be achieved by scaling the discharge by the difference in annual average precipitation. We also found that the temporal distribution of precipitation is important, because if meteorological droughts differ between the paired catchments, this may mask changes caused

  9. The European 2015 drought from a hydrological perspective

    Science.gov (United States)

    Laaha, Gregor; Gauster, Tobias; Tallaksen, Lena M.; Vidal, Jean-Philippe; Stahl, Kerstin; Prudhomme, Christel; Heudorfer, Benedikt; Vlnas, Radek; Ionita, Monica; Van Lanen, Henny A. J.; Adler, Mary-Jeanne; Caillouet, Laurie; Delus, Claire; Fendekova, Miriam; Gailliez, Sebastien; Hannaford, Jamie; Kingston, Daniel; Van Loon, Anne F.; Mediero, Luis; Osuch, Marzena; Romanowicz, Renata; Sauquet, Eric; Stagge, James H.; Wong, Wai K.

    2017-06-01

    In 2015 large parts of Europe were affected by drought. In this paper, we analyze the hydrological footprint (dynamic development over space and time) of the drought of 2015 in terms of both severity (magnitude) and spatial extent and compare it to the extreme drought of 2003. Analyses are based on a range of low flow and hydrological drought indices derived for about 800 streamflow records across Europe, collected in a community effort based on a common protocol. We compare the hydrological footprints of both events with the meteorological footprints, in order to learn from similarities and differences of both perspectives and to draw conclusions for drought management. The region affected by hydrological drought in 2015 differed somewhat from the drought of 2003, with its center located more towards eastern Europe. In terms of low flow magnitude, a region surrounding the Czech Republic was the most affected, with summer low flows that exhibited return intervals of 100 years and more. In terms of deficit volumes, the geographical center of the event was in southern Germany, where the drought lasted a particularly long time. A detailed spatial and temporal assessment of the 2015 event showed that the particular behavior in these regions was partly a result of diverging wetness preconditions in the studied catchments. Extreme droughts emerged where preconditions were particularly dry. In regions with wet preconditions, low flow events developed later and tended to be less severe. For both the 2003 and 2015 events, the onset of the hydrological drought was well correlated with the lowest flow recorded during the event (low flow magnitude), pointing towards a potential for early warning of the severity of streamflow drought. Time series of monthly drought indices (both streamflow- and climate-based indices) showed that meteorological and hydrological events developed differently in space and time, both in terms of extent and severity (magnitude). These results

  10. The European 2015 drought from a hydrological perspective

    Directory of Open Access Journals (Sweden)

    G. Laaha

    2017-06-01

    Full Text Available In 2015 large parts of Europe were affected by drought. In this paper, we analyze the hydrological footprint (dynamic development over space and time of the drought of 2015 in terms of both severity (magnitude and spatial extent and compare it to the extreme drought of 2003. Analyses are based on a range of low flow and hydrological drought indices derived for about 800 streamflow records across Europe, collected in a community effort based on a common protocol. We compare the hydrological footprints of both events with the meteorological footprints, in order to learn from similarities and differences of both perspectives and to draw conclusions for drought management. The region affected by hydrological drought in 2015 differed somewhat from the drought of 2003, with its center located more towards eastern Europe. In terms of low flow magnitude, a region surrounding the Czech Republic was the most affected, with summer low flows that exhibited return intervals of 100 years and more. In terms of deficit volumes, the geographical center of the event was in southern Germany, where the drought lasted a particularly long time. A detailed spatial and temporal assessment of the 2015 event showed that the particular behavior in these regions was partly a result of diverging wetness preconditions in the studied catchments. Extreme droughts emerged where preconditions were particularly dry. In regions with wet preconditions, low flow events developed later and tended to be less severe. For both the 2003 and 2015 events, the onset of the hydrological drought was well correlated with the lowest flow recorded during the event (low flow magnitude, pointing towards a potential for early warning of the severity of streamflow drought. Time series of monthly drought indices (both streamflow- and climate-based indices showed that meteorological and hydrological events developed differently in space and time, both in terms of extent and severity

  11. Impact of Global Warming on Streamflow Drought in Europe

    OpenAIRE

    Feyen, Luc; Dankers, Rutger

    2009-01-01

    Recent developments in climate modeling suggest that global warming is likely to favor conditions for the development of droughts in many regions of Europe. Studies evaluating possible changes in drought hazard typically have employed indices that are derived solely from climate variables such as temperature and precipitation, whereas many of the impacts of droughts are more related to hydrological variables such as river flow. This study examines the impact of global warming o...

  12. Response of Hydrological Drought to Meteorological Drought under the Influence of Large Reservoir

    Directory of Open Access Journals (Sweden)

    Jiefeng Wu

    2016-01-01

    Full Text Available Based on monthly streamflow and precipitation data from 1960 to 2010 in the Jinjiang River Basin of China, Standardized Precipitation Index (SPI and Standardized Streamflow Index (SSI were used to represent meteorological and hydrological drought, respectively. The response of hydrological drought to meteorological drought under the influence of Shanmei reservoir was investigated. The results indicate that SPI and SSI have a decreasing trend during recent several decades. Monthly scales of SSI series have a significant decreasing trend from November to the following February and a significant increasing trend from May to July at Shilong hydrological station. There are three significant periodic variations with a cycle of 6-7 years, 11-12 years, and 20-21 years for annual scales of SSI series. SPI series have the same periodic variations before the 1980s, but they have not been synchronous with SSI since the 1980s at Shilong due to influences of Shanmei reservoir, especially at the periodic variations of 20-21 years. The variation of the lag time of hydrological drought in response to meteorological drought is significant at the seasonal scale. The lag time of hydrological drought to meteorological drought extends one month on average in spring, summer, and autumn but about three months in winter.

  13. Drought vulnerability assesssment and mapping in Morocco

    Science.gov (United States)

    Imani, Yasmina; Lahlou, Ouiam; Bennasser Alaoui, Si; Naumann, Gustavo; Barbosa, Paulo; Vogt, Juergen

    2014-05-01

    basin is highly vulnerable to drought. The mountainous areas present the most favorable annual rainfall. That contributes to explain their low DVI. In the provinces that present the highest vulnerability to drought, spots presenting a lower vulnerability correspond to large irrigated perimeters. Overall, the main output of this study were to show how the DVI can allow detecting the differences in vulnerability in the different rural communes providing, therefore, a tool for more effective drought management practices. The analysis of the 4 dimensions of the DVI showed that at the river basin level, the mean annual rainfall, the percentage of irrigated lands, The Cereal / Fruit trees and market crops ratio, the land status, the farm's sizes, the adult literacy rate and the access to improved drinking water represent the major drivers of vulnerability. They may therefore be targeted in priority by mitigation and adaptation actions.

  14. Drought variability and change across the Iberian Peninsula

    Science.gov (United States)

    Coll, J. R.; Aguilar, E.; Ashcroft, L.

    2016-09-01

    Drought variability and change was assessed across the Iberian Peninsula over more than 100 years expanding through the twentieth century and the first decade of the twenty-first century. Daily temperature and precipitation data from 24 Iberian time series were quality controlled and homogenized to create the Monthly Iberian Temperature and Precipitation Series (MITPS) for the period 1906-2010. The Standardized Precipitation Index (SPI), driven only by precipitation, and the Standardized Precipitation Evapotranspiration Index (SPEI), based on the difference between the precipitation and the reference evapotranspiration (ET0), were computed at annual and seasonal scale to describe the evolution of droughts across time. The results confirmed that a clear temperature increase has occurred over the entire Iberian Peninsula at the annual and seasonal scale, but no significant changes in precipitation accumulated amounts were found. Similar drought variability was provided by the SPI and SPEI, although the SPEI showed greater drought severity and larger surface area affected by drought than SPI from 1980s to 2010 due to the increase in atmospheric evaporative demand caused by increased temperatures. Moreover, a clear drying trend was found by the SPEI for most of the Iberian Peninsula at annual scale and also for spring and summer, although the SPI did not experience significant changes in drought conditions. From the drying trend identified for most of the Iberian Peninsula along the twentieth century, an increase in drought conditions can also be expected for this region in the twenty-first century according to future climate change projections and scenarios.

  15. A Hybrid Index for Characterizing Drought Based on a Nonparametric Kernel Estimator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shengzhi; Huang, Qiang; Leng, Guoyong; Chang, Jianxia

    2016-06-01

    This study develops a nonparametric multivariate drought index, namely, the Nonparametric Multivariate Standardized Drought Index (NMSDI), by considering the variations of both precipitation and streamflow. Building upon previous efforts in constructing Nonparametric Multivariate Drought Index, we use the nonparametric kernel estimator to derive the joint distribution of precipitation and streamflow, thus providing additional insights in drought index development. The proposed NMSDI are applied in the Wei River Basin (WRB), based on which the drought evolution characteristics are investigated. Results indicate: (1) generally, NMSDI captures the drought onset similar to Standardized Precipitation Index (SPI) and drought termination and persistence similar to Standardized Streamflow Index (SSFI). The drought events identified by NMSDI match well with historical drought records in the WRB. The performances are also consistent with that by an existing Multivariate Standardized Drought Index (MSDI) at various timescales, confirming the validity of the newly constructed NMSDI in drought detections (2) An increasing risk of drought has been detected for the past decades, and will be persistent to a certain extent in future in most areas of the WRB; (3) the identified change points of annual NMSDI are mainly concentrated in the early 1970s and middle 1990s, coincident with extensive water use and soil reservation practices. This study highlights the nonparametric multivariable drought index, which can be used for drought detections and predictions efficiently and comprehensively.

  16. Trends in Drought Frequency. The Fate of DOC Export From British Peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, F. [Department of Geological Sciences, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom); Burt, T.P. [Department of Geography, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom); Adamson, J.K. [Environmental Change Network, Centre for Ecology and Hydrology, Merlewood, Windermere Road, Grange over Sands, Cumbria, LA11 6JU (United Kingdom)

    2006-06-15

    There is increasing evidence that drought is leading to increased loss of dissolved organic carbon (DOC) from upland peats. Therefore, this study endeavours to understand the severity and frequency of the scale of drought responsible for driving the observed changes; and, by reconstructing climatic records, to understand whether such droughts are increasing in severity and frequency. The study suggests that there are two levels of drought severity important in the peatlands: a hydrological drought that causes hydrophobic effects in the upper peat profile lasting 3-4 years in duration, and a more severe biogeochemical drought that triggers new mechanisms of DOC production and decade-long effects. The study uses long term climate data from Central England and Northern England to reconstructs depth to water table for an upland peat catchment back to 1766 and shows that hydrological drought has a return period of 25 years and that biogeochemical drought has a return period of 15.5 years. Statistical modelling of the time series of annual droughts shows only weak evidence for an increasing frequency of severe droughts since 1766, but stronger evidence for the recent past. The return period of drought of sufficient severity to cause biogeochemical response is coming close to the length of effect such a drought would have, i.e. trends in drought frequency mean that peatlands may no longer be resilient to the impact of drought, with dire consequences for the storage of carbon in these environments.

  17. Analysis of drought limit water level (flow) for Shimen reservoir%石门水库旱限水位(流量)分析

    Institute of Scientific and Technical Information of China (English)

    孙文伟

    2014-01-01

    Shimen reservoir is the unique large (2) reservoir in Yingkou area ,which supplies the industrial and agricultural production and ecological water of Yingkou City,Dashiqiao City,Gaizhou City.Reservoir drought limit water level index is an important index for determining reservoir drought early warning level ,and an im-portant basis for starting the drought emergency response level.According to the data of Shimen reservoir site , it analyzes the reservoir inflow,water changed (including industry,agriculture,life and ecological water used);for the reservoir water supply capacity.it discusses and analyzes the lowest drought limit water level index un-der the condition of water demands ,which has very important significance on the operation of the reservoir , and provide scientific evidence of active drought ,to guide the development of industry and agriculture.%石门水库是营口地区唯一大(2)型水库,担负营口市、大石桥市、盖州市工农业生产及生活生态用水。水库旱限水位指标是确定水库干旱预警等级的重要指标,是启动抗旱应急响应级别的重要依据。根据石门水库建站以来的资料,分析水库来水量、用水量(含工业、农业、生活、生态用水)的变化,针对水库供水能力,探讨、分析石门水库在保证用水需求的情况下,最低旱限水位指标,对水库控制运用、科学主动抗旱提供技术依据,指导工农业生产发展具有十分重要的意义。

  18. Mapping Regional Drought Vulnerability: a Case Study

    Science.gov (United States)

    Karamouz, M.; Zeynolabedin, A.; Olyaei, M. A.

    2015-12-01

    Drought is among the natural disaster that causes damages and affects many people's life in many part of the world including in Iran. Recently, some factors such as climate variability and the impact of climate change have influenced drought frequency and intensity in many parts of the world. Drought can be divided into four categories of meteorological, hydrological, agricultural and social-economic. In meteorological the important feature is lack of rainfall. In hydrological drought river flows and dam storage are considered. Lack of soil moisture is the key factor in agricultural droughts while in social-economic type of drought the relation between supply and demand and social-economic damages due to water deficiency is studied. While the first three types relates to the lack of some hydrological characteristics, social-economic type of drought is actually the consequence of other types expressed in monetary values. Many indices are used in assessing drought; each has its own advantages and disadvantages and can be used for specific types of drought. Therefore knowing the types of drought can provide a better understanding of shortages and their characteristics. Drought vulnerability is a concept which shows the likelihood of damages from hazard in a particular place by focusing on the system status prior to the disaster. Drought vulnerability has been viewed as a potential for losses in the region due to water deficiency at the time of drought. In this study the application of vulnerability concept in drought management in East Azarbaijan province in Iran is investigated by providing vulnerability maps which demonstrates spatial characteristics of drought vulnerability. In the first step, certain governing parameters in drought analysis such as precipitation, temperature, land use, topography, solar radiation and ground water elevation have been investigated in the region. They are described in details and calculated in suitable time series. Vulnerabilities

  19. MAPPING REGIONAL DROUGHT VULNERABILITY: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    M. Karamouz

    2015-12-01

    Full Text Available Drought is among the natural disaster that causes damages and affects many people’s life in many part of the world including in Iran. Recently, some factors such as climate variability and the impact of climate change have influenced drought frequency and intensity in many parts of the world. Drought can be divided into four categories of meteorological, hydrological, agricultural and social-economic. In meteorological the important feature is lack of rainfall. In hydrological drought river flows and dam storage are considered. Lack of soil moisture is the key factor in agricultural droughts while in social-economic type of drought the relation between supply and demand and social-economic damages due to water deficiency is studied. While the first three types relates to the lack of some hydrological characteristics, social-economic type of drought is actually the consequence of other types expressed in monetary values. Many indices are used in assessing drought; each has its own advantages and disadvantages and can be used for specific types of drought. Therefore knowing the types of drought can provide a better understanding of shortages and their characteristics. Drought vulnerability is a concept which shows the likelihood of damages from hazard in a particular place by focusing on the system status prior to the disaster. Drought vulnerability has been viewed as a potential for losses in the region due to water deficiency at the time of drought. In this study the application of vulnerability concept in drought management in East Azarbaijan province in Iran is investigated by providing vulnerability maps which demonstrates spatial characteristics of drought vulnerability. In the first step, certain governing parameters in drought analysis such as precipitation, temperature, land use, topography, solar radiation and ground water elevation have been investigated in the region. They are described in details and calculated in suitable time

  20. A Remotely Sensed Global Terrestrial Drought Severity Index

    Science.gov (United States)

    Mu, Q.; Zhao, M.; Kimball, J. S.; McDowell, N. G.; Running, S. W.

    2012-12-01

    Regional drought and flooding from extreme climatic events are increasing in frequency and severity, with significant adverse eco-social impacts. Detecting and monitoring drought at regional to global scales remains challenging, despite the availability of various drought indices and widespread availability of potentially synergistic global satellite observational records. We developed a method to generate a near-real-time remotely sensed Drought Severity Index (DSI) to monitor and detect drought globally at 1-km spatial resolution and regular 8-day, monthly and annual frequencies. The new DSI integrates and exploits information from current operational satellite based terrestrial evapotranspiration (ET) and Vegetation greenness Index (NDVI) products, which are sensitive to vegetation water stress. Specifically, our approach determines the annual DSI departure from its normal (2000-2011) using the remotely sensed ratio of ET to potential ET (PET) and NDVI. The DSI results were derived globally and captured documented major regional droughts over the last decade, including severe events in Europe (2003), the Amazon (2005 and 2010), and Russia (2010). The DSI corresponded favorably (r=0.43) with the precipitation based Palmer Drought Severity Index (PDSI), while both indices captured similar wetting and drying patterns. The DSI was also correlated with satellite based vegetation net primary production (NPP) records, indicating that the combined use of these products may be useful for assessing water supply and ecosystem interactions, including drought impacts on crop yields and forest productivity. The remotely-sensed global terrestrial DSI enhances capabilities for near-real-time drought monitoring to assist decision makers in regional drought assessment and mitigation efforts, and without many of the constraints of more traditional drought monitoring methods.

  1. Laboratory experiments on drought and runoff in blanket peat

    OpenAIRE

    Holden, J; Burt, T. P.

    2002-01-01

    Global warming might change the hydrology of upland blanket peats in Britain. We have therefore studied in laboratory experiments the impact of drought on peat from the North Pennines of the UK. Runoff was dominated by surface and near-surface flow; flow decreased rapidly with depth and differed from one type of cover to another. Infiltration depended on the intensity of rain, and runoff responded rapidly to rain, with around 50% of rainwater emerging as overland flow. Drought changed the str...

  2. A nonparametric multivariate standardized drought index for characterizing socioeconomic drought: A case study in the Heihe River Basin

    Science.gov (United States)

    Huang, Shengzhi; Huang, Qiang; Leng, Guoyong; Liu, Saiyan

    2016-11-01

    Among various drought types, socioeconomic drought is the least investigated type of droughts. Most existing drought indicators ignore the role of local reservoirs and water demand in coping with climatic extremes. In this study, a Multivariate Standardized Reliability and Resilience Index (MSRRI) combining inflow-demand reliability index (IDR) and water storage resilience index (WSR) was applied to examine the evolution characteristics of the socioeconomic droughts in the Heihe River Basin, the second largest inland river basin in northwestern China. Furthermore, the cross wavelet analysis was adopted to explore the associations between annual MSRRI series and El Niño Southern Oscillation (ENSO)/Atlantic Oscillation (AO). Results indicated that: (1) the developed MSRRI is more sensitive to the onset and termination of socioeconomic droughts than IDR and WSR, owing to its joint distribution function of IDR and WSR, responding to changes in either or both of the indices; (2) the MSRRI series in the Heihe River Basin shows non-significant trends at both monthly and annual scales; (3) both ENSO and AO contribute to the changes in the socioeconomic droughts in the Heihe River Basin, and the impacts of ENSO on the socioeconomic droughts are stronger than those of AO.

  3. SDI and Markov Chains for Regional Drought Characteristics

    Directory of Open Access Journals (Sweden)

    Chen-Feng Yeh

    2015-08-01

    Full Text Available In recent years, global climate change has altered precipitation patterns, causing uneven spatial and temporal distribution of precipitation that gradually induces precipitation polarization phenomena. Taiwan is located in the subtropical climate zone, with distinct wet and dry seasons, which makes the polarization phenomenon more obvious; this has also led to a large difference between river flows during the wet and dry seasons, which is significantly influenced by precipitation, resulting in hydrological drought. Therefore, to effectively address the growing issue of water shortages, it is necessary to explore and assess the drought characteristics of river systems. In this study, the drought characteristics of northern Taiwan were studied using the streamflow drought index (SDI and Markov chains. Analysis results showed that the year 2002 was a turning point for drought severity in both the Lanyang River and Yilan River basins; the severity of rain events in the Lanyang River basin increased after 2002, and the severity of drought events in the Yilan River basin exhibited a gradual upward trend. In the study of drought severity, analysis results from periods of three months (November to January and six months (November to April have shown significant drought characteristics. In addition, analysis of drought occurrence probabilities using the method of Markov chains has shown that the occurrence probabilities of drought events are higher in the Lanyang River basin than in the Yilan River basin; particularly for extreme events, the occurrence probability of an extreme drought event is 20.6% during the dry season (November to April in the Lanyang River basin, and 3.4% in the Yilan River basin. This study shows that for analysis of drought/wet occurrence probabilities, the results obtained for the drought frequency and occurrence probability using short-term data with the method of Markov chains can be used to predict the long-term occurrence

  4. Analysis of climate change impact on meteorological and hydrological droughts through relative standardized indices

    Science.gov (United States)

    Marcos, Patricia; Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel

    2017-04-01

    Southern Mediterranean basins are prone to droughts, due to the high temporal and spatial rainfall variability. In addition, semiarid Mediterranean regions emerge as noticeable climate change hotspots, with high uncertainty about the impacts of climate change on future droughts. Standardized drought indices have been traditionally used to assess and identify drought events, because of their simplicity and flexibility to compare the departure from normal status across regions at different timescales. Nevertheless, the statistical foundation of these indices assumes stationarity for certain aspects of the cli-matic variables, which could not be longer adopted under climate change. Thus, in recent years several modifications have been proposed in order to cope with these limitations. This contribution provides a framework to analyze climate change impact on meteorological and hydrological droughts, considering the predicted shifts in precipitation and temperature and the uncertainty of the assumed distribution parameters. To characterize drought in a climate change context, relative standardized indices instead of the traditional ones are applied: Standardized Precipitation Index (rSPI), Standardized Precipitation Evapotranspiration Index (rSPEI) and a Standardized Flow Index (rSFI). The behavior of the rSPI versus the multiscalar rSPEI is contrasted. A modification of the Thornthwaite scheme is presented to improve the representation of the intra-annual variation of the potential evapotranspiration (PET) in continental climate areas. The uncertainty due to the selected hydrological model is assessed through the comparison of the performance and outcome of three conceptual lumped-parameter models (Temez, GR2M, and HBV-light). The Temez model was selected to obtain the runoff for the rSFI, given that it showed the best fitting in our case study. To address the uncertainty of the indices distribution parameters, bootstrapping was combined with the computation of the

  5. Photosynthesis of Digitaria ciliaris during repeated soil drought and rewatering

    Institute of Scientific and Technical Information of China (English)

    YaYong Luo; XueYong Zhao; JingHui Zhang; YuLin Li; XiaoAn Zuo; DianChao Sun

    2015-01-01

    The ability of psammophyte photosynthesis to withstand and recover from severe droughts is crucial for vegetation sta-bility in semi-arid sandy lands. The responses of gas exchange and chlorophyll fluorescence of an annual grass, Digitaria ciliaris, were measured through three soil drought and rewatering cycles. Results showed that the net photosynthesis rate (Pn) decreased by 92%, 95%, and 63%at end of the three drought periods, respectively, water use efficiency (WUE) de-creased by 67%, 54%, and 48%, while the constant intercellular CO2 concentration (Ci) increased by 1.08, 0.88, and 0.45 times. During those three cycles, the trapping probability with no dark adaptation (Fv′/Fm′) decreased by 55%, 51%, and 9%, the electron transport per cross section (ET0′/CS0′) decreased by 63%, 42%, and 18%, and the dissipation per cross section (DI0′/CS0′) increased by 97%, 96%, and 21%. These results indicated that D. ciliaris was subjected to photoinhi-bition and some non-stomatal limitation of photosynthesis under drought. However, after four days of rewatering, its photosynthetic characteristics were restored to control values. This capability to recover from drought may contribute to making the plant's use of water as efficient as possible. Furthermore, the photosynthesis decreased more slowly in the subsequent drought cycles than in the first cycle, allowing D. ciliaris to enhance its future drought tolerance after drought hardening. Thus, it acclimatizes itself to repeated soil drought.

  6. Anthropogenic warming has caused hot droughts more frequently in China

    Science.gov (United States)

    Chen, Huopo; Sun, Jianqi

    2017-01-01

    Historical records have indicated an increase in high-impact drought occurrences across China during recent decades, but whether this increase is due to natural variability or anthropogenic change remains unclear. Thus, the shift toward dry conditions and their associated attributions across China are discussed in this study, primarily regarding the standardized precipitation evapotranspiration index (SPEI). The results show that drought occurrences across China increased consistently during 1951-2014, especially during the recent twenty years. Most of the increased drought events happened under warm-dry conditions that coincided with relatively high temperature anomalies but without large anomalies in annual precipitation, implying an increase in hot drought events across China. Further analysis revealed that the change in drought occurrences were mainly due to the combined activity of external natural forcings and anthropogenic changes across China. However, external natural forcings were mainly responsible for the variability of droughts and anthropogenic influences for their increasing trends, suggesting that anthropogenic warming has increased hot drought occurrences, associated risks and impacts across China. With continued warming in the future, the impact of anthropogenic warming on the increased hot drought events will be further amplified. The probability of warm years is projected to significantly increase, and the occurrence probability of hot drought events (SPEI precipitation is projected to increase across China in the future.

  7. Analysis of magnitude and duration of floods and droughts in the context of climate change

    Science.gov (United States)

    Eshetu Debele, Sisay; Bogdanowicz, Ewa; Strupczewski, Witold

    2016-04-01

    Research and scientific information are key elements of any decision-making process. There is also a strong need for tools to describe and compare in a concise way the regime of hydrological extreme events in the context of presumed climate change. To meet these demands, two complementary methods for estimating high and low-flow frequency characteristics are proposed. Both methods deal with duration and magnitude of extreme events. The first one "flow-duration-frequency" (known as QdF) has already been applied successfully to low-flow analysis, flood flows and rainfall intensity. The second one called "duration-flow-frequency" (DqF) was proposed by Strupczewski et al. in 2010 to flood frequency analysis. The two methods differ in the treatment of flow and duration. In the QdF method the duration (d-consecutive days) is a chosen fixed value and the frequency analysis concerns the annual or seasonal series of mean value of flows exceeded (in the case of floods) or non-exceeded (in the case of droughts) within d-day period. In the second method, DqF, the flows are treated as fixed thresholds and the duration of flows exceeding (floods) and non-exceeding (droughts) these thresholds are a subject of frequency analysis. The comparison of characteristics of floods and droughts in reference period and under future climate conditions for catchments studied within the CHIHE project is presented and a simple way to show the results to non-professionals and decision-makers is proposed. The work was undertaken within the project "Climate Change Impacts on Hydrological Extremes (CHIHE)", which is supported by the Norway-Poland Grants Program administered by the Norwegian Research Council. The observed time series were provided by the Institute of Meteorology and Water Management (IMGW), Poland. Strupczewski, W. G., Kochanek, K., Markiewicz, I., Bogdanowicz, E., Weglarczyk, S., & Singh V. P. (2010). On the Tails of Distributions of Annual Peak Flow. Hydrology Research, 42, 171

  8. Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts

    Science.gov (United States)

    Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter

    2017-06-01

    Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets

  9. Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982-2011 by using PDSI indices and agriculture drought survey data

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; Wang, Jun-Bang; Lu, Hou-Quan; Guo, An-Hong; Zhu, Zai-Chun; Myneni, Ranga B.; Shugart, Herman H.

    2016-03-01

    Inspired by concerns of the effects of a warming climate, drought variation and its impacts have gained much attention in China. Arguments about China's drought persist and little work has utilized agricultural drought survey area to evaluate the impact of natural drought on agriculture. Based on a newly revised self-calibrating Palmer Drought Severity Index (PDSI) model driven with air-relative-humidity-based two-source (ARTS) E0 (PDSIARTS; Yan et al., 2014), spatial and temporal variations of drought were analyzed for 1982-2011 in China, which indicates that there was nonsignificant change of drought over this interval but with an extreme drought event happened in 2000-2001. However, using air temperature (Ta)-based Thornthwaite potential evaporation (EP_Th) and Penman-Monteith potential evaporation (EP_PM) to drive the PDSI model, their corresponding PDSITh and PDSIPM all gave a significant drying trend for 1982-2011. This suggests that PDSI model was sensitive to EP parameterization in China. Annual drought-covered area from agriculture survey was initially adopted to evaluate impact of PDSI drought on agriculture in China during 1982-2011. The results indicate that PDSIARTS drought area (defined as PDSIARTS evaluating the impact of natural drought on agriculture.

  10. Drought in the southeast

    Science.gov (United States)

    Stacy Clark; Martin Spetich; Zander Evans

    2008-01-01

    A historic drought gripped the Southeast region in 2007. It was the second driest year on record for the region, and rainfall in some areas including Alabama and North Carolina was the lowest on record for the last century. By the end of 2007, over a third of the region was classified in "exceptional" drought (the worst drought designation used by the U.S....

  11. Global trends in future hydrological drought

    Science.gov (United States)

    Van Lanen, H.; Wanders, N.; Wada, Y.

    2013-12-01

    Climate change very likely impacts future hydrological drought characteristics worldwide (i.e. duration and intensity of drought in runoff). However, the magnitude and sign of the change is largely unknown. In this study we quantify impact of climate change on future low flows and hydrological droughts characteristics on a global scale. The global hydrological and water resources model PCR-GLOBWB was used to simulate future river runoff at 0.5 degree globally on a daily basis. The newly available CMIP5 climate projections were obtained through the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The model was forced with the daily transient climate fields taken from five GCMs and four underlying emission scenarios (here accounted for by using four Representative Concentration Pathways or RCPs). The monthly Q80 (20 percentile lowest flow) was used to evaluate the changes in low flows and as the threshold level for the hydrological drought characterisation. The monthly threshold was smoothed to allow for drought calculations on a daily basis. The thresholds in the future remained transient and were calculated over the climatology of the last 30 year period to reflect the adaptation of society to new conditions. Trends in the thresholds and drought characteristics were analysed over the period 2000-2099. Results for most GCMs and all RCPs showed that Q80 discharge (low flow metric) indicates a significant negative trend in large parts of South America, Central Africa, the Mediterranean and South East Asia. Under the higher greenhouse gas emission scenarios of RCP6.0 and RCP8.5, the USA and Central and South Europe were also projected to have drier conditions. For all future projections Russia and Canada were expected to get wetter during the 21st century. Under RCP6.0 and RCP8.5 scenarios, the results generally showed the strongest negative changes in future low flow. The results simulated with most GCMs agree well over many parts of the world, however

  12. A new drought tipping point for conifer mortality

    Science.gov (United States)

    Kolb, Thomas E.

    2015-03-01

    (Huang et al 2015 Environ. Res. Lett. 10 024011) present a method for predicting mortality of ponderosa pine (Pinus ponderosa) and pinyon pine (Pinus edulis) in the Southwestern US during severe drought based on the relationship between the standardized precipitation-evapotranspiration index (SPEI) and annual tree ring growth. Ring growth was zero when SPEI for September to July was -1.64. The threshold SPEI of -1.64 was successful in distinguishing areas with high tree mortality during recent severe drought from areas with low mortality, and is proposed to be a tipping point of drought severity leading to tree mortality. Below, I discuss this work in more detail.

  13. Past and future hydro-climatic change and the 2015 drought in the interior of western Canada

    Science.gov (United States)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Szeto, K.; Brimelow, J.; Chun, K. P.; Masud, M. B.; Bonsal, B. R.

    2015-12-01

    The interior of western Canada has experienced rapid and severe hydro-climatic change in recent decades. This is projected to continue in future. Since 1950, mean annual air temperature has increased by 2 °C (4 °C increase in winter daily means) with associated changes in cryospheric regime. Changes in precipitation have varied regionally; in the Prairies there has been a decrease in winter precipitation, shift from snowfall to rainfall, and increased clustering of summer rainfall events into multiple day storms. Regionally, river discharge indicates an earlier spring freshet and increased incidence of rain-on-snow peak flow events, but otherwise mixed responses due to multiple process interactions. In winter/spring 2015, persistent anomalous ridging conditions developed over western North America causing widespread drought. This produced abnormally warm and dry conditions over the Rocky Mountain headwaters of the Mackenzie and Saskatchewan Rivers, resulting in low spring snowpacks that melted earlier than normal and were followed by an atypical lack of spring rainfall. By summer 2015, most of western Canada was subject to extreme drought conditions leading to record dry soil moisture conditions in parts of the Prairies during a key crop growth time, streamflows that were greatly diminished, and extensive wildfires across the Boreal Forest. The importance of the warmer winter to this drought and the contextual trend for increasing winter warmth provide new insight into the impact of climate warming on droughts in cold regions. This talk will discuss efforts by the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) to understand and diagnose the 2015 drought, its potential linkages with the concurrent California drought and other continental events, and its relevance in the context of historical and predicted future climate change.

  14. Impacts of climate change on abstraction reliability for irrigation during droughts - Policy implications for England

    Science.gov (United States)

    Rey, Dolores; Holman, Ian; Rio, Marlene; Prudhomme, Christel

    2017-04-01

    In humid climates around the world, supplemental irrigation is critical to buffer the effects of rainfall variability and to assure crop yield and quality. In England, abstraction for irrigation is limited by: i) a maximum volumetric limit specified in the abstraction licence and ii) restrictions on abstraction imposed by the water regulator during droughts. Given regulatory efforts to secure sufficient environmental river flows and meet rising water demands due to population growth and climate change, increasing water scarcity is likely to compound the drought challenges faced by irrigated agriculture in this region. The aim of this study is to assess the impact that climate change may have on agricultural abstraction reliability in England within the context of the abstraction and drought management regimes currently in place, and how the water abstraction reform being developed by the Government could reduce the pressure on more and more limited water resources. Firstly, explanatory relationships were derived between an annual agroclimatic aridity index and actual irrigation abstraction. Secondly, the probability of annual abstraction being close to the maximum limit was calculated for each licence for the baseline (1961-90) and future (2071-2098) period. Finally, the current water resource availability triggers for mandatory abstractions restrictions on spray irrigation licences were used to assess the probability of being under restrictions during drought in each period. The results indicate a significant increase in the proportion of the licence being used in all catchments, representing the greatest risk for abstractors in the future, mainly in the most productive agricultural areas located in eastern and southern regions. In contrast, the likelihood of mandatory drought restrictions increases significantly in central and western England due to the lower buffering capacity of groundwater. Based on our findings, this paper discusses how the reform of the

  15. Drought risk reduction

    NARCIS (Netherlands)

    Su, Z.; Roerink, G.J.

    2004-01-01

    Due to the shortage of water resources and its inhomogeneous distribution in space and time, large scale droughts occur frequently all over the world. Consequently, drought has become a key factor constraining the economic development and threatening the food security. This report describes the resu

  16. Drought Tolerance in Wheat

    Directory of Open Access Journals (Sweden)

    Arash Nezhadahmadi

    2013-01-01

    Full Text Available Drought is one of the most important phenomena which limit crops’ production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants’ vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea, responsive to abscisic acid (Rab, rubisco, helicase, proline, glutathione-S-transferase (GST, and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress.

  17. USGS integrated drought science

    Science.gov (United States)

    Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.

    2017-06-05

    Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme drought has far-reaching impacts on water supplies, ecosystems, agricultural production, critical infrastructure, energy costs, human health, and local economies (Milly and others, 2005; Wihlite, 2005; Vörösmarty and others, 2010; Choat and others, 2012; Ledger and others, 2013). As global temperatures continue to increase, the frequency, severity, extent, and duration of droughts are expected to increase across North America, affecting both humans and natural ecosystems (Parry and others, 2007).The U.S. Geological Survey (USGS) has a long, proven history of delivering science and tools to help decision-makers manage and mitigate effects of drought. That said, there is substantial capacity for improved integration and coordination in the ways that the USGS provides drought science. A USGS Drought Team was formed in August 2016 to work across USGS Mission Areas to identify current USGS drought-related research and core capabilities. This information has been used to initiate the development of an integrated science effort that will bring the full USGS capacity to bear on this national crisis.

  18. Analysis of Droughts of Northwest of Iran Using the Reconnaissance Drought Index

    Directory of Open Access Journals (Sweden)

    behrouz hosseini

    2016-02-01

    Full Text Available Introduction: Drought is a creeping natural phenomenon, which can occur in any region. Such phenomenon not only affects the region subjected to drought, but its adverse effects can also be extended to other adjacent regions. This phenomenon mainly starts with water deficiency (say less than long- term mean of variable under study such as rainfall, streamflow, groundwater level or soil moisture and progress in time. This period can be ended by increasing the rainfall and reaching the mean level. Even after the ending of a drought period, its adverse effects can be continued for several months. Although, it is not possible (at least at this time to prevent the occurrence of drought in a given region, it is not impossible to alleviate the drought consequences by scientific water management. Such a management should be employed before drought initiation as well as during it and continue on even after the end of the drought period. The frequency of the main drought characteristics is a major concern of this study. The Northwest of Iran recently encountered severe and prolonged droughts, such that a major portion of the Urmia Lake surface disappeared during the last drought in recent years. In order to study drought characteristics, we used the Reconnaissance Drought Index (RDI. This index is based on annual rainfall and potential reference crop evapotranspiration (abbreviated by PET here. This study employed the Monte Carlo simulation technique for synthetic data generation for analysis. Materials and Methods: The information from the 17 synoptic weather stations located in the North-west of Iran was used for drought analysis. Data was gathered from the Islamic Republic of Iran’s Meteorological Organization (IRIMO. In the first stage of research, the ratio of long term mean annual precipitation to evapotranspiration was calculated for each of the stations. For this purpose, the Penman-Montheis (FAO 56 method was selected for PET estimation. In the

  19. Drought and groundwater management

    DEFF Research Database (Denmark)

    Amundsen, Eirik S; Jensen, Frank

    This paper considers the problem of a water management authority faced with the threat of a drought that hits at an uncertain date. Three management policies are investigated: i) a laissez-faire (open-access) policy of automatic adjustment through a zero marginal private net benefit condition, ii......) a policy of optimal dynamic management ignoring the threat of the drought and relying on automatic adjustments through a zero marginal social net benefit condition, iii) an economically optimal dynamic policy taking account of the threat of a drought. In particular, we show that the optimal pre......-drought steady-state equilibrium stock size of water under policy iii) is smaller than under policy ii) and, hence, a precautionary stock size should not be built up prior to the drought....

  20. Warm Spring Reduced Impact of Summer Drought on Carbon Cycling

    Science.gov (United States)

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.; Baldocchi, Dennis

    2015-04-01

    Drought severely impacts biosphere-atmosphere carbon and water fluxes of terrestrial ecosystems by reducing productivity, carbon uptake and water transport to the atmosphere. The 2012 US drought was among the most intense and widespread drought events in the U.S. since the 'Dust Bowl' period in the 1930s, and had devastating effects on agricultural production. In addition, 2012 was among the warmest years on record. Using eddy covariance measurements of carbon, water and energy exchange from AmeriFlux sites along with remote sensing products, we show that this summer drought substantially reduced ecosystem productivity, net carbon uptake and water transport to the atmosphere. However, the warm spring with higher ecosystem productivity reduced the impact of the summer drought on annual carbon uptake. Shifts in vegetation activity during spring also triggered feedbacks that contributed to the summer heatwave. Although the drought was exceptional, 2012 was an example of what is expected in terms of future climate change - i.e. warmer temperatures all year and an increased frequency and duration of drought in summer. Understanding the response of ecosystem carbon and water cycling to drought will help to mitigate these changes, and our study provides important new insights for that.

  1. Establishing the dominant source of uncertainty in drought indicators

    Science.gov (United States)

    Naumann, G.; Dutra, E.; Barbosa, P.; Pappenberger, F.; Wetterhall, F.; Vogt, J.

    2013-11-01

    Drought monitoring is a key component to mitigate impacts of droughts. Lack of reliable and up-to-date datasets is a common challenge across the Globe. This study investigates different datasets and drought indicators on their capability to improve drought monitoring in Africa. The study was performed for four river basins located in different climatic regions (the Oum er-Rbia in Morocco, the Blue Nile in Eastern Africa, the Upper Niger in Western Africa, and the Limpopo in South-Eastern Africa) as well as the Greater Horn of Africa. The five precipitation datasets compared are the ECMWF ERA - Interim reanalysis, the Tropical Rainfall Measuring Mission satellite monthly rainfall product 3B43, the Global Precipitation Climatology Centre gridded precipitation dataset, the Global Precipitation Climatology Project Global Monthly Merged Precipitation Analyses, and the Climate Prediction Center Merged Analysis of Precipitation. The set of drought indicators used includes the Standardized Precipitation Index, the Standardized Precipitation-Evaporation Index, Soil Moisture Anomalies and Potential Evapotranspiration. A comparison of the annual cycle and monthly precipitation time series shows a good agreement in the timing of the rainy seasons. The main differences between the datasets are in the ability to represent the magnitude of the wet seasons and extremes. Moreover, for the areas affected by drought, all the drought indicators agree on the time of drought onset and recovery although there is disagreement on the extent of the affected area. In regions with limited rain gauge data the estimation of the different drought indicators is characterised by a higher uncertainty. Further comparison suggests that the main source of error in the computation of the drought indicators is the uncertainty in the precipitation datasets rather than the estimation of the distribution parameters of the drought indicators.

  2. The German drought monitor

    Science.gov (United States)

    Zink, Matthias; Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Mai, Juliane; Schäfer, David; Marx, Andreas

    2016-07-01

    The 2003 drought event in Europe had major implications on many societal sectors, including energy production, health, forestry and agriculture. The reduced availability of water accompanied by high temperatures led to substantial economic losses on the order of 1.5 Billion Euros, in agriculture alone. Furthermore, soil droughts have considerable impacts on ecosystems, forest fires and water management. Monitoring soil water availability in near real-time and at high-resolution, i.e., 4 × 4 km2, enables water managers to mitigate the impact of these extreme events. The German drought monitor was established in 2014 as an online platform. It uses an operational modeling system that consists of four steps: (1) a daily update of observed meteorological data by the German Weather Service, with consistency checks and interpolation; (2) an estimation of current soil moisture using the mesoscale hydrological model; (3) calculation of a quantile-based soil moisture index (SMI) based on a 60 year data record; and (4) classification of the SMI into five drought classes ranging from abnormally dry to exceptional drought. Finally, an easy to understand map is produced and published on a daily basis on www.ufz.de/droughtmonitor. Analysis of the ongoing 2015 drought event, which garnered broad media attention, shows that 75% of the German territory underwent drought conditions in July 2015. Regions such as Northern Bavaria and Eastern Saxony, however, have been particularly prone to drought conditions since autumn 2014. Comparisons with historical droughts show that the 2015 event is amongst the ten most severe drought events observed in Germany since 1954 in terms of its spatial extent, magnitude and duration.

  3. Links between Indo-Pacific climate variability and drought in the Monsoon Asia Drought Atlas

    Science.gov (United States)

    Ummenhofer, Caroline C.; D'Arrigo, Rosanne D.; Anchukaitis, Kevin J.; Buckley, Brendan M.; Cook, Edward R.

    2013-03-01

    Drought patterns across monsoon and temperate Asia over the period 1877-2005 are linked to Indo-Pacific climate variability associated with the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Using the Monsoon Asia Drought Atlas (MADA) composed of a high-resolution network of hydroclimatically sensitive tree-ring records with a focus on the June-August months, spatial drought patterns during El Niño and IOD events are assessed as to their agreement with an instrumental drought index and consistency in the drought response amongst ENSO/IOD events. Spatial characteristics in drought patterns are related to regional climate anomalies over the Indo-Pacific basin, using reanalysis products, including changes in the Asian monsoon systems, zonal Walker circulation, moisture fluxes, and precipitation. A weakening of the monsoon circulation over the Indian subcontinent and Southeast Asia during El Niño events, along with anomalous subsidence over monsoon Asia and reduced moisture flux, is reflected in anomalous drought conditions over India, Southeast Asia and Indonesia. When an IOD event co-occurs with an El Niño, severe drought conditions identified in the MADA for Southeast Asia, Indonesia, eastern China and central Asia are associated with a weakened South Asian monsoon, reduced moisture flux over China, and anomalous divergent flow and subsidence over Indonesia. Insights into the relative influences of Pacific and Indian Ocean variability for Asian monsoon climate on interannual to decadal and longer timescales, as recorded in the MADA, provide a useful tool for assessing long-term changes in the characteristics of Asian monsoon droughts in the context of Indo-Pacific climate variability.

  4. Probabilistic Analysis of Drought Spatiotemporal Characteristics in the Beijing-Tianjin-Hebei Metropolitan Area in China

    Directory of Open Access Journals (Sweden)

    Wanyuan Cai

    2015-03-01

    Full Text Available The temporal and spatial characteristics of meteorological drought have been investigated to provide a framework of methodologies for the analysis of drought in the Beijing-Tianjin-Hebei metropolitan area (BTHMA in China. Using the Reconnaissance Drought Index (RDI as an indicator of drought severity, the characteristics of droughts have been examined. The Beijing-Tianjin-Hebei metropolitan area was divided into 253 grid-cells of 27 × 27km and monthly precipitation data for the period of 1960–2010 from 33 meteorological stations were used for global interpolation of precipitation using spatial co-ordinate data. Drought severity was assessed from the estimated gridded RDI values at multiple time scales. Firstly, the temporal and spatial characteristics of droughts were analyzed, and then drought severity-areal extent-frequency (SAF annual curves were developed. The analysis indicated that the frequency of moderate and severe droughts was about 9.10% in the BTHMA. Using the SAF curves, the return period of selected severe drought events was assessed. The identification of the temporal and spatial characteristics of droughts in the BTHMA will be useful for the development of a drought preparedness plan in the region.

  5. Effects of human water management on California drought risk

    Science.gov (United States)

    He, Xiaogang; Wada, Yoshihide; Wanders, Niko; Sheffield, Justin

    2017-04-01

    Contribution of human water management to the intensification or mitigation of hydrological drought over California is investigated using the PCR-GLOBWB hydrological model at 0.5˚ resolution for the period 1979-2014. We demonstrate that including water management in the modeling framework results in more accurate discharge representation. During the severe 2014 drought, water management alleviated the drought deficit by ˜50% in Southern California through reservoir operation during low flow periods. However, human water consumption (mostly irrigation) in the Central Valley increased drought duration and deficit by 50% and 50-100%, respectively. Return level analysis indicates that there is more than 50% chance that the probability of occurrence of an extreme 2014-magnitude drought event was at least doubled under the influence of human activities compared to natural variability. This impact is most significant over the San Joaquin Drainage basin with a 50% and 75% likelihood that the return period is more than 3.5 and 1.5 times larger, respectively, because of the human impact on drought. A detailed study of the relative attribution of different types of human activities (e.g., groundwater pumping, reservoir operation and irrigation) on changes in drought risk over California is conducted through a higher 10 km resolution simulation. This hydrological modeling, attribution and risk assessment framework is further extended to other drought-prone areas and major drought events in the contiguous U.S., including the 2006/2007 southeastern U.S. drought, the 2011 Texas-northern Mexico drought over the southern plains and the 2012 drought over the central Great Plains.

  6. Drought - A Global Assessment

    Science.gov (United States)

    Lackner, S.; Barnwal, P.; von der Goltz, J.

    2013-12-01

    We investigate the lasting effects of early childhood exposure to drought on economic and health outcomes in a large multi-country dataset. By pooling all Demographic and Health Survey rounds for which household geocodes are available, we obtain an individual-level dataset covering 47 developing countries. Among other impact measures, we collect infant and child mortality data from 3.3m live births and data on stunting and wasting for 1.2m individuals, along with data on education, employment, wealth, marriage and childbearing later in life for similarly large numbers of respondents. Birth years vary from 1893 to 2012. We seek to improve upon existing work on the socio-economic impact of drought in a number of ways. First, we introduce from the hydrological literature a drought measure, the Standardized Precipitation Index (SPI), that has been shown to closely proxy the Palmer drought index, but has far less demanding data requirements, and can be obtained globally and for long time periods. We estimate the SPI for 110 years on a global 0.5° grid, which allows us to assign drought histories to the geocoded individual data. Additionally, we leverage our large sample size to explicitly investigate both how drought impacts have changed over time as adaptation occurred at a varying pace in different locations, and the role of the regional extent of drought in determining impacts.

  7. National-scale analysis of simulated hydrological droughts (1891-2015)

    Science.gov (United States)

    Rudd, Alison C.; Bell, Victoria A.; Kay, Alison L.

    2017-07-01

    Droughts are phenomena that affect people and ecosystems in a variety of ways. One way to help with resilience to future droughts is to understand the characteristics of historic droughts and how these have changed over the recent past. Although, on average, Great Britain experiences a relatively wet climate it is also prone to periods of low rainfall which can lead to droughts. Until recently research into droughts of Great Britain has been neglected compared to other natural hazards such as storms and floods. This study is the first to use a national-scale gridded hydrological model to characterise droughts across Great Britain over the last century. Firstly, the model performance at low flows is assessed and it is found that the model can simulate low flows well in many catchments across Great Britain. Next, the threshold level method is applied to time series of monthly mean river flow and soil moisture to identify historic droughts (1891-2015). It is shown that the national-scale gridded output can be used to identify historic drought periods. A quantitative assessment of drought characteristics shows that groundwater-dependent areas typically experience more severe droughts, which have longer durations rather than higher intensities. There is substantial spatial and temporal variability in the drought characteristics, but there are no consistent changes through time.

  8. National flow cytometry and sorting research resource. Annual progress report, July, 1, 1994--June 30, 1995, Year 12

    Energy Technology Data Exchange (ETDEWEB)

    Jett, J.H.

    1995-04-27

    Research progress utilizing flow cytometry is described. Topics include: rapid kinetics flow cytometry; characterization of size determinations for small DNA fragments; statistical analysis; energy transfer measurements of molecular confirmation in micelles; and enrichment of Mus spretus chromosomes by dual parameter flow sorting and identification of sorted fractions by fluorescence in-situ hybridization onto G-banded mouse metaphase spreads.

  9. The relative influence of climate and catchment properties on hydrological drought

    Science.gov (United States)

    Van Loon, Anne; Laaha, Gregor; Koffler, Daniel

    2014-05-01

    Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a

  10. Palmer Drought Severity Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — PDSI from the Dai dataset. The Palmer Drought Severity Index (PDSI) is devised by Palmer (1965) to represent the severity of dry and wet spells over the U.S. based...

  11. Hypocalcemia in ewes after a drought

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.A.; Constable, P.D.; Napthine, D.V.

    1986-01-01

    A marked increase in the incidence of hypocalcemia of ewes 2 to 6 weeks before lambing was observed in the Western District of Victoria, following the break of the severe 1982/3 drought. A similar observation was made after the 1968 drought. In western Victoria, hypocalcemia is usually seen annually as sporadic cases or in sporadic outbreaks associated with some predisposing stress. After the drought broke in 1983, many farms reported cases of hypocalcemia in ewes. The incidence of hypocalcemia on the 9 farms the authors studied varied from 1 to 8% of all ewes, with some mobs having an incidence of over 10%. Detailed investigation of 9 farms that affected sheep were grazing pasture of unusually low calcium (Ca) content. Near record rains fell after the drought broke in late March 1983 resulting in luxuriant pasture growth with subterranean clover Trifolium subterraneum and capeweed Arctotheca calendula the dominant species. Cases of hypocalcemia commenced in May 1983 reaching a peak in June-July corresponding with flocks' lambing times, and continued into August. Most occurred spontaneously in mature ewes. A few farms experienced many cases during prelambing crutching.

  12. Comparison of drought occurrence in selected Slovak and Czech catchments

    Science.gov (United States)

    Fendekova, Miriam; Fendek, Marian; Porubska, Diana; Hanel, Martin; Horacek, Stanislav; Martinkova, Marta; Vizina, Adam

    2014-05-01

    The presented study is focused on the analysis and comparison of hydrological drought occurrence, development and duration in six small to middle sized catchments in the Czech Republic (CZ) and Slovakia. The main questions to be answered are: (1) are there correlations between the physical conditions in the catchments and drought occurrence, and (2) does the spatial trend of drought occurrence exist. The Žitava catchment is located in the central western part of Slovakia having runoff dominated by rainfall with the contribution of snow melting during the spring period. The Belá River catchment is located on the contact of Západné and Vysoké Tatry Mts. in the north of Slovakia. The runoff is snow to snow-rain combined type. The Ľupčianka catchment is located on the northern slopes of the Nízke Tatry Mts. in the northern part of the central Slovakia. The runoff regime is snow-rain combined in the upper part of the catchment, and of rain-snow type in the rest of catchment. The Rakovnický potok brook (CZ) has its spring in Rakovnická pahorkatina hilly land. Runoff is dominated by rainfall, quite heavily influenced by water uptakes in the catchment. The Teplá River (CZ) originates in peat meadows in the western part of the Czech Republic. Runoff is dominated by rainfall. The Metuje catchment (CZ) is formed by Adršsbach-Teplické stěny Upland. The headwater part is typical by deeply incest valleys, table mountains and pseudokarst caves. The discharge is fed dominantly by groundwater. The streamflow drought was characterized using discharge data, the groundwater drought using the base flow values. The local minimum method was used for base flow separation. The threshold level method (Q80, BF80) and the sequent peak algorithm were used for calculation of drought duration in discharge and base flow time series. The data of the same three decades of the common period (1971 - 1980, 1981 - 1990 and 1991 - 2000) were used. The resulting base flow values along with

  13. Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices

    Directory of Open Access Journals (Sweden)

    F. Fundel

    2013-01-01

    Full Text Available Streamflow droughts, characterized by low runoff as consequence of a drought event, affect numerous aspects of life. Economic sectors that are impacted by low streamflow are, e.g., power production, agriculture, tourism, water quality management and shipping. Those sectors could potentially benefit from forecasts of streamflow drought events, even of short events on the monthly time scales or below. Numerical hydrometeorological models have increasingly been used to forecast low streamflow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the evaluation of low streamflow and of the derived indices as duration, severity and magnitude, characterizing streamflow droughts up to a lead time of one month.

    The ECMWF VarEPS 5-member ensemble reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification reveals that, compared to probabilistic peak-flow forecasts, which show skill up to a lead time of two weeks, forecasts of streamflow droughts are skilful over the entire forecast range of one month. For forecasts at the lower end of the runoff regime, the quality of the initial state seems to be crucial to achieve a good forecast quality in the longer range. It is shown that the states used in this study to initialize forecasts satisfy this requirement. The produced forecasts of streamflow drought indices, derived from the ensemble forecasts, could be beneficially included in a decision-making process. This is valid for probabilistic forecasts of streamflow drought events falling below a daily varying threshold, based on a quantile derived from a runoff climatology. Although the forecasts have a tendency to overpredict streamflow droughts, it is shown that the relative economic value of the ensemble forecasts reaches up to 60%, in case a forecast user is able to take preventive

  14. Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices

    Science.gov (United States)

    Fundel, F.; Jörg-Hess, S.; Zappa, M.

    2013-01-01

    Streamflow droughts, characterized by low runoff as consequence of a drought event, affect numerous aspects of life. Economic sectors that are impacted by low streamflow are, e.g., power production, agriculture, tourism, water quality management and shipping. Those sectors could potentially benefit from forecasts of streamflow drought events, even of short events on the monthly time scales or below. Numerical hydrometeorological models have increasingly been used to forecast low streamflow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the evaluation of low streamflow and of the derived indices as duration, severity and magnitude, characterizing streamflow droughts up to a lead time of one month. The ECMWF VarEPS 5-member ensemble reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification reveals that, compared to probabilistic peak-flow forecasts, which show skill up to a lead time of two weeks, forecasts of streamflow droughts are skilful over the entire forecast range of one month. For forecasts at the lower end of the runoff regime, the quality of the initial state seems to be crucial to achieve a good forecast quality in the longer range. It is shown that the states used in this study to initialize forecasts satisfy this requirement. The produced forecasts of streamflow drought indices, derived from the ensemble forecasts, could be beneficially included in a decision-making process. This is valid for probabilistic forecasts of streamflow drought events falling below a daily varying threshold, based on a quantile derived from a runoff climatology. Although the forecasts have a tendency to overpredict streamflow droughts, it is shown that the relative economic value of the ensemble forecasts reaches up to 60%, in case a forecast user is able to take preventive action based on the forecast.

  15. Classification of Meteorological Drought

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiang; Zou Xukai; Xiao Fengjin; Lu Houquan; Liu Haibo; Zhu Changhan; An Shunqing

    2011-01-01

    Background The national standard of the Classification of Meteorological Drought (GB/T 20481-2006) was developed by the National Climate Center in cooperation with Chinese Academy of Meteorological Sciences,National Meteorological Centre and Department of Forecasting and Disaster Mitigation under the China Meteorological Administration (CMA),and was formally released and implemented in November 2006.In 2008,this Standard won the second prize of the China Standard Innovation and Contribution Awards issued by SAC.Developed through independent innovation,it is the first national standard published to monitor meteorological drought disaster and the first standard in China and around the world specifying the classification of drought.Since its release in 2006,the national standard of Classification of Meteorological Drought has been used by CMA as the operational index to monitor and drought assess,and gradually used by provincial meteorological sureaus,and applied to the drought early warning release standard in the Methods of Release and Propagation of Meteorological Disaster Early Warning Signal.

  16. Comparison of the Spatio-Temporal Variability of Annual Minimum Daily Extreme Flow Characteristics as a Function of Land Use and Dam Management Mode in Quebec, Canada

    OpenAIRE

    Jean-Michel Sylvain; Ali Assani; Raphaëlle Landry; Jean-François Quessy; Christophe Kinnard

    2015-01-01

    This study presents a comparison of the spatio-temporal variability of characteristics (magnitude, duration and timing) of annual minimum daily extreme flows (AMEF) as a function of land use and the mode of management of dams. Streamflow measured at stations not affected by dams at Joliette, along the L’Assomption River (agricultural watershed, 1340 km2), and at Saint-Michel-des-Saints, on the Matawin River (forested watershed, 1390 km2) on one hand, and downstream from the Rawdon dam (regu...

  17. CONSIDERATIONS ON THE DROUGHT PHENOMENON IN CLUJ COUNTY

    Directory of Open Access Journals (Sweden)

    CORNEL BLAGA

    2011-03-01

    Full Text Available Considerations on the drought phenomenon in Cluj County. Cluj county area is 6674 km², and is located in the northwestern part of Romania. The climate is temperate continental with oceanic influences, relatively humid, but there are also periods of drought and even years with deficient rainfall, as there are periods of excess rainfall. Dryness and drought phenomena are caused by cosmic, climatic, hydrological (groundwater depth, the existence of surface water sources factors, features of the underlying surface, vegetation coverage, soil texture and structure. The relief determines a climate elevation with differences in terms of precipitation and temperatures quantities. To calculate the dryness degree of the climate at weather stations in the Cluj county, the Emmanuel de Martonne aridity index was used. Drought do not induce into the substrate the geomorphologic processes per se, however, they pave the way for starting the deflation process, surface erosion and ravine, by reducing the cohesion between the particles and the formation of deep cracks in the soil and even rock. In these climatic conditions, droughts are less frequent in the county of Cluj, in relation to the extra-Carpathian regions and are distributed unevenly across the county. The number of periods of drought decreases with the increase of the altitude, from an average of 2.6 drought periods a year at Dej (altitude of 232 m to an annual average of 0.3 draught periods at Vlădeasa Peak (altitude of 1836 m.

  18. Ecohydrological Implications of Drought for U.S. Forests

    Science.gov (United States)

    Vose, J. M.; Miniat, C.; Luce, C.; Asbjornsen, H.; Caldwell, P. V.; Campbell, J. L.; Grant, G.; Isaak, D.; Sun, G.; Steven, L. I.

    2015-12-01

    The relationships among drought, surface water flow, and groundwater recharge are not straightforward for most forest ecosystems due to the strong role that vegetation plays in the forest water balance. Hydrologic responses to drought can be either mitigated or exacerbated by forest vegetation depending upon vegetation water use and how drought affects forest population dynamics. Because different species and functional groups vary in their ecophysiological traits that influence water use patterns, changes in species assemblages can alter hydrological processes from the stand to the watershed scales. Recent warming trends and more prolonged and frequent droughts have accelerated the spread and intensity of insect attacks in the western US that kill nearly all of the canopy trees within forest stands, changing the energy balance of the land surface and affecting many hydrologic processes. In contrast, some eastern forest tree species and size classes can tolerate drought better than others, suggesting the potential for drought-mediated shifts in both species composition and structure. Drought-related shifts in species composition may impact streamflow; however, predicting how these changes will impact hydrologic processes at larger spatial scales presents a considerable challenge. The biogeochemical consequences of drought are closely linked to changes in vegetation and hydrology. For example, droughts can have a concentrating effect on solutes in stream water due to the limited volume of water. As with other natural disturbances, droughts are difficult to prepare for because they are unpredictable. However, there are management options that may be implemented to minimize the impacts of drought on water quantity and quality. Examples include reducing leaf area by thinning and regenerating cut forests with species that consume less water.

  19. SPEI-Based Spatiotemporal Analysis of Drought in Haihe River Basin from 1961 to 2010

    Directory of Open Access Journals (Sweden)

    Meijian Yang

    2016-01-01

    Full Text Available Under the background of climate change, the monthly accumulated precipitation and monthly averaged temperature of 47 meteorological stations in and around Haihe River Basin (HRB were analyzed using Standardized Precipitation Evapotranspiration Indices (SPEI to obtain the temporal variability and spatial distribution of different drought levels during the last 50 years with the support of GIS. The results show that (1 from 1961 to 2010 the drought frequency and degree in annual and seasonal scale are rising and the affecting areas of all degrees of drought have a temporal variability of increasing trend. The ratios that the influencing area of drought, light drought, moderate drought, severe drought, and extreme drought account for the whole HRB area are increasing with gradients of 0.64%/a, 0.18%/a, 0.31%/a, 0.14%/a, and 0.01%/a, respectively, and (2 there is a climate break point which occurred in 1990; after the comparison of the drought happening probability between 1961 and 1990 and between 1991 and 2010, all degrees of drought occurrence probability have a remarkable rising trend, and the drought concentrating regions moved from the north HRB to the central HRB.

  20. Intensity-Duration-Frequency and spatial analysis of droughts using the Standardized Precipitation Index

    Directory of Open Access Journals (Sweden)

    M. Mohseni Saravi

    2009-03-01

    Full Text Available Precipitation deficit and its daily, seasonal and annual oscillations are inherent characteristics of Iran's climate. Droughts are generally characterized by a prolonged and abnormal moisture deficiency. In drought studies it is important to characterize the start and end of a drought as well as its intensity, duration, frequency and magnitude. The objective of this study was to analyze drought characteristics and to develop drought maps in the Karoon river basin, Iran. The Standardized Precipitation Index (SPI was used in drought analysis based on the data for meteorological stations located inside or adjacent to the study area and three time scales including the 3-, 6- and 12-month SPI were evaluated. After determining the dry and wet periods, historical characteristics of droughts were identified and spatial distribution maps of droughts were plotted using GIS. Based on frequency distributions, drought durations and magnitudes were computed corresponding to 5, 10, 20, 50 and 100-year return periods. The Time scale-Duration-Frequency (TDF and Time scale-Magnitude-Frequency (TMF relationships were also developed, which constitute an essential tool for water resource design purposes. Drought spatial distribution maps show that extreme conditions dominate the southeastern regions of the basin. The efficiency of the SPI is determined by monitoring the drought of 1999.

  1. Spatial and temporal characteristics of droughts in Luanhe River basin, China

    Science.gov (United States)

    Wang, Yixuan; Zhang, Ting; Chen, Xu; Li, Jianzhu; Feng, Ping

    2017-02-01

    The spatial and temporal characteristics of drought are investigated for Luanhe River basin, using monthly precipitation data from 26 stations covering the common period of 1958-2011. The spatial pattern of drought was assessed by applying principal component analysis (PCA) to the Standardized Precipitation Index (SPI) computed on 3- and 12-month time scales. In addition, annual SPI and seasonal SPIs (including spring SPI, summer SPI, autumn SPI, and winter SPI) were also defined and considered in this study to characterize seasonal and annual drought conditions, respectively. For all seven SPI cases, three distinctive sub-regions with different temporal evolutions of droughts are well identified, respectively, representing the southeast, middle, and northwest of the Luanhe River basin. The Mann-Kendall (MK) trend test with a trend-free pre-whitening (TFPW) procedure and Sen's method were used to determine the temporal trends in the annual and seasonal SPI time series. The continuous wavelet transform (CWT) was employed for further detecting the periodical features of drought condition in each sub-region. Results of MK and Sen's tests show a general tendency of intensification in summer drought over the entire basin, while a significant mitigating trend in spring drought. On the whole, an aggravating trend of inter-annual drought is discovered across the basin. Based on the CWT, the drought variability in the basin is generally dominated by 16- to 64-month cycles, and the 2- to 6-year cycles appear to be obvious when concerned with annual and seasonal droughts. Furthermore, a cross wavelet analysis was performed to examine the possible links between the drought conditions and large-scale climate patterns. The teleconnections of ENSO, NAO, PDO, and AMO show significant influences on the regional droughts principally concentrated in the 16- to 64-month period, maybe responsible for the physical causes of the cyclical behavior of drought occurrences. PDO and AMO also

  2. Global patterns of drought recovery

    Energy Technology Data Exchange (ETDEWEB)

    Schwalm, Christopher R.; Anderegg, William; Michalak, A. M.; Fisher, J.B.; Biondi, Franco; Koch, George; Litvak, Marcy; Ogle, Kiona; Shaw, John D.; Wolf, Adam; Huntzinger, Deborah; Schaefer, Kevin; Cook, R. B.; Wei, Yaxing; Fang, Yuanyuan; Hayes, Daniel J.; Huang, Maoyi; Jain, Atul K.; Tian, Hanqin

    2017-08-09

    Drought is a recurring multi-factor phenomenon with major impacts on natural and human systems1-3. Drought is especially important for land carbon sink variability, influencing climate regulation of the terrestrial biosphere4. While 20th Century trends in drought regime are ambiguous, “more extreme extremes” as well as more frequent and severe droughts3,7 are expected in the 21st Century. Recovery time, the length of time an ecosystem requires to revert to its pre-drought functional state, is a critical metric of drought impact. Yet the spatiotemporal patterning and controls of drought recovery are largely unknown. Here we use three distinct global datasets of gross primary productivity to show that across diverse terrestrial ecosystems drought recovery times are driven by biological productivity and biodiversity, with drought length and severity of secondary importance. Recovery time, especially for extreme droughts, and the areal extent of ecosystems in recovery from drought generally increase over the 20th Century, supporting an increase globally in drought impact8. Our results indicate that if future Anthropocene droughts become more widespread as expected, that droughts will become more frequent relative to recovery time. This increases the risk of entering a new regime where vegetation never recovers to its original state and widespread degradation of the land carbon sink ensues.

  3. Drought, climate change and vegetation response in the succulent karoo, South Africa

    Directory of Open Access Journals (Sweden)

    M. T. Hoffman

    2009-12-01

    Full Text Available For the winter-rainfall region of South Africa, the frequency of drought is predicted to increase over the next 100 years, with dire consequences for the vegetation of this biodiversity hotspot. We analysed historical 20th century rainfall records for six rainfall stations within the succulent karoo biome to determine if the signal of increasing drought frequency is already apparent, and whether mean annual rainfall is decreasing. We found no evidence for a decrease either in mean annual rainfall or in the incidence of drought, as measured by the Standardised Precipitation Index (SPI over the 20th century. Evidence points to a drying trend from 1900–1950 while no significant trend in rainfall and drought was found at most stations from 1951–2000. In a second analysis we synthesised the information concerning the response of adult succulent karoo biome plants and seedlings to extended drought conditions. General findings are that responses to drought differ between species, and that longevity is an important life history trait related to drought survival. Growth form is a poor predictor of drought response across the biome. There was a range of responses to drought among adult plants of various growth forms, and among non-succulent seedlings. Leaf-succulent seedlings, however, exhibited phenomenal drought resistance, the majority surviving drought long after all the experimentally comparative non-succulent seedlings had died. Our synthesis showed that previous studies on the impact of drought on succulent karoo biome plants differ greatly in terms of their location, sampling design, measured values and plant responses. A suite of coordinated long-term field observations, experiments and models are therefore needed to assess the response of succulent karoo biome species to key drought events as they occur over time and to integrate this information into conservation planning.

  4. Quantifying sensitivity to droughts – an experimental modeling approach

    Directory of Open Access Journals (Sweden)

    M. Staudinger

    2014-07-01

    Full Text Available Meteorological droughts like those in summer 2003 or spring 2011 in Europe are expected to become more frequent in the future. Although the spatial extent of these drought events was large, not all regions were affected in the same way. Many catchments reacted strongly to the meteorological droughts showing low levels of streamflow and groundwater, while others hardly reacted. The extent of the hydrological drought for specific catchments was also different between these two historical events due to different initial conditions and drought propagation processes. This leads to the important question of how to detect and quantify the sensitivity of a catchment to meteorological droughts. To assess this question we designed hydrological model experiments using a conceptual rainfall–runoff model. Two drought scenarios were constructed by selecting precipitation and temperature observations based on certain criteria: one scenario was a modest but constant progression of drying based on sorting the years of observations according to annual precipitation amounts. The other scenario was a more extreme progression of drying based on selecting months from different years, forming a year with the wettest months through to a year with the driest months. Both scenarios retained the typical intra-annual seasonality for the region. The sensitivity of 24 Swiss catchments to these scenarios was evaluated by analyzing the simulated discharge time series and modeled storages. Mean catchment elevation, slope and size were found to be the main controls on the sensitivity of catchment discharge to precipitation. Generally, catchments at higher elevation and with steeper slopes seemed to be less sensitive to meteorological droughts than catchments at lower elevations with less steep slopes.

  5. Reverse relationship between drought of mid-latitudes in East Asia and Northwest Pacific tropical cyclone genesis frequency in summer

    Science.gov (United States)

    Choi, Jae-Won; Cha, Yumi; Kim, Jeoung-Yun

    2016-12-01

    This study found that there is a significant negative correlation between summer drought in Korea, China and Japan and the frequency of tropical cyclone (TC) in the subtropical western North Pacific (SWNP) using effective drought index (EDI). The frequency of TCs that affect Korea is low (high) in a year of summer drought (non-drought). As a case study, in 1994 when there is extremely severe summer drought in Korea, there was high frequency of TCs while in 2003 when there was least severe summer drought, the frequency of TCs is the lowest. Changes in the anomalous secondary circulation, namely anomalous upward (downward) flow in the SWNP and anomalous downward (upward) flow in the mid-latitudes of East Asia, are one of the causes of drought (non-drought).

  6. Lags in hydrologic recovery following an extreme drought: Assessing the roles of climate and catchment characteristics

    Science.gov (United States)

    Yang, Yuting; McVicar, Tim R.; Donohue, Randall J.; Zhang, Yongqiang; Roderick, Michael L.; Chiew, Francis H. S.; Zhang, Lu; Zhang, Junlong

    2017-06-01

    Drought, generally characterized by below-average water supply, propagates through the hydrologic system with consequent ecological and societal impacts. Compared with other drought aspects, the recovery of drought especially in the hydrological components, which directly relates to the recovery of water resources for agricultural, ecological and human needs, is less-understood. Here, taking the Millennium drought in southeast Australia (˜1997-2009) as an illustrating case, we comprehensively examined multiple aspects of the meteorological (i.e., precipitation) and hydrological (i.e., streamflow and base flow) droughts across 130 unimpaired catchments using long-term hydro-meteorological observations. Results show that the duration and intensity of the meteorological drought are both lengthened and amplified in the hydrological drought, suggesting a nonstationarity in the rainfall-runoff relationship during a prolonged drought. Additionally, we find a time lag commonly exists between the end of the meteorological droughts and the end of the hydrological drought, with the recovery of base flow showing a longer lag than the recovery of streamflow. The recovery rate of precipitation after drought was found to be the dominant factor that controls the recovery of hydrological droughts while catchment landscape (i.e., valley bottom flatness) plays an important but secondary role in controlling the lags in the hydrological recovery. Other hydro-climatic factors and catchment properties appear to have only minor influences governing hydrological drought recovery. Our findings highlight a delayed response in the terrestrial components of the hydrological cycle to precipitation after prolonged drought, and provide valuable scientific guidance to water resources management and water security assessment in regions facing future droughts.

  7. Spatio-Temporal Analysis of Trends and periodicities of regional drought projections in India

    Science.gov (United States)

    Gupta, Vivek; Jain, Manoj Kumar

    2017-04-01

    Climate change is believed to be altering the hydrologic cycle of different regions worldwide. This may alter the occurrence and distribution of extreme events such as droughts and floods. India is one of the most drought affected country, it is therefore important to understand spatiotemporal variation of droughts in future due to climate change. In this paper, we have analyzed the spatiotemporal projections of droughts over India for 21st century using Global Climate Model (GCM) precipitation projections of ESM2G model under two Representative Concentration Pathways (RCP) namely, RCP 4.5 and RCP 8.5. K-means Clustering algorithm has been exploited to obtain homogeneous precipitation region in India for regional drought analysis. Further, temporal analysis of projected annual minimum SPI for year 2006 to 2100 has been performed for different homogeneous regions obtained using cluster analysis. Trend analysis of annual minimum SPI series has also been performed using Mann-Kendall and Sen's slope method. Furthermore, periodicity in SPI series have been examined using wavelet periodogram analysis. Findings of this paper suggest that major drought events for Northeastern and Southern India are likely to occur in second half of the 21st century while for all other parts of India, most of the major drought events are expected in first half of the 21st century. Also, wavelet periodicity analysis indicates inter-annual periodicities of projected droughts between 3 to 9.5 years in different regions of India.

  8. Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011

    Science.gov (United States)

    Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G.

    2014-05-01

    In recent years, China's terrestrial ecosystems have experienced frequent droughts. How these droughts have affected carbon sequestration by the terrestrial ecosystems is still unclear. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model, driven by remotely sensed vegetation parameters, was employed to assess the effects of droughts on net ecosystem productivity (NEP) of terrestrial ecosystems in China from 2000 to 2011. Droughts of differing severity, as indicated by a standard precipitation index (SPI), hit terrestrial ecosystems in China extensively in 2001, 2006, 2009, and 2011. The national total annual NEP exhibited the slight decline of -11.3 Tg C yr-2 during the aforementioned years of extensive droughts. The NEP reduction ranged from 61.1 Tg C yr-1 to 168.8 Tg C yr-1. National and regional total NEP anomalies were correlated with the annual mean SPI, especially in Northwest China, North China, Central China, and Southwest China. The reductions in annual NEP in 2001 and 2011 might have been caused by a larger decrease in annual gross primary productivity (GPP) than in annual ecosystem respiration (ER). The reductions experienced in 2009 might be due to a decrease in annual GPP and an increase in annual ER, while reductions in 2006 could stem from a larger increase in ER than in GPP. The effects of droughts on NEP lagged up to 3-6 months, due to different responses of GPP and ER. In eastern China, where is humid and warm, droughts have predominant and short-term lagged influences on NEP. In western regions, cold and arid, the drought effects on NEP were relatively weaker but prone to lasting longer.

  9. Assessing water resource system vulnerability to unprecedented hydrological drought using copulas to characterize drought duration and deficit

    Science.gov (United States)

    Borgomeo, Edoardo; Pflug, Georg; Hall, Jim W.; Hochrainer-Stigler, Stefan

    2015-11-01

    Global climate models suggest an increase in evapotranspiration, changing storm tracks, and moisture delivery in many parts of the world, which are likely to cause more prolonged and severe drought, yet the weakness of climate models in modeling persistence of hydroclimatic variables and the uncertainties associated with regional climate projections mean that impact assessments based on climate model output may underestimate the risk of multiyear droughts. In this paper, we propose a vulnerability-based approach to test water resource system response to drought. We generate a large number of synthetic streamflow series with different drought durations and deficits and use them as input to a water resource system model. Marginal distributions of the streamflow for each month are generated by bootstrapping the historical data, while the joint probability distributions of consecutive months are constructed using a copula-based method. Droughts with longer durations and larger deficits than the observed record are generated by perturbing the copula parameter and by adopting an importance sampling strategy for low flows. In this way, potential climate-induced changes in monthly hydrological persistence are factored into the vulnerability analysis. The method is applied to the London water system (England) to investigate under which drought conditions severe water use restrictions would need to be imposed. Results indicate that the water system is vulnerable to drought conditions outside the range of historical events. The vulnerability assessment results were coupled with climate model information to compare alternative water management options with respect to their vulnerability to increasingly long and severe drought.

  10. Monitoring vegetation responses to drought -- linking Remotely-sensed Drought Indices with Meteorological drought indices

    Science.gov (United States)

    Wang, H.; Lin, H.; Liu, D.

    2013-12-01

    Abstract: Effectively monitoring vegetation drought is of great significance in ecological conservation and agriculture irrigation at the regional scale. Combining meteorological drought indices with remotely sensed drought indices can improve tracking vegetation dynamic under the threat of drought. This study analyzes the dynamics of spatially-defined Temperature Vegetation Dryness Index (TVDI) and temporally-defined Vegetation Health Index (VHI) from remotely sensed NDVI and LST datasets in the dry spells in Southwest China. We analyzed the correlation between remotely sensed drought indices and meteorological drought index of different time scales. The results show that TVDI was limited by the spatial variations of LST and NDVI, while VHI was limited by the temporal variations of LST and NDVI. Station-based buffering analysis indicates that the extracted remotely sensed drought indices and Standard Precipitation Index (SPI) could reach stable correlation with buffering radius larger than 35 km. Three factors affect the spatiotemporal relationship between remotely sensed drought indices and SPI: i) different vegetation types; ii) the timescale of SPI; and iii) remote sensing data noise. Vegetation responds differently to meteorological drought at various time scales. The correlation between SPI6 and VHI is more significant than that between SPI6 and TVDI. Spatial consistency between VHI and TVDI varies with drought aggravation. In early drought period from October to December, VHI and TVDI show limited consistency due to the low quality of remotely sensed images. The study helps to improve monitoring vegetation drought using both meteorological drought indices and remotely sensed drought indices.

  11. Drought analysis in the Tons River Basin, India during 1969-2008

    Science.gov (United States)

    Meshram, Sarita Gajbhiye; Gautam, Randhir; Kahya, Ercan

    2017-05-01

    The primary focus of this study is the analysis of droughts in the Tons River Basin during the period 1969-2008. Precipitation data observed at four gauging stations are used to identify drought over the study area. The event of drought is derived from the standardized precipitation index (SPI) on a 3-month scale. Our results indicated that severe drought occurred in the Allahabad, Rewa, and Satna stations in the years 1973 and 1979. The droughts in this region had occurred mainly due to erratic behavior in monsoons, especially due to long breaks between monsoons. During the drought years, the deficiency of the annual rainfall in the analysis of annual rainfall departure had varied from -26% in 1976 to -60% in 1973 at Allahabad station in the basin. The maximum deficiency of annual and seasonal rainfall recorded in the basin is 60%. The maximum seasonal rainfall departure observed in the basin is in the order of -60% at Allahabad station in 1973, while maximum annual rainfall departure had been recorded as -60% during 1979 at the Satna station. Extreme dry events (z score <-2) were detected during July, August, and September. Moreover, severe dry events were observed in August, September, and October. The drought conditions in the Tons River Basin are dominantly driven by total rainfall throughout the period between June and November.

  12. Droughts in Asian Least Developed Countries: Vulnerability and sustainability

    Directory of Open Access Journals (Sweden)

    M. Alimullah Miyan

    2015-03-01

    Full Text Available Droughts occur both in developed and developing countries with significant impacts and are exacerbating in frequency, severity and duration. Over exploitation of water resources, weather variability and climate change are mostly responsible for such exacerbation. The impacts of droughts encompass the global ecosystem as a whole but vary from region to region. Least developed countries (LDCs are becoming the worst sufferer of the impacts due to physical, social and economic as well as knowledge and skills differences. The increasing biophysical vulnerability contexts and intensity in the Asian LDCs causing adverse effects on food security, human health, biodiversity, water resources, hydroelectric power generation, streams, perennial springs, and livelihood. Drought is also responsible for increasing pollution, pests and diseases and forced migration and famine. Information indicates monsoon has become erratic contributing to up-scaling of droughts. South and Southeast Asian LDCs like Bangladesh, Nepal, Bhutan, Cambodia and Lao PDR under the monsoon climatic zone have also been suffering from increasing droughts arising out of delayed and changing distribution patterns of precipitation. Prolong dry spells increase the frequencies of wildfire in grasslands, forests, and range-lands. The rain-fed crops of the plains are facing challenges from soil-moisture stress with projected droughts. Droughts causing migration of fishes, and marine anadromus species are having adverse impacts on spawning habitats. Reduction in annual surface runoff is decreasing the ground and surface water with negative effect on agriculture and water supply for industrial and domestic sectors. As droughts are exacerbating the consequences are accelerating. However, traditionally people are adapting with the changing situations applying indigenous knowledge and practices for sustainable living. This paper reflects on prevalence and impacts of droughts, existing coping

  13. An analysis of drought in the Northern Great Plains: Summary of progress

    Energy Technology Data Exchange (ETDEWEB)

    Sieg, C.H. [Forest Service, Rapid City, SD (United States). Rocky Mountain Station; Meko, D.M.; Ni, W. [Univ. of Arizona, Tucson, AZ (United States). Lab. of Tree-Ring Research; DeGaetano, A.T.; Miller, J.R. Jr.; Bunkers, M.J. [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    1995-12-31

    The purpose of this research is to increase the understanding of the magnitude, recurrence interval and periodicity of drought in the Northern Great Plains both from dendrochronological reconstructions and from analyses of available climate data. The objectives are to: (1) develop a network of climatically sensitive tree-ring chronologies to fill a void in the Northern Great Plains; (2) isolate climate variables most highly correlated with tree-growth; (3) reconstruct the drought history for the past 100 to 300 years; (4) identify regions which are climatically similar with respect to drought; (5) isolate patterns of drought persistence or recurrence; and (6) determine if drought recurrence is related to southern oscillation events. This paper summarizes progress on development of tree-ring chronologies in the Northern Great Plains preliminary analyses on the relationship between annual tree-ring widths and both precipitation and soil moisture and efforts to identify climatic regions and drought patterns in this region from climatic records.

  14. Impact of drought on wildfires in Iberia

    Science.gov (United States)

    Russo, Ana; Gouveia, Célia M.; DaCamara, Carlos; Sousa, Pedro; Trigo, Ricardo M.

    2015-04-01

    Southern European countries, and the Iberian Peninsula (IP) in particular, have been vastly affected by summer wildfires (Trigo et al., 2013). This condition is hampered by the frequent warm and dry meteorological conditions found in summer which play a significant role in the triggering and spreading of wildfires. These meteorological conditions are also particularly important for the onset and end of drought periods, a phenomenon that has recurrently affected the IP (Gouveia et al., 2012). Moreover, the IP corresponds to one of the most sensitive areas to current and future climate change, and recent and future trends towards a dryer and warmer Mediterranean climate (Sousa et al., 2014) will tend to exacerbate these problems. The main scope of this study was to investigate the impact of drought on wildfires' burned areas in the IP. The objective was to examine the correlation between drought, as expressed by both the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010), and wildfire burned areas. The SPI and SPEI were both calculated for 4 large regions (Northwestern, Northern, Southwestern and Eastern) whose spatial patterns and seasonal fire regimes were shown to be related with constraining factors such as topography, vegetation cover and climate conditions (Trigo et al., 2013). In this study, the drought indices were determined for the time scales of 3 and 6 months for August and for 12 months in September, thus representing the summer and annual drought. The correlation between drought and burned areas during July and August was particularly significant for the 3 months SPEI and SPI relatively to the 6 and 12 time scales, which indicates that drought and fires relation is a small-size scale process. Moreover, the correlation between drought and burned areas during July and August was particularly significant for the Northern and Southwestern regions both for SPEI for 3 and 6

  15. Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications

    Science.gov (United States)

    Zhang, Qiang; Kong, Dongdong; Singh, Vijay P.; Shi, Peijun

    2017-05-01

    Based on Normalized Difference Vegetation Index (NDVI) and Standardized Precipitation Evapotranspiration Index (SPEI), we investigated vegetation response to different time-scales drought across different vegetation types and homogeneous clusters in China, by annual maximum Pearson correlation (Rmax) and the corresponding time-scales of drought. Results showed that: (1) 8 subregions with homogeneous climate-vegetation conditions were identified using Fuzzy C-Means algorithm; (2) SPEI and NDVI's annual Rmax were in significantly positive correlation in most regions of China, indicating that vegetation biomass were influenced mainly by the spatiotemporal characteristics of the water availability. The southeastern Yangtze River basin and the lower Pearl River basin are dominated by abundant precipitation, and vegetation is not sensitive to droughts in these regions. The northeastern Heilongjiang province, the Changbai Mountains and western Sichuan province are characterized by weak NDVI versus SPEI relations, indicating a relatively small effect of drought on vegetation; (3) The effects of annual average water balance, annual average annual precipitation, annual average effective accumulative temperature, and annual average daily sunshine hours on the NDVI versus SPEI correlation show that the annual average water balance is the key factor behind the change of vegetation vigor. It can therefore be concluded that the change of water availability is the key factor behind the change of vegetation activity and biomass. Regional precipitation or water balance was significantly related to the correlation between SPEI and NDVI. Vegetation in the regions with longer sunshine hours is more sensitive to droughts. In general, the sensitivity of grassland to droughts is the largest, followed by the sensitivity of shrubs and forests to droughts.

  16. The 2010 Amazon drought.

    Science.gov (United States)

    Lewis, Simon L; Brando, Paulo M; Phillips, Oliver L; van der Heijden, Geertje M F; Nepstad, Daniel

    2011-02-04

    In 2010, dry-season rainfall was low across Amazonia, with apparent similarities to the major 2005 drought. We analyzed a decade of satellite-derived rainfall data to compare both events. Standardized anomalies of dry-season rainfall showed that 57% of Amazonia had low rainfall in 2010 as compared with 37% in 2005 (≤-1 standard deviation from long-term mean). By using relationships between drying and forest biomass responses measured for 2005, we predict the impact of the 2010 drought as 2.2 × 10(15) grams of carbon [95% confidence intervals (CIs) are 1.2 and 3.4], largely longer-term committed emissions from drought-induced tree deaths, compared with 1.6 × 10(15) grams of carbon (CIs 0.8 and 2.6) for the 2005 event.

  17. Drought Risk Identification: Early Warning System of Seasonal Agrometeorological Drought

    Science.gov (United States)

    Dalecios, Nicolas; Spyropoulos, Nicos V.; Tarquis, Ana M.

    2014-05-01

    By considering drought as a hazard, drought types are classified into three categories, namely meteorological or climatological, agrometeorological or agricultural and hydrological drought and as a fourth class the socioeconomic impacts can be considered. This paper addresses agrometeorological drought affecting agriculture within the risk management framework. Risk management consists of risk assessment, as well as a feedback on the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. This paper deals with the quantification and monitoring of agrometeorological drought, which constitute part of risk identification. For the quantitative assessment of agrometeorological or agricultural drought, as well as the computation of spatiotemporal features, one of the most reliable and widely used indices is applied, namely the Vegetation Health Index (VHI). The computation of VHI is based on satellite data of temperature and the Normalized Difference Vegetation Index (NDVI). The spatiotemporal features of drought, which are extracted from VHI are: areal extent, onset and end time, duration and severity. In this paper, a 20-year (1981-2001) time series of NOAA/AVHRR satellite data is used, where monthly images of VHI are extracted. Application is implemented in Thessaly, which is the major agricultural region of Greece characterized by vulnerable and drought-prone agriculture. The results show that every year there is a seasonal agrometeorological drought with a gradual increase in the areal extent and severity with peaks appearing usually during the summer. Drought monitoring is conducted by monthly remotely sensed VHI images. Drought early warning is developed using empirical relationships of severity and areal extent. In particular, two second-order polynomials are fitted, one for low and the other for high severity drought, respectively. The two fitted curves offer a seasonal

  18. Characterization of Drought and Its Assessment over Sindh, Pakistan During 1951-2010

    Science.gov (United States)

    Adnan, Shahzada

    2016-07-01

    Drought is one of the complex meteorological disasters, which can affect water resources, agriculture, livestock, and socioeconomic patterns of a region. Although drought prediction is difficult, it can be monitored based on climatological information. In this study, we provide high spatial and temporal resolution drought climatology, using observational, gridded precipitation data (0.5°X 0.5°) from the Global Precipitation Climatological Center and soil moisture from the Climate Prediction Centre for the 60-yr period 1951-2010. The standardized precipitation index (SPI) based on a fitted Gamma distribution and Run Method has been calculated from the regional drought identification model (ReDIM) on 3, 6, 9, 12 and 24 months. The results show strong temporal correlations among anomalies of precipitation, soil moisture, and SPI. Analysis of long-term precipitation data reveals that the drought vulnerability concentrates on monsoon season (July-September), which contributes 72.4% and 82.1% of annual precipitation in northern and southern Sindh, respectively. Annual and seasonal analyses show no significant changes in the observed precipitation. The category classification criteria are defined to monitor/forecast drought in the selected area. Further analysis identifies two longest episodes of drought, i.e., 1972-1974 and 2000-2002, while 1969, 1974, 1987, and 2002 are found to be the most severe historical drought years. A drought hazard map of Sindh was developed, in which 10 districts are recognized as highly vulnerable to drought. This study helps in explaining the time, duration, intensity, and frequency of meteorological droughts over Sindh as well as its neighboring regions, and provides useful information to disaster management agencies and forecasters for assessing both the regional vulnerability of drought and its seasonal predictability in Pakistan.

  19. Introduction 'Governance for Drought Resilience'

    NARCIS (Netherlands)

    Bressers, Nanny; Bressers, Hans; Larrue, Corinne; Bressers, Hans; Bressers, Nanny; Larrue, Corinne

    2016-01-01

    This book is about governance for drought resilience. But that simple sentence alone might rouse several questions. Because what do we mean with drought, and how does that relate to water scarcity? And what do we mean with resilience, and why is resilience needed for tackling drought? And how does g

  20. Introduction 'Governance for Drought Resilience'

    NARCIS (Netherlands)

    Bressers, Nanny; Bressers, Johannes T.A.; Larrue, Corinne; Bressers, Hans; Bressers, Nanny; Larrue, Corinne

    2016-01-01

    This book is about governance for drought resilience. But that simple sentence alone might rouse several questions. Because what do we mean with drought, and how does that relate to water scarcity? And what do we mean with resilience, and why is resilience needed for tackling drought? And how does

  1. Drought analysis in the Eastern Nile basin using the standardized precipitation index.

    Science.gov (United States)

    Elkollaly, Mohamed; Khadr, Mosaad; Zeidan, Bakenaz

    2017-01-31

    Drought is considered by many researchers to be the most complex but least understood of all natural hazards, affecting more people than any other hazard. Drought affects many aspects of community and environment, and any future increases in the water demand will be most critical in periods of severe drought. Geospatial analysis of the historical drought events and their causes can be used to mitigate drought impacts and to develop preparedness plans. This study aimed to identify the changes in drought frequency, magnitude, duration, and intensity in the Eastern Nile basin during the period 1965-2000, using the standardized precipitation index (SPI). An SPI program based on C sharp language was developed to monitor drought in the study area. Twenty-eight meteorological stations distributed on the Eastern Nile basin were chosen to collect monthly precipitation data. For drought analysis, SPI series of 3-, 6-, 9-, 12-, and 24-month timescales have been calculated. Results showed that the study area received several drought events during the long rainy season (June to September) and the short rainy season (March to May) as well. Annual analysis of SPI time series indicated that the study area received several drought events, and the most severity event was during the year 1984.

  2. Drought impact functions as intermediate step towards drought damage assessment

    Science.gov (United States)

    Bachmair, Sophie; Svensson, Cecilia; Prosdocimi, Ilaria; Hannaford, Jamie; Helm Smith, Kelly; Svoboda, Mark; Stahl, Kerstin

    2016-04-01

    While damage or vulnerability functions for floods and seismic hazards have gained considerable attention, there is comparably little knowledge on drought damage or loss. On the one hand this is due to the complexity of the drought hazard affecting different domains of the hydrological cycle and different sectors of human activity. Hence, a single hazard indicator is likely not able to fully capture this multifaceted hazard. On the other hand, drought impacts are often non-structural and hard to quantify or monetize. Examples are impaired navigability of streams, restrictions on domestic water use, reduced hydropower production, reduced tree growth, and irreversible deterioration/loss of wetlands. Apart from reduced crop yield, data about drought damage or loss with adequate spatial and temporal resolution is scarce, making the development of drought damage functions difficult. As an intermediate step towards drought damage functions we exploit text-based reports on drought impacts from the European Drought Impact report Inventory and the US Drought Impact Reporter to derive surrogate information for drought damage or loss. First, text-based information on drought impacts is converted into timeseries of absence versus presence of impacts, or number of impact occurrences. Second, meaningful hydro-meteorological indicators characterizing drought intensity are identified. Third, different statistical models are tested as link functions relating drought hazard indicators with drought impacts: 1) logistic regression for drought impacts coded as binary response variable; and 2) mixture/hurdle models (zero-inflated/zero-altered negative binomial regression) and an ensemble regression tree approach for modeling the number of drought impact occurrences. Testing the predictability of (number of) drought impact occurrences based on cross-validation revealed a good agreement between observed and modeled (number of) impacts for regions at the scale of federal states or

  3. Groundwater as an emergency source for drought mitigation in the Crocodile River catchment, South Africa

    Directory of Open Access Journals (Sweden)

    F. E. F. Mussá

    2014-03-01

    and environmental damages to the society. In this study, we assess the drought intensity and severity and the groundwater potential to be used as a supplement source of water to mitigate drought impacts in the Crocodile River catchment, a water-stressed sub-catchment of the Incomati River catchment in South Africa. The research methodology consists mainly of three parts. First, the spatial and temporal variation of the meteorological and hydrological drought severity and intensity over the catchment were evaluated. The Standardized Precipitation Index (SPI was used to analyse the meteorological drought and the Standardized Runoff Index (SRI was used for the hydrological drought. Second, the water deficit in the catchment during the drought period was computed using a simple water balance method. Finally, a groundwater model was constructed in order to assess the feasibility of using groundwater as an emergency source for drought impact mitigation. Results show that the meteorological drought severity varies accordingly with the precipitation; the low rainfall areas are more vulnerable to severe meteorological droughts (lower and upper crocodile. Moreover, the most water stressed sub-catchments with high level of water uses but limited storage, such as the Kaap located in the middle catchment and the Lower Crocodile sub-catchments are those which are more vulnerable to severe hydrological droughts. The analysis of the potential groundwater use during droughts showed that a deficit of 97 Mm3 yr−1 could be supplied from groundwater without considerable adverse impacts on the river base flow and groundwater storage. Abstraction simulations for different scenarios of extremely severe droughts reveal that it is possible to use groundwater to cope with the droughts in the catchment. However, local groundwater exploitation in Nelspruit and White River sub-catchment will cause large drawdowns (> 10 m and high base flow reduction (> 20%. This case study shows that

  4. A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices

    Science.gov (United States)

    Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.; Xia, Youlong; Ouyang, Wei; Shen, Xinyi

    2016-06-01

    Drought indices have been commonly used to characterize different properties of drought and the need to combine multiple drought indices for accurate drought monitoring has been well recognized. Based on linear combinations of multiple drought indices, a variety of multivariate drought indices have recently been developed for comprehensive drought monitoring to integrate drought information from various sources. For operational drought management, it is generally required to determine thresholds of drought severity for drought classification to trigger a mitigation response during a drought event to aid stakeholders and policy makers in decision making. Though the classification of drought categories based on the univariate drought indices has been well studied, drought classification method for the multivariate drought index has been less explored mainly due to the lack of information about its distribution property. In this study, a theoretical drought classification method is proposed for the multivariate drought index, based on a linear combination of multiple indices. Based on the distribution property of the standardized drought index, a theoretical distribution of the linear combined index (LDI) is derived, which can be used for classifying drought with the percentile approach. Application of the proposed method for drought classification of LDI, based on standardized precipitation index (SPI), standardized soil moisture index (SSI), and standardized runoff index (SRI) is illustrated with climate division data from California, United States. Results from comparison with the empirical methods show a satisfactory performance of the proposed method for drought classification.

  5. Effects of drought stress on annual dynamic changing pattern of the terpene lactones content in Ginkgo biloba leaves%干旱胁迫对银杏叶萜内酯年动态变化的影响

    Institute of Scientific and Technical Information of China (English)

    朱灿灿; 曹福亮; 王贵斌; 耿国民

    2011-01-01

    The effects of drought stress on terpene lactones contents of Ginkgo biloba grown in pots at 4 soil moisture levels under greenhouse conditions were investigated. The results showed that there were significant effects on the contents of bi-lobalide BB, ginkgolide GC, CA, CB and total terpene lactones in different growing seasons. With the development of season, terpene lactones contents were increased first and then decline at the subsequent. Moderate drought conditions can contribute to the synthesis of terpene lactones. The terpene lactones contents in mild and moderate drought conditions significantly increased if compared with the terpene lactones contents in appropriate water condition. Concerning the leaf yield, terpene lactones contents as well as the relationship between quantity and time of leaf collection, we suggested that the highest economic yield per single plant could be obtained by controlling soil water content at mild level ( relative water content ,55% -60% ) and harvesting leaves in June to October.%以2年生盆栽实生苗为研究材料,通过人工模拟干旱胁迫环境,探索4水平干旱胁迫(土壤含水量分别为田间持水量的75% ~ 80%、55% ~ 60%、40% ~45%和30%~35%)对银杏叶萜内酯类物质季节变化的影响.结果表明:干旱胁迫下,生长季节不同,银杏叶内白果内酯BB、银杏内酯GC、GA、GB及总萜内酯含量变化具有显著差异,随着生长季节的变化银杏叶萜内酯类物质含量变化呈“先升高后降低”的趋势.适度干旱条件下可以促进银杏萜内酯类物质的合成,尤其轻度和中度干旱条件下,萜内酯含量比适宜水分条件下明显增多.考虑到叶产量、叶萜内酯美物质含量以及采叶与采时的关系等,在实际生产中可以考虑在植物生长初期,给予银杏苗正常的水分供应以获得最大的生物产量,在6-10月份叶片发育完全后适当进行轻度干旱处理(土壤水分含量

  6. Amazon river flow regime and flood recessional agriculture: Flood stage reversals and risk of annual crop loss

    Science.gov (United States)

    Coomes, Oliver T.; Lapointe, Michel; Templeton, Michael; List, Geneva

    2016-08-01

    The annual flood cycle is an important driver of ecosystem structure and function in large tropical rivers such as the Amazon. Riparian peasant communities rely on river fishing and annual floodplain agriculture, closely adapted to the recession phase of the flood pulse. This article reports on a poorly documented but important challenge facing farmers practicing flood recessional agriculture along the Amazon river: frequent, unpredictable stage reversals (repiquetes) which threaten to ruin crops growing on channel bars. We assess the severity of stage reversals for rice production on exposed river mud bars (barreales) near Iquitos, Peru. Crop loss risk is estimated based on a quantitative analysis of 45 years of daily Amazon stage data and field data from floodplain communities nearby in the Muyuy archipelago, upstream of Iquitos. Rice varieties selected, elevations of silt rich bars where rice is sown, as well as planting and harvest dates are analyzed in the light of the timing, frequencies and amplitudes of observed stage reversals that have the potential to destroy growing rice. We find that unpredictable stage reversals can produce substantial crop losses and shorten significantly the length of average growing seasons on lower elevation river bars. The data reveal that local famers extend planting down to lower bar elevations where the mean probabilities of re-submergence before rice maturity (due to reversals) approach 50%, below which they implicitly consider that the risk of crop loss outweighs the potential reward of planting.

  7. Anthropogenic warming has increased drought risk in California.

    Science.gov (United States)

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  8. El Nino, from 1870 to 2014, and other Atmospheric Circulation Forcing by Extreme Apparitions of the Eight Annual, Continental Scale, Aerosol Plumes in the Satellite Era which Point to a Possible Cause for the Current Californian Drought

    Science.gov (United States)

    Potts, K. A.

    2015-12-01

    Eight continental scale aerosol plumes exist each year as the enclosed image shows. Apparitions of seven plumes only exist for a few months in the same season each year whilst the East Asian Plume is visible all year. The aerosol optical depth (AOD) of all the plumes varies enormously interannually with two studies showing the surface radiative forcing of the South East Asian Plume (SEAP) as -150W/m2 and -286W/m2/AOD. I show that the SEAP, created by volcanic aerosols (natural) and biomass burning and gas flares in the oil industry (anthropogenic), is the sole cause of all El Nino events, the greatest interannual perturbation of the atmospheric circulation system. The SEAP creates an El Nino by absorbing solar radiation at the top of the plume which heats the upper atmosphere and cools the surface. This creates a temperature inversion compared to periods without the plume and reduces convection. With reduced convection in SE Asia, the Maritime Continent, the Trade Winds blowing across the Pacific are forced to relax as their exit into the Hadley and Walker Cells is constrained and the reduced Trade Wind speed causes the Sea Surface Temperature (SST) to rise in the central tropical Pacific Ocean as there is a strong negative correlation between wind speed and SST. The warmer SST in the central Pacific creates convection in the region which further reduces the Trade Wind speed and causes the Walker Cell to reverse - a classic El Nino. Having established the ability of such extreme aerosol plumes to create El Nino events I will then show how the South American, West African, Middle East and SEAP plumes create drought in the Amazon, Spain, Darfur and Australia as well as causing the extremely warm autumn and winter in Europe in 2006-07. All these effects are created by the plumes reducing convection in the region of the plume which forces the regional Hadley Cells into anomalous positions thereby creating persistent high pressure cells in the mid latitudes. This

  9. Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite

    Directory of Open Access Journals (Sweden)

    J.-P. Vidal

    2010-03-01

    Full Text Available Physically-based droughts can be defined as a water deficit in at least one component of the land surface hydrological cycle. The reliance of different activity domains (water supply, irrigation, hydropower, etc. on specific components of this cycle requires drought monitoring to be based on indices related to meteorological, agricultural, and hydrological droughts. This paper describes a high-resolution retrospective analysis of such droughts in France over the last fifty years, based on the Safran-Isba-Modcou (SIM hydrometeorological suite. The high-resolution 1958–2008 Safran atmospheric reanalysis was used to force the Isba land surface scheme and the hydrogeological model Modcou. Meteorological droughts are characterized with the Standardized Precipitation Index (SPI at time scales varying from 1 to 24 months. Similar standardizing methods were applied to soil moisture and streamflow for identifying multiscale agricultural droughts – through the Standardized Soil Wetness Index (SSWI – and multiscale hydrological droughts, through the Standardized Flow Index (SFI. Based on a common threshold level for all indices, drought event statistics over the 50-yr period – number of events, duration, severity and magnitude – have been derived locally in order to highlight regional differences at multiple time scales and at multiple levels of the hydrological cycle (precipitation, soil moisture, streamflow. Results show a substantial variety of temporal drought patterns over the country that are highly dependent on both the variable and time scale considered. Independent spatio-temporal drought events have then been identified and described by combining local characteristics with the evolution of area under drought. Summary statistics have finally been used to compare past severe drought events, from multi-year precipitation deficits (1989–1990 to short hot and dry periods (2003. Results show that the ranking of drought events depends highly

  10. Analysis for Drought Resilience of Monoculture on Climate Change

    Science.gov (United States)

    Jung, Seungkwon; Kang, Hyunjoong; Maeng, Seungjin

    2015-04-01

    Damage occur frequently around the world on climate change, and Korea is no exception. Drought of natural disasters caused by climate change is having a significant impact on crops. Therefore, established for adaptation measures of drought are needed. Recently resilience concept is based on the study to analyze the natural disaster has conducted actively. Uses a different definition for each researcher because of the complexity of resilience concept on the studies of the natural disaster and commonly contains the meaning of "Ability to resist changes in pressure by external force. In this study, the cabbage-growing areas in the Chungcheong utilizing Statistical Annual Report(2013) from past 2007 to 2012 were analyzed by region per unit area yield of Chinese cabbage. Determination of the occurrence and intensity of the drought were utilizing SPEI(Standardized Precipitation Evapotranspiration). Configure the drought scenario was based on the result that SPEI index, cabbage yield per unit area (kg/10a) analyzed the regional drought resilience for a single crop by comparison. As a result, the average Chinese cabbage yield per unit area is the same when drought occurs Cheongyang, YeSan, SeoSan, Asan, GongJu, CheongJu came out in the order, Chungnam Chinese cabbage yield (kg / 10a) was higher than 10% of the value of Chungbuk in Republic of Korea. Acknowledgement This research was supported by a grant (12-TI-C01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  11. Drought influence on vegetation behavior in Mediterranean basin

    Science.gov (United States)

    Gouveia, C. M.; Trigo, R. M.; Begueria, S. M.; Vicente-Serrano, S.

    2012-04-01

    affected land cover type, rainfed crops are the most affected land cover during summer and autumn. Furthermore, for Iberian rainfed crops, we found a clear dependence of drought impacts with aridity and annual mean of NDVI. Vicente-Serrano S.M., Beguería S., López-Moreno J.I., 2010: A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index - SPEI. Journal of Climate 23(7), 1696-1718, DOI: 10.1175/2009JCLI2909.1

  12. Hydrologic drought of water year 2011 compared to four major drought periods of the 20th century in Oklahoma

    Science.gov (United States)

    Shivers, Molly J.; Andrews, William J.

    2013-01-01

    Water year 2011 (October 1, 2010, through September 30, 2011) was a year of hydrologic drought (based on streamflow) in Oklahoma and the second-driest year to date (based on precipitation) since 1925. Drought conditions worsened substantially in the summer, with the highest monthly average temperature record for all States being broken by Oklahoma in July (89.1 degrees Fahrenheit), June being the second hottest and August being the hottest on record for those months for the State since 1895. Drought conditions continued into the fall, with all of the State continuing to be in severe to exceptional drought through the end of September. In addition to effects on streamflow and reservoirs, the 2011 drought increased damage from wildfires, led to declarations of states of emergency, water-use restrictions, and outdoor burning bans; caused at least $2 billion of losses in the agricultural sector and higher prices for food and other agricultural products; caused losses of tourism and wildlife; reduced hydropower generation; and lowered groundwater levels in State aquifers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to compare the severity of the 2011 drought with four previous major hydrologic drought periods during the 20th century – water years 1929–41, 1952–56, 1961–72, and 1976–81. The period of water years 1925–2011 was selected as the period of record because few continuous record streamflow-gaging stations existed before 1925, and gaps in time existed where no streamflow-gaging stations were operated before 1925. In water year 2011, statewide annual precipitation was the 2d lowest, statewide annual streamflow was 16th lowest, and statewide annual runoff was 42d lowest of those 87 years of record. Annual area-averaged precipitation totals by the nine National Weather Service climate divisions from water year 2011 were compared to those during four previous major hydrologic drought

  13. Changes in Drought Conditions in Poland over the Past 60 Years Evaluated by the Standardized Precipitation-Evapotranspiration Index

    Science.gov (United States)

    Somorowska, Urszula

    2016-12-01

    This paper investigates the variability of drought conditions in Poland in the years 1956-2015 with the use of the Standardized Precipitation-Evapotranspiration Index (SPEI). The study provides a new insight into the phenomenon of the past expansion of the drought-affected area as well as evidence of drying trends in a spatiotemporal context. 3-month, 6-month, and 12-month SPEI were considered, representing drought conditions relevant to agriculture and hydrology. The analysis demonstrates that the spatial extent of droughts shows a broad variability. The annual mean of the percentage of the area under drought has witnessed an increase for all three SPEI timescales. This also pertains to the mean area affected by drought over the growing season (April-September). A decreasing trend in the SPEI values indicates an increase in the severity of droughts over the 60-year period in question in an area extending from the south-west to the central part of Poland.

  14. Drought and groundwater management

    DEFF Research Database (Denmark)

    Amundsen, Eirik S; Jensen, Frank

    This paper considers the problem of a water management authority faced with the threat of a drought that hits at an uncertain date. Three management policies are investigated: i) a laissez-faire (open-access) policy of automatic adjustment through a zero marginal private net benefit condition, ii...

  15. Physiological and photosynthetic response of quinoa to drought stress

    Directory of Open Access Journals (Sweden)

    Rachid Fghire

    2015-06-01

    Full Text Available Water shortage is a critical problem touching plant growth and yield in semi-arid areas, for instance the Mediterranean región. For this reason was studied the physiological basis of drought tolerance of a new, drought tolerant crop quinoa (Chenopodium quinoa Willd. tested in Morocco in two successive seasons, subject to four irrigation treatments (100, 50, and 33%ETc, and rainfed. The chlorophyll a fluorescence transients were analyzed by the JIP-test to transíate stress-induced damage in these transients to changes in biophysical parameter's allowing quantification of the energy flow through the photosynthetic apparatus. Drought stress induced a significant decrease in the maximum quantum yield of primary photochemistry (Φpo = Fv/Fm, and the quantum yield of electron transport (Φeo. The amount of active Photosystem II (PSII reaction centers (RC per excited cross section (RC/CS also decreased when exposed to the highest drought stress. The effective antenna size of active RCs (ABS/RC increased and the effective dissipation per active reaction centers (DIo/RC increased by increasing drought stress during the growth season in comparison to the control. However the performance index (PI, was a very sensitive indicator of the physiological status of plants. Leaf area index, leaf water potential and stomatal conductance decreased as the drought increased. These results indicate that, in quinoa leaf, JIP-test can be used as a sensitive method for measuring drought stress effects.

  16. Annual Report 1995. STP.30074. Simulation of industrial flow processes; Aarsrapport 1995. STP.30074. Simulering av industrielle stroemningsprosesser

    Energy Technology Data Exchange (ETDEWEB)

    Hallanger, A.; Teigland, R.

    1996-12-31

    The report summarizes the work done in 1995 on the development of the simulation programme MUSIC (MUltifluid SImulation Code). The main activities in 1995 have been a general development of the flow simulator (MUSIC), with the emphasis on multiblock, region decomposition, parallelization, multigrid and multiphase

  17. Response of the Amazon carbon balance to the 2010 drought derived with CarbonTracker South America

    NARCIS (Netherlands)

    Laan-Luijkx, van der I.T.; Velde, van der I.R.; Krol, M.C.; Gatti, L.V.; Domingues, L.G.; Correia, C.S.C.; Miller, J.B.; Gloor, M.; Leeuwen, van T.T.; Kaiser, J.W.; Wiedinmyer, C.; Basu, S.; Clerbaux, C.; Peters, W.

    2015-01-01

    Two major droughts in the past decade had large impacts on carbon exchange in the Amazon. Recent analysis of vertical profile measurements of atmospheric CO2 and CO by Gatti et al. (2014) suggests that the 2010 drought turned the normally close-to-neutral annual Amazon carbon balance into a substant

  18. Response of the Amazon carbon balance to the 2010 drought derived with CarbonTracker South America

    NARCIS (Netherlands)

    van der Laan-Luijkx, Ingrid; van der Velde, Ivar; Krol, Maarten; Gatti, Luciana; Miller, John; Gloor, Manuel; van Leeuwen, Thijs; Kaiser, Johannes; Wiedinmyer, Christine; Basu, Sourish; Clerbaux, Cathy; Peters, Wouter

    2015-01-01

    Two major droughts in the past decade had large impacts on carbon exchange in the Amazon. Recent analysis of vertical profile measurements of atmospheric CO2 and CO by Gatti et al. [2014] suggests that the 2010 drought turned the normally close to neutral annual Amazon carbon balance into a substant

  19. Characterizing Drought Events from a Hydrological Model Ensemble

    Science.gov (United States)

    Smith, Katie; Parry, Simon; Prudhomme, Christel; Hannaford, Jamie; Tanguy, Maliko; Barker, Lucy; Svensson, Cecilia

    2017-04-01

    Hydrological droughts are a slow onset natural hazard that can affect large areas. Within the United Kingdom there have been eight major drought events over the last 50 years, with several events acting at the continental scale, and covering the entire nation. Many of these events have lasted several years and had significant impacts on agriculture, the environment and the economy. Generally in the UK, due to a northwest-southeast gradient in rainfall and relief, as well as varying underlying geology, droughts tend to be most severe in the southeast, which can threaten water supplies to the capital in London. With the impacts of climate change likely to increase the severity and duration of drought events worldwide, it is crucial that we gain an understanding of the characteristics of some of the longer and more extreme droughts of the 19th and 20th centuries, so we may utilize this information in planning for the future. Hydrological models are essential both for reconstructing such events that predate streamflow records, and for use in drought forecasting. However, whilst the uncertainties involved in modelling hydrological extremes on the flooding end of the flow regime have been studied in depth over the past few decades, the uncertainties in simulating droughts and low flow events have not yet received such rigorous academic attention. The "Cascade of Uncertainty" approach has been applied to explore uncertainty and coherence across simulations of notable drought events from the past 50 years using the airGR family of daily lumped catchment models. Parameter uncertainty has been addressed using a Latin Hypercube sampled experiment of 500,000 parameter sets per model (GR4J, GR5J and GR6J), over more than 200 catchments across the UK. The best performing model parameterisations, determined using a multi-objective function approach, have then been taken forward for use in the assessment of the impact of model parameters and model structure on drought event

  20. Changes in the frequency and severity of hydrological droughts over Ethiopia from 1960 to 2013

    KAUST Repository

    El Kenawy, A. M.

    2016-06-27

    Here we present an analysis of drought occurrence and variability in Ethiopia, based on the monthly precipitation data from the Climate Research Unit (CRU-v3.22) over the period from 1960 to 2013. The drought events were characterized by means of the Standardized Precipitation Index (SPI) applied to precipitation data at a temporal scale of 12 months. At the national scale, the results reveal a statistically significant decrease in the severity of droughts over the 54-year period, a pattern that is mostly attributed to a statistically significant decrease in the frequency of high intensity drought episodes (i.e., extreme and very extreme droughts), compared to moderate droughts. To assess the general patterns of drought evolution, a principal component analysis (PCA) was applied to the SPI series. PCA results indicate a high spatial heterogeneity in the SPI variations over the investigated period, with ten different spatially well-defined regions identified. These PCA components accounted for 72.9% of the total variance of drought in the region. These regions also showed considerable differences in the temporal variability of drought, as most of the regions exhibited an increase in wetness conditions in recent decades. In contrast, the regions that receive less than 400 mm of annual precipitation showed a declining  trend, with the largest changes occurring over Afar region. Generally, the highly elevated regions over the central Ethiopian Highlands showed the weakest changes, compared to the lowlands. This study confirms the local character of drought evolution over Ethiopia, providing evidence for policy makers to adopt appropriate local policies to cope with the risks of drought. Over Ethiopia, the detailed spatial assessment of drought evolution is required for a better understanding of the possible impacts of recurrent drought on agriculture, food production, soil degradation, human settlements and migrations, as well as energy production and water resources

  1. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    Science.gov (United States)

    Fuchslueger, L.; Kastl, E.-M.; Bauer, F.; Kienzl, S.; Hasibeder, R.; Ladreiter-Knauss, T.; Schmitt, M.; Bahn, M.; Schloter, M.; Richter, A.; Szukics, U.

    2014-11-01

    Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N) cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances in soil without drought history. To this end we conducted rain-exclusion experiments at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for potential gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia-oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively). Drought induced different responses at the two studied sites. At the managed meadow drought increased NH4+ immobilization rates and NH4+ concentrations in the soil water solution, but led to a reduction of AOA abundance compared to controls. At the abandoned site gross nitrification and NO3- immobilization rates decreased during drought, while AOB and AOA abundances remained stable. Rewetting had only minor, short-term effects on the parameters that had been affected by drought. Seven weeks after the end of drought no differences to control plots could be detected. Thus, our findings demonstrated that in mountain grasslands drought had distinct transient effects on soil nitrogen cycling and ammonia-oxidizers, which could have been related to a niche differentiation of AOB and AOA with increasing NH4+ levels. However, the effect strength of drought was modulated by grassland management.

  2. How do riparian woody seedlings survive seasonal drought?

    Science.gov (United States)

    Stella, John C; Battles, John J

    2010-11-01

    In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day(-1)), focusing on the three dominant cottonwood and willows (family Salicaceae) in California's San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day(-1)) and low shoot:root ratios (water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m(2) kg(-1)). The functional responses exhibited by Goodding's willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.

  3. The Lifecycles of Drought: Informing Responses Across Timescales

    Science.gov (United States)

    Pulwarty, R. S.; Schubert, S. D.

    2014-12-01

    Drought is a slow-onset hazard that is a normal part of climate. Drought onset and demise are difficult to determine. Impacts are mostly nonstructural, spread over large geographical areas, and can persist long after precipitation deficits end. These factors hinder development of accurate, timely estimates of drought severity and resultant responses. Drivers of drought range from SST anomalies and global scale atmospheric response, through regional forcing and local land-surface feedbacks. Key climatological questions related to drought risk assessment, perception and management include, "Does a drought end by a return to normal precipitation; how much moisture is required and over what period; can the end of a drought be defined by the diminishing impacts e.g. soil moisture, reservoir volumes; will precipitation patterns on which management systems rely, change in the future?" Effective early warning systems inform strategic responses that anticipate crises and crisis evolution across climate timescales. While such "early information" is critical for defining event onset, it is even more critical for identifying the potential for increases in severity. Many social and economic systems have buffers in place to respond to onset (storage, transfers and purchase of grain) but lack response capabilities as drought intensifies, as buffers are depleted. Throughout the drought lifecycle (and between events), monitoring, research and risk assessments are required to: Map decision-making processes and resource capabilities including degradation of water and ecosystems Place multiple climate and land surface indicators within a consistent triggering framework (e.g. climate and vegetation mapping) before critical thresholds are reached Identify policies and practices that impede or enable the flow of information, through policy gaming and other exercises The presentation will outline the capabilities and framework needed to ensure improved scientific inputs to preparedness

  4. Using an integrated hydrological model to estimate the usefulness of meteorological drought indices in a changing climate

    Science.gov (United States)

    von Gunten, Diane; Wöhling, Thomas; Haslauer, Claus P.; Merchán, Daniel; Causapé, Jesus; Cirpka, Olaf A.

    2016-10-01

    Droughts are serious natural hazards, especially in semi-arid regions. They are also difficult to characterize. Various summary metrics representing the dryness level, denoted drought indices, have been developed to quantify droughts. They typically lump meteorological variables and can thus directly be computed from the outputs of regional climate models in climate-change assessments. While it is generally accepted that drought risks in semi-arid climates will increase in the future, quantifying this increase using climate model outputs is a complex process that depends on the choice and the accuracy of the drought indices, among other factors. In this study, we compare seven meteorological drought indices that are commonly used to predict future droughts. Our goal is to assess the reliability of these indices to predict hydrological impacts of droughts under changing climatic conditions at the annual timescale. We simulate the hydrological responses of a small catchment in northern Spain to droughts in present and future climate, using an integrated hydrological model calibrated for different irrigation scenarios. We compute the correlation of meteorological drought indices with the simulated hydrological time series (discharge, groundwater levels, and water deficit) and compare changes in the relationships between hydrological variables and drought indices. While correlation coefficients linked with a specific drought index are similar for all tested land uses and climates, the relationship between drought indices and hydrological variables often differs between present and future climate. Drought indices based solely on precipitation often underestimate the hydrological impacts of future droughts, while drought indices that additionally include potential evapotranspiration sometimes overestimate the drought effects. In this study, the drought indices with the smallest bias were the rainfall anomaly index, the reconnaissance drought index, and the standardized

  5. Drought analysis in Switzerland: spatial and temporal features

    Science.gov (United States)

    Di Franca, Gaetano; Molnar, Peter; Burlando, Paolo; Bonaccorso, Brunella; Cancelliere, Antonino

    2015-04-01

    Drought as a natural hazard may have negative impacts even in regions characterized by a general abundance of water resources. The Swiss Alpine region has experienced several extreme meteorological events (heat waves, droughts) during the last fifty years that have caused human and economic losses. Though Swiss climate is far from arid or semi-arid, natural climatic variability, exacerbated by climate change, could lead to more severe impacts from naturally occurring meteorological droughts (i.e. lack or significant reduction of precipitation) in the future. In this work, spatial and temporal features of meteorological droughts in Switzerland have been explored by the identification and probabilistic characterization of historic drought events on gridded precipitation data during the period 1961-2012. The run method has been applied to both monthly and annual precipitation time series to probabilistically characterize drought occurrences as well as to analyze their spatial variability. Spatial features have also been investigated by means of Principal Components Analysis (PCA) applied to Standardized Precipitation Index (SPI) series at 3, 6, and 12-month aggregated time scale, in order to detect areas with distinct precipitation patterns, accounting for seasonality throughout year and including both wet and dry conditions. Furthermore, a probabilistic analysis of drought areal extent has been carried out by applying an SPI-based procedure to derive Severity-Area-Frequency (SAF) curves. The application of run method reveals that Ticino and Valais are the most potentially drought-prone Swiss regions, since accumulated deficit precipitation is significantly higher (up to two times) than in the rest of the country. Inspection of SPI series reveals many events in which precipitation has shown significant anomalies from the average in the period 1961-2012 at the investigated time scales. Anomalies in rainfall seem to exhibit high spatial correlation, showing uniform sub

  6. Drought Assessment in Zacatecas, Mexico

    Directory of Open Access Journals (Sweden)

    Carlos Bautista-Capetillo

    2016-09-01

    Full Text Available Water has always been an essential development factor for civilizations, but its erratic distribution in space and time has caused severe socio-economic problems throughout human history due to both scarcity and excess. In Mexico, insufficient rainwater to satisfy crop water requirements is a recurrent phenomenon. From a meteorological perspective, drought refers to a decay of the rainfall–runoff process below normal values, resulting in lower availability of water resources to satisfy the needs of human activities, particularly those related to agriculture and livestock. This research reports on drought assessment for Zacatecas, Mexico using monthly data from 111 weather stations with temperature and precipitation information from a 33-year period. Drought was characterized by applying the Standardized Precipitation Index and the Reconnaissance Drought Index using 3, 6, and 12 month timescales; both indexes were plotted and mapped for the period 2005 to 2014. The trend indicates rainfall anomalies (from incipient drought to severe drought in 6 or 7 years, depending of the selected timescale. April was selected to start the drought analysis because it is the month when farmers usually establish rainfed crops in the region. In ten years, Zacatecas has lost 478 million US dollars due to drought. 2005, 2009, and 2011 were the most critical years, with 47%, 39%, and 63% losses in agricultural income. Such values are in agreement with drought severity estimates: 2005 and 2011 were both dry years (drought indexes were less than −1.25 in the whole territory.

  7. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    Science.gov (United States)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic

  8. Drought analysis in middle Heihe River

    Institute of Scientific and Technical Information of China (English)

    Jin Junying; Zhang Zhenwei; Zhang Weihua

    2005-01-01

    Water shortage has become one of the severest problems in the middle Heihe River Basin because of high water demand but low available water supply. This paper is oriented to provide solutions to the problem through the analysis of drought. The main objectives to analyze the difference between water demand and supply in various water users in past, present (2000), and project (2010) situation, especially in agriculture, and the most important is to propose and assess a reasonable measure with the purpose of minimum drought and sustainable development. A simulation model, WAFLEX (Water Allocation Flow model in Excel) model is applied in this study to cope with water availability, distribution and requirement of various water users, and the result shows the model and the method is effective and feasible.

  9. Analysis of ENSO-based climate variability in modulating drought risks over western Rajasthan in India

    Indian Academy of Sciences (India)

    Poulomi Ganguli; M Janga Reddy

    2013-02-01

    This paper investigates the role of El Niño-Southern Oscillation (ENSO)-based climate variability in modulating multivariate drought risks in the drought-prone region of Western Rajasthan in India. Droughts are multivariate phenomenon, often characterized by severity, duration and peak. By using multivariate ENSO index, annual drought events are partitioned into three climatic states – El Niño, La Niña and neutral phases. For multivariate probabilistic representation of drought characteristics, trivariate copulas are employed, which have the ability to preserve the dependence structure of drought variables under uncertain environment. The first copula model is developed without accounting the climate state information to obtain joint and conditional return periods of drought characteristics. Then, copula-based models are developed for each climate state to estimate the joint and conditional probabilities of drought characteristics under each ENSO state. Results of the study suggest that the inclusion of ENSO-based climate variability is helpful in knowing the associated drought risks, and useful for management of water resources in the region.

  10. Competition amplifies drought stress in forests across broad climatic and compositional gradients

    Science.gov (United States)

    Gleason, Kelly; Bradford, John B.; Bottero, Alessandra; D'Amato, Tony; Fraver, Shawn; Palik, Brian J.; Battaglia, Michael; Iverson, Louis R.; Kenefic, Laura; Kern, Christel C.

    2017-01-01

    Forests around the world are experiencing increasingly severe droughts and elevated competitive intensity due to increased tree density. However, the influence of interactions between drought and competition on forest growth remains poorly understood. Using a unique dataset of stand-scale dendrochronology sampled from 6405 trees, we quantified how annual growth of entire tree populations responds to drought and competition in eight, long-term (multi-decadal), experiments with replicated levels of density (e.g., competitive intensity) arrayed across a broad climatic and compositional gradient. Forest growth (cumulative individual tree growth within a stand) declined during drought, especially during more severe drought in drier climates. Forest growth declines were exacerbated by high density at all sites but one, particularly during periods of more severe drought. Surprisingly, the influence of forest density was persistent overall, but these density impacts were greater in the humid sites than in more arid sites. Significant density impacts occurred during periods of more extreme drought, and during warmer temperatures in the semi-arid sites but during periods of cooler temperatures in the humid sites. Because competition has a consistent influence over growth response to drought, maintaining forests at lower density may enhance resilience to drought in all climates.

  11. Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes

    Science.gov (United States)

    Zipper, Samuel C.; Qiu, Jiangxiao; Kucharik, Christopher J.

    2016-09-01

    Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1-3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity.

  12. Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ionita, M.; Lohmann, G. [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany); University of Bremen, MARUM, Bremen (Germany); Rimbu, N. [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany); Climed Norad, Bucharest (Romania); Bucharest University, Faculty of Physics, Bucharest (Romania); Chelcea, S. [National Institute of Hydrology and Water Management, Bucharest (Romania); Dima, M. [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany); Bucharest University, Faculty of Physics, Bucharest (Romania)

    2012-01-15

    Interannual to decadal variability of European summer drought and its relationship with global sea surface temperature (SST) is investigated using the newly developed self calibrated Palmer drought severity index (scPDSI) and global sea surface temperature (SST) field for the period 1901-2002. A European drought severity index defined as the average of scPDSI over entire Europe shows quasiperiodic variations in the 2.5-5 year band as well as at 12-13 years suggesting a possible potential predictability of averaged drought conditions over Europe. A Canonical Correlation Analysis between summer scPDSI anomalies over Europe and global SST anomalies reveals the existence of three modes of coupled summer drought scPDSI patterns and winter global SST anomalies. The first scPDSI-SST coupled mode represents the long-term trends in the data which manifest in SST as warming over all oceans. The associated long-term trend in scPDSI suggests increasing drought conditions over the central part of Europe. The second mode is related to the inter-annual ENSO and decadal PDO influence on the European climate and the third one captures mainly the drought pattern associated to Atlantic Multidecadal Oscillation. The lag relationships between winter SST and summer drought conditions established in this study can provide a valuable skill for the prediction of drought conditions over Europe on interannual to decadal time scales. (orig.)

  13. Measuring drought and drought impacts in Red Sea Province, Sudan

    OpenAIRE

    Cole, R.

    1989-01-01

    Metadata only record The report assesses the 1987 and 1988 drought in Red Sea Province, Sudan putting it in the wider context of other droughts and floods, and the impact of food aid on the province. There are three major coping strategies employed in times of drought, which are essentially intensification of activities already performed. The first of these involves food consumption reduction, the consumption of bush foods, borrowing, the sale of livestock, and herd splitting. The medial r...

  14. Water Use Efficiency of China's Terrestrial Ecosystems and Responses to Drought

    Science.gov (United States)

    Liu, Y.; Xiao, J.; Ju, W.; Zhou, Y.; Wang, S.; Wu, X.

    2015-12-01

    Yibo Liu1, 2, Jingfeng Xiao2, Weimin Ju3, Yanlian Zhou4, Shaoqiang Wang5, Xiaocui Wu31 Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China, 2Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA, 3 International Institute for Earth System Sciences, Nanjing University, Nanjing, 210023, China, 4 School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China, 5 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China's terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg-1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. "Turning-points" were observed for southern China where moderate and extreme drought reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate

  15. Assessing and mapping drought hazard in Africa and South-Central America with a Meteorological Drought Severity Index

    Science.gov (United States)

    Carrao, Hugo; Barbosa, Paulo; Vogt, Jürgen

    2015-04-01

    the intra-annual variability of precipitation in estimating the severity of events that can impact on seasonal activities. The MDSI is standardized in space and time, and considers the relative monthly precipitation deficits and the seasonal influence of precipitation regimes in the meteorological drought severity computation. In this study, the calculation of the MDSI is performed with monthly precipitation totals from the Full Data Reanalysis Monthly Product Version 6.0 of the Global Precipitation Climatology Centre (GPCC). This dataset provides a global analysis at 0.5 dd latitude/longitude grid spacing of monthly precipitation over land from operational in situ rain gauges collected between January 1901 and December 2010. Using the MDSI, we estimated the severity of drought events that occurred in the past 100 years in Africa and South-Central America, and produced drought hazard maps based on the probability of exceedance the median historical severity. Overall, results indicate that drought hazard is high for semiarid areas, such as Northeastern and Southern South America, as well as Eastern and Southwestern Africa. Since available water resources in semiarid areas are already insufficient to permanently meet the demands of human activities, the outcomes highlight the aggravated risk for food security and confirm the need for the implementation of disaster mitigation measures in those regions.

  16. A Columbia River Basalt Group Aquifer in Sustained Drought: Insight from Geophysical Methods

    Directory of Open Access Journals (Sweden)

    Mark W. Piersol

    2015-07-01

    Full Text Available Aquifers within the Columbia River Basalt Group (CRBG provide a critical water supply throughout much of the Pacific Northwest of the United States. Increased pumping has resulted in water level declines in this region. Recharge into this aquifer system is generally not well understood. Recent suggestions of probable decades-long droughts in the 21st century add to this problem. We show that geophysical methods can provide useful parameters for improved modeling of aquifers in a primary CRBG aquifer located on the eastern edge of the Columbia Plateau. Groundwater models depend in part on the area, thickness, porosity, storativity, and nature of confinement of this aquifer, most of which are poorly constrained by existing well information and previous stress tests. We have made use of surface gravity measurements, borehole gravity measurements, barometric efficiency estimates, earth tidal response, and earthquake seismology observations to constrain these parameters. We show that the aquifer, despite its persistent drawdown, receives a great deal of recharge annually. Much of the recharge to the aquifer is due to leakage from overlying flows, ultimately tied to precipitation, an important result for future aquifer management in times of sustained drought.

  17. Does drought alter hydrological functions in forest soils?

    Science.gov (United States)

    Gimbel, Katharina F.; Puhlmann, Heike; Weiler, Markus

    2016-04-01

    Climate change is expected to impact the water cycle and severely affect precipitation patterns across central Europe and in other parts of the world, leading to more frequent and severe droughts. Usually when projecting drought impacts on hydrological systems, it is assumed that system properties, like soil properties, remain stable and will not be affected by drought events. To study if this assumption is appropriate, we address the effects of drought on the infiltration behavior of forest soils using dye tracer experiments on six sites in three regions across Germany, which were forced into drought conditions. The sites cover clayey-, loamy- and sandy-textured soils. In each region, we compared a deciduous and a coniferous forest stand to address differences between the main tree species. The results of the dye tracer experiments show clear evidence for changes in infiltration behavior at the sites. The infiltration changed at the clayey plots from regular and homogeneous flow to fast preferential flow. Similar behavior was observed at the loamy plots, where large areas in the upper layers remained dry, displaying signs of strong water repellency. This was confirmed by water drop penetration time (WDPT) tests, which revealed, in all except one plot, moderate to severe water repellency. Water repellency was also accountable for the change of regular infiltration to fingered flow in the sandy soils. The results of this study suggest that the drought history or, more generally, the climatic conditions of a soil in the past are more important than the actual antecedent soil moisture status regarding hydrophobicity and infiltration behavior; furthermore, drought effects on infiltration need to be considered in hydrological models to obtain realistic predictions concerning water quality and quantity in runoff and groundwater recharge.

  18. Drought in West Africa

    Science.gov (United States)

    2007-01-01

    Drought settled over West Africa's Ivory Coast region when wet season rains came late in 2007. Instead of beginning in February, the rainy season didn't start until March, and steady rains didn't start until late March, said the Famine Early Warning System Network. Though the rain had started to alleviate the drought, vegetation was still depressed in parts of Cote d'Ivoire (Ivory Coast) between March 22 and April 6, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured the data used to make this image. The image shows current vegetation conditions compared to average conditions recorded since 2000. Areas where plants are growing more slowly or more sparsely than average are brown, while areas where vegetation is denser than average are green. The brown tint that dominates the image indicates that plants through most of the country are more sparse than normal. Among the crops affected by the lack of rain was West Africa's cocoa crop. About 70 percent of the world's cocoa comes from West Africa, and Cote d'Ivoire is a top grower, said Reuters. Cocoa prices climbed as the crop fell short. Farmers called the drought the worst in living memory, Reuters said. The delay in rainfall also led to water shortages in parts of Cote d'Ivoire, according to the United Nations Office for the Coordination of Humanitarian Affairs.

  19. Hydrologic Drought Decision Support System (HyDroDSS)

    Science.gov (United States)

    Granato, Gregory E.

    2014-01-01

    The hydrologic drought decision support system (HyDroDSS) was developed by the U.S. Geological Survey (USGS) in cooperation with the Rhode Island Water Resources Board (RIWRB) for use in the analysis of hydrologic variables that may indicate the risk for streamflows to be below user-defined flow targets at a designated site of interest, which is defined herein as data-collection site on a stream that may be adversely affected by pumping. Hydrologic drought is defined for this study as a period of lower than normal streamflows caused by precipitation deficits and (or) water withdrawals. The HyDroDSS is designed to provide water managers with risk-based information for balancing water-supply needs and aquatic-habitat protection goals to mitigate potential effects of hydrologic drought. This report describes the theory and methods for retrospective streamflow-depletion analysis, rank correlation analysis, and drought-projection analysis. All three methods are designed to inform decisions made by drought steering committees and decisionmakers on the basis of quantitative risk assessment. All three methods use estimates of unaltered streamflow, which is the measured or modeled flow without major withdrawals or discharges, to approximate a natural low-flow regime. Retrospective streamflow-depletion analysis can be used by water-resource managers to evaluate relations between withdrawal plans and the potential effects of withdrawal plans on streams at one or more sites of interest in an area. Retrospective streamflow-depletion analysis indicates the historical risk of being below user-defined flow targets if different pumping plans were implemented for the period of record. Retrospective streamflow-depletion analysis also indicates the risk for creating hydrologic drought conditions caused by use of a pumping plan. Retrospective streamflow-depletion analysis is done by calculating the net streamflow depletions from withdrawals and discharges and applying these depletions

  20. Drought and Water Scarcity in Europe: past and future (Secheresse et déficit d’eau en Europe: passé et perspective)

    NARCIS (Netherlands)

    Lanen, van H.A.J.

    2013-01-01

    Low river flows and droughts are increasingly being observed over the last decades in Europe. Moreover, in vast areas drought will likely increase due to climate change? The increasing trends to more severe drought are explained in the context of growing water scarcity that also is reported in many

  1. Spatio-temporal development of streamflow droughts in north-west Europe

    Directory of Open Access Journals (Sweden)

    M. D. Zaidman

    2002-01-01

    Full Text Available This paper examines the spatial and temporal development of streamflow droughts in Europe over the last 40 years, differentiating the climatic factors that drive drought formation from catchment controls on drought manifestation. A novel approach for quantifying and comparing streamflow and precipitation depletion is presented. This approach considers atypical flow or rainfall events, as well as more severe droughts, regardless of the season in which they occur (although unlikely to constitute drought in an operational sense, sustained atypical flows are important with regard to understanding how droughts arise and develop. The amount of flow depletion is quantified at daily resolution based on the standardised departure from the mean day d flow, or flow anomaly. The index was derived for 2780 gauging points within north-west Europe using data from the FRIEND European Water Archive for the 1960-1995 period. Using a simple interpolation procedure these data were used to produce a time-series of grids, with a cell size of 18 km2, showing the spatial distribution of flow anomaly over the study area. A similar approach was used to characterise monthly precipitation anomalies, based on existing grid data (see New et al., 2000. The grids were analysed chronologically to examine the spatial and temporal coherency of areas showing large flow and/or precipitation anomalies, focussing on drought development during the 1975-1976 and 1989-1990 periods. Using a threshold approach, in which an anomaly of 2 standard deviations represents the onset of drought conditions, indices were developed to describe the time-varying extent and areal-severity (flow deficit of streamflow and precipitation drought. Similar indices were used to describe how the magnitude and temporal variation of flow depletion varied spatially. In terms of streamflow depletion, the 1976 drought was found to be a highly coherent event, having a well defined start (in January 1976 and end (in

  2. Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils

    DEFF Research Database (Denmark)

    Sowerby, Alwyn; Emmett, Bridget A.; Tietema, Albert

    2008-01-01

    Current predictions of climate change include altered rainfall patterns throughout Europe, continental USA and areas such as the Amazon. The effect of this on soil carbon efflux remains unclear although several modelling studies have highlighted the potential importance of drought for carbon...... storage. To test the importance of drought, and more importantly repeated drought year-on-year, we used automated retractable curtains to exclude rain and produce repeated summer drought in three heathlands at varying moisture conditions. This included a hydric system limited by water-excess (in the UK......) and two mesic systems with seasonal water limitation in Denmark (DK) and the Netherlands (NL). The experimental rainfall reductions were set to reflect single year droughts observed in the last decade with exclusion of rain for 2-3 months of the year resulting in a 20-26% reduction in annual rainfall...

  3. Spatio-temporal drought characteristics of the tropical Paraiba do Sul River Basin and responses to the Mega Drought in 2014-2016

    Science.gov (United States)

    Nauditt, Alexandra; Metzke, Daniel; Ribbe, Lars

    2017-04-01

    The Paraiba do Sul River Basin (56.000 km2) supplies water to the Brazilian states Sao Paulo and Rio de Janeiro. Their large metropolitan areas were strongly affected by a Mega drought during the years 2014 and 2015 with severe implications for domestic water supply, the hydropower sector as well as for rural agricultural downstream regions. Longer drought periods are expected to become more frequent in the future. However, drought characteristics, low flow hydrology and the reasons for the recurrent water scarcity in this water abundant tropical region are still poorly understood. In order to separate the impact of human abstractions from hydro-climatic and catchment storage related hydrological drought propagation, we assessed the spatio-temporal distribution of drought severity and duration establishing relationships between SPI, SRI and discharge threshold drought anomalies for all subcatchments of the PdS based on a comprehensive hydro-meteorological data set of the Brazilian National Water Agency ANA. The water allocation model "Water Evaluation and Planning System (WEAP)" was established on a monthly basis for the entire Paraiba do Sul river basin incorporating human modifications of the hydrological system as major (hydropower) reservoirs and their operational rules, water diversions and major abstractions. It simulates reasonable discharges and reservoir levels comparable to the observed values. To evaluate the role of climate variability and drought responses for hydrological drought events, scenarios were developed to simulate discharge and reservoir level the impact of 1. Varying meteorological drought frequencies and durations and 2. Implementing operational rules as a response to drought. Uncertainties related to the drought assessment, modelling, parameter and input data were assessed. The outcome of this study for the first time provides an overview on the heterogeneous spatio-temporal drought characteristics of the Paraiba do Sul river basin and

  4. Probabilistic estimates of drought impacts on agricultural production

    Science.gov (United States)

    Madadgar, Shahrbanou; AghaKouchak, Amir; Farahmand, Alireza; Davis, Steven J.

    2017-08-01

    Increases in the severity and frequency of drought in a warming climate may negatively impact agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the historical period 1980-2012, including the Millennium Drought in Australia (2001-2009). We find that precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25-45% relative to the wet growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate conditions and variability. Probabilistic estimates of yield may help decision-makers in government and business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields. The proposed model shows how the probability distribution of crop yield changes in response to droughts. During Australia's Millennium Drought precipitation and soil moisture deficit reduced the average annual yield of the five largest crops.

  5. Anthropogenic Aerosols and the Evolution of U.S. Droughts

    Science.gov (United States)

    Leibensperger, E. M.; Cazavilan, E. J.

    2014-12-01

    Anthropogenic aerosols interact with solar radiation to influence regional to global climate. Trends in aerosol concentrations have impacted the evolution of surface air temperatures and the hydrological cycle over the last 150 years, but the magnitude of influence and any role in shaping extreme events remains uncertain. We use a general circulation model (GISS GCM ModelE) to study the impact of anthropogenic aerosols on the formation of two potential U.S. droughts. Two periods are analyzed, the 1930s Dust Bowl and the 1970s "missed drought". Each period realized ocean conditions ripe for the formation of central U.S. drought, but experienced differing composition and amounts of anthropogenic aerosol forcing. Simulations forced solely by observed sea surface temperature and sea ice distributions reveal drier and warmer conditions in the central U.S. (annual decreases of up to 0.5 mm/day and warming of 0.5°C). We find that anthropogenic aerosols of the 1930s, containing a significant warming component from U.S. black carbon, exacerbated the warm conditions (0.2°C) and provided slightly drier conditions. In contrast, anthropogenic aerosols of the 1970s, containing a large cooling component from U.S. sulfate, reduced annual precipitation deficits and lowered temperatures by up to 0.4°C. Our results showcase the importance of anthropogenic aerosol forcing in the evolution of U.S. droughts.

  6. Vegetation Drought Response Index: 2010-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — VegDRI, short for Vegetation Drought Response Index, is a drought-monitoring tool developed by scientists at EROS in collaboration with the National Drought...

  7. Drought and vegetation stress monitoring in Portugal using satellite data

    Directory of Open Access Journals (Sweden)

    C. Gouveia

    2009-02-01

    Full Text Available Remote sensed information on vegetation and soil moisture, namely the Normalised Difference Vegetation Index (NDVI and the Soil Water Index (SWI, is employed to monitor the spatial extent, severity and persistence of drought episodes over Continental Portugal, from 1999 to 2006. The severity of a given drought episode is assessed by evaluating the cumulative impact over time of drought conditions on vegetation. Special attention is given to the drought episodes that have occurred in the last decade, i.e., 1999, 2002 and particularly the major event of 2005. During both the 1999 and 2005 drought episodes negative anomalies of NDVI are observed over large sectors of Southern Portugal for up to nine months (out of eleven of the vegetative cycle. On the contrary, the 2002 event was characterized by negative anomalies in the northern half of Portugal and for a shorter period (eight out of eleven months. The impact of soil moisture on vegetation dynamics is evaluated by analyzing monthly anomalies of SWI and by studying the annual cycle of SWI vs. NDVI. While in the case of the drought episode of 1999 the scarcity of water in the soil persisted until spring, in the recent episode of 2005 the deficit in greenness was already apparent at the end of summer. The impact of dry periods on vegetation is clearly observed in both arable land and forest, and it is found that arable land presents a higher sensitivity. From an operational point of view, obtained results reveal the possibility of using the developed methodology to monitor, in quasi real-time, vegetation stress and droughts in Mediterranean ecosystems.

  8. Drought and vegetation stress monitoring in Portugal using satellite data

    Science.gov (United States)

    Gouveia, C.; Trigo, R. M.; Dacamara, C. C.

    2009-02-01

    Remote sensed information on vegetation and soil moisture, namely the Normalised Difference Vegetation Index (NDVI) and the Soil Water Index (SWI), is employed to monitor the spatial extent, severity and persistence of drought episodes over Continental Portugal, from 1999 to 2006. The severity of a given drought episode is assessed by evaluating the cumulative impact over time of drought conditions on vegetation. Special attention is given to the drought episodes that have occurred in the last decade, i.e., 1999, 2002 and particularly the major event of 2005. During both the 1999 and 2005 drought episodes negative anomalies of NDVI are observed over large sectors of Southern Portugal for up to nine months (out of eleven) of the vegetative cycle. On the contrary, the 2002 event was characterized by negative anomalies in the northern half of Portugal and for a shorter period (eight out of eleven months). The impact of soil moisture on vegetation dynamics is evaluated by analyzing monthly anomalies of SWI and by studying the annual cycle of SWI vs. NDVI. While in the case of the drought episode of 1999 the scarcity of water in the soil persisted until spring, in the recent episode of 2005 the deficit in greenness was already apparent at the end of summer. The impact of dry periods on vegetation is clearly observed in both arable land and forest, and it is found that arable land presents a higher sensitivity. From an operational point of view, obtained results reveal the possibility of using the developed methodology to monitor, in quasi real-time, vegetation stress and droughts in Mediterranean ecosystems.

  9. Changes of extreme drought and flood events in Iran

    Science.gov (United States)

    Modarres, Reza; Sarhadi, Ali; Burn, Donald H.

    2016-09-01

    Located in an arid and semi-arid region of the world, Iran has experienced many extreme flood and drought events in the last and current century. The present study aims to assess the changes in Iran's flood magnitude and drought severity for 1950-2010, with some time span variation in some stations. The Mann-Kendall test for monotonic trend was first applied to assess changes in flood and drought severity data. In addition, to consider the effect of serial correlation, two Pre-Whitening Trend (PWT) tests were also applied. It was observed that the number of stations with statistically significant trends has increased after applying PWT tests. Both increasing and decreasing trends were observed for drought severity and flood magnitude in different climate regions and major basins of Iran using these tests. The increase in flood magnitude and drought severity can be attributed partly to land use changes, an annual rainfall negative trend, a maximum rainfall increasing trend, and inappropriate water resources management policies. The paper indicates a critical situation related to extreme climate change in Iran and the increasing risk of environmental changes in the 21st century.

  10. Carbon-Water Interactions during Warm Spring and Summer Drought

    Science.gov (United States)

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.; Baldocchi, Dennis D.; Desai, Ankur R.; Richardson, Andrew. D.; Scott, Russell L.; Law, Beverly E.; Litvak, Marcy E.; Brunsell, Nathaniel A.; Peters, Wouter; van der Laan-Luijkx, Ingrid T.

    2017-04-01

    Warmer temperatures during spring and a higher prevalence of drought during summer are projected in a changing climate. In 2012, the US experienced the warmest spring on record and the most severe drought since the Dust Bowl period. It is crucial to understand the impact of such events on carbon-water interactions in terrestrial ecosystems to better predict their response in a future climate. We combined an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modelling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012 across the US. We found that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Northeast played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.

  11. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems

    Science.gov (United States)

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-04-01

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle.

  12. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems

    Science.gov (United States)

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-01-01

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle. PMID:27091439

  13. Ultrastructural and flow cytometric analyses of lipid accumulation in microalgae: Annual report, Solar Energy Research Institute, Aquatic Species Program

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, J.A.; Hand, R.E. Jr.; Mann, R.C.

    1986-01-01

    Lipid accumulation in three species of microalgae was investigated with flow cytometry (FCM) and transmission electron microscopy (TEM). Previous studies using batch cultures of algae have led to the assumption that lipid accumulation in microalgae is a gradual process requiring at least several days for completion. However, FCM reveals, through changes in the chlorophyll:lipid ratio, that the time span required for individual cells to change metabolic state is short. Simultaneous FCM measurements of chlorophyll and nile red (neutral lipid) fluorescence in individual cells of nitrogen-deficient Isochrysis populations revealed a bimodal population distribution as one stage in the lipid accumulation process. The fact that two discrete populations exist, with few cells in an intermediate stage, suggests rapid response to a lipid trigger. Interpretations of light and electron microscopic observations are consistent with this hypothesis. The time required for an entire population to achieve maximum lipid content is considerably longer than that required for a single cell, due to the variation in response time among cells. In this study high lipid cultures were sometimes obtained by using FCM to separate high lipid cells from the remainder of the population. FCM holds much promise for strain enhancement but considerable developmental work, directed at providing more consistent results, remains to be done. 8 refs., 33 figs.

  14. Probabilistic analysis of hydrological drought characteristics using meteorological drought

    NARCIS (Netherlands)

    Wong, G.; Lanen, van H.A.J.; Torfs, P.J.J.F.

    2013-01-01

    Droughts are an inevitable consequence of climate variability and are pervasive across many regions. Their effects can vary on an extensive scale, depending on the type of drought and people’s vulnerability. Crucial characteristics of both hydrological (groundwater, streamflow) and meteorological (p

  15. Drought in groundwater-drought distribution and performance indicators

    NARCIS (Netherlands)

    Peters, E.; Lanen, van H.A.J.; Torfs, P.J.J.F.; Bier, G.

    2005-01-01

    In order to investigate how droughts are changed by the groundwater system and to analyse the performance of groundwater during drought, 10 time series of 1000 years of recharge and groundwater discharge were generated. The 10×1000 years of synthetic daily data were generated using Nearest Neighbour

  16. Probabilistic analysis of hydrological drought characteristics using meteorological drought

    NARCIS (Netherlands)

    Wong, G.; Lanen, van H.A.J.; Torfs, P.J.J.F.

    2013-01-01

    Droughts are an inevitable consequence of climate variability and are pervasive across many regions. Their effects can vary on an extensive scale, depending on the type of drought and people’s vulnerability. Crucial characteristics of both hydrological (groundwater, streamflow) and meteorological

  17. Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite

    Directory of Open Access Journals (Sweden)

    J.-P. Vidal

    2009-10-01

    Full Text Available Physically-based droughts can be defined as a water deficit in at least one component of the land surface hydrological cycle. The reliance of different activity domains (water supply, irrigation, hydropower, etc. on specific components of this cycle requires drought monitoring to be based on indices related to meteorological, agricultural, and hydrological droughts. This paper describes a high-resolution retrospective analysis of such droughts in France over the last fifty years, based on the Safran-Isba-Modcou (SIM hydrometeorological suite. The high-resolution 1958–2008 Safran atmospheric reanalysis was used to force the Isba land surface scheme and the hydrogeological model Modcou. Meteorological droughts are characterized with the Standardized Precipitation Index (SPI at time scales varying from 1 to 24 months. Similar standardizing methods were applied to soil moisture and streamflow for identifying multiscale agricultural droughts – through the Standardized Soil Wetness Index (SSWI – and multiscale hydrological droughts, through the Standardized Flow Index (SFI. Based on a common threshold level for all indices, drought event statistics over the 50-yr period – number of events, duration, severity and magnitude – have been derived locally in order to highlight regional differences at multiple time scales and at multiple levels of the hydrological cycle. Independent spatio-temporal drought events have then been identified and described by combining local characteristics with the evolution of area under drought. Summary statistics have finally been used to compare past severe drought events, from multi-year precipitation deficits (1989–1990 to short hot and dry periods (2003. This multilevel and multiscale drought climatology will serve as a basis for assessing the impacts of climate change on droughts in France.

  18. Analysis of meteorological drought for Dagua river basin, Valle del Cauca, Colombia

    Directory of Open Access Journals (Sweden)

    Nathalia González López

    2016-06-01

    Full Text Available Context: Extreme climatic events causes great challenges for social, economic and environmental sustainability of a region. Droughts affect agricultural activities significantly thus endangering the livelihoods and food security of rural populations, this is especially crucial for developing countries. The objective of this study is to characterize meteorological drought in Dagua river basin, Valle del Cauca. Method:  Intensity, magnitude, duration and frequency of drought events was estimated using the Standardized Precipitation Index (SPI, for semi-annual and annual groupings with records of 19 stations, during the period 1982-2011 Results: At least one drought was identified in each series; the area near to the subxerofític Basin region, exhibits more frequency of extremely strong drought and lower threshold of minimum precipitation; the largest percentage of spatial coverage of drought coincides with El Niño phenomena events, such as those that occurred in 91-92 to 09-10. Conclusions: The results obtained provide an approach for prediction and characterization of drought, and offer inputs to generate strategies for planning and mitigation of their impacts.

  19. Evidence for increasingly variable Palmer Drought Severity Index in the United States since 1895.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2016-02-15

    Annual and summertime trends towards increasingly variable values of the Palmer Drought Severity Index (PDSI) over a sub-decadal period (five years) were investigated within the contiguous United States between 1895 and the present. For the contiguous United States as a whole, there is a significant increasing trend in the five-year running minimum-maximum ranges for the annual PDSI (aPDSI5 yr(min|max, range)). During this time frame, the average aPDSI5 yr(min|max, range) has increased by about one full unit, indicating a substantial increase in drought variability over short time scales across the United States. The end members of the running aPDSI5 yr(min|max, range) highlight even more rapid changes in the drought index variability within the past 120 years. This increasing variability in the aPDSI5 yr(min|max, range) is driven primarily by changes taking place in the Pacific and Atlantic Ocean coastal climate regions, climate regions which collectively comprise one-third the area of the contiguous United States. Similar trends were found for the annual and summertime Palmer Hydrological Drought Index (PHDI), the Palmer Modified Drought Index (PMDI), and the Palmer Z Index (PZI). Overall, interannual drought patterns in the contiguous United States are becoming more extreme and difficult to predict, posing a challenge to agricultural and other water-resource related planning efforts.

  20. Drought: A comprehensive R package for drought monitoring, prediction and analysis

    Science.gov (United States)

    Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.; Cheng, Hongguang

    2015-04-01

    Drought may impose serious challenges to human societies and ecosystems. Due to complicated causing effects and wide impacts, a universally accepted definition of drought does not exist. The drought indicator is commonly used to characterize drought properties such as duration or severity. Various drought indicators have been developed in the past few decades for the monitoring of a certain aspect of drought condition along with the development of multivariate drought indices for drought characterizations from multiple sources or hydro-climatic variables. Reliable drought prediction with suitable drought indicators is critical to the drought preparedness plan to reduce potential drought impacts. In addition, drought analysis to quantify the risk of drought properties would provide useful information for operation drought managements. The drought monitoring, prediction and risk analysis are important components in drought modeling and assessments. In this study, a comprehensive R package "drought" is developed to aid the drought monitoring, prediction and risk analysis (available from R-Forge and CRAN soon). The computation of a suite of univariate and multivariate drought indices that integrate drought information from various sources such as precipitation, temperature, soil moisture, and runoff is available in the drought monitoring component in the package. The drought prediction/forecasting component consists of statistical drought predictions to enhance the drought early warning for decision makings. Analysis of drought properties such as duration and severity is also provided in this package for drought risk assessments. Based on this package, a drought monitoring and prediction/forecasting system is under development as a decision supporting tool. The package will be provided freely to the public to aid the drought modeling and assessment for researchers and practitioners.

  1. A European Drought Reference Database: Design and Online Implementation

    NARCIS (Netherlands)

    Stagge, J.H.; Tallaksen, L.M.; Kohn, I.; Stahl, K.; Loon, van A.

    2013-01-01

    This report presents the structure and status of the online European Drought Reference (EDR) database. This website provides detailed historical information regarding major historical European drought events. Each drought event is summarized using climatological drought indices, hydrological drought

  2. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Directory of Open Access Journals (Sweden)

    H. Lucas

    2009-07-01

    Full Text Available This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells.

    For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s−1 of high quality groundwater (55% of the regional demand, requiring only disinfection (900 l s−1 or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make

  3. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Directory of Open Access Journals (Sweden)

    T. Y. Stigter

    2009-01-01

    Full Text Available This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells.

    For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s−1 of high quality groundwater (55% of the regional demand, requiring only disinfection (900 l s−1 or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make

  4. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Science.gov (United States)

    Stigter, T. Y.; Monteiro, J. P.; Nunes, L. M.; Vieira, J.; Cunha, M. C.; Ribeiro, L.; Nascimento, J.; Lucas, H.

    2009-07-01

    This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells. For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s-1 of high quality groundwater (55% of the regional demand), requiring only disinfection (900 l s-1) or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make the water supply system extremely vulnerable, with a high

  5. CONSIDERATIONS ON STREAMFLOW DROUGHT IN CENTRAL ROMANIAN PLAIN

    Directory of Open Access Journals (Sweden)

    ADINA-ELIZA CROITORU

    2011-03-01

    Full Text Available Considerations on Streamflow Drought In Central RomanianPlain. As one of the most important hydrological phenomenon in the area,streamflow drought was identified using daily discharge flow data series for 30years (1980-2009. The data were recorded in seven observation points located onsix rivers, in the central part of the Romanian Plain (between Olt and Argeşrivers. Some aspects of duration and severity of the hydrological drought eventswere calculated: number, average and maximum duration, daily average dischargeflow and streamflow deficit volume of hydrological drought events. Mann-Kendall test and Sen’s slope estimation for trends detection were applied in orderto analyze trends of those features in the studied region. As main conclusions:most part of the considered rivers show similar behavior with general increasingtrends of the most analyzed drought parameters; the only exception is Glavaciocriver, with decreasing slopes for the great majority of the parameters. For themean daily discharge flows, insignificant slopes were calculated.

  6. Distinguishing drought and water scarcity

    NARCIS (Netherlands)

    Loon, van A.

    2013-01-01

    Water resources can become strained by both natural factors such as drought and human factors such as unsustainable use. Water resource managers can develop practices to reduce overuse of water resources, but they cannot prevent droughts, so distinguishing the causes of water stress can be useful.

  7. Soil microbiology under drought stress

    Science.gov (United States)

    he severity of the 2012 drought affecting much of the Midwestern U.S. is readily observed in the extremely stressed conditions of crops and natural vegetation. However, we may not realize that the extent of drought effects is just as severe on the biology below the soil surface. Detrimental effects ...

  8. Drought and ecosystem carbon cycling

    NARCIS (Netherlands)

    Molen, van der M.K.; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, W.; Philips, O.L.; Hurk, van den B.J.J.M.; Jeu, M.; Kruijt, B.; Teuling, A.J.; Werf, van der G.R.; Wang, G.

    2011-01-01

    Drought as an intermittent disturbance of the water cycle interacts with the carbon cycle differently than the ‘gradual’ climate change. During drought plants respond physiologically and structurally to prevent excessive water loss according to species-specific water use strategies. This has consequ

  9. Drought as a natural disaster

    Energy Technology Data Exchange (ETDEWEB)

    Maybank, J. [Agvironics Consulting, SK (Canada); Bonsal, B. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Geography; Jones, K. [Environment Canada, Downsview, ON (Canada). Canadian Climate Centre; Lawford, R. [Canadian Climate Centre, Saskatoon, SK (Canada). National Hydrology Research Centre; O`Brien, E.G. [Agriculture Canada, Ottawa, ON (Canada). Energy Analysis and Policy Div.; Ripley, E.A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science; Wheaton, E. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    1995-12-31

    A discussion of droughts as a major natural disaster in dry areas such as the Canadian Prairies where precipitation patterns are seasonal, was presented. Environmental damages include soil degradation and erosion, vegetation damage, slough and lake deterioration and wildlife loss. The development and application of specific soil moisture and drought indices based on cumulative precipitation deficits have enhanced drought monitoring programs. The identification of precursor conditions raises the possibility that the likelihood of a drought occurring in a particular year or growing season might be predictable. The ability to forecast seasonal temperature and precipitation anomalies is potentially feasible using a suitable merging of precursor parameters and modelling methodologies. Research activity to identify and evaluate new mitigative measure should be increased to keep pace with the prospects of drought predictability. 90 refs., 1 tab., 7 figs.

  10. Drought, Sustainability, and the Law

    Directory of Open Access Journals (Sweden)

    Robert W. Adler

    2010-07-01

    Full Text Available Researchers and responsible officials have made considerable progress in recent years in efforts to anticipate, plan for, and respond to drought. Some of those efforts are beginning to shift from purely reactive, relief-oriented measures to programs designed to prevent or to mitigate drought impacts. Considerably less attention has been given to laws that may affect practices and policies that either increase or decrease drought vulnerability. Water law regimes, drought response and relief legislation, and laws governing broader but related issues of economic policy—especially agricultural policy—should be evaluated more comprehensively to enhance incentives for more ―water sustainable‖ practices in agriculture and other sectors of the economy. Those changes will be increasingly important if current climate change models are correct in their prediction that many parts of the world can expect more frequent and more severe conditions of meteorological drought in the ensuing decades.

  11. Probabilistic analysis of drought spatiotemporal characteristics inThessaly region, Greece

    Directory of Open Access Journals (Sweden)

    A. Loukas

    2004-01-01

    Full Text Available The temporal and spatial characteristics of meteorological drought are investigated to provide a framework for sustainable water resources management in the region of Thessaly, Greece. Thessaly is the most intensely cultivated and productive agricultural plain region in Greece. Thessaly's total area is about 13700 km2 and it is surrounded by mountains and traversed by Pinios River. Using the Standardized Precipitation Index (SPI as an indicator of drought severity, the characteristics of droughts are examined. Thessaly was divided into 212 grid-cells of 8 x 8 km and monthly precipitation data for the period 1960–1993 from 50 meteorological stations were used for global interpolation of precipitation using spatial co-ordinates and elevation data. Drought severity was assessed from the estimated gridded SPI values at multiple time scales. Firstly, the temporal and spatial characteristics of droughts were analyzed and then, Drought Severity – Areal extent – Frequency (SAF annual and monthly curves were developed. The analysis indicated that moderate and severe droughts are common in Thessaly region. Using the SAF curves, the return period of selected severe drought events was assessed.

  12. How tree species-specific drought responses influence the carbon-water interaction in temperate forests

    Science.gov (United States)

    Wolf, Annett; Leuzinger, Sebastian; Bugmann, Harald

    2010-05-01

    Climate-change-induced differences in soil moisture conditions will influence the carbon uptake of tree species and hence the carbon budget of ecosystems. Experimental data showed that in a mature deciduous forest tree transpiration during a prolonged drought was reduced in a species-specific manner (Leuzinger et al. 2005). We implemented such a differential drought responses using the ecosystem model LPJ-GUESS. We simulated forest ecosystems in central Europe, using mixed forests and single species stands. The model showed that one result of the species specific drought response are differences in tree species diversity in the long run. At the intra-annual scale, we showed that a reduction in ecosystem evapotranspiration at an early stage during the drought period resulted in lower water stress later on in the drought. A consequence was that drought sensitive tree species could maintain a positive carbon balance during longer drought periods. As drought periods are likely to become more frequent and/or longer in many parts of the world, projections of ecosystem responses will be sensitive to the processes investigated here, and therefore ecosystem models should be upgraded to take them into account. Leuzinger et al. (2005) Tree physiology 25: 641-650.

  13. Comparison of drought indicators derived from multiple data sets over Africa

    Science.gov (United States)

    Naumann, G.; Dutra, E.; Barbosa, P.; Pappenberger, F.; Wetterhall, F.; Vogt, J. V.

    2014-05-01

    Drought monitoring is a key component to mitigate impacts of droughts. Lack of reliable and up-to-date precipitation data sets is a common challenge across the globe. This study investigates different data sets and drought indicators on their capability to improve drought monitoring in Africa. The study was performed for four river basins located in different climatic regions (the Oum er-Rbia in Morocco, the Blue Nile in eastern Africa, the Upper Niger in western Africa, and the Limpopo in southeastern Africa) as well as the Greater Horn of Africa. The five precipitation data sets compared are the ECMWF ERA-Interim reanalysis, the Tropical Rainfall Measuring Mission satellite monthly rainfall product 3B-43, the Global Precipitation Climatology Centre gridded precipitation data set, the Global Precipitation Climatology Project Global Monthly Merged Precipitation Analyses, and the Climate Prediction Center Merged Analysis of Precipitation. The set of drought indicators used includes the Standardized Precipitation Index, the Standardized Precipitation-Evaporation Index, and Soil Moisture Anomalies. A comparison of the annual cycle and monthly precipitation time series shows a good agreement in the timing of the rainy seasons. The main differences between the data sets are in the ability to represent the magnitude of the wet seasons and extremes. Moreover, for the areas affected by drought, all the drought indicators agree on the time of drought onset and recovery although there is disagreement on the extent of the affected area. In regions with limited rain gauge data the estimation of the different drought indicators is characterized by a higher uncertainty. Further comparison suggests that the main source of differences in the computation of the drought indicators is the uncertainty in the precipitation data sets rather than the estimation of the distribution parameters of the drought indicators.

  14. Global Change Drought in the Southwest: New Management Options

    Science.gov (United States)

    Udall, B. H.; Overpeck, J. T.

    2015-12-01

    Long held worries about future runoff declines in the Colorado River under climate change are proving to be more than just theory. Fifteen years into this century flows of the Colorado are already declining due mostly to unprecedented temperatures, and as warming proceeds, declines in river flow will grow larger. Temperature-driven droughts, some lasting decades and much more severe than the current 15-year drought, will also become more commonplace if climate change continues unabated. Current projections of future water availability almost universally understate the risk of large Colorado flow reductions under business-as-usual warming. Betting on highly uncertain projections of increased precipitation to overcome even part of the flow reductions due to virtually certain warming is a poor risk management strategy. Many of the existing water policy arrangements in the Colorado River Basin will fail in the 21st century unless innovative new solutions are developed under leadership from the federal government and its basin state partners.

  15. Increasing Vulnerability to Drought and Climate Change on the Navajo Nation, southwestern United States

    Science.gov (United States)

    Hiza, M. M.; Kelley, K. B.; Francis, H.

    2011-12-01

    The Navajo Nation of Arizona, New Mexico, and Utah, is an ecologically sensitive semi-arid to arid area where rapid growth of one of the largest population of Native Americans is outstripping the capacity of the land to sustain them. Recent drought conditions, combined with increasing temperatures, are significantly altering the habitability of a region already characterized by harsh living conditions. In addition to altered landscape conditions due to climatic change, drought, and varying land use practices over the last 200 years, the Navajo people have been affected by land use policies and harsh economic conditions that weaken their cultural fabric. Increasing aridity combined with drought threaten the very existence of Navajo culture and the survival of traditional Navajo communities. People presently living on these Native lands are unique in American society as their traditional lifestyle requires intimate knowledge of the ecosystem, knowledge that has been passed on for generations through oral traditions. We present data from the lifelong observations of 73 Native American elders that provide a record of the changes in plants and animals, water availability, weather, and sand or dust storms. This information is used to complement the scant long-term meteorological records and historical documentation for the region to further refine our understanding of the historical trends and local impacts of climate change and drought. Among the most cited changes is a long-term decrease in the amount of annual snowfall over the past century, a transition from wet conditions to dry conditions in the 1940s, and a decline in surface water features. The lack of available water, in addition to changing socioeconomic conditions, was mentioned as a leading cause for the decline in the ability to grow corn and other crops. Other noted changes include the disappearance of springs, and of plant and animal populations (particularly medicinal plants, cottonwood trees, beavers

  16. Capability of meteorological drought indices for detecting soil moisture droughts

    Directory of Open Access Journals (Sweden)

    Devanmini Halwatura

    2017-08-01

    New hydrological insights for the region: For three typical soil types and climate zones in Eastern Australia, and for two soil profiles, we have found a significant correlation between the indices and soil moisture droughts detected by Hydrus-1D. The failure rates and false alarm rates for detecting the simulated soil moisture droughts were generally below 50% for both indices and both soil profiles (the Reconnaissance Drought Index at Melbourne was the only exception. However, the complexity of Hydrus-1D and the uncertainty associated with the available, regionalised soil water retention curves encourage using the indices over Hydrus-1D in absence of appropriate soil moisture monitoring data.

  17. The impact of climate change on hydrometeorological droughts at a basin scale

    Science.gov (United States)

    Vrochidou, A.-E. K.; Tsanis, I. K.; Grillakis, M. G.; Koutroulis, A. G.

    2013-01-01

    SummaryThree Global Climate Models (GCMs) output (precipitation and temperature), bias corrected with the WATCH Forcing Data (WFD), for the A2 and B1 scenarios, are used for drought assessment at a basin scale. At a first step, the hydrological model IHMS-HBV was calibrated using both local and large scale forcing data (precipitation and temperature) aiming to assess the suitability of large scale forcing data in a small basin, Platis, located in Crete, for the period 1974-1999. The second step includes the forcing of the WFD calibrated HBV model with the bias corrected GCM output from 2001 to 2100 (WATCH Driving Data). The produced hydrological variables, flow, soil moisture and lower groundwater reservoir volume were used for the hydrological regime assessment and drought identification with the aid of the threshold level method. A quantitative comparison with four future sub-periods was carried out addressing the drought events number, duration and deficit volume. Simulations of both emission scenarios indicate a significant decrease in all hydrological parameters. The relative change of drought characteristics for the future periods in terms of the three-model ensemble implied severe drought conditions. For A2 scenario, it was found that the number of drought events could increase up to 98%, 109% and 81% in flow, soil moisture and groundwater respectively. B1 scenario provided more conservative estimates, with an increase of drought events number up to 56%, 92% and 34% in flow, soil moisture and groundwater, respectively. The drought duration difference between scenarios reaches up to 33%, 89% and 34% for simulated flow, soil moisture and groundwater respectively till 2100. Moderate changes can be noticed in drought deficit volume with an estimated maximum increase of 19%, 33% and 22% in flow, soil moisture and groundwater involving A2 scenario, whereas B1 scenario projected 10%, 2% and 26% maximum increase for the former parameters. The evolution of the

  18. DROUGHT ANALYSIS IN OZANA DRAINAGE BASIN

    Directory of Open Access Journals (Sweden)

    Marina IOSUB

    2016-03-01

    Full Text Available Ozana drainage basin is located at the contact between large landscape units (the Carpathian mountains, the Subcarpathian area, and the plateau region. This placement determines the existence of a complex climate in the region. Despite being small in size, and its extension on an W-E direction, differences can be observed, especially of the way extreme phenomena take place. In the case of droughts, it had different intensities in the mountains, compared to the plateau region. In order to emphasize the different distribution on the territory, several climatic indexes have been calculated, regarding dryness (De Martonne Index, Hellman criterion. The analysis of these indexes at the same monitoring stations (Pluton, Leghin and Dumbrava emphasizes the growth of the drought periods in the plateau region and the fact that they shorten in the mountain area. In the mountainous area, where the land is very well forested, the values of the De Martonne index can reach 45.4, and in the plateau regions, where the forest associations are sparse, the values dropped to 30.6. According to the Hellman criterion, several differences can be emphasized, at basin level. In the mountainous region, there is only one month that, at a multi-annual level, has stood up among the rest, as being excessively droughty, while in the median /central region of the basin, three months have been identified, that have such potential, as well as five months, at Dumbrava.

  19. Impact of Climate Change on Drought in the Upstream Yangtze River Region

    Directory of Open Access Journals (Sweden)

    Guihua Lu

    2016-12-01

    Full Text Available Based on Coupled Model Intercomparison Project Phase 5 (CMIP5 dataset and a variable infiltration capacity (VIC hydrological model, this study assesses the possible influence of climate change in the upstream region of the Yangtze River on droughts in the future 30 years. Long-term daily soil moisture content were simulated by VIC model at a 50 km × 50 km resolution from 1951 to 2013. Regional historical drought events were then recognized based on soil moisture anomaly percentage index and validated with field data. Five relatively independent representative global circulation models were selected and the outputs of them were downscaled temporally and spatially as the inputs of VIC model for daily soil moisture content simulations both in the period of 1971–2000 for the present-day climate and in the period of 2021–2050 for the future. The results show that the projected annual mean temperature is likely to increase from 1.4 °C to 1.8 °C. The projected change in mean annual precipitation could be increased slightly by 0.6% to 1.3%, but the trend of precipitation change in summer and autumn might be opposite of that. Comparing the drought characteristics values recognized in 1971–2000, seven to eight additional regional drought events are likely to happen in 2021–2050. Drought duration and drought intensity are also likely to extend for 18 d to 25 d and increase by 1.2% to 6.2%, respectively. But, drought area could decrease slightly by 1.3% to 2.7% on average. These changes in drought characteristics values suggest that regional drought could become more severely prolonged and frequent in future.

  20. Evaluation of Spatio-temporal Drought using Water Resource Quantile Map

    Science.gov (United States)

    Moon, Soojin; Suh, Aesook; Kang, Boosik

    2016-04-01

    Among those various natural disasters, the drought which is contrasted to the flood is not defined in only one case and it is true that the standard to estimate and conclude the drought is in vague with the long-term water insufficiency following the local and time-periodic rainfall disparity. Drought indices is mainly used as an index for evaluating drought. However, it is not an absolute indicator that can evaluate drought. Depending on the characteristics of each index in a variety of conditions such as local and environment, after grasping a better applicability in the use surfaces to suit the purpose of the user, using the appropriate index to be drought evaluation shall. After considering the various characteristics such as regional and environment with each index, the drought index have to use appropriately. Accordingly, there has been a lot of research for drought monitoring. However, objective method that can be evaluated experts as well as the general people on the actual drought situation, is deficient. In this study, it suggested RSQM (Real-time Storage Quantile Map) and RRQM (Real-time Riverflow Quantile Map) in the way to calculating the quantile of the current value corresponding to the usual value of the annual value river water level and storage rate of multi-purpose dam. It was calculated the probability distribution by selecting a typical water level stations and multipurpose dam of each basin. And the RSQM and RRQM were comparison and analysis to SPI and PDSI Index. These schemes can be objectively judged insufficient degree and drought conditions in water in real time. The RSQM and RSQM are meaning the supply potential of water resources and stress value of river environment. RRQM is mainly due to represent the adjusted value of downstream of multi-purpose dam. Accordingly it does not show the tendency of the representation of the drought to match exactly. However, RRQM is more directly represented about visually showing drought conditions

  1. Historic Drought puts the Brakes on Earthflows in Northern California

    Science.gov (United States)

    Bennett, G. L.; Roering, J. J.; Mackey, B.; Handwerger, A.; Schmidt, D. A.; Guillod, B. P.

    2016-12-01

    Understanding and predicting landslide response to climate change are significant challenges for Earth scientists, with landslides killing at least 5000 people each year around the world and costing 17% of the annual losses from all natural disasters. Much research on landslide response to climate surrounds their response to extreme rainfall events and melting permafrost, both of which are predicted to increase with climate change. However, landslide response to drought, also predicted to increase, remains largely unexplored. Further research on landslide response to drought as a climatic forcing event is needed to better understand the variable response of landslides, and more generally, geomorphic and hydrologic processes to climate change. California's ongoing drought reached historic proportions in 2015 with widespread consequences on the state's resources. We assessed the drought's impact on 98 deep-seated, slow-moving landslides in Northern California. We used a novel combination of aerial photograph analysis, satellite interferometry, and satellite pixel tracking to measure earthflow velocities spanning 1944-2015 for comparison with the Palmer Drought Severity Index, a proxy for soil moisture and pore pressure. We find that earthflow velocities reached a historical low in the extreme 2012-2015 drought, though their deceleration began at the turn of the century in response to a longer-term moisture deficit. Significantly, our analysis implies depth-dependent sensitivity of earthflows to climate forcing, with thicker earthflows reflecting longer-term climate trends and thinner earthflows exhibiting less systematic velocity variations. These findings have implications for our understanding of mechanical-hydrologic controls on earthflow movement as well as for predicting the response of slow-moving landslides to climate change.

  2. Parameters of streamflow droughts in agricultural basin in central Poland

    Science.gov (United States)

    Bartczak, A.; Glazik, R.; Tyszkowski, S.

    2012-04-01

    Extreme hydrological phenomena - especially droughts, are scrutinized by many scientists. These phenomena occur on both regional and local scale and result in severe economical losses. Identification and assessment of the severity of hydrological droughts in areas of highly developed agriculture is significant, as the deficit, especially during the vegetation season, becomes a barrier for an intensive agricultural development. The main aim of this part of the research was to determine the parameters of streamflow droughts of the ZgŁ owiączka River to WŁ ocŁ awek Ruda gauge, collecting the water from a typical agricultural area. The total basin area amounts to 1.495,6 km2. Presently, in terms of land use, the river basin area dominated by farmland, which takes up i.e. 80.1% of the basin area. The farmland structure is dominated by arable land, which takes up 73.1%. The analysis was carried out on the basis of sets of daily discharges from the period 1951-2010. The methodology used in this paper describes the streamflow droughts, where river discharges are below the selected levels. The value of selected levels is Q70% and Q90% determined from the flow duration curve with the upper discharges. Every selected streamflow drought was described with the use of the following parameters: the day of the beginning and the day of the end, duration, deficit volume, the minimal and the medium discharges of the streamflow drought. The period of streamflow drought was then compared with the precipitation deficit which occurred within the same period and the quantity of days without precipitation. The paper was carried out within the framework of the research project no. N N306 473538 Polish Ministry of Science and Higher Education

  3. DroughtView: Satellite Based Drought Monitoring and Assessment

    Science.gov (United States)

    Hartfield, K. A.; Van Leeuwen, W. J. D.; Crimmins, M.; Marsh, S. E.; Torrey, Y.; Rahr, M.; Orr, B. J.

    2014-12-01

    Drought is an ever growing concern within the United States and Mexico. Extended periods of below-average precipitation can adversely affect agricultural production and ecosystems, impact local water resources and create conditions prime for wildfire. DroughtView (www.droughtview.arizona.edu) is a new on-line resource for scientists, natural resource managers, and the public that brings a new perspective to remote-sensing based drought impact assessment that is not currently available. DroughtView allows users to monitor the impact of drought on vegetation cover for the entire continental United States and the northern regions of Mexico. As a spatially and temporally dynamic geospatial decision support tool, DroughtView is an excellent educational introduction to the relationship between remotely sensed vegetation condition and drought. The system serves up Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) data generated from 250 meter 16-day composite Moderate-resolution Imaging Spectroradiometer (MODIS) imagery from 2000 to the present. Calculation of difference from average, previous period and previous year greenness products provide the user with a proxy for drought conditions and insight on the secondary impacts of drought, such as wildfire. The various image products and overlays are served up via the ArcGIS Server platform. DroughtView serves as a useful tool to introduce and teach vegetation time series analysis to those unfamiliar with the science. High spatial resolution imagery is available as a reference layer to locate points of interest, zoom in and export images for implementation in reports and presentations. Animation of vegetation time series allows users to examine ecosystem disturbances and climate data is also available to examine the relationship between precipitation, temperature and vegetation. The tool is mobile friendly allowing users to access the system while in the field. The systems capabilities and

  4. Increasing flexibility in rangeland management during drought

    OpenAIRE

    Kachergis, E; Derner, JD; Cutts, BB; Roche, LM; Eviner, VT; Lubell, MN; Tate, KW

    2014-01-01

    Extreme droughts like the recent 2011-2013 drought impacting the central and western United States present a challenge to sustaining livestock ranching operations and the ecosystem goods and services they produce. Wyoming ranchers manage half of this drought-prone state and are at the forefront of this challenge. We examined Wyoming ranchers' drought management strategies and how ranch characteristics affect drought management flexibility, a key component of resilience, through a mail survey....

  5. Use of correlation and linear regression to increase annual stream flow records; Uso de la correlacion y la regresion lineal para ampliar registros de volumenes escurridos anuales

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Aranda, D.F. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1999-03-01

    Firstly, the estimates of standard deviation and arithmetic mean as basic statistical parameters are emphasised, which point out the variability and magnitude of annual streamflow records in the hydrological studies of planning water-resource developments inside a region. Then the equations for quantitative evaluations of statistical convenience of extending a short stream flow record are described in detail. The previous makes use of additional and common data in one or two closer hydrometric stations, with this the short observed record has a certain correlation (dependence or association). Later two numerical applications to real problems are given, the first one for the two dimensional model, which uses a closed hydrometric station in order to extend the short record, and the second application for the three dimensional model which makes use of two auxiliary hydrometric stations. Lastly, three general observations about the paper are cited. [Spanish] Inicialmente se destaca la importancia de las estimaciones de la medida y la desviacion estandar como parametros estadisticos basicos, los cuales caracterizan la magnitud y la variabilidad de los volumenes escurridos anuales en los estudios hidrologicos de planeacion del aprovechamiento de los recursos hidraulicos de una region. Enseguida, se describen con detalle las ecuaciones que permiten evaluar cuantitativamente si es conveniente o no, desde un punto de vista estadistico, ampliar el registro corto de escurrimientos, con base en datos comunes, adicionales y disponibles; esto en una o dos estaciones hidrometricas cercanas, con las cuales, el registro reducido guarda cierta correlacion (dependencia o asociacion). Lo anterior, significa evaluar si con base en el registro ampliado, las estimaciones de la medida y la variancia mejoran estadisticamente. Posteriormente, se realizan dos aplicaciones numericas a casos reales; una, para el modelo bidimensional que utiliza una estacion hidrometrica cercana para ampliar el

  6. Comparison of the Spatio-Temporal Variability of Annual Minimum Daily Extreme Flow Characteristics as a Function of Land Use and Dam Management Mode in Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Jean-Michel Sylvain

    2015-03-01

    Full Text Available This study presents a comparison of the spatio-temporal variability of characteristics (magnitude, duration and timing of annual minimum daily extreme flows (AMEF as a function of land use and the mode of management of dams. Streamflow measured at stations not affected by dams at Joliette, along the L’Assomption River (agricultural watershed, 1340 km2, and at Saint-Michel-des-Saints, on the Matawin River (forested watershed, 1390 km2 on one hand, and downstream from the Rawdon dam (regulated natural-type management mode, on the Ouareau River (1260 km2, which is the main tributary of the L’Assomption River, and from the Matawin dam (inverted-type management mode, on the Matawin River (4070 km2, on the other hand, were compared over the period from 1930 to 2010. As far as the spatial variability of natural rivers is concerned, the magnitude and duration of AMEF are higher in the forested watershed than in the agricultural watershed. In regulated rivers, AMEF magnitude is higher downstream from the dam characterized by a natural-type management mode than downstream from the dam characterized by inversion-type management. However, downstream from the latter, AMEF occur much more frequently and very early in the year. As for temporal variability, the Lombard method did not reveal any influence of land use differences on the stationarity of series of AMEF characteristics. In contrast, differences in dam management mode result in occurrences of AMEF downstream from the inversion-type dam progressively earlier in the year. The duration and timing of AMEF are not correlated with the same climate variables, be it in natural rivers or downstream from dams.

  7. Predicting drought tolerance from slope aspect preference in restored plant communities.

    Science.gov (United States)

    Kimball, Sarah; E Lulow, Megan; R Balazs, Kathleen; Huxman, Travis E

    2017-05-01

    Plants employ strategies of tolerance, endurance, and avoidance to cope with aridity in space and time, yet understanding the differential importance of such strategies in determining patterns of abundance across a heterogeneous landscape is a challenge. Are the species abundant in drier microhabitats also better able to survive drought? Are there relationships among occupied sites and temporal dynamics that derive from physiological capacities to cope with stress or dormancy during unfavorable periods? We used a restoration project conducted on two slope aspects in a subwatershed to test whether species that were more abundant on more water-limited S-facing slopes were also better able to survive an extreme drought. The attempt to place many species uniformly on different slope aspects provided an excellent opportunity to test questions of growth strategy, niche preference, and temporal dynamics. Perennial species that established and grew best on S-facing slopes also had greater increases in cover during years of drought, presumably by employing drought tolerance and endurance techniques. The opposite pattern emerged for annual species that employed drought-escape strategies, such that annuals that occupied S-facing slopes were less abundant during the drought than those that were more abundant on N-facing slopes. Our results clarify how different functional strategies interact with spatial and temporal heterogeneity to influence population and community dynamics and demonstrate how large restoration projects provide opportunities to test fundamental ecological questions.

  8. Effect of Drought on Rangeland Productivity and Animal Performance in Dryland Region of Balochistan, Pakistan

    Directory of Open Access Journals (Sweden)

    Sarwat Naz Mirza

    2009-06-01

    Full Text Available Arid and semi arid areas of Balochistan are characterized by low and erratic rainfall and are prone to drought conditions which normally occur every three to four years. The prevailing drought is one of the most severe in its magnitude as annual rain (60-150 mm has been well below average for a continuous period of four to five years in most parts of highland Balochistan. Results from a long term study on range monitoring in highland Balochistan show that the annual range productivity has declined from an average of 150-180 kg/ha dry matter of forage biomass to 30-45 kg/ha as a result of continuous drought in most parts of Balochistan. This has seriously affected the productivity of range-based small ruminants in terms of health and high stock mortality. Recommendations are provided in this paper on short and long term programs to combat the effects of drought on range based small ruminant production. Government sponsored drought relief programs should encourage early destocking so that the herders do not keep their stock longer into the drought period and thereby avoid catastrophic effects. A shift from extensive herding on rangelands is suggested to intensive or semi-intensive feedlot livestock production system by integrating range grazing and crop-based livestock production. This would make the livestock enterprise economically and environmentally sustainable.

  9. Causes and consequences of the hydrological droughts in the south region of European Russia

    Science.gov (United States)

    Kireeva, Maria; Ilich, Vladislav; Kharlamov, Maksim; Frolova, Natalia; Goncharov, Aleksandr

    2017-04-01

    In the last decade the number of extreme low-flow periods on Russian rivers has increased significantly. The most severe water shortage currently observed in the Don and Volga basin. Also suffers from lack of water of Lake Baikal region, left-bank tributaries of the Lena. The most acute problem of water shortage is in the basin of the Don river. It is located in the south od European part of Russia and has an area of 422 ths km2, which is very densely populated (more than 29 million inhabitants). The river and its tributaries are the main sources of fresh water for the population. In addition, they play a key role in industries such as fisheries, recreation, shipping, hydropower (HPP Tsimlyanskaya). Don anciently was very famous for its biodiversity and the number of organisms of the floodplain ecosystems. However, at the present time due to anthropogenic stress and climate change, these figures dropped down. This study is devoted to the complex analysis arising in the district. Don water shortage. As part of the research was carried out the spatial distribution of runoff, revealing its meteorological reasons of water shortage, the impact of water scarcity on the ecosystem in general and fish fauna in particular. Hydrological drought is clearly manifested in the annual runoff only in the lower part of the basin. From 2007 the annual runoff probability here are higher than 80%. It was found that the longest (during record from 1930ths) duration of the event associated with rotation of water shortages on the left and right-bank tributaries of the river. In addition, the analysis of the spatial distribution of seasonal runoff probability showed that in the upper catchment hydrological drought is hardly observed: the rate accounts for 60% and lower. Drought has led to the transformation of the aquatic ecosystem of the Don river and its transition from oligotrophic to eutrophic state. The concentration of phytoplankton in the August - September during low flow period

  10. Characterizing droughts under current and future climates in the Jordan River region

    Directory of Open Access Journals (Sweden)

    T. Törnros

    2013-05-01

    Full Text Available The Standardized Precipitation Index (SPI was applied in order to address the characteristics of current and future agricultural droughts in the Jordan River region located in the southeastern Mediterranean area. In the first step, the SPI was applied on spatially interpolated monthly precipitation data at multiple timescales, i.e. accumulated precipitation was considered over a number of timescales, for example: 1, 3, and 6 months. To investigate the performance of the drought index, correlation analyses were conducted with the Normalized Difference Vegetation Index (NDVI obtained from remote sensing. The results show that the 6 month SPI best explains the inter-annual variation of the NDVI. Hence, a timescale of 6 months is the most appropriate when addressing agricultural drought in the semi-arid region. In the second step, the 6 month SPI was applied to three climate projections based on the IPCC emission scenario A1B. When comparing the period 2031–2060 with 1961–1990, it is shown that the mean drought duration is projected to increase. Furthermore, the droughts are expected to become more severe because the frequency of severe and extreme droughts is projected to increase and the frequency of moderate drought is projected to decrease. To address the impact of drought on the agricultural sector, the irrigation water demand during drought was simulated with a hydrological model on a spatial resolution of 1 km. A large increase in the demand for irrigation water was simulated, showing that the agricultural sector is expected to become even more vulnerable to drought in the future.

  11. Differential effects of extreme drought on production and respiration: synthesis and modeling analysis

    Directory of Open Access Journals (Sweden)

    Z. Shi

    2013-10-01

    Full Text Available Extremes in climate may severely impact ecosystem structure and function, with both the magnitude and rate of response differing among ecosystem types and processes. We conducted a modeling analysis of the effects of extreme drought on two key ecosystem processes, production and respiration, and to provide broader context we complemented this with a synthesis of published results across multiple ecosystems. The synthesis indicated that across a broad range of biomes gross primary production (GPP generally was more sensitive to extreme drought (defined as proportional reduction relative to average rainfall periods than was ecosystem respiration (ER. Furthermore, this differential sensitivity between production and respiration increased as drought severity increased. The modeling analysis was designed to better understand the mechanisms underlying this pattern and focused on four grassland sites arrayed across the Great Plains, USA. Model results consistently showed that net primary productivity (NPP was reduced more than heterotrophic respiration (Rh by extreme drought (i.e., 67% reduction in annual ambient rainfall at all four study sites. The sensitivity of NPP to drought was directly attributable to rainfall amount, whereas sensitivity of Rh to drought was driven by both soil drying and a drought-induced reduction in soil carbon (C content, a much slower process. However, differences in reductions in NPP and Rh diminished as extreme drought continued due to a gradual decline in the soil C pool leading to further reductions in Rh. We also varied the way in which drought was imposed in the modeling analysis, either as reductions in rainfall event size (ESR or by reducing rainfall event number (REN. Modeled NPP and Rh decreased more by ESR than REN at the two relatively mesic sites but less so at the two xeric sites. Our findings suggest that responses of production and respiration differ in magnitude, occur on different timescales and are

  12. Relationship Between Physiological-biochemical Changes Under Drought Stress and Drought Resistance in Ramie

    Institute of Scientific and Technical Information of China (English)

    JIE Yu-cheng; HUANG Pi-sheng; LI Zong-dao

    2001-01-01

    A study on the physiological-biochemical changes of different ramie(Boehmeria Jacq. ) varieties under drought stress was carried out, the results showed that relative water contents(RWC) decreased and RPP increased with the increase of drought stress. Compared with drought sensitive varieties, drought resistant varieties had higher RWC in leaves but lower RPP. Peroxidase activity of drought-resistance varieties changed from low to high whereas sensitive ones changed in opposite direction. Proline contents of drought sensitive varieties was higher than those of drought resistant ones under a certain degree drought stress. Proline accumulation in drought resistant varieties was faster than that in drought sensitive ones under serious drought stress.MDA contents in leaf was increased under drought stress. MDA contents increased slowly in resistant varieties while that increased rapidly in sensitive ones.

  13. Drought Assessment in Zacatecas, Mexico

    National Research Council Canada - National Science Library

    Bautista-Capetillo, Carlos; Carrillo, Brenda; Picazo, Gonzalo; Júnez-Ferreira, Hugo

    2016-01-01

    ... activities, particularly those related to agriculture and livestock. This research reports on drought assessment for Zacatecas, Mexico using monthly data from 111 weather stations with temperature and precipitation information from a 33-year period...

  14. Asia's glaciers are a regionally important buffer against drought.

    Science.gov (United States)

    Pritchard, Hamish D

    2017-05-10

    The high mountains of Asia-encompassing the Himalayas, the Hindu Kush, Karakoram, Pamir Alai, Kunlun Shan, and Tian Shan mountains-have the highest concentration of glaciers globally, and 800 million people depend in part on meltwater from them. Water stress makes this region vulnerable economically and socially to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that these glaciers provide summer meltwater to rivers and aquifers that is sufficient for the basic needs of 136 million people, or most of the annual municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus and Aral river basins. Uncertainties in mountain precipitation are poorly known, but, given the magnitude of this water supply, predicted glacier loss would add considerably to drought-related water stress. Such additional water stress increases the risk of social instability, conflict and sudden, uncontrolled population migrations triggered by water scarcity, which is already associated with the large and rapidly growing populations and hydro-economies of these basins.

  15. Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado.

    Science.gov (United States)

    Hart, Sarah J; Veblen, Thomas T; Eisenhart, Karen S; Jarvis, Daniel; Kulakowski, Dominik

    2014-04-01

    This study examines influences of climate variability on spruce beetle (Dendroctonus rufipennis) outbreak across northwestern Colorado during the period 1650 2011 CE. Periods of broad-scale outbreak reconstructed using documentary records and tree rings were dated to 1843-1860, 1882-1889, 1931-1957, and 2004-2010. Periods of outbreak were compared with seasonal temperature, precipitation, vapor pressure deficit (VPD), the Palmer Drought Severity Index (PDSI), and indices of ocean-atmosphere oscillation that include the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). Classification trees showed that outbreaks can be predicted most successfully from above average annual AMO values and above average summer VPD values, indicators of drought across Colorado. Notably, we find that spruce beetle outbreaks appear to be predicted best by interannual to multidecadal variability in drought, not by temperature alone. This finding may imply that spruce beetle outbreaks are triggered by decreases in host tree defenses, which are hypothesized to occur with drought stress. Given the persistence of the AMO, the shift to a positive AMO phase in the late 1990s is likely to promote continued spruce beetle disturbance.

  16. Long-range hydrometeorological ensemble predictions of drought parameters

    Science.gov (United States)

    Fundel, F.; Jörg-Hess, S.; Zappa, M.

    2012-06-01

    Low streamflow as consequence of a drought event affects numerous aspects of life. Economic sectors that may be impacted by drought are, e.g. power production, agriculture, tourism and water quality management. Numerical models have increasingly been used to forecast low-flow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the low-flow indices duration, severity and magnitude, with a forecast lead-time of one month, to assess their potential usefulness for predictions. The ECMWF VarEPS 5 member reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification shows that, compared to peak flow, probabilistic low-flow forecasts are skillful for longer lead-times, low-flow index forecasts could also be beneficially included in a decision-making process. The results suggest monthly runoff forecasts are useful for accessing the risk of hydrological droughts.

  17. PARENTAL DROUGHT AND DEFOLIATION EFFECT ON YIELD, GRAINS BIOCHEMICAL ASPECTS AND DROUGHT PERFORMANCE OF SORGHUM PROGENY

    OpenAIRE

    A.H. Ibrahim; El-Shahaby, O. A.; Abo-Hamed, S. A.; Younis, M. E.

    2013-01-01

    This study was designed to evaluate the effect of drought stress and drought with defoliation on yield parameters of three sorghum varieties (Giza 15, Dorado and Hybrid 113). Also, the effect of these parental stress treatments on drought performance of progeny of the most drought tolerant variety was investigated. Application of drought stress in the vegetative stage non significantly affected panicles number, grain yield and harvest index of all cultivars. Drought stress in the reproductive...

  18. Spatiotemporal Distribution of Droughts in the Xijiang River Basin, China and Its Responses to Global Climatic Events

    Directory of Open Access Journals (Sweden)

    Jizhong Qiu

    2017-04-01

    Full Text Available The Xijiang River is a main branch of the Pearl River, the largest river in South China. Droughts in this area have seriously influenced local water resource utilization, and socio-economic development. The spatiotemporal distribution of droughts and its responses to global climatic events are of critical significance for the assessment and early warning of drought disasters. In this paper, the spatiotemporal patterns of droughts characterized by Rotated Empirical Orthogonal Function/Rotated Principal Components (REOF/RPC in the Xijiang River Basin, China were evaluated using the Self-calibrated Palmer Drought Severity Index (Sc-PDSI. The drought responses to El Niño/Southern Oscillation (ENSO, Pacific Decadal Oscillation (PDO, India Ocean Dipole (IOD, and North Atlantic Oscillation (NAO were analysed by Pearson correlation and multiple stepwise regression. The results showed that one year earlier NAO was the dominant factor impacting the droughts in the Xijiang Basin. Its contribution for the RPC2s of the annual, the first and second half years, winter, summer, autumn, and February were −0.556, −0.419, 0.597, −0.447, 0.542, 0.600, and −0.327, respectively. Besides the two adjacent Pacific and India oceans, the droughts seem be influenced by distant Atlantic climatic events. These results offer new reference insights into the early warning of droughts as well as the planning and management of water resources in the study area.

  19. Seasonal Drought Prediction in India

    Science.gov (United States)

    Shah, R.; Mishra, V.

    2015-12-01

    Drought is among the most costly natural disasters in India. Seasonal prediction of drought can assist planners to manage agriculture and water resources. Such information can be valuable for a country like India where 60% of agriculture is rain-fed. Here we evaluate precipitation and temperature forecast from the NCEP's CFSV2 for seasonal drought prediction in India. We demonstrate the utility of the seasonal prediction of precipitation and temperature for drought forecast at 1-2 months lead time at a high spatial resolution. Precipitation from CFSv2 showed moderate correlations with observed up to two months lead. For one month lead, we found a significant correlation between CFSv2 and observed precipitation during winter season. Air temperature from the CFSv2 showed a good correlation with observed temperature during the winter. We forced the Variable Infiltration Capacity (VIC) model with the CFSv2 forecast of precipitation and air temperature to generate forecast of hydrologic variables such as soil moisture and total runoff. We find that errors of the prediction reduce for the two month lead time in the majority of the study domain except the northern India. Skills of Initial Hydrologic Conditions combined with moderate skills of forcings based on the CFSv2 showed ability of drought prediction in India. The developed system was able to successfully predict observed top layer soil moisture and observed drought based on satellite remote sensing in India.

  20. Improving federal response to drought

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, D.A.; Rosenberg, N.J.; Glantz, M.H.

    1986-03-01

    Severe and widespread drought occurred over a large portion of the US between 1974 and 1977. Impacts on agriculture and other industries, as well as local water supplies, were substantial. The federal government responded with forty assistance programs administered by sixteen federal agencies. Assistance was provided primarily in the form of loans and grants to people, businesses and governments experiencing hardship caused by drought. The total cost of the program is estimated at $7-8 billion. Federal response to the mid-1970s drought was largely untimely, ineffective and poorly coordinated. Four recommendations are offered that, if implemented, would improve future drought assessment and response efforts: 1) reliable and timely informational products and dissemination plans; 2) improved impact assessment techniques, especially in the agricultural sector, for use by government to identify periods of enhanced risk and to trigger assistance measures; 3) administratively centralized drought declaration procedures that are well publicized and consistently applied; and 4) standby assistance measures that encourage appropriate levels of risk management by producers and that are equitable, consistent and predictable. The development of a national drought plan that incorporates these four items is recommended. Atmospheric scientists have an important role to play in the collection and interpretation of near-real time weather data for use by government decision makers.

  1. The influence of oceanic basins on drought and ecosystem dynamics in Northeast Brazil

    Science.gov (United States)

    Santos Pereira, Marcos Paulo; Justino, Flavio; Mendes Malhado, Ana Claudia; Barbosa, Humberto; Marengo, José

    2014-12-01

    The 2012 drought in Northeast Brazil was the harshest in decades, with potentially significant impacts on the vegetation of the unique semi-arid caatinga biome and on local livelihoods. Here, we use a coupled climate-vegetation model (CCM3-IBIS) to: (1) investigate the role of the Pacific and Atlantic oceans in the 2012 drought, and; (2) evaluate the response of the caatinga vegetation to the 2012 climate extreme. Our results indicate that anomalous sea surface temperatures (SSTs) in the Atlantic Ocean were the primary factor forcing the 2012 drought, with Pacific Ocean SST having a larger role in sustaining typical climatic conditions in the region. The drought strongly influenced net primary production in the caatinga, causing a reduction in annual net ecosystem exchange indicating a reduction in amount of CO2 released to the atmosphere.

  2. A comparative assessment of projected meteorological and hydrological droughts: Elucidating the role of temperature

    Science.gov (United States)

    Ahmadalipour, Ali; Moradkhani, Hamid; Demirel, Mehmet C.

    2017-10-01

    The changing climate and the associated future increases in temperature are expected to have impacts on drought characteristics and hydrologic cycle. This paper investigates the projected changes in spatiotemporal characteristics of droughts and their future attributes over the Willamette River Basin (WRB) in the Pacific Northwest U.S. The analysis is performed using two subsets of downscaled CMIP5 global climate models (GCMs) each consisting of 10 models from two future scenarios (RCP4.5 and RCP8.5) for 30 years of historical period (1970-1999) and 90 years of future projections (2010-2099). Hydrologic modeling is conducted using the Precipitation Runoff Modeling System (PRMS) as a robust distributed hydrologic model with lower computational cost compared to other models. Meteorological and hydrological droughts are studied using three drought indices (i.e. Standardized Precipitation Index, Standardized Precipitation Evapotranspiration Index, Standardized Streamflow Index). Results reveal that the intensity and duration of hydrological droughts are expected to increase over the WRB, albeit the annual precipitation is expected to increase. On the other hand, the intensity of meteorological droughts do not indicate an aggravation for most cases. We explore the changes of hydrometeolorogical variables over the basin in order to understand the causes for such differences and to discover the controlling factors of drought. Furthermore, the uncertainty of projections are quantified for model, scenario, and downscaling uncertainty.

  3. Amazon Forests’ Response to Droughts: A Perspective from the MAIAC Product

    Directory of Open Access Journals (Sweden)

    Jian Bi

    2016-04-01

    Full Text Available Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth’s climate system. It is only possible to assess Amazon forests’ response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC Moderate Resolution Imaging Spectroradiometer (MODIS vegetation index (VI data to assess Amazon forests’ response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6 MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1 the droughts decreased the greenness (i.e., photosynthetic activity of Amazon forests; (2 the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3 in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  4. Amazon Forests Response to Droughts: A Perspective from the MAIAC Product

    Science.gov (United States)

    Bi, Jian; Myneni, Ranga; Lyapustin, Alexei; Wang, Yujie; Park, Taejin; Chi, Chen; Yan, Kai; Knyazikhin, Yuri

    2016-01-01

    Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth's climate system. It is only possible to assess Amazon forests' response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) data to assess Amazon forests' response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6) MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1) the droughts decreased the greenness (i.e., photosynthetic activity) of Amazon forests; (2) the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3) in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  5. Drought intensity and spatial variability in Gabes Watershed, south-eastern Tunisia

    Directory of Open Access Journals (Sweden)

    Jemai Sabrine

    2016-12-01

    Full Text Available Chronological series of monthly and annual precipitation data recorded in Gabes Watershed, south-eastern Tunisia, were analyzed. The study is based on the standardized precipitation index (SPI values, computed for 10 rainfall stations over the period 1987–2012, which corresponds to an observatory period of 25 hydrologic years (from September to August. The results obtained show a great variability in SPI values. The historical evolution of the SPI made it possible to define the periods of excess and deficit, corresponding to wet and dry periods respectively. The wet years were found to be 1989–1990, 1995–1996 and 2006–2007 while the dry years were 1987–1988, 1996–1997, 2000–2001, 2001–2002, 2007–2008, 2008–2009 and 2009–2010. This clearly shows alternating wet and dry periods, but with drought episodes taking prevalence over rainy fronts throughout the study period. Indeed, a high tendency towards a drop in precipitation and important sequences of drought were observed. Spatial variability of drought throughout Gabes Watershed was examined by geostatistical analysis of SPI, as drought and rainfall distribution vary with latitude, longitude, topography and proximity to the Mediterranean Sea. The results obtained showed that, compared to coastal and southern areas, drought was observed to be more important in the West and the North of Gabes Watershed. The SPI showed that moderate droughts are generally more frequent than severe or extreme droughts in most of the Watershed.

  6. Seasonal drought effects on carbon sequestration of a mid-subtropical planted forest of southeastern China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX network. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.

  7. InfoSequia: the first operational remote sensing-based Drought Monitoring System of Spain

    Science.gov (United States)

    Contreras, Sergio; Hunink, Johannes E.

    2016-04-01

    We present a satellite-based Drought Monitoring System that provides weekly updates of maps and bulletins with vegetation drought indices over the Iberian Peninsula. The web portal InfoSequía (http://infosequia.es) aims to complement the current Spanish Drought Monitoring System which relies on a hydrological drought index computed at the basin level using data on river flows and water stored in reservoirs. Drought indices computed by InfoSequia are derived from satellite data provided by MODIS sensors (TERRA and AQUA satellites), and report the relative anomaly observed in the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), and in an additive combination of both. Similar to the U.S. Drought Monitoring System by NOAA, the indices include the Vegetation Condition Index (VCI, relative NDVI anomaly), the Temperature Condition Index (TCI, relative LST anomaly) and the Vegetation Health Index (VHI, relative NDVI-LST anomaly). Relative anomalies are codified into four warning levels, and all of them are provided for short periods of time (8-day windows), or longer periods (e.g. 1 year) in order to capture the cumulative effects of droughts in the state variables. Additionally, InfoSequia quantifies the seasonal trajectories of the cumulative deviation of the observed NDVI in relation with the averaged seasonal trajectory observed over a reference period. Through the weekly bulletins, the Drought Monitoring System InfoSequia aims to provide practical information to stakeholders on the sensitivity and resilience of native ecosystems and rainfed agrosystems during drought periods. Also, the remote sensed indices can be used as drought impact indicator to evaluate the skill of seasonal agricultural drought forecasting systems. InfoSequia is partly funded by the Spanish Ministry of Economy and Competiveness through a Torres-Quevedo grant.

  8. drought2015: an R-package to facilitate pan-European drought mapping

    Science.gov (United States)

    Gauster, Tobias; Laaha, Gregor

    2016-04-01

    Hydrological processes do not stop at country borders, whereas hydrological data sets (released by national hydrological surveys) cover single countries only. Compiling up-to-date hydrological data on a trans-national scale usually involves difficulties, for example highly-varying file formats and licence restrictions. We developed an R package called drought2015 to describe the complete spatial extent of the streamflow drought that hit parts of Europe in 2015. The key concept is to distribute the package to every participating country and ask only for the data needed to carry out the final analysis. By enabling the participants to easily and autonomously perform the computation, instead of requesting complete streamflow records, all partners showed a willingness to cooperate. drought2015 enhances the well-established package lfstat with country-specific import routines for national file formats, specialised functions to easily compare low flow extremes and convenient plotting methods. Enforcing a uniform data structure and a consistent methodology in the distributed computation has enabled the data collection and facilitated the interpretation of the results. It became apparent that countries are much more willing to share derived data rather than the original raw data sets.

  9. The European 2015 drought from a hydrological perspective

    Science.gov (United States)

    Laaha, Gregor; Gauster, Tobias; Delus, Claire; Vidal, Jean-Philippe

    2016-04-01

    The year 2015 was hot and dry in many European countries. A timely assessment of its hydrological impacts constitutes a difficult task, because stream flow records are often not available within 2-3 years after recording. Moreover, monitoring is performed on a national or even provincial basis. There are still major barriers of data access, especially for eastern European countries. Wherever data are available, their compatibility poses a major challenge. In two companion papers we summarize a collaborative initiative of members of UNESCO's FRIEND-Water program to perform a timely Pan-European assessment of the 2015 drought. In this second part we analyse the hydrological perspective based on streamflow observations. We first describe the data access strategy and the assessment method. We than present the results consisting of a range of low flow indices calculated for about 800 gauges across Europe. We compare the characteristics of the 2015 drought with the average, long-term conditions, and with the specific conditions of the 2003 drought, which is often used as a worst-case benchmark to gauge future drought events. Overall, the hydrological 2015 drought is characterised by a much smaller spatial extend than the 2003 drought. Extreme streamflows are observed mainly in a band North of the Alps spanning from E-France to Poland. In terms of flow magnitude, Czech, E-Germany and N-Austria were most affected. In this region the low flows often had return periods of 100 years and more, indicating that the event was much more severe than the 2003 event. In terms of deficit volumes, the centre of the event was more oriented towards S-Germany. Based on a detailed assessment of the spatio-temporal characteristics at various scales, we are able to explain the different behaviour in these regions by diverging wetness preconditions in the catchments. This suggest that the sole knowledge of atmospheric indices is not sufficient to characterise hydrological drought events. We

  10. An overview of drought events in the Carpathian Region in 1961-2010

    Science.gov (United States)

    Spinoni, J.; Antofie, T.; Barbosa, P.; Bihari, Z.; Lakatos, M.; Szalai, S.; Szentimrey, T.; Vogt, J.

    2013-02-01

    The Carpathians and their rich biosphere are considered to be highly vulnerable to climate change. Drought is one of the major climate-related damaging natural phenomena and in Europe it has been occurring with increasing frequency, intensity, and duration in the last decades. Due to climate change, land cover changes, and intensive land use, the Carpathian Region is one of the areas at highest drought risk in Europe. In order to analyze the drought events over the last 50 yr in the area, we used a 1961-2010 daily gridded temperature and precipitation dataset. From this, monthly 0.1° × 0.1° grids of four drought indicators (Standardized Precipitation-Evapotranspiration Index (SPEI), Standardized Precipitation Index (SPI), Reconnaissance Drought Indicator (RDI), and Palfai Aridity/Drought Index (PADI)) have been calculated. SPI, SPEI, and RDI have been computed at different time scales (3, 6, and 12 months), whilst PADI has been computed on an annual basis. The dataset used in this paper has been constructed in the framework of the CARPATCLIM project, run by a consortium of institutions from 9 countries (Austria, Croatia, Czech Republic, Hungary, Poland, Romania, Serbia, Slovakia, and Ukraine) with scientific support by the Joint Research Centre (JRC) of the European Commission. Temperature and precipitation station data have been collected, quality-checked, completed, homogenized, and interpolated on the 0.1° × 0.1° grid, and drought indicators have been consequently calculated on the grid itself. Monthly and annual series of the cited indicators are presented, together with high-resolution maps and statistical analysis of their correlation. A list of drought events between 1961 and 2010, based on the agreement of the indicators, is presented. We also discuss three case studies: drought in 1990, 2000, and 2003. The drought indicators have been compared both on spatial and temporal scales: it resulted that SPI, SPEI, and RDI are highly comparable, especially

  11. Management of drought risk under global warming

    Science.gov (United States)

    Zhang, Qiang; Han, Lanying; Jia, Jianying; Song, Lingling; Wang, Jinsong

    2016-07-01

    Drought is a serious ecological problem around the world, and its impact on crops and water availability for humans can jeopardize human life. Although drought has always been common, the drought risk has become increasingly prominent because of the climatic warming that has occurred during the past century. However, it still does not comprehensively understand the mechanisms that determine the occurrence of the drought risk it poses to humans, particularly in the context of global climate change. In this paper, we summarize the progress of research on drought and the associated risk, introduce the principle of a drought "transition" from one stage to another, synthesize the characteristics of key factors and their interactions, discuss the potential effect of climatic warming on drought risk, and use this discussion to define the basic requirements for a drought risk management system. We also discuss the main measures that can be used to prevent or mitigate droughts in the context of a risk management strategy.

  12. Analysis of drought conditions and their effects on Lake Trasimeno (Central Italy levels

    Directory of Open Access Journals (Sweden)

    Daniela Valigi

    2016-08-01

    Full Text Available An analysis of drought conditions on the Lake Trasimeno area (Umbria, Central Italy and of their influence on the lake levels is presented. Lake Trasimeno is one of the largest Italian lakes, and its economic and environmental importance is very high. The analysis of temperature data (1963-2014 shows that annual temperature is increasing – in accordance with what is known for Central Italy and the Mediterranean area – with a significant gradient of about 0.023°C/ year. No significant annual and seasonal rainfall trends were observed over the Lake Trasimeno catchment. The power spectrum analysis of rainfall and lake level fluctuations shows that both periodograms have high statistical confidence levels (>99% for annual and semi-annual cycles. The annual cycles of the periodogram of lake level fluctuations show a higher statistical confidence level than semi-annual cycles. Some other cycles such as the El-Niño Southern oscillation, North Atlantic oscillation, and solar activity are highlighted, with significance levels lower than that of annual and semi-annual cycles. The standardized precipitation (SPI and standardized reconnaissance drought indices, at different time scales, show that frequency and duration of extreme and severe droughts have increased in the last 25 years. A significant relationship between 12-month SPI and 12-month standardized lake levels fluctuations was obtained for the 1989-2014 period, indicating that SPI12 can be a useful indicator to represent drought severity for systems such as the Lake Trasimeno by considering lake level fluctuations rather than lake levels.

  13. Drought in forest understory ecosystems – a novel rainfall reduction experiment

    Directory of Open Access Journals (Sweden)

    K. F. Gimbel

    2014-10-01

    Full Text Available Climate change is predicted to severely affect precipitation patterns across central Europe. This may reduce water availability during the plant-growing season and hence affect the performance and vitality of forest ecosystems. We established a novel rainfall reduction experiment on nine sites in Germany to investigate drought effects on soil-forest-understory-ecosystems. A realistic, but extreme annual drought with a return period of 40 years, which corresponds to the 2.5% percentile of the annual precipitation, was imposed. At all sites, we were able to reach the target values of rainfall reduction, while other important ecosystem variables like air temperature, humidity and soil temperature remained unaffected due to the novel design of a flexible roof. The first year of drought showed considerable changes in the soil moisture dynamics relative to the control sites, which affected leaf stomatal conductance of understory species as well as evapotranspiration rates of the forest understory.

  14. Drought conditions and sediment transport in the Sabie River

    Directory of Open Access Journals (Sweden)

    G.L. Heritage

    1995-09-01

    Full Text Available Drought conditions in the Sabie catchment in the eastern Transvaal (now called Mpumalanga, South Africa, has had an observable effect on the sediment dynamics of the river. Sediment production within the catchment is largely unaffected by a reduction in the frequency and magnitude of rainfall events, although the rate of translocation of the weathered material from the catchment into the river channel is noticeably altered. The infrequent storm events during drought conditions generate a greater sed- iment input to the river from the catchment than a similar-magnitude event under average conditions. This sediment is also less likely to be transported through the system due to the reduced frequency of intermediate flows which act to rework in-channel sed- iment accumulations. Thus, significant accumulations of alluvial material are likely to form at specific locations, particularly where the local sediment transport capacity of the channel is low. Studies of the transport dynamics of the Sabie River, under both nor- mal and drought conditions, reveal that there are major depositional zones between Kruger Weir and Skukuza, and in the area around Lower Sabie. The 1992 drought resulted in a significant build-up of sediment in these areas, with a consequent reduc- tion in geomorphic diversity. This sediment is becoming stabilised due to the lower and less variable flows of the recent drought and associated vegetative colonisation. An increase in the magnitude and frequency of high and intermediate flows is needed to mobilise this accumulated sediment and to prevent its stabilisation by riparian vegetation.

  15. Groundwater vulnerability to drought in agricultural watersheds, S. Korea

    Science.gov (United States)

    Song, Sung-Ho; Kim, Jin-Sung; Lee, Byungsun

    2017-04-01

    Drought can be generally defined by a considerable decrease in water availability due to a deficit in precipitation during a significant period over a large area. In South Korea, the severe drought occurred over late spring to early summer during from 2012 to 2015. In this period, precipitation decreased up to 10-40% compared with a normal one, resulting in reduction of stream flow and reservoir water over the country. It led to a shortage of irrigation water that caused great damage to grow rice plants on early stage. Furthermore, drought resulted in a negative effect on groundwater system with decline of its level. Change of the levels significantly reflects intrinsic characteristics of aquifer system. Identifying drought effects on groundwater system is very difficult because change of groundwater level after hydrological events tends to be delayed. Therefore, quantitative assessment on decline of groundwater level in agricultural watersheds plays an essential role to make customized policies for water shortage since groundwater system is directly affected by drought. Furthermore, it is common to analyze the time-series groundwater data from monitoring wells including hydrogeological characteristics in company with meteorological data because drought effects on groundwater system is site-specific. Currently, a total of 364 groundwater monitoring wells including 210 wells for rural groundwater management network(RGMN) and 154 wells for seawater intrusion monitoring network (SIMN) have been operating in agricultural watersheds in S. Korea. To estimate the effect of drought on groundwater system, monthly mean groundwater level data were obtained from RGMN and SIMN during the periods of 2012 to 2015. These data were compared to their past data in company with rainfall data obtained from adjacent weather stations. In 2012 and 2014, mean groundwater level data in the northern part of the country during irrigation season(April to June), when precipitation was recorded

  16. The effect of artificially induced drought on radial increment and wood properties of Norway spruce.

    Science.gov (United States)

    Jyske, Tuula; Hölttä, Teemu; Mäkinen, Harri; Nöjd, Pekka; Lumme, Ilari; Spiecker, Heinrich

    2010-01-01

    We studied experimentally the effects of water availability on height and radial increment as well as wood density and tracheid properties of Norway spruce (Picea abies (L.) Karst.). The study was carried out in two long-term N-fertilization experiments in Southern Finland (Heinola and Sahalahti). At each site, one fertilized and one control plot was covered with an under-canopy roof preventing rainwater from reaching the soil. Two uncovered plots were monitored at each site. The drought treatment was initiated in the beginning of growing season and lasted for 60-75 days each year. The treatment was repeated for four to five consecutive years depending on the site. Altogether, 40 sample trees were harvested and discs sampled at breast height. From the discs, ring width and wood density were measured by X-ray densitometry. Tracheid properties were analysed by reflected-light microscopy and image analysis. Reduced soil water potential during the growing season decreased annual radial and height increment and had a small influence on tracheid properties and wood density. No statistically significant differences were found in the average tracheid diameter between the drought-treated and control trees. The average cell wall thickness was somewhat higher (7-10%) for the drought treatment than for the control, but the difference was statistically significant only in Sahalahti. An increased cell wall thickness was found in both early- and latewood tracheids, but the increase was much greater in latewood. In drought-treated trees, cell wall proportion within an annual ring increased, consequently increasing wood density. No interaction between the N fertilization and drought treatment was found in wood density. After the termination of the drought treatment, trees rapidly recovered from the drought stress. According to our results, severe drought due to the predicted climate change may reduce Norway spruce growth but is unlikely to result in large changes in wood properties.

  17. Mercury and drought along the lower Carson River, Nevada: II. Snowy egret and black-crowned night-heron reproduction on Lahontan Reservoir, 1997-2006

    Science.gov (United States)

    Hill, E.F.; Henny, C.J.; Grove, R.A.

    2008-01-01

    Mercury concentrations in the floodplain of the Carson River Basin in northwestern Nevada are some of the highest ever reported in a natural system. Thus, a portion of the basin including Lahontan Reservoir was placed on the U.S. Environmental Protection Agency's Natural Priorities List for research and cleanup. Preliminary studies indicated that reproduction in piscivorous birds may be at risk. Therefore, a 10-year study (1997-2006) was conducted to evaluate reproduction of snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) nesting on Gull Island in Lahontan Reservoir. Special attention was given to the annual flow of the Carson River, the resultant fluctuation of this irrigation reservoir, and the annual exposure of snowy egrets and night-herons to methylmercury (MeHg). The dynamic character of the river due to flooding and drought (drought effect) influenced snowy egret and night-heron reproduction more so than did MeHg contamination of eggs. During an extended drought (2000-2004) in the middle of the study, snowy egret nests containing eggs with concentrations of MeHg (measured as total mercury [THg] ??? 100% MeHg) ???0.80 ??g THg/g, ww, all failed, but in 1997 and 2006 (wet years with general flooding), substantial numbers of young were produced (but fewer than at nests where eggs contained putative biological effect threshold of 2.0 ??g THg/g in whole blood for young of both species was evaluated, which was frequently exceeded, but with no evidence, while still in the colony, of an association with direct mortality. An evaluation of physiological associations with blood residues and post-fledging survival will be presented in future reports in this series. ?? 2007 Springer Science+Business Media, LLC.

  18. Drought and reservoirs: intended benefits and unintended consequences

    Science.gov (United States)

    Di Baldassarre, Giuliano; AghaKouchak, Amir; Rangecroft, Sally; Wanders, Niko; Kuil, Linda; Veldkamp, Ted; van Loon, Anne

    2017-04-01

    Socioeconomic drought can be broadly defined as a condition whereby water demand cannot be satisfied by water supply. Here we posit that while reservoirs often alleviate socioeconomic drought, they can lead to unintended consequences in the medium-long term. Losses caused by socioeconomic drought tend to trigger public pressure for action, which can result in the introduction or expansion of reservoirs to store more water during high flow conditions, and release it during low flow conditions. In the short term, increasing reservoir storage is often beneficial because frequency, magnitude, and duration of drought can be significantly reduced. Yet, it is important to note that reservoirs may fail in mitigating major, prolonged drought, because reservoir storage is unavoidably limited. In the medium-long term, two main dynamics tend to emerge, which often generate unintended consequences. The first one, termed here as "supply-demand cycle", is when increasing water supply triggers additional development and thus generates higher demand, which then offsets the benefit of reservoirs as a water supply source. This is a self-reinforcing feedback, or vicious cycle, as the occurrence of a new socioeconomic drought will then likely trigger further expansion of reservoir storage to, again, increase water supply. A second dynamic, termed here as "reservoir effect" (after White's "levee effect"), is when extended periods of abundant water supply, secured by reservoirs, generate a decline of coping capacities through increased competition for water and reduced shocks to the system, which in turn increases the vulnerability of the system to socio-economic drought. In other words, while a frequent experience of water shortages can help keep high levels of preparedness, some elements of system's resilience can be lost when minor-to-moderate events are avoided. As a result, the development of reservoirs can generate a shift from frequent socioeconomic drought conditions to rare

  19. 唐山市干旱预测分析%Forecast and Analysis on Drought in Tangshan

    Institute of Scientific and Technical Information of China (English)

    高婕; 郑苗; 张国辉

    2013-01-01

      根据唐山市的干旱特点,选定年降水量小于450 mm作为异常值指标进行分析计算,采用灰色系统模型预测对唐山市干旱情况进行预测,预测极端干旱年,并针对特殊干旱年进行应对策略分析,以期为制定抗旱预案提供参考。%Based on drought characteristics in Tangshan, the article selects annual precipitation of less than 450mm as indicators of abnormal value indicators. The gray system model is used to predict drought situation and extreme drought years in Tangshan. And strategy analysis for special drought year is doing to provide reference for drought contingency plans.

  20. 26 CFR 1.451-7 - Election relating to livestock sold on account of drought.

    Science.gov (United States)

    2010-04-01

    ... annually 400 head of beef cattle but due to qualifying drought conditions 550 head were sold in a given... following example: Example. A, a calendar year taxpayer, normally sells 100 head of beef cattle a year. As... follows: $35,100 (total income from sales of beef cattle)/135 (total number of beef cattle sold)×35...

  1. Modeling annual flooding in the Logone floodplain in Cameroon

    Science.gov (United States)

    Fernandez, A.; Najafi, M. R.; Durand, M. T.; Mark, B. G.; Moritz, M.; Shastry, A.; Laborde, S.; Phang, S. C.; Hamilton, I.; Ningchuan, X.; Neal, J. C.

    2015-12-01

    The Logone floodplain (LFP), part of the Lake Chad Basin, is flooded annually by water from the Logone River and its branches during September and October. The inundated LFP is highly productive, providing support for fishing, pastoralism, and agriculture. In the last few decades, droughts, dam construction, manmade fishing canals (MFCs), and irrigation development have caused significant shifts in the LFP's flooding regime. Recently, MFCs have proliferated as consequence of ecological and manmade changes in the LFP. Future impacts of these modifications may parallel projected, although still uncertain, regional hydroclimatic changes derived from global warming. In order to understand feedbacks between human actions and hydroclimate, we are developing an integrated model that links hydroclimate, hydraulics, and human dynamics such as fishermen and pastoralist behavior. Here we present one component of this research focused on simulating the annual flooding dynamics of the LFP using LISFLOOD-FP, a raster-based numerical model that includes sub-grid parameterization of MFCs. Our goal is to evaluate the model's skill to simulate spatiotemporal features of the inundated LFP using a minimum amount of input data, such as discontinuous time series of river discharge and satellite-derived rainfall. Our simulations using three different spatial resolutions (1, 0.5, and 0.25-km grid-cell) suggest that the model is insensitive to pixel size, showing no significant differences between simulated volume, discharge, flooded area, and flood seasonality. Despite the model is able to simulate flow, with a Nash Sutcliff efficiency of 0.81, we find some significant spatial mismatch between observed and simulated inundation areas. In addition, results indicate that overbank flow provides more annual flood volume than rainfall. We discuss the impact of topographic and climatic input data on these results, as well as the potential to simulate the effects of MFCs on the local hydrology.

  2. Analysis of Drought in Poyang Lake

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The drought situation and causes in Poyang Lake were analyzed.[Method] In response to the drought in Poyang Lake in ten years ago and in recent 10 years,the causes of drought in Poyang Lake were discussed.[Result] Drought occurred frequently in Poyang Lake and the consecutive serious drought occurred now and then.The water level in Poyang Lake since 21st century was lower.The drought in Poyang Lake was due to reduction of precipitation,low water level in Yangtze River and "five lakes",hydraulic ...

  3. Biomass measurement from LANDSAT: Drought and energy applications

    Science.gov (United States)

    Maxwell, E. L.

    1981-01-01

    The theory supporting the use of vegetation indices derived from LANDSAT data for the direct measurement of biomass is reviewed. The use of multispectral data to measure biomass is a natural and viable application since the photosynthetic production of biomass gives vegetation its unique spectral properties. Vegetation indices also perform a normalization function which tends to make them insensitive to atmospheric and soil color variations. Optical and digital LANDSAT products are discussed relative to the use of vegetation indices to monitor drought impact. Based on results obtained in Colorado, operational use of LANDSAT to monitor drought is cost effective, practical and ready for implementation today. The direct measurement of biomass energy resources may also benefit from LANDSAT technology. Measurement of total biomass and annual primary production may be feasible. Identification of that component of biomass resources available for energy use will require other sources of information, however.

  4. Combined statistical and spatially distributed hydrological model for evaluating future drought indices in Virginia

    Directory of Open Access Journals (Sweden)

    Hyunwoo Kang

    2017-08-01

    New hydrological insights for the region: The results of the ensemble mean of SSI indicated that there was an overall increase in agricultural drought occurrences projected in the New (>1.3 times and Rappahannock (>1.13 times river basins due to increases in evapotranspiration and surface and groundwater flow. However, MSDI and MPDSI exhibited a decrease in projected future drought, despite increases in precipitation, which suggests that it is essential to use hybrid-modeling approaches and to interpret application-specific drought indices that consider both precipitation and temperature changes.

  5. Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress.

    Science.gov (United States)

    Zhang, Haiyan; Ni, Zhiyong; Chen, Quanjia; Guo, Zhongjun; Gao, Wenwei; Su, Xiujuan; Qu, Yanying

    2016-06-01

    Drought, one of the most widespread factors reducing agricultural crop productivity, affects biological processes such as development, architecture, flowering and senescence. Although protein analysis techniques and genome sequencing have made facilitated the proteomic study of cotton, information on genetic differences associated with proteomic changes in response to drought between different cotton genotypes is lacking. To determine the effects of drought stress on cotton seedlings, we used two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to comparatively analyze proteome of drought-responsive proteins during the seedling stage in two cotton (Gossypium hirsutum L.) cultivars, drought-tolerant KK1543 and drought-sensitive Xinluzao26. A total of 110 protein spots were detected on 2-DE maps, of which 56 were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified proteins were mainly associated with metabolism (46.4 %), antioxidants (14.2 %), and transport and cellular structure (23.2 %). Some key proteins had significantly different expression patterns between the two genotypes. In particular, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, UDP-D-glucose pyrophosphorylase and ascorbate peroxidase were up-regulated in KK1543 compared with Xinluzao26. Under drought stress conditions, the vacuolar H(+)-ATPase catalytic subunit, a 14-3-3g protein, translation initiation factor 5A and pathogenesis-related protein 10 were up-regulated in KK1543, whereas ribosomal protein S12, actin, cytosolic copper/zinc superoxide dismutase, protein disulfide isomerase, S-adenosylmethionine synthase and cysteine synthase were down-regulated in Xinluzao26. This work represents the first characterization of proteomic changes that occur in response to drought in roots of cotton plants. These differentially expressed proteins may be related to

  6. Drought tolerance in modern and wild wheat.

    Science.gov (United States)

    Budak, Hikmet; Kantar, Melda; Kurtoglu, Kuaybe Yucebilgili

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by "omics" studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.

  7. ABA receptor PYL9 promotes drought resistance and leaf senescence.

    Science.gov (United States)

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A; Zhu, Jian-Kang

    2016-02-16

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress.

  8. Studying Summer Season Drought in Western Russia

    Directory of Open Access Journals (Sweden)

    Anthony R. Lupo

    2014-01-01

    Full Text Available During the 2010 summer, a severe drought impacted Western Russia, including regions surrounding Moscow and Belgorod (about 700 km south of Moscow. The drought was accompanied by high temperatures. Moscow recorded 37.8°C (100°F for the first time in over 130 years of record keeping. The record heat, high humidity, dry weather, and smoke from forest fires caused increased human mortality rates in the Moscow region during the summer. The excessive heat and humidity in Western Russia were the result of atmospheric blocking from June through mid-August. The NCAR-NCEP reanalyses were used to examine blocking in the Eastern European and Western Russia sector during the spring and summer seasons from 1970 to 2012. We found that drier years were correlated with stronger and more persistent blocking during the spring and summer seasons. During these years, the Moscow region was drier in the summer and Belgorod during the spring seasons. In the Moscow region, the drier summers were correlated with transitions from El Niño to La Niña, but the opposite was true in the Belgorod region. Synoptic flow regimes were then analyzed and support the contention that dry years are associated with more blocking and El Niño transitions.

  9. Characterization of 2014 summer drought over Henan province using remotely sensed data

    Science.gov (United States)

    Lu, Jing; Jia, Li; Zhou, Jie

    2015-12-01

    An exceptional drought struck Henan province during the summer of 2014. It caused directly the financial loss reaching to hundreds of billion Yuan (RMB), and brought the adverse influence for people's life, agricultural production as well as the ecosystem. The study in this paper characterized the Henan 2014 summer drought event through analyzing the spatial distribution of drought severity using precipitation data from Tropical Rainfall Measuring Mission (TRMM) sensor and Normalized difference vegetation index (NDVI) and land surface temperature (LST) products from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The trend analysis of the annual precipitation from 2003 to 2014 showed that the region over Henan province is becoming dry. Especially in the east of Henan province, the decrease of precipitation is more obvious with the maximum change rate of ~48 mm/year. The rainfall in summer (from June to August) of 2014 was the largest negtive anomaly in contrast with the same period of historical years, which was 43% lower than the average of the past ten years. Drought severity derived from Standardized Precipitation Index (SPI) indicated that all areas of Henan province experienced drought in summer of 2014 with different severity levels. The extreme drought, accounting for about 22.7 % of Henan total area, mainly occurred in Luohe, Xuchang, and Pingdingshan regions, and partly in Nanyang, Zhengzhou, and Jiaozuo. This is consistent with the statistics from local municipalities. The Normalized Drought Index Anomaly (NDAI), calculated from MODIS NDVI and LST products, can capture the evolution of the Henan 2014 summer drought effectively. Drought severity classified by NDAI also agreed well with the result from the SPI.

  10. Drought monitoring and assessment: Remote sensing and modeling approaches for the Famine Early Warning Systems Network

    Science.gov (United States)

    Senay, Gabriel; Velpuri, Naga Manohar; Bohms, Stefanie; Budde, Michael; Young, Claudia; Rowland, James; Verdin, James

    2015-01-01

    Drought monitoring is an essential component of drought risk management. It is usually carried out using drought indices/indicators that are continuous functions of rainfall and other hydrometeorological variables. This chapter presents a few examples of how remote sensing and hydrologic modeling techniques are being used to generate a suite of drought monitoring indicators at dekadal (10-day), monthly, seasonal, and annual time scales for several selected regions around the world. Satellite-based rainfall estimates are being used to produce drought indicators such as standardized precipitation index, dryness indicators, and start of season analysis. The Normalized Difference Vegetation Index is being used to monitor vegetation condition. Several satellite data products are combined using agrohydrologic models to produce multiple short- and long-term indicators of droughts. All the data sets are being produced and updated in near-real time to provide information about the onset, progression, extent, and intensity of drought conditions. The data and products produced are available for download from the Famine Early Warning Systems Network (FEWS NET) data portal at http://earlywarning.usgs.gov. The availability of timely information and products support the decision-making processes in drought-related hazard assessment, monitoring, and management with the FEWS NET. The drought-hazard monitoring approach perfected by the U.S. Geological Survey for FEWS NET through the integration of satellite data and hydrologic modeling can form the basis for similar decision support systems. Such systems can operationally produce reliable and useful regional information that is relevant for local, district-level decision making.

  11. Assessment of spatiotemporal variability of drought in Weihe River over the period 1960-2010

    Science.gov (United States)

    Chang, Jianxia; Li, YunYun; Ren, Yi; Chen, Yutong

    2015-04-01

    The SPI is a valuable tool for quantifying the impacts of drought and comparing the intensity of drought across time and space. In this paper, we examine the spatial and temporal characteristics of droughts in WRB which are showing decreasing trends (becoming drier) over the twentieth century through the SPI series computed on 3-month, 6-month and 12-month time scales. According to the results, moderate drought were the major drought in the WRB, and the main drought periods were detected in1991-2000, while the extremely dry year was 1995 and 1997 at most of the stations. The annual minimum SPI values for the 3-month and 6-month time scale most frequently occured during July and October. The trend of SPI-3 showed that the risk of spring and fall drought increased gradually, which will impact on agriculture and water supply. Spatial, the areas with lower mean precipitation values had the largest decrease in SPI, especially in the Northern area. The decreasing trend was detected in the whole basin for SPI-12 and SPI-6. According to the SPI-3, all of the region had a decreasing trend in summer and fall, while winter showed little variation with most of the region had a decreasing trend. Summer showed the most increase throughout the east, with some areas of decrease confined mostly in the north and northwest area. So, there is strong relation between the rainfall distribution and drought potential zones in the basin. The meteorological drought conditions change continuously with seasons depending upon precipitation amount and its spatial distribution.

  12. Medieval Warm Interval documented as drought in the northeastern US -implications for our future?

    Science.gov (United States)

    Sritrairat, S.; Peteet, D. M.; Nichols, J. E.; Chou, C.; Pederson, D.; Kenna, T. C.; Previdi, M.

    2011-12-01

    The Northeastern United States comprise 5% of the total area of the US yet contain nearly 18% of the US population, including the densely settled metropolitan areas of New York, Philadelphia, and Boston. As such, the demands on the region's water resources are severe. Historical records include only one major drought in the last half-century, which occurred in the 1960s - it was considered severe but only lasted a few years. However, recent reconstructions from tree rings, pollen, and charcoal, extend the record and reveal the occurrence of numerous droughts over the last millennium, the severity and duration of which have not been experienced by modern society. For example, a "Megadrought" has been documented during the Medieval Warming Interval (MWI) from analysis of core samples collected in Piermont Marsh, NY, which makes even the recent droughts of the western US seem minor by comparison. Charcoal data from other NY marshes (Iona Marsh, 41 N, 74 W; Tivoli Bay, 43 N, 55 W) suggest that this drought was a regional phenomenon. Similar evidence of a MWI drought in peatlands as far north as the Great Heath, Maine (44 N, 67 W) indicates the entire Northeast suffered water shortages. Examination of drought records from upland lakes nearby indicate the MWI was only one of a series of droughts throughout the Holocene that the region has experienced. Comparison with coastal tree ring records various other records suggests that conditions may have extended as far south as Roanoke, Virginia. A similar extreme drought today would devastate those living in the Northeastern US who have been lulled into complacency by the current pluvial. Severe, prolonged droughts are the most expensive natural disasters affecting our planet, with damage in the US alone reaching US$6-8 billion annually. By coupling information from paleoarchives, current climate forcing mechanisms, and climate models, we will explore the mechanisms of megadroughts during the Holocene and the implications for

  13. Spatial and Temporal Analysis of Drought in the Western United States in Relation to Oceanic Oscillations

    Science.gov (United States)

    Ross, L.; Scuderi, L. A.

    2014-12-01

    Drought, a natural phenomenon that has affected western North America for millennia, is characterized by significant changes in precipitation with rapid shifts between wet and dry states. General Circulation Model projections indicate increased aridity in the 21st century for the Western U.S., and as such the impact of drought will likely become more significant on the environment and the economy. In the pursuit of improving drought predictability, as well as increasing our ability to better characterize the onset of drought, we ask whether defined climate regime shift signals can be identified and if there are variations in this signal for different drought periods, and if so, whether these shifts may be periodic. Annual growth rings of precipitation sensitive trees in the upper and lower Colorado River Basin regions are analyzed using 1) edge detection filters to determine the timing and significance of climate regime induced precipitation shifts, 2) digital filters to identify long and short-term precipitation variability within the site mean chronologies, and 3) wavelet analysis to determine the presence of significant periodicities in the chronologies. Results show that the edge detection algorithms are successful in identifying significant shifts in climatic regimes, and wavelet analysis indicates that some of these shifts may be periodic, suggesting larger scale atmospheric circulation forcing on timescales of decades to centuries. These results are used to identify specific patterns and timing of drought over the upper and lower Colorado River Basins in relation to oceanic oscillations such as the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation, and El Nino Southern Oscillation. Establishing a relationship between the timing and pattern of the drought and the timing of the oceanic oscillations can lead to improved drought predictability in this region and increase our ability to respond to the environmental and economic impacts of drought.

  14. Global hydrological droughts in the 21st century under a changing hydrological regime

    Directory of Open Access Journals (Sweden)

    N. Wanders

    2014-06-01

    Full Text Available Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that considers adaptation to future changes in hydrological regime. The global hydrological model PCR-GLOBWB was used to simulate daily discharge at 0.5° globally for 1971–2099. The model was forced with CMIP5 climate projections taken from five GCMs and four emission scenarios (RCPs, from the Inter-Sectoral Impact Model Intercomparison Project. Drought events occur when discharge is below a threshold. The conventional variable threshold (VTM was calculated by deriving the threshold from the period 1971–2000. The transient variable threshold (VTMt is a non-stationary approach, where the threshold is based on the discharge values of the previous 30 years implying the threshold to vary every year during the 21st century. The VTMt adjusts to gradual changes in the hydrological regime as response to climate change. Results show a significant negative trend in the low flow regime over the 21st century for large parts of South America, southern Africa, Australia and the Mediterranean. In 40–52% of the world reduced low flows are projected, while increased low flows are found in the snow dominated climates. In 27% of the global area both the drought duration and the deficit volume are expected to increase when applying the VTMt. However, this area will significantly increase to 62% when the VTM is applied. The mean global area in drought, with the VTMt, remains rather constant (11.7 to 13.4%, compared to the substantial increase when the VTM is applied (11.7 to 20%. The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime, has a substantial influence on future hydrological drought characteristics.

  15. Global hydrological droughts in the 21st century under a changing hydrological regime

    Science.gov (United States)

    Van Lanen, Henny A. J.; Wanders, Niko; Wada, Yoshihide

    2015-04-01

    Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that considers adaptation to future changes in hydrological regime. The global hydrological model PCR-GLOBWB was used to simulate daily discharge at 0.5o globally for 1971-2099. The model was forced with CMIP5 climate projections taken from five global circulation models (GCMs) and four emission scenarios (representative concentration pathways, RCPs), from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Drought events occur when discharge is below a threshold. The conventional variable threshold (VTM) was calculated by deriving the threshold from the period 1971-2000. The transient variable threshold (VTMt) is a non-stationary approach, where the threshold is based on the discharge of the previous 30 years implying the threshold to vary every year during the 21st century. The VTMt adjusts to gradual changes in the hydrological regime as response to climate change. Results show a significant negative trend in the low flow regime over the 21st century for large parts of South America, southern Africa, Australia and the Mediterranean. In 40-52% of the world reduced low flows are projected, while increased low flows are found in the snow-dominated climates. In 27% of the global area both the drought duration and the deficit volume are expected to increase when applying the VTMt. However, this area will significantly increase to 62% when the VTM is applied. The mean global area in drought, with the VTMt, remains rather constant (11.7 to 13.4 %), compared to the substantial increase when the VTM is applied (11.7 to 20 %). The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime has a substantial

  16. Global hydrological droughts in the 21st century under a changing hydrological regime

    Directory of Open Access Journals (Sweden)

    N. Wanders

    2015-01-01

    Full Text Available Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that considers adaptation to future changes in hydrological regime. The global hydrological model PCR-GLOBWB was used to simulate daily discharge at 0.5° globally for 1971–2099. The model was forced with CMIP5 climate projections taken from five global circulation models (GCMs and four emission scenarios (representative concentration pathways, RCPs, from the Inter-Sectoral Impact Model Intercomparison Project. Drought events occur when discharge is below a threshold. The conventional variable threshold (VTM was calculated by deriving the threshold from the period 1971–2000. The transient variable threshold (VTMt is a non-stationary approach, where the threshold is based on the discharge values of the previous 30 years implying the threshold to vary every year during the 21st century. The VTMt adjusts to gradual changes in the hydrological regime as response to climate change. Results show a significant negative trend in the low flow regime over the 21st century for large parts of South America, southern Africa, Australia and the Mediterranean. In 40–52% of the world reduced low flows are projected, while increased low flows are found in the snow-dominated climates. In 27% of the global area both the drought duration and the deficit volume are expected to increase when applying the VTMt. However, this area will significantly increase to 62% when the VTM is applied. The mean global area in drought, with the VTMt, remains rather constant (11.7 to 13.4%, compared to the substantial increase when the VTM is applied (11.7 to 20%. The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime has a

  17. Investigation of hydrological drought using Cumulative Standardized Precipitation Index (SPI 30) in the eastern Mediterranean region (Damascus, Syria)

    Science.gov (United States)

    Zakhem, Boulos Abou; Kattaa, Bassam

    2016-07-01

    The Eastern Mediterranean region has been exposed to drought episodes, which have been occurring more frequently during the last decades. The objective of the present paper is to study the precipitation regime of the Damascus (Mazzeh) meteoric station by analysing drought characteristics using the Standardized Precipitation Index (SPI) and comparing this with the drought in Cyprus. The cumulative drought conceptis proposed to characterize long-term hydrologic drought, which affects the shallow groundwater productivity in terms of quantity and quality. Gamma probability distribution was fitted to the long-term annual precipitation in Damascus from 1918-1919 to 2007-2008 ( n = 90 years). Generally, a decreasing trend of 17% to the mean annual rainfall of Damascus and 13% to the mean annual rainfall of Cyprus was estimated between 1970 and 2000. The SPI identifies three major extended drought periods: (1) 9 years of severe drought (1954-1963) with an average 20% precipitation deficit per year compared to the mean. (2) 8 years of severe drought (1983-1991) with a 27% deficit per year on average. (3) 9 years of extreme drought (1993-2002) with a 31% deficit per year on average. The cumulative standardized precipitation index (SPI 30) demonstrates positive values for the first period and is indicative of having no effect on the global water balance. SPI 30 exhibits sensitive equilibrium with near zero values / a near zero value (±1.5) for the second period. For the third period, however, the SPI 30 decreases below -10 indicating an extreme hydrological drought that has negative consequences on the recent groundwater recharge. It is required to develop and implement a sustainable groundwater management strategy to reduce long-terms drought risks. Generally, the SPI 30 in Cyprus is parallel to that in Damascus with a 3-5 year delay. Thus, the central zone of the Eastern Mediterranean region is facing big challenges and has been suffering from three decades of moderate to

  18. A chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1997 progress report and presentations at the annual meeting, Ernest Orlando Lawrence Berkeley National Laboratory, December 3--4, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, B.; Doughty, C.; Geller, J. [and others

    1998-07-01

    Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report.

  19. On the propagation of drought : how climate and catchment characteristics influence hydrological drought development and recovery

    NARCIS (Netherlands)

    Loon, van A.F.

    2013-01-01

    Drought is a severe natural disaster resulting in high economic loss and huge ecological and societal impacts. In this thesis drought is defined as a period of below-normal water availability in precipitation (meteorological drought), soil moisture (soil moisture drought), or groundwater and

  20. On the propagation of drought : how climate and catchment characteristics influence hydrological drought development and recovery

    NARCIS (Netherlands)

    Loon, van A.F.

    2013-01-01

    Drought is a severe natural disaster resulting in high economic loss and huge ecological and societal impacts. In this thesis drought is defined as a period of below-normal water availability in precipitation (meteorological drought), soil moisture (soil moisture drought), or groundwater and dischar

  1. On the propagation of drought : how climate and catchment characteristics influence hydrological drought development and recovery

    NARCIS (Netherlands)

    Loon, van A.F.

    2013-01-01

    Drought is a severe natural disaster resulting in high economic loss and huge ecological and societal impacts. In this thesis drought is defined as a period of below-normal water availability in precipitation (meteorological drought), soil moisture (soil moisture drought), or groundwater and dischar

  2. Drought May Beckon Bigger West Nile Outbreaks

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_163495.html Drought May Beckon Bigger West Nile Outbreaks Dry environment ... found that epidemics were larger during years of drought. There were also bigger outbreaks in areas that ...

  3. Forest biogeochemistry in response to drought.

    Science.gov (United States)

    Schlesinger, William H; Dietze, Michael C; Jackson, Robert B; Phillips, Richard P; Rhoades, Charles C; Rustad, Lindsey E; Vose, James M

    2016-07-01

    Trees alter their use and allocation of nutrients in response to drought, and changes in soil nutrient cycling and trace gas flux (N2 O and CH4 ) are observed when experimental drought is imposed on forests. In extreme droughts, trees are increasingly susceptible to attack by pests and pathogens, which can lead to major changes in nutrient flux to the soil. Extreme droughts often lead to more common and more intense forest fires, causing dramatic changes in the nutrient storage and loss from forest ecosystems. Changes in the future manifestation of drought will affect carbon uptake and storage in forests, leading to feedbacks to the Earth's climate system. We must improve the recognition of drought in nature, our ability to manage our forests in the face of drought, and the parameterization of drought in earth system models for improved predictions of carbon uptake and storage in the world's forests.

  4. Scientific Insights for Managing Droughts in California

    Science.gov (United States)

    Lund, J. R.; Medellin-Azuara, J.; Howitt, R. E.; MacEwan, D.; Sumner, D. A.

    2015-12-01

    Droughts stress water systems and provide important opportunities to learn about vulnerabilities and motivate improvements in water systems. Current and past droughts in California show that this highly-engineered system is highly robust and resilient to droughts, as agriculture and urban water needs are mostly fulfilled and recover quickly following drought. However, environmental systems remain highly vulnerable and have shown less resilience to drought, with each drought bringing additional native species closer to extinction, often with little recovery following the drought. This paper reviews the impacts of California's ongoing 4-year drought and its importance for better understanding its ecological and water supply systems, as well as motivating improvements in water management and scientific work.

  5. Low-flow frequency and flow duration of selected South Carolina streams in the Catawba-Wateree and Santee River Basins through March 2012

    Science.gov (United States)

    Feaster, Toby D.; Guimaraes, Wladmir B.

    2014-01-01

    Part of the mission of both the South Carolina Department of Health and Environmental Control and the South Carolina Department of Natural Resources is to protect and preserve South Carolina’s water resources. Doing so requires an ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina. A particular need is information concerning the low-flow characteristics of streams, which is especially important for effectively managing the State’s water resources during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades. In 2008, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, initiated a study to update low-flow statistics at continuous-record streamgaging stations operated by the U.S. Geological Survey in South Carolina. This report presents the low-flow statistics for 11 selected streamgaging stations in the Catawba-Wateree and Santee River Basins in South Carolina and 2 in North Carolina. For five of the streamgaging stations, low-flow statistics include daily mean flow durations or the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance and the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamgaging station. For the other eight streamgaging stations, only daily mean flow durations and (or) exceedance percentiles of annual minimum 7-day average flows are provided due to regulation. In either case, the low-flow statistics were computed from records available through March 31, 2012. Of the five streamgaging stations for which recurrence interval computations were made, three streamgaging stations in South Carolina were compared to low-flow statistics that were published in previous U.S. Geological Survey reports. A comparison of the low-flow

  6. Paired Catchment Analysis of the Impact of Human Activities on Hydrological Drought around the World

    Science.gov (United States)

    Rangecroft, S.; Van Loon, A.; Van Lanen, H.; Brena-Naranjo, J. A.; Pedrozo-Acuña, A.; Coxon, G.; Pelikan, J.; Verbist, K. M. J.; Maureira, H.; Coomans, W.

    2016-12-01

    Drought is an important natural hazard with a projected increase in frequency and severity worldwide. The intertwined hydrological and social processes related to drought have only recently started to be studied. Hydrological droughts do not only have natural causes; anthropogenic activities can also alleviate, enhance or cause droughts. Therefore we need to develop the tools to analyse, quantify and understand the human impact on droughts worldwide and help improve water management approaches. Here, we apply a paired-catchment method to quantify human impact on streamflow drought and compare with scenario modelling. Taken from flood research, the paired catchment approach compares undisturbed and disturbed catchments or sub-catchments (e.g. upstream-downstream comparison). Scenario modelling is used to check the method and validate results. This work has been done on a number of different catchments and human activities across the world. An upstream-downstream approach has been taken for an arid basin in Chile, quantifying the impact of a dam. Results showed that the dam helps to alleviate against small drought events, however it cannot help against large multi-year drought events. The comparison of droughts in a scenario with dam and a naturalised scenario gives similar results. Paired catchment analysis of the effect of groundwater (GW) abstraction in the UK showed fewer, but longer and more severe hydrological droughts in the disturbed catchment; in many cases to twice that of the natural catchment. Again, scenario modelling confirmed this difference. Paired catchment analysis of the effect of GW abstraction in Australia showed more variable results than in the UK, but during the Millennium Drought the disturbed catchment had years of near zero flow, whereas the undisturbed catchment continued flowing. Further case studies in the UK showed the impact of land-use change (urbanization) on drought, but not to the same magnitude as that of GW abstraction. We

  7. Testing the sensitivity of trade linkages in Europe to compound drought events

    Science.gov (United States)

    Veldkamp, Ted; Koks, Elco; Thissen, Mark; Wahl, Thomas; Haigh, Ivan; Muis, Sanne; Ward, Philip

    2017-04-01

    Droughts can be defined as spatially extensive events that are characterized by temporal deficits in precipitation, soil moisture or streamflow, and have the potential to cause large direct and indirect economic losses. Many European countries face drought as an economically important hazard, with agriculture, livestock, forestry, energy, industry, and water sectors particularly at risk, causing economic losses of 139 billion US over the past 30 years. Apart from these direct impacts, business production and the flow of goods and services can be affected indirectly by droughts. With consequences that can propagate through the economic system affecting regions not directly hit by the drought event itself, or in time-periods long after the original drought event occurred. In this study, we evaluate the sensitivity of existing trade linkages between the different NUTS-2 regions in Europe to the coupled occurrence of hydro-meteorological drought events, and their associated production losses. Using a multi-regional supply-use model for Europe, we have, on a product level, insight in the existing trade linkages between NUTS-2 regions. Using this information in combination with historical drought data, we assessed and identified for a selection of water related products: 1) the dependency-structures of the NUTS-2 regions within Europe for the import and export of products (and therein water); 2) the coupled nature of drought events occurring in regions that are linked via these trade-patterns; 3) the probability of not meeting demands (on a product level) due to drought events and the associated (indirect economic) impacts; and 4) regions that lose or benefit from their selection of trade-partners given the coupled nature of drought events, as well as the net effects for Europe as a whole.

  8. Changes in Stream Flow and Their Relationships with Climatic Variations and Anthropogenic Activities in the Poyang Lake Basin, China

    Directory of Open Access Journals (Sweden)

    Chaojun Gu

    2016-12-01

    Full Text Available The Poyang Lake Basin has been suffering from severe water problems such as floods and droughts. This has led to great adverse impacts on local ecosystems and water resource utilization. It is therefore important to understand stream flow changes and their driving factors. In this paper, the dynamics of stream flow and precipitation in the Poyang Lake Basin between 1961 and 2012 were evaluated with the Mann–Kendall test, Theil–Sen approaches, Pettitt test, and Pearson’s correlation. Stream flow was measured at the outlets of five major tributaries of Poyang Lake, while precipitation was recorded by fourteen meteorological stations located within the Poyang Lake Basin. Results showed that annual stream flow of all tributaries and the precipitation over the study area had insignificant (P > 0.1 temporal trends and change points, while significant trends and shifts were found in monthly scale. Stream flow concentration indices (SCI at Waizhou, Meigang, and Wanjiabu stations showed significant (P < 0.05 decreasing trends with change points emerging in 1984 at Waizhou and 1978 at Wanjiabu, while there was no significant temporal trend and change point detected for the precipitation concentration indices (PCI. Correlation analysis indicated that area-average stream flow was closely related to area-average precipitation, but area-average SCI was insignificantly correlated with area-average PCI after change point (1984. El Niño/Southern Oscillation (ENSO had greater impacts on stream flow than other climate indices, and La Niña events played a more important role in stream flow changes than EI Niño. Human activities, particularly in terms of reservoir constructions, largely altered the intra-annual distribution of stream flow but its effects on the amount of stream flow were relatively low. Results of this study provided a useful reference to regional water resource management and the prevention of flood and drought disasters.

  9. Temporal-Spatial Variation of Drought Indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China

    Directory of Open Access Journals (Sweden)

    Chunping Tan

    2015-09-01

    Full Text Available The Ningxia Hui Autonomous Region of China (Ningxia is an important food production area in northwest China severely affected by drought. The Standardized Precipitation Index (SPI and Standardized Precipitation Evapotranspiration Index (SPEI were calculated based on monthly meteorological data to explore climate change and variation in drought intensity, duration, frequency, and spatial extent in Ningxia during 1972–2011. Results show that the SPEI is more applicable than the SPI for exploring climate change and drought variation in Ningxia. The Ningxia climate experienced a significant drying tendency. Annual SPEI decreased about 0.37 decade−1 during 1972–2011. Drought was exacerbated by this drying tendency. Regional average duration, maximum duration, intensity, and frequency of drought identified by the SPEI increased by one month, three months, 0.15%, and 36.1%, respectively, during 1992–2011 compared to the period of 1972–1991. The spatial extent of drought identified by the SPEI increased about 14.4% decade−1 in the spring during 1972–2011. Spatially, drought frequency increased from north to south. Average intensity (maximum duration of drought calculated by the SPEI increased (decreased northward and southward from the central arid area.

  10. Propagation of drought through groundwater systems

    NARCIS (Netherlands)

    Peters, E.

    2003-01-01

    Index words: drought, groundwater, simulation, synthetic data, extreme events

    The transformation of droughts as a result of the propagation through groundwater systems is examined by comparing droughts in time

  11. Diversity of seedling responses to drought

    NARCIS (Netherlands)

    Slot, M.; Poorter, L.

    2007-01-01

    Drought is an important seedling mortality agent in dry and moist tropical forests, and more severe and frequent droughts are predicted in the future. The effect of drought on leaf gas exchange and seedling survival was tested in a dry-down experiment with four tree species from dry and moist forest

  12. Propagation of drought through groundwater systems

    NARCIS (Netherlands)

    Peters, E.

    2003-01-01

    Index words: drought, groundwater, simulation, synthetic data, extreme events

    The transformation of droughts as a result of the propagation through groundwater systems is examined by comparing droughts in time se

  13. Effects of drought on avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Brian D. Wardlow; Volker C. Radeloff

    2010-01-01

    Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most...

  14. European Drought and Water Scarcity Policies

    NARCIS (Netherlands)

    Özerol, Gül; Stein, Ulf; Troeltzsch, Jenny; Landgrebe, Ruta; Szendrenyi, Anna; Vidaurre, Rodrigo; Bressers, Hans; Bressers, Nanny; Larrue, Corinne

    2016-01-01

    Over the last decade, Europe’s drought management and policy has been characterized by a predominantly crisis-oriented approach. However, the widening gap between the impacts of drought episodes and the ability to prepare, manage and mitigate such droughts has motivated the European Union (EU) to ma

  15. Drought monitoring in the Seybouse basin (Algeria over the last decades

    Directory of Open Access Journals (Sweden)

    Khezazna Amina

    2017-06-01

    Full Text Available Algeria is amongst the African countries most affected by climate change impacts especially by drought which caused considerable economic losses in the past decades. In this paper, drought monitoring for the period between 1970 and 2011 was conducted in the Seybouse watershed by analysing annual rainfall data in terms of variability and trends along with the calculation of the standardized precipitation index (SPI. The results indicated important inter-annual rainfall fluctuation and a significant increasing trend. The estimated drought indices indicated that the Seybouse watershed experienced in the past a long dry period with a moderate severity followed by a long wet period at the majority of the study area. Moreover, the interpolation of the standardized precipitation indices (SPI on the entire Seybouse basin in GIS allowed visualizing and evaluating the spatial-temporal evolution of drought in the region which should help the decision-makers in the management of water resources, agriculture and other activities that may be affected by drought.

  16. Functional response of U.S. grasslands to the early 21st-century drought.

    Science.gov (United States)

    Moran, M Susan; Ponce-Campos, Guillermo E; Huete, Alfredo; McClaran, Mitchel P; Zhang, Yongguang; Hamerlynck, Erik P; Augustine, David J; Gunter, Stacey A; Kitchen, Stanley G; Peters, Debra P C; Starks, Patrick J; Hernandez, Mariano

    2014-08-01

    Grasslands across the United States play a key role in regional livelihood and national food security. Yet, it is still unclear how this important resource will respond to the prolonged warm droughts and more intense rainfall events predicted with climate change. The early 21st-century drought in the southwestern United States resulted in hydroclimatic conditions that are similar to those expected with future climate change. We investigated the impact of the early 21st-century drought on aboveground net primary production (ANPP) of six desert and plains grasslands dominated by C4 (warm season) grasses in terms of significant deviations between observed and expected ANPP. In desert grasslands, drought-induced grass mortality led to shifts in the functional response to annual total precipitation (P(T)), and in some cases, new species assemblages occurred that included invasive species. In contrast, the ANPP in plains grasslands exhibited a strong linear function of the current-year P(T) and the previous-year ANPP, despite prolonged warm drought. We used these results to disentangle the impacts of interannual total precipitation, intra-annual precipitation patterns, and grassland abundance on ANPP, and thus generalize the functional response of C4 grasslands to predicted climate change. This will allow managers to plan for predictable shifts in resources associated with climate change related to fire risk, loss of forage, and ecosystem services.

  17. Identification of Drought-Responsive Genes and Validation for Drought Resistance in Rice

    OpenAIRE

    Batlang, Utlwang

    2010-01-01

    Drought stress was studied in rice (Oryza sativa) and maize (Zea mays) to identify drought-responsive genes and associated biological processes. One experiment with rice examined drought responses in vegetative and reproductive tissues and identified drought-responsive genes in each tissue type. The results showed that brief periods of acute drought stress at or near anthesis reduced photosynthetic efficiency and ultimately lowered grain yield. Yield was reduced as a result both of fewer spik...

  18. Hydrological drought typology: temperature-related drought types and associated societal impacts

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2014-09-01

    Full Text Available For drought management and prediction, knowledge of causing factors and socio-economic impacts of hydrological droughts is crucial. Propagation of meteorological conditions in the hydrological cycle results in different hydrological drought types that require separate analysis. In addition to the existing hydrological drought typology, we here define two new drought types related to snow and ice. A snowmelt drought is a deficiency in the snowmelt discharge peak in spring in snow-influenced basins and a glaciermelt drought is a deficiency in the glaciermelt discharge peak in summer in glacierised basins. In 21 catchments in Austria and Norway we studied the meteorological conditions in the seasons preceding and at the time of snowmelt and glaciermelt drought events. Snowmelt droughts in Norway were mainly controlled by below-average winter precipitation, while in Austria both temperature and precipitation played a role. For glaciermelt droughts the effect of below-normal summer temperature was dominant, both in Austria and Norway. Subsequently, we investigated the impacts of temperature-related drought types (i.e. snowmelt and glaciermelt drought, but also cold and warm snow season drought and rain-to-snow-season drought. In historical archives and drought databases for the US and Europe many impacts were found that can be attributed to these temperature-related hydrological drought types, mainly in the sectors agriculture and electricity production (hydropower. However, drawing conclusions on the frequency of occurrence of different drought types from reported impacts is difficult, mainly because of reporting biases and the inevitably limited spatial and temporal scales of the information. This study shows that the combination of quantitative analysis of causing factors and qualitative analysis of impacts of temperature-related droughts is a promising approach to identify relevant drought types in other regions, especially if more data on

  19. General mechanisms of drought response and their application in drought resistance improvement in plants.

    Science.gov (United States)

    Fang, Yujie; Xiong, Lizhong

    2015-02-01

    Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future.

  20. Wood anatomical responses of oak saplings exposed to air warming and soil drought.

    Science.gov (United States)

    Fonti, P; Heller, O; Cherubini, P; Rigling, A; Arend, M

    2013-01-01

    Water is vital for plant performance and survival. Its scarcity, induced by a seasonal decline in soil water availability or an increase of evaporative demand, can cause failures of the water conducting system. An adequate tolerance to drought and the ability to acclimate to changing hydraulic conditions are important features for the survival of long-lived woody plants in dry environments. In this study we examine secondary growth and xylem anatomical acclimation of 6 year old saplings of three European oak species (Quercus robur, Q. petraea, Q. pubescens) during the third consecutive year of exposure to soil drought and/or air warming (from 2007 to 2009). Intra-annual pinning was applied to mark the development of the formation of the annual ring 2009. Vessel size, parenchyma cell density and fiber size produced at different time of the growing season 2009 were compared between drought and warming treatments and species. Drought reduced secondary growth and induced changes in xylem structure while air warming had little effect on wood anatomical traits. Results indicate that drought-exposed saplings adjust their xylem structure to improve resistance and repairing abilities after cavitation. All species show a significant radial growth reduction, a reduced vessel size with diminished conductivity and a slightly increased density of parenchyma cells. Comparisons between species fostered our understanding of the relationship between the inter-specific xylem hydraulic plasticity and the ecological response to drought. The stronger changes observed for Q. robur and Q. petraea indicate a lower drought tolerance than Q. pubescens.

  1. 黑河上游多年基流变化及其原因分析%Annual base flow change and its causes in the upper reaches of Heihe River

    Institute of Scientific and Technical Information of China (English)

    张华; 张勃; 赵传燕

    2011-01-01

    利用递归数字滤波法分割黑河上游主要水文站点的基流量,用移动平均、曼-肯德尔(Mann-Kendall)突变检验,小波分析方法分析研究区多年基流变化特点,并对基流影响因子进行分析。结果显示:黑河上游祁连、扎马什克、莺落峡三站多年平均基流指数均大于0.4;祁连与莺落峡多年基流量呈上升趋势,二者都在1979年发生增加到显著增加的突变。扎马什克基流波动较大,总体呈下降趋势;三站基流分别存在11年、6年、15年的明显变化周期。基流量变化主要受降水的影响。人类活动对基流的影响主要表现在造成黑河上游森林面积减少,使其补%Base flow is one of the most important river hydrological characteristics in dry season. In recent years, with the global water issues becoming more prominent, base flow has become research focus in eco-hydrology. For the stability and hysteresis, base flow is significant to maintain river's ecological functions, determines river's ecological water requirement, and provides food and service for the locals in arid and semi-arid regions. The study area, upper reaches of Heihe River Basin, is located in the Qilian Mountains, northern part of Tibetan Plateau, China, with elevations of 2300-4000 m. The watershed area is 1. 0009 × 10^4 km^2. The recursive digital filter technique was used to separate annual base flow of three main hydrological stations in the upper reaches of Heihe River. The methods of moving average, Mann-Kendall abrupt test and wavelet variance were employed to explain the characteristics of the annual change of base flow. Precipitation and temperature data of six adjacent meteorological observational stations and human activities were used to analyze the influencing factor of base flow. The results indicated that the Base flow Index (BFI) was greater than 0.4 in Qilian, Zhamashike and Yingluoxia stations. The notable increase of base

  2. Remote Sensing Approach to Drought Monitoring to Inform Range Management at the Hopi Tribe and Navajo Nation

    Science.gov (United States)

    El Vilaly, M. M.; Van Leeuwen, W. J.; Didan, K.; Marsh, S. E.; Crimmins, , M. A.

    2012-12-01

    The Hopi Tribe and Navajo Nation are situated in the Northeastern corner of Arizona in the Colorado River Plateau. For more than a decade, the area has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. Moreover, these persistent droughts threaten ecosystem services, agriculture, and livestock production activities, and make this region sensitive to inter-annual climate variability and change. The limited hydroclimatic observations, bolstered by numerous anecdotal drought impact reports, indicate that the region has been suffering through an almost 15-year long drought which is threatening its socio-economic development. The objective of this research is to employ remote sensing data to monitor the ongoing drought and inform management and decision-making. The overall goals of this study are to develop a common understanding of the current status of drought across the area in order to understand the existing seasonal and inter-annual relationships between climate variability and vegetation dynamics. To analyze and investigate vegetation responses to climate variability, land use practices, and environmental factors in Hopi and Navajo nation during the last 22 years, a drought assessment framework was developed that integrates climate and topographical data with land surface remote sensing time series data. Multi-sensor Normalized Difference Vegetation Index time series data were acquired from the vegetation index and phenology project (vip.arizona.edu) from 1989 to 2010 at 5.6 km, were analyzed to characterize the intra-annual changes of vegetation, seasonal phenology and inter-annual vegetation response to climate variability and environmental factors. Due to the low number of retrieval obtained from TIMESAT software, we developed a new framework that can maximize the number of retrieval. Four vegetation development stages, annual integrated NDVI (Net Primary

  3. PDSI-based variations of droughts and wet spells in Thailand: 1951-2005

    Directory of Open Access Journals (Sweden)

    Atsamon Limsakul

    2011-01-01

    Full Text Available Temporal variations of droughts/wet spells in Thailand for the period 1951-2005 were examined on the basis of the gridded Palmer Drought Severity Index (PDSI data. PDSI is the most dominant index for drought monitoring, climatology and variability across different climates. The PDSI variations in Thailand were correlated well with the annual streamflow records, indicating that PDSI is a good proxy for monitoring and assessing droughts/wet spells and it can be further used as an index of annual-mean streamflow variations. An empirical orthogonal function (EOF analysis of PDSI revealed a linear trend and an El Niño-Southern Oscillation (ENSO-induced mode of multi-year variations as the leading pattern. The ENSO cycle and its shift toward more warm phases after about 1976 appeared to be largely responsible for interannual variations and the recent progressive dying trend in Thailand. From 1951 to 2005, there were also large interannual/decadal variations in the occurrence frequencies in severe/extreme droughts (PDSI 3 with the coherent jump occurred in the mid 1970s. Similar to the leading PDSI EOF1 mode, these annual occurrence frequencies were closely related to ENSO events which extreme events tended to happen more frequently during ENSO years. Patterns of EOF-derived PDSI variations were consistent with the observed surface temperature warming in Thailand. These results provide evidence that Thailand will experience the increasing risks of severe and extreme droughts/floods in the near future as a result of the combined effects of a more vigorous hydrological cycle and enhanced surface drying due to anthropogenic global warming and the anomalous oscillations of ENSO.

  4. Long-Term Trend of Climate Change and Drought Assessment in the Horn of Africa

    Directory of Open Access Journals (Sweden)

    Mihretab G. Ghebrezgabher

    2016-01-01

    Full Text Available Climate change due to global warming is a world concern, particularly in Africa. In this study, precipitation and temperature variables are taken as a proxy to assess and quantify the long-term climate change and drought in the Horn of Africa (HOA (1930–2014. We adapted a simple linear regression and interpolation to analyze, respectively, the trend and spatial distribution of the mean annual precipitation and temperature. In addition, standardized precipitation evapotranspiration index (SPEI was applied to evaluate the drought condition of the HOA. The results revealed that statistically the trend of precipitation decreased insignificantly; the trend of temperature was observed to drop very significantly between 1930 and 1969, but it was dramatically elevated very significantly from 1970 to 2014. The SPEI showed that the HOA experienced from mild to moderate drought throughout the study period with severe to extreme drought in some regions, particularly in 1943, 1984, 1991, and 2009. The drought was a very serious environmental problem in the HOA in the last 85 years. Thus, an immediate action is required to tackle drought and hence poverty and famine in the HOA.

  5. Documentary and instrumental-based drought indices for the Czech Lands back to AD 1501

    Science.gov (United States)

    Brázdil, Rudolf; Dobrovolný, Petr; Trnka, Miroslav; Büntgen, Ulf; Řezníčková, Ladislava; Kotyza, Oldřich; Valášek, Hubert; Štěpánek, Petr

    2016-04-01

    This study addresses the reconstruction of four slightly different drought indices in the Czech Lands (recent Czech Republic) back to 1501 AD. Reconstructed monthly temperatures for central Europe that are representative for the Czech territory, together with reconstructed seasonal precipitation totals from the same area, are used to calculate monthly, seasonal and annual drought indices (SPI, SPEI, Z-index, and PDSI). The resulting time-series reflect interannual-to multi-decadal drought variability. The driest episodes cluster around the beginning and end of the 18th century, while 1540 emerges as a particularly dry extreme year. The temperature-driven dryness of the past three decades is well captured by SPEI, Z-index and PDSI, whereas precipitation totals show no significant trend during this period (as reflected in SPI). Data and methodological uncertainty associated with Czech drought indices, as well as their position in a greater European context, are critically outlined. Further discussion is devoted to comparison with fir tree-rings from southern Moravia and a spatial subset of the "Old World Drought Atlas" (OWDA), which reveals significant correlation coefficients, of around 0.40 and 0.50, respectively. This study introduces a new documentary-based approach for the robust extension of standardized drought indices back into pre-instrumental times, which we also believe has great potential in other parts of the world where high-resolution paleoclimatic insight remains as yet limited.

  6. Repeated drought alters resistance of seed bank regeneration in baldcypress swamps of North America

    Science.gov (United States)

    Lei, Ting; Middleton, Beth A.

    2017-01-01

    Recurring drying and wetting events are likely to increase in frequency and intensity in predicted future droughts in the central USA and alter the regeneration potential of species. We explored the resistance of seed banks to successive droughts in 53 sites across the nine locations in baldcypress swamps in the southeastern USA. Along the Mississippi River Alluvial Valley and northern Gulf of Mexico, we investigated the capacity of seed banks to retain viable seeds after successive periods of drying and wetting in a greenhouse study. Mean differences in species richness and seed density were compared to examine the interactions of successive droughts, geographical location and water regime. The results showed that both species richness and total density of germinating seedlings decreased over repeated drought trials. These responses were more pronounced in geographical areas with higher annual mean temperature. In seed banks across the southeastern swamp region, most species were exhausted after Trial 2 or 3, except for semiaquatic species in Illinois and Tennessee, and aquatic species in Texas. Distinct geographical trends in seed bank resistance to drought demonstrate that climate-induced drying of baldcypress swamps could influence the regeneration of species differently across their ranges. Despite the health of adult individuals, lack of regeneration may push ecosystems into a relict status. Seed bank depletion by germination without replenishment may be a major conservation threat in a future with recurring droughts far less severe than megadrought. Nevertheless, the protection of moist refugia might aid conservation.

  7. Management Options During the 2011-2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation

    Science.gov (United States)

    Leitman, S.; Pine, W. E.; Kiker, G.

    2016-08-01

    The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.

  8. Predicting and adapting to the agricultural impacts of large-scale drought (Invited)

    Science.gov (United States)

    Elliott, J. W.; Glotter, M.; Best, N.; Ruane, A. C.; Boote, K.; Hatfield, J.; Jones, J.; Rosenzweig, C.; Smith, L. A.; Foster, I.

    2013-12-01

    The impact of drought on agriculture is an important socioeconomic consequence of climate extremes. Drought affects millions of people globally each year, causing an average of 6-8 billion of damage annually in the U.S. alone. The 1988 U.S. drought is estimated to have cost 79 billion in 2013 dollars, behind only Hurricane Katrina as the most costly U.S. climate-related disaster in recent decades. The 2012 U.S. drought is expected to cost about 30 billion. Droughts and heat waves accounted for 12% of all billion-dollar disaster events in the U.S. from 1980-2011 but almost one quarter of total monetary damages. To make matters worse, the frequency and severity of large-scale droughts in important agricultural regions is expected to increase as temperatures rise and precipitation patterns shift, leading some researchers to suggest that extended drought will harm more people than any other climate-related impact, specifically in the area of food security. Improved understanding and forecasts of drought would have both immediate and long-term implications for the global economy and food security. We show that mechanistic agricultural models, applied in novel ways, can reproduce historical crop yield anomalies, especially in seasons for which drought is the overriding factor. With more accurate observations and forecasts for temperature and precipitation, the accuracy and lead times of drought impact predictions could be improved further. We provide evidence that changes in agricultural technologies and management have reduced system-level drought sensitivity in US maize production in recent decades, adaptations that could be applied elsewhere. This work suggests a new approach to modeling, monitoring, and forecasting drought impacts on agriculture. Simulated (dashed line), observed (solid line), and observed linear trend (dashed straight green line) of national average maize yield in tonnes per hectare from 1979-2012. The red dot indicates the USDA estimate for 2012

  9. Effects of drought on leaf gas exchange in an eastern broadleaf deciduous forest

    Science.gov (United States)

    Roman, D. T.; Brzostek, E. R.; Dragoni, D.; Rahman, A. F.; Novick, K. A.; Phillips, R.

    2013-12-01

    Understanding plant physiological adaptations to drought is critical for predicting changes in ecosystem productivity that result from climate variability and future climate change. From 2011-2013, southern Indiana experienced a late growing season drought in 2011, a severe early season drought in 2012, and a wet growing season in 2013 characterized by an absence of water stress with frequent precipitation and milder temperatures. The 2012 drought was unique due to the severity and early onset drought conditions (compared to the more frequent late season drought) and was characterized by a Palmer Drought severity index below -4 and precipitation totals from May - July that were 70% less than the long-term (2000 - 2010) mean. During the 2012 drought, an 11% decline in net ecosystem productivity relative to the long-term mean was observed at the AmeriFlux tower in Morgan Monroe State Forest despite a growing season that started ~25 days earlier. Thus, the objective of this study is to evaluate species-specific contributions to the canopy-scale response to inter-annual variability in water stress. We investigated differences between tree species in their response to climate variability using weekly leaf gas exchange and leaf water potential measurements during the growing seasons of 2011-2013. We used this unique dataset, collected at the top of the canopy with a 25 m boom lift, to evaluate changes in leaf water status and maximum assimilation capacity in the drought versus non-drought years. The leaf-level physiology of oak (Quercus) species appears to be less sensitive to drought than other species (tulip poplar [Liriodendron tulipifera], sassafras [Sassafras albidum] and sugar maple [Acer saccharum]). Preliminary data shows mean canopy leaf water potential for oaks was 30.5% more negative in May-July 2012 versus the same time period in 2013. During these same periods the rate of C assimilation in oaks was reduced by only 3%, whereas other species were reduced by

  10. Representation of drought frequency in Southern South America performed by 14 CMIP5 models. Drought risk implications and perspectives towards future projections

    Science.gov (United States)

    Rivera, J. A.; Penalba, O. C.

    2012-12-01

    of the model outputs are inconsistent with the variabilities based on observed precipitation data. This also indicates that monthly and seasonal variabilities of precipitation are misrepresented by the models and this result contributes to the poor representation of the drought frequency patterns. These are the kind of variabilities that could be important for the forecasting of droughts on seasonal scales and could help to a seasonal risk assessment, which is important for the agricultural and hydrological sectors. Moreover, the spatial pattern of annual precipitation are poorly reproduced, with a subestimation of precipitation over La Plata Basin and an overestimation over Patagonia, leeward the Andes. These results prove that GCMs outputs are far to be used for drought risk assessment in the region, given the substantial differences in the frequency patterns. Also, future projections must be evaluated carefully in longer time scale resolutions.

  11. Multi-index time series monitoring of drought and fire effects on desert grasslands

    Science.gov (United States)

    Villarreal, Miguel; Norman, Laura M.; Buckley, Steven; Wallace, Cynthia S.A.; Coe, Michelle A.

    2016-01-01

    The Western United States is expected to undergo both extended periods of drought and longer wildfire seasons under forecasted global climate change and it is important to understand how these disturbances will interact and affect recovery and composition of plant communities in the future. In this research paper we describe the temporal response of grassland communities to drought and fire in southern Arizona, where land managers are using repeated, prescribed fire as a habitat restoration tool. Using a 25-year atlas of fire locations, we paired sites with multiple fires to unburned control areas and compare satellite and field-based estimates of vegetation cover over time. Two hundred and fifty Landsat TM images, dating from 1985–2011, were used to derive estimates of Total Vegetation Fractional Cover (TVFC) of live and senescent grass using the Soil-Adjusted Total Vegetation Index (SATVI) and post-fire vegetation greenness using the Normalized Difference Vegetation Index (NDVI). We also implemented a Greenness to Cover Index that is the difference of time-standardized SATVI-TVFC and NDVI values at a given time and location to identify post-fire shifts in native, non-native, and annual plant cover. The results highlight anomalous greening and browning during drought periods related to amounts of annual and non-native plant cover present. Results suggest that aggressive application of prescribed fire may encourage spread of non-native perennial grasses and annual plants, particularly during droughts.

  12. Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches

    Science.gov (United States)

    Van Loon, Anne F.; Stahl, Kerstin; Di Baldassarre, Giuliano; Clark, Julian; Rangecroft, Sally; Wanders, Niko; Gleeson, Tom; Van Dijk, Albert I. J. M.; Tallaksen, Lena M.; Hannaford, Jamie; Uijlenhoet, Remko; Teuling, Adriaan J.; Hannah, David M.; Sheffield, Justin; Svoboda, Mark; Verbeiren, Boud; Wagener, Thorsten; Van Lanen, Henny A. J.

    2016-09-01

    In the current human-modified world, or Anthropocene, the state of water stores and fluxes has become dependent on human as well as natural processes. Water deficits (or droughts) are the result of a complex interaction between meteorological anomalies, land surface processes, and human inflows, outflows, and storage changes. Our current inability to adequately analyse and manage drought in many places points to gaps in our understanding and to inadequate data and tools. The Anthropocene requires a new framework for drought definitions and research. Drought definitions need to be revisited to explicitly include human processes driving and modifying soil moisture drought and hydrological drought development. We give recommendations for robust drought definitions to clarify timescales of drought and prevent confusion with related terms such as water scarcity and overexploitation. Additionally, our understanding and analysis of drought need to move from single driver to multiple drivers and from uni-directional to multi-directional. We identify research gaps and propose analysis approaches on (1) drivers, (2) modifiers, (3) impacts, (4) feedbacks, and (5) changing the baseline of drought in the Anthropocene. The most pressing research questions are related to the attribution of drought to its causes, to linking drought impacts to drought characteristics, and to societal adaptation and responses to drought. Example questions include (i) What are the dominant drivers of drought in different parts of the world? (ii) How do human modifications of drought enhance or alleviate drought severity? (iii) How do impacts of drought depend on the physical characteristics of drought vs. the vulnerability of people or the environment? (iv) To what extent are physical and human drought processes coupled, and can feedback loops be identified and altered to lessen or mitigate drought? (v) How should we adapt our drought analysis to accommodate changes in the normal situation (i.e. what

  13. Developing an Analysis Program to Estimate and Prediction Groundwater Droughts in Korea from Groundwater Time-Series Data.

    Science.gov (United States)

    Cho, S.; Woo, N. C.; Lee, J. M.

    2015-12-01

    This study is aimed at developing process to analyze and predict groundwater drought potentials for Winter and Spring droughts in Korea using a long-term groundwater monitoring data. So far, most drought researches have been focused on precipitation and stream-flow data, although these data are considered to be non-linear. Subsequently, the prediction of drought events has been very difficult in practice. In this study, we targets to analyze the groundwater system as an intermediate stage between precipitation and stream-flow, but still has semi-linear characteristics. By the analysis of past trends of groundwater time-series compared with drought events, we will identify characteristics of fluctuation between groundwater-level and precipitation of the year before the droughts. Then, the characteristics will be tested with recent drought events in Korea. For this analysis, The updated ATGT (Analysis Tool for Groundwater Time-series data program version 1.0 based on JAVA), that was developed for analyzing and presenting groundwater time-series data, basically to identify abnormal changes in groundwater fluctuations, will be presented with additional functions including cross-correlation between groundwater and drought based on the PYTHON language.

  14. Impacts of European drought events

    NARCIS (Netherlands)

    Stahl, Kerstin; Kohn, Irene; Blauhut, Veit; Loon, Van Anne F.; Melsen, Lieke A.; Lanen, van Henny A.J.

    2016-01-01

    Drought is a natural hazard that can cause a wide range of impacts affecting the environment, society, and the economy. Providing an impact assessment and reducing vulnerability to these impacts for regions beyond the local scale, spanning political and sectoral boundaries, requires systematic an

  15. Remote Sensing Technologies Mitigate Drought

    Science.gov (United States)

    2015-01-01

    Ames Research Center has partnered with the California Department of Water Resources to develop satellite-based technologies to mitigate drought conditions. One project aims to help water managers adjust their irrigation to match the biological needs of each crop, and another involves monitoring areas where land is fallow so emergency relief can more quickly aid affected communities.

  16. Changing Climate, Disrupted Livelihoods: The Case of Vulnerability of Nomadic Maasai Pastoralism to Recurrent Droughts in Kajiado District, Kenya

    Science.gov (United States)

    Mwangi, M. N.; Desanker, P. V.

    2007-12-01

    Pastoralism is practiced in all arid and semiarid lands (ASALs) of Africa. High interannual rainfall variability and degraded ecosystems characterize these ASALs and limits arable farming. Under these conditions, pastoralism has evolved as the most feasible livelihood system in ASALs, where total annual rainfall correlates with annual net primary productivity, especially grass. Maasai of East Africa are the largest group of nomadic pastoralists in Africa, with about two-thirds living in southern Kenya, mainly in Kajiado and Narok Districts. Maasai people of Kenya subsist by nomadic pastoralism. Nomads migrate with their livestock in search of natural pastures and water as climatic and environmental circumstances mandate. Successful migrations of nomadic pastoralists are being hampered by changing social and ecological factors both at local and broader scales. What is more, increased frequency and duration of drought constitute a major challenge with which the Maasai have to confront. Drought is a slow-developing phenomenon; therefore, it captures delayed attention. Nonetheless, the cumulative impacts of drought are more immense. Drought triggers catastrophic events that diminish adaptive capacity of inhabitants of these ASALs; this is conspicuous in Kajiado District where livestock productivity plummet as resource base erodes. What is more, global climate change is projected to intensify the occurrence, severity and duration of droughts in this region. Frequent droughts are likely to disrupt proper functioning of nomadic Maasai pastoralism. This study presents findings from an integrated research conducted in Kajiado District during the last two years. Spatiotemporal trends of drought, effects of drought on, and possible future of nomadic Maasai pastoralism are presented. This is informative to the Maasai pastoralists, policy makers and other actors in this sector. Most important, the study is contributes toward formulation of informed drought management strategies

  17. High N, dry: Experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought.

    Science.gov (United States)

    Valliere, Justin M; Irvine, Irina C; Santiago, Louis; Allen, Edith B

    2017-03-20

    Hotter, longer, and more frequent global change-type drought events may profoundly impact terrestrial ecosystems by triggering widespread vegetation mortality. However, severe drought is only one component of global change, and ecological effects of drought may be compounded by other drivers, such as anthropogenic nitrogen (N) deposition and nonnative plant invasion. Elevated N deposition, for example, may reduce drought tolerance through increased plant productivity, thereby contributing to drought-induced mortality. High N availability also often favors invasive, nonnative plant species, and the loss of woody vegetation due to drought may create a window of opportunity for these invaders. We investigated the effects of multiple levels of simulated N deposition on a Mediterranean-type shrubland plant community in southern California from 2011 to 2016, a period coinciding with an extreme, multi-year drought in the region. We hypothesized that N addition would increase native shrub productivity, but that this would increase susceptibility to drought and result in increased shrub loss over time. We also predicted that N addition would favor nonnatives, especially annual grasses, leading to higher biomass and cover of these species. Consistent with these hypotheses, we found that high N availability increased native shrub canopy loss and mortality, likely due to the higher productivity and leaf area and reduced water-use efficiency we observed in shrubs subject to N addition. As native shrub cover declined, we also observed a concomitant increase in cover and biomass of nonnative annuals, particularly under high levels of experimental N deposition. Together, these results suggest that the impacts of extended drought on shrubland ecosystems may be more severe under elevated N deposition, potentially contributing to the widespread loss of native woody species and vegetation type-conversion. This article is protected by copyright. All rights reserved.

  18. A new perspective on hydrological drought: a process-based classification into different drought types

    Science.gov (United States)

    Van Loon, A. F.; Van Lanen, H. A. J.

    2012-04-01

    Almost ten years ago, the well-known flood typology of Merz and Blöschl (2003) was published. Up to now, such a typology does not exist for hydrological drought, while both drought management and research could strongly benefit from a thorough understanding and associated specific description of different drought types. Here, we present a hydrological drought typology based on underlying drought propagation processes. In the proposed hydrological drought typology six drought types are distinguished, i.e. i) classical rainfall deficit drought, ii) rain-to-snow-season drought, iii) wet-to-dry-season drought, iv) cold snow season drought, v) warm snow season drought, and vi) composite drought. The processes underlying these drought types are the result of the interplay of precipitation and temperature at catchment scale in different seasons. The most common drought type in five contrasting European catchments is the classical rainfall deficit drought, caused by an anomaly in precipitation. However, when only the most severe drought events are selected, anomalies in temperature play an increasingly important role in hydrological drought development. For severe hydrological drought events, the most common types are rain-to-snow-season drought (rainfall deficit causes hydrological drought that continues into snow season due to below-zero temperatures) and warm snow season drought (complete melt of snow cover, due to high temperatures, in combination with rainfall deficit causes hydrological drought). The occurrence of hydrological drought types in a specific catchment is based on climate and catchment control, which makes it possible to infer the drought type occurrence from information on climate and catchment characteristics (i.e. response to precipitation) using a general framework. This hydrological drought typology is based upon a thorough analysis of the processes underlying a high number of hydrological drought events in European case study catchments. The

  19. When it Rains, It Pours: Drought, Excess Water, and Agricultural Risk Management in the U.S. Corn Belt

    Science.gov (United States)

    Baker, J. M.; Anderson, M. C.; Griffis, T. J.; Kustas, W.; Schultz, N. M.

    2012-12-01

    Ever since its inception agriculture has been a risky proposition, with yields subject to losses from insects, diseases, weeds, and weather anomalies. The transition from subsistence farming to production agriculture motivated research that eventually provided tools to combat some of the traditional sources of risk, particularly pests. However, weather-related risk remains resistant to mitigation, except in cases where there has been a fundamental alteration of lands otherwise unsuited for agriculture, e.g. - irrigation of arid lands and drainage of swamps. We have undertaken a multi-faceted analysis of potential avenues to reduce weather-related risk in the central U.S. corn belt, focusing on MN, IA, IL, IN, and OH. Mean annual precipitation has increased across the region over the past 60 years, and mean stream flows have increased as much or more, indicating relatively stable ET. The precipitation increase is consistent with changes predicted by GCMs for the region, while the stable (and even decreasing) regional ET primarily reflects changes in farming, particularly an increase in soybean acreage at the expense of permanent pasture. Unfortunately, the observed increases in precipitation are primarily associated with an increase in spatially and temporally isolated high intensity storms, so transient drought remains a problem. Indeed, analysis of crop insurance indemnities in recent years for the region reveals nearly equal yield losses due to drought and excess water, each totaling roughly $3 billion USD between 2000 and 2011, and jointly accounting for more than two thirds of all payments. County level mapping shows that losses from both causes occur throughout the corn belt, often in the same county in the same year. The ALEXI model, which provides continental-scale estimates of ET on a 10 km grid, was used to map ET anomalies across the region for the same time period. Correspondence between ALEXI output and insurance loss data was reasonably good in drought

  20. Assessment of Temporal-Spatial Variation of Hydrological Drought in Xijiang River Basin from 1961 to 2014

    Science.gov (United States)

    Lin, Q.; Wu, Z.; Singh, V. P.; Guihua, L.

    2016-12-01

    Xijiang is an important estuary for the construction of Pearl River Delta Regional Economic System in China and for the China-ASEAN Free Trade Area, which has the reputation of Golden Watercourse. The Xijiang River hydrological regime has now become complicated and many extreme hydrological drought events that have occurred in recent years have caused widespread concern. In order to effectively mitigate the damage caused by drought disasters, it is essential to comprehensively analyze the temporal-spatial variation of hydrological droughts in the basin. The trend test and the Extreme-Point Symmetric Mode Decomposition (ESMD) methods were employed to investigate the temporal-spatial variability and to analyze the probable influence of meteorology, vegetation and hydraulic operations on the drought. Results showed that the drought frequency and severity increased during 1961-2014, with the mean regional drought concentration being around 0.41. Sustained extreme droughts occur with increasing occurrence frequency from autumn to spring tend to become regional. Comparison of the periods and deficits of extreme drought events, which were divided into two parts by the EI Nino phenomenon, revealed that El Nino might contribute more to creating a favorable climate condition for drought other than aggravating it. The relationship between hydrological and meteorological droughts is intricate, and their trends are consistent but the former shows a higher regional difference. Weakly annual and monthly relationships between hydrological drought severity and the vegetation factor characterized by NDVI (Modis13Q1) indicated that the vegetation change had only a minor influence on the drought. However, the water conservancy project provided a certain relief, for drought severity of Yujiang River basin decreased by 44.7% and that of Xijiang upper reaches by 20.4% under a single or multi-reservoir joint operation in Yujiang and Hongshui River during the 2009/2010 extreme drought

  1. Toward Global Drought Early Warning Capability - Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting

    Science.gov (United States)

    Pozzi, Will; Sheffield, Justin; Stefanski, Robert; Cripe, Douglas; Pulwarty, Roger; Vogt, Jurgen V.; Heim, Richard R., Jr.; Brewer, Michael J.; Svoboda, Mark; Westerhoff, Rogier; hide

    2013-01-01

    Drought has had a significant impact on civilization throughout history in terms of reductions in agricultural productivity, potable water supply, and economic activity, and in extreme cases this has led to famine. Every continent has semiarid areas, which are especially vulnerable to drought. The Intergovernmental Panel on Climate Change has noted that average annual river runoff and water availability are projected to decrease by 10 percent-13 percent over some dry and semiarid regions in mid and low latitudes, increasing the frequency, intensity, and duration of drought, along with its associated impacts. The sheer magnitude of the problem demands efforts to reduce vulnerability to drought by moving away from the reactive, crisis management approach of the past toward a more proactive, risk management approach that is centered on reducing vulnerability to drought as much as possible while providing early warning of evolving drought conditions and possible impacts. Many countries, unfortunately, do not have adequate resources to provide early warning, but require outside support to provide the necessary early warning information for risk management. Furthermore, in an interconnected world, the need for information on a global scale is crucial for understanding the prospect of declines in agricultural productivity and associated impacts on food prices, food security, and potential for civil conflict. This paper highlights the recent progress made toward a Global Drought Early Warning Monitoring Framework (GDEWF), an underlying partnership and framework, along with its Global Drought Early Warning System (GDEWS), which is its interoperable information system, and the organizations that have begun working together to make it a reality. The GDEWF aims to improve existing regional and national drought monitoring and forecasting capabilities by adding a global component, facilitating continental monitoring and forecasting (where lacking), and improving these tools at

  2. 呼伦湖流域水文干旱评价%Hydrological Drought Assessment in Hulun Lake Basin

    Institute of Scientific and Technical Information of China (English)

    侯军; 翁白莎; 严登华; 杨志勇; 严昇

    2016-01-01

    Based on the monthly stream flow date of 2 representative hydrologic stations of Alatanemole Station and Kunduleng Station in the Hulun Lake basin during the period of 1971⁃2010, this paper calculated Stream Flow Drought Index ( SDI) . Runs theory was used to analyze the Stream Flow Drought Index ( SDI) , getting the drought duration and droughts intensity in Hulun Lake basin. The results indicate that the drought in Hulun Lake basin occurs mainly in autumn and winter. With the ageing change, the average drought duration and drought intensity of Alatanemole Station and Kunduleng Station are all in the growth state;after entering into 21 century, drought becomes frequently, drought intensity and drought duration become larger.%以呼伦湖流域2个水文站阿拉坦额莫勒站和坤都冷站1971—2010年的月径流量资料为基础,计算了流域的径流干旱指数,同时运用游程理论对径流干旱指数进行了分析,进而得到呼伦湖流域的干旱历时和干旱烈度。结果表明:呼伦湖流域干旱主要发生在秋季和冬季;随着年代的变化,阿拉坦额莫勒站和坤都冷站平均干旱历时和平均干旱烈度均呈增长状态;进入21世纪以后,呼伦湖流域干旱频发,且持续时间长、干旱烈度大。

  3. Drought in Southwestern United States

    Science.gov (United States)

    2007-01-01

    The southwestern United States pined for water in late March and early April 2007. This image is based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite from March 22 through April 6, 2007, and it shows the Normalized Difference Vegetation Index, or NDVI, for the period. In this NDVI color scale, green indicates areas of healthier-than-usual vegetation, and only small patches of green appear in this image, near the California-Nevada border and in Utah. Larger areas of below-normal vegetation are more common, especially throughout California. Pale yellow indicates areas with generally average vegetation. Gray areas appear where no data were available, likely due to persistent clouds or snow cover. According to the April 10, 2007, update from the U.S. Drought Monitor, most of the southwestern United Sates, including Utah, Nevada, California, and Arizona, experienced moderate to extreme drought. The hardest hit areas were southeastern California and southwestern Arizona. Writing for the Drought Monitor, David Miskus of the Joint Agricultural Weather Facility reported that March 2007 had been unusually dry for the southwestern United States. While California's and Utah's reservoir storage was only slightly below normal, reservoir storage was well below normal for New Mexico and Arizona. In early April, an international research team published an online paper in Science noting that droughts could become more common for the southwestern United States and northern Mexico, as these areas were already showing signs of drying. Relying on the same computer models used in the Intergovernmental Panel on Climate Change (IPCC) report released in early 2007, the researchers who published in Science concluded that global warming could make droughts more common, not just in the American Southwest, but also in semiarid regions of southern Europe, Mediterranean northern Africa, and the Middle East.

  4. Description of future drought indices in Virginia.

    Science.gov (United States)

    Kang, Hyunwoo; Sridhar, Venkataramana

    2017-10-01

    This article presents projected future drought occurrences in five river basins in Virginia. The Soil and Water Assessment Tool (SWAT) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models were used to derive input variables of multiple drought indices, such as the Standardized Soil Moisture index (SSI), the Multivariate Standardized Drought Index (MSDI), and the Modified Palmer Drought Severity Index (MPDSI) for both historic and future periods. The results of SSI indicate that there was an overall increase in agricultural drought occurrences and that these were caused by increases in evapotranspiration and runoff. However, the results of the MSDI and MPDSI projected a decrease in drought occurrences in future periods due to a greater increase in precipitation in the future. Furthermore, GCM-downscaled products (precipitation and temperature) were verified using comparisons with historic observations, and the results of uncertainty analyses suggest that the lower and upper bounds of future drought projections agree with historic conditions.

  5. Monitoring groundwater drought with GRACE data assimilation

    Science.gov (United States)

    Li, B.; Rodell, M.; Beaudoing, H. K.; Getirana, A.; Zaitchik, B. F.

    2015-12-01

    Groundwater drought is a distinct class of drought, not a sub-class of meteorological, agricultural and hydrological drought and has profound impacts on natural environments and societies. Due to a deficiency of in situ measurements, we developed a groundwater drought indicator using groundwater change estimates derived by assimilating GRACE derived terrestrial water storage (TWS) anomalies into the NASA Catchment land surface model. Data assimilation enables spatial and temporal downscaling of coarse GRACE TWS observations (monthly and ~150,000 km2 effective spatial resolution) and extrapolation to near-real time. In this talk, we will present our latest progress on using GRACE satellite data for groundwater drought monitoring in the U.S. and globally. Characteristics of this groundwater drought indicator will be discussed, including its relationship with other types of drought and how they are influenced by model physics and climate conditions. Results are evaluated using in situ groundwater observations.

  6. French summer droughts since 1326 AD: a reconstruction based on tree ring cellulose δ18O

    Directory of Open Access Journals (Sweden)

    I. Labuhn

    2015-11-01

    Full Text Available The reconstruction of droughts is essential for the understanding of past drought dynamics, and can help evaluate future drought scenarios in a changing climate. This article presents a reconstruction of summer droughts in France based on annually resolved, absolutely dated chronologies of oxygen isotope ratios (δ18O in tree ring cellulose from Quercus spp. Samples were taken from living trees and timber wood from historic buildings at two sites: Fontainebleau (48° 23' N, 2° 40' E; 1326–2000 AD and Angoulême (45° 44' N, 0° 18' E; 1360–2004 AD. Cellulose δ18O from these sites proved to be a good proxy of summer climate, as the trees were sensitive to temperature and moisture availability. However, offsets in average δ18O values between tree cohorts necessitated a correction before joining them to the final chronologies. Using the corrected δ18O chronologies, we developed models based on linear regression to reconstruct drought, expressed by the standardized precipitation evapotranspiration index (SPEI. The significant correlations between the SPEI and cellulose δ18O (r ≈ −0.70, as well as the verification of the models by independent data support the validity of these reconstructions. At both sites, recent decades are characterized by increasing drought. Fontainebleau displays dominantly wetter conditions during earlier centuries, whereas the current drought intensity is not unprecedented in the Angoulême record. While the δ18O chronologies at the two studied sites are highly correlated during the 19th and 20th century, there is a significant decrease in the correlation coefficient between 1550 and 1800 AD, which indicates either a weaker climate sensitivity of the tree ring proxies during this period, or a more heterogeneous climate in the north and the south of France. Future studies of tree ring isotope networks might reveal if the seasonality and spatial patterns of past droughts can explain this decoupling.

  7. French summer droughts since 1326 AD: a reconstruction based on tree ring cellulose δ18O

    Science.gov (United States)

    Labuhn, I.; Daux, V.; Girardclos, O.; Stievenard, M.; Pierre, M.; Masson-Delmotte, V.

    2015-11-01

    The reconstruction of droughts is essential for the understanding of past drought dynamics, and can help evaluate future drought scenarios in a changing climate. This article presents a reconstruction of summer droughts in France based on annually resolved, absolutely dated chronologies of oxygen isotope ratios (δ18O) in tree ring cellulose from Quercus spp. Samples were taken from living trees and timber wood from historic buildings at two sites: Fontainebleau (48° 23' N, 2° 40' E; 1326-2000 AD) and Angoulême (45° 44' N, 0° 18' E; 1360-2004 AD). Cellulose δ18O from these sites proved to be a good proxy of summer climate, as the trees were sensitive to temperature and moisture availability. However, offsets in average δ18O values between tree cohorts necessitated a correction before joining them to the final chronologies. Using the corrected δ18O chronologies, we developed models based on linear regression to reconstruct drought, expressed by the standardized precipitation evapotranspiration index (SPEI). The significant correlations between the SPEI and cellulose δ18O (r ≈ -0.70), as well as the verification of the models by independent data support the validity of these reconstructions. At both sites, recent decades are characterized by increasing drought. Fontainebleau displays dominantly wetter conditions during earlier centuries, whereas the current drought intensity is not unprecedented in the Angoulême record. While the δ18O chronologies at the two studied sites are highly correlated during the 19th and 20th century, there is a significant decrease in the correlation coefficient between 1550 and 1800 AD, which indicates either a weaker climate sensitivity of the tree ring proxies during this period, or a more heterogeneous climate in the north and the south of France. Future studies of tree ring isotope networks might reveal if the seasonality and spatial patterns of past droughts can explain this decoupling.

  8. Characteristics of Drought and Flood in Zhejiang Province, East China: Past and Future

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of large amount of historical and measured data, this paper analyzed the regional, periodic,frequency, continuing, and response characteristics of droughts and floods in Zhejiang and proposed the conception of ratio of peak runoff. Main characteristics of droughts and floods in Zhejiang are as follows: 1) The western Zhejiang region is plum rain major control area, and the eastern coastal region of Zhejiang is typhoon major control area. 2)Within a long period in the future, Zhejiang will be ia the long period that features droughts. 3) In Zhejiang the 17th century was frequent drought and flood period, the 16th, 19th, and 20th centuries were normal periods, while the 18th century was spasmodic drought and flood period. 4) The severe and medium floods in Zhejiang were all centered around the M- or m-year of the 11-year sunspot activity period. 5) There are biggish years of annual runoff occurred in El Niio year (E) or the following year (E+1) in Zhejiang. The near future evolution trend of droughts and floods in Zhejiang is as follows: 1) Within a relatively long period in the future, Zhejiang Province will be in the long period of mostly drought years. 2) Between 1999 and 2009 this area will feature drought years mainly, while the period of 2010-2020 will feature flood years mostly. 3) Zhejiang has a good response to the sunspot activities, and the years around 2009, 2015, and 2020 must be given due attention, especially around 2020 there might be an extremely severe flood year ia Zhejiang. 4) Floods ia Zhejiang have good response to El Ni(n)o events, ia El Ni(n)o year or the following year much attention must be paid to. And 5) In the future, the first, second, and third severe typhoon years ia Zhejiang will be 2009, 2012, and 2015, respectively.

  9. A discrete stage-structured model of California newt population dynamics during a period of drought.

    Science.gov (United States)

    Jones, Marjorie T; Milligan, William R; Kats, Lee B; Vandergon, Thomas L; Honeycutt, Rodney L; Fisher, Robert N; Davis, Courtney L; Lucas, Timothy A

    2017-02-07

    We introduce a mathematical model for studying the population dynamics under drought of the California newt (Taricha torosa), a species of special concern in the state of California. Since 2012, California has experienced a record-setting drought, and multiple studies predict drought conditions currently underway will persist and even increase in severity. Recent declines and local extinctions of California newt populations in Santa Monica Mountain streams motivate our study of the impact of drought on newt population sizes. Although newts are terrestrial salamanders, they migrate to streams each spring to breed and lay eggs. Since egg and larval stages occur in water, a precipitation deficit due to drought conditions reduces the space for newt egg-laying and the necessary habitat for larval development. To mathematically forecast newt population dynamics, we develop a nonlinear system of discrete equations that includes demographic parameters such as survival rates for newt life stages and egg production, which depend on habitat availability and rainfall. We estimate these demographic parameters using 15 years of stream survey data collected from Cold Creek in Los Angeles County, California, and our model captures the observed decline of the parameterized Cold Creek newt population. Based upon data analysis, we predict how the number of available newt egg-laying sites varies with annual precipitation. Our model allows us to make predictions about how the length and severity of drought can affect the likelihood of persistence and the time to critical endangerment of a local newt population. We predict that sustained severe drought will critically endanger the newt population but that the newt population can rebound if a drought is sufficiently short.

  10. A discrete stage-structured model of California newt population dynamics during a period of drought

    Science.gov (United States)

    Jones, Marjorie T.; Milligan, William R.; Kats, Lee B.; Vandergon, Thomas L.; Honeycutt, Rodney L.; Fisher, Robert N.; Davis, Courtney L.; Lucas, Timothy A.

    2017-01-01

    We introduce a mathematical model for studying the population dynamics under drought of the California newt (Taricha torosa), a species of special concern in the state of California. Since 2012, California has experienced a record-setting drought, and multiple studies predict drought conditions currently underway will persist and even increase in severity. Recent declines and local extinctions of California newt populations in Santa Monica Mountain streams motivate our study of the impact of drought on newt population sizes. Although newts are terrestrial salamanders, they migrate to streams each spring to breed and lay eggs. Since egg and larval stages occur in water, a precipitation deficit due to drought conditions reduces the space for newt egg-laying and the necessary habitat for larval development. To mathematically forecast newt population dynamics, we develop a nonlinear system of discrete equations that includes demographic parameters such as survival rates for newt life stages and egg production, which depend on habitat availability and rainfall. We estimate these demographic parameters using 15 years of stream survey data collected from Cold Creek in Los Angeles County, California, and our model captures the observed decline of the parameterized Cold Creek newt population. Based upon data analysis, we predict how the number of available newt egg-laying sites varies with annual precipitation. Our model allows us to make predictions about how the length and severity of drought can affect the likelihood of persistence and the time to critical endangerment of a local newt population. We predict that sustained severe drought will critically endanger the newt population but that the newt population can rebound if a drought is sufficiently short.

  11. Extreme drought changes in Southwest China from 1960 to 2009%1960—2009年西南地区极端干旱气候变化

    Institute of Scientific and Technical Information of China (English)

    ZHANG Mingjun; HE Jinyun; WANG Baolong; WANG Shengjie; LI Shanshan; LIU Wenli; MA Xuening

    2013-01-01

    @@%Based on the daily data of temperature and precipitation of 108 meteorological stations in Southwest China from 1960 to 2009,we calculate the monthly and yearly surface humid indexes,as well as the extreme drought frequency.According to the data,the temporal and spatial characteristics of the extreme drought frequency in inter-annual,inter-decadal,summer monsoon period and winter monsoon period are analyzed.The results are indicated as follows.(1) In general,the southwestern Sichuan Basin,southern Hengduan Mountains,southern coast of Guangxi and northern Guizhou are the areas where the extreme drought frequency has significantly increased in the past 50 years.As for the decadal change,from the 1960s to the 1980s the extreme drought frequency has presented a decreasing trend,while the 1990s is the wettest decade and the whole area is turning wet.In the 2000s,the extreme drought frequency rises quickly,but the regional differences reduce.(2) During summer monsoon period,the extreme drought frequency is growing,which generally occurs in the high mountains around the Sichuan Basin,most parts of Guangxi and "the broom-shaped mountains" in Yunnan.It is distinct that the altitude has impacts on the extreme drought frequency; during winter monsoon period,the area is relatively wet and the extreme drought frequency is decreasing.(3) During summer monsoon period,the abrupt change is observed in 2003,whereas the abrupt change during winter monsoon period is in 1989.The annual extreme drought frequency variation is a superposition of abrupt changes during summer monsoon and winter monsoon periods.The departure sequence vibration of annual extreme drought frequency is quasi-5 years and quasi-12 years.

  12. Validity of Drought Indices as Drought Predictors in the South-Central United States

    Science.gov (United States)

    Rohli, R. V.; Bushra, N.; Lam, N.; Zou, L.; Mihunov, V.; Reams, M.; Argote, J.

    2015-12-01

    Drought is among the most insidious types of natural disasters and can have tremendous economic and human health impacts. This research analyzes the relationship between two readily-accessible drought indices - the Palmer Drought Severity Index (PDSI) and Palmer Hydrologic Drought Index (PHDI) - and the damage incurred by such droughts in terms of monetary loss, over the 1975-2010 time period on monthly basis, for five states in the south-central U.S.A. Because drought damage in the Spatial Hazards Events and Losses Database for the United States (SHELDUSTM) is reported at the county level, statistical downscaling techniques were used to estimate the county-level PDSI and PHDI. Correlation analysis using the downscaled indices suggests that although relatively few months contain drought damage reports, in general drought indices can be useful predictors of drought damage at the monthly temporal scale extended to 12 months and at the county-wide spatial scale. The varying time lags between occurrence of drought and reporting of damage, perhaps due to varying resilience to drought intensity and duration by crop types across space, irrigation methods, and adaptation measures of the community to drought varies over space and time, are thought to contribute to weakened correlations. These results present a reminder of the complexities of anticipating the effects of drought but they contribute to the effort to improve our ability to mitigate the effects of incipient drought.

  13. Analysis of spatio-temporal evolution of droughts in Luanhe River Basin using different drought indices

    Directory of Open Access Journals (Sweden)

    Kai-yan Wang

    2015-10-01

    Full Text Available Based on the monthly precipitation and air temperature from 1960 to 1989 in the Luanhe River Basin, the standardized precipitation evapotranspiration index (SPEI and standardized precipitation index (SPI at three- and six-month time scales and the self-calibrating Palmer drought severity index (sc-PDSI were calculated to evaluate droughts in the study area. Temporal variations of the drought severity from 1960 to 1989 were analyzed and compared based on the results of different drought indices, and some typical drought events were identified. Spatial distributions of the drought severity according to the indices were also plotted and investigated. The results reveal the following: the performances of different drought indices are closely associated with the drought duration and the dominant factors of droughts; the SPEI is more accurate than the SPI when both evaporation and precipitation play important roles in drought events; the drought severity shown by the sc-PDSI is generally milder than the actual drought severity from 1960 to 1989; and the evolution of the droughts is usually delayed according to the sc-PDSI. This study provides valuable references for building drought early warning and mitigation systems in the Luanhe River Basin.

  14. Drought, Agriculture, and Labor: Understanding Drought Impacts and Vulnerability in California

    Science.gov (United States)

    Greene, C.

    2015-12-01

    Hazardous drought impacts are a product of not only the physical intensity of drought, but also the economic, social, and environmental characteristics of the region exposed to drought. Drought risk management requires understanding the complex links between the physical and human dimensions of drought. Yet, there is a research gap in identifying and explaining the socio-economic complexities of drought in the context of the first world, especially for economic and socially marginal groups who rely on seasonal and temporary jobs. This research uses the current drought in California as a case study to identify the socioeconomic impacts of drought on farmworker communities in California's San Joaquin Valley, with a specific focus on the relationship between drought and agricultural labor. Through both a narrative analysis of drought coverage in newspaper media, drought policy documents, and interviews with farmworkers, farmers, community based organizations, and government officials in the San Joaquin Valley, this research aims to highlight the different understandings and experiences of the human impacts of drought and drought vulnerability in order to better inform drought risk planning and policy.

  15. Drought variation of western Chinese Loess Plateau since 1568 and its linkages with droughts in western North America

    Science.gov (United States)

    Fang, Keyan; Guo, Zhengtang; Chen, Deliang; Linderholm, Hans W.; Li, Jinbao; Zhou, Feifei; Guo, Guoyang; Dong, Zhipeng; Li, Yingjun

    2017-03-01

    Understanding long-term drought variations in the past can help to evaluate ongoing and future hydroclimate change in the arid western Chinese Loess Plateau (WCLP), a region with increasing demand for water resources due to the increasing population and socioeconomic activities. Here we present a new tree-ring chronology inform the WCLP, which shows coherent interannual variations with tree-ring chronologies from 7 neighboring areas across the WCLP, suggesting a common regional climate control over tree growth. However, considerable differences are observed among their interdecadal variations, which are likely due to growth disturbances at interdecadal timescales. To deal with this issue, we use a frequency based method to develop a composite tree-ring chronology from 401 tree-ring series from these 8 sites, which shows more pronounced interdecadal variability than a chronology developed using traditional methods. The composite tree-ring chronology is used to reconstruct the annual precipitation from previous August to current July from 1568 to 2012, extending about 50 years longer than the previous longest tree-ring reconstruction from the region. The driest epoch of our reconstruction is found in the 1920s-1930s, which matches well with droughts recorded in historical documents. Over the past four centuries, a strong resemblance between drought variability in the WCLP and western North America (WNA) is evident on multidecadal timescales, but this relationship breaks down on timescales shorter than about 50 years.

  16. Drought resistance of Ailanthus altissima: root hydraulics and water relations.

    Science.gov (United States)

    Trifilò, P; Raimondo, F; Nardini, A; Lo Gullo, M A; Salleo, S

    2004-01-01

    Drought resistance of Ailanthus altissima (Mill.) Swingle is a major factor underlying the impressively wide expansion of this species in Europe and North America. We studied the specific mechanism used by A. altissima to withstand drought by subjecting potted seedlings to four irrigation regimes. At the end of the 13-week treatment period, soil water potential was -0.05 MPa for well-watered control seedlings (W) and -0.4, -0.8 and -1.7 MPa for drought-stressed seedlings (S) in irrigation regimes S1, S2 and S3, respectively. Root and shoot biomass production did not differ significantly among the four groups. A progressively marked stomatal closure was observed in drought-stressed seedlings, leading to homeostasis of leaf water potential, which was maintained well above the turgor loss point. Root and shoot hydraulics were measured with a high-pressure flow meter. When scaled by leaf surface area, shoot hydraulic conductance did not differ among the treated seedlings, whereas root hydraulic conductance decreased by about 20% in S1 and S2 seedlings and by about 70% in S3 seedlings, with respect to the well-watered control value. Similar differences were observed when root hydraulic conductance was scaled by root surface area, suggesting that roots had become less permeable to water. Anatomical observations of root cross sections revealed that S3 seedlings had shrunken cortical cells and a multilayer endodermal-like tissue that probably impaired soil-to-root stele water transport. We conclude that A. altissima seedlings are able to withstand drought by employing a highly effective water-saving mechanism that involves reduced water loss by leaves and reduced root hydraulic conductance. This water-saving mechanism helps explain how A. altissima successfully competes with native vegetation.

  17. Effects of flooding and drought on water quality in Gulf Coastal Plain streams in Georgia.

    Science.gov (United States)

    Golladay, Stephen W; Battle, Juliann

    2002-01-01

    Since 1994, water-quality constituents have been measured monthly in three adjacent Coastal Plain watersheds in southwestern Georgia. During 1994, rainfall was 650 mm above annual average and the highest flows on record were observed. From November 1998 through November 2000, 19 months had below average rainfall. Lowest flows on record were observed during the summer of 2000. The watersheds are human-dominated with row-crop agriculture and managed forestlands being the major land uses. However, one watershed (Chickasawhatchee Creek) had 10 to 13% less agriculture and greater wetland area, especially along the stream. Suspended particles, dissolved organic carbon, NH4-N, and soluble reactive phosphorus concentrations were greater during wet and flood periods compared with dry and drought periods for each stream. Regional hydrologic conditions had little effect on NO3-N or dissolved inorganic carbon. Chickasawhatchee Creek had significantly lower suspended sediment and NO3-N concentrations and greater organic and inorganic carbon concentrations, reflecting greater wetland area and stronger connection to a regional aquifer system. Even though substantial human land use occurred within all watersheds, water quality was generally good and can be attributed to low stream drainage density and relatively intact floodplain forests. Low drainage density minimizes surface run-off into streams. Floodplain forests reduce nonpoint-source pollutants through biological and physical absorption. In addition to preserving water quality, floodplain forests provide important ecological functions through the export of nutrients and organic carbon to streams. Extreme low flows may be disruptive to aquatic life due to both the lack of water and to the scarcity of biologically important materials originating from floodplain forests.

  18. Stochastic Assessment of Water Resource System Vulnerability to Multi-year Drought

    Science.gov (United States)

    Hall, J. W.; Borgomeo, E.; Farmer, C.; Pflug, G.; Hochrainer-Stigler, S.

    2015-12-01

    Global climate models suggest an increase in evapotranspiration in many parts of the world which is likely to cause an increase in drought severity, yet the weakness of climate models in modelling persistence of hydro-climatic variables and the uncertainties associated with regional climate projections mean that impact assessments based on climate model output may underestimate the risk of multi-year droughts. In this paper we propose a vulnerability-based approach to test water resource system response to drought. We generate a large number of synthetic streamflow series with different drought durations and deficits and use them as input to a water resource system model. Two approaches to drought simulation are presented: (1) using a numerical streamflow generator based upon an optimal bootstrapping algorithm and (2) using a copula to characterise the joint probability distribution streamflow characteristics in successive months. Droughts with longer durations and larger deficits than the observed record are generated (1) by changing the objective function of the optimisation and (2) by perturbing the copula dependence parameter and by adopting an importance sampling strategy for low flows. In this way potential climate-induced changes in monthly hydrological persistence are factored into the vulnerability analysis. The method is applied to the London water resource system (England) to investigate under which drought conditions severe water use restrictions would need to be imposed on water users. Results indicate that the water resource system is vulnerable to drought conditions outside the range of historical events. The vulnerability assessment results were coupled with climate model information to compare alternative water management options with respect to their vulnerability to increasingly long and severe drought conditions.

  19. Reconstructing a multi-centennial drought history for the British Isles

    Science.gov (United States)

    Macdonald, Neil; Chiverrell, Richard; Todd, Beverley; Bowen, James; Lennard, Amy

    2016-04-01

    The last two decades have witnessed some of the most severe droughts experienced within living memory in the UK, but have these droughts really been exceptional? Relatively few instrumental river flow, groundwater or reservoir series extend beyond 50 years in length, with few precipitation series currently available extending over 100 years. These relatively short series present considerable challenges in determining current and future drought risk, with the results affecting society and the economy. This study uses long instrumental precipitation series coupled with the SPI and scPDSi drought indices to reconstruct drought histories from different parts of the British Isles. Existing long precipitation series have been reassessed and several new precipitation series reconstructed (e.g. Carlisle 1757), with eight series now over 200 years in length, and a further thirteen over 150 years, with further sites currently being developed (e.g. Norwich, 1749-; Exeter, 1724-). This study will focuses on the eight longest series, with shorter series used to help explore spatial and temporal variability across British Isles. We show how historical series have improved understanding of severe droughts, by examining past spatial and temporal variability and exploring the climatic drivers responsible. It shows that recent well documented droughts (e.g. 1976; 1996 and 2010) which have shaped both public and water resource managers' perceptions of risk, have historically been exceeded in both severity (e.g. 1781) and duration (e.g. 1798-1810); with the largest droughts often transcending single catchments and affecting regions. Recent droughts are not exceptional when considered within a multi-centennial timescale, with improved understanding of historical events raising concerns in contemporary water resource management.

  20. Managing ecological drought and flood within a nature-based approach. Reality or illusion?

    Science.gov (United States)

    Halbac-Cotoara-Zamfir, Rares; Finger, David; Stolte, Jannes

    2017-04-01

    Water hazards events, emphasized by an improperly implemented water management, may lead to ecological degradation of ecosystems. Traditional water management has generally sought to dampen the natural variability of water flows in different types of ecosystems to attain steady and dependable water supplies for domestic and industrial uses, irrigation, navigation, and hydropower, and to moderate extreme water conditions such as floods and droughts. Ecological drought can be defined as a prolonged and widespread deficit in available water supplies — including changes in natural and managed hydrology — that create multiple stresses across ecosystems, becomes a critical concern among researchers being a phenomenon much more complex than the other types of drought and requesting a specific approach. The impact of drought on ecosystem services lead to the necessity of identifying and implementing eco-reclamation measures which can generate better ecological answers to droughts. Ecological flood is the type of flood analyzed in full consideration with ecological issues, in the analyze process being approached 4 key aspects: connectivity of water system, landscapes of river and lakes, mobility of water bodies, and safety of flood control. As a consequence, both ecological drought and ecological flood represents high challenges for ecological sustainable water management in the process of identifying structural and non-structural measures for covering human demands without causing affected ecosystems to degrade or simplify. An ecological flood and drought control system will combine both the needs of the ecosystems as well as and flood and drought control measures. The components ecosystems' natural flow regime defined by magnitude, frequency, duration and peak timing (high or low flows) interact to maintain the ecosystem productivity. This productivity can be impaired by altered flow regimes generally due to structural measures designed to control flooding. However

  1. Drought influence on carbon and water cycling in a Mediterranean Quercus suber L. woodland during the drought year 2012

    Science.gov (United States)

    Piayda, Arndt; Dubbert, Maren; Rebmann, Corinna; Kolle, Olaf; Silva, Filipe Costa e.; Correia, Alexandra; Santos Pereira, Joao; Werner, Christiane; Cuntz, Matthias

    2014-05-01

    Savannah-type ecosystems account for 26-30% of the global gross primary production with water being one of the major driving factors. In Europe, savannah-type woodlands cover an area of about 2-2.5 million ha on the Iberian Peninsula. The recent past has shown there a significant decrease of precipitation in winter and spring as well as a decrease of total annual precipitation. Hence, strong effects on local water balance and carbon sink strength have been reported due to these changes in the precipitation regime. The objective of this study is to quantify changes in the water balance, gross primary productivity and carbon sink strength of a typical Portuguese savannah-type woodland (montado) under the changed precipitation pattern of the drought year 2012 compared to the wet year 2011. The physiological response of the dominant tree species Quercus suber (L.) is evaluated, employing combined photosynthesis and stomatal conductance modelling. Precipitation effectiveness ratio increased up to 122% in the dry year 2012 due to ground water access of the Q. suber trees leaving no water for ground water replenishment. By the lack of water in the upper soil and deep ground water reservoirs, the understorey and overstorey gross primary productions were reduced by 53% and 28% in 2012 compared to 2011, respectively, due to the late onset of the autumn rains in 2011 and an additional severe winter/spring drought. However, on an annual basis, the ecosystem was a carbon sink in both years, with a 61% reduced sink strength in the dry year 2012 compared to the wet 2011. Applying a combined photosynthesis and stomatal conductance model, best model fit to gross primary productivity and transpiration of Q. suber trees could be achieved keeping apparent maximum carboxylation rate V c,max as well as stomatal conductivity parameter m and vapor pressure deficit sensitivity parameter D0 of the stomatal conductance formulation variable. The Q. suber trees showed 20% reduced stomatal

  2. Annual and seasonal fluctuations of precipitation and streamflow in the Aconcagua River basin, Chile

    Science.gov (United States)

    Waylen, Peter R.; Caviedes, César N.

    1990-12-01

    The El Niño-Southern Oscillation (ENSO) phenomenon has been shown to influence dramatically precipitation and streamflow in tropical western South America. The statistical properties of annual and winter precipitation totals and streamflow characteristics in the Aconcagua River basin, in temperate central Chile, are investigated in such a way as to permit the identification of flood- and drought-generating processes and their possible linkages to upset behavior in the tropical Pacific. Despite the considerable distance to those regions generally associated with ENSO events, the phenomenon produces marked effects upon the various physical processes which govern the surface hydrometeorology of the study area. El Niño years result in significant increases in annual and winter precipitation, particularly along the coastal margin. The likelihood of rain or rain-on-snow flooding, in the succeeding winter, increases, as does the size of spring snowmelt in the southern summer, 1 year after the upset conditions in the tropical region. Annual low flows are of higher magnitude and occur earlier in the year than is usual.

  3. Drought Tolerance in Modern and Wild Wheat

    Science.gov (United States)

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  4. Drought Tolerance in Modern and Wild Wheat

    Directory of Open Access Journals (Sweden)

    Hikmet Budak

    2013-01-01

    Full Text Available The genus Triticum includes bread (Triticum aestivum and durum wheat (Triticum durum and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides, which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.

  5. Assessment the Effect of Drought on Vegetation in Desert Area using Landsat Data

    Directory of Open Access Journals (Sweden)

    H. Khosravi

    2017-04-01

    Full Text Available Drought phenomenon is one kind of a disaster that can significantly affect the density of vegetation in any area especially dry regions. This study tries to express the effect of drought on vegetation cover in Yazd-Ardakan plain, central Iran. At first, annual average for SPI index was calculated from 1996 to 2015, and then NDVI was calculated for May in 1998, 2000, 2009, 2010, 2011 and 2015. Afterwards, NDVI maps were classified into three groups including no vegetation, poor vegetation (pastures, and dense vegetation (farmlands and gardens. Based on the results the worst value of drought was −1.92 in year 1999. Besides, the annual SPI of 1996 with value of 2.4 was considered as the wettest year during study period (1996–2015. The highest percentage of dense vegetation and poor vegetation were related to 2010 and 1998 respectively, and the lowest percentage for both classes was related to 2000. There was correlation among the area of poor vegetation class in middle of spring and previous annual SPI at the significant level of 95%. In contract, no correlation was found between dense vegetation class areas in middle spring and previous amount of annual SPI. The study of the correlation between the SPI average and the percentage of vegetation classes indicated that pastures were highly sensitive to SPI changes; however, farming lands showed less sensitivity in short term due to using deep wells.

  6. Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality.

    Science.gov (United States)

    Zhang, Qingyin; Shao, Ming'an; Jia, Xiaoxu; Wei, Xiaorong

    2017-01-01

    Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P Tree mortality was lowest in tropical rainforests with mean annual precipitation >2000 mm and was severe in regions with mean annual precipitation trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes.

  7. Utilizing Multi-Ensemble of Downscaled CMIP5 GCMs to Investigate Trends and Spatial and Temporal Extent of Drought in Willamette Basin

    Science.gov (United States)

    Ahmadalipour, A.; Beal, B.; Moradkhani, H.

    2015-12-01

    Changing climate and potential future increases in global temperature are likely to have impacts on drought characteristics and hydrologic cylce. In this study, we analyze changes in temporal and spatial extent of meteorological and hydrological droughts in future, and their trends. Three statistically downscaled datasets from NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), Multivariate Adaptive Constructed Analogs (MACA), and Bias Correction and Spatial Disagregation (BCSD-PSU) each consisting of 10 CMIP5 Global Climate Models (GCM) are utilized for RCP4.5 and RCP8.5 scenarios. Further, Precipitation Runoff Modeling System (PRMS) hydrologic model is used to simulate streamflow from GCM inputs and assess the hydrological drought characteristics. Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI) are the two indexes used to investigate meteorological and hydrological drought, respectively. Study is done for Willamette Basin with a drainage area of 29,700 km2 accommodating more than 3 million inhabitants and 25 dams. We analyze our study for annual time scale as well as three future periods of near future (2010-2039), intermediate future (2040-2069), and far future (2070-2099). Large uncertainty is found from GCM predictions. Results reveal that meteorological drought events are expected to increase in near future. Severe to extreme drought with large areal coverage and several years of occurance is predicted around year 2030 with the likelihood of exceptional drought for both drought types. SPI is usually showing positive trends, while SDI indicates negative trends in most cases.

  8. Hydrologic monitoring using open-source Arduino logging platforms in a socio-hydrological system of the drought-prone tropics, Guanacaste, Costa Rica

    Science.gov (United States)

    Hund, S. V.; Johnson, M. S.; Steyn, D. G.; Keddie, T.; Morillas, L.

    2015-12-01

    Water supply is highly disputed in the tropics of northwestern Costa Rica where rainfall exhibits high seasonal variability and long annual dry seasons. Water shortages are common during the dry season, and water conflicts emerge between domestic water users, intensively irrigated agriculture, the tourism industry, and ecological flows. Climate change may further increase the variability of precipitation and the risk for droughts, and pose challenges for small rural agricultural communities experiencing water stress. To adapt to seasonal droughts and improve resilience of communities to future changes, it is essential to increase understanding of interactions between components of the coupled hydrological-social system. Yet, hydrological monitoring and data on water use within developing countries of the humid tropics is limited. To address these challenges and contribute to extended monitoring networks, low-cost and open-source monitoring platforms were developed based off Arduino microelectronic boards and software and combined with hydrological sensors to monitor river stage and groundwater levels in two watersheds of Guanacaste, Costa Rica. Hydrologic monitoring stations are located in remote locations and powered by solar panels. Monitoring efforts were made possible through collaboration with local rural communities, and complemented with a mix of digitized water extraction data and community water use narratives to increase understanding of water use and challenges. We will present the development of the Arduino logging system, results of water supply in relation to water use for both the wet and dry season, and discuss these results within a socio-hydrological system context.

  9. Hydrological drought severity explained by climate and catchment characteristics

    NARCIS (Netherlands)

    Loon, Van A.F.; Laaha, G.

    2015-01-01

    Impacts of a drought are generally dependent on the severity of the hydrological drought event, which can be expressed by streamflow drought duration or deficit volume. For prediction and the selection of drought sensitive regions, it is crucial to know how streamflow drought severity relates to

  10. Hydrological drought severity explained by climate and catchment characteristics

    NARCIS (Netherlands)

    Loon, Van A.F.; Laaha, G.

    2015-01-01

    Impacts of a drought are generally dependent on the severity of the hydrological drought event, which can be expressed by streamflow drought duration or deficit volume. For prediction and the selection of drought sensitive regions, it is crucial to know how streamflow drought severity relates to

  11. Evaluation of drought indices at interannual to climate change timescales: a case study over the Amazon and Mississippi river basins

    Directory of Open Access Journals (Sweden)

    E. Joetzjer

    2012-11-01

    Full Text Available The present study compares three meteorological drought indices (scPDSI, SPI and SPEI respectively and their ability to account for the variations of annual mean river discharge on both interannual and climate change timescales. The Standardized Runoff Index (SRI is used as a proxy of river discharge. The Mississippi and Amazon river basins provide two contrasted testbeds for this analysis. All meteorological drought indices are derived from monthly 2-meter temperature and/or precipitation, using either gridded observations or outputs of a global climate model. The SPI based solely on precipitation is not outperformed by the SPEI (accounting for potential evapotranspiration and the scPDSI (based on a simplified water balance at detecting interannual SRI variations. Under increasing concentrations of greenhouse gases, the simulated response of the areal fraction in drought is highly index-dependent, suggesting that more physical water balance models are needed to account for the impact of global warming on hydrological droughts.

  12. Low-flow frequency and flow duration of selected South Carolina streams in the Savannah and Salkehatchie River Basins through March 2014

    Science.gov (United States)

    Feaster, Toby D.; Guimaraes, Wladmir B.

    2016-07-14

    An ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina is important for the protection and preservation of the State’s water resources. Information concerning the low-flow characteristics of streams is especially important during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades.In 2008, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, initiated a study to update low-flow statistics at continuous-record streamgaging stations operated by the U.S. Geological Survey in South Carolina. This report presents the low-flow statistics for 28 selected streamgaging stations in the Savannah and Salkehatchie River Basins in South Carolina. The low-flow statistics include daily mean flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance and the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamgaging station. The low-flow statistics were computed from records available through March 31, 2014.Low-flow statistics are influenced by length of record, hydrologic regime under which the data were collected, analytical techniques used, and other factors, such as urbanization, diversions, and droughts that may have occurred in the basin. To assess changes in the low-flow statistics from the previously published values, a comparison of the low-flow statistics for the annual minimum 7-day average streamflow with a 10-year recurrence interval (7Q10) from this study was made with the most recently published values. Of the 28 streamgaging stations for which recurrence interval computations were made, 14 streamgaging stations were suitable for comparing to low-flow statistics that were previously published in U.S. Geological Survey reports. These

  13. Occurrences and Effects of Drought across Africa

    Science.gov (United States)

    Mwangi, M. N.

    2009-12-01

    Drought is a common occurrence in Africa and its effects vary temporally and spatially across the continent. The objective of this paper is to synthesize available information on droughts in Africa in order to discern emerging trends vis-à-vis spatiotemporal occurrences, impacts and adaptation. Drought forcings in the Sahelian region and southern Africa are predominately related to the passage of mid-latitude air masses while in locations near the equator is strongly linked to the position of ITCZ, except perhaps in the deserts where albedo may predominate. The review shows that drought occurrences have increased both temporally and spatially; its effects on the society vary across scales, and are influenced by political, economic, social, cultural, and ecological factors. The drought occurrence and its impacts varied spatially and temporally. The effect of drought also varied with socioeconomic sector; agriculture and pastoralism were the widely reported. The greater horn of Africa, specifically Kenya, has the most continuous record of droughts. The synthesis also reveals that a suite of drought adaptation strategies exists at the local scale; in contrasts, at the aggregate scale, coping strategies are scarce. Drought management tailored for specific livelihood system or societies are non-existent. The study found that occurrence of drought alongside issues related to the multiscale political economy affect the viability of most adaptation strategies used by societies across Africa. Drought management has been silent on the social, political, and economic dimensions that reasonably aggravate the vulnerability of lives and livelihood systems to this climatic hazard. The effect of drought and social pressures is relational and simultaneous to such a degree that differential vulnerability among communities across Africa is to be expected. Although scenarios about rainfall and drought vis-à-vis Africa are largely contested there is a general indication that most

  14. Controls on hydrologic drought duration in near-natural streamflow in Europe and the USA

    Science.gov (United States)

    Tijdeman, Erik; Bachmair, Sophie; Stahl, Kerstin

    2016-10-01

    Climate classification systems, such as Köppen-Geiger and the aridity index, are used in large-scale drought studies to stratify regions with similar hydro-climatic drought properties. What is currently lacking is a large-scale evaluation of the relation between climate and observed streamflow drought characteristics. In this study we explored how suitable common climate classifications are for differentiating catchments according to their characteristic hydrologic drought duration and whether drought durations within the same climate classes are comparable between different regions. This study uses a dataset of 808 near-natural streamflow records from Europe and the USA to answer these questions. First, we grouped drought duration distributions of each record over different classes of four climate classification systems and five individual climate and catchment controls. Then, we compared these drought duration distributions of all classes within each climate classification system or classification based on individual controls. Results showed that climate classification systems that include absolute precipitation in their classification scheme (e.g., the aridity index) are most suitable for differentiating catchments according to drought duration. However, differences in duration distributions were found for the same climate classes in Europe and the USA. These differences are likely caused by differences in precipitation, in catchment controls as expressed by the base flow index and in differences in climate beyond the total water balance (e.g., seasonality in precipitation), which have been shown to exert a control on drought duration as well. Climate classification systems that include an absolute precipitation control can be tailored to drought monitoring and early warning systems for Europe and the USA to define regions with different sensitivities to hydrologic droughts, which, for example, have been found to be higher in catchments with a low aridity index

  15. Energy droughts in a 100% renewable electricity mix

    Science.gov (United States)

    Raynaud, Damien; Hingray, Benoît; François, Baptiste; Creutin, Jean-Dominique

    2017-04-01

    During the 21st conference of parties, 175 countries agreed on limiting the temperature increase due to global warming to 2°C above preindustrial levels. Such an ambitious goal necessitates a deep transformation of our society in order to reduce greenhouse gas (GHG) emissions. Europe has started its energy transition years ago by, for instance, increasing the share of renewables in the European electricity generation and should continue in this direction. Variable renewable energies (VRE) and especially those driven by weather conditions (namely wind, solar and hydro power from river flow), are expected to play a key role in achieving the GHG reduction target. However, these renewables are often criticized for their intermittency and for the resulting difficult integration in the power supply system, especially for large shares of VRE in the energy mix. Assessing the feasibility of electricity generation using large contributions of VRE requires a deep understanding and characterization of the VRE spatiotemporal variations. In the last decade, many studies have focused on the short-term intermittency of VRE generation, but the persistency and the characteristics of periods of low/high electricity generation have been rarely studied. Yet, these particular situations require some demanding adaptations of the power supply system in term of back-up sources or production curtailment respectively. This study focuses on what we call "energy droughts" which, by analogy with hydrological or meteorological droughts, are defined as periods of very low energy production. We consider in turn "energy droughts" associated to wind, solar and hydro power (run-of-the-river). Their characteristics are estimated for 12 European regions being subjected to different climatic regimes. For each region and energy source, "droughts" are evaluated from a 30-yr time series of power generation (1983-2012). These series are simulated by using a suite of weather-to-energy conversion models with

  16. Investigation of hydrological drought using Cumulative Standardized Precipitation Index (SPI 30) in the eastern Mediterranean region (Damascus, Syria)

    Indian Academy of Sciences (India)

    Boulos Abou Zakhem; Bassam Kattaa

    2016-07-01

    The Eastern Mediterranean region has been exposed to drought episodes, which have been occurring morefrequently during the last decades. The objective of the present paper is to study the precipitation regimeof the Damascus (Mazzeh) meteoric station by analysing drought characteristics using the StandardizedPrecipitation Index (SPI) and comparing this with the drought in Cyprus. The cumulative droughtconcept is proposed to characterize long-term hydrologic drought, which affects the shallow groundwaterproductivity in terms of quantity and quality. Gamma probability distribution was fitted to the long-termannual precipitation in Damascus from 1918–1919 to 2007–2008 (n = 90 years). Generally, a decreasingtrend of 17% to the mean annual rainfall of Damascus and 13% to the mean annual rainfall of Cypruswas estimated between 1970 and 2000. The SPI identifies three major extended drought periods: (1)9 years of severe drought (1954–1963) with an average 20% precipitation deficit per year compared tothe mean. (2) 8 years of severe drought (1983–1991) with a 27% deficit per year on average. (3) 9 yearsof extreme drought (1993–2002) with a 31% deficit per year on average. The cumulative standardizedprecipitation index (SPI 30) demonstrates positive values for the first period and is indicative of havingno effect on the global water balance. SPI 30 exhibits sensitive equilibrium with near zero values / a nearzero value (±1.5) for the second period. For the third period, however, the SPI 30 decreases below −10indicating an extreme hydrological drought that has negative consequences on the recent groundwaterrecharge. It is required to develop and implement a sustainable groundwater management strategy toreduce long-terms drought risks. Generally, the SPI 30 in Cyprus is parallel to that in Damascus witha 3–5 year delay. Thus, the central zone of the Eastern Mediterranean region is facing big challengesand has been suffering from three decades of moderate to

  17. Phenotyping Cowpeas for Adaptation to Drought

    Directory of Open Access Journals (Sweden)

    Anthony eHall

    2012-05-01

    Full Text Available Methods for phenotyping cowpeas for adaptation to drought are reviewed. Key factors involve achieving optimal time of flowering and cycle length, and appropriate morphology for different types of cultivars as they relate to their utilization for dry grain, hay and fresh pea production. The strong resistance to vegetative-stage drought that is available, resistance to mid-season drought, escaping terminal drought, the delayed-leaf-senescence trait, water-use-efficiency, deeper rooting and heat tolerance are discussed. Diseases and pests that influence adaptation to drought are considered. Use of varietal intercrops and rotations are examined. Breeding and experimental field strategies for enhancing the adaptation to drought of cowpeas are described.

  18. Heat wave flash droughts in decline

    Science.gov (United States)

    Mo, Kingtse C.; Lettenmaier, Dennis P.

    2015-04-01

    Flash drought is a term that was popularized during rapidly evolving droughts in the Central U.S. in 2012 that were associated with heat waves. We posit that there are two kinds of flash droughts, and we will focus on heat wave flash droughts, of which the 2012 events were typical. We find, based on an analysis of temperature observations and model-reconstructed soil moisture (SM) and evapotranspiration from 1916 to 2013, that heat wave flash droughts in the conterminous U.S. (CONUS) are most likely to occur over the Midwest and the Pacific Northwest during the growing season. We also find that the number of such events across the CONUS has been decreasing over the last century but rebounded after 2011. The long-term downward trends appear to be associated with generally increasing trends in SM resulting from increasing trends in precipitation over the areas where heat wave flash droughts are most likely to occur.

  19. Characterizing water use strategies of Acer saccharum, Liriodendron tulipifera, and Quercus spp. during a severe drought

    Science.gov (United States)

    Yi, K.; Novick, K. A.; Dragoni, D.; Moore, W.; Roman, D. T.

    2014-12-01

    In many areas, drought is expected to occur more frequently and intensely in the future due to climate change; however, drought effects on ecosystem-scale fluxes in diverse forests will reflect the diversity of water use strategies among the dominant tree species. For three years (2011-2013) that included a severe drought event (in 2012), we measured the sap flow densities along the sapwood profiles (four radial depths: 1, 2, 3, 4 cm) in Acer saccharum, Liriodendron tulipifera, and Quercus spp. using the compensation heat pulse technique at the Morgan-Monroe State Forest (Indiana, USA). Sap flow velocity varies along the radial profile of the stem, and thus characterizing its pattern is important for estimating whole tree sap flow, and for characterizing the extent to which water stress alters the radial pattern of flow. We also focused on the nocturnal sap flow, which may be used to replenish stored water depleted during the daytime, in order to assess the extent to which the three species rely on hydraulic capacitance to cope with water stress. Sap flow densities along the sapwood profile of all three species tended to increase toward the cambium under moderate climate, while the tendency was reversed under severe drought. This shift may indicate greater reliance on stored water in the inner sapwood or cavitation of outer sapwood during the drought. It was also noticeable that Quercus spp. showed lower maximum sap flow density and narrower range (1.5 - 4.6 cm h-1) than other species (A. saccharum: 1.0 - 20.8 cm h-1, L. tulipifera: drought year for A. saccharum (0.140.01 in 2011 and 0.200.01 in 2013 vs. 0.290.01 in 2012) and L. tulipifera (0.140.00 in 2011 and 0.090.01 in 2013 vs. 0.300.01 in 2012), while Quercus spp. didn't show a significant difference between moderate and drought years. This may be due to the replenishment of stored water of A. saccharum and L. tulipifera that was lost during the daytime. These results implied different strategies among the

  20. Characteristics and drivers of drought in Europe-a summary of the DROUGHT-R&SPI project

    NARCIS (Netherlands)

    Tallaksen, Lena M.; Stagge, James H.; Stahl, Kerstin; Gudmundsson, Lukas; Orth, Rene; Seneviratne, Sonia I.; Loon, van Anne F.; Lanen, van Henny A.J.

    2015-01-01

    A prerequisite to mitigate the wide range of drought impacts is to establish a good understanding of the drought generating mechanisms from their initiation as a meteorological drought through to their development as soil moisture and hydrological drought. The DROUGHT-R&SPI project has contri

  1. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species

    Science.gov (United States)

    Guada, Guillermo; Camarero, J. Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M. Navarro

    2016-01-01

    Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053

  2. The need for integration of drought monitoring tools for proactive food security management in sub-Saharan Africa

    Science.gov (United States)

    Tadesse, T.; Haile, M.; Senay, G.; Wardlow, B.D.; Knutson, C.L.

    2008-01-01

    Reducing the impact of drought and famine remains a challenge in sub-Saharan Africa despite ongoing drought relief assistance in recent decades. This is because drought and famine are primarily addressed through a crisis management approach when a disaster occurs, rather than stressing preparedness and risk management. Moreover, drought planning and food security efforts have been hampered by a lack of integrated drought monitoring tools, inadequate early warning systems (EWS), and insufficient information flow within and between levels of government in many sub-Saharan countries. The integration of existing drought monitoring tools for sub-Saharan Africa is essential for improving food security systems to reduce the impacts of drought and famine on society in this region. A proactive approach emphasizing integration requires the collective use of multiple tools, which can be used to detect trends in food availability and provide early indicators at local, national, and regional scales on the likely occurrence of food crises. In addition, improving the ability to monitor and disseminate critical drought-related information using available modern technologies (e.g., satellites, computers, and modern communication techniques) may help trigger timely and appropriate preventive responses and, ultimately, contribute to food security and sustainable development in sub-Saharan Africa. ?? 2008 United Nations.

  3. Response of surface and groundwater on meteorological drought in Topla River catchment, Slovakia

    Science.gov (United States)

    Fendekova, Miriam; Fendek, Marian; Vrablikova, Dana; Blaskovicova, Lotta; Slivova, Valeria; Horvat, Oliver

    2016-04-01

    Continuously increasing number of drought studies published in scientific journals reflects the attention of the scientific community paid to drought. The fundamental works among many others were published by Yevjevich (1967), Zelenhasic and Salvai (1987), later by Tallaksen and van Lanen Eds. (2004). The aim of the paper was to analyze the response of surface and groundwater to meteorological drought occurrence in the upper and middle part of the Topla River Basin, Slovakia. This catchment belongs to catchments with unfavourable hydrogeological conditions, being built of rocks with quite low permeability. The basin is located in the north-eastern part of Slovakia covering the area of 1050.05 km2. The response was analyzed using precipitation data from the Bardejov station (long-term annual average of 662 mm in 1981 - 2012) and discharge data from two gauging stations - Bardejov and Hanusovce nad Toplou. Data on groundwater head from eight observation wells, located in the catchment, were also used, covering the same observation period. Meteorological drought was estimated using characterisation of the year humidity and SPI index. Hydrological drought was evaluated using the threshold level method and method of sequent peak algorithm, both with the fixed and also variable thresholds. The centroid method of the cluster analysis with the squared Euclidean distance was used for clustering data according to occurrence of drought periods, lasting for 100 days and more. Results of the SPI index showed very good applicability for drought periods identification in the basin. The most pronounced dry periods occurred in 1982 - 1983, 1984, 1998 and 2012 being classified as moderately dry, and also in 1993 - 1994, 2003 - 2004 and 2007 evolving from moderately to severely dry years. Short-term drought prevailed in discharges, only three periods of drought longer than 100 days occurred during the evaluated period in 1986 - 1987, 1997 and 2003 - 2004. Discharge drought in the

  4. An analysis of annual variation of tourist flows and climate change in Hainan Province%海南旅游客流量年内变化与气候的相关性分析

    Institute of Scientific and Technical Information of China (English)

    吴普; 葛全胜

    2009-01-01

    气候是旅游资源不可或缺的组成部分,也是影响旅游地开发的重要因素,直接影响到旅游季节的长短及旅游客流的年内变化.利用海南9个气象站点自建站以来的气候资料及近5年旅游统计资料,通过特吉旺气候舒适指数、相关分析和回归分析等方法,分析海南气候舒适度及其与旅游客流量年内变化的相关性.结果表明:11月~3月是海南旅游的最适宜期;气候对海南旅游客流量有显著影响,以气温为主导的气候舒适度是海南旅游客流年内淡旺季变化及游客旅游决策的主要影响因素;温度与海南旅游客流量呈显著负相关关系;与海口比较而言,三亚旅游业对气候更加敏感.本项研究对更好地将气候整合到旅游产品中进行宣传促销、提高产品吸引力,对海南旅游业发展规划,对提前预判游客规模尽早做出对策安排及旅游投资有很强的现实指导意义.%Climate resource is one of the most important natural tourism resources in tourism development. The plentiful climate resources not only have the special landscape function, but also have impact on tourism demand. Climate comfort degree effectively re-sponses the comfort of climate in tourism destination for tourist, it is the key factor to tourism development. It directly affects the length of tourism season and annual variation of tourist flows. The climate data of 30 years from nine meteorological stations and tourism data of 5 years from tourism administration of Hainan province were used in this paper. By adopting Comfort Index of W. H. Terjung, correlation and regression analysis,this article analyzed the relationship between climate and annual variation of tourist flows in Hainan province. The results suggested that the advantage of tourism in Hainan was winter and the most comfortable period of tourism began from current November to next March. According to the correlation analysis, climate influences tourist flows

  5. Managing drought risk in a changing climate: The role of national drought policy

    OpenAIRE

    Donald A. Wilhite; Sivakumar,Mannava V.K.; Roger Pulwarty

    2014-01-01

    There is increasing concern worldwide about the ineffectiveness of current drought management practices that are largely based on crisis management. These practices are reactive and, therefore, only treat the symptoms (impacts) of drought rather than the underlying causes for the vulnerabilities associated with impacts. Through the adoption of national drought policies that are focused on risk reduction and complemented by drought mitigation or preparedness plans at various levels of governme...

  6. Drought Tolerance in Modern and Wild Wheat

    OpenAIRE

    Hikmet Budak; Melda Kantar; Kuaybe Yucebilgili Kurtoglu

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of c...

  7. EFFECT OF DROUGHT ON STRESS IN PLANTS

    Directory of Open Access Journals (Sweden)

    Jelena Marković

    2015-07-01

    Full Text Available Drought occurs due to lack of water in the soil, as well as due to disturbances in the circulation of the atmosphere. The duration of the drought may be different, and droughts not only the lack of rainfall, but also erratic distribution of rainfall throughout the year. The intensity of droughts amplified high temperatures, low relative humidity and dry, hot winds. The drought in many areas of common occurrence that repeats without a discernible regularity. Although it can be found in almost all parts of the world, its characteristics vary from region to region. Defining drought is therefore difficult and depends on regional differences and needs, but also from the perspective from which to observe this phenomenon. In the broadest sense, the drought is due to the lack of precipitation over an extended period of time, leading to water shortages for some activities, group activities or an entire sector of the environment. Drought can not be viewed solely as a physical phenomenon. The occurrence of drought, because of the weather, a lot of influences and reflects on the plants and agricultural production.

  8. Global integrated drought monitoring and prediction system.

    Science.gov (United States)

    Hao, Zengchao; AghaKouchak, Amir; Nakhjiri, Navid; Farahmand, Alireza

    2014-01-01

    Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and food crises. Here we present data sets available from the Global Integrated Drought Monitoring and Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators. The system provides meteorological and agricultural drought information based on multiple satellite-, and model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring component and a seasonal probabilistic prediction module. The data sets include historical drought severity data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The probabilistic forecasts provide essential information for early warning, taking preventive measures, and planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and data sets for global drought assessment and early warning. The presented data sets would be instrumental in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets reliably captured several major droughts from across the globe.

  9. Parental Drought and Defoliation Effect on Yield, Grains Biochemical Aspects and Drought Performance of Sorghum Progeny

    Directory of Open Access Journals (Sweden)

    Ibrahim, A. H.

    2013-02-01

    Full Text Available This study was designed to evaluate the effect of drought stress and drought with defoliation on yield parameters of three sorghum varieties (Giza 15, Dorado and Hybrid 113. Also, the effect of these parental stress treatments on drought performance of progeny of the most drought tolerant variety was investigated. Application of drought stress in the vegetative stage non significantly affected panicles number, grain yield and harvest index of all cultivars. Drought stress in the reproductive stage of Giza 15 and Hybrid 113 cultivars caused a two fold increase in length of lateral branch and panicles number. However, grain yield and total panicles weight were significantly reduced in all cultivars due to this stress. Application of drought with defoliation in the vegetative stage reduced shoot and straw weights, and grain yield in sorghum in comparison with drought stress only. Protein-N and polysaccharides content were decreased in parent grains in response to water stress.The stress intensity index (SII of progeny from drought- subjected parents was about 30-fold greater than SII of progeny from control parents. Further, SII of progeny from parents exposed to drought stress in the reproductive stage was higher than the SII of progeny from parents subjected to drought stress in the vegetative stage . A strong negative correlation appeared between the stress intensity index of the progeny and polysaccharides content of parent grains. Based on our research parental defoliation did not improve the drought resistance of sorghum progeny.

  10. Managing drought risk in a changing climate: The role of national drought policy

    Directory of Open Access Journals (Sweden)

    Donald A. Wilhite

    2014-06-01

    Full Text Available There is increasing concern worldwide about the ineffectiveness of current drought management practices that are largely based on crisis management. These practices are reactive and, therefore, only treat the symptoms (impacts of drought rather than the underlying causes for the vulnerabilities associated with impacts. Through the adoption of national drought policies that are focused on risk reduction and complemented by drought mitigation or preparedness plans at various levels of government, the coping capacity of nations to manage droughts can be improved. The time for adopting an approach that emphasizes drought risk reduction is now, given the spiraling impacts of droughts in an ever-increasing number of sectors and the current and projected trends for the increased frequency, severity and duration of drought events in association with a changing climate. This paper discusses the underlying concepts of drought, the principles and objectives of national drought policies and a drought planning process that has been effective in the preparation of drought mitigation plans.

  11. Advancing Drought Understanding, Monitoring and Prediction

    Science.gov (United States)

    Mariotti, Annarita; Schubert, Siegfried D.; Mo, Kingtse; Peters-Lidard, Christa; Wood, Andy; Pulwarty, Roger; Huang, Jin; Barrie, Dan

    2013-01-01

    Having the capacity to monitor droughts in near-real time and providing accurate drought prediction from weeks to seasons in advance can greatly reduce the severity of social and economic damage caused by drought, a leading natural hazard for North America. The congressional mandate to establish the National Integrated Drought Information System (NIDIS; Public Law 109-430) in 2006 was a major impulse to develop, integrate, and provide drought information to meet the challenges posed by this hazard. Significant progress has been made on many fronts. On the research front, efforts by the broad scientific community have resulted in improved understanding of North American droughts and improved monitoring and forecasting tools. We now have a better understanding of the droughts of the twentieth century including the 1930s "Dust Bowl"; we have developed a broader array of tools and datasets that enhance the official North American Drought Monitor based on different methodologies such as state-of-the-art land surface modeling (e.g., the North American Land Data Assimilation System) and remote sensing (e.g., the evaporative stress index) to better characterize the occurrence and severity of drought in its multiple manifestations. In addition, we have new tools for drought prediction [including the new National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2, for operational prediction and an experimental National Multimodel Ensemble] and have explored diverse methodologies including ensemble hydrologic prediction approaches. Broad NIDIS-inspired progress is influencing the development of a Global Drought Information System (GDIS) under the auspices of the World Climate Research Program. Despite these advances, current drought monitoring and forecasting capabilities still fall short of users' needs, especially the need for skillful and reliable drought forecasts at regional and local scales. To tackle this outstanding challenging problem

  12. 模糊综合模型在广西干旱评价中的应用研究%Application of fuzzy comprehensive model in drought assessment of Guangxi

    Institute of Scientific and Technical Information of China (English)

    张立杰; 杨焱; 李连芬

    2015-01-01

    干旱是多种因素长期共同作用的结果,使用单一指标很难全面准确地把握旱情。为此,利用降水距平指数、连续无有效降水日数、河川径流距平指数和水库工程蓄水距平指数的评价结果,运用模糊综合模型,对广西各地历史典型干旱时间进行了综合评价,并将各评价方法的评价结果与实际旱情进行了对比,结果表明:模糊综合模型的评价结果与实际旱情基本相符,有效避免了单指标方法评价结果不一致的问题,其评价结果较为客观全面地反映了广西各地实际旱情,具有较强的科学性和可靠性。%Drought is associated with concomitance of multi-factors in long term. It is difficult to provide a rational assessment of drought by a single-index approach. Based on the assessment results of the precipitation anomaly per⁃centage index (PAP),the consecutive dry days index (CDD),the flow anomaly percentage index (FAP) and the res⁃ervoir deposited water index (RDW),the historic droughts of Guangxi were annualized by the fuzzy comprehensive model. The assessment results were compared with the different indexes of historic droughts. The results of applica⁃tion show that the fuzzy comprehensive model is maintaining a good consistency with the historic drought data ,and it prevents the inconsistent information based on the assessment results of the single-index approach. The fuzzy comprehensive model has a high reliability,and can provide relatively objective and comprehensive assessment of drought in Guangxi.

  13. Variability and Trends in Precipitation, Temperature and Drought Indices in the State of California

    Directory of Open Access Journals (Sweden)

    Minxue He

    2016-03-01

    Full Text Available This study presents a comprehensive assessment of the variability and trends of the precipitation and temperature along with the trends in drought indices over the State of California. The non-parametric Mann–Kendall trend test is applied with a trend-free pre-whitening procedure in trend identification. A dataset containing 120-year (water years 1896–2015 monthly precipitation, average temperature, maximum temperature, minimum temperature and the Palmer Index for seven climatic regions of the state is used for this purpose. The results confirm previous work indicating that no clear trends are observed in precipitation, while a distinct warming trend is evident in temperature over the state. New findings of this study include: (1 in general, the variability of annual, winter (December–February and spring (March–May precipitation shows an increasing tendency, implying intensified frequency of the occurrence of dry or wet extremes; (2 on the annual scale and in the summer, statewide meteorological, hydrological and agricultural drought indices all have decreasing trends, indicating the more frequent occurrence of drought events; and (3 among seven regions, the South Coast Drainage region generally has the most significant warming trend, as well as the most significant declining trends in drought indices. Overall, these findings are highly meaningful from both theoretical and practical perspectives, in the context of providing critical information in developing prediction models and guiding water resources management practices, respectively.

  14. Quick Drought Response Index, 7 Day CONUS Composite

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — QuickDRI, short for Quick Drought Response Index, is a drought-monitoring tool developed by scientists at EROS in collaboration with the National Drought Mitigation...

  15. How climate seasonality modifies drought duration and deficit

    NARCIS (Netherlands)

    Loon, van A.F.; Tijdeman, E.; Wanders, N.; Lanen, van H.A.J.; Teuling, A.J.; Uijlenhoet, R.

    2014-01-01

    Drought propagation through the terrestrial hydrological cycle is associated with a change in drought characteristics (duration and deficit), moving from precipitation via soil moisture to discharge. Here we investigate climate controls on drought propagation with a modeling experiment in 1271

  16. How Seasonal Drought Affect Carbon and Water Fluxes of Alternative Energy Crops in the US?

    Science.gov (United States)

    Joo, E.; Hussain, M. Z.; Zeri, M.; Masters, M.; Gomez-Casanovas, N.; DeLucia, E. H.; Bernacchi, C.

    2014-12-01

    The cellulosic biomass of Switchgrass (Panicum virgatum L.), Miscanthus (Miscanthus giganteus) and native prairie are considered candidate second-generation biofuels, potentially resulting in partial replacement annual row crops within the Midwestern US. There is an increasing focus to study the environmental impact of agricultural crops, however not much is known on the influence on the energy, carbon and water cycles of energy crops, especially under drought conditions. This study compares the impact of drought episodes (in 2011 and 2012) on evapotranspiration (ET), net ecosystem productivity (NEP) and water use efficiency (WUE; equals to NEP/ET) for Switchgrass (SW), Miscanthus (MXG), Maize (MZ) and native prairie (NP) grown in Central Illinois using the eddy covariance technique. Due to the prolonged drought and the rapid growth development with increasing ET of MXG in 2012, large water deficit (precipitation-ET) was observed for each species up to the highest deficit of -360 mm for this species. The gross primary production (GPP) of MZ was radically decreased by the drought in 2011 and 2012, while SW and NP were not influenced. MXG increased NEP throughout the typically wet and drought years, mainly due to the decrease in respiration and by the largest GPP upon the drought in 2012. Despite having the largest water deficit, MXG showed an enhanced WUE of 12.8 and 11.4 Kg C ha-1mm-1 in 2011 and 2012, respectively, in comparison to years typical to the region with WUE of 3.7-7.3 Kg C ha-1mm-1. Other species did not show a significant enhancement of WUE. Therefore we conclude that out of the studied species, MXG has more access to water, and uses this water the most efficiently to store carbon, under drought conditions.

  17. Summer temperature and drought co-variability across Europe since 850 CE

    Science.gov (United States)

    Charpentier Ljungqvist, Fredrik; Büntgen, Ulf; Cook, Edward R.; Esper, Jan; Fleitmann, Dominik; Gagen, Mary H.; García Bustamante, Elena; Fidel González-Rouco, Jesús; Krusic, Paul J.; Luterbacher, Jürg; Andrés Melo Aguilar, Camilo; Seftigen, Kristina; Seim, Andrea; Solomina, Olga; Werner, Johannes P.; Xoplaki, Elena; Zorita, Eduardo

    2017-04-01

    Under the present global warming condition the increasing risk of droughts and floods is a major concern. Droughts have severe consequences for agricultural productivity across wide areas. However, state-of-the-art climate models are not consistent in their projections of hydroclimate changes under global warming, on regional scales, which limits attempts at defining long-term mitigation strategies. A better understanding of past summer temperature and hydroclimate co-variability will provide valuable empirical information on how increasing/decreasing temperatures will affect summer drought conditions at different time-scales over Europe. We use instrumental data, the new gridded tree-ring-derived Old World Drought Atlas by Cook et al. (2015), the gridded European summer temperature reconstruction by Luterbacher et al. (2016), as well as two high-resolution last millennium (850-2005 CE) climate simulations (CCSM4 and MPI-ESM-P), to assess the spatio-temporal co-variability of summer temperature and summer drought over Europe, at inter-annual to centennial time-scales, since 850 CE. This allows us to i) investigate potential changes in the dominating patterns of co-variability at different time scales, and ii) assess the accuracy and precision of climate models to simulate summer temperature and summer drought co-variability as found in both the 20th century instrumental data and millennium-long tree-ring based climate reconstructions. The discussion of cross-spectral analyses of temperature and drought will likely improve our understanding of the long-term co-variability of these important climate variables at continental scales in Europe. References: Cook, E.R., et al. (2015) Old World megadroughts and pluvials during the Common Era. Science Advances, 1, e1500561, doi:10.1126/sciadv.1500561. Luterbacher, J., et al. (2016) European summer temperatures since Roman times. Environmental Research Letters 11, e024001, doi:10.1088/1748-9326/11/1/024001.

  18. Drought Effects on Agricultural Yield: Comparison Across Regions and Crop Types

    Science.gov (United States)

    Daryanto, S.; Wang, L.; Jacinthe, P. A.

    2014-12-01

    Global agricultural production is dominated by rainfed agriculture, and is therefore prone to disruption from climate extreme weathers. These uncertainties become more problematic when considering the projection of increased drought frequency suggested by several climate models for various world regions. Curiously, few regional analyses of drought impact of food production have been attempted. We collated and analyzed data from the last 25 years to disentangle the effects of drought (i.e. timing, intensity and duration) on agricultural production in different eco-regions and with varying crop types. Our preliminary results suggested greater yield reduction in annual (-21.5%) than perennial plants (-16%), in C4 (-21%) compared to C3 crops (-17%), and when drought occurred during generative (i.e. flowering until maturity; -16.5%) than vegetative stage (-15.5%). Although drought caused similar amounts of yield reduction in both tropical and subtropical regions (i.e. -17%), it carries a greater food security risk in the tropics due to inherently low productivity (i.e. less than half than in the subtropical regions). Consequently, cultivating drought-resistant C3 perennial plants (e.g. sweet potato and cassava) in the tropics could prove a viable adaptive strategy to mitigate the effects of climate variability. In addition, these crops have limited input requirements, are well adapted to nutrient-poor Oxisols and Ultisols of the tropics, and generally outyield cereal crops in the region. Our analysis is ongoing and needs to take into account agronomic traits (e.g. water requirement), as well as the energy and nutritional values (e.g. protein, minerals) of alternative crops. Our results could inform the selection and development of new cultivars for the drought-prone regions of the world.

  19. Effects of Flow on the Migratory Behavior and Survival of Juvenile Fall and Summer Chinook Salmon in John Day Reservior, 1982 Annual Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David R.; Sims, Carl W.

    1983-11-01

    The National Marine Fisheries Service in cooperation with the Bonneville Power Administration is conducting a 6-year study of the effects of instream flows on the passage time, survival, and migrational behavior of juvenile fall and summer (O-age) chinook salmon in John Day Reservoir. In 1982, the second year of the study, research activities concentrated on refining distribution and behavior data in John Day Reservoir and on releasing and recapturing marked fish needed to define flow/travel time relationships. Twenty-two groups (61,887 fish) of marked O-age chinook salmon were wire-tagged, branded, and released into the tailrace at McNary Dam, and forty-four groups (13,128 fish) were branded and released into the reservoir at various other sites. Sampling at the John Day Dam airlift facility captured 54,647 subyearling chinook salmon including 482 marked recoveries. Additional marks (279) were recovered from purse seine samples taken at various sites throughout the reservoir. The average passage time to John Day Dam for marked O-age chinook salmon released in the McNary tailrace was 23 days. Weekend flow reductions at McNary Dam did not affect passage time of subyearling chinook salmon in John Day Reservoir. There was no statistical evidence to indicate that instream flows affected either the rate of movement or residence time of O-age chinook salmon in John Day Reservoir.

  20. Differential responses of photosystems I and II to seasonal drought in two Ficus species

    Science.gov (United States)

    Zhang, Shubin; Huang, Wei; Zhang, Jiaolin; Cao, Kunfang

    2016-05-01

    Hemiepiphytic Ficus species exhibit more conservative water use strategy and are more drought-tolerant compared with their non-hemiepiphytic congeners, but a difference in the response of photosystem I (PSI) and photosystem II (PSII) to drought stress has not been documented to date. The enhancement of non-photochemical quenching (NPQ) and cyclic electron flow (CEF) have been identified as important mechanisms that protect the photosystems under drought conditions. Using the hemiepiphytic Ficus tinctoria and the non-hemiepiphytic Ficus racemosa, we studied the water status and the electron fluxes through PSI and PSII under seasonal water stress. Our results clearly indicated that the decline in the leaf predawn water potential (ψpd), the maximum photosynthetic rate (Amax) and the predawn maximum quantum yield of PSII (Fv/Fm) were more pronounced in F. racemosa than in F. tinctoria at peak drought. The Fv/Fm of F. racemosa was reduced to 0.69, indicating net photoinhibition of PSII. Concomitantly, the maximal photo-oxidizable P700 (Pm) decreased significantly in F. racemosa but remained stable in F. tinctoria. The fraction of non-photochemical quenching [Y(NPQ)] and the ratio of effective quantum yield of PSI to PSII [Y(I)/Y(II)] increased for both Ficus species at peak drought, with a stronger increase in F. racemosa. These results indicated that the enhancement of NPQ and the activation of CEF contributed to the photoprotection of PSI and PSII for both Ficus species under seasonal drought, particularly for F. racemosa.

  1. Resilience of a thinned Eucalyptus regnans forest to long-term drought

    Science.gov (United States)

    Hawthorne, S. N.; Lane, P. N. J.; Benyon, R. G.

    2014-12-01

    The duration and severity of drought has been predicted to increase with climate change. Understanding vegetation response to protracted drought is important to predict their future response and develop adaptive management strategies. We examined the transpiration of Eucalyptus regnans forest at the end of the Millennium Drought, which affected southeast Australia from the mid-1990s to 2009. The forested catchment, Crotty Creek, has been subjected to a strip-thinning treatment in the early 1980s. Measurements of sap flow were conducted using the compensation heat pulse technique over 13 months from December 2009. Transpiration appeared to be energy-limited rather than water-limited, with daily maximum VPD and solar radiation being good predictors of sap flux density. The perennial streamflow and unlimited transpiration at the end of the drought indicate a large soil-water buffer in the system. The post-thinning evapotranspiration (ET) of the catchment was likely to be lower than ET of an undisturbed catchment with similar stand age (70-year old) due to the lower post-thinning basal area. In contrast to this, the streamflow of a dryer, 34-year old mixed eucalypt forest ceased for several months during the same drought. Thus, the resilience of E. regnans forests during a severe drought may depend on the soil-water buffer and stomatal control, while silvicultural treatment may help reduce water stress in dryer and younger forests.

  2. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.L.; Dale, L.L.; Brush, C.; Vicuna, S.; Kadir, T.N.; Dogrul, E.C.; Chung, F.I.

    2009-05-15

    A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods.

  3. Analysis of drought impacts on electricity production in the Western and Texas interconnections of the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Harto, C. B.; Yan, Y. E.; Demissie, Y. K.; Elcock, D.; Tidwell, V. C.; Hallett, K.; Macknick, J.; Wigmosta, M. S.; Tesfa, T. K. (Environmental Science Division); (Sandia National Laboratory); (National Renewable Energy Laboratory); (Pacific Northwest National Laboratory)

    2012-02-09

    from the market, albeit at higher prices. However, sufficient excess generation and transmission must be available for this strategy to work. Although power purchase was the most commonly discussed drought mitigation strategy, a total of 12 response strategies were identified in the literature, falling into four main categories: electricity supply, electricity demand response, alternative water supplies, and water demand response. Three hydrological drought scenarios were developed based on a literature review and historical data analysis. The literature review helped to identify key drought parameters and data on drought frequency and severity. Historical hydrological drought data were analyzed for the western United States to identify potential drought correlations and estimate drought parameters. The first scenario was a West-wide drought occurring in 1977; it represented a severe drought in five of the eight basins in the study area. A second drought scenario was artificially defined by selecting the conditions from the 10th-percentile drought year for each individual basin; this drought was defined in this way to allow more consistent analysis of risk to electricity generation in each basin. The final scenario was based upon the current low-flow hydro modeling scenario defined by WECC, which uses conditions from the year 2001. These scenarios were then used to quantify the risk to electricity generation in each basin. The risk calculations represent a first-order estimate of the maximum amount of electricity generation that might be lost from both hydroelectric and thermoelectric sources under a worst-case scenario. Even with the conservative methodology used, the majority of basins showed a limited amount of risk under most scenarios. The level of risk in these basins is likely to be amenable to mitigation by known strategies, combined with existing reserve generation and transmission capacity. However, the risks to the Pacific Northwest and Texas Basins require

  4. Long-term climate and competition explain forest mortality patterns under extreme drought.

    Science.gov (United States)

    Young, Derek J N; Stevens, Jens T; Earles, J Mason; Moore, Jeffrey; Ellis, Adam; Jirka, Amy L; Latimer, Andrew M

    2017-01-01

    Rising temperatures are amplifying drought-induced stress and mortality in forests globally. It remains uncertain, however, whether tree mortality across drought-stricken landscapes will be concentrated in particular climatic and competitive environments. We investigated the effects of long-term average climate [i.e. 35-year mean annual climatic water deficit (CWD)] and competition (i.e. tree basal area) on tree mortality patterns, using extensive aerial mortality surveys conducted throughout the forests of California during a 4-year statewide extreme drought lasting from 2012 to 2015. During this period, tree mortality increased by an order of magnitude, typically from tens to hundreds of dead trees per km(2) , rising dramatically during the fourth year of drought. Mortality rates increased independently with average CWD and with basal area, and they increased disproportionately in areas that were both dry and dense. These results can assist forest managers and policy-makers in identifying the most drought-vulnerable forests across broad geographic areas.

  5. Projections of future meteorological drought and wet periods in the Amazon.

    Science.gov (United States)

    Duffy, Philip B; Brando, Paulo; Asner, Gregory P; Field, Christopher B

    2015-10-27

    Future intensification of Amazon drought resulting from climate change may cause increased fire activity, tree mortality, and emissions of carbon to the atmosphere across large areas of Amazonia. To provide a basis for addressing these issues, we examine properties of recent and future meteorological droughts in the Amazon in 35 climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that the CMIP5 climate models, as a group, simulate important properties of historical meteorological droughts in the Amazon. In addition, this group of models reproduces observed relationships between Amazon precipitation and regional sea surface temperature anomalies in the tropical Pacific and the North Atlantic oceans. Assuming the Representative Concentration Pathway 8.5 scenario for future drivers of climate change, the models project increases in the frequency and geographic extent of meteorological drought in the eastern Amazon, and the opposite in the West. For the region as a whole, the CMIP5 models suggest that the area affected by mild and severe meteorological drought will nearly double and triple, respectively, by 2100. Extremes of wetness are also projected to increase after 2040. Specifically, the frequency of periods of unusual wetness and the area affected by unusual wetness are projected to increase after 2040 in the Amazon as a whole, including in locations where annual mean precipitation is projected to decrease. Our analyses suggest that continued emissions of greenhouse gases will increase the likelihood of extreme events that have been shown to alter and degrade Amazonian forests.

  6. Growth cessation uncouples isotopic signals in leaves and tree rings of drought-exposed oak trees.

    Science.gov (United States)

    Pflug, Ellen E; Siegwolf, R; Buchmann, N; Dobbertin, M; Kuster, T M; Günthardt-Goerg, M S; Arend, M

    2015-10-01

    An increase in temperature along with a decrease in summer precipitation in Central Europe will result in an increased frequency of drought events and gradually lead to a change in species composition in forest ecosystems. In the present study, young oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) were transplanted into large mesocosms and exposed for 3 years to experimental warming and a drought treatment with yearly increasing intensities. Carbon and oxygen isotopic (δ(13)C and δ(18)O) patterns were analysed in leaf tissue and tree-ring cellulose and linked to leaf physiological measures and tree-ring growth. Warming had no effect on the isotopic patterns in leaves and tree rings, while drought increased δ(18)O and δ(13)C. Under severe drought, an unexpected isotopic pattern, with a decrease in δ(18)O, was observed in tree rings but not in leaves. This decrease in δ(18)O could not be explained by concurrent physiological analyses and is not supported by current physiological knowledge. Analysis of intra-annual tree-ring growth revealed a drought-induced growth cessation that interfered with the record of isotopic signals imprinted on recently formed leaf carbohydrates. This missing record indicates isotopic uncoupling of leaves and tree rings, which may have serious implications for the interpretation of tree-ring isotopes, particularly from trees that experienced growth-limiting stresses.

  7. Effects of summer flow augmentation on the migratory behavior and survival of juvenile Snake River fall Chinook salmon. Annual report 2005

    Science.gov (United States)

    Tiffan, Kenneth F.; Connor, William P.

    2006-01-01

    This report summarizes results of research activities conducted in 2004 and years previous to aid in the management and recovery of fall Chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall Chinook salmon juveniles for the years 1992-2004. Publication is a high priority of our staff. Publication provides our results to a wid