WorldWideScience

Sample records for anisotropy physics

  1. Physics of the cosmic microwave background anisotropy

    CERN Document Server

    Bucher, Martin

    2015-01-01

    Observations of the cosmic microwave background (CMB), especially of its frequency spectrum and its anisotropies, both in temperature and in polarization, have played a key role in the development of modern cosmology and our understanding of the very early universe. We review the underlying physics of the CMB and how the primordial temperature and polarization anisotropies were imprinted. Possibilities for distinguishing competing cosmological models are emphasized. The current status of CMB experiments and experimental techniques with an emphasis toward future observations, particularly in polarization, is reviewed. The physics of foreground emissions, especially of polarized dust, is discussed in detail, since this area is likely to become crucial for measurements of the B modes of the CMB polarization at ever greater sensitivity.

  2. Physical modelling of elastic anisotropy in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Furre, Anne-Kari

    1997-12-31

    During the last decades, anisotropy has become increasingly interesting in hydrocarbon prospecting. Knowledge of anisotropy in the subsurface can improve reservoir production and data interpretation. This thesis presents experimental studies of three different artificial anisotropic media: layered materials, isotropic matrix with stress-induced fractures, and layered media with controlled crack patterns at an oblique angle relative to layering. Layered media were constructed by varying grain size distributions for different layers, which resulted in acoustic and permeability anisotropy. The thin layer materials could be described by Backus modelling provided the wavelength was much larger than the layer periods. Frequency dependent scattering was observed for waves travelling normal to the layers. Saturated wave velocities were consistent with transverse isotropic Biot theory, but because the permeability anisotropy was small, no flow dependent attenuation anisotropy was observed. When sandstones were cemented under stress and then released, to simulate a vertical core or uplift process, predominantly horizontal cracks developed in the samples. On reloading to the cementing stress level, the velocities were below the initial values, which supports the theories of crack growth. In further triaxial tests on the same material a stress-dependent anisotropy occurred similar to what is often seen in natural samples taken from large depths. 70 refs., 200 figs., 56 tabs.

  3. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    Science.gov (United States)

    Herawati, Ida; Winardhi, Sonny; Priyono, Awali

    2015-09-01

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ɛ, are related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.

  4. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Herawati, Ida, E-mail: ida.herawati@students.itb.ac.id; Winardhi, Sonny; Priyono, Awali [Mining and Petroleum Engineering Faculty, Institut Teknologi Bandung, Bandung, 40132 (Indonesia)

    2015-09-30

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, are related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.

  5. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    International Nuclear Information System (INIS)

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, are related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented

  6. Research on anisotropy of shale oil reservoir based on rock physics model

    Science.gov (United States)

    Guo, Zhi-Qi; Liu, Cai; Liu, Xi-Wu; Dong, Ning; Liu, Yu-Wei

    2016-06-01

    Rock physics modeling is implemented for shales in the Luojia area of the Zhanhua topographic depression. In the rock physics model, the clay lamination parameter is introduced into the Backus averaging theory for the description of anisotropy related to the preferred alignment of clay particles, and the Chapman multi-scale fracture theory is used to calculate anisotropy relating to the fracture system. In accordance with geological features of shales in the study area, horizontal fractures are regarded as the dominant factor in the prediction of fracture density and anisotropy parameters for the inversion scheme. Results indicate that the horizontal fracture density obtained has good agreement with horizontal permeability measured from cores, and thus confirms the applicability of the proposed rock physics model and inversion method. Fracture density can thus be regarded as an indicator of reservoir permeability. In addition, the anisotropy parameter of the P-wave is higher than that of the S-wave due to the presence of horizontal fractures. Fracture density has an obvious positive correlation with P-wave anisotropy, and the clay content shows a positive correlation with S-wave anisotropy, which fully shows that fracture density has a negative correlation with clay and quartz contents and a positive relation with carbonate contents.

  7. Anisotropy parameters estimate and rock physics analysis for the Barnett Shale

    International Nuclear Information System (INIS)

    The rock physics model is an important tool for the characterization of shale reservoirs. We propose an improved anisotropic rock physics model of shale by introducing clay lamination (CL) index as a modeling parameter in effective medium theories. The parameter CL describes the degree of preferred orientation in distributions of clay particles, which depends on deposition and diagenesis history and determines intrinsic anisotropy of shales. Those complicated parameters of sophisticated methods that are difficult to quantify are substituted by CL. The applications of the proposed rock physics method include the inversion for anisotropy parameters using log data and the construction of a rock physics template for the evaluation of the Barnett Shale reservoir. Results show reasonable agreement between the P-wave anisotropy parameter ε inverted by the proposed method and those measured from core samples. The constructed rock physics templates are calibrated on well log data, and can be used for the evaluation of porosity, lithology, and brittleness index defined in terms of mineralogy and geomechanical properties of the Barnett Shale. The templates predict that the increase in clay content leads to the increase in Poisson’s ratio and the decrease in Young’s modulus on each line of constant porosity, which confirms the consistent and reveals quantitative relations of the two ways of defining the brittleness index. Different scenarios of mineralogy substitutions present the varied layout of constant lines on the templates. (paper)

  8. Particle physics implications of Wilkinson microwave anisotropy project measurements

    Indian Academy of Sciences (India)

    U A Yajnik

    2004-12-01

    We present an overview of the implications of the WMAP data for particle physics. The standard parameter set and characterising the inflaton potential can be related to the power-law indices characterising deviation of the CMB spectrum from the scale invariant form. Different classes of inflation potentials are in turn naturally associated with different unified schemes. At present WMAP does not exclude any but a few simple unified models. In particular, hybrid models favoured by supersymmetric unification continue to be viable. However future improvement in data leading to better determination of the `running' of power-law indices should help to narrow the possibilities for unified models. The main conclusion is that WMAP is consistent with the paradigm of GUT scale (1016 GeV) inflation.

  9. Physical modeling and analysis of P-wave attenuation anisotropy in transversely isotropic media

    Digital Repository Service at National Institute of Oceanography (India)

    Zhu, Y.; Tsvankin, I.; Dewangan, P.; Van Wijk, K.

    and analysis of P-wave attenuation anisotropy in transversely isotropic media Yaping Zhu1, Ilya Tsvankin2, Pawan Dewangan3, and Kasper van Wijk4 ABSTRACT Anisotropic attenuation can provide sensitive attributes for fracture detection and lithology...-preserving migration, and seismic fracture detec- tion. INTRODUCTION Most existing publications on seismic anisotropy are devoted to the influence of angular velocity variation in purely elastic media on the traveltimes and amplitudes of seismic waves. It is likely...

  10. Signature of short distance physics on inflation power spectrum and CMB anisotropy

    International Nuclear Information System (INIS)

    The inflaton field responsible for inflation may not be a canonical fundamental scalar. It is possible that the inflaton is a composite of fermions or it may have a decay width. In these cases the standard procedure for calculating the power spectrum is not applicable and a new formalism needs to be developed to determine the effect of short range interactions of the inflaton on the power spectrum and the CMB anisotropy. We develop a general formalism for computing the power spectrum of curvature perturbations for such non-canonical cases by using the flat space Källén-Lehmann spectral function in curved quasi-de Sitter space assuming implicitly that the Bunch-Davis boundary conditions enforces the inflaton mode functions to be plane wave in the short wavelength limit and a complete set of mode functions exists in quasi-de Sitter space. It is observed that the inflaton with a decay width suppresses the power at large scale while a composite inflaton's power spectrum oscillates at large scales. These observations may be vindicated in the WMAP data and confirmed by future observations with PLANCK

  11. Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy

    Science.gov (United States)

    Calonne, N.; Flin, F.; Geindreau, C.; Lesaffre, B.; Rolland du Roscoat, S.

    2014-12-01

    We carried out a study to monitor the time evolution of microstructural and physical properties of snow during temperature gradient metamorphism: a snow slab was subjected to a constant temperature gradient in the vertical direction for 3 weeks in a cold room, and regularly sampled in order to obtain a series of three-dimensional (3-D) images using X-ray microtomography. A large set of properties was then computed from this series of 3-D images: density, specific surface area, correlation lengths, mean and Gaussian curvature distributions, air and ice tortuosities, effective thermal conductivity, and intrinsic permeability. Whenever possible, specific attention was paid to assess these properties along the vertical and horizontal directions, and an anisotropy coefficient defined as the ratio of the vertical over the horizontal values was deduced. The time evolution of these properties, as well as their anisotropy coefficients, was investigated, showing the development of a strong anisotropic behavior during the experiment. Most of the computed physical properties of snow were then compared with two analytical estimates (self-consistent estimates and dilute beds of spheroids) based on the snow density, and the size and anisotropy of the microstructure through the correlation lengths. These models, which require only basic microstructural information, offer rather good estimates of the properties and anisotropy coefficients for our experiment without any fitting parameters. Our results highlight the interplay between the microstructure and physical properties, showing that the physical properties of snow subjected to a temperature gradient cannot be described accurately using only isotropic parameters such as the density and require more refined information. Furthermore, this study constitutes a detailed database on the evolution of snow properties under a temperature gradient, which can be used as a guideline and a validation tool for snow metamorphism models at the

  12. The jumps of physical quantities at fast shocks under pressure anisotropy: theory versus observations at the bow shock

    International Nuclear Information System (INIS)

    The interaction of the solar wind with magnetized planets leads to the formation of the so-called magnetosphere, a cavity generated by the geomagnetic field. The supersonic, superalfvenic, and magnetized solar wind flow interacting with blunt bodies produces a detached bow shock, separating the solar wind from the magnetosheath, the region between the shock wave and the magnetopause. On approach to a planetary obstacle, the solar wind becomes subsonic at the bow shock and then flows past the planet in the magnetosheath. At the bow shock, the plasma parameters and the magnetic field strength change from upstream to downstream, i.e., an increase of plasma density, temperature, pressure, and magnetic field strength, and a decrease of the velocity across the shock. In this PhD thesis we mainly concentrate on the variations of all physical quantities across the bow shock taking into account pressure anisotropy, which is an important feature in space plasma physics and observed by various spacecraft missions in the solar wind as well as in the magnetosheath. Dealing with anisotropic plasma conditions, one has to introduce the so-called pressure tensor, characterized by two scalar pressures, the pressure perpendicular (Pperp) and the pressure parallel (Pparallel) with respect to the magnetic field and in general one speaks of anisotropic conditions for Pperp is not Pparallel. Many spacecraft observations of the solar wind show Pparallel > Pperp, whereas observations of the magnetosheath show the opposite case, Pparallel perp. Therefore, dissipation of kinetic energy into thermal energy plays an important role in studying the variations of the relevant physical quantities across the shock. It has to be mentioned that planetary bow shocks are good examples for fast MHD shock waves. Therefore, the basic equations for describing the changes across the shock can be obtained by integrating the MHD equations in conservative form. We note that these equations, the so

  13. Secondary anisotropies of the CMB

    International Nuclear Information System (INIS)

    The Cosmic Microwave Background fluctuations provide a powerful probe of the dark ages of the universe through the imprint of the secondary anisotropies associated with the reionization of the universe and the growth of structure. We review the relation between the secondary anisotropies and the primary anisotropies that are directly generated by quantum fluctuations in the very early universe. The physics of secondary fluctuations is described, with emphasis on the ionization history and the evolution of structure. We discuss the different signatures arising from the secondary effects in terms of their induced temperature fluctuations, polarization and statistics. The secondary anisotropies are being actively pursued at present, and we review the future and current observational status

  14. Physical model construction for electrical anisotropy of single crystal zinc oxide micro/nanobelt using finite element method

    International Nuclear Information System (INIS)

    Based on conductivity characterization of single crystal zinc oxide (ZnO) micro/nanobelt (MB/NB), we further investigate the physical mechanism of nonlinear intrinsic resistance-length characteristic using finite element method. By taking the same parameters used in experiment, a model of nonlinear anisotropic resistance change with single crystal MB/NB has been deduced, which matched the experiment characterization well. The nonlinear resistance-length comes from the different electron moving speed in various crystal planes. As the direct outcome, crystallography of the anisotropic semiconducting MB/NB has been identified, which could serve as a simple but effective method to identify crystal growth direction of single crystal semiconducting or conductive nanomaterial

  15. Physical model construction for electrical anisotropy of single crystal zinc oxide micro/nanobelt using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Guangbin [The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080 (China); Tang, Chaolong [Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487 (United States); Song, Jinhui, E-mail: jhsong@eng.ua.edu, E-mail: wqlu@cigit.ac.cn [The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487 (United States); Lu, Wenqiang, E-mail: jhsong@eng.ua.edu, E-mail: wqlu@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China)

    2014-04-14

    Based on conductivity characterization of single crystal zinc oxide (ZnO) micro/nanobelt (MB/NB), we further investigate the physical mechanism of nonlinear intrinsic resistance-length characteristic using finite element method. By taking the same parameters used in experiment, a model of nonlinear anisotropic resistance change with single crystal MB/NB has been deduced, which matched the experiment characterization well. The nonlinear resistance-length comes from the different electron moving speed in various crystal planes. As the direct outcome, crystallography of the anisotropic semiconducting MB/NB has been identified, which could serve as a simple but effective method to identify crystal growth direction of single crystal semiconducting or conductive nanomaterial.

  16. Ultrasonic characterization of CFRP anisotropy

    Czech Academy of Sciences Publication Activity Database

    Kling, M.; Tokar, Daniel; Převorovský, Zdeněk

    Praha: ČVUT v Praze, 2015 - (Hobza, T.), s. 71-80 ISBN 978-80-01-05841-1. [Stochastic and Physical Monitoring Systems 2015. Praha (CZ), 22.06.2015-27.06.2015] Institutional support: RVO:61388998 Keywords : anisotropy * carbon fiber -reinforced plastic * ultrasonic testing * signal processing Subject RIV: BI - Acoustics

  17. Anisotropy of rare-earth magnets

    Institute of Scientific and Technical Information of China (English)

    R.Skomski; D.J.Sellmyer

    2009-01-01

    Rare-earth intermetallics such as Nd2FeI4B and Sm-Co are widely used as high-performance permanent magnets,because they combine high magnetocrystalline anisotropy with reasonable magnetization and Curie temperature.The anisotropy is a combined effect of spin-orbit coupling and electrostatic crystal-field interactions.The main contribution comes from the rare-earth 4f electrons,which are well-screened from the crystalline environment but exhibit a strong spin-orbit coupling.In this limit,the magnetocrystalline anisotropy has a very transparent physical interpretation,the anisotropy energy essentially being equal to the energy of Hund's-rules 4f ion in the crystal field.The corresponding expression for the lowest-order uniaxial anisotropy constant K1 is used to discuss rare-earth substitutions,which have recently attracted renewed interest due to shifts in the rare-earth production and demand.Specific phenomena reviewed in this article are the enhancement of the anisotropy of Sm2Fe17 due to interstitial nitrogen,the use of Sm-Co magnets for high-temperature applications,and the comparison of rare-earth single-ion anisotropy with other single-ion and two-ion mechanisms.

  18. Low-temperature magnetic anisotropy in micas and chlorite

    DEFF Research Database (Denmark)

    Biedermann, Andrea R.; Bender Koch, Christian; Lorenz, Wolfram E A;

    2014-01-01

    use the magnetic anisotropy to understand a rock fabric, it is necessary to identify the minerals responsible for the magnetic anisotropy. Techniques have been developed to separate contributions of the ferrimagnetic, antiferromagnetic, paramagnetic, and diamagnetic susceptibilities to the anisotropy......Phyllosilicates, such as micas and chlorite, are common rock-forming minerals and often show preferred orientation in deformed rocks. In combination with single-crystal anisotropy, this leads to anisotropy of physical properties in the rock, such as magnetic susceptibility. In order to effectively...... of magnetic susceptibility. Because diamagnetic and paramagnetic susceptibility are both linearly dependent on field, separation of the anisotropic contributions requires understanding how the degree of anisotropy of the paramagnetic susceptibility changes as a function of temperature. Note that...

  19. The anisotropy of granular materials

    OpenAIRE

    Alonso-Marroquin, F.; Luding, S.; Herrmann, H. J.

    2004-01-01

    The effect of the anisotropy on the elastoplastic response of two dimensional packed samples of polygons is investigated here, using molecular dynamics simulation. We show a correlation between fabric coefficients, characterizing the anisotropy of the granular skeleton, and the anisotropy of the elastic response. We also study the anisotropy induced by shearing on the subnetwork of the sliding contacts. This anisotropy provides an explanation to some features of the plastic deformation of gra...

  20. Relativistic Density Functional Treatment of Magnetic Anisotropy

    OpenAIRE

    Zhang, Hongbin

    2009-01-01

    Spin-orbit coupling (SOC) reduces the spatial symmetry of ferromagnetic solids. That is, the physical properties of ferromagnetic materials are anisotropic, depending on the magnetization direction. In this thesis, by means of numerical calculations with full-relativistic density functional theory, we studied two kinds of physical properties: surface magnetic anisotropy energy (MAE) and anisotropic thermoelectric power due to Lifshitz transitions. After a short introduction to ...

  1. Structural anisotropy in amorphous Fe-Tb thin films

    International Nuclear Information System (INIS)

    We have used conventional and anomalous dispersion x-ray scattering to study the near-neighbor atomic environments in sputter-deposited amorphous Fe-Tb thin films with a large perpendicular magnetic anisotropy. The as-deposited films show a clear structural anisotropy, with more Fe-Tb near neighbor pairs in the out-of-plane direction. Upon annealing, the magnetic anisotropy drops significantly, and we see a corresponding reduction in the structural anisotropy. The number of Fe-Tb near-neighbors increases in the in-plane direction, but does not change in the out-of-plane direction. Therefore, the distribution of Fe-Tb near neighbors becomes more uniform upon annealing. We conclude that the observed reduction in perpendicular magnetic anisotropy energy is a result of this change in structure. copyright 1996 The American Physical Society

  2. Polarization and dilepton anisotropy in pion-nucleon collisions

    CERN Document Server

    Speranza, Enrico; Friman, Bengt

    2016-01-01

    Hadronic polarization and the related anisotropy of the dilepton angular distribution are studied for the reaction $\\pi N \\rightarrow Ne^+ e^-$. We employ consistent effective interactions for baryon resonances up to spin-5/2, where non-physical degrees of freedom are eliminated, to compute the anisotropy coefficients for isolated intermediate baryon resonances. It is shown that the spin and parity of the intermediate baryon resonance is reflected in the angular dependence of the anisotropy coefficient. We then compute the anisotropy coefficient including the $N(1520)$ and $N(1440)$ resonances, which are essential at the collision energy of the recent data obtained by the HADES collaboration on this reaction. We conclude that the anisotropy coefficient provides useful constraints for unravelling the resonance contributions to this process.

  3. CMB anisotropy science: a review

    CERN Document Server

    Challinor, Anthony

    2012-01-01

    The cosmic microwave background (CMB) provides us with our most direct observational window to the early universe. Observations of the temperature and polarization anisotropies in the CMB have played a critical role in defining the now-standard cosmological model. In this contribution we review some of the basics of CMB science, highlighting the role of observations made with ground-based and balloon-borne Antarctic telescopes. Most of the ingredients of the standard cosmological model are poorly understood in terms of fundamental physics. We discuss how current and future CMB observations can address some of these issues, focusing on two directly relevant for Antarctic programmes: searching for gravitational waves from inflation via B-mode polarization, and mapping dark matter through CMB lensing.

  4. Anisotropy in OLEDs

    Science.gov (United States)

    Callens, M. K.; Yokoyama, D.; Neyts, K.

    2015-09-01

    Small-molecule OLEDs, deposited by thermal evaporation, allow for precise control over layer thicknesses. This enables optimisation of the optical behaviour of the stack which ultimately determines the outcoupling efficiency. In terms of optical outcoupling there are limits to the efficiency by which the generated electromagnetic radiation can be extracted from the stack. These limitations are linked to the refractive indices of the individual layers. Values for maximum outcoupling efficiency are sometimes calculated under the implicit assumptions that the OLED stack is planar, that all layers are isotropic with a certain refractive index and that the emitters are not preferentially oriented. In reality it is known that these assumptions are not always valid, be it intentional or unintentional. In our work we transcend these limiting assumptions and look at different forms of anisotropy in OLEDs. Anisotropy in OLEDs comes in three distinct flavours; 1. Geometrical anisotropy, as for example in gratings, lenses or other internal or external scattering centres, 2. Anisotropic emitters, where the orientation significantly influences the direction in which radiation is emitted and 3. Anisotropic optical materials, where their anisotropic nature breaks the customary assumption of isotropic OLED materials. We investigate the effect of these anisotropic features on the outcoupling efficiency and ultimately, on the external quantum efficiency (EQE).

  5. Review of the anisotropy working group at UHECR-2012

    Directory of Open Access Journals (Sweden)

    Ivanov A.

    2013-06-01

    Full Text Available The study of ultra-high energy cosmic rays (UHECRs has recently experienced a jump in statistics as well as improved instrumentation. This has allowed a better sensitivity in searching for anisotropies in the arrival directions of cosmic rays. In this written version of the presentation given by the inter-collaborative “Anisotropy Working Group” at the International Symposium on Future Directions in UHECR physics at CERN in February 2012, we report on the current status for anisotropy searches in the arrival directions of UHECRs.

  6. Effective anisotropy through traveltime and amplitude matching

    KAUST Repository

    Wang, Hui

    2014-08-05

    Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.

  7. Flow stress anisotropy

    DEFF Research Database (Denmark)

    Winther, G.

    1996-01-01

    stress Variation in the rolling plane, which may be as high as 20%, are presented. The traditional Taylor model is applied to the data to account for the effect of texture. However, texture effects alone are not enough to explain all of the observed anisotropy. New models which take the combined effects...... of texture and deformation microstructure into account are presented. The models are based on the Taylor and Sachs models but modified with an anisotropic critical shear stress to account for the effect of the microstructure. The agreement between experimental data and model predictions is definitely better...

  8. Flow stress anisotropy

    DEFF Research Database (Denmark)

    Winther, G.

    1996-01-01

    stress Variation in the rolling plane, which may be as high as 20%, are presented. The traditional Taylor model is applied to the data to account for the effect of texture. However, texture effects alone are not enough to explain all of the observed anisotropy. New models which take the combined effects...... of texture and deformation microstructure into account are presented. The models are based on the Taylor and Sachs models but modified with an anisotropic critical shear stress to account for the effect of the microstructure. The agreement between experimental data and model predictions is definitely...

  9. Influence of magnetic anisotropy on the superferromagnetic ordering in nanocomposites

    DEFF Research Database (Denmark)

    Mørup, Steen; Christiansen, Gunnar Dan

    1993-01-01

    Magnetic interaction between ultrafine particles may result in superferromagnetism, i.e., ordering of the magnetic moments of particles which would be superparamagnetic if they were noninteracting. In this article we discuss the influence of the magnetic anisotropy on the temperature dependence of...... the order parameter. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  10. Anisotropy of weakly vibrated granular flows.

    Science.gov (United States)

    Wortel, Geert H; van Hecke, Martin

    2015-10-01

    We experimentally probe the anisotropy of weakly vibrated flowing granular media. Depending on the driving parameters-flow rate and vibration strength-this anisotropy varies significantly. We show how the anisotropy collapses when plotted as a function of the driving stresses, uncovering a direct link between stresses and anisotropy. Moreover, our data suggest that for small anisotropies, the shear stresses vanish. Anisotropy of the fabric of granular media thus plays a crucial role in determining the rheology of granular flows. PMID:26565148

  11. Anisotropy of Weakly Vibrated Granular Flows

    OpenAIRE

    Wortel, Geert; Van Hecke, Martin

    2014-01-01

    We experimentally probe the anisotropy of the fabric of weakly vibrated, flowing granular media. Depending on the driving parameters --- flow rate and vibration strength --- this anisotropy varies significantly. We show how the anisotropy collapses when plotted as function of the driving stresses, uncovering a direct link between stresses and anisotropy. Moreover, our data suggests that for small anisotropies, the shear stresses vanish. Anisotropy of the fabric of granular media thus plays a ...

  12. Fracture toughness anisotropy in shale

    Science.gov (United States)

    Chandler, Michael R.; Meredith, Philip G.; Brantut, Nicolas; Crawford, Brian R.

    2016-03-01

    The use of hydraulic fracturing to recover shale gas has focused attention on the fundamental fracture properties of gas-bearing shales, but there remains a paucity of available experimental data on their mechanical and physical properties. Such shales are strongly anisotropic, so that their fracture propagation trajectories depend on the interaction between their anisotropic mechanical properties and the anisotropic in situ stress field in the shallow crust. Here we report fracture toughness measurements on Mancos shale determined in all three principal fracture orientations: Divider, Short Transverse, and Arrester, using a modified short-rod methodology. Experimental results for a range of other sedimentary and carbonate rocks are also reported for comparison purposes. Significant anisotropy is observed in shale fracture toughness measurements at ambient conditions, with values, as high as 0.72 MPa m1/2 where the crack plane is normal to the bedding, and values as low as 0.21 MPa m1/2 where the crack plane is parallel to the bedding. For cracks propagating nonparallel to bedding, we observe a tendency for deviation toward the bedding-parallel orientation. Applying a maximum energy release rate criterion, we determined the conditions under which such deviations are more or less likely to occur under more generalized mixed-mode loading conditions. We find for Mancos shale that the fracture should deviate toward the plane with lowest toughness regardless of the loading conditions.

  13. Anisotropy in solid inflation

    International Nuclear Information System (INIS)

    In the model of solid / elastic inflation, inflation is driven by a source that has the field theoretical description of a solid. To allow for prolonged slow roll inflation, the solid needs to be extremely insensitive to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution, providing the first example with standard gravity and scalar fields only which evades the conditions of the so called cosmic no-hair conjecture. We compute the curvature perturbations on the anisotropic solution, and the corresponding phenomenological bound on the anisotropy. Finally, we discuss the analogy between this model and the f(φ)F2 model, which also allows for anisotropic inflation thanks to a suitable coupling between the inflaton φ and a vector field. We remark that the bispectrum of the curvature perturbations in solid inflation is enhanced in the squeezed limit and presents a nontrivial angular dependence, as had previously been found for the f(φ)F2 model

  14. Anisotropy in rotating drums

    Science.gov (United States)

    Povall, Timothy; McBride, Andrew; Govender, Indresan

    2015-11-01

    An anisotropic relationship between the stress and the strain rate has been observed in two-dimensional simulations of rotating drums. The objective of this work is to investigate the structure of the constitutive relation using three-dimensional discrete-element-method simulations of a rotating drum containing identical rigid spheres for a range of rotational speeds. Anisotropy is quantified from the alignment of the stress and strain rate tensors, with the strain rate computed using a least-squares fit. It is shown that in certain regions there is a strong anisotropic relationship, regardless of the speed of rotation. The effective friction coefficient is examined in order to determine the phase space in which the μ (I) rheology is valid. Lastly, a depth-averaged approach through the flowing layer is employed to determine the relationship between the velocity tangential to the equilibrium surface and the height of the flowing layer. A power-law relationship that approaches linear at high speeds is observed. Supported by NRF/DST Scarce Skills (South Africa).

  15. Neutrino Anisotropies after Planck

    CERN Document Server

    Gerbino, Martina; Said, Najla

    2013-01-01

    We present new constraints on the rest-frame sound speed, c_eff^2, and the viscosity parameter, c_vis^2, of the Cosmic Neutrino Background from the recent measurements of the Cosmic Microwave Background anisotropies provided by the Planck satellite. While broadly consistent with the ex- pectations of c_eff^2 = c_vis^2 = 1/3 in the standard scenario, the Planck dataset hints for a higher value of the viscosity parameter, with c_vis^2 = 0.60 +/- 0.18 at 68% c.l., and a lower value of the sound speed, with c_eff^2 = 0.304 +/- 0.013 at 68% c.l.. We find a correlation between the neutrino parameters and the lensing amplitude of the temperature power spectrum A_L. When the latter parameter is allowed to vary, we find a better consistency with the standard model with c_vis^2 = 0.51 +/- 0.22, c_eff^2 = 0.311 +/- 0.019 and A_L = 1.08 +/- 0.18 at 68% c.l.. This result indicates that the anomalous large value of A_L measured by Planck could be connected to non-standard neutrino properties. Including additional datasets ...

  16. Flow stress anisotropy in aluminium

    DEFF Research Database (Denmark)

    Juul Jensen, D.; Hansen, N.

    1990-01-01

    The plastic anisotropy of cold-rolled high purity aluminum (99.996%) and commercially pure aluminum (99.6%) has been investigated. Sample parameters were the initial grain size and the degree of plastic strain (ϵ < 3.00). Flow stresses (0.2% offset) were measured at room temperature by uniaxial...... tension as a function of the angle between the tensile axis and the rolling direction. Textures were determined by neutron diffraction, and Taylor M-factors were calculated. The microstructures were studied by TEM. It was found that the flow stress varies significantly with orientation both at low and...... high strains. It is shown that for most experimental conditions, texture effects alone cannot explain the observed anisotropy, and microstructural anisotropy effects have to be taken into account. In those cases, a correlation between the microstructural anisotropy and the development of microbands is...

  17. Braneworld cosmological models with anisotropy

    International Nuclear Information System (INIS)

    For a cosmological Randall-Sundrum braneworld with anisotropy, i.e., of Bianchi type, the modified Einstein equations on the brane include components of the five-dimensional Weyl tensor for which there are no evolution equations on the brane. If the bulk field equations are not solved, this Weyl term remains unknown, and many previous studies have simply prescribed it as ad hoc. We construct a family of Bianchi braneworlds with anisotropy by solving the five-dimensional field equations in the bulk. We analyze the cosmological dynamics on the brane, including the Weyl term, and shed light on the relation between anisotropy on the brane and the Weyl curvature in the bulk. In these models, it is not possible to achieve geometric anisotropy for a perfect fluid or scalar field - the junction conditions require anisotropic stress on the brane. But the solutions can isotropize and approach a Friedmann brane in an anti-de Sitter bulk

  18. Braneworld cosmological models with anisotropy

    Science.gov (United States)

    Campos, Antonio; Maartens, Roy; Matravers, David; Sopuerta, Carlos F.

    2003-11-01

    For a cosmological Randall-Sundrum braneworld with anisotropy, i.e., of Bianchi type, the modified Einstein equations on the brane include components of the five-dimensional Weyl tensor for which there are no evolution equations on the brane. If the bulk field equations are not solved, this Weyl term remains unknown, and many previous studies have simply prescribed it as ad hoc. We construct a family of Bianchi braneworlds with anisotropy by solving the five-dimensional field equations in the bulk. We analyze the cosmological dynamics on the brane, including the Weyl term, and shed light on the relation between anisotropy on the brane and the Weyl curvature in the bulk. In these models, it is not possible to achieve geometric anisotropy for a perfect fluid or scalar field—the junction conditions require anisotropic stress on the brane. But the solutions can isotropize and approach a Friedmann brane in an anti de Sitter bulk.

  19. Braneworld cosmological models with anisotropy

    CERN Document Server

    Campos, A; Matravers, D; Sopuerta, C F; Campos, Antonio; Maartens, Roy; Matravers, David; Sopuerta, Carlos F.

    2003-01-01

    For a cosmological Randall-Sundrum braneworld with anisotropy, i.e., of Bianchi type, the modified Einstein equations on the brane include components of the five-dimensional Weyl tensor for which there are no evolution equations on the brane. If the bulk field equations are not solved, this Weyl term remains unknown, and many previous studies have simply prescribed it ad hoc. We construct a family of Bianchi braneworlds with anisotropy by solving the five-dimensional field equations in the bulk. We analyze the cosmological dynamics on the brane, including the Weyl term, and shed light on the relation between anisotropy on the brane and Weyl curvature in the bulk. In these models, it is not possible to achieve geometric anisotropy for a perfect fluid or scalar field -- the junction conditions require anisotropic stress on the brane. But the solutions can isotropize and approach a Friedmann brane in an anti-de Sitter bulk.

  20. Discrete breathers in classical ferromagnetic lattices with easy-plane anisotropy

    DEFF Research Database (Denmark)

    Khalack, J. M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2003-01-01

    Discrete breathers (nonlinear localized modes) have been shown to exist in various nonlinear Hamiltonian lattice systems. This paper is devoted to the investigation of a classical d-dimensional ferromagnetic lattice with easy plane anisotropy. Its dynamics is described via the Heisenberg model...... local (single-ion) anisotropy. ©2003 American Institute of Physics....

  1. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  2. Anomalous Electronic Anisotropy Triggered by Ferroelastic Coupling in Multiferroic Heterostructures.

    Science.gov (United States)

    Ju, Changcheng; Yang, Jan-Chi; Luo, Cheng; Shafer, Padraic; Liu, Heng-Jui; Huang, Yen-Lin; Kuo, Ho-Hung; Xue, Fei; Luo, Chih-Wei; He, Qing; Yu, Pu; Arenholz, Elke; Chen, Long-Qing; Zhu, Jinsong; Lu, Xiaomei; Chu, Ying-Hao

    2016-02-01

    The ferroelastic strain coupling in multiferroic heterostructures is explored aiming at novel physical effects and fascinating functionality. Ferroelastic domain walls in manganites induced by a stripe BiFeO3 template can modulate the electronic transfer and sufficiently block the magnetic ordering, creating a vast anisotropy. The findings suggest the great importance of ferroelastic strain engineering in material modifications. PMID:26640119

  3. Grain boundary enegineering and alterations in anisotropy of interfacial properties

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Gärtnerová, Viera; Jäger, Aleš

    654-656, - (2010), s. 2350-2353. ISSN 0255-5476 R&D Projects: GA AV ČR KAN300100801; GA ČR GA106/08/0369 Institutional research plan: CEZ:AV0Z10100520 Keywords : grain boundary segregation, * anisotropy * compensation effect * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Anisotropy of the magnetocaloric effect in DyNiAl

    Czech Academy of Sciences Publication Activity Database

    Kaštil, J.; Javorský, P.; Andreev, Alexander V.

    2009-01-01

    Roč. 321, č. 15 (2009), s. 2318-2321. ISSN 0304-8853 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetocaloric effec * DyNiAl * magnetism * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.204, year: 2009

  5. Uniaxial strain controlling magnetic anisotropy in (Ga,Mn)As

    Czech Academy of Sciences Publication Activity Database

    Zemen, Jan; Jungwirth, Tomáš; Wunderlich, J.; Gallagher, B. L.

    2007-01-01

    Roč. 112, č. 2 (2007), 431-435. ISSN 0587-4246 Grant ostatní: NANOSPIN(XE) FP6-2002-IST-015728 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductors * magnetocrystalline anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.340, year: 2007

  6. PHYSICS

    CERN Document Server

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  7. PHYSICS

    CERN Multimedia

    J. Incandela

    There have been numerous developments in the physics area since the September CMS week. The biggest single event was the Physics/Trigger week in the end of Octo¬ber, whereas in terms of ongoing activities the “2007 analyses” went into high gear. This was in parallel with participation in CSA07 by the physics groups. On the or¬ganizational side, the new conveners of the physics groups have been selected, and a new database for man¬aging physics analyses has been deployed. Physics/Trigger week The second Physics-Trigger week of 2007 took place during the week of October 22-26. The first half of the week was dedicated to working group meetings. The ple¬nary Joint Physics-Trigger meeting took place on Wednesday afternoon and focused on the activities of the new Trigger Studies Group (TSG) and trigger monitoring. Both the Physics and Trigger organizations are now focused on readiness for early data-taking. Thus, early trigger tables and preparations for calibr...

  8. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  9. The regimes of the East-West and the radial anisotropies of cosmic rays in the heliosphere

    International Nuclear Information System (INIS)

    The observations obtained over the last 23 y suggest that there are two distinct physical states of the heliosphere. One state covers the period 1957-70 when the diurnal anisotropy consists of the azimuthal component only. One may define this period as the regime of the East-West (co-rotation) anisotropy. The period 1971-79 is characterized by the appearance of a radial anisotropy, which attains a maximum amplitude in 1976, when the solar activity is minimum. There appears to exist an inverse correlation between the amplitude of the radial anisotropy and solar activity. The amplitude of the East-West anisotropy varies with time during this latter period and may also be rigidity-dependent. In 1976 the amplitude of the East-West anisotropy is zero for the underground muon data obtained at Embudo and has a lower value for the neutron monitor data obtained at Deep River. On the other hand, the amplitude of the radial anisotropy depends weakly upon the primary rigidity. The period 1971-79 thus defines the regime of the radial anisotropy. The physical state of the heliosphere is very stable during the regime of the East-West anisotropy and extremely dynamic during the regime of the radial anisotropy. The heliosphere appears to switch from one physical state to another following the onset of the solar polar field reversal. (author)

  10. PHYSICS

    CERN Multimedia

    Submitted by

    Physics Week: plenary meeting on physics groups plans for startup (14–15 May 2008) The Physics Objects (POG) and Physics Analysis (PAG) Groups presented their latest developments at the plenary meeting during the Physics Week. In the presentations particular attention was given to startup plans and readiness for data-taking. Many results based on the recent cosmic run were shown. A special Workshop on SUSY, described in a separate section, took place the day before the plenary. At the meeting, we had also two special DPG presentations on “Tracker and Muon alignment with CRAFT” (Ernesto Migliore) and “Calorimeter studies with CRAFT” (Chiara Rovelli). We had also a report from Offline (Andrea Rizzi) and Computing (Markus Klute) on the San Diego Workshop, described elsewhere in this bulletin. Tracking group (Boris Mangano). The level of sophistication of the tracking software increased significantly over the last few months: V0 (K0 and Λ) reconstr...

  11. Spin confinement by anisotropy modulation

    Energy Technology Data Exchange (ETDEWEB)

    Bland, J.A.C. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom)]. E-mail: jacb1@phy.cam.ac.uk; Lew, W.S.; Li, S.P.; Lopez-Diaz, L.; Vaz, C.A.F. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Natali, M.; Chen, Y. [Laboratoire de Photonique et de Nanostructures, CNRS-LPN, Marcoussis (France)

    2002-10-07

    The spin configuration in a magnet is in general a 'natural' consequence of both the intrinsic properties of the material and the sample dimensions. We demonstrate that this limitation can be overcome in a homogeneous ferromagnetic film by engineering an anisotropy contrast. Substrates with laterally modulated single-crystal and polycrystalline surface regions were used to induce selective epitaxial growth of a ferromagnetic Ni film. The resulting spatially varying magnetic anisotropy leads to regular perpendicular and in-plane magnetic domains, separated by a new type of magnetic domain wall-the 'anisotropy constrained' magnetic wall. Micromagnetic simulations indicate that the wall is asymmetric, has a small out-of-plane component and has no mobility under external perturbation. (author)

  12. Spin confinement by anisotropy modulation

    Science.gov (United States)

    Bland, J. A. C.; Lew, W. S.; Li, S. P.; Lopez-Diaz, L.; Vaz, C. A. F.; Natali, M.; Chen, Y.

    2002-10-01

    The spin configuration in a magnet is in general a `natural' consequence of both the intrinsic properties of the material and the sample dimensions. We demonstrate that this limitation can be overcome in a homogeneous ferromagnetic film by engineering an anisotropy contrast. Substrates with laterally modulated single-crystal and polycrystalline surface regions were used to induce selective epitaxial growth of a ferromagnetic Ni film. The resulting spatially varying magnetic anisotropy leads to regular perpendicular and in-plane magnetic domains, separated by a new type of magnetic domain wall-the `anisotropy constrained' magnetic wall. Micromagnetic simulations indicate that the wall is asymmetric, has a small out-of-plane component and has no mobility under external perturbation.

  13. A CMB Gibbs sampler for localized secondary anisotropies

    CERN Document Server

    Bull, Philip; Eriksen, Hans Kristian; Ferreira, Pedro G; Fuskeland, Unni; Gorski, Krzysztof M; Jewell, Jeffrey B

    2014-01-01

    As well as primary fluctuations, CMB temperature maps contain a wealth of additional information in the form of secondary anisotropies. Secondary effects that can be identified with individual objects, such as the thermal and kinetic Sunyaev-Zel'dovich (SZ) effects due to galaxy clusters, are difficult to unambiguously disentangle from foreground contamination and the primary CMB, which currently inhibits their use as precision cosmological probes. We develop a Bayesian formalism for rigorously characterising anisotropies that are localised on the sky, taking the TSZ and KSZ effects as an example. Using a Gibbs sampling scheme, we are able to efficiently sample from the joint posterior distribution for a multi-component model of the sky with many thousands of correlated physical parameters. The posterior can then be exactly marginalised to estimate properties of the secondary anisotropies, fully taking into account degeneracies with the other signals in the CMB map. We show that this method is computationally...

  14. Spacetime anisotropy affects cosmological entanglement

    CERN Document Server

    Pierini, Roberto; Mancini, Stefano

    2016-01-01

    Most existing cosmological entanglement studies are focused on the isotropic Robertson-Walker (RW) spacetime. Here we go beyond this limitation and study the influence of anisotropy on entanglement generated by dynamical spacetime. Since the isotropic spacetime is viewed as a background medium and the anisotropy is incorporated as perturbation, we decompose entanglement entropy into isotropic and anisotropic contributions. The latter is shown to be non-negligible by analyzing two cosmological models with weak and conformal coupling. We also show the possibility of using entanglement to infer about universe features.

  15. Amiba Observation of CMB Anisotropies

    Science.gov (United States)

    Ng, Kin-Wang

    2003-03-01

    The Array for Microwave Background Anisotropies (AMiBA), a 13-element dual-channel 85-105 GHz interferometer array with full polarization capabilities, is being built to search for high redshift clusters of galaxies via the Sunyaev-Zel'dovich effect as well as to probe the polarization properties of the cosmic microwave background (CMB). We discuss several important issues in the observation of the CMB anisotropies such as observing strategy, l space resolution and mosaicing, optimal estimation of the power spectra, and ground pickup removal.

  16. Laser-induced nuclear orientation and gamma anisotropy in sodium

    International Nuclear Information System (INIS)

    The use of laser optical pumping to induce nuclear orientation in several isotopes and one isomer of atomic sodium vapor is described. Essentially complete nuclear polarization, P > 90%, has been achieved in stable 23Na when pumping with modest laser intensities (I approx. = 10 mW/cm2). The volume of the sample cell was approximately 10 cc, and was filled with a sodium density of about 10'' atoms/cc. Complete coverage of the Doppler distribution was accomplished with the use of trace amounts (less than or equal to 1 torr) of argon buffer gas to induce velocity changing collisions. A theoretical model which accurately predicts the amount of polarization is developed. The orientation of nuclei which are unstable to gamma decay can manifest itself in anisotropic gamma ray emission. This anisotropy can be used to measure isotope and isomer shifts, from which nuclear properties can be derived. Gamma anisotropy was observed in two systems, 22Na and /sup 24m/Na. From the observed anisotropy in /sup 24m/Na, a negative sign for the g factor is determined. Values are derived for the magnetic moment, μ = 2.56 +- 0.64 nm, and the isomer shift, deltaν/sub 24m/ = 288 +- 191 MHz (D1 line). A model is described which relates various laser and fubber gas parameters to the observed gamma anisotropy lineshape. This model facilitates the extraction of physical parameters from knowledge of the laser frequency at which the anisotropy is a maximum

  17. Performance of ERNE in particle flux anisotropy measurement

    Directory of Open Access Journals (Sweden)

    E. Riihonen

    Full Text Available The HED particle detector of the ERNE experiment to be flown on the SOHO spacecraft is unique compared to the earlier space-born detectors in its high directional resolution (better than 2°, depending on the track inclination. Despite the fixed view cone due to the three-axis stabilization of the spacecraft, the good angular and temporal resolution of the detector provides a new kind of opportunity for monitoring in detail the development of the anisotropies pertaining, for example, to the onset of SEP events, or passage of shock fronts related to gradual events. In order to optimize the measurement parameters, we have made a preflight simulation study of the HED anisotropy measurement capabilities. The purpose was to prove the feasibility of the selected measurement method and find the physical limits for the HED anisotropy detection. The results show HED to be capable of detecting both strong anisotropies related to impulsive events, and smoother anisotropies associated with gradual events.

  18. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  19. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  20. Cosmic microwave anisotropies from BPS semilocal strings

    CERN Document Server

    Urrestilla, Jon; Hindmarsh, Mark; Kunz, Martin; Liddle, Andrew R

    2007-01-01

    We present the first ever calculation of cosmic microwave background CMB anisotropy power spectra from semilocal cosmic strings, obtained via simulations of a classical field theory. Semilocal strings are a type of non-topological defect arising in some models of inflation motivated by fundamental physics, and are thought to relax the constraints on the symmetry breaking scale as compared to models with (topological) cosmic strings. We derive constraints on the model parameters, including the string tension parameter mu, from fits to cosmological data, and find that in this regard BPS semilocal strings resemble textures more than topological strings. The observed microwave anisotropy at l=10 is reproduced if Gmu = 4.9x10^{-6} (G is Newton's constant). However as with other defects the spectral shape does not match observations, and in models with inflationary perturbations plus semilocal strings the 95% confidence level upper bound is Gmu<1.9x10^{-6} when CMB data, Hubble Key Project and Big Bang Nucleosyn...

  1. Results from the Wilkinson Microwave Anisotropy Probe

    Science.gov (United States)

    Komatsu, E.; Bennett, Charles L.; Komatsu, Eiichiro

    2015-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These full-sky maps were used to obtain measurements of temperature and polarization anisotropy of the cosmic microwave background with the unprecedented accuracy and precision. The analysis of two-point correlation functions of temperature and polarization data gives determinations of the fundamental cosmological parameters such as the age and composition of the universe, as well as the key parameters describing the physics of inflation, which is further constrained by three-point correlation functions. WMAP observations alone reduced the flat ? cold dark matter (Lambda Cold Dark Matter) cosmological model (six) parameter volume by a factor of > 68, 000 compared with pre-WMAP measurements. The WMAP observations (sometimes in combination with other astrophysical probes) convincingly show the existence of non-baryonic dark matter, the cosmic neutrino background, flatness of spatial geometry of the universe, a deviation from a scale-invariant spectrum of initial scalar fluctuations, and that the current universe is undergoing an accelerated expansion. The WMAP observations provide the strongest ever support for inflation; namely, the structures we see in the universe originate from quantum fluctuations generated during inflation.

  2. CMB Anisotropies by Collapsing Textures

    OpenAIRE

    Sousa, Kepa; Urrestilla, Jon

    2013-01-01

    CMB photons passing through a collapsing texture knot receive an energy shift, creating characteristic cold and hot spots on the sky. We calculate the anisotropy pattern produced by collapsing texture knots of arbitrary shape. The texture dynamics are solved numerically on a Minkowski background.

  3. PHYSICS

    CERN Document Server

    J. Incandela

    The all-plenary format of the CMS week in Cyprus gave the opportunity to the conveners of the physics groups to present the plans of each physics analysis group for tackling early physics analyses. The presentations were complete, so all are encouraged to browse through them on the Web. There is a wealth of information on what is going on, by whom and on what basis and priority. The CMS week was followed by two CMS “physics events”, the ICHEP08 days and the physics days in July. These were two weeks dedicated to either the approval of all the results that would be presented at ICHEP08, or to the review of all the other Monte-Carlo based analyses that were carried out in the context of our preparations for analysis with the early LHC data (the so-called “2008 analyses”). All this was planned in the context of the beginning of a ramp down of these Monte Carlo efforts, in anticipation of data.  The ICHEP days are described below (agenda and talks at: http://indic...

  4. PHYSICS

    CERN Multimedia

    Joe Incandela

    There have been two plenary physics meetings since the December CMS week. The year started with two workshops, one on the measurements of the Standard Model necessary for “discovery physics” as well as one on the Physics Analysis Toolkit (PAT). Meanwhile the tail of the “2007 analyses” is going through the last steps of approval. It is expected that by the end of January all analyses will have converted to using the data from CSA07 – which include the effects of miscalibration and misalignment. January Physics Days The first Physics Days of 2008 took place on January 22-24. The first two days were devoted to comprehensive re¬ports from the Detector Performance Groups (DPG) and Physics Objects Groups (POG) on their planning and readiness for early data-taking followed by approvals of several recent studies. Highlights of POG presentations are included below while the activities of the DPGs are covered elsewhere in this bulletin. January 24th was devo...

  5. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  6. Exotic skyrmion crystals in chiral magnets with compass anisotropy

    Science.gov (United States)

    Chen, J. P.; Zhang, Dan-Wei; Liu, J. -M.

    2016-01-01

    The compass-type anisotropy appears naturally in diverse physical contexts with strong spin-orbit coupling (SOC) such as transition metal oxides and cold atomic gases etc, and it has been receiving substantial attention. Motivated by recent studies and particularly recent experimental observations on helimagnet MnGe, we investigate the critical roles of this compass-type anisotropy in modulating various spin textures of chiral magnets with strong SOC, by Monte Carlo simulations based on a classical Heisenberg spin model with Dzyaloshinsky-Moriya interaction and compass anisotropy. A phase diagram with emergent spin orders in the space of compass anisotropy and out-of-plane magnetic field is presented. In this phase diagram, we propose that a hybrid super-crystal structure consisting of alternating half-skyrmion and half-anti-skyrmion is the possible zero-field ground state of MnGe. The simulated evolution of the spin structure driven by magnetic field is in good accordance with experimental observations on MnGe. Therefore, this Heisenberg spin model successfully captures the main physics responsible for the magnetic structures in MnGe, and the present work may also be instructive to research on the magnetic states in other systems with strong SOC. PMID:27377149

  7. Exotic skyrmion crystals in chiral magnets with compass anisotropy

    Science.gov (United States)

    Chen, J. P.; Zhang, Dan-Wei; Liu, J.-M.

    2016-07-01

    The compass-type anisotropy appears naturally in diverse physical contexts with strong spin-orbit coupling (SOC) such as transition metal oxides and cold atomic gases etc, and it has been receiving substantial attention. Motivated by recent studies and particularly recent experimental observations on helimagnet MnGe, we investigate the critical roles of this compass-type anisotropy in modulating various spin textures of chiral magnets with strong SOC, by Monte Carlo simulations based on a classical Heisenberg spin model with Dzyaloshinsky-Moriya interaction and compass anisotropy. A phase diagram with emergent spin orders in the space of compass anisotropy and out-of-plane magnetic field is presented. In this phase diagram, we propose that a hybrid super-crystal structure consisting of alternating half-skyrmion and half-anti-skyrmion is the possible zero-field ground state of MnGe. The simulated evolution of the spin structure driven by magnetic field is in good accordance with experimental observations on MnGe. Therefore, this Heisenberg spin model successfully captures the main physics responsible for the magnetic structures in MnGe, and the present work may also be instructive to research on the magnetic states in other systems with strong SOC.

  8. Cosmic ray anisotropy and its time variations

    International Nuclear Information System (INIS)

    Cosmic ray anisotropy is analysed on the base of the data of the worldwide network of neutron monitors for the period of 1958-1972. 11-year variation of anisotropy phase and amplitude is investigated. Three-dimensional cosmic ray anisotropy in interplanetary space is calculated. (orig./WBU)

  9. Detection of zero anisotropy at 5.2 AU during the November 1998 solar particle event: Ulysses Anisotropy Telescopes observations

    Directory of Open Access Journals (Sweden)

    S. Dalla

    Full Text Available For the first time during the mission, the Anisotropy Telescopes instrument on board the Ulysses spacecraft measured constant zero anisotropy of protons in the 1.3-2.2 MeV energy range, for a period lasting more than three days. This measurement was made during the energetic particle event taking place at Ulysses between 25 November and 15 December 1998, an event characterised by constant high proton fluxes within a region delimited by two interplanetary forward shocks, at a distance of 5.2 AU from the Sun and heliographic latitude of 17°S. We present the ATs results for this event and discuss their possible interpretation and their relevance to the issue of intercalibration of the two telescopes.

    Key words: Interplanetary physics (energetic particles - Solar physics, astrophysics and astronomy (energetic particles - Space plasma physics (instruments and techniques

  10. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  11. PHYSICS

    CERN Multimedia

    Guenther Dissertori

    The time period between the last CMS week and this June was one of intense activity with numerous get-together targeted at addressing specific issues on the road to data-taking. The two series of workshops, namely the “En route to discoveries” series and the “Vertical Integration” meetings continued.   The first meeting of the “En route to discoveries” sequence (end 2007) had covered the measurements of the Standard Model signals as necessary prerequisite to any claim of signals beyond the Standard Model. The second meeting took place during the Feb CMS week and concentrated on the commissioning of the Physics Objects, whereas the third occurred during the April Physics Week – and this time the theme was the strategy for key new physics signatures. Both of these workshops are summarized below. The vertical integration meetings also continued, with two DPG-physics get-togethers on jets and missing ET and on electrons and photons. ...

  12. PHYSICS

    CERN Multimedia

    D. Acosta

    2011-01-01

    Since the last CMS Week, all physics groups have been extremely active on analyses based on the full 2010 dataset, with most aiming for a preliminary measurement in time for the winter conferences. Nearly 50 analyses were approved in a “marathon” of approval meetings during the first two weeks of March, and the total number of approved analyses reached 90. The diversity of topics is very broad, including precision QCD, Top, and electroweak measurements, the first observation of single Top production at the LHC, the first limits on Higgs production at the LHC including the di-tau final state, and comprehensive searches for new physics in a wide range of topologies (so far all with null results unfortunately). Most of the results are based on the full 2010 pp data sample, which corresponds to 36 pb-1 at √s = 7 TeV. This report can only give a few of the highlights of a very rich physics program, which is listed below by physics group...

  13. CMB Anisotropies from a Gradient Mode

    CERN Document Server

    Mirbabayi, Mehrdad

    2014-01-01

    A pure gradient mode must have no observable dynamical effect at linear level. We confirm this by showing that its contribution to the dipolar power asymmetry of CMB anisotropies vanishes, if Maldacena's consistency condition is satisfied. To this end, the existing second order Sachs-Wolfe formula in the squeezed limit is extended to include a gradient in the long mode and to account for the change in the location of the last scattering surface induced by this mode. At second order, a gradient mode generated in Single-field inflation is shown to induce a quadrupole moment. For instance in a matter-dominated model it is equal to 5/18 times the square of the linear gradient part. This quadrupole can be cancelled by superposing a quadratic perturbation. The result is shown to be a non-linear extension of Weinberg's adiabatic modes: a long-wavelength physical mode which looks locally like a coordinate transformation.

  14. Seismic Anisotropy in the Deep Mantle, Boundary Layers and the Geometry of Mantle Convection

    Science.gov (United States)

    Karato, S.

    An attempt is made to explore the geodynamical significance of seismic anisotropy in the deep mantle on the basis of mineral physics. The mineral physics observations used include the effects of deformation mechanisms on lattice and shape preferred orientation, the effects of pressure on elastic anisotropy and the nature of lattice preferred orientation in deep mantle minerals in dislocation creep regime. Many of these issues are still poorly constrained, but a review of recent results shows that it is possible to interpret deep mantle seismic anisotropy in a unified fashion, based on the solid state processes without invoking partial melting. The key notions are (i) the likely regional variation in the magnitude of anisotropy as deformation mechanisms change from dislocation to diffusion creep (or superplasticity), associated with a change in the stress level and/or grain-size in the convecting mantle with a high Rayleigh number, and (ii) the change in elastic anisotropy with pressure in major mantle minerals, particularly in (Mg, Fe)O. The results provide the following constraints on the style of mantle convection (i) the SH > SV anisotropy in the bottom transition zone and the SV > SH anisotropy in the top lower mantle can be attributed to anisotropy structures (lattice preferred orientation and/or laminated structures) caused by the horizontal flow in this depth range, suggesting the presence of a mid-mantle boundary layer due to (partially) layered convection, (ii) the observed no significant seismic anisotropy in the deep mantle near subduction zones implies that deformation associated with subducting slabs is due mostly to diffusion creep (or superplasticity) and therefore slabs are weak in the deep mantle and hence easily deformed when encountered with resistance forces, and (iii) the SH > SV anisotropy in the cold thick portions of the D" layer is likely to be due to horizontally aligned shape preferred orientation in perovskite plus magnesiow

  15. PHYSICS

    CERN Multimedia

    the PAG conveners

    2011-01-01

    The delivered LHC integrated luminosity of more than 1 inverse femtobarn by summer and more than 5 by the end of 2011 has been a gold mine for the physics groups. With 2011 data, we have submitted or published 14 papers, 7 others are in collaboration-wide review, and 75 Physics Analysis Summaries have been approved already. They add to the 73 papers already published based on the 2010 and 2009 datasets. Highlights from each physics analysis group are described below. Heavy ions Many important results have been obtained from the first lead-ion collision run in 2010. The published measurements include the first ever indications of Υ excited state suppression (PRL synopsis), long-range correlation in PbPb, and track multiplicity over a wide η range. Preliminary results include the first ever measurement of isolated photons (showing no modification), J/ψ suppression including the separation of the non-prompt component, further study of jet fragmentation, nuclear modification factor...

  16. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      The period since the last CMS Bulletin has been historic for CMS Physics. The pinnacle of our physics programme was an observation of a new particle – a strong candidate for a Higgs boson – which has captured worldwide interest and made a profound impact on the very field of particle physics. At the time of the discovery announcement on 4 July, 2012, prominent signals were observed in the high-resolution H→γγ and H→ZZ(4l) modes. Corroborating excess was observed in the H→W+W– mode as well. The fermionic channel analyses (H→bb, H→ττ), however, yielded less than the Standard Model (SM) expectation. Collectively, the five channels established the signal with a significance of five standard deviations. With the exception of the diphoton channel, these analyses have all been updated in the last months and several new channels have been added. With improved analyses and more than twice the i...

  17. PHYSICS

    CERN Document Server

    Darin Acosta

    2010-01-01

    The collisions last year at 900 GeV and 2.36 TeV provided the long anticipated collider data to the CMS physics groups. Quite a lot has been accomplished in a very short time. Although the delivered luminosity was small, CMS was able to publish its first physics paper (with several more in preparation), and commence the commissioning of physics objects for future analyses. Many new performance results have been approved in advance of this CMS Week. One remarkable outcome has been the amazing agreement between out-of-the-box data with simulation at these low energies so early in the commissioning of the experiment. All of this is testament to the hard work and preparation conducted beforehand by many people in CMS. These analyses could not have happened without the dedicated work of the full collaboration on building and commissioning the detector, computing, and software systems combined with the tireless work of many to collect, calibrate and understand the data and our detector. To facilitate the efficien...

  18. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    The Physics Groups are actively engaged on analyses of the first data from the LHC at 7 TeV, targeting many results for the ICHEP conference taking place in Paris this summer. The first large batch of physics approvals is scheduled for this CMS Week, to be followed by four more weeks of approvals and analysis updates leading to the start of the conference in July. Several high priority analysis areas were organized into task forces to ensure sufficient coverage from the relevant detector, object, and analysis groups in the preparation of these analyses. Already some results on charged particle correlations and multiplicities in 7 TeV minimum bias collisions have been approved. Only one small detail remains before ICHEP: further integrated luminosity delivered by the LHC! Beyond the Standard Model measurements that can be done with these data, the focus changes to the search for new physics at the TeV scale and for the Higgs boson in the period after ICHEP. Particle Flow The PFT group is focusing on the ...

  19. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      2012 has started off as a very busy year for the CMS Physics Groups. Planning for the upcoming higher luminosity/higher energy (8 TeV) operation of the LHC and relatively early Rencontres de Moriond are the high-priority activities for the group at the moment. To be ready for the coming 8-TeV data, CMS has made a concerted effort to perform and publish analyses on the 5 fb−1 dataset recorded in 2011. This has resulted in the submission of 16 papers already, including nine on the search for the Higgs boson. In addition, a number of preliminary results on the 2011 dataset have been released to the public. The Exotica and SUSY groups approved several searches for new physics in January, such as searches for W′ and exotic highly ionising particles. These were highlighted at a CERN seminar given on 24th  January. Many more analyses, from all the PAGs, including the newly formed SMP (Standard Model Physics) and FSQ (Forward and Small-x QCD), were approved in February. The ...

  20. PHYSICS

    CERN Multimedia

    L. Demortier

    Physics-wise, the CMS week in December was dominated by discussions of the analyses that will be carried out in the “next six months”, i.e. while waiting for the first LHC collisions.  As presented in December, analysis approvals based on Monte Carlo simulation were re-opened, with the caveat that for this work to be helpful to the goals of CMS, it should be carried out using the new software (CMSSW_2_X) and associated samples.  By the end of the week, the goal for the physics groups was set to be the porting of our physics commissioning methods and plans, as well as the early analyses (based an integrated luminosity in the range 10-100pb-1) into this new software. Since December, the large data samples from CMSSW_2_1 were completed. A big effort by the production group gave a significant number of events over the end-of-year break – but also gave out the first samples with the fast simulation. Meanwhile, as mentioned in December, the arrival of 2_2 meant that ...

  1. Magnetoresistance Anisotropy in WTe2

    Science.gov (United States)

    Thoutam, Laxman Raju; Wang, Yonglei; Xiao, Zhili; Das, Saptarshi; Luican Mayer, Adina; Divan, Ralu; Crabtree, George W.; Kwok, Wai Kwong

    We report the angle dependence of the magnetoresistance in WTe2. Being a layered material, WTe2 is considered to be electronically two-dimensional (2D). Our results demonstrate that it is in fact 3D with an anisotropy of effective mass as small as 2. We measured the magnetic field dependence of the sample resistance R(H) at various angles between the applied magnetic field with respect to the c-axis of the crystal and found that they can be scaled based on the mass anisotropy, which changes from ~2 to ~5 with decreasing temperature in the Fermi liquid state. We will also discuss the origin of the turn-on temperature behavior in this material.

  2. Microwave Anisotropies from Random Sources

    CERN Document Server

    Ferreira, P G

    1996-01-01

    I report on recent developments in the theory of cosmic background radiation perturbations. I describe ways of modeling alternatives to the canonical Gaussian theories within the standard framework of cosmological perturbation theory. Some comments are made on using these techniques to resolve the uncertainties in theories of structure formation with topological defects. (To appear in the proceedings of the XXXIth Moriond meeting, ``Microwave Background Anisotropies'')

  3. [Cosmic Microwave Background (CMB) Anisotropies

    Science.gov (United States)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10-7, where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  4. [Cosmic Microwave Background (CMB) Anisotropies

    Science.gov (United States)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  5. PHYSICS

    CERN Multimedia

    Christopher Hill

    2013-01-01

    Since the last CMS Bulletin, the CMS Physics Analysis Groups have completed more than 70 new analyses, many of which are based on the complete Run 1 dataset. In parallel the Snowmass whitepaper on projected discovery potential of CMS for HL-LHC has been completed, while the ECFA HL-LHC future physics studies has been summarised in a report and nine published benchmark analyses. Run 1 summary studies on b-tag and jet identification, quark-gluon discrimination and boosted topologies have been documented in BTV-13-001 and JME-13-002/005/006, respectively. The new tracking alignment and performance papers are being prepared for submission as well. The Higgs analysis group produced several new results including the search for ttH with H decaying to ZZ, WW, ττ+bb (HIG-13-019/020) where an excess of ~2.5σ is observed in the like-sign di-muon channel, and new searches for high-mass Higgs bosons (HIG-13-022). Search for invisible Higgs decays have also been performed both using the associ...

  6. PHYSICS

    CERN Document Server

    C. Hill

    2013-01-01

    In the period since the last CMS Bulletin, the LHC – and CMS – have entered LS1. During this time, CMS Physics Analysis Groups have performed more than 40 new analyses, many of which are based on the complete 8 TeV dataset delivered by the LHC in 2012 (and in some cases on the full Run 1 dataset). These results were shown at, and well received by, several high-profile conferences in the spring of 2013, including the inaugural meeting of the Large Hadron Collider    Physics Conference (LHCP) in Barcelona, and the 26th International Symposium on Lepton Photon Interactions at High Energies (LP) in San Francisco. In parallel, there have been significant developments in preparations for Run 2 of the LHC and on “future physics” studies for both Phase 1 and Phase 2 upgrades of the CMS detector. The Higgs analysis group produced five new results for LHCP including a new H-to-bb search in VBF production (HIG-13-011), ttH with H to γ&ga...

  7. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    The period since the last CMS bulletin has seen the end of proton collisions at a centre-of-mass energy 8 TeV, a successful proton-lead collision run at 5 TeV/nucleon, as well as a “reference” proton run at 2.76 TeV. With these final LHC Run 1 datasets in hand, CMS Physics Analysis Groups have been busy analysing these data in preparation for the winter conferences. Moreover, despite the fact that the pp run only concluded in mid-December (and there was consequently less time to complete data analyses), CMS again made a strong showing at the Rencontres de Moriond in La Thuile (EW and QCD) where nearly 40 new results were presented. The highlight of these preliminary results was the eagerly anticipated updated studies of the properties of the Higgs boson discovered in July of last year. Meanwhile, preparations for Run 2 and physics performance studies for Phase 1 and Phase 2 upgrade scenarios are ongoing. The Higgs analysis group produced updated analyses on the full Run 1 dataset (~25 f...

  8. PHYSICS

    CERN Multimedia

    J. D'Hondt

    The Electroweak and Top Quark Workshop (16-17th of July) A Workshop on Electroweak and Top Quark Physics, dedicated on early measurements, took place on 16th-17th July. We had more than 40 presentations at the Workshop, which was an important milestone for 2007 physics analyses in the EWK and TOP areas. The Standard Model has been tested empirically by many previous experiments. Observables which are nowadays known with high precision will play a major role for data-based CMS calibrations. A typical example is the use of the Z to monitor electron and muon reconstruction in di-lepton inclusive samples. Another example is the use of the W mass as a constraint for di-jets in the kinematic fitting of top-quark events, providing information on the jet energy scale. The predictions of the Standard Model, for what concerns proton collisions at the LHC, are accurate to a level that the production of W/Z and top-quark events can be used as a powerful tool to commission our experiment. On the other hand the measure...

  9. Light-controlled anisotropy in dielectrics containing azobenzene

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Nešpůrek, Stanislav; Sedláková, Zdeňka; Zakrevskyy, Y.; Stumpe, J.

    Vol. Nr 982. Lodz : Department of Molecular Physics, Technical University of Lodz, 2006 - (Socha, A.), s. 270-271 ISSN 0458-1555. [Conference International Dielectric Society /4./ and International Conference Dielectric and Related Phenomena /9./. Poznan (PL), 03.09.2006-07.09.2006] R&D Projects: GA AV ČR IAA4112401 Institutional research plan: CEZ:AV0Z40500505 Keywords : azobenzene * light anisotropy * photochromism Subject RIV: CD - Macromolecular Chemistry

  10. Linking preferred orientations to elastic anisotropy in muderong shale, Australia

    OpenAIRE

    W. Kanitpanyacharoen; Vasin, R; Wenk, HR; Dewhurst, DN

    2015-01-01

    © 2014 Society of Exploration Geophysicists. The significance of shales for unconventional hydrocarbon reservoirs, nuclear waste repositories, and geologic carbon stor- age has opened new research frontiers in geophysics. Among many of its unique physical properties, elastic anisotropy had long been investigated by experimental and computational ap- proaches. Here, we calculated elastic properties of Cretaceous Muderong Shale from Australia with a self-consistent averaging method based on mic...

  11. Large-Angular Scales CMB Anisotropy from Excited Initial Mode

    CERN Document Server

    Sojasi, A; Yusofi, E

    2015-01-01

    According to the inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of the new physics hypothesis. Initial state of quantum fluctuations is one of the important options at high energy scale, which can affect on the observables such as CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. Indeed, considering the recent Planck constraint on spectral index, motivated us to examine the effect of new excited mode function (instead of pure de Sitter mode) on the CMB anisotropy in large-angular scales. In so doing, it was revealed that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit $ \\ell<200 $ the tiny deviation is appeared. Also, it was shown that the power spectrum of CMB anisotropy is dependent on the slow-roll parameter $\\epsilon $.

  12. PHYSICS

    CERN Document Server

    V.Ciulli

    2011-01-01

    The main programme of the Physics Week held between 16th and 20th May was a series of topology-oriented workshops on di-leptons, di-photons, inclusive W, and all-hadronic final states. The goal of these workshops was to reach a common understanding for the set of objects (ID, cleaning...), the handling of pile-up, calibration, efficiency and purity determination, as well as to revisit critical common issues such as the trigger. Di-lepton workshop Most analysis groups use a di-lepton trigger or a combination of single and di-lepton triggers in 2011. Some groups need to collect leptons with as low PT as possible with strong isolation and identification requirements as for Higgs into WW at low mass, others with intermediate PT values as in Drell-Yan studies, or high PT as in the Exotica group. Electron and muon reconstruction, identification and isolation, was extensively described in the workshop. For electrons, VBTF selection cuts for low PT and HEEP cuts for high PT were discussed, as well as more complex d...

  13. Lichtinduzierte Generierung und Charakterisierung optischer Anisotropie

    OpenAIRE

    Jung, Carl Christoph

    2005-01-01

    Eine Nutzung der optischen Anisotropie dünner Schichten ist vor allem für die Displaytechnologie, die optische Datenspeicherung und für optische Sicherheitselemente von hoher Bedeutung. Diese Doktorarbeit befasst sich mit theoretischen und experimentellen Untersuchung von dreidimensionaler Anisotropie und dabei insbesondere mit der Untersuchung von lichtinduzierter dreidimensionaler Anisotropie in organischen dünnen Polymer-Schichten. Die gewonnenen Erkentnisse und entwickelten Methoden könne...

  14. Anomalous Nernst Effect with Magnetocrystalline Anisotropy (110)

    Science.gov (United States)

    Chesman, Carlos; Costa Neto, Jose; Department of Physics-UFRN Team

    2014-03-01

    When a ferromagnetic material is submitted to a temperature gradient and the magnetic field generates voltage on the edges of the samples, this is called the Anomalous Nernst Effect (ANE). The Heusler alloys that currently exhibit this effect are the most promising for spintronics and spin caloritronics. In this study we perform a theoretical investigation of voltage curves associated to the ANE, when the material displays magnetocrystalline anisotropy for experimental results in two configurations, ANE versus applied magnetic field and planar angle variations of ANE. We analyzed three types of magnetocrystalline anisotropy: cubic anisotropy (100) with C4 symmetry, uniaxial anisotropy with C2 symmetry and cubic anisotropy (110). The aim was to prove that cubic anisotropy (110) is equivalent to anisotropy (100) combined with uniaxial anisotropy. Theoretical fitting of experimental ANE data demonstrates this total equivalence and that a new interpretation with the use of cubic anisotropy (110) may be due to the atomic arrangement of the so-called full-Heusler. Comparative analyses of Co2FeAl and Co2MnGe alloys will be presented. CNPq, CAPES, FAPERN.

  15. CMB anisotropies from a gradient mode

    Science.gov (United States)

    Mirbabayi, Mehrdad; Zaldarriaga, Matias

    2015-03-01

    A linear gradient mode must have no observable dynamical effect on short distance physics. We confirm this by showing that if there was such a gradient mode extending across the whole observable Universe, it would not cause any hemispherical asymmetry in the power of CMB anisotropies, as long as Maldacena's consistency condition is satisfied. To study the effect of the long wavelength mode on short wavelength modes, we generalize the existing second order Sachs-Wolfe formula in the squeezed limit to include a gradient in the long mode and to account for the change in the location of the last scattering surface induced by this mode. Next, we consider effects that are of second order in the long mode. A gradient mode Φ = qṡx generated in Single-field inflation is shown to induce an observable quadrupole moment. For instance, in a matter-dominated model it is equal to Q = 5(qṡx)2/18. This quadrupole can be canceled by superposition of a quadratic perturbation. The result is shown to be a nonlinear extension of Weinberg's adiabatic modes: a long-wavelength physical mode which looks locally like a coordinate transformation.

  16. Shrinkage anisotropy characteristics from soil structure and initial sample/layer size

    CERN Document Server

    Chertkov, V Y

    2014-01-01

    The objective of this work is a physical prediction of such soil shrinkage anisotropy characteristics as variation with drying of (i) different sample/layer sizes and (ii) the shrinkage geometry factor. With that, a new presentation of the shrinkage anisotropy concept is suggested through the sample/layer size ratios. The work objective is reached in two steps. First, the relations are derived between the indicated soil shrinkage anisotropy characteristics and three different shrinkage curves of a soil relating to: small samples (without cracking at shrinkage), sufficiently large samples (with internal cracking), and layers of similar thickness. Then, the results of a recent work with respect to the physical prediction of the three shrinkage curves are used. These results connect the shrinkage curves with the initial sample size/layer thickness as well as characteristics of soil texture and structure (both inter- and intra-aggregate) as physical parameters. The parameters determining the reference shrinkage c...

  17. Anisotropy of successive air showers

    Science.gov (United States)

    Ochi, N.; Wada, T.; Yamashita, Y.; Ohashi, A.; Yamamoto, I.; Nakatsuka, T.; Large Area Air Shower (LAAS) Group

    2001-04-01

    We have investigated the anisotropy of successive air shower (SAS) events, which we define as the detection of many air showers within a short time window, using data from six stations of the Large Area Air Shower (LAAS) group. On the criterion of 22 air showers within 20 minutes, five SAS events are found against 1.4 expected from the Poisson distribution in Okayama University station's data. From six stations' data, we find 24 SAS events in total. By plotting them in equatorial coordinates, it is revealed that SAS events are observed more frequently when the Galactic plane is around the zenith. This can be attributed to a hypothetical small flux of ultra-high-energy γ-rays from the direction of the Galactic plane superposed on conventional cosmic rays. If this hypothesis is true, the analytical procedure used here has potential to measure ultra-high-energy γ-ray sources by even small air shower arrays like ours.

  18. Anisotropy of successive air showers

    International Nuclear Information System (INIS)

    We have investigated the anisotropy of successive air shower (SAS) events, which we define as the detection of many air showers within a short time window, using data from six stations of the Large Area Air Shower (LAAS) group. On the criterion of 22 air showers within 20 minutes, five SAS events are found against 1.4 expected from the Poisson distribution in Okayama University station's data. From six stations' data, we find 24 SAS events in total. By plotting them in equatorial coordinates, it is revealed that SAS events are observed more frequently when the Galactic plane is around the zenith. This can be attributed to a hypothetical small flux of ultra-high-energy γ-rays from the direction of the Galactic plane superposed on conventional cosmic rays. If this hypothesis is true, the analytical procedure used here has potential to measure ultra-high-energy γ-ray sources by even small air shower arrays like ours

  19. Statistical anisotropy from inflationary magnetogenesis

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    Provided the quantum fluctuations are amplified in the presence of a classical gauge field configuration the resulting curvature perturbations exhibit a mild statistical anisotropy which should be sufficiently weak not to conflict with current observational data. The curvature power spectra induced by weakly anisotropic initial states are computed here for the first time when the electric and the magnetic gauge couplings evolve at different rates as it happens, for instance, in the relativistic theory of van der Waals interactions. After recovering the results valid for coincident gauge couplings, the constraints imposed by the isotropy and the homogeneity of the initial states are discussed. The obtained bounds turn out to be more stringent than naively expected and cannot be ignored when discussing the underlying magnetogenesis scenarios.

  20. First principles study on the magnetocrystalline anisotropy of Fe-Ga magnetostrictive alloys

    Institute of Scientific and Technical Information of China (English)

    Zheng Lei; Jiang Cheng-Bao; Shang Jia-Xiang; XU Hui-Bin

    2009-01-01

    This paper investigates the electronic structure and magnetocrystalline anisotropy of Fe-Ga magnetostrictive material by means of the full potential-linearized augmented plane-wave method within the generalized gradient approximation.The 3d-orbit splitting of Fe atoms in D03,B2-like and L12 crystalline structures of Fe-Ga is calculated with consideration of the crystal field as well as the spin-orbit coupling effect.Because of the frozen orbital angular momenta of the 3d-orbit for Fe atoms in Fe-Ga magnetostrictive alloys and the spin-orbit coupling,the distribution of the electron cloud is not isotropic,which leads to the anisotropy of exchange interaction between the different atoms.A method on estimating the magnetocrystalline anisotropy of Fe-Ga alloys by means of calculating orbit-projected density of states for Fe atoms is performed.The anisotropic distribution of the electron cloud of Fe atoms in these three crystalline structures of Fe-Ga is studied based on the above method showing the highest magnetic anisotropy for B2-like structure.This qualitative method comes closer to physical reality with a vivid physical view,which can evaluate the anisotropy of electron cloud for 3d transition atoms directly.The calculated results are in good agreement with both the previous theoretical computation and the tested value on the magnetic anisotropy constant,which con firms that the electron cloud anisotropy of Fe atoms could well characterize the magnetocrystalline anisotropy of Fe-Ga magnetostrictive material.

  1. First principles study on the magnetocrystalline anisotropy of Fe–Ga magnetostrictive alloys

    International Nuclear Information System (INIS)

    This paper investigates the electronic structure and magnetocrystalline anisotropy of Fe-Ga magnetostrictive material by means of the full potential-linearized augmented plane-wave method within the generalized gradient approximation. The 3d-orbit splitting of Fe atoms in D03, B2-like and L12 crystalline structures of Fe–Ga is calculated with consideration of the crystal field as well as the spin–orbit coupling effect. Because of the frozen orbital angular momenta of the 3d-orbit for Fe atoms in Fe–Ga magnetostrictive alloys and the spin–orbit coupling, the distribution of the electron cloud is not isotropic, which leads to the anisotropy of exchange interaction between the different atoms. A method on estimating the magnetocrystalline anisotropy of Fe–Ga alloys by means of calculating orbit-projected density of states for Fe atoms is performed. The anisotropic distribution of the electron cloud of Fe atoms in these three crystalline structures of Fe–Ga is studied based on the above method showing the highest magnetic anisotropy for B2-like structure. This qualitative method comes closer to physical reality with a vivid physical view, which can evaluate the anisotropy of electron cloud for 3d transition atoms directly. The calculated results are in good agreement with both the previous theoretical computation and the tested value on the magnetic anisotropy constant, which confirms that the electron cloud anisotropy of Fe atoms could well characterize the magnetocrystalline anisotropy of Fe–Ga magnetostrictive material. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Diffusion creep in the mantle may create and maintain anisotropy

    Science.gov (United States)

    Wheeler, John

    2014-05-01

    Diffusion creep is thought to play an important role in lower mantle deformation and hence must be understood in detail if Earth behaviour is to be explained. It is commonly claimed that diffusion creep gives rise to equant grain shapes and destroys any crystallographic preferred orientation (CPO), so all physical properties would be isotropic. Some experiments on olivine support the first assertion but other minerals, and polyphase rocks, commonly show inequant grain shapes in nature and experiment even when diffusion creep is thought to be a major contribution to strain. Numerical models allow rigorous exploration of the effects of deformation under conditions not easily reached in experiments. A numerical model named 'DiffForm' (Wheeler & Ford 2007) gives insight into how grain shapes and microstructures evolve during diffusion creep. Modelling shows that whilst grains may initially rotate in apparently chaotic fashion during diffusion creep, such rotations slow down as grains become inequant. Consequently, an initial CPO (formed, for example, by dislocation creep at higher strain rates) will be decreased in intensity but not destroyed. Seismic anisotropy will decrease but not disappear (Wheeler 2009). Diffusion creep is also predicted to have intense mechanical anisotropy. In simple models diffusion creep is controlled entirely by diffusion and sliding along grain boundaries; there is no crystallographic influence. An aggregate of equant grains must then be mechanically isotropic, but a model microstructure with inequant grains has marked mechanical anisotropy (Wheeler 2010) - an effect related to the fact that grain boundary sliding is an intrinsic part of diffusion creep. That work was based on a very simple microstructure with a single inequant grain shape but I present here new results showing that for more complicated microstructures, mechanical anisotropy is intense even for quite modest grain elongations. There will be feedback between strain and

  3. Primordial anisotropies in gauged hybrid inflation

    International Nuclear Information System (INIS)

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations

  4. Kurtosis fractional anisotropy, its contrast and estimation by proxy.

    Science.gov (United States)

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-01-01

    The diffusion kurtosis observed with diffusion magnetic resonance imaging (dMRI) may vary with direction. This directional variation is summarized in the scalar kurtosis fractional anisotropy (KFA). Recent studies suggest that kurtosis anisotropy offers microstructural contrast not contained in other commonly used dMRI markers. We compare KFA to other dMRI contrasts in fixed rat brain and in human brain. We then investigate the observed contrast differences using data obtained in a physical phantom and simulations based on data from the phantom, rat spinal cord, and human brain. Lastly, we assess a strategy for rapid estimation of a computationally modest KFA proxy by evaluating its correlation to true KFA for varying number of sampling directions and signal-to-noise ratio (SNR) levels. We also map this proxy's b-value dependency. We find that KFA supplements the contrast of other dMRI metrics - particularly fractional anisotropy (FA) which vanishes in near orthogonal fiber arrangements where KFA does not. Simulations and phantom data support this interpretation. KFA therefore supplements FA and could be useful for evaluation of complex tissue arrangements. The KFA proxy is strongly correlated to true KFA when sampling is performed along at least nine directions and SNR is high. PMID:27041679

  5. CMB Anisotropies: Their Discovery and Utilization

    CERN Document Server

    Smoot, George F

    2008-01-01

    This article is a written and modified version of a talk presented at the conference `A Century of Cosmology' held at San Servolo, Venice, Italy, in August 2007. The talk focuses on some of the cosmology history leading to the discovery and exploitation of Cosmic Microwave Background (CMB) Radiation anisotropies. We have made tremendous advances first in the development of the techniques to observe these anisotropies and in observing and interpreting them to extract their contained cosmological information. CMB anisotropies are now a cornerstone in our understanding of the cosmos and our future progress in the field. This is an outcome that Dennis Sciama hoped for and encouraged.

  6. Magnetic Domain Confinement by Anisotropy Modulation

    Science.gov (United States)

    Li, S. P.; Lew, W. S.; Bland, J. A.; Lopez-Diaz, L.; Vaz, C. A.; Natali, M.; Chen, Y.

    2002-02-01

    The spin configuration in a magnet is in general a ``natural'' consequence of both the intrinsic properties of the material and the sample dimensions. We demonstrate that this limitation can be overcome in a homogeneous ferromagnetic film by engineering an anisotropy contrast. Substrates with laterally modulated single-crystal and polycrystalline surface regions were used to induce selective epitaxial growth of a ferromagnetic Ni film. The resulting spatially varying magnetic anisotropy leads to regular perpendicular and in-plane magnetic domains, separated by a new type of magnetic wall-the ``anisotropy constrained'' magnetic wall.

  7. Apparent resistivity of azimuthal anisotropy layered media

    Institute of Scientific and Technical Information of China (English)

    阮爱国; 毛桐恩; 李清河; 葛双成

    2002-01-01

    The electric field, equations of boundary conditions and calculation formula of apparent resistivity are derived for azimuthal anisotropy layered media with DC method based on anisotropic Ohm(s law. Taking Schlumberger symmetric system as an example and using recurrence formula of nuclear function, the paper theoretically simulates a model of four layers with the same anisotropy coefficient for each layer. The deep sounding curves of resistivity and the pattern of contours are obtained for the model. The results shows the theoretical formula of this paper is correct, the deep sounding curves not only exhibit the difference of resistivity among layers but also indicate the anisotropy characteristics of layers.

  8. A Coupled Multiscale Model of Texture Evolution and Plastic Anisotropy

    Science.gov (United States)

    Gawad, J.; Van Bael, A.; Yerra, S. K.; Samaey, G.; Van Houtte, P.; Roose, D.

    2010-06-01

    In this paper we present a multiscale model of a plastic deformation process in which the anisotropy of plastic properties is related to the evolution of the crystallographic texture. The model spans several length scales from the macroscopic deformation of the workpiece to the microscale interactions between individual grains in a polycrystalline material. The macroscopic behaviour of the material is described by means of a Finite Element (FE) model. Plastic anisotropy is taken into account in a constitutive law, based on the concept of a plastic potential in strain rate space. The coefficients of a sixth-order Facet equation are determined using the Taylor theory, provided that the current crystallographic texture at a given FE integration point is known. Texture evolution in the FE integration points is predicted by an ALAMEL micromechanical model. Mutual interactions between coarse and fine scale are inherent in the physics of the deformation process. These dependencies are taken into account by full bidirectional coupling in the model. Therefore, the plastic deformation influences the crystallographic texture and the evolution of the texture induces anisotropy of the macroscopic deformation. The presented approach enables an adaptive texture and yield surface update scheme with respect to the local plastic deformation in the FE integration points. Additionally, the computational cost related to the updates of the constitutive law is reduced by application of parallel computing techniques. Suitability of on-demand computing for this computational problem is discussed. The parallelisation strategy addresses both distributed memory and shared memory architectures. The cup drawing process has been simulated using the multiscale model outlined above. The discussion of results includes the analysis of the planar anisotropy in the cup and the influence of complex deformation path on texture development. Evolution of texture at selected material points is assessed as

  9. Density dependent B parameter of relativistic stars with anisotropy in pseudo-spheroidal space-time

    Science.gov (United States)

    Chattopadhyay, P. K.; Paul, B. C.

    2016-04-01

    We present a class of relativistic solutions for compact cold stars with strange matter in a pseudo-spheroidal space-time. Considering strange matter equation of state namely, p = 1/3(ρ -4B), where ρ , p and B are energy density, pressure and MIT Bag parameter respectively, stellar models are obtained. In the presence of anisotropy with a pseudo-spheroidal geometry described by Vaidya-Tikekar, metric stellar models are explored where the Bag parameter varies with the energy density (ρ ) inside the compact object. We determine the density dependence of B at different anisotropy. It is noted that although B varies with anisotropy inside the star, finally at the surface it attains a value which is independent of the anisotropy. The Bag parameter B is found to increase with an increase in anisotropy for a given compactness factor (M/b) and spheroidicity λ . It is also noted that for a star with given mass and radius, the parameter B increases with the increase in λ and finally at large λ , it attains a constant. The equation of state (EoS) obtained here from geometrical consideration with allowed `B' value is found same to that one obtains from micro-physics. The stability of the stellar models for compact stars with anisotropy in hydrostatic equilibrium obtained here is also studied.

  10. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures

    Science.gov (United States)

    Yang, Hongxin; Vu, Anh Duc; Hallal, Ali; Rougemaille, Nicolas; Coraux, Johann; Chen, Gong; Schmid, Andreas K.; Chshiev, Mairbek

    2016-01-01

    We report strongly enhanced perpendicular magnetic anisotropy (PMA) of Co films by graphene coating from both first-principles and experiments. Our calculations show that graphene can dramatically boost the surface anisotropy of Co films up to twice the value of its pristine counterpart and can extend the out-of-plane effective anisotropy up to unprecedented thickness of 25~\\AA. These findings are supported by our experiments on graphene coating on Co films grown on Ir substrate. Furthermore, we report layer-resolved and orbital-hybridization-resolved anisotropy analysis which help understanding the physical mechanisms of PMA and more practically can help design structures with giant PMA. As an example, we propose super-exchange stabilized Co-graphene heterostructures with a robust out-of-plane constant effective PMA and linearly increasing interfacial anisotropy as a function of film thickness. These findings point towards possibilities to engineer graphene/ferromagnetic metal heterostructures with giant magnetic anisotropy more than 20 times larger compared to conventional multilayers, which constitutes a hallmark for future graphene and traditional spintronic technologies.

  11. Measures of three-dimensional anisotropy and intermittency in strong Alfvénic turbulence

    Science.gov (United States)

    Mallet, A.; Schekochihin, A. A.; Chandran, B. D. G.; Chen, C. H. K.; Horbury, T. S.; Wicks, R. T.; Greenan, C. C.

    2016-06-01

    We measure the local anisotropy of numerically simulated strong Alfvénic turbulence with respect to two local, physically relevant directions: along the local mean magnetic field and along the local direction of one of the fluctuating Elsasser fields. We find significant scaling anisotropy with respect to both these directions: the fluctuations are `ribbon-like' - statistically, they are elongated along both the mean magnetic field and the fluctuating field. The latter form of anisotropy is due to scale-dependent alignment of the fluctuating fields. The intermittent scalings of the nth-order conditional structure functions in the direction perpendicular to both the local mean field and the fluctuations agree well with the theory of Chandran, Schekochihin & Mallet, while the parallel scalings are consistent with those implied by the critical-balance conjecture. We quantify the relationship between the perpendicular scalings and those in the fluctuation and parallel directions, and find that the scaling exponent of the perpendicular anisotropy (i.e. of the aspect ratio of the Alfvénic structures in the plane perpendicular to the mean magnetic field) depends on the amplitude of the fluctuations. This is shown to be equivalent to the anticorrelation of fluctuation amplitude and alignment at each scale. The dependence of the anisotropy on amplitude is shown to be more significant for the anisotropy between the perpendicular and fluctuation-direction scales than it is between the perpendicular and parallel scales.

  12. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures.

    Science.gov (United States)

    Yang, Hongxin; Vu, Anh Duc; Hallal, Ali; Rougemaille, Nicolas; Coraux, Johann; Chen, Gong; Schmid, Andreas K; Chshiev, Mairbek

    2016-01-13

    We report strongly enhanced perpendicular magnetic anisotropy (PMA) of Co films by graphene coating from both first-principles and experiments. Our calculations show that graphene can dramatically boost the surface anisotropy of Co films up to twice the value of its pristine counterpart and can extend the out-of-plane effective anisotropy up to unprecedented thickness of 25 Å. These findings are supported by our experiments on graphene coating on Co films grown on Ir substrate. Furthermore, we report layer-resolved and orbital-hybridization-resolved anisotropy analysis, which help understanding of the physical mechanisms of PMA and more practically can help design structures with giant PMA. As an example, we propose superexchange stabilized Co-graphene heterostructures with a robust constant effective PMA and linearly increasing interfacial anisotropy as a function of film thickness. These findings point toward possibilities to engineer graphene/ferromagnetic metal heterostructures with giant magnetic anisotropy more than 20-times larger compared to conventional multilayers, which constitutes a hallmark for future graphene and traditional spintronic technologies. PMID:26641927

  13. The covariant perturbative approach to cosmic microwave background anisotropies

    CERN Document Server

    Challinor, A D

    2000-01-01

    The Ehlers-Ellis 1+3 formulation of covariant hydrodynamics, when supplemented with covariant radiative transport theory, gives an exact, physically transparent description of the physics of the cosmic microwave background radiation (CMB). Linearisation around a Friedmann-Robertson-Walker (FRW) universe provides a very direct and seamless route through to the linear, gauge-invariant perturbation equations for scalar, vector and tensor modes in an almost-FRW model. In this contribution we review covariant radiative transport theory and its application to the perturbative method for calculating and understanding the anisotropy of the CMB. Particular emphasis is placed on the inclusion of polarization in a fully covariant manner. With this inclusion, the covariant perturbative approach offers a complete description of linearised CMB physics in an almost-FRW universe.

  14. Higher order anisotropies in the Buda-Lund model -- disentangling flow and density field anisotropies

    CERN Document Server

    Lökös, Sándor; Csörgő, Tamás; Tomášik, Boris

    2016-01-01

    The Buda-Lund hydro model describes an expanding ellipsoidal fireball, and fits the observed elliptic flow and oscillating HBT radii successfully. Due to fluctuations in energy depositions, the fireball shape however fluctuates on an event-by-event basis. The transverse plane asymmetry can be translated into a series of multipole anisotropy coefficients. These anisotropies then result in measurable momentum-space anisotropies, to be measured with respect to their respective symmetry planes. In this paper we detail an extension of the Buda-Lund model to multipole anisotropies and investigate the resulting flow coefficients and oscillations of HBT radii.

  15. Shell effects and fission fragments angular anisotropy

    International Nuclear Information System (INIS)

    The impact of the shell corrections attenuation effect with growth of the fissionable nuclei temperature on the angular anisotropy of the fission fragments is considered. The experimental data on the anisotropy of the fission fragments angular distributions of the compound nucleus, formed in the 4He + 238U reactions, are analyzed within the frames of the transition states model in the fission barriers saddle point and statistic theory of nuclear reactions. The obvious kind of the shell corrections attenuation function is obtained

  16. Conductivity-type anisotropy in molecular solids

    OpenAIRE

    Ostrick, J. R.; Dodabalapur, A.; Torsi, L.; Lovinger, A, J.; Kwock, E. W.; Miller, T. M.; Galvin, M; Berggren, Magnus; Katz, H. E.

    1997-01-01

    Thin polycrystalline films of perylenetetracarboxylic dianyhydride (PTCDA), an organic molecular solid, exhibits substantial anisotropies in its electronic transport properties. Only electrons transport in the directions along molecular planes, while mainly holes transport in the direction normal to molecular planes. A series of measurements on both field effect transistors with PTCDA active layers and light emitting diodes with PTCDA transport layers documents the anisotropy seen in the elec...

  17. The Cosmic Microwave Background Anisotropy Experiments

    OpenAIRE

    Smoot, George F.

    1997-01-01

    This paper reports a summary of the contents contents of six hours of lectures on the CMB anisotropy experiments given at the Strasbourg NATO school on the CMB and cosmology. (Its companion paper, astro-ph/9705101 reports the lectures on the CMB spectrum.) A context is set as a bridge from the theoretical CMB anisotropy lectures and the experimental situation. The COBE DMR results are reveiwed in detail and as pioneer for future space missions. Current and planned experiments are discussed in...

  18. CMB Anisotropies: Their Discovery and Utilization

    OpenAIRE

    Smoot, George F.

    2008-01-01

    This article is a written and modified version of a talk presented at the conference `A Century of Cosmology' held at San Servolo, Venice, Italy, in August 2007. The talk focuses on some of the cosmology history leading to the discovery and exploitation of Cosmic Microwave Background (CMB) Radiation anisotropies. We have made tremendous advances first in the development of the techniques to observe these anisotropies and in observing and interpreting them to extract their contained cosmologic...

  19. Magnetic anisotropy in rare-earth metals

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans; Lindgård, Per-Anker; Mackintosh, A.R.

    1970-01-01

    The magnetic field dependence of the energy of long- wavelength magnons in Tb-10%Ho has been studied by inelastic neutron scattering. The results agree with the `frozen-lattice' model, provided that the second-order magnetoelastic effect is taken into account. The planar anisotropy is almost...... entirely the result of magnetoelastic effects. The temperature dependences of the anisotropy parameters have been deduced from the results...

  20. Seismic anisotropy in the Sumatra subduction zone

    OpenAIRE

    R. Collings; Rietbrock, A.; Lange, Dietrich; F. Tilmann; S. Nippress; D. Natawidjaja

    2013-01-01

    An important tool for understanding deformation occurring within a subduction zone is the measurement of seismic anisotropy through observations of shear wave splitting (SWS). In Sumatra, two temporary seismic networks were deployed between December 2007 and February 2009, covering the fore arc between the fore-arc islands to the back arc. We use SKS and local SWS measurements to determine the type, amount, and location of anisotropy. Local SWS measurements from the fore-arc islands exhibit t...

  1. Does deformation saturate seismic anisotropy?

    Science.gov (United States)

    Tatham, D. J.; Lloyd, G. E.; Butler, R. W.; Casey, M.

    2006-12-01

    The progressive simple shear deformation that characterizes ductile fault zones in the crust involves both rotation and intensification of the strain ellipsoid. These mathematic predictions have been confirmed repeatedly by finite strain determinations in outcrop studies of natural shear zones and used to test geodynamic models of mountain belts. Seismic anisotropy (SA) methods offer the opportunity to pursue these approaches in situ. First however, we must calibrate the magnitude and orientation of the SA ellipsoid against naturally deformed tectonites of known strain state and microstructure. Here we present data from a field analogue of mafic ductile crust in an amphibolite-facies shear zone developed in a deformed mafic dyke embedded within the Lewisian Gneiss (Badcall, NW Scotland). Deflection of pre-existing linear and planar elements and attenuation of the dyke into the shear zone are used to determine the strain gradient. Specimens collected along this gradient were used to establish the geometric fabric intensity defined by different minerals (hornblende grain alignment and ellipticity of plagioclase clots). Finally, petrophysical properties were calculated for the specimens using the SEM-EBSD measured populations of lattice preferred orientations (LPO) for all mineral phases. It is the hornblende-plagioclase LPO, combined in their modal proportions and modulated by the individual mineral single crystal elastic properties, which define the SA profile across the shear zone. Hornblende develops a strong preferred dimensional orientation and hence LPO at shear strains of about 2, whereas the plagioclase LPO remains close to random regardless of bulk strain. The modelled SA of the samples is dominated therefore by the amphibole LPO. Although the values of bulk shear strain vary across the shear zone (0 at the margins to greater than 12 in the centre), the calculated intensity of SA saturates at a shear strain of about 2. These results, if typical of large

  2. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  3. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  4. Polarization anisotropy of the emission from type-II quantum dots

    Czech Academy of Sciences Publication Activity Database

    Klenovský, P.; Hemzal, D.; Steindl, P.; Zíková, Markéta; Křápek, V.; Humlíček, J.

    2015-01-01

    Roč. 92, č. 24 (2015), "241302-1"-"241302-5". ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : quantum dot * type II heterostructure * polarization anisotropy * III-V semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  5. Magnetic anisotropy of UFe.sub.6./sub.Al.sub.6./sub..

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.

    2009-01-01

    Roč. 404, č. 19 (2009), s. 2978-2980. ISSN 0921-4526 R&D Projects: GA ČR GA202/09/0339 Institutional research plan: CEZ:AV0Z10100520 Keywords : uranium intermetallics * ThMn 12 -type structure * ferromagnetism * magnetic anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.056, year: 2009

  6. Magnetic anisotropy energy and effective exchange interactions in Co intercalated graphene on Ir(111)

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Hong, S.C.; Máca, František; Lichtenstein, A.I.

    2014-01-01

    Roč. 26, č. 47 (2014), "476003-1"-"476003-6". ISSN 0953-8984 R&D Projects: GA ČR(CZ) GAP204/10/0330; GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : magnetic anisotropy * Co monolayer * graphene Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  7. Anisotropy of Magnetic Moments and Energy in Tetragonal Fe-Co Alloys from First Principles

    Czech Academy of Sciences Publication Activity Database

    Turek, Ilja; Kudrnovský, Josef; Carva, K.

    2013-01-01

    Roč. 26, č. 5 (2013), s. 1581-1584. ISSN 1557-1939 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional support: RVO:68081723 ; RVO:68378271 Keywords : density functional theory * magnetic anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2013

  8. Effect of stress-induced anisotropy on the noise of ring-core fluxgate

    Czech Academy of Sciences Publication Activity Database

    Butta, M.; Ripka, P.; Kraus, Luděk

    2015-01-01

    Roč. 51, č. 1 (2015), s. 4001104. ISSN 0018-9464 R&D Projects: GA ČR GAP102/12/2177 Institutional support: RVO:68378271 Keywords : anisotropy * fluxgate * nanocrystalline * noise * permalloy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  9. Stress-induced anisotropy in electroplated FeNi racetrack fluxgate cores

    Czech Academy of Sciences Publication Activity Database

    Butta, M.; Kraus, Luděk

    2014-01-01

    Roč. 50, č. 4 (2014), s. 4003904. ISSN 0018-9464 R&D Projects: GA ČR GAP102/12/2177 Institutional support: RVO:68378271 Keywords : electroplating * fluxgate * magnetic anisotropy * magnetostriction * Permalloy * stress Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  10. Thermodynamics of grain boundary segregation and applications to anisotropy, compensation effect and prediction

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Hofmann, S.

    2008-01-01

    Roč. 33, č. 2 (2008), s. 133-163. ISSN 1040-8436 R&D Projects: GA ČR(CZ) GA106/05/0134 Institutional research plan: CEZ:AV0Z10100520 Keywords : anisotropy * compensation effect * gtrain boundaries * prediction * excess Gibbs energy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.300, year: 2008

  11. Anisotropies in the cosmic neutrino background after Wilkinson Microwave Anisotropy Probe five-year data

    International Nuclear Information System (INIS)

    We search for the presence of cosmological neutrino background (CNB) anisotropies in recent Wilkinson Microwave Anisotropy Probe (WMAP) five-year data using their signature imprinted on modifications to the cosmic microwave background (CMB) anisotropy power spectrum. By parameterizing the neutrino background anisotropies with the speed viscosity parameter cvis, we find that the WMAP five-year data alone provide only a weak indication for CNB anisotropies with cvis2>0.06 at the 95% confidence level. When we combine CMB anisotropy data with measurements of galaxy clustering, the SN-Ia Hubble diagram, and other cosmological information, the detection increases to cvis2>0.16 at the same 95% confidence level. Future data from Planck, combined with a weak lensing survey such as the one expected with DUNE from space, will be able to measure the CNB anisotropy parameter at about 10% accuracy. We discuss the degeneracy between neutrino background anisotropies and other cosmological parameters such as the number of effective neutrinos species and the dark energy equation of state

  12. Stress-Induced Seismic Anisotropy Revisited Nouveau regard sur l'anisotropie sismique induite par les contraintes

    Directory of Open Access Journals (Sweden)

    Rasolofosaon P.

    2006-12-01

    Full Text Available This summary contains formulas (*** which can not be displayed on the screenA general principle outlined by P. Curie (1894 regarding the influence of symmetry in physical phenomena states, in modern language, that the symmetry group of the causes is a sub-group of the symmetry group of the effects. For instance, regarding stress-induced seismic anisotropy, the most complex symmetry exhibited by an initially isotropic medium when tri-axially stressed is orthorhombic, or orthotropic, symmetry characterized by three symmetry planes mutually perpendicular (Nur, 1971. In other respects, Schwartz et al. (1994 demonstrated that two very different rock models, namely a cracked model and a weakly consolidated granular model, always lead to elliptical anisotropy when uniaxially stressed. The addressed questions are : Is this result true for any rock model? and more generally : Do initially isotropic rock form a well-defined sub-set of orthorhombic media when triaxially stressed?Under the hypothesis of 3rd order nonlinear isotropic hyperelasticity (i. e. , no hysteresis and existence of an elastic energy function developed to the 3rd order in the strain components it is demonstrated that the qP-wave stress-induced anisotropy is always ellipsoidal, for any strength of anisotropy. For instance point sources generate ellipsoidal qP-wave fronts. This result is general and absolutely independent of the rock model, that is to say independent of the causes of nonlinearity, as far as the initial assumptions are verified. This constitutes the main result of this paper. Thurston (1965 pointed out that an initially isotropic elastic medium, when non-isotropically pre-stressed, is never strictly equivalent to an unstressed anisotropic crystal. For instance the components of the stressed elastic tensor lack the familiar symmetry with respect to indices permutation. This would prohibit Voigt's notation of contracted indices. However if the magnitude of the components of

  13. Velocity anisotropy in tidally limited star clusters

    CERN Document Server

    Tiongco, Maria; Varri, Anna Lisa

    2015-01-01

    We explore the long-term evolution of the anisotropy in the velocity space of star clusters starting with different structural and kinematical properties. We show that the evolution of the radial anisotropy strength and its radial variation within a cluster contain distinct imprints of the cluster initial structural properties, dynamical history, and of the external tidal field of its host galaxy. Initially isotropic and compact clusters with small initial values of the ratio of the half-mass to Jacobi radius, $r_h/r_J$, develop a strong radial anisotropy during their long-term dynamical evolution. Many clusters, if formed with small values of $r_h/r_J$, should now be characterized by a significant radial anisotropy increasing with the distance from the cluster centre, reaching its maximum at a distance between 0.2 $r_J$ and 0.4 $r_J$, and then becoming more isotropic or mildly tangentially anisotropic in the outermost regions. A similar radial variation of the anisotropy can also result from an early violent...

  14. The expected anisotropy in solid inflation

    International Nuclear Information System (INIS)

    Solid inflation is an effective field theory of inflation in which isotropy and homogeneity are accomplished via a specific combination of anisotropic sources (three scalar fields that individually break isotropy). This results in specific observational signatures that are not found in standard models of inflation: a non-trivial angular dependence for the squeezed bispectrum, and a possibly long period of anisotropic inflation (to drive inflation, the ''solid'' must be very insensitive to any deformation, and thus background anisotropies are very slowly erased). In this paper we compute the expected level of statistical anisotropy in the power spectrum of the curvature perturbations of this model. To do so, we account for the classical background values of the three scalar fields that are generated on large (superhorizon) scales during inflation via a random walk sum, as the perturbation modes leave the horizon. Such an anisotropy is unavoidably generated, even starting from perfectly isotropic classical initial conditions. The expected level of anisotropy is related to the duration of inflation and to the amplitude of the squeezed bispectrum. If this amplitude is close to its current observational limit (so that one of the most interesting predictions of the model can be observed in the near future), we find that a level of statistical anisotropy F2 gives frozen and scale invariant vector perturbations on superhorizon scales

  15. Surface anisotropy characterisation with meteosat observations

    Science.gov (United States)

    Lattanzio, A.; Govaerts, Y. M.; Pinty, B.

    Surface albedo, or more precisely Directional Hemispherical Reflectance (DHR), is the integral the Bi-directional Reflectance Factor (BRF) of the surface over all angles of the upward hemisphere. The retrieval of the DHR trough space observations requires accounting for the scattering and absorption processes in the atmosphere as well as for the angular anisotropy of the surface, the two systems being radiatively coupled. The accuracy achieved in the albedo estimation depends thus on the density of the angular sampling and the reliability of the atmospheric correction. Pinty et al. demonstrated the possibility to derive reliable surface albedo from observations acquired by Meteosat, the European meteorological geostationary satellite. The purpose of this presentation is to analyse the accuracy of this new Meteosat Surface Albedo (MSA) product, including the effects due to instrument changes and associated calibration uncertainties. In particular, the consistency of the surface anisotropy characterisation is examined in detail. To this end, observations acquired by two adjacent geostationary spacecrafts, i.e., Meteosat-7 and Meteosat-5 have been processed with the MSA algorithm. These satellites are located respectively at 0 and 63 degrees East. Data acquired by these two instruments overlap over a large area encompassing most of Africa and the Arabian Peninsula. The consistency of the surface anisotropy retrieval is evaluated through a reconstruction of the Meteosat-5 (-7) observations with the Meteosat-7 (-5) surface anisotropy characterisation. No differences larger than the calibration uncertainties have been found, which indicates that the MSA algorithm accounts correctly for the surface anisotropy and instrument differences.

  16. I-Love-Q anisotropically: Universal relations for compact stars with scalar pressure anisotropy

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolás

    2015-06-01

    Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum, and quadrupole moment) have recently been found to be interrelated in a manner that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis and model selection for future radio, x-ray, and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to magnetic fields or phase transitions in their interior. We investigate here whether pressure anisotropy affects the approximate universal relations and, if so, whether it prevents their use in future astrophysical observations. We achieve this by numerically constructing slowly rotating and tidally deformed, anisotropic, compact stars in general relativity to third order in stellar rotation relative to the mass shedding limit. We adopt simple models for pressure anisotropy where the matter stress-energy tensor is diagonal for a spherically symmetric spacetime but the tangential pressure differs from the radial one. We find that the equation-of-state variation increases as one increases the amount of anisotropy, but within the anisotropy range studied in this paper (motivated from anisotropy due to crystallization of the core and pion condensation), anisotropy affects the universal relations only weakly. The relations become less universal by a factor of 1.5-3 relative to the isotropic case when anisotropy is maximal, but even then they remain approximately universal to 10%. We find evidence that this increase in variability is strongly correlated to an increase in the eccentricity variation of isodensity contours, which provides further support for the emergent approximate symmetry explanation of universality. Whether one can use universal relations in actual observations ultimately

  17. The Physics of Ferromagnetism

    CERN Document Server

    Miyazaki, Terunobu

    2012-01-01

    This book covers both basic physics of ferromagnetism such as magnetic moment, exchange coupling, magnetic anisotropy and recent progress in advanced ferromagnetic materials. Special interests are focused on NdFeB permanent magnets and the materials studied in the field of spintronics. In the latter, development of tunnel magnetoresistance effect through so called giant magnetoresistance effect is explained.

  18. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  19. Measurements of magnetic anisotropy in sickle cells

    International Nuclear Information System (INIS)

    Room temperature magnetic measurements in deoxigenated sickle cells showed the existence of magnetic anisotropy, Δchi=1,29 x 10-3. This effect was supposed paramagnetic and considered to be due to the iron atoms of the hemoglobin molecules which are one over the other, forming ordered chains inside the erythrocytes. Low temperature (liquid He - 4,2K) measurements of the magnetic anisotropy of sickle cells and normal red blood cells diluted in a cryoprotector was made to confirm the paramagnetic origin of the fenomena. For that purpose it was used a superconductor magnetometer coupled to a SQUID, developed in the 'Laboratorio do Estado Solido do Departamento de Fisica da PUC-RJ'. The results obtained seem to confirm the expected paramagnetic anisotropy and, furthermore, suggest the presence of magnetic interactions among the iron atoms in the sickle cells samples. (Author)

  20. Measures of Three-Dimensional Anisotropy and Intermittency in Strong Alfv\\'enic Turbulence

    CERN Document Server

    Mallet, A; Chandran, B D G; Chen, C H K; Horbury, T S; Wicks, R T; Greenan, C C

    2015-01-01

    We measure the local anisotropy of numerically simulated strong Alfv\\'enic turbulence with respect to two local, physically relevant directions: along the local mean magnetic field and along the local direction of one of the fluctuating Elsasser fields. We find significant scaling anisotropy with respect to both these directions: the fluctuations are "ribbon-like" --- statistically, they are elongated along both the mean magnetic field and the fluctuating field. The latter form of anisotropy is due to scale-dependent alignment of the fluctuating fields. The intermittent scalings of the $n$th-order conditional structure functions in the direction perpendicular to both the local mean field and the fluctuations agree well with the theory of Chandran et al. 2015, while the parallel scalings are consistent with those implied by the critical-balance conjecture. We quantify the relationship between the perpendicular scalings and those in the fluctuation and parallel directions, and find that the scaling exponent of ...

  1. Hydraulic Conductivity Anisotropy of Heterogeneous Unsaturated Soils

    Science.gov (United States)

    Sun, Dongmin; Zhu, Jianting

    2010-05-01

    The effects of saturation degree (or capillary pressure) on hydraulic conductivity anisotropy in unsaturated soils have not been fully understood. This study developed an approach based on a conceptualization of combining the neural network based pedo-transfer function (PTF) results with the thin layer concept to explore the capillary pressure-dependent anisotropy in relation to soil texture and soil bulk density. The main objective is to examine how anisotropy characteristics are related to the relationships between hydraulic parameters and the basic soil attributes such as texture and bulk density. The hydraulic parameters are correlated with the texture and bulk density based on the pedo-transfer function (PTF) results. It is demonstrated that non-monotonic behavior of the unsaturated soil anisotropy in relation to the capillary pressure is only observed when the saturated hydraulic conductivity and the shape parameter are both related to the mean particle diameter. When only one hydraulic parameter is related to the grain diameter or when both are not related to the same attribute simultaneously, the unsaturated soil anisotropy increases monotonically with the increasing capillary pressure head. Therefore, it is suggested that this behavior is mainly due to the coupled dependence of the layer saturated hydraulic conductivities and the shape factors on the texture and bulk density. The correlation between the soil grain diameter and bulk density decreases the anisotropy effects of the unsaturated layered soils. The study illustrates that the inter-relationships of soil texture, bulk density, and hydraulic properties may cause vastly different characteristics of anisotropic unsaturated soils.

  2. Electromagnetic surface wave induced magnetic anisotropy

    International Nuclear Information System (INIS)

    Femtosecond laser induced electromagnetic surface waves, supported by a gold overlayer on top of a magnetic iron garnet (IG) single-crystalline film, are demonstrated to induce a change in the magnetic anisotropy of the IG. This effect is found to be similar to the previously reported photo-induced magnetic anisotropy in this material. However, its dependence on the polarization of the light and orientation of the magnetization is found to be different. This electromagnetic surface wave control of the spins opens new interesting possibilities for all-optical ultrafast control of the magnetization at a nanometre length scale.

  3. Electromagnetic surface wave induced magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, L [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Kirilyuk, A; Rasing, Th [IMM, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen (Netherlands); Smolyaninov, I I [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD (United States)], E-mail: loic.leguyader@psi.ch

    2009-05-21

    Femtosecond laser induced electromagnetic surface waves, supported by a gold overlayer on top of a magnetic iron garnet (IG) single-crystalline film, are demonstrated to induce a change in the magnetic anisotropy of the IG. This effect is found to be similar to the previously reported photo-induced magnetic anisotropy in this material. However, its dependence on the polarization of the light and orientation of the magnetization is found to be different. This electromagnetic surface wave control of the spins opens new interesting possibilities for all-optical ultrafast control of the magnetization at a nanometre length scale.

  4. Anisotropy of the Topopah Spring Member Tuff

    International Nuclear Information System (INIS)

    Mechanical properties of the tuffaceous rocks within Yucca Mountain are needed for near and far-field modeling of the potential nuclear waste repository. If the mechanical properties are significantly anisotropic (i.e., direction-dependent), a more complex model is required. Relevant data from tuffs tested in earlier studies indicate that elastic and strength properties are anisotropic. This scoping study confirms the elastic anisotropy and concludes some tuffs are transversely isotropic. An approach for sampling and testing the rock to determine the magnitude of the anisotropy is proposed

  5. Effects of anisotropy on gravitational infall in galaxy clusters using an exact general relativistic model

    Energy Technology Data Exchange (ETDEWEB)

    Troxel, M.A.; Peel, Austin; Ishak, Mustapha, E-mail: troxel@utdallas.edu, E-mail: austin.peel@utdallas.edu, E-mail: mishak@utdallas.edu [Department of Physics, The University of Texas at Dallas, Richardson, TX, 75083 (United States)

    2013-12-01

    We study the effects and implications of anisotropies at the scale of galaxy clusters by building an exact general relativistic model of a cluster using the inhomogeneous and anisotropic Szekeres metric. The model is built from a modified Navarro-Frenk-White (NFW) density profile. We compare this to a corresponding spherically symmetric structure in the Lemaȋtre-Tolman (LT) model and quantify the impact of introducing varying levels of anisotropy. We examine two physical measures of gravitational infall — the growth rate of density and the velocity of the source dust in the model. We introduce a generalization of the LT dust velocity profile for the Szekeres metric and demonstrate its consistency with the growth rate of density. We find that the growth rate of density in one substructure increases by 0.5%, 1.5%, and 3.75% for 5%, 10%, and 15% levels of introduced anisotropy, which is measured as the fractional displaced mass relative to the spherically symmetric case. The infall velocity of the dust is found to increase by 2.5, 10, and 20 km s{sup −1} (0.5%, 2%, and 4.5%), respectively, for the same three levels of anisotropy. This response to the anisotropy in a structure is found to be strongly nonlinear with respect to the strength of anisotropy. These relative velocities correspond to an equivalent increase in the total mass of the spherically symmetric structure of 1%, 3.8%, and 8.4%, indicating that not accounting for the presence of anisotropic mass distributions in cluster models can strongly bias the determination of physical properties like the total mass.

  6. Effects of substrate anisotropy and edge diffusion on submonolayer growth during molecular beam epitaxy: A Kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    We have performed Kinetic Monte Carlo simulation work to study the effect of diffusion anisotropy, bonding anisotropy and edge diffusion on island formation at different temperatures during the sub-monolayer film growth in Molecular Beam Epitaxy. We use simple cubic solid on solid model and event based Bortz, Kalos and Labowitch (BKL) algorithm on the Kinetic Monte Carlo method to simulate the physical phenomena. We have found that the island morphology and growth exponent are found to be influenced by substrate anisotropy as well as edge diffusion, however they do not play a significant role in island elongation. The growth exponent and island size distribution are observed to be influenced by substrate anisotropy but are negligibly influenced by edge diffusion. We have found fractal islands when edge diffusion is excluded and compact islands when edge diffusion is included. (author)

  7. Temperature Anisotropies in a Universe with Global Defects

    OpenAIRE

    Coulson, David

    1994-01-01

    We present a technique of calculating microwave anisotropies from global defects in a reionised universe. We concentrate on angular scales down to one degree where we expect the nongaussianity of the temperature anisotropy in these models to become apparent.

  8. Seismic Ripple Anisotropy on the photosphere: observed, simulated, explained

    Science.gov (United States)

    Donea, Alina

    2016-05-01

    Based on observations of seismic ripples generated by solar flares, we performed simulations of different configurations/ morphologies of acoustic structures at the "epicenter" of the sunquake, The production of seismic waves is caused by spatially confined, high impacts into the solar photosphere, inflicted during the impulsive phase of solar flares.An interesting characteristic feature of the seismic response of most sunquakes is a considerable anisotropy in acoustic amplitude of the ripples from the vantage of the source, the acoustic emission is much stronger in some directions than others.We have produced a catalogue of simulations showing varying degrees of wave front anisotropy. Due to the large number of parameters that have potential for variation within the code, an innumerable number of cases have the capacity to be constructed. The governing limits of variation for each parameter will therefore be restricted to those of real life physical situations that have either been observed or strongly proposed. I will present the most conclusive cases of our work, which elucidate some of the unsolved clues about sunquakes and their ripples.

  9. Seismic Anisotropy and Velocity-Porosity Relationships in the Seafloor.

    Science.gov (United States)

    Berge, Patricia A.

    In this dissertation, I investigate the structure and composition of marine sediments and the upper oceanic crust using seismic data and rock physics theories. Common marine sediments such as silty clays exhibit anisotropy because they are made up of thin sub-parallel lamellae of contrasting mineralogical composition and differing elastic properties. In 1986, Rondout Associates, Inc. and Woods Hole Oceanographic Institution recorded direct shear waves in shallow marine sediments in 21-m-deep water by using a newly developed ocean-bottom shear source and a multicomponent on-bottom receiver. A nearby drill hole showed that the sediments are interbedded silty clays, clays, and sands. I used an anisotropic reflectivity program written by Geo-Pacific Corporation to produce synthetic seismograms to estimate the five independent elastic stiffnesses necessary for describing transverse isotropy, the form of anisotropy found in these sediments. The synthetics fit the vertical and two horizontal components for two intersecting profiles, 150 and 200 m long. The data require low shear velocities (Kuster-Toksoz theory. Alteration processes modify the pore structure of the oceanic crust. Currently, alteration is measured primarily from ocean drilling results. By developing a realistic relationship between seismic velocities and the age-dependent pore structure, the work in this dissertation will permit seismic investigation of crustal evolution.

  10. Magnetic anisotropy in rare-earth metals

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans; Lindgård, Per-Anker;

    1970-01-01

    The magnetic field dependence of the energy of long- wavelength magnons in Tb-10%Ho has been studied by inelastic neutron scattering. The results agree with the `frozen-lattice' model, provided that the second-order magnetoelastic effect is taken into account. The planar anisotropy is almost enti...

  11. What we learn from CMB Anisotropies

    CERN Document Server

    CERN. Geneva

    2007-01-01

    George Smoot shared the 2006 Nobel Prize with John Mathere for the discovery of the fluctuations of the cosmic microwave background. In this talk (which will not be the same as the Nobel lecture), he will discuss what we have learned about the universe in the recent past from these anisotropies.

  12. Angular anisotropy representation by probability tables

    International Nuclear Information System (INIS)

    In this paper, we improve point-wise or group-wise angular anisotropy representation by using probability tables. The starting point of this study was to give more flexibility (sensitivity analysis) and more accuracy (ray effect) to group-wise anisotropy representation by Dirac functions, independently introduced at CEA (Mao, 1998) and at IRSN (Le Cocq, 1998) ten years ago. Basing ourselves on our experience of cross-section description, acquired in CALENDF (Sublet et al., 2006), we introduce two kinds of moment based probability tables, Dirac (DPT) and Step-wise (SPT) Probability Tables where the angular probability distribution is respectively represented by Dirac functions or by a step-wise function. First, we show how we can improve equi-probable cosine representation of point-wise anisotropy by using step-wise probability tables. Then we show, by Monte Carlo techniques, how we can obtain a more accurate description of group-wise anisotropy than the one usually given by a finite expansion on a Legendre polynomial basis (that can induce negative values) and finally, we describe it by Dirac probability tables. This study is carried out in the framework of GALILEE project R and D activities (Coste-Delclaux, 2008). (authors)

  13. Anisotropy of Magnetic Properties in Textured Materials

    OpenAIRE

    J. A. Szpunar

    1989-01-01

    A short survey is presented of techniques and methods used to correlate the texture with the magnetic anisotropy of various properties of soft and hard magnetic materials. Also, examples of magnetic materials are discussed with emphasis on techniques of processing which optimize the texture.

  14. Azimuthal anisotropy of jet quenching at LHC

    Indian Academy of Sciences (India)

    I P Lokhtin; S V Petrushanko; L I Sarycheva; A M Snigirev

    2003-05-01

    We analyze the azimuthal anisotropy of jet spectra due to energy loss of hard partons in quark–gluon plasma, created initially in nuclear overlap zone in collisions with non-zero impact parameter. The calculations are performed for semi-central Pb–Pb collisions at LHC energy.

  15. Impact of rock anisotropy on fracture development

    Institute of Scientific and Technical Information of China (English)

    Lianbo Zeng; Jiyong Zhao; Shengju Zhu; Weiliang Xiong; Yonghong He; Jianwen Chen

    2008-01-01

    Experiments on uniaxial and triaxial rock mechanics and rock acoustic emissions have been conducted for research on the impact of rock anisotropy on the development of the fractures of different directions by taking as an example the ultra-low-permeability sandstone reservoir in the Upper Triassic Yanchang Formation within the Ordos Basin. The experimental results prove the existence of anisotropy of the rock mechanical property in the different directions on the plane, which is the chief reason for the production of impacts on the development of different assemblages of fractures in the geological periods. The rock anisotropy usually restricts the development of one assemblage of conjugate shear fractures. The fractures in the Yanchang Formation within the Ordos Basin are mainly shear fractures that formed under two tectonic actions. Theoretically, here, four assemblages of shear fractures should have developed, but due to the effect of a strong rock anisotropy, in each period one assemblage of fractures chiefly developed. Thus, two assemblages of fractures are usually developed in every part at present.

  16. Anisotropy of Wood in the Microwave Region

    Science.gov (United States)

    Ziherl, Sasa; Bajc, Jurij; Urankar, Bernarda; Cepic, Mojca

    2010-01-01

    Wood is transparent for microwaves and due to its anisotropic structure has anisotropic dielectric properties. A laboratory experiment that allows for the qualitative demonstration and quantitative measurements of linear dichroism and birefringence in the microwave region is presented. As the proposed experiments are based on the anisotropy (of…

  17. Tuning the Magnetic Anisotropy of Single Molecules.

    Science.gov (United States)

    Heinrich, Benjamin W; Braun, Lukas; Pascual, Jose I; Franke, Katharina J

    2015-06-10

    The magnetism of single atoms and molecules is governed by the atomic scale environment. In general, the reduced symmetry of the surrounding splits the d states and aligns the magnetic moment along certain favorable directions. Here, we show that we can reversibly modify the magnetocrystalline anisotropy by manipulating the environment of single iron(II) porphyrin molecules adsorbed on Pb(111) with the tip of a scanning tunneling microscope. When we decrease the tip-molecule distance, we first observe a small increase followed by an exponential decrease of the axial anisotropy on the molecules. This is in contrast to the monotonous increase observed earlier for the same molecule with an additional axial Cl ligand ( Nat. Phys. 2013 , 9 , 765 ). We ascribe the changes in the anisotropy of both species to a deformation of the molecules in the presence of the attractive force of the tip, which leads to a change in the d level alignment. These experiments demonstrate the feasibility of a precise tuning of the magnetic anisotropy of an individual molecule by mechanical control. PMID:25942560

  18. Ultrasonic evaluation of local biological tissue anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tokar, Daniel; Převorovský, Zdeněk; Hradilová, Jana

    Brno: University of Technology, 2014. s. 26-27. ISBN 978-80-214-5019-6. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. 06.10.2014-10.10.2014, Praha] Institutional support: RVO:61388998 Keywords : ultrasonic testing (UT) * signal processing * medical application * anisotropy Subject RIV: BI - Acoustics

  19. Surface stress anisotropy of Ge(001)

    NARCIS (Netherlands)

    Middel, M.T.; Zandvliet, H.J.W.; Poelsema, Bene

    2002-01-01

    By analyzing the equilibrium shape of vacancy islands on the Ge(001) surface we have determined the surface stress anisotropy, i.e., the difference between the compressive stress component along the substrate dimer rows and the tensile stress component perpendicular to the substrate dimer rows. In o

  20. Gaussian Anisotropy In Strange Quark Stars

    CERN Document Server

    Panahi, H; Eghdami, I

    2015-01-01

    In this paper for studying the anisotropic strange quark stars, we assume that the radial pressure inside the anisotropic star is a superposition of pressure in an isotropic case plus a Gaussian perturbation term. Considering a proportionality between electric charge density and the density of matter, we solve the TOV equation for different cases numerically. Our results indicate that anisotropy increases the maximum mass $M_{max}$ and also its corresponding radius $R$ for a typical strange quark star. According to our calculations, an anisotropy amplitude of $A=3\\times10^{33}Nm^{-2}$ with a standard deviation of $\\sigma=3\\times10^{3}m$ leads to a neutron star of 1.97$M_{\\odot}$. Furthermore, electric charge not only increases the maximum mass and its corresponding radius, but also raises up the anisotropy factor. We can see that the tangential pressure $p_{t}$ and anisotropy factor $\\Delta$ unlike the radial pressure $p_{r}$ have a maximum on the surface and this maximum increases by adding electric charge e...

  1. Gold Spiky Nanodumbbells: Anisotropy in Gold Nanostars

    OpenAIRE

    Novikov, Sergey M.; Sánchez-Iglesias, Ana; Schmidt, Mikołaj K.; Chuvilin, Andrey; Aizpurua, Javier; Grzelczak, Marek; Liz-Marzán, Luis M.

    2013-01-01

    A new type of gold nanoparticle—called “spiky nanodumbbells”—is introduced. These particles combine the anisotropy of nanorods with sharp nanoscale features of nanostars, which are important for SERS applications. Both the morphology and the optical response of the particles are characterized in detail, and the experimental results are compared with FDTD simulations, showing good agreement.

  2. Competing anisotropies in holmium-erbium superlattices

    DEFF Research Database (Denmark)

    Simpson, J.A.; McMorrow, D.F.; Cowley, R.A.; Jehan, D.A.; Ward, R.C.C.; Wells, M.R.; Clausen, K.N.

    1994-01-01

    The effect of competing crystal-field anisotropies on magnetic order has been investigated in a series of Ho/Er superlattices. For temperatures in the interval T(N)(Er) less-than-or-equal-to T less-than-or-equal-to T(N)(Ho) the Ho basal-plane order propagates coherently through the paramagnetic E...

  3. Anisotropy and texture. Studies in magnetic media

    International Nuclear Information System (INIS)

    The rapid development of magnetic materials for recording media applications increased the demands for new and more precise experimental investigation techniques. In respect with these demands, this project is focused on experimental analyses of advanced particulate media and magnetic thin film samples. A new extended rotational remanence technique for anisotropy field measurements was developed. The technique is suitable for samples that contain aligned or partially aligned particles and provides both: in-plane anisotropy field distributions and the in-plane anisotropy field. This technique was also extended to out-of-plane anisotropy field measurements. Rotational hysteresis was introduced as an alternative method for anisotropy field measurements. This applies well in the case of samples without texture or samples having very small magnetic moment (i.e. thin films). The two techniques for anisotropy field measurement compare well and the experimental results were interpreted in terms of inter-particles interactions. Two measurement methods for determination of the demagnetizing field acting perpendicular to a sample plane were also developed. The first method is based on the in-plane and out-of-plane anisotropy field determination using an extended rotational remanence technique. The second method can provide the demagnetizing field starting from in-plane and out-of-plane transverse hysteresis loops. Comparison between the results from the two methods showed good agreement. Furthermore, the demagnetizing field values were used to calculate the magnetic coating thickness, so the two methods provide a non-destructive method for magnetic thickness measurements in film samples. The in-plane easy axis distribution (EAD) was experimentally determined using vector VSM techniques. Correlations between in-plane tape texture and magnetic thickness were obtained for a series of advanced MP tapes. A theoretical approach was used in order to relate the orientation ratio to

  4. Multi-scale characterization of topographic anisotropy

    Science.gov (United States)

    Roy, S. G.; Koons, P. O.; Osti, B.; Upton, P.; Tucker, G. E.

    2016-05-01

    We present the every-direction variogram analysis (EVA) method for quantifying orientation and scale dependence of topographic anisotropy to aid in differentiation of the fluvial and tectonic contributions to surface evolution. Using multi-directional variogram statistics to track the spatial persistence of elevation values across a landscape, we calculate anisotropy as a multiscale, direction-sensitive variance in elevation between two points on a surface. Tectonically derived topographic anisotropy is associated with the three-dimensional kinematic field, which contributes (1) differential surface displacement and (2) crustal weakening along fault structures, both of which amplify processes of surface erosion. Based on our analysis, tectonic displacements dominate the topographic field at the orogenic scale, while a combination of the local displacement and strength fields are well represented at the ridge and valley scale. Drainage network patterns tend to reflect the geometry of underlying active or inactive tectonic structures due to the rapid erosion of faults and differential uplift associated with fault motion. Regions that have uniform environmental conditions and have been largely devoid of tectonic strain, such as passive coastal margins, have predominantly isotropic topography with typically dendritic drainage network patterns. Isolated features, such as stratovolcanoes, are nearly isotropic at their peaks but exhibit a concentric pattern of anisotropy along their flanks. The methods we provide can be used to successfully infer the settings of past or present tectonic regimes, and can be particularly useful in predicting the location and orientation of structural features that would otherwise be impossible to elude interpretation in the field. Though we limit the scope of this paper to elevation, EVA can be used to quantify the anisotropy of any spatially variable property.

  5. A unified solution to the anisotropy and gradient problems

    CERN Document Server

    Gaggero, Daniele; Grasso, Dario; Maccione, Luca

    2013-01-01

    The Fermi-LAT collaboration recently confirmed a discrepancy between the observed longitudinal profile of gamma-ray diffuse emission from the Galaxy and that computed with numerical codes assuming that Cosmic Rays (CRs) are produced by Galactic supernova remnants; the accurate Fermi-LAT measurements make this anomaly hardly explainable in terms of conventional diffusion schemes. Moreover, experimental data from both Muon detector and Extensive Air Shower experiments about the large scale dipole anisotropy of CRs can hardly be compatible with model predictions within the framework of conventional isotropic and homogeneous propagation. We argue that, accounting for a well physically motivated correlation between the CR escape time and the spatially dependent magnetic turbulence power, it is possible to solve both problems at the same time in a very natural way. Indeed, by exploiting this correlation, we find propagation models that fit a wide set of CR primary and secondary spectra, and consistently reproduce t...

  6. Plastic anisotropy and dislocation trajectory in BCC metals.

    Science.gov (United States)

    Dezerald, Lucile; Rodney, David; Clouet, Emmanuel; Ventelon, Lisa; Willaime, François

    2016-01-01

    Plasticity in body-centred cubic (BCC) metals at low temperatures is atypical, marked in particular by an anisotropic elastic limit in clear violation of the famous Schmid law applicable to most other metals. This effect is known to originate from the behaviour of the screw dislocations; however, the underlying physics has so far remained insufficiently understood to predict plastic anisotropy without adjustable parameters. Here we show that deviations from the Schmid law can be quantified from the deviations of the screw dislocation trajectory away from a straight path between equilibrium configurations, a consequence of the asymmetrical and metal-dependent potential energy landscape of the dislocation. We propose a modified parameter-free Schmid law, based on a projection of the applied stress on the curved trajectory, which compares well with experimental variations and first-principles calculations of the dislocation Peierls stress as a function of crystal orientation. PMID:27221965

  7. Shale Deformation Experiments Toward an Understanding of Elastic and Fracture Anisotropy

    Science.gov (United States)

    Kanitpanyacharoen, J.; Miyagi, L. M.; Jugle, M.; Wang, Y.; Yu, T.

    2014-12-01

    The significance of shales as unconventional hydrocarbon reservoirs has opened new research frontiers in geosciences. Among many of its unique physical properties, elastic anisotropy in shales has long been investigated by both experimental and computational approaches. Shales is highly anisotropic due to texture (crystallographic preferred orientation) of their constituent clay minerals. Moreover, texturing is known to cause fracture anisotropy, which can affect both fracture toughness and fracture orientations in metals, ceramics, and polyphase materials. However, the relationship between texture and fracture anisotropy in shale has not been explored. In this study we use the multi-anvil deformation tool (D-DIA) to deform shales with a range of clay and silt contents to failure while collecting x-ray diffraction and radiography images. Diffraction images are used to extract to texture and lattice strain evolution while radiography are used to measure macrostrain and determine failure. Since clay mineral have shear moduli in the range of 6-17 GPa, our stress resolution is in the range of 30 -100 MPa respectively, within the range of unconfined compressive strengths of shales. Our results show that the orientation of clay minerals become more prominent in all samples upon deforming the sample at 100 MPa. Recovered samples are investigated with SEM to document microstructural changes. A second deformation experiment will be coupled with ultrasonic and acoustic emissions measurements to make direct comparisons of elastic anisotropy and understand the role of fracture on anisotropy. Acoustic emissions allows us to locate damage initiation and determine fracture orientations in-situ. This information will be compared with texture data to determine fracture anisotropy in our samples.

  8. A New Light-Speed Anisotropy Experiment: Absolute Motion and Gravitational Waves Detected

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available Data from a new experiment measuring the anisotropy of the one-way speed of EM waves in a coaxial cable, gives the speed of light as 300,000 +/- 400 (+/- 20 km/s in a measured direction RA=5.5 +/- 2 hrs, Dec=70 +/- 10 Deg S, is shown to be in excellent agreement with the results from seven previous anisotropy experiments, particularly those of Miller (1925/26, and even those of Michelson and Morley (1887. The Miller gas-mode interferometer results, and those from the RF coaxial cable experiments of Torr and Kolen (1983, De Witte (1991 and the new experiment all reveal the presence of gravitational waves, as indicated by the last +/- variations above, but of a kind different from those supposedly predicted by General Relativity. Miller repeated the Michelson-Morley 1887 gas-mode interferometer experiment and againdetected the anisotropy of the speed of light, primarily in the years 1925/1926 atop Mt.Wilson, California. The understanding of the operation of the Michelson interferometer in gas-mode was only achieved in 2002 and involved a calibration for the interferometer that necessarily involved Special Relativity effects and the refractive index of the gas in the light paths. The results demonstrate the reality of the Fitzgerald-Lorentz contraction as an observer independent relativistic effect. A common misunderstanding is that the anisotropy of the speed of light is necessarily in conflict with Special Relativity and Lorentz symmetry - this is explained. All eight experiments and theory show that we have both anisotropy of the speed of light and relativistic effects, and that a dynamical 3-space exists - that absolute motion through that space has been repeatedly observed since 1887. These developments completely change fundamental physics and our understanding of reality. Modern vacuum-mode Michelson interferometers, particularly the long baseline terrestrial versions, are, by design flaw, incapable of detecting the anisotropy effect and the

  9. Evolution of Tidally Truncated Globular Clusters with Anisotropy

    CERN Document Server

    Takahashi, K; Inagaki, S

    1997-01-01

    The evolution of tidally truncated globular clusters is investigated by integrating two-dimensional Fokker-Planck equation that allows the development of velocity anisotropy. We start from the isotropic Plummer model with tidal cut off and followed the evolution through the corecollapse. The heating by three-binary is included to obtain the evolution past the corecollapse. The anisotropy in velocity dispersion develops during the precollapse evolution. However, the anisotropy becomes highly depressed during the post-collapse evolution because of rapid loss of radial orbits. Maximum radial anisotropy appears just after the beginning of the expansion, and degree of anisotropy decreases slowly as the total mass of the cluster decreases. Thus it may be possible to determine the evolutionary status of a cluster if the velocity anisotropy can be measured in the sense that the postcollapse clusters always have very little degree of anisotropy. The structure of the post-collapse cluster can be well fitted to King mod...

  10. The Cosmic Microwave Background Anisotropy Experiments

    CERN Document Server

    Smoot, G F

    1997-01-01

    This paper reports a summary of the contents contents of six hours of lectures on the CMB anisotropy experiments given at the Strasbourg NATO school on the CMB and cosmology. (Its companion paper, astro-ph/9705101 reports the lectures on the CMB spectrum.) A context is set as a bridge from the theoretical CMB anisotropy lectures and the experimental situation. The COBE DMR results are reveiwed in detail and as pioneer for future space missions. Current and planned experiments are discussed in preference to reviewing already completed observations. The NASA MidEX mission MAP is discussed in some detail including figures. The ESA M3 mission Max Planck Surveyor is also reviewed in some detail though its final configuration is not yet fully settled. The recent history and current versions are presented. Tables and references for experiments are included.

  11. Anisotropies in the cosmic microwave background: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S.

    1998-02-01

    Anisotropies in the Cosmic Microwave Background (CMB) contain a wealth of information about the past history of the universe and the present values of cosmological parameters. I online some of the theoretical advances of the last few years. In particular, I emphasize that for a wide class of cosmological models, theorists can accurately calculate the spectrum to better than a percent. The spectrum of anisotropies today is directly related to the pattern of inhomogeneities present at the time of recombination. This recognition leads to a powerful argument that will enable us to distinguish inflationary models from other models of structure formation. If the inflationary models turn out to be correct, the free parameters in these models will be determined to unprecedented accuracy by the upcoming satellite missions.

  12. Reionization Revisited: Secondary CMB Anisotropies and Polarization

    OpenAIRE

    Hu, Wayne

    1999-01-01

    Secondary CMB anisotropies and polarization provide a laboratory to study structure formation in the reionized epoch. We consider the kinetic Sunyaev-Zel'dovich effect from mildly nonlinear large-scale structure and show that it is a natural extension of the perturbative Vishniac effect. If the gas traces the dark matter to overdensities of order 10, as expected from simulations, this effect is at least comparable to the Vishniac effect at arcminute scales. On smaller scales, it may be used t...

  13. Interferometric Observation of Cosmic Microwave Background Anisotropies

    CERN Document Server

    White, M; Dragovan, M; White, Martin; Carlstrom, John E.; Dragovan, Mark

    1999-01-01

    We present a formalism for analyzing interferometric observations of Cosmic Microwave Background (CMB) anisotropy and polarization data. The formalism is based upon the ell-space expansion of the angular power spectrum favoured in recent years. Explicit discussions of maximum likelihood analysis, power spectrum reconstruction, parameter estimation, imaging and polarization are given. As an example, several calculations for the Degree Angular Scale Interferometer (DASI) and Cosmic Background Interferometer (CBI) experiments are presented.

  14. Anisotropy of SANS in metallic glasses

    International Nuclear Information System (INIS)

    SANS in metallic glasses is anisotropic and depends on the ribbon's orientation. Pd-based melt spun and Ni-based electrochemically deposited glasses exhibit different anisotropies. Both glasses contain scattering centers of the order of 40nm wide in the ribbon plane. In the melt-spun alloy, the scatterers are very thin along the thickness perpendicular to the substrate. In the deposited alloy however, the defects are long along the thickness perpendicular to the electrode

  15. Seismic Anisotropy Beneath the Sumatra Subduction Zone

    OpenAIRE

    R. Collings; Rietbrock, A.; S. Mippress; Lange, D.; D. Natawidjaja; B. Suwargadi; Frederik Tilmann

    2011-01-01

    The Sumatra subduction zone is located on the eastern side of the Sunda Arc between the Sunda Strait and the Andaman Islands, where the Indo-Australian plate is subducting beneath the Eurasian plate. An important tool in understanding the style and geometry of deformation within a subduction zone is the measurement of seismic anisotropy, through observations of shear wave splitting, which provides information about the mantle flow. In Sumatra two temporary seismic networks were deployed withi...

  16. Assessment of velocity anisotropy in rocks

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Goel, R. K.; Rudajev, Vladimír; Dwivedi, R.D.

    2013-01-01

    Roč. 57, January (2013), s. 142-152. ISSN 1365-1609 R&D Projects: GA ČR(CZ) GA205/08/0676; GA AV ČR IAA300130906; GA ČR(CZ) GAP104/12/0915 Institutional research plan: CEZ:AV0Z30130516 Keywords : elastic anisotropy * acoustic emission * uniaxial loading * hydrostatic loading Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.424, year: 2013

  17. Ultrasonic evaluation of local human skin anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tokar, Daniel; Převorovský, Zdeněk; Hradilová, Jana

    2014-01-01

    Roč. 19, č. 12 (2014). ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : anisotropy * ultrasonic testing * human skin in-vivo * fabric-fiber composite * signal processing Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Paper/324_Tokar.pdf

  18. Gaussian Anisotropy In Strange Quark Stars

    OpenAIRE

    Panahi, H.; Monadi, R.; Eghdami, I.

    2015-01-01

    In this paper for studying the anisotropic strange quark stars, we assume that the radial pressure inside the anisotropic star is a superposition of pressure in an isotropic case plus a Gaussian perturbation term. Considering a proportionality between electric charge density and the density of matter, we solve the TOV equation for different cases numerically. Our results indicate that anisotropy increases the maximum mass $M_{max}$ and also its corresponding radius $R$ for a typical strange q...

  19. Anisotropy estimation properties for microstructural models

    Czech Academy of Sciences Publication Activity Database

    Beneš, Viktor; Hlawiczková, M.; Gokhale, A. M.; Vander Voort, G. F.

    2001-01-01

    Roč. 46, 2/3 (2001), s. 93-98. ISSN 1044-5803 R&D Projects: GA ČR GA201/99/0269 Grant ostatní: NSF(US) DMR-9816618 Institutional research plan: AV0Z1075907 Keywords : anisotropy * fibre system * Prokhorov distance Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.447, year: 2001

  20. Microwave anisotropies from the Galactic halo

    CERN Document Server

    Walker, M; Mori, M; Walker, Mark; Ohishi, Michiko; Mori, Masaki

    2002-01-01

    Models in which a large fraction of the Galactic dark matter takes the form of cold gas clouds imply that there is thermal microwave emission from the Galactic dark halo. Such models can therefore be directly constrained by existing data on the microwave sky, and in particular the very sensitive observations of microwave anisotropies. To this end we have computed the anisotropy power-spectrum expected for a Galactic dark halo made of cold, dense gas clouds, including the effects of clustering with a CDM-like mass spectrum of mini-halo substructure. The power-spectrum displays two peaks: one, at l~50, is the Poisson noise for the mini-halos, and the second, much larger and at much higher l, is the Poisson noise of the individual clouds. The predicted fluctuation amplitude on degree-scales is a small (~1%) fraction of the observed (~70 micro-K) anisotropies if one considers small areas of sky at high Galactic latitude, increasing by a factor of a few for large areas of sky around 30 degrees latitude. Consequent...

  1. Measuring Anisotropies in the Cosmic Neutrino Background

    CERN Document Server

    Lisanti, Mariangela; Tully, Christopher G

    2014-01-01

    Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (CvB). We show that relic neutrinos are captured most readily when their spin vectors are anti-aligned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, CvB observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the CvB is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain non-standard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neu...

  2. Effective surface anisotropy in polycrystalline ferromagnetic nanowires

    International Nuclear Information System (INIS)

    Highlights: • Here we make a mixing of two models. A macroscopic and a microscopic model. • The principal idea in this paper is to write the free magnetic energy for a soft magnetic cylindrical nanowire and make the comparison with our previous models. • The model is tested to determine the effective constant in Ni nanowires. - Abstract: Here we express the effective surface anisotropy for soft ferromagnetic nanowires as the function of the micro-structural behaviors. Many papers about these systems determine the reversal modes for the magnetization to explain magnetic properties of the nanowires. Our previous works related morphological structure with magnetic properties. The principal idea in this paper is to write the free magnetic energy for a soft magnetic cylindrical nanowire and make the comparison with our previous models. In this way we include the macroscopic effective anisotropy due to the disordered atoms and ignoring other microstructure terms related in our previous works. From this idea and our last model to these systems, we made an association that permit to express the effective anisotropy in function of the principal morphological characteristics of nanowires. The model is tested to determine the numerical value of the mentioned constant in Ni nanowires obtained by electrodeposition in porous anodic aluminum oxide membranes using the Transmission Electron Microscopy

  3. Dynamical anisotropy of the optical propagation paths

    Science.gov (United States)

    Arsenyan, Tatiana I.; Pisklin, Maksim V.; Suhareva, Natalia A.; Zotov, Aleksey M.

    2015-11-01

    Dynamics of laser beam intensity profile spatial modulations over a model tropospheric path with the controlled meteorological parameters was studied. Influence of the underlying surface temperature as well as the side wind load were considered. The increase of dynamic anisotropic disturbances saturation with the path length was observed. Spatio-temporal correlation characteristics of the directivity pattern in the signal beam registration plane were obtained. Proposed method of the experimental samples analysis on the base of chronogram with the following definition of the dynamic structure tensors array allows to estimate local and averaged projections of the flow velocities over the chosen spatio-temporal region and to restore their geometry in the zone of intersection with the signal beam. Additional characteristics suggested for the diagonalized local structure tensors such as local energy capacity and local structuredness are informative for the estimation of the inhomogeneities spatial dimensions, time of access through the section considered, the dynamics of energetic jets. The concepts of rotational and translational dynamic anisotropy are introduced to discriminate the types of the changes of the local ellipsoids axes orientation as well as their values. Rotational anisotropy shows itself in the changes of the local ellipsoids orientation, thus characterizing the illumination variation over the beam cross-section. Translational anisotropy describes the difference between the axes values for local ellipsoids.

  4. Getting Anisotropy in the Seismic Data Processing

    Directory of Open Access Journals (Sweden)

    Edenia de la Caridad Camejo Cordero

    2013-06-01

    Full Text Available In a conventional processing of seismic data (processing of only one type of wave, P or S, to getimages for hydrocarbons exploration, an isotropic model of the earth is assumed. Studies havedemonstrated that in areas with evidences of anisotropy, the conventional process of time migrationproduces images with poor resolution or erroneous lateral localization of structural events with highinclinations, due to variations in the elastic properties according to the direction of propagation of theseismic waves. At present this topic is of great importance in seismic acquisitions because of thevast employ of the far offset (large distances source–receptor. To, compensate this negative effectsis a priority objective to improve the seismic information. To obtain the anisotropy first started from asequence of high density processing that takes into consideration the characteristics of the earth;and data can be analyzed in all volume. As a final result; getting the comparison between the timemigration stack, with the application of standard normal Moveout correction (NMO and the others,that takes into consideration the obtained anisotropy values, allowing an improvement in the continuityof the reflectors in the seismic images, and at the same time a more reliable interpretation, with theconsequent decrease of the uncertainty and the risks in the oil exploration.

  5. The role of pressure anisotropy on the maximum mass of cold compact stars

    Indian Academy of Sciences (India)

    S Karmakar; S Mukherjee; S Sharma; S D Maharaj

    2007-06-01

    We study the physical features of a class of exact solutions for cold compact anisotropic stars. The effect of pressure anisotropy on the maximum mass and surface red-shift is analysed in the Vaidya–Tikekar model. It is shown that maximum compactness, red-shift and mass increase in the presence of anisotropic pressures; numerical values are generated which are in agreement with observation.

  6. Modelling of friction anisotropy of deepdrawing sheet in ABAQUS/EXPLICIT

    OpenAIRE

    F. Stachowicz; Trzepieciński, T.

    2010-01-01

    This paper presents the experimental and numerical results of rectangular cup drawing of steel sheets. The aim of the experimental study was to analyze material behavior under deformation. The received results were further used to verify the results from numerical simulation by taking friction and material anisotropy into consideration. A 3D parametric finite element (FE) model was built using the FE-package ABAQUS/Standard. ABAQUS allows analyzing physical models of real processes putting s...

  7. Co monolayers and adatoms on Pd(100), Pd(111), and Pd(110): Anisotropy of magnetic properties

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Bornemann, S.; Ebert, H.; Mankovsky, S.; Vackář, Jiří; Minar, J.

    2013-01-01

    Roč. 88, č. 6 (2013), "064411-1"-"064411-14". ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/11/0853 Institutional support: RVO:68378271 Keywords : anisotropy * surfaces * XMCD sum rules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013 http://link.aps.org/doi/10.1103/PhysRevB.88.064411

  8. Anisotropy of magnetoelastic phenomena in Lu.sub.2./sub.Fe.sub.17./sub. intermetallics

    Czech Academy of Sciences Publication Activity Database

    Kamarád, Jiří; Skorokhod, Yuriy; Machátová, Zuzana; Arnold, Zdeněk; Andreev, Alexander V.

    272-276, - (2004), s. 2098-2099. ISSN 0304-8853 R&D Projects: GA AV ČR IAA1010315; GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoelastic effects * anisotropy * high pressure * Lu2 Fe 17 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004

  9. Magnetic anisotropy and giant magnetoimpedance in NiFe electroplated on Cu wires

    Czech Academy of Sciences Publication Activity Database

    Kraus, Luděk; Butta, M.; Ripka, P.

    2013-01-01

    Roč. 11, č. 1 (2013), s. 53-55. ISSN 1546-198X R&D Projects: GA ČR GAP102/12/2177 Institutional research plan: CEZ:AV0Z10100520 Keywords : nife films * electrodeposition * magnetic anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.558, year: 2013 http://dx.doi.org/10.1166/sl.2013.2791

  10. Magnetic moment of Fe and magnetocrystalline anisotropy of Fe-rich intermetallic compounds under pressure

    Czech Academy of Sciences Publication Activity Database

    Kamarád, Jiří; Arnold, Zdeněk; Mikulina, O.

    2002-01-01

    Roč. 22, - (2002), s. 171-174. ISSN 0895-7959 R&D Projects: GA ČR GA202/99/0184; GA AV ČR IAA1010018 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoelastic effects * magnetocrystalline anisotropy * Fe-rich intermetallics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.414, year: 2002

  11. Cosmological Rotation of Quantum-Mechanical Origin and Anisotropy of the Microwave Background

    OpenAIRE

    Grishchuk, L. P.

    1993-01-01

    It is shown that rotational cosmological perturbations can be generated in the early Universe, similarly to gravitational waves. The generating mechanism is quantum-mechanical in its nature, and the created perturbations should now be placed in squeezed vacuum quantum states. The physical conditions under which the phenomenon can occur are formulated. The generated perturbations can contribute to the large-angular-scale anisotropy of the cosmic microwave background radiation. An exact formula...

  12. On Design of Anisotropy Distributions, Applying Lamina Formulas for 2d Result Visualization

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2015-01-01

    transformation for these practical quantities. The research background for optimal anisotropic constitutive matrices is shortly presented. Then design results are applied in a 2D visualization of optimized constitutive matrices, that are distributed in a finite element (FE) model where each element has a...... specific reference direction. The visualized distributions of physical quantities are; stiffest material direction, material stiffest longitudinal constitutive component, level of anisotropy, absolute or relative shear stiffness and orthotropy test....

  13. Field orientation dependence of magnetization reversal in thin films with perpendicular magnetic anisotropy

    Science.gov (United States)

    Fallarino, Lorenzo; Hovorka, Ondrej; Berger, Andreas

    2016-08-01

    The magnetization reversal process of hexagonal-close-packed (hcp) (0001) oriented Co and C o90R u10 thin films with perpendicular magnetic anisotropy (PMA) has been studied as a function of temperature and applied magnetic field angle. Room temperature pure cobalt exhibits two characteristic reversal mechanisms. For angles near in-plane field orientation, the magnetization reversal proceeds via instability of the uniform magnetic state, whereas in the vicinity of the out-of-plane (OP) orientation, magnetization inversion takes place by means of domain nucleation. Temperature dependent measurements enable the modification of the magnetocrystalline anisotropy and reveal a gradual disappearance of the domain nucleation process during magnetization reversal for elevated temperatures. Ultimately, this suppression of the domain nucleation process leads to the exclusive occurrence of uniform state instability reversal for all field orientations at sufficiently high temperature. Comparative magnetic measurements of C o90R u10 alloy samples allow the identification and confirmation of the high temperature remanent magnetization state of cobalt as an OP stripe domain state despite the reduction of magnetocrystalline anisotropy. Detailed micromagnetic simulations supplement the experimental results and corroborate the physical understanding of the temperature dependent behavior. Moreover, they enable a comprehensive identification of the complex energy balance in magnetic films with PMA, for which three different magnetic phases occur for sufficiently high anisotropy values, whose coexistence point is tricritical in nature.

  14. Anisotropy of the electron component in a cylindrical magnetron discharge. II. Application to real magnetron discharge.

    Science.gov (United States)

    Porokhova, I A; Golubovskii, Yu B; Behnke, J F

    2005-06-01

    The physical processes occurring in electrode regions and the positive column of a cylindrical magnetron discharge in crossed electric and magnetic fields are investigated based on the solution of the Boltzmann kinetic equation by a multiterm decomposition of the electron phase space distribution function in terms of spherical tensors. The influence of the distribution function anisotropy on the absolute values and radial profiles of the electron density and rates of various transport and collision processes is analyzed. The spiral lines for the directed particle and energy transport are obtained to illustrate the anisotropy effects in dependence on the magnetic field. The electron equipressure surfaces are constructed in the form of ellipsoids of pressure and their transformation in the cathode and anode regions is studied. A strong anisotropy of the energy flux tensor in contrast to a weak anisotropy of the momentum flux density tensor is found. Particular results are obtained for the cylindrical magnetron discharge in argon at pressure 3 Pa, current 200 mA, and magnetic fields ranging within 100 and 400 G. PMID:16089880

  15. Fabrication of electrodeposited Co nanowire arrays with perpendicular anisotropy

    Science.gov (United States)

    Ge, Shihui; Ma, Xiao; Li, Chao; Li, Wei

    2001-05-01

    Co nanowire arrays have been electrodeposited into polycarbonate membranes with nanosized pores at different voltages. By means of X-ray diffraction, electron diffraction, vibrating sample magnetometer, their microstructures and magnetic properties were investigated at full length. The sample prepared at -1.2 V, 250 mA/cm 2 shows perpendicular anisotropy, but the one deposited at -1.0V, 125 mA/cm 2 has no perpendicular anisotropy. This different magnetic behavior can be explained from their different microstructures. X-ray diffraction and electron diffraction evidence that the former sample is amorphous, and the latter is polycrystalline. In the polycrystalline sample, due to the competition of shape anisotropy and magnetocrystal anisotropy, the sample does not display perpendicular anisotropy. But magnetocrystal anisotropy is very small in amorphous sample, therefore, shape anisotropy plays a dominant role which leads to strong perpendicular anisotropy because of shape anisotropy. Furthermore, applying a magnetic field during deposition, Co grains will preferentially grow with c-axis along the wire axis, which also leads to strong perpendicular anisotropy.

  16. Fabrication of electrodeposited Co nanowire arrays with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Co nanowire arrays have been electrodeposited into polycarbonate membranes with nanosized pores at different voltages. By means of X-ray diffraction, electron diffraction, vibrating sample magnetometer, their microstructures and magnetic properties were investigated at full length. The sample prepared at -1.2 V, 250 mA/cm2 shows perpendicular anisotropy, but the one deposited at -1.0V, 125 mA/cm2 has no perpendicular anisotropy. This different magnetic behavior can be explained from their different microstructures. X-ray diffraction and electron diffraction evidence that the former sample is amorphous, and the latter is polycrystalline. In the polycrystalline sample, due to the competition of shape anisotropy and magnetocrystal anisotropy, the sample does not display perpendicular anisotropy. But magnetocrystal anisotropy is very small in amorphous sample, therefore, shape anisotropy plays a dominant role which leads to strong perpendicular anisotropy because of shape anisotropy. Furthermore, applying a magnetic field during deposition, Co grains will preferentially grow with c-axis along the wire axis, which also leads to strong perpendicular anisotropy

  17. Surface-termination-dependent magnetism and strong perpendicular magnetocrystalline anisotropy of an FeRh(001) thin film

    Czech Academy of Sciences Publication Activity Database

    Jekal, S.; Rhim, S.H.; Hong, S.C.; Son, W.-J.; Shick, Alexander

    2015-01-01

    Roč. 92, č. 6 (2015), " 064410-1"-" 064410-6". ISSN 1098-0121 R&D Projects: GA ČR GA15-07172S Institutional support: RVO:68378271 Keywords : magnetic anisotropy * magnetic recording * surface science Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  18. A Tight-binding Study of Surface Magnetic Anisotropy of the Co (0001) and Its Perturbation by Cu and CO

    Czech Academy of Sciences Publication Activity Database

    Pick, Štěpán

    2003-01-01

    Roč. 127, - (2003), s. 531-534. ISSN 0038-1098 Institutional research plan: CEZ:AV0Z4040901 Keywords : magnetic films and multilayers * spin-orbit effects * magnetic anisotropy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.602, year: 2003

  19. Element-specific analysis of the magnetic anisotropy in Mn-based antiferromagnetic alloys from first principles

    Czech Academy of Sciences Publication Activity Database

    Khmelevskyi, S.; Shick, Alexander; Mohn, P.

    2011-01-01

    Roč. 83, č. 22 (2011), "224419-1"-"224419-5". ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330; GA AV ČR IAA100100912 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic anisotropy * antiferromagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  20. Monatomic Fe and Co wires at the Pt surface step edge: theory of the unconventional magnetic anisotropy

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Máca, František; Oppeneer, P.M.

    290-291, - (2005), s. 257-260. ISSN 0304-8853 R&D Projects: GA ČR(CZ) GA202/04/0583 Institutional research plan: CEZ:AV0Z10100520 Keywords : anisotropy theory * magnetic moments, orbital * nanocrystalline materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.985, year: 2005

  1. The contribution of crystallographic and shape prefered orientation to the bulk elastic anisotropy of a foliated biotite gneiss

    Czech Academy of Sciences Publication Activity Database

    Kern, H.; Ivankina, T. I.; Lokajíček, Tomáš

    2009. [1-1]. [Texture and Anisotropy of Polycrystals /3./. 23.09.2009-25.09.2009, Göttingen] R&D Projects: GA ČR GA205/08/0676 Institutional research plan: CEZ:AV0Z30130516 Keywords : anisotrophy * crystallography Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Determination of anisotropy to enhance the durability of natural stone

    International Nuclear Information System (INIS)

    Anisotropy is a petrophysical property of natural stone and other construction materials that determines their quality and resistance to decay due to a variety of agents, such as water. A study was conducted on nine types of stone widely used in Spain's built heritage, using six previously defined anisotropy indices. These indices can be used to determine the degree of anisotropy, which helps explain the differential decay observed in stone materials quarried in the same bed and used to build the same structure. The conclusion reached is that anisotropy should be determined in the natural stone used both to restore the architectural heritage and in new construction, since the appropriate choice of material quality ensures greater resistance to decay and, therefore, increased durability. Materials with the lowest possible anisotropy should be selected, as this property governs their hydraulic behaviour: the lower the anisotropy in a material, the better its behaviour in relation to water and the longer its durability

  3. Extending Velocity Channel Analysis for Studying Turbulence Anisotropies

    CERN Document Server

    Kandel, Dinesh; Pogosyan, Dmitri

    2016-01-01

    We extend the analysis of the fluctuations in the velocity slices of Position-Position- Velocity (PPV) spectroscopic data from Doppler broadened lines, i.e. Velocity Channel Analysis (VCA) introduced by Lazarian & Pogosyan (2000), to study anisotropy of the underlying velocity and density turbulence statistics that arises from the presence of magnetic field. In particular, we study analytically how the measurable anisotropy of the statistics of the channel map fluctuations changes with the thickness of velocity channels. In agreement with the earlier VCA studies we find that the anisotropy of the thick channels reflects the anisotropy of the density field, while the relative contribution of density and velocity fluctuations to the thin velocity channels depends on the density spectral slope. We show that the anisotropies arising from Alfven, slow and fast modes are different, in particular, the anisotropy in PPV created by fast modes is opposite to that created by Alfven and slow modes and this can be use...

  4. Lichtinduzierte Generierung und Charakterisierung optischer Anisotropie. - [überarb. Diss.

    OpenAIRE

    Jung, Carl Christoph

    2005-01-01

    Eine Nutzung der optischen Anisotropie dünner Schichten ist vor allem für die Displaytechnologie, die optische Datenspeicherung und für optische Sicherheitselemente von hoher Bedeutung. Diese Doktorarbeit befasst sich mit theoretischen und experimentellen Untersuchung von dreidimensionaler Anisotropie und dabei insbesondere mit der Untersuchung von lichtinduzierter dreidimensionaler Anisotropie in organischen dünnen Polymer-Schichten. Die gewonnenen Erkentnisse und entwickelten Methoden könne...

  5. Anisotropies in the Gravitational-Wave Stochastic Background

    CERN Document Server

    Olmez, S; Siemens, X

    2011-01-01

    We consider anisotropies in the stochastic background of gravitational-waves (SBGW) arising from random fluctuations in the number of gravitational-wave sources. We first develop the general formalism which can be applied to different cosmological or astrophysical scenarios. We then apply this formalism to calculate the anisotropies of SBGW associated with the fluctuations in the number of cosmic string loops, considering both cosmic string cusps and kinks. We calculate the anisotropies as a function of angle and frequency.

  6. Anisotropies in the Gravitational-Wave Stochastic Background

    OpenAIRE

    Olmez, S.; Mandic, V.; Siemens, X.

    2011-01-01

    We consider anisotropies in the stochastic background of gravitational-waves (SBGW) arising from random fluctuations in the number of gravitational-wave sources. We first develop the general formalism which can be applied to different cosmological or astrophysical scenarios. We then apply this formalism to calculate the anisotropies of SBGW associated with the fluctuations in the number of cosmic string loops, considering both cosmic string cusps and kinks. We calculate the anisotropies as a ...

  7. Anisotropies in the gravitational-wave stochastic background

    International Nuclear Information System (INIS)

    We consider anisotropies in the stochastic background of gravitational-waves (SBGW) arising from random fluctuations in the number of gravitational-wave sources. We first develop the general formalism which can be applied to different cosmological or astrophysical scenarios. We then apply this formalism to calculate the anisotropies of SBGW associated with the fluctuations in the number of cosmic string loops, considering both cosmic string cusps and kinks. We calculate the anisotropies as a function of angle and frequency

  8. Influence of spin on fission fragments anisotropy

    Directory of Open Access Journals (Sweden)

    Ghodsi Omid N.

    2005-01-01

    Full Text Available An analysis of selected fission fragment angular distribution when at least one of the spins of the projectile or target is appreciable in induced fission was made by using the statistical scission model. The results of this model predicate that the spins of the projectile or target are affected on the nuclear level density of the compound nucleus. The experimental data was analyzed by means of the couple channel spin effect formalism. This formalism suggests that the projectile spin is more effective on angular anisotropies within the limits of energy near the fusion barrier.

  9. Shape anisotropy of polymers in disordered environment.

    Science.gov (United States)

    Blavatska, Viktoria; Janke, Wolfhard

    2010-11-14

    We study the influence of structural obstacles in a disordered environment on the size and shape characteristics of long flexible polymer macromolecules. We use the model of self-avoiding random walks on diluted regular lattices at the percolation threshold in space dimensions d=2 and d=3. Applying the pruned-enriched Rosenbluth method, we numerically estimate rotationally invariant universal quantities such as the averaged asphericity and prolateness of polymer chain configurations. Our results quantitatively reveal the extent of anisotropy of macromolecules due to the presence of structural defects. PMID:21073228

  10. Skyrmion Dynamics in Perpendicular Magnetic Anisotropy Nanostructures

    International Nuclear Information System (INIS)

    Full text: Topological solitons in perpendicular magnetic anisotropy (PMA) nanostructures have a rich excitation spectrum that is directly linked to their topological properties, as described by their Skyrmion number. They have been predicted to exhibit intriguing dynamics well as ultra-fast switching. We provide here direct imaging of dynamics of PMA topological solitons in CoB/Pt nanostructures with picosecond time resolution, using Scanning Transmission soft X-ray Microscopy. Specifically, we observe breathing-like and translational dynamical behaviour. We thereby establish a link between the dynamics of PMA solitons and their underlying topology, while also providing a much wider scope for dynamical experiments in magnetic elements. (author)

  11. Three-layer model for exchange anisotropy

    Science.gov (United States)

    Rezende, S. M.; Azevedo, A.; de Aguiar, F. M.; Fermin, J. R.; Egelhoff, W. F.; Parkin, S. S.

    2002-08-01

    Recent x-ray absorption measurements have indicated that the interface between the antiferromagnetic (AF) and the ferromagnetic (FM) layers in AF/FM bilayers instead of being abrupt, consists of a thin layer with uncompensated spins. Here the effect of an interfacial layer between the AF and FM layers on the ferromagnetic resonance response is investigated using a three-layer model for the exchange anisotropy. The calculated dependence of the resonance field with the azimuthal angle of the in-plane external field agrees quite well with experimental data in several samples, lending support to the existence of the uncompensated interfacial layer.

  12. Cosmology with cosmic microwave background anisotropy

    Indian Academy of Sciences (India)

    Tarun Sourdeep

    2006-10-01

    Measurements of CMB anisotropy and, more recently, polarization have played a very important role in allowing precise determination of various parameters of the `standard' cosmological model. The expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the early Universe have also been established - `acausally' correlated initial perturbations in a flat, statistically isotropic Universe, adiabatic nature of primordial density perturbations. Direct evidence for gravitational instability mechanism for structure formation from primordial perturbations has been established. In the next decade, future experiments promise to strengthen these deductions and uncover the remaining crucial signature of inflation - the primordial gravitational wave background.

  13. Anisotropy in cohesive, frictional granular media

    International Nuclear Information System (INIS)

    The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum

  14. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  15. The study of the shape anisotropy in patterned permalloy films

    Institute of Scientific and Technical Information of China (English)

    Zhang Dong; Zhai Ya; Zhai Hong-Ru

    2007-01-01

    In this paper a systematic ferromagnetic resonance study shows that an in-plane magnetic anisotropy in the patterned micron octagon permalloy (Ni80Fe20) elements is mainly determined by the element geometry. The easy-axis is along the edge of the elements, and the hard-axis is along the diagonal. The shape anisotropy of the octagon elements is determined by square and equilateral octagon, and the theoretical calculation was studied on the shape anisotropy. The shape anisotropy of rectangular was calculated by using the same theory.

  16. Random and uniform anisotropy in soft magnetic nanocrystalline alloys (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Flohrer, Sybille, E-mail: Sybille.Flohrer@vacuumschmelze.co [VACUUMSCHMELZE GmbH and Co. KG, Gruener Weg 37, D-63450 Hanau (Germany); Herzer, Giselher [VACUUMSCHMELZE GmbH and Co. KG, Gruener Weg 37, D-63450 Hanau (Germany)

    2010-05-15

    In amorphous and nanocrystalline transition metal based alloys with low magnetostriction, the soft magnetic properties are mainly determined by magneto-elastic and annealing-induced anisotropies which are uniform on a scale much larger than the exchange correlation length. Though, in the nanocrystalline case, there are situations where the random magneto-crystalline anisotropy of the grains becomes relevant. The present paper surveys the interplay between the random magneto-crystalline and the uniform field-induced anisotropy in nanocrystalline FeCuNbSiB soft magnets. Typical examples where the contribution of the random anisotropy becomes particularly visible in the magnetic domain structure will be reviewed.

  17. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    S Ramasesha; Shaon Sahoo; Rajamani Raghunathan; Diptiman Sen

    2009-09-01

    We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, and for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant -valence bond (VB) technique of solving spin Hamiltonians employing full spatial and spin symmetry adaptation and we illustrate this technique by solving the exchange Hamiltonian of the Cu6Fe8 system. Treating the anisotropy Hamiltonian as perturbation, we compute the and values for various eigenstates of the exchange Hamiltonian. Since, the dipolar contribution to the magnetic anisotropy is negligibly small, we calculate the molecular anisotropy from the single-ion anisotropies of the metal centers. We have studied the variation of and by rotating the single-ion anisotropies in the case of Mn12Ac and Fe8 SMMs in ground and few low-lying excited states of the exchange Hamiltonian. In both the systems, we find that the molecular anisotropy changes drastically when the single-ion anisotropies are rotated. While in Mn12Ac SMM values depend strongly on the spin of the eigenstate, it is almost independent of the spin of the eigenstate in Fe8 SMM. We also find that the value is almost insensitive to the orientation of the anisotropy of the core Mn(IV) ions. The dependence of on the energy gap between the ground and the excited states in both the systems has also been studied by using different sets of exchange constants.

  18. The Anisotropy of Replicated Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Eugeny L. Furman

    2014-01-01

    Full Text Available The replication casting process gives the open-cell aluminum foams that can be used in many industrial applications as well as in filtering technology. The essential requirement for filters is the uniformity of filtering degree which is defined by the minimal pore size. However the structure of replication castings is often inhomogeneous and the minimal pore radius is decreasing in the direction of melt infiltration. The objective of this investigation is to study the dynamics of melt impregnation of the porous medium by vacuum suction to identify the possibility of reducing the anisotropy. Theoretical data illustrate the processes at the boundary between melt and gas medium. The experiments were carried out using the replication aluminum samples produced according to commercial technology. It was found that the permeability coefficient varies throughout the height of castings. A method for estimation of pressure on the line of melt movement was proposed. The resistance of NaCl layer and circular vents of the mold causes the inhomogeneity of castings. Finally the ways of minimizing the anisotropy were offered.

  19. Texture and anisotropy analysis of Qusaiba shales

    KAUST Repository

    Kanitpanyacharoen, Waruntorn

    2011-02-17

    Scanning and transmission electron microscopy, synchrotron X-ray diffraction, microtomography and ultrasonic velocity measurements were used to characterize microstructures and anisotropy of three deeply buried Qusaiba shales from the Rub\\'al-Khali basin, Saudi Arabia. Kaolinite, illite-smectite, illite-mica and chlorite show strong preferred orientation with (001) pole figure maxima perpendicular to the bedding plane ranging from 2.4-6.8 multiples of a random distribution (m.r.d.). Quartz, feldspars and pyrite crystals have a random orientation distribution. Elastic properties of the polyphase aggregate are calculated by averaging the single crystal elastic properties over the orientation distribution, assuming a nonporous material. The average calculated bulk P-wave velocities are 6.2 km/s (maximum) and 5.5 km/s (minimum), resulting in a P-wave anisotropy of 12%. The calculated velocities are compared with those determined from ultrasonic velocity measurements on a similar sample. In the ultrasonic experiment, which measures the effects of the shale matrix as well as the effects of porosity, velocities are smaller (P-wave maximum 5.3 km/s and minimum 4.1 km/s). The difference between calculated and measured velocities is attributed to the effects of anisotropic pore structure and to microfractures present in the sample, which have not been taken into account in the matrix averaging. © 2011 European Association of Geoscientists & Engineers.

  20. α-Zr self-diffusion anisotropy

    International Nuclear Information System (INIS)

    Self-diffusion coefficients (D) have been measured in nominally pure (NP) α-Zr single crystals (∼ 50 ppma Fe) in the range 867-1107 K, in directions either parallel (Dpa) or perpendicular (Dpe) to the c-axis. Measurements were also made on high-purity (HP) α-Zr single crystals (95Zr) counting. Sectioning was done with a sputtering device, or a microtome (some NP experiments at 1107 K). D values for NP Zr are about an order of magnitude higher than the corresponding values for HP Zr. Diffusion anisotropy is complicated. The sputter-sectioned NP Zr specimens show increasing anisotropy ratios (AR = Dpa/Dpe), from 1.0 to 3.2, with decreasing temperatures, whereas AR = 0.53 for both the microtome-sectioned NP and sputter-sectioned HP Zr: the low AR value is consistent with expectations based on intrinsic self-diffusion in hcp metals with c/a < 1.633. (author). 12 refs., 1 tab., 3 figs

  1. Electromagnetic Instabilities Excited by Electron Temperature Anisotropy

    Institute of Scientific and Technical Information of China (English)

    陆全明; 王连启; 周艳; 王水

    2004-01-01

    One-dimensional particle-in-cell simulations are performed to investigate the nonlinear evolution of electromagnetic instabilities excited by the electron temperature anisotropy in homogeneous plasmas with different parameters. The results show that the electron temperature anisotropy can excite the two right-hand electromagnetic instabilities, one has the frequency higher than Ωe, the other is the whistler instability with larger amplitude,and its frequency is below Ωe. Their dispersion relations are consistent with the prediction from the cold plasma theory. In the initial growth stage (prediction from linear theory), the frequency of the dominant mode (the mode whose amplitude is large enough) of the whistler wave almost does not change, but in the saturation stage the situation is different. In the case that the ratio of electron plasma frequency to cyclotron frequency is larger than 1, the frequency of the dominant mode of the whistler wave drifts from high to low continuously. However, for the case of the ratio smaller than 1, besides the original dominant mode of the whistler wave whose frequency is about 2.6ωe, another dominant mode whose frequency is about 1.55ωe also begins to be excited at definite time,and its amplitude increases with time until it exceeds the original dominant mode.

  2. Scanning anisotropy parameters in complex media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-03-21

    Parameter estimation in an inhomogeneous anisotropic medium offers many challenges; chief among them is the trade-off between inhomogeneity and anisotropy. It is especially hard to estimate the anisotropy anellipticity parameter η in complex media. Using perturbation theory and Taylor’s series, I have expanded the solutions of the anisotropic eikonal equation for transversely isotropic (TI) media with a vertical symmetry axis (VTI) in terms of the independent parameter η from a generally inhomogeneous elliptically anisotropic medium background. This new VTI traveltime solution is based on a set of precomputed perturbations extracted from solving linear partial differential equations. The traveltimes obtained from these equations serve as the coefficients of a Taylor-type expansion of the total traveltime in terms of η. Shanks transform is used to predict the transient behavior of the expansion and improve its accuracy using fewer terms. A homogeneous medium simplification of the expansion provides classical nonhyperbolic moveout descriptions of the traveltime that are more accurate than other recently derived approximations. In addition, this formulation provides a tool to scan for anisotropic parameters in a generally inhomogeneous medium background. A Marmousi test demonstrates the accuracy of this approximation. For a tilted axis of symmetry, the equations are still applicable with a slightly more complicated framework because the vertical velocity and δ are not readily available from the data.

  3. Experimental study of anisotropy for Berea Sandstone with image-based evaluation

    Science.gov (United States)

    Jeong, Y.; Yun, T.

    2013-12-01

    The rock anisotropy in internal structure of sedimentary rock governs physical behavior of whole body. Spatial composition of mineral and geometry of fabric contributes the anisotropy of rock, influencing on thermal property and wave propagation in internal structure of rock. Thermal conductivity and Wave velocity are important parameters to rock physical properties correlating other key parameters such as strength and elastic modulus. However, the invisibility of anisotropy of rock makes it hard to characterize the internal structure. In this study, 3D X-ray Computed Tomography is used to reveal the orientation of layer in Berea Sandstone based on statistical approach, SPM (Slicing Plane Method) with respect to the uniformly rotated orientation. This study also represents experimental study of thermal conductivity and elastic wave velocity Berea Sandstone. Divided bar method is conducted to get thermal conductivity of rock and elastic wave velocity is evaluated. Result from the statistical study based on image shows that anisotropic ratio for every orientation has unique value and they are coincides with tendency of layer direction. The uniqueness of thermal conductivity and wave velocity based on experimental study is also discussed. 3D Image of Berea Sandstone Result from SPM

  4. Approach to fabricating Co nanowire arrays with perpendicular anisotropy: Application of a magnetic field during deposition

    International Nuclear Information System (INIS)

    Cobalt (Co) nanowire arrays were electrodeposited into the pores of polycarbonate membranes. A magnetic field parallel or perpendicular to the membrane plane was applied during deposition to control the wire growth. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer were employed to investigate the structure as well as the magnetic properties of the nanowire arrays. The results show that the magnetic field applied during deposition strongly influences the growth of Co nanowires, inducing variations in their crystalline structure and magnetic properties. The sample deposited with the field perpendicular to the membrane plane exhibits a perpendicular magnetic anisotropy with greatly enhanced coercivity and squareness as a result of the preferred growth of Co grains with the c axis perpendicular to the film plane. In contrast, the deposition in a parallel magnetic field forces Co grains to grow with the c axis parallel to the film plane, resulting in in-plane anisotropy. [copyright] 2001 American Institute of Physics

  5. A common solution to the cosmic ray anisotropy and gradient problems

    CERN Document Server

    Evoli, Carmelo; Grasso, Dario; Maccione, Luca

    2012-01-01

    Multichannel Cosmic Ray (CR) spectra and the large scale CR anisotropy can hardly be made compatible in the framework of conventional isotropic and homogeneous propagation models. These models also have problems explaining the longitude distribution and the radial emissivity gradient of the $\\gamma$-ray galactic interstellar emission. We argue here that accounting for a well physically motivated correlation between the CR escape time and the spatially dependent magnetic turbulence power can naturally solve both problems. Indeed, by exploiting this correlation we find propagation models that fit a wide set of CR primary and secondary spectra, and consistently reproduce the CR anisotropy in the energy range $10^2 - 10^4 \\GeV$ and the $\\gamma$-ray longitude distribution recently measured by Fermi-LAT.

  6. Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis

    International Nuclear Information System (INIS)

    We perform a wavelet analysis of the temperature and polarization maps of the cosmic microwave background (CMB) delivered by the Wilkinson Microwave Anisotropy Probe experiment in search for a parity-violating signal. Such a signal could be seeded by new physics beyond the standard model, for which the Lorentz and CPT symmetries may not hold. Under these circumstances, the linear polarization direction of a CMB photon may get rotated during its cosmological journey, a phenomenon also called cosmological birefringence. Recently, Feng et al. have analyzed a subset of the Wilkinson Microwave Anisotropy Probe and BOOMERanG 2003 angular power spectra of the CMB, deriving a constraint that mildly favors a nonzero rotation. By using wavelet transforms we set a tighter limit on the CMB photon rotation angle Δα=-2.5±3.0 (Δα=-2.5±6.0) at the one (two) σ level, consistent with a null detection

  7. Magnetic and structural properties of Co-Pt perpendicular recording media with large magnetic anisotropy

    International Nuclear Information System (INIS)

    A Co-Pt film with large magnetic anisotropy at room temperature deposition was studied in terms of magnetic and structural properties. A high Ar gas pressure deposition of the Co-Pt film with a high crystal orientation could realize excellent magnetic properties such as a high perpendicular coercivity and a large magnetic anisotropy. This deposition technique of the Co-Pt film could form physically isolated and magnetically weak coupled grains. Magnetization reversal mechanism of the Co-Pt film deposited at a high Ar gas pressure was revealed to be a rotational mode, while the Co-Pt film deposited at low gas pressure seemed to be a magnetic domain wall motion

  8. Visualization of microcrack anisotropy in granite affected by afault zone, using confocal laser scanning microscope

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Celia T.; Shimizu, Ichiko

    2004-01-02

    Brittle deformation in granite can generate a fracture system with different patterns. Detailed fracture analyses at both macroscopic and microscopic scales, together with physical property data from a drill-core, are used to classify the effects of reverse fault deformation in four domains: (1) undeformed granite, (2) fractured granite with cataclastic seams, (3) fractured granite from the damage zone, and (4) foliated cataclasite from the core of the fault. Intact samples from two orthogonal directions, horizontal (H) and vertical (V), from the four domains indicate a developing fracture anisotropy toward the fault, which is highly developed in the damage zone. As a specific illustration of this phenomenon, resin impregnation, using a confocal laser scanning microscope (CLSM) technique is applied to visualize the fracture anisotropy developed in the Toki Granite, Japan. As a result, microcrack networks have been observed to develop in H sections and elongate open cracks in V sections, suggesting that flow pathways can be determined by deformation.

  9. Measurements of cosmic ray anisotropies from Pioneers 10 and 11

    International Nuclear Information System (INIS)

    Cosmic ray anisotropy measurements are performed by the University of California, San Diego experiments on Pioneers 10 and 11. A directional Cerenkov counter sensitive to protons and α particles with kinetic energies >= 480 MeV/nucleon is used to determine east-west and north-south anisotropies. (orig./WBU)

  10. Working group report: Astroparticle and neutrino physics

    Indian Academy of Sciences (India)

    Raj Gandhi; Subhendra Mohanty; Tarun Souradeep; S Agarwalla; K Bhattacharya; B Brahmachari; R Crittenden; S Goswami; P Ghoshal; M Lindner; H S Mani; S Mitra; S Pascoli; S Panda; R Rangarajan; S Ray; T Roy Choudhury; R Saha; S Sarkar; A Srivastava; R Sheth; S Uma Sankar; U Yajnik

    2006-10-01

    The working group on astroparticle and neutrino physics at WHEPP-9 covered a wide range of topics. The main topics were neutrino physics at INO, neutrino astronomy and recent constraints on dark energy coming from cosmological observations of large scale structure and CMB anisotropy.

  11. Magnetisation reversal in anisotropy graded Co/Pd multilayers

    International Nuclear Information System (INIS)

    We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd]8 multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol would provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media

  12. Discriminating neurogenic from myopathic disease via measurement of muscle anisotropy.

    Science.gov (United States)

    Garmirian, Lindsay P; Chin, Anne B; Rutkove, Seward B

    2009-01-01

    Skeletal muscle is electrically anisotropic, with a tendency for applied electrical current to flow more readily along muscle fibers than across them. In this study, we assessed a method for non-invasive measurement of anisotropy to determine its potential to serve as a new technique for distinguishing neurogenic from myopathic disease. Measurements were made on the biceps brachii and tibialis anterior muscles in 15 normal subjects and 12 patients with neuromuscular disease (6 with amyotrophic lateral sclerosis and 6 with various myopathies) using 50 kHZ applied current. Consistent multi-angle anisotropic patterns were found for reactance and phase in both muscles in normal subjects. Normalized anisotropy differences for each subject were defined, and group average values identified. The amyotrophic lateral sclerosis (ALS) patients demonstrated increased and distorted anisotropy patterns, whereas myopathic patients demonstrated normal or reduced anisotropy. These results suggest that non-invasive measurement of muscle anisotropy has potential for diagnosis of neuromuscular diseases. PMID:19058193

  13. Tuning the Magnetic Anisotropy at a Molecule-Metal Interface

    DEFF Research Database (Denmark)

    Bairagi, K.; Bellec, A.; Repain, V.; Chacon, C.; Girard, Y.; Garreau, Y.; Lagoute, J.; Rousset, S.; Breitwieser, R.; Hu, Yu-Cheng; Chao, Yen Cheng; Pai, Woei Wu; Li, D.; Smogunov, A.; Barreteau, Cyrille

    2015-01-01

    We demonstrate that a C60 overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the C60/Co interfacial magnetic anisotropy that we have measured quantitatively in situ as a...... function of the C60 coverage. Comparison with state-of-the-art ab initio calculations show that this interfacial anisotropy mainly arises from the local hybridization between C60 pz and Co dz2 orbitals. By generalizing these arguments, we also demonstrate that the hybridization of C60 with a Fe(110......) surface decreases the perpendicular magnetic anisotropy. These results open the way to tailor the interfacial magnetic anisotropy in organic-material-ferromagnet systems....

  14. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene

    Directory of Open Access Journals (Sweden)

    Yuan Lu

    2016-05-01

    Full Text Available Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ∼16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electric materials based on rare-earth-decorated graphene for voltage-controlled spintronics.

  15. Intrinsic anisotropy-defined magnetization reversal in submicron ring magnets

    Science.gov (United States)

    Li, S. P.; Lew, W. S.; Bland, J. A. C.; Natali, M.; Lebib, A.; Chen, Y.

    2002-12-01

    We report a study of the effect of magnetocrystalline anisotropy in the magnetization reversal of submicron Co rings fabricated by nanoimprint lithography. For weak magnetocrystalline anisotropy, the complete reversal takes place via a transition from saturation at large negative fields, into a vortex configuration at small fields, and back to reverse saturation at large positive fields. When the anisotropy strength is increased to a critical value, the intermediate vortex configuration no longer exists in the magnetization reversal along the easy axis; instead, the reversal occurs through a rapid jump. However, when the applied field direction is far from the easy axis, the presence of the magnetocrystalline anisotropy favors local vortex nucleation, and this leads to a similar switching process as found for low anisotropy. Micromagnetic simulations indicate that the magnetization reversal process of the rings, starts from a buckling-like reverse domain nucleation, followed by local vortex formation and an avalanche process of local vortex nucleation.

  16. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene

    Science.gov (United States)

    Lu, Yuan; Zhou, Tie-ge; Shao, Bin; Zuo, Xu; Feng, Min

    2016-05-01

    Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ˜16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electric materials based on rare-earth-decorated graphene for voltage-controlled spintronics.

  17. Fine structure constant variation or spacetime anisotropy?

    International Nuclear Information System (INIS)

    Recent observations on the quasar absorption spectra supply evidence for the variation of the fine structure constant α. In this paper, we propose another interpretation of the observational data on the quasar absorption spectra: a scenario with spacetime inhomogeneity and anisotropy. Maybe the spacetime is characterized by the Finsler geometry instead of the Riemann one. The Finsler geometry admits fewer symmetries than the Riemann geometry does. We investigate the Finslerian geodesic equations in the Randers spacetime (a special Finsler spacetime). It is found that the cosmological redshift in this spacetime deviates from the one in general relativity. The modification term to the redshift could be generally revealed as a monopole plus dipole function of spacetime locations and directions. We suggest that this modification corresponds to the spatial monopole and dipole of α variation in the quasar absorption spectra. (orig.)

  18. Creep anisotropy of Zircaloy cladding tubes

    International Nuclear Information System (INIS)

    First of all, a survey is given on the texture of Zircaloy cladding tubes obtained depending on the manufacturing conditions, and the state of knowledge on the anisotropy of the mechanical properties of the zirconium alloys connected with the texture is outlined. Theoretical formulations are set up for the phenomenological representation of the anisotropic creep. The results of tension and compression tests and the thus obtained creep site curves exhibit distinct differences with tubes having different textures. Furthermore, on asymmetry regarding compressive tensile stress is found in such a manner that the material under compression stress is more resistant to creep. Finally, discussions follow on the deformation mechanisms and a comparison with flow processes as well as indications on the significance of these creep results within the framework of fuel rod design are given. (IHoe/LH)

  19. Orientational anisotropy and interfacial transport in polycrystals

    Science.gov (United States)

    Moghadam, M. M.; Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2016-04-01

    Interfacial diffusion is governed to a large degree by geometric parameters that are determined by crystallographic orientation. In this study, we assess the impact of orientational anisotropy on mass transport at internal interfaces, focusing on the role of preferred crystallographic orientation (i.e., texture) on mass diffusion in a polycrystal. More specifically, we perform both numerical and analytical studies of steady-state diffusion for polycrystals having various grain-orientation distributions. By relating grain misorientation to grain-boundary energies and, via the Borisov relation, to the diffusivity, we link microstructure variability to kinetics. Our aim is to correlate shape features of the orientation distribution, such as the location and shapes of peaks, with the calculated effective diffusivity. Finally, we discuss the role of crystallographic constraints, such as those associated with grain junctions, in determining the effective diffusivity of a polycrystal.

  20. Perpendicular anisotropy in Fe/Ag multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, C.; Szucs, I.S.; Dezsi, I. [KFKI Research Institute for Particle and Nuclear Physics, Budapest (Hungary); Kaptas, D.; Kiss, L.F.; Vincze, I. [Research Institute for Solid State Physics and Optics, Budapest (Hungary); Balogh, J.

    2008-08-15

    The direction of the spontaneous magnetization changes from out of plane to in plane at around x=0.6 in[Ag(2.6 nm)/Fe(x nm)]{sub 10} multilayers (0.2{<=}x{<=}1) prepared on Si(111) substrate by vacuum evaporation. Transmission Moessbauer spectroscopy measurements of removed samples with a thick capping layer are compared to conversion electron Moessbauer spectroscopy measurements of samples on the Si substrate with a thin capping layer. The stress arising because of the application of a thick capping layer and the removal of the samples from the substrate is shown to have negligible effect on the spontaneous magnetization. The results support that the appearance of the perpendicular anisotropy below x=0.6 is an intrinsic property of Fe/Ag multilayers. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Prediction of the Virgo axis anisotropy: CMB radiation illuminates the nature of things

    CERN Document Server

    Berkovich, S

    2005-01-01

    Recent findings of the anisotropy in the Cosmic Microwave Background (CMB) radiation are confusing for standard cosmology. Remarkably, this fact has been predicted several years ago in the framework of our model of the physical world. Moreover, in exact agreement with our prediction the CMB has a preferred direction towards the Virgo Cluster. The transpired structure of the CMB shows workings of the suggested model of the physical world. Comprising the information processes of Nature, this model presents a high-tech version of the previous low-tech developments for mechanical ether and quantum vacuum. In the current model, the phenomenon of Life turns up as a collective effect on the "Internet of the Physical Universe" using DNA structures for access codes. Most convincingly, this construction points to a harmful analogy with so-called "identity theft" - improper manipulations with DNA of individual organisms can destroy these organisms from a remote location without any physical contact. Appearing incredible...

  2. Daytime Thermal Anisotropy of Urban Neighbourhoods: Morphological Causation

    Directory of Open Access Journals (Sweden)

    E. Scott Krayenhoff

    2016-01-01

    Full Text Available Surface temperature is a key variable in boundary-layer meteorology and is typically acquired by remote observation of emitted thermal radiation. However, the three-dimensional structure of cities complicates matters: uneven solar heating of urban facets produces an “effective anisotropy” of surface thermal emission at the neighbourhood scale. Remotely-sensed urban surface temperature varies with sensor view angle as a consequence. The authors combine a microscale urban surface temperature model with a thermal remote sensing model to predict the effective anisotropy of simplified neighbourhood configurations. The former model provides detailed surface temperature distributions for a range of “urban” forms, and the remote sensing model computes aggregate temperatures for multiple view angles. The combined model’s ability to reproduce observed anisotropy is evaluated against measurements from a neighbourhood in Vancouver, Canada. As in previous modeling studies, anisotropy is underestimated. Addition of moderate coverages of small (sub-facet scale structure can account for much of the missing anisotropy. Subsequently, over 1900 sensitivity simulations are performed with the model combination, and the dependence of daytime effective thermal anisotropy on diurnal solar path (i.e., latitude and time of day and blunt neighbourhood form is assessed. The range of effective anisotropy, as well as the maximum difference from nadir-observed brightness temperature, peak for moderate building-height-to-spacing ratios (H/W, and scale with canyon (between-building area; dispersed high-rise urban forms generate maximum anisotropy. Maximum anisotropy increases with solar elevation and scales with shortwave irradiance. Moreover, it depends linearly on H/W for H/W < 1.25, with a slope that depends on maximum off-nadir sensor angle. Decreasing minimum brightness temperature is primarily responsible for this linear growth of maximum anisotropy. These

  3. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering

    Science.gov (United States)

    Zhang, S.; Petford-Long, A. K.; Phatak, C.

    2016-08-01

    Topologically non-trivial spin textures form a fundamental paradigm in solid-state physics and present unique opportunities to explore exciting phenomena such as the topological Hall effect. One such texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the perpendicular anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique spin configurations of artificial skyrmions and antiskyrmions that are stabilized by their demagnetization energy. We elucidate their behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. This research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.

  4. Pore Fabric Anisotropy: Testing the Equivalent Pore Concept Using Magnetic Ferrofluid and Synthetic Voids of Known Geometry

    Science.gov (United States)

    Jones, S.; Benson, P.; Meredith, P.

    2005-12-01

    We present results from an experimental and theoretical study of pore fabric anisotropy using the method of anisotropy of magnetic susceptibility (AMS) and synthetic pore spaces of known geometry. AMS has traditionally been used to measure the magnetic anisotropy of a dry rock matrix. Here we use the technique to determine the anisotropy of the void space. We provide the voids with an artificial magnetic susceptibility by saturating them with magnetic ferrofluid. AMS measurements are made in the normal manner, and interpreted using the theoretical equivalent pore concept (EPC) proposed by Hrouda et al. (2000). This theory attempts to relate the magnetic measurements of lineation, foliation and anisotropy to the lineation, foliation and anisotropy of the real, physical pore fabric. Essentially, an average physical pore space shape and alignment is modeled that will produce the same magnetic properties as those measured on the real sample. In order to test the theory, we prepared a range of synthetic samples with known pore geometries from cylindrical polycarbonate blanks 25mm in diameter by 22mm long. Firstly, a set of "special fabrics" were machined axially into the sample blanks: (a) a set of 19 equally spaced holes, 2mm in diameter by 12mm long, (b); a row of 5 holes, 3.3mm in diameter by 16mm long; and (c) a tier of four disks, 18mm in diameter by 1.4mm thick. The total bulk susceptibility of each "special fabric" was approximately the same. Secondly, a set of seven samples were machined with quasi-ellipsoidal voids with axial to radial axis ratios of: 0.75, 0.83, 0.92, 1.0, 1.1, 1.2, and 1.3. All of the special-fabric samples showed high magnetic anisotropy, with a maximum foliation of 1.41 and lineation of 1.29. The results are as expected intuitively, with the 19 hole sample exhibiting a highly prolate fabric and the 5 hole sample exhibiting a highly oblate fabric. For the quasi-ellipsoids, the foliation decreases and the lineation increases as the axial to

  5. Fluid-dependent anisotropy and experimental measurements in synthetic porous rocks with controlled fracture parameters

    International Nuclear Information System (INIS)

    In this study, we analyse the influence of fluid on P- and S-wave anisotropy in a fractured medium. Equivalent medium theories are used to describe the relationship between the fluid properties and the rock physics characteristics in fractured rocks, and P-wave and S-wave velocities and anisotropy are considered to be influenced by fluid saturation. However, these theoretical predictions require experimental measurement results for calibration. A new construction method was used to create synthetic rock samples with controlled fracture parameters. The new construction process provides synthetic rocks that have a more realistic mineral composition, porous structure, cementation and pressure sensitivity than samples used in previous research on fractured media. The synthetic rock samples contain fractures which have a controlled distribution, diameter, thickness and fracture density. In this study, the fracture diameter was about 4 mm, the thickness of fractures was about 0.06 mm, and the fracture density in the two fractured rock samples was about 3.45%. SEM images show well-defined penny-shaped fractures of 4 mm in length and 0.06 mm in width. The rock samples were saturated with air, water and oil, and P- and S-wave velocities were measured in an ultrasonic measurement system. The laboratory measurement results show that the P-wave anisotropy is strongly influenced by saturated fluid, and the P-wave anisotropy parameter, ε, has a much larger value in air saturation than in water and oil saturations. The S-wave anisotropy decreases when the samples are saturated with oil, which can be caused by high fluid viscosity. In the direction perpendicular to the fractures (the 0° direction), shear-wave splitting is negligible, and is similar to the blank sample without fractures, as expected. In the direction parallel to the fractures (the 90° direction) shear-wave splitting is significant. The fractured rock samples show significant P- and S-wave anisotropy caused

  6. A New Light-Speed Anisotropy Experiment: Absolute Motion and Gravitational Waves Detected

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available Data from a new experiment measuring the anisotropy of the one-way speed of EM waves in a coaxial cable, gives the speed of light as 300,000 ± 400 ± 20km/s in a measured direction RA = 5.5 ± 2 hrs, Dec = 70 ± 10 ◦ S, is shown to be in excellent agreement with the results from seven previous anisotropy experiments, particularly those of Miller (1925/26, and even those of Michelson and Morley (1887. The Miller gas-mode interferometer results, and those from the RF coaxial cable experiments of Torr and Kolen (1983, De Witte (1991 and the new experiment all reveal the presence of gravitational waves, as indicated by the last ± variations above, but of a kind different from those supposedly predicted by General Relativity. Miller repeated the Michelson-Morley 1887 gas-mode interferometer experiment and again detected the anisotropy of the speed of light, primarily in the years 1925/1926 atop Mt.Wilson, California. The understanding of the operation of the Michelson interferometer in gas-mode was only achieved in 2002 and involved a calibration for the interferometer that necessarily involved Special Relativity effects and the refractive index of the gas in the light paths. The results demonstrate the reality of the Fitzgerald-Lorentz contraction as an observer independent relativistic effect. A common misunderstanding is that the anisotropy of the speed of light is necessarily in conflict with Special Relativity and Lorentz symmetry — this is explained. All eight experiments and theory show that we have both anisotropy of the speed of light and relativistic effects, and that a dynamical 3-space exists — that absolute motion through that space has been repeatedly observed since 1887. These developments completely change fundamental physics and our understanding of reality. “Modern” vacuum-mode Michelson interferometers, particularly the long baseline terrestrial versions, are, by design flaw, incapable of detecting the anisotropy effect

  7. Composite microstructural anisotropies in reservoir rocks: consequences on elastic properties and relation with deformation; Anisotropies microstructurales composites dans les roches reservoir: consequences sur les proprietes elastiques et relation a la deformation

    Energy Technology Data Exchange (ETDEWEB)

    Louis, L.

    2003-10-15

    From diagenesis to tectonic stress induced deformation, rock microstructures always present some anisotropy associated with a preferential orientation, shape or spatial arrangement of its constituents. Considering the consequences anisotropy has on directional transport properties and compliance, as the geological history it carries, this approach has received a particular attention in numerous works. In this work, the microstructural features of various sedimentary rocks were investigated through direct observations and laboratory measurements in naturally deformed and undeformed blocks, samples being considered as effective media. All investigated samples were found to be anisotropic with respect to the physical properties we measured (i.e. ultrasonic P-wave velocity, magnetic susceptibility, electrical conductivity). Considering that P-wave velocities can be described by a second order tensor, we applied to the velocity data the same inversion procedure as the one routinely used in magnetic studies, which provided an efficient tool to estimate and compare these 3D anisotropies with respect to the original sample geographical position. In each case, we tried to identify as thoroughly as possible the microstructural source of the observed anisotropies, first by the mean of existing models, then through direct observations (optic and electronic microscopy). Depending on the rock investigated, anisotropy was found to be controlled by pore shape, intergranular contact distribution, preferentially oriented microcracks interacting with compaction pattern or pressure solution cleavages interacting with each other. The net result of this work is that P-wave velocity anisotropy can express the interaction between different microstructural features as well as their evolution during deformation. (author)

  8. Effects of anisotropy on gravitational infall in galaxy clusters using an exact general relativistic model

    CERN Document Server

    Troxel, M A; Ishak, Mustapha

    2013-01-01

    We study the effects and implications of anisotropies at the scale of galaxy clusters by building an exact general relativistic model of a cluster using the inhomogeneous and anisotropic Szekeres metric. The model is built from a modified Navarro-Frenk-White (NFW) density profile. We compare this to a corresponding spherically symmetric structure in the Lemaitre-Tolman (LT) model and quantify the impact of introducing varying levels of anisotropy. We examine two physical measures of gravitational infall -- the growth rate of density and the velocity of the source dust in the model. We introduce a generalization of the LT dust velocity profile for the Szekeres metric and demonstrate its consistency with the growth rate of density. We find that the growth rate of density in one substructure increases by 0.5%, 1.5%, and 3.75% for 5%, 10%, and 15% levels of introduced anisotropy, which is measured as the fractional displaced mass relative to the spherically symmetric case. The infall velocity of the dust is found...

  9. Hydrogen physics

    International Nuclear Information System (INIS)

    The workshop on hydrogen bond was restarted changing its name to 'Hydrogen Physics' for grasping hydrogen bond from wider viewpoint and expecting the new development in this field hereafter. As the basic attitude, the phenomena related to hydrogen bond are reviewed from two different systems: hydrogen-lattice system and hydrogen-electron system. The Hydrogen Physics meeting was held on September 29 and 30, 1992, at National Laboratory for High Energy Physics, and 19 lectures were given. The themes were proton dynamics of hydrogen bond, water science and water with good taste, collective movement and fluctuation of water, neutron diffraction of water, hydrogen bond in water as seen from Raman scattering, electron and proton movements in organic crystals, new deuterium substitution effect of proton transfer in hydrogen bond in solids, infrared spectroscopy for one-dimensional hydrogen bond crystals, MSR in solid hydrogen, hydrogen in alkali metal-graphite intercalation compounds, lattice anomalies and Grueneisen parameters in high Tc superconducting salts, bio-substances and hydrogen, hydrogen bond net in nucleotide and control of crystalline structure change by hydrogen vapor pressure, ATP and structural change and crystal water of guanosine, spread of protons and electrons in hydrogen bond, anisotropy of loose scattering according to ice rule, high pressure effect and isotope mixed crystal effect of KHS crystals without hydrogen crystal network, state of motion and phase transformation of hydrogen in KDP, and development of hydrogen bond research by neutron scattering. This publication contains the papers and the transparencies presented at the meeting. (J.P.N.)

  10. Irreversible magnetic processes under biaxial and uniaxial magnetic anisotropies

    Science.gov (United States)

    Pokharel, S.; Akioya, O.; Alqhtany, N. H.; Dickens, C.; Morgan, W.; Wuttig, M.; Lisfi, A.

    2016-05-01

    Irreversible magnetic processes have been investigated in magnetic systems with two different anisotropy symmetries (uniaxial and biaxial) through angular measurement of the switching field, the irreversible susceptibility and the magnetic viscosity. These two systems consist of two-dimensional cobalt ferrite hetero-structures epitaxially grown on (100) and (110) MgO substrate. It is found that for uniaxial anisotropy the irreversible characteristics of the magnetization are large and display a strong angular dependence, which exhibits its maximum at the easy axis and drops quickly to vanish at the hard axis. However, for biaxial anisotropy the magnetization irreversible characteristics are considerably reduced and are less sensitive to the field angle.

  11. Magnetic anisotropy in geometrically frustrated kagome staircase lattices

    International Nuclear Information System (INIS)

    This paper reviews experimental results concerning magnetic anisotropy in geometrically frustrated kagome staircase lattices. Following problems are discussed: high-temperature susceptibility measurements of kagome single crystals; inelastic neutron scattering measurements on Co3V2O8 single crystals; EPR of Co2+ ions in kagome staircase Mg3V2O8 single crystals. The single-ion anisotropy Hamiltonian is used to analyze experimental results. It is suggested that the magnetic anisotropy in kagome staircase M3V2O8 (M=Co, Ni, Mn) oxides has mainly single-ion origin

  12. Small-scale Anisotropies of Cosmic Rays from Relative Diffusion

    Science.gov (United States)

    Ahlers, Markus; Mertsch, Philipp

    2015-12-01

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that can account for the effect.

  13. Tensors for physics

    CERN Document Server

    Hess, Siegfried

    2015-01-01

    This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics,  at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to  tensors of any rank, at graduate level.  Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-...

  14. Twinning anisotropy of tantalum during nanoindentation

    International Nuclear Information System (INIS)

    Unlike other BCC metals, the plastic deformation of nanocrystalline Tantalum (Ta) during compression is regulated by deformation twinning. Whether or not this twinning exhibits anisotropy was investigated through simulation of displacement-controlled nanoindentation test using molecular dynamics (MD) simulation. MD data was found to correlate well with the experimental data in terms of surface topography and hardness measurements. The mechanism of the transport of material was identified due to the formation and motion of prismatic dislocations loops (edge dislocations) belonging to the 1/2〈111〉 type and 〈100〉 type Burgers vector family. Further analysis of crystal defects using a fully automated dislocation extraction algorithm (DXA) illuminated formation and migration of twin boundaries on the (110) and (111) orientation but not on the (010) orientation and most importantly after retraction all the dislocations disappeared on the (110) orientation suggesting twinning to dominate dislocation nucleation in driving plasticity in tantalum. A significant finding was that the maximum shear stress (critical Tresca stress) in the deformation zone exceeded the theoretical shear strength of Ta (Shear modulus/2π~10.03 GPa) on the (010) orientation but was lower than it on the (110) and the (111) orientations. In light of this, the conventional lore of assuming the maximum shear stress being 0.465 times the mean contact pressure was found to break down at atomic scale

  15. Studies of anisotropy of iron based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jason A. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    To study the electronic anisotropy in iron based superconductors, the temperature dependent London penetration depth, Δλ(T), have been measured in several compounds, along with the angular dependent upper critical field, Hc2(T). Study was undertaken on single crystals of Ba(Fe1-xCox)2As2 with x=0.108 and x=0.127, in the overdoped range of the doping phase diagram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation with matching field doses of 6 T and 6.5 T respectively, were used to create columnar defects and to study their effect on the temperature Δλ(T). The variation of the low-temperature penetration depth in both pristine and irradiated samples was fitted with a power-law function Δλ(T) = ATn. Irradiation increases the magnitude of the pre-factor A and decreases the exponent n, similar to the effect on the optimally doped samples. This finding supports the universal s ± scenario for the whole doping range.

  16. Helicon mode driven by O+ thermal anisotropy

    International Nuclear Information System (INIS)

    Preliminary results from an investigation of the helicon instability in a plasma composed of protons, electrons and singly charged oxygen ions, are presented. The velocity distribution function for each plasma component is modeled by a bi-Lorentzian distribution, which allows each particle species to possess a power law tail of arbitrary spectral index. This permits us to model accurately the shape of the power law tails observed on particle species in the plasma sheet region, where the helicon mode is believed to play an important role. The presence of a hard power law tail on the oxygen component is found to dramatically enhance the maximum growth rate of the instability when the oxygen ions possess a small T(parallel)>T(perpendicular) anisotropy. Above a certain value of T(parallel)/T(perpendicular), however, this behavior is reversed. The growth rate decreases as the spectral index of the protons is decreased. The relevance of these effects to the central plasma sheet region is briefly discussed

  17. Surface-Charge Anisotropy of Scheelite Crystals.

    Science.gov (United States)

    Gao, Zhiyong; Hu, Yuehua; Sun, Wei; Drelich, Jaroslaw W

    2016-06-28

    Atomic force microscopy was employed to measure the colloidal interactions between silicon nitride cantilever tips and scheelite crystal surfaces in 1 mM KCl solutions of varying pH. By fitting the Derjguin-Landau-Verwey-Overbeek (DLVO) theoretical model to the recorded force-distance curves, the surface-charge density and surface-potential values were calculated for three crystallographic surfaces including {112}, {101}, and {001}. The calculated surface-potential values were negative in both acidic and basic solutions and varied among crystallographic surfaces. The determined surface-potential values were within zeta-potential values reported in the literature for powdered scheelite minerals. The surface {101} was the most negatively charged surface, followed by {112} and {001}. The surface potential for {001} was only slightly affected by pH, whereas the surface potential for both {112} and {101} increased with increasing pH. Anisotropy in surface-charge density was analyzed in relation to the surface density of active oxygen atoms, that is, the density of oxygen atoms with one or two broken bond(s) within tungstate ions located in the topmost surface layer. On a surface with a higher surface density of active oxygen atoms, a larger number of OH(-) are expected to adsorb through hydrogen bonding, leading to a more negatively charged surface. PMID:27269369

  18. Twinning anisotropy of tantalum during nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Saurav, E-mail: S.GOEL@qub.ac.uk [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom); Beake, Ben [Micro Materials Limited, Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL (United Kingdom); Dalton Research Institute, Manchester Metropolitan University, Manchester, M15GD (United Kingdom); Chan, Chi-Wai [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom); Haque Faisal, Nadimul [School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen AB10 7GJ (United Kingdom); Dunne, Nicholas [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom)

    2015-03-11

    Unlike other BCC metals, the plastic deformation of nanocrystalline Tantalum (Ta) during compression is regulated by deformation twinning. Whether or not this twinning exhibits anisotropy was investigated through simulation of displacement-controlled nanoindentation test using molecular dynamics (MD) simulation. MD data was found to correlate well with the experimental data in terms of surface topography and hardness measurements. The mechanism of the transport of material was identified due to the formation and motion of prismatic dislocations loops (edge dislocations) belonging to the 1/2〈111〉 type and 〈100〉 type Burgers vector family. Further analysis of crystal defects using a fully automated dislocation extraction algorithm (DXA) illuminated formation and migration of twin boundaries on the (110) and (111) orientation but not on the (010) orientation and most importantly after retraction all the dislocations disappeared on the (110) orientation suggesting twinning to dominate dislocation nucleation in driving plasticity in tantalum. A significant finding was that the maximum shear stress (critical Tresca stress) in the deformation zone exceeded the theoretical shear strength of Ta (Shear modulus/2π~10.03 GPa) on the (010) orientation but was lower than it on the (110) and the (111) orientations. In light of this, the conventional lore of assuming the maximum shear stress being 0.465 times the mean contact pressure was found to break down at atomic scale.

  19. A cluster algorithm to search for anisotropies in the UHECR sky

    International Nuclear Information System (INIS)

    We present a new method to search for anisotropies in the arrival directions of ultra-high-energy-cosmic-rays (UHECR). The Cluster Algorithm method is derived from particle physics analyses for jet reconstruction. It aims at identifying a potential excess of small-scale clusters in the UHECR arrival directions with respect to an isotropic background. It is particularly sensitive to low statistics samples. The method can be applied either as a 'catalogue-independent' one, or the resulting cluster positions can be compared to astronomical catalogues. Results based on different simulated source scenarios are presented.

  20. Magneto crystalline anisotropies in (Ga,Mn)As: A systematic theoretical study and comparison with experiment

    Czech Academy of Sciences Publication Activity Database

    Zemen, Jan; Kučera, Jan; Olejník, Kamil; Jungwirth, Tomáš

    2009-01-01

    Roč. 80, č. 15 (2009), 155203/1-155203/29. ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant ostatní: AS CR(CZ) Premium Academiae; NAMASTE(XE) FP-7214499 Institutional research plan: CEZ:AV0Z10100521 Keywords : dilute magnetic semiconductor * magnetic anisotropy * Ga,Mn)As Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009 http://arxiv.org/abs/0904.0993

  1. Magnetic anisotropy of single 3d spins on a CuN surface

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Máca, František; Lichtenstein, A.I.

    2009-01-01

    Roč. 79, č. 17 (2009), 172409/1-172409/4. ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100912; GA ČR(CZ) GC202/07/J047 Grant ostatní: DFG(DE) SFB668-A3; German-Czech collaboration(DE) 436TSE113/53/0-1 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic anisotropy * first principle calculations * iron * manganese * CuN Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  2. Voltage control of magnetocrystalline anisotropy in ferromagnetic - semiconductor/piezoelectric hybrid structures

    Czech Academy of Sciences Publication Activity Database

    Rushforth, A.W.; De Ranieri, E.; Zemen, Jan; Wunderlich, J.; Edmonds, K. W.; King, C.S.; Ahmad, E.; Campion, R. P.; Foxon, C. T.; Gallagher, B. L.; Výborný, Karel; Kučera, Jan; Jungwirth, Tomáš

    2008-01-01

    Roč. 78, č. 8 (2008), 085314/1-085314/4. ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KJB100100802; GA ČR GEFON/06/E002; GA ČR GA202/05/0575; GA ČR GA202/04/1519 Grant ostatní: EU(XE) IST-015728 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetic semiconductors * multiferroics * magnetocrystalline anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  3. Strain control of magnetic anisotropy in (Ga,Mn)As microbars

    Czech Academy of Sciences Publication Activity Database

    King, C.S.; Zemen, Jan; Olejník, Kamil; Horák, L.; Haigh, J.A.; Novák, Vít; Irvine, A.; Kučera, Jan; Holý, V.; Campion, R. P.; Gallagher, B. L.; Jungwirth, Tomáš

    2011-01-01

    Roč. 83, č. 11 (2011), 115312/1-115312/12. ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652; GA ČR GEFON/06/E002; GA MŠk(CZ) 7E08087 Grant ostatní: 7 FP NAMASTE(XE) 214499; 7 FP SemiSpinNet(XE) 215368 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductor microstructures * magnetic anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  4. Issues on generating primordial anisotropies at the end of inflation

    International Nuclear Information System (INIS)

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background

  5. Contribution of Bright Extragalactic Radio Sources to Microwave Anisotropy

    CERN Document Server

    Sokasian, A; Smoot, G F; Sokasian, Aaron; Gawiser, Eric; Smoot, George F.

    2001-01-01

    We estimate the contribution of extragalactic radio sources to fluctuations in sky temperature over the range of frequencies (10-300 GHz) used for Cosmic Microwave Background (CMB) anisotropy measurements. CMB anisotropy observations at high resolution and low frequencies are especially sensitive to this foreground. We have compiled a catalog of 2207 bright radio sources, including 758 sources with flux measurements at 90 GHz. We develop a method to extrapolate the source spectra and predict skymaps of extragalactic radio sources at instrument resolutions of 10 arcmin to 10 degrees FWHM. Our results indicate that the brightest sources will dominate microwave anisotropy for a wide range of resolutions and frequencies. Our skymaps predict the location and flux of the brightest radio sources at each frequency, making it straightforward to develop a template for masking the pixels containing them. This masking should be sufficient to protect high resolution CMB anisotropy observations from unacceptable radio sour...

  6. Contribution of extragalactic infrared sources to CMB foreground anisotropy

    CERN Document Server

    Gawiser, E; Gawiser, Eric; Smoot, George F

    1996-01-01

    We estimate the level of confusion of CMB anisotropy measurements caused by extragalactic infrared sources. CMB anisotropy observations at high resolution and high frequencies are especially sensitive to this foreground. We have combined IRAS data on bright infrared galaxies with information about the Galaxy from the DIRBE and FIRAS instruments of COBE. Using the spectrum of the Milky Way as a template, we predict the microwave emission of the 5319 brightest infrared galaxes. We simulate skymaps over the relevant range of frequencies (30-900 GHz) and instrument resolutions (10'-10 degrees Full Width Half Max). Analysis of the temperature anisotropy of these skymaps shows a level of extragalactic infrared foreground that is nearly consistent with previous estimates based on galaxy-evolution models. A reasonable observationalwindow is still available for medium- and small-angular scale CMB anisotropy measurements.

  7. Axisymmetric equilibria with pressure anisotropy and plasma flow

    CERN Document Server

    Evangelias, A

    2016-01-01

    A generalised Grad-Shafranov equation that governs the equilibrium of an axisymmetric toroidal plasma with anisotropic pressure and incompressible flow of arbitrary direction is derived. This equation includes six free surface functions and recovers known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one. The form of the generalised equation indicates that pressure anisotropy and flow act additively on equilibrium. In addition, two sets of analytical solutions, an extended Solovev one with a plasma reaching the separatrix and an extended Hernegger-Maschke one for a plasma surrounded by a fixed boundary possessing an X-point, are constructed, particularly in relevance to the ITER and NSTX tokamaks. Furthermore, the impacts both of pressure anisotropy and plasma flow on these equilibria are examined. It turns out that depending on the maximum value and the shape of an anisotropy function, the anisotropy can act either paramagnetically or diamagnetically. Also, in most of...

  8. Effects of electron temperature anisotropy on proton mirror instability evolution

    CERN Document Server

    Ahmadi, Narges; Raeder, Joachim

    2016-01-01

    Proton mirror modes are large amplitude nonpropagating structures frequently observed in the magnetosheath. It has been suggested that electron temperature anisotropy can enhance the proton mirror instability growth rate while leaving the proton cyclotron instability largely unaffected, therefore causing the proton mirror instability to dominate the proton cyclotron instability in Earth's magnetosheath. Here, we use particle-in-cell simulations to investigate the electron temperature anisotropy effects on proton mirror instability evolution. Contrary to the hypothesis, electron temperature anisotropy leads to excitement of the electron whistler instability. Our results show that the electron whistler instability grows much faster than the proton mirror instability and quickly consumes the electron free energy, so that there is no electron temperature anisotropy left to significantly impact the evolution of the proton mirror instability.

  9. Electric Field Induced Magnetic Anisotropy in a Ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, S. J.

    2010-02-24

    We report the first observation of a transient all electric field induced magnetic anisotropy in a thin film metallic ferromagnet. We generate the anisotropy with a strong (-10{sup 9} V/m) and short (70 fs) {rvec E}-field pulse. This field is large enough to distort the valence charge distribution in the metal, yet its duration is too brief to change the atomic positions. This pure electronic structure alteration of the sample generates a new type of transient anisotropy axis and strongly influences the magnetization dynamics. The successful creation of such an anisotropy opens the possibility for all {rvec E}-field induced magnetization reversal in thin metallic films - a greatly desired yet unachieved process.

  10. Tuning Exchange Anisotropy of Exchange-Biased System

    Institute of Scientific and Technical Information of China (English)

    XU Yan; HU Jing-Guo; R.L.Stamps

    2008-01-01

    Exchange anisotropy in FM/AFM bilayers has given a lot of static magnetization properties such as enhanced coercivity and magnetization loop shifts.These phenomena are primarily from the effective anisotropies intro-duced into a ferromagnet by exchange coupling with a strongly anisotropic antiferromagnet.These effective anisotropies can also be used to explain the dynamic consequences of exchange-biased bilayers.In this article,the dynamic con-sequences such as exchange-induced susceptibility,exchange-induced permeability,and the corresponding domain wall characteristics in the exchange-biased structures of ferromagnet/antiferromagnetl/antiferromagnet2 are studied.The results show that the second antiferromagnetic layer can largely affect the dynamic consequences of exchange-biased bilayers.Especially in the ease of critical temperature,the effects become more obvious.Practically,the exchange anisotropy of biased bilayer system can be tuned by exchange coupling with the second antiferromagnetic layer.

  11. Axisymmetric equilibria with pressure anisotropy and plasma flow

    CERN Document Server

    Evangelias, Achilleas

    2016-01-01

    In this Master thesis we investigate the influence of pressure anisotropy and incompressible flow of arbitrary direction on the equilibrium properties of magnetically confined, axisymmetric toroidal plasmas. The main novel contribution is the derivation of a pertinent generalised Grad-Shafranov equation. This equation includes six free surface functions and recovers known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one. The form of the generalised equation indicates that pressure anisotropy and flow act additively on equilibrium. In addition, two sets of analytical solutions, an extended Solovev one with a plasma reaching the separatrix and an extended Hernegger-Maschke one for a plasma surrounded by a fixed boundary possessing an X-point, are constructed, particularly in relevance to the ITER and NSTX tokamaks. Furthermore, the impacts both of pressure anisotropy, through an anisotropy function assumed to be uniform on the magnetic surfaces, and plasma flow, via the...

  12. Limits on the ions temperature anisotropy in turbulent intracluster medium

    CERN Document Server

    Santo-Lima, R; Pino, E M de Gouveia Dal; Lazarian, A

    2016-01-01

    Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic MHD turbulence shows a very different statistical behaviour from the isotropic (standard) one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are able to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropy can also drive kinetic instabilities which grow faster near the ions kinetic scales. Observations from the solar wind suggest that these micro- instabilities scatter the ions, thus relaxing the anisotropy. This work aims to compare this relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the scattering rate provided by...

  13. An evaluation of mechanical anisotropy of Zircaloy using (impression testing)

    International Nuclear Information System (INIS)

    A knowledge of the mechanical anisotropy is important for predictability of dimensional changes and stability of fuel rods in service. In addition, the anisotropy parameters control formability and the ease with which Zircaloy tubing can be pilgered from tube-reduced extrusions (TREX). The mechanical anisotropy parameters are usually determined using tensile and internal pressurization tests while monitoring the biaxial (hoop and axial) strains; the parameters are evaluated INDIRECTLY from stresses and strains. We report here the application of the recently developed impression test method in evaluating these anisotropy parameters relatively more DIRECTLY from yield and flow stresses along the three orthogonal directions, namely axial, hoop and radial directions of the tubing. In addition, this type of testing can be made on relatively small specimens, which is of great advantage in investigating radiation effects on materials

  14. Primordial Statistical Anisotropies: The Effective Field Theory Approach

    CERN Document Server

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjahi, Hassan

    2015-01-01

    In this work we present the effective field theory of primordial statistical anisotropies generated during anisotropic inflation involving a background $U(1)$ gauge field. Besides the usual Goldstone boson associated with the breaking of time diffeomorphism we have two additional Goldstone bosons associated with the breaking of spatial diffeomorphisms. We further identify these two new Goldstone bosons with the expected two transverse degrees of the $U(1)$ gauge field fluctuations. Upon defining the appropriate unitary gauge, we present the most general quadratic action which respects the remnant symmetry in the unitary gauge. The interactions between various Goldstone bosons leads to statistical anisotropy in curvature perturbation power spectrum. Calculating the general results for power spectrum anisotropy, we recover the previously known results in specific models of anisotropic inflation. In addition, we present novel results for statistical anisotropy in models with non-trivial sound speed for inflaton ...

  15. Small-scale anisotropies of cosmic rays from relative diffusion

    CERN Document Server

    Mertsch, Philipp

    2015-01-01

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small scale structure is reflecting the local, turbulent magnetic field in the presence of a global dipole anisotropy in cosmic rays as determined by diffusion. This effect is analogous to weak gravitational lensing of temperature fluctuations of the cosmic microwave background. We show that the non-trivial power spectrum in this setup can be related to the properties of relative diffusion and we study the convergence of the angular power spectrum to a steady-state as a function of backtracking time. We also determine the steady-state solution in an analytical approach based on a modified BGK ansatz. A rigorous mathematical treatment of the generation of small scale anisotropies will help in unraveling the structure of the local magnetic field through cosmic ray anisotropies.

  16. Searches for Anisotropy of Cosmic Rays with the Telescope Array

    Science.gov (United States)

    Cady, Robert; Telescope Array Collaboration

    2016-03-01

    With over seven years of data from the TA surface detector array, we will present the results of various searches for anisotropies in the arrival direction of cosmic rays, including an update of the hotspot above 57 EeV.

  17. ORIGIN OF COBALT ANISOTROPY IN RARE EARTH-COBALT INTERMETALLICS

    OpenAIRE

    Ballou, Rafik; Lemaire, R.

    1988-01-01

    The strong cobalt anisotropies in rare earth-cobalt intermetallics are shown to arise from orbitally selective 3d band energy dispersion due to either chain like or layered like cobalt staking rather than from usual crystal field effect.

  18. Dipole interactions with random anisotropy in a frozen ferrofluid

    OpenAIRE

    Luo, Weili; Nagel, S. R.; Rosenbaum, T.F.; Rosensweig, R. E.

    1991-01-01

    Glassy behavior (including hysteresis, irreversibility, a peak in the zero-field-cooled magnetization, and nonexponential relaxation) is observed in a quenched ferrofluid system consisting of 50-angstrom magnetite particles. An Arrott plot, M^2 vs H/M, shows clear features of random anisotropy similar to what is found in amorphous ferromagnets. We discuss the glassy behavior in terms of both the random anisotropy and the dipole interactions, and we contrast the unusual response of our system ...

  19. Anisotropy signature in extended images from reverse-time migration

    KAUST Repository

    Sava, Paul

    2012-11-04

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the earth, i.e. at common-image-point gathers (CIPs), carry enough information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. Furthermore, inaccurate anisotropy leaves a distinctive signature in CIPs, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography.

  20. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    OpenAIRE

    Cornelia Bellmann; Alfredo Calvimontes; Marc Mauermann

    2012-01-01

    Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy w...

  1. Contribution of Bright Extragalactic Radio Sources to Microwave Anisotropy

    OpenAIRE

    Sokasian, Aaron; Gawiser, Eric; Smoot, George F.

    1998-01-01

    We estimate the contribution of extragalactic radio sources to fluctuations in sky temperature over the range of frequencies (10-300 GHz) used for Cosmic Microwave Background (CMB) anisotropy measurements. CMB anisotropy observations at high resolution and low frequencies are especially sensitive to this foreground. We have compiled a catalog of 2207 bright radio sources, including 758 sources with flux measurements at 90 GHz. We develop a method to extrapolate the source spectra and predict ...

  2. Contribution of Extragalactic Infrared Sources to CMB Foreground Anisotropy

    OpenAIRE

    Gawiser, Eric; Smoot, George F.

    1996-01-01

    We estimate the level of confusion to Cosmic Microwave Background anisotropy measurements caused by extragalactic infrared sources. CMB anisotropy observations at high resolution and high frequencies are especially sensitive to this foreground. We use data from the COBE satellite to generate a Galactic emission spectrum covering mm and sub-mm wavelengths. Using this spectrum as a template, we predict the microwave emission of the 5319 brightest infrared galaxies seen by IRAS. We simulate skym...

  3. Anisotropy of thermal diffusivity in the upper mantle

    OpenAIRE

    Tommasi, A.; Gibert, B.; U. Seipold; Mainprice, D.;  

    2001-01-01

    Heat transfer in the mantle is a key process controlling the Earth's dynamics. Upper-mantle mineral phases, especially olivine, have been shown to display highly anisotropic thermal diffusivity at ambient conditions, and seismic anisotropy data show that preferred orientations of olivine induced by deformation are coherent at large scales (>50 km) in the upper mantle. Thus heat transport in the upper mantle should be anisotropic. But the thermal anisotropy of mantle minerals at high temperatu...

  4. Magnetic anisotropies of late transition metal atomic clusters

    OpenAIRE

    Fernández-Seivane, Lucas; Ferrer, Jaime

    2006-01-01

    We analyze the impact of the magnetic anisotropy on the geometric structure and magnetic ordering of small atomic clusters of palladium, iridium, platinum and gold, using Density Functional Theory. Our results highlight the absolute need to include self-consistently the spin orbit interaction in any simulation of the magnetic properties of small atomic clusters, and a complete lack of universality in the magnetic anisotropy of small-sized atomic clusters.

  5. Anisotropy of magnetic emulsions induced by magnetic and electric fields

    OpenAIRE

    Dikansky, Yury I.; Tyatyushkin, Alexander N.; Zakinyan, Arthur R.

    2011-01-01

    The anisotropy of magnetic emulsions induced by simultaneously acting electric and magnetic fields is theoretically and experimentally investigated. Due to the anisotropy, the electric conductivity and magnetic permeability of a magnetic emulsion are no longer scalar coefficients, but are tensors. The electric conductivity and magnetic permeability tensors of sufficiently diluted emulsions in sufficiently weak electric and magnetic fields are found as functions of the electric and magnetic in...

  6. Markarian galaxies and the anisotropy of the Hubble constant

    International Nuclear Information System (INIS)

    Taking into account all the observational data of Markarian galaxies, problems of redshifts can be studied with a sample from rather numerous sources. A test on their distribution in the sky confirms the significant anisotropy of the Hubble constant: this anisotropy was, in fact, observed for the first time by Rubin, Ford and Rubin, and confirmed by Le Denmat and Vigier with type I supernovae galaxies

  7. Polarimetric investigation of materials with both linear and circular anisotropy

    DEFF Research Database (Denmark)

    Naydenova, I.; Nikolova, L.; Todorov, T.; Andruzzi, F.; Hvilsted, Søren; Ramanujam, P.S.

    1997-01-01

    We investigate light propagation through materials with both linear and circular anisotropy and find the relation of the amplitude and polarization transfer functions to the four anisotropic characteristics: linear circular birefringence, and linear and circular dichroism. We determine these four...... characteristics of anisotropic samples by measuring the output intensity and polarization corresponding to different input polarization azimuths and fitting the theoretical and experimental results. In our experiments we have used films of side-chain azobenzene polyesters in which optical anisotropy had been...

  8. The Concept of Mean Anisotropy of Signals with Nonzero Mean

    Czech Academy of Sciences Publication Activity Database

    Kurdyukov, A.; Kustov, A.; Tchaikovsky, M.; Kárný, Miroslav

    Bratislava: Slovak University of Technology in Bratislava, 2013 - (Fikar, M.; Kvasnica, M.) ISBN 978-80-227-3951-1. [19th International Conference on Process Control. Strbske Pleso (SK), 18.06.2013-21.06.2013] Institutional support: RVO:67985556 Keywords : anisotropy * control Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/AS/karny-the concept of mean anisotropy of signals with nonzero mean.pdf

  9. Anisoft 4.2. – Anisotropy data browser

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin; Jelínek, V.

    2008-01-01

    Roč. 38, special issue (2008), s. 41-41. ISSN 1335-2806. [Paleo, Rock and Environmental Magnetism. Castle Meeting /11./. 22.06.2008-28.06.2008, Bojnice] R&D Projects: GA AV ČR IAA300130612 Institutional research plan: CEZ:AV0Z30130516 Keywords : anisotropy of magnetic susceptibility * tensor statisticsntation * anisotropy of magnetic remanence Subject RIV: DE - Earth Magnetism, Geodesy , Geography http://gauss.savba.sk/GPIweb/conferences/nt2008/abstr/Chadima-2.pdf

  10. In-plane anisotropy of 1545 aluminum alloy sheet

    Institute of Scientific and Technical Information of China (English)

    PENG Yong-yi; YIN Zhi-min; YANG Jin; DU Yu-xuan

    2005-01-01

    The microstructures and the tensile mechanical properties in the rolling plane of 1545 aluminum alloy sheet at different orientations with respect to the rolling direction were studied by means of tensile test,X-ray diffractometer(XRD),optical microscope and transmission electron microscope.The in-plane anisotropy of tensile mechanical properties was calculated and the inverse pole figures of the rolling plane,transversal section and longitudinal section were obtained by Harris method.The results show that the 1545 Al alloy sheet has remarkable in-plane anisotropy of mechanical properties and the main texture component is{110}texture.On the basis of the model that regards the sheet containing only{110}texture as a monocrystal,the relationship of in-plane anisotropy and the anisotropy of crystallography was analyzed.The study shows that it is the combined effects of the anisotropy of crystallography and microstructures that cause the in-plane anisotropy of mechanical properties,but the main cause is the crystallographic texture.

  11. Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase

    Science.gov (United States)

    Biedermann, Andrea R.; Pettke, Thomas; Angel, Ross J.; Hirt, Ann M.

    2016-04-01

    Feldspars are the most abundant rock-forming minerals in the Earth's crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 × 10-9 m3 kg-1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.

  12. Anisotropy of eddy variability in the global ocean

    Science.gov (United States)

    Stewart, K. D.; Spence, P.; Waterman, S.; Sommer, J. Le; Molines, J.-M.; Lilly, J. M.; England, M. H.

    2015-11-01

    The anisotropy of eddy variability in the global ocean is examined in geostrophic surface velocities derived from satellite observations and in the horizontal velocities of a 1/12° global ocean model. Eddy anisotropy is of oceanographic interest as it is through anisotropic velocity fluctuations that the eddy and mean-flow fields interact dynamically. This study is timely because improved observational estimates of eddy anisotropy will soon be available with Surface Water and Ocean Topography (SWOT) altimetry data. We find there to be good agreement between the characteristics and distributions of eddy anisotropy from the present satellite observations and model ocean surface. In the model, eddy anisotropy is found to have significant vertical structure and is largest close to the ocean bottom, where the anisotropy aligns with the underlying isobaths. The highly anisotropic bottom signal is almost entirely contained in the barotropic variability. Upper-ocean variability is predominantly baroclinic and the alignment is less sensitive to the underlying bathymetry. These findings offer guidance for introducing a parameterization of eddy feedbacks, based on the eddy kinetic energy and underlying bathymetry, to operate on the barotropic flow and better account for the effects of barotropic Reynolds stresses unresolved in coarse-resolution ocean models.

  13. Magnetic anisotropies of (Ga,Mn)As films and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Frank

    2011-02-02

    In this work the magnetic anisotropies of the diluted magnetic semiconductor (Ga,Mn)As were investigated experimentally. (Ga,Mn)As films show a superposition of various magnetic anisotropies which depend sensitively on various parameters such as temperature, carrier concentration or lattice strain. However, the anisotropies of lithographically prepared (Ga,Mn)As elements differ significantly from an unpatterned (Ga,Mn)As film. In stripe-shaped structures this behaviour is caused by anisotropic relaxation of the compressive lattice strain. In order to determine the magnetic anisotropies of individual (Ga,Mn)As nanostructures a combination of ferromagnetic resonance and time-resolved scanning Kerr microscopy was employed in this thesis. In addition, local changes of the magnetic anisotropy in circular and rectangular structures were visualized by making use of spatially resolved measurements. Finally, also the influence of the laterally inhomogeneous magnetic anisotropies on the static magnetic properties, such as coercive fields, was investigated employing spatially resolved static MOKE measurements on individual (Ga,Mn)As elements. (orig.)

  14. Slow shock formation and temperature anisotropy in collisionless magnetic reconnection

    Science.gov (United States)

    Higashimori, K.; Hoshino, M.

    2011-12-01

    We perform a two-dimensional simulation by using an electromagnetic hybrid code to study the formation of slow-mode shocks in collisionless magnetic reconnection in low beta plasmas, and we argue that one of important agents of the formation of slow shocks is the ion temperature anisotropy enhanced at the shock downstream region. As magnetic reconnection develops, it is known that the parallel temperature along the magnetic field becomes large in association with the anisotropic PSBL ion beams, and this temperature anisotropy has a tendency to suppress the formation of slow shock. Although preceding studies on magnetic reconnection with kinetic codes have shown such ion temperature anisotropy along the reconnection layer, the direct relation between formation of slow shocks and the ion temperature anisotropy has not been investigated. Based on our simulation result, we found that the slow shock formation is suppressed due to the large temperature anisotropy near the X-type region, but the downstream ion temperature anisotropy relaxes with increasing the distance from the magnetic neutral point. As a result, two pairs of current structures, which are the strong evidence of dissipation of magnetic field in slow shocks, are formed at the distance |x| > 115 λ i from the neutral point.

  15. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Mark L [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Walters, Matthew [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Diaz-Barriga, James [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Rabinovich, W S [Naval Research Laboratory, Code 5652, 4555 Overlook Ave. SW, Washington, DC 20375-5320 (United States)

    2003-10-21

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain.

  16. Magnetic anisotropy of Lu.sub.2./sub.Co.sub.17-x./sub.Si.sub.x./sub..

    Czech Academy of Sciences Publication Activity Database

    Tereshina, Evgeniya; Andreev, Alexander V.; Šantavá, Eva; Daniš, S.

    2008-01-01

    Roč. 113, č. 1 (2008), s. 235-238. ISSN 0587-4246. [CSMAG'07. Košice, 09.07.2007-12.07.2007] R&D Projects: GA ČR(CZ) GA202/06/0185 Grant ostatní: GAUK(CZ) 109-10/257015 Institutional research plan: CEZ:AV0Z10100520 Keywords : single crystals * magnetic anisotropy * spin reorientation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.321, year: 2008

  17. Magnetic anisotropy and magnetic phase transitions in RFe.sub.5./sub.Al.sub.7./sub..

    Czech Academy of Sciences Publication Activity Database

    Gorbunov, Denis; Yasin, S.; Andreev, Alexander V.; Skourski, Y.; Mushnikov, N. V.; Rosenfeld, E.V.; Zherlitsyn, S.; Wosnitza, J.

    2015-01-01

    Roč. 383, Jun (2015), 208-214. ISSN 0304-8853 R&D Projects: GA ČR GAP204/12/0150 Grant ostatní: AVČR(CZ) M100101203 Institutional support: RVO:68378271 Keywords : rare- earth intermetallics * magnetic anisotropy * ferrimagnetism * high magnetic fields * spontaneous transition * field-induced transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.970, year: 2014

  18. Weak-anisotropy approximations of P-wave phase and ray velocities for anisotropy of arbitrary symmetry

    Czech Academy of Sciences Publication Activity Database

    Farra, V.; Pšenčík, Ivan

    2016-01-01

    Roč. 60 (2016). ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : weak anisotropy * P-wave * phase velocity * ray velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.806, year: 2014

  19. Quenching and anisotropy of hydromagnetic turbulent transport

    International Nuclear Information System (INIS)

    Hydromagnetic turbulence affects the evolution of large-scale magnetic fields through mean-field effects like turbulent diffusion and the α effect. For stronger fields, these effects are usually suppressed or quenched, and additional anisotropies are introduced. Using different variants of the test-field method, we determine the quenching of the turbulent transport coefficients for the forced Roberts flow, isotropically forced non-helical turbulence, and rotating thermal convection. We see significant quenching only when the mean magnetic field is larger than the equipartition value of the turbulence. Expressing the magnetic field in terms of the equipartition value of the quenched flows, we obtain for the quenching exponents of the turbulent magnetic diffusivity about 1.3, 1.1, and 1.3 for Roberts flow, forced turbulence, and convection, respectively. However, when the magnetic field is expressed in terms of the equipartition value of the unquenched flows, these quenching exponents become about 4, 1.5, and 2.3, respectively. For the α effect, the exponent is about 1.3 for the Roberts flow and 2 for convection in the first case, but 4 and 3, respectively, in the second. In convection, the quenching of turbulent pumping follows the same power law as turbulent diffusion, while for the coefficient describing the Ω×J effect nearly the same quenching exponent is obtained as for α. For forced turbulence, turbulent diffusion proportional to the second derivative along the mean magnetic field is quenched much less, especially for larger values of the magnetic Reynolds number. However, we find that in corresponding axisymmetric mean-field dynamos with dominant toroidal field the quenched diffusion coefficients are the same for the poloidal and toroidal field constituents.

  20. Anisotropy in electron-atom collisions

    International Nuclear Information System (INIS)

    Most of the work described in this thesis deals with studies using coincidence experiments, particularly for investigating the electron impact excitation of the 21P and 31D states in helium. A peculiarity is that in the 31D studies the directly emitted 31D → 21P photons are not observed but the 21P → 11S photons resulting from the 31D → 21P → 11S cascade instead. Another interesting point is the choice of the quantisation axis. The author demonstrates that it is of great advantage to take the quantisation axis perpendicular to the scattering plane rather than in the direction of the incident beam, as was done (on historical grounds) in previously reported electron-photon coincidence experiments. Contrary to the incident beam direction the axis perpendicular to the scattering plane really represents an axis of symmetry in the coincidence experiment. In Chapter II the so-called 'parity unfavoured' excitation of the (2p2)3P state of helium by electrons is studied. In chapter III the anisotropy parameters for the electron impact excitation of the 21P state of helium in the energy range from 26.6 to 40 eV and in the angular range from 300 to 1100 are determined. Chapter IV contains a description of a scattered electron cascaded-photon coincidence experiment on the electron impact excitation of helium's 31D state. The measurement of complex scattering amplitudes for electron impact excitation of the 31D and 31P states of helium is discussed in Chapter V. (Auth./C.F.)

  1. Study of collective movements: plane flow and azimuthal anisotropy

    International Nuclear Information System (INIS)

    One of the central problems of the heavy ion physics consists in the characterization of the nucleon-nucleon interaction in the nuclear matter. The study of collective flow appearing during the collisions allows by making use of the dynamical models (BUU, LVUU, QMD, etc.) to access to two basic interaction parameters: the nucleon-nucleon cross section in the nuclear environment, σnn and the nuclear matter incompressibility parameter, K∞. Our study focuses particularly on the matter flow in the reaction plane and on the competition between the emissions in and off the reaction plane for the light particles observed at mid-rapidity. Several experiments were carried out to achieve this aim: 36Ar on 27Al from 55 to 95 MeV/u and 64Zn on 58Ni from 36 to 79 MeV/u with the detector assembly MUR and TONNEAU, 36Ar on 58Ni from 32 to 95 MeV/u and Ni on Ni from 32 to 90 MeV/u with the INDRA multidetector. These detection systems allow obtaining a good classification according to the impact parameter as well as a good reconstitution of the reaction plane. The first results indicate for the the σnn a value of about 80% of the free nucleon -nucleon interaction cross section. Unfortunately, the limited range of the incident energy does not allow extracting so far a value for the K∞. This will be obtained only when the results from the Ni on Ni experiments at GANIL with INDRA and at SIS with FOPI will be combined. The INDRA experiments will provide also the parameter of flow and of anisotropy of H, He and Li

  2. Magnetic anisotropy of U.sub.2./sub.Co.sub.17-x./sub.Si.sub.x./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Šantavá, Eva; Homma, Y.; Koyama, K.; Ymamura, T.; Shiokawa, Y.; Satoh, I.; Watanabe, K.

    Cambridge : The Royal Society of Chemistry, 2006 - (Alvarez, R.), s. 758-760 ISBN 085404678X R&D Projects: GA ČR GA202/03/0550; GA AV ČR(CZ) IAA100100530 Institutional research plan: CEZ:AV0Z10100520 Keywords : U 2 Co 17-x Si x * magnetic anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Stress induced anisotropy of sediments estimated from ultrasound measurements and cross-dipole sonic logging and crystallographic analysis of shales texture

    Czech Academy of Sciences Publication Activity Database

    Brajanovski, M.; Gurevich, B.; Mitric, M.; Lokajíček, Tomáš; Nadri, D.

    - : -, 2009, [1--8]. [Western Pacific Acoustics Conference /10./. Beijing (CN), 21.09.2009-23.09.2009] Institutional research plan: CEZ:AV0Z30130516 Keywords : sediments * anisotropy * crystallographic analysis * shales texture Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Role of shape anisotropy and grain size dependence of magnetic minerals in TRM/SIRM acquisition; relation to magnetic anomalies on Mars

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Kohout, Tomáš; Connerney, J.; Acuna, M.; Wasilewski, P.; Ness, N.

    Katlenburg-Lindau : Copernicus/IAGA, 2005. A00935-A00935. [Scientific Assembly of the International Assotiation of Geomagnetism and Aeronomy /10./. 18.07.2005-29.07.2005, Toulouse] Institutional research plan: CEZ:AV0Z30130516 Keywords : shope anisotropy * annorthosite exsolution * TRM/SIRM Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. Microstructure and anisotropy of the mechanical properties in commercially pure titanium after equal channel angular pressing with back pressure at room temperature

    Czech Academy of Sciences Publication Activity Database

    Jäger, Aleš; Gärtnerová, Viera; Tesař, Karel

    2015-01-01

    Roč. 644, Sep (2015), s. 114-120. ISSN 0921-5093 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : equal channel angular processing * nanostructured materials * phase transformation * grain refinement * mechanical anisotropy * high pressure omega phase Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.567, year: 2014

  6. Electrical conductivity anisotropy in partially molten peridotite under shear deformation

    Science.gov (United States)

    Zhang, Baohua; Yoshino, Takashi; Yamazaki, Daisuke; Manthilake, Geeth; Katsura, Tomoo

    2014-11-01

    The electrical conductivity of partially molten peridotite was measured during deformation in simple shear at 1 GPa in a DIA type apparatus with a uniaxial deformation facility. To detect development of electrical anisotropy during deformation of partially molten system, the electrical conductivity was measured simultaneously in two directions of three principal axes: parallel and normal to the shear direction on the shear plane, and perpendicular to the shear plane. Impedance spectroscopy measurement was performed at temperatures of 1523 K for Fe-bearing and 1723 K for Fe-free samples, respectively, in a frequency range from 0.1 Hz to 1 MHz. The electrical conductivity of partially molten peridotite parallel to shear direction increased to more than one order of magnitude higher than those normal to shear direction on the shear plane. This conductivity difference is consistent with the magnitude of the conductivity anisotropy observed in the oceanic asthenosphere near the Eastern Pacific Rise. On the other hand, conductivity perpendicular to the shear plane decreased gradually after the initiation of shear and finally achieved a value close to that of olivine. The magnitude and development style of conductivity anisotropy was almost the same for both Fe-bearing and Fe-free melt-bearing systems, and also independent of shear strain. However, such conductivity anisotropy was not developed in melt-free samples during shear deformation, suggesting that the conductivity anisotropy requires a presence of partial melting under shear stress. Microstructural observations of deformed partially molten peridotite samples demonstrated that conductivity anisotropy was attributed to the elongation of melt pockets parallel to the shear direction. Horizontal electrical conductivity anisotropy revealed by magnetotelluric surveys in the oceanic asthenosphere can be well explained by the realignment of partial melt induced by shear stress.

  7. Global inversion for anisotropy during full-waveform inversion

    Science.gov (United States)

    Debens, H. A.; Warner, M.; Umpleby, A.

    2015-12-01

    Full-waveform inversion (FWI) is a powerful tool for quantitative estimation of high-resolution high-fidelity models of subsurface seismic parameters, typically P-wave velocity. The solution to FWI's posed nonlinear inverse problem is obtained via an iterative series of linearized local updates to a start model, assuming this model lies within the basin of attraction to the global minimum. Thanks to many successful published applications to three-dimensional (3D) field datasets, its advance has been rapid and driven in large-part by the oil and gas industry. The consideration of seismic anisotropy during FWI is of vital importance, as it holds influence over both the kinematics and dynamics of seismic waveforms. If not appropriately taken into account then inadequacies in the anisotropy model are likely to manifest as significant error in the recovered velocity model. Conventionally, anisotropic FWI employs either an a priori anisotropy model, held fixed during FWI, or it uses a multi-parameter local inversion scheme to recover the anisotropy as part of the FWI; both of these methods can be problematic. Constructing an anisotropy model prior to FWI often involves intensive (and hence expensive) iterative procedures, such as travel-time tomography or moveout velocity analysis. On the other hand, introducing multiple parameters to FWI itself increases the complexity of what is already an underdetermined inverse problem. We propose that global rather than local FWI can be used to recover the long-wavelength acoustic anisotropy model, and that this can then be followed by more-conventional local FWI to recover the detailed model. We validate this approach using a full 3D field dataset, demonstrating that it avoids problems associated to crosstalk that can bedevil local inversion schemes, and reconciles well with in situ borehole measurements. Although our approach includes a global inversion for anisotropy, it is nonetheless affordable and practical for 3D field data.

  8. Axisymmetric equilibria with pressure anisotropy and plasma flow

    Science.gov (United States)

    Evangelias, A.; Throumoulopoulos, G. N.

    2016-04-01

    A generalised Grad-Shafranov equation that governs the equilibrium of an axisymmetric toroidal plasma with anisotropic pressure and incompressible flow of arbitrary direction is derived. This equation includes six free surface functions and recovers known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one. The form of the generalised equation indicates that pressure anisotropy and flow act additively on equilibrium. In addition, two sets of analytical solutions, an extended Solovev one with a plasma reaching the separatrix and an extended Hernegger-Maschke one for a plasma surrounded by a fixed boundary possessing an X-point, are constructed, particularly in relevance to the ITER and NSTX tokamaks. Furthermore, the impacts both of pressure anisotropy and plasma flow on these equilibria are examined. It turns out that depending on the maximum value and the shape of an anisotropy function, the anisotropy can act either paramagnetically or diamagnetically. Also, in most of the cases considered both the anisotropy and the flow have stronger effects on NSTX equilibria than on ITER ones.

  9. Scaling of coercivity in a 3d random anisotropy model

    International Nuclear Information System (INIS)

    The random-anisotropy Heisenberg model is numerically studied on lattices containing over ten million spins. The study is focused on hysteresis and metastability due to topological defects, and is relevant to magnetic properties of amorphous and sintered magnets. We are interested in the limit when ferromagnetic correlations extend beyond the size of the grain inside which the magnetic anisotropy axes are correlated. In that limit the coercive field computed numerically roughly scales as the fourth power of the random anisotropy strength and as the sixth power of the grain size. Theoretical arguments are presented that provide an explanation of numerical results. Our findings should be helpful for designing amorphous and nanosintered materials with desired magnetic properties. - Highlights: • We study the random-anisotropy model on lattices containing up to ten million spins. • Irreversible behavior due to topological defects (hedgehogs) is elucidated. • Hysteresis loop area scales as the fourth power of the random anisotropy strength. • In nanosintered magnets the coercivity scales as the six power of the grain size

  10. Anisotropies in the HI gas distribution toward 3C196

    CERN Document Server

    Kalberla, P M W

    2016-01-01

    The local Galactic HI gas was found to contain cold neutral medium (CNM) filaments that are aligned with polarized dust emission. These filaments appear to be dominated by the magnetic field and in this case turbulence is expected to show distinct anisotropies. We use the Galactic Effelsberg--Bonn HI Survey (EBHIS) to derive 2D turbulence spectra for the HI distribution in direction to 3C196 and two more comparison fields. Prior to Fourier transform we apply a rotational symmetric 50% Tukey window to apodize the data. We derive average as well as position angle dependent power spectra. Anisotropies in the power distribution are defined as the ratio of the spectral power in orthogonal directions. We find strong anisotropies. For a narrow range in position angle, in direction perpendicular to the filaments and the magnetic field, the spectral power is on average more than an order of magnitude larger than parallel. In the most extreme case the anisotropy reaches locally a factor of 130. Anisotropies increase on...

  11. Axisymmetric equilibria with pressure anisotropy and plasma flow

    Science.gov (United States)

    Throumoulopoulos, George; Evangelias, Achilleas

    2015-11-01

    A generalised Grad-Shafranov equation that governs the equilibrium of an axisymmetric toroidal plasma with anisotropic pressure and incompressible flow of arbitrary direction is derived. This equation includes six free surface functions and recovers known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one. The form of the generalised equation indicates that pressure anisotropy and flow act additively on equilibrium. In addition, two sets of analytical solutions, an extended Solovev one with a free boundary and an extended Hernegger-Maschke one for a plasma surrounded by a fixed boundary possessing an X-point, are constructed, particularly in relevance to the ITER and NSTX tokamaks. Furthermore, the impacts both of pressure anisotropy and plasma flow on these equilibria are examined. It turns out that depending on the maximum value and the shape of an anisotropy function, the anisotropy can act either paramagnetically or diamagnetically. Also, in most of the cases considered both the anisotropy and the flow have stronger effects on NSTX equilibria than on ITER ones. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from (a) the National Programme for the Controlled Thermonuclear Fusion, Hellenic Republic, (b) Euratom research and training programme 2014-2018.

  12. Phenomenological description of anisotropy effects in some ferromagnetic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shopova, Diana V., E-mail: sho@issp.bas.bg [TCCM Research Group, Institute of Solid State Physics, Bulgarian Academy of Sciences, BG-1784 Sofia (Bulgaria); Todorov, Michail D. [Department of Applied Mathematics and Computer Science, Technical University of Sofia, 1000 Sofia (Bulgaria)

    2015-07-03

    We study phenomenologically the role of anisotropy in ferromagnetic superconductors UGe{sub 2}, URhGe, and UCoGe for the description of their phase diagrams. We use the Ginzburg–Landau free energy in its uniform form as we will consider only spatially independent solutions. This is an expansion of previously derived results where the effect of Cooper-pair and crystal anisotropies is not taken into account. The three compounds are separately discussed with the special stress on UGe{sub 2}. The main effect comes from the strong uniaxial anisotropy of magnetization while the anisotropy of Cooper pairs and crystal anisotropy only slightly change the phase diagram in the vicinity of Curie temperature. The limitations of this approach are also discussed. - Highlights: • Anisotropic Landau energy for description of ferromagnetic superconductors is proposed. • Meissner phases are described with their existence and stability conditions. • The application of the model to UGe{sub 2} is discussed. • The limitations to apply the model for description of experimental data are explained.

  13. Anisotropy of magnetoviscous effect in structure-forming ferrofluids

    Science.gov (United States)

    Sreekumari, Aparna; Ilg, Patrick

    2015-07-01

    The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of the magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest for four decades. A satisfactory understanding of the microscopic origin of anisotropy of the magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of the magnetoviscous effect and the underlying change in microstructures of ferrofluids. Our results indicate that field-induced chainlike structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate, and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A nonmonotonic behavior in the anisotropy of the magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of microstructure formation.

  14. Anisotropic magnetorestistance and magnetic anisotropy of Heusler compound thin films

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias; Krupp, Alexander T.; Czeschka, Franz D.; Opel, Matthias; Gross, Rudolf; Goennenwein, Sebastian T.B. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Imort, Inga-Mareen; Reiss, Guenter; Thomas, Andy [Fakultaet fuer Physik, Universitaet Bielefeld, Bielefeld (Germany)

    2011-07-01

    Magnetic anisotropy is of fundamental importance in ferromagnets, as it strongly influences their properties. Using anisotropic magnetoresistance (AMR) measurements, we investigate the magnetic anisotropy of the ferromagnetic Heusler compound Co{sub 2}FeAl. Thin Co{sub 2}FeAl films grown on (001)-oriented MgO substrate were patterned into Hall-bar mesa structures via optical lithography and etching. To quantify the magnetic anisotropy, we recorded the angle dependent magnetoresistance (ADMR), i.e., the AMR as a function of magnetic field orientation for different magnetic field magnitudes H. From the ADMR data taken at high vertical stroke H vertical stroke, the resistivity coefficients are obtained. The magnetic anisotropy is then extracted from ADMR taken at lower vertical stroke H vertical stroke. We will quantitatively compare the resistivity coefficients and the magnetic anisotropy in Co{sub 2}FeAl thin films with thicknesses of 20 nm, 50 nm, 80 nm, 100 nm, as a function of temperature from 5 K to 350 K.

  15. Phenomenological description of anisotropy effects in some ferromagnetic superconductors

    International Nuclear Information System (INIS)

    We study phenomenologically the role of anisotropy in ferromagnetic superconductors UGe2, URhGe, and UCoGe for the description of their phase diagrams. We use the Ginzburg–Landau free energy in its uniform form as we will consider only spatially independent solutions. This is an expansion of previously derived results where the effect of Cooper-pair and crystal anisotropies is not taken into account. The three compounds are separately discussed with the special stress on UGe2. The main effect comes from the strong uniaxial anisotropy of magnetization while the anisotropy of Cooper pairs and crystal anisotropy only slightly change the phase diagram in the vicinity of Curie temperature. The limitations of this approach are also discussed. - Highlights: • Anisotropic Landau energy for description of ferromagnetic superconductors is proposed. • Meissner phases are described with their existence and stability conditions. • The application of the model to UGe2 is discussed. • The limitations to apply the model for description of experimental data are explained

  16. Nanocrystalline fluxgate cores with transverse anisotropy

    Czech Academy of Sciences Publication Activity Database

    Ripka, P.; Závěta, Karel; Jurek, Karel

    TU Wien : XX, 2004, 1752/1-1752/3. [IEEE Sensor s Conference. Vienna (AT), 24.10.2004-27.10.2004] Institutional research plan: CEZ:AV0Z1010914 Keywords : nanocrystalline materials * fluxgate sensor s Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. The metalorganic vapour phase epitaxy growth of A.sup.III./sup. B.sup.V./sup. heterostructures observed by reflection anisotropy spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Zíková, Markéta; Hospodková, Alice; Pangrác, Jiří; Vyskočil, Jan; Hulicius, Eduard; Oswald, Jiří; Komninou, Ph.; Kioseoglou, J.

    Warsaw: Polish Academy of Sciences, 2015. s. 13-13. ["Jaszowiec" International School and Conference on the Physics of Semiconductors /44./. 20.06.2015-25.06.2015, Wisla] R&D Projects: GA ČR GA13-15286S; GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : MOVPE * reflectance anisotropy spectroscopy * GaAs Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Asymmetric velocity anisotropies in remnants of collisionless mergers

    CERN Document Server

    Sparre, Martin

    2012-01-01

    Dark matter haloes in cosmological N-body simulations are affected by processes such as mergers, accretion and the gravitational interaction with baryonic matter. In typical analyses of dark matter haloes, the velocity distributions are assumed to be spherically symmetric. The validity of this assumption has, however, not been explicitly tested. We derive properties of particles in cones parallel or perpendicular to the collision axis of merger remnants. We find that the velocity anisotropy, which describes differences in the radial and tangential velocity dispersion, has a strong dependence on direction. The finding that the direction-dependence of the velocity anisotropy of a halo depends on the merger history, explain why a large diversity is seen in the velocity anisotropy profiles in the outer parts of high-resolution simulations of cosmological haloes.

  19. Interplay between anisotropy and spatial dispersion in metamaterial waveguide

    CERN Document Server

    Koshelev, Kirill L

    2016-01-01

    We analyze spectrum of waveguide modes of an arbitrary uniaxial anisotropic metamaterial slab with non-local electromagnetic response whose permittivity tensor could be described within Drude approximation. Spatial dispersion was introduced within the hydrodynamical model. Both anisotropy and spatial dispersion were considered as perturbations. This helps to distinguish their effect on the spectrum of the slab and to analyze lifting of the degeneracy of eigenmodes at plasma frequency in detail. Spatial dispersion is shown to result in break of the singularity in the den- sity of optical states in the hyperbolic regime and in suppression of negative dispersion induced by anisotropy. Mutual effect of spatial dispersion and anisotropy can bring light to a complete stop at certain frequencies.

  20. Deformed flux tubes produce azimuthal anisotropy in heavy ion collisions

    Science.gov (United States)

    Pirner, H. J.; Reygers, K.; Kopeliovich, B. Z.

    2016-03-01

    We investigate the azimuthal anisotropy v2 of particle production in nucleus-nucleus collisions in the maximum entropy approach. This necessitates two new phenomenological input parameters δ and λ2 compared with integrated multiplicity distributions. The parameter δ describes the deformation of a flux tube and can be theoretically calculated in a bag model with a bag constant which depends on the density of surrounding flux tubes. The parameter λ2 defines the anisotropy of the particle distribution in momentum space and can be connected to δ via the uncertainty relation. In this framework we compute the anisotropy v2 as a function of centrality, transverse momentum, and rapidity in qualitative agreement with Large Hadron Collider data.

  1. Jc anisotropy in 122 and 1111 pnictide thin films

    International Nuclear Information System (INIS)

    We have successfully grown epitaxial, superconducting films in two families of iron pnictides, Ba(Fe1-xCox)2As2 (122) and LaFeAs(O1-x,Fx) (1111). Detailed investigations of their critical current density Jc with respect to temperature as well as both the applied magnetic field magnitude and orientation are shown in this contribution. Both films grow very clean and without observable correlated defects parallel to the c-axis, as confirmed by TEM. This is also reflected in the absence of a c-axis peak in Jc(θ). In contrast to cuprate high-Tc superconductors such as YBCO or even Bi2223, the pnictides have very low anisotropies in their Jc(θ) behaviour as well as in their characteristic and critical fields, such as Hirr and Hc2. Both families show the same anisotropy behaviour, 122 having slightly lower anisotropies.

  2. Optical activity of chitosan films with induced anisotropy

    Science.gov (United States)

    Gegel, Natalia O.; Shipovskaya, Anna B.

    2016-04-01

    The optical anisotropy and optical activity of salt and basic chitosan films, both initial and modified in formic acid vapor were studied. The modification of such films was found to be accompanied by induced time-stable optical anisotropy, by varying the values of specific optical rotation [α] and an inversion of the sign of [α]. The angular dependences (indicatrices) of the specific optical rotation of films on the orientation angle of the sample relative to the direction of the polarization vector of the incident light beam in a plane perpendicular to the beam were obtained. The indicatrices of the initial chitosan films have an almost symmetrical character while those of the films modified in formic acid vapor are irregular. It is concluded of the formation of a vitrified cholesteric mesophase in the chitosan films with induced optical anisotropy.

  3. Finite-size anisotropy in statistically uniform porous media

    CERN Document Server

    Koza, Zbigniew; Khalili, Arzhang

    2009-01-01

    Anisotropy of the permeability tensor in statistically uniform porous media of sizes used in typical computer simulations is studied. Although such systems are assumed to be isotropic by default, we show that de facto their anisotropic permeability can give rise to significant changes of transport parameters such as permeability and tortuosity. The main parameter controlling the anisotropy is $a/L$, being the ratio of the obstacle to system size. Distribution of the angle $\\alpha$ between the external force and the volumetric fluid stream is found to be approximately normal, and the standard deviation of $\\alpha$ is found to decay with the system size as $(a/L)^{d/2}$, where $d$ is the space dimensionality. These properties can be used to estimate both anisotropy-related statistical errors in large-scale simulations and the size of the representative elementary volume.

  4. Anisotropy of radiation emitted from planar wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Williamson, K. M.; Osborne, G. C.; Shrestha, I. K.; Weller, M. E.; Shlyaptseva, V. V. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Chuvatin, A. S. [Laboratorie de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France); Rudakov, L. I. [Icarus Research, Inc., P. O. Box 30780, Bethesda, Maryland 20824-0780 (United States); Velikovich, A. [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States)

    2013-07-15

    The planar wire array (PWA) is a promising load for new multi-source inertial confinement fusion (ICF) hohlraums [B. Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The hohlraum radiation symmetry is an important issue for ICF. It was found that extreme ultraviolet and sub-keV photon emission from PWAs may have considerable anisotropy in the load azimuthal plane. This experimental result is obtained on the UNR 1–1.7 MA Zebra generator. The time-dependent anisotropy effect is detected. This feature is studied in 2D numerical simulations and can be explained by initial anisotropy of implosion of those non-cylindrical loads radiating essentially as surface sources in sub-keV quanta and also by radiation absorption in cold magnetized plasma tails forming in the direction of magnetic compression.

  5. SIMULTANEOUS MEASUREMENT OF CIRCULAR DICHROISM AND FLUORESCENCE POLARIZATION ANISOTROPY.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,J.C.

    2002-01-19

    Circular dichroism and fluorescence polarization anisotropy are important tools for characterizing biomolecular systems. Both are used extensively in kinetic experiments involving stopped- or continuous flow systems as well as titrations and steady-state spectroscopy. This paper presents the theory for determining circular dichroism and fluorescence polarization anisotropy simultaneously, thus insuring the two parameters are recorded under exactly the same conditions and at exactly the same time in kinetic experiments. The approach to measuring circular dichroism is that used in almost all conventional dichrographs. Two arrangements for measuring fluorescence polarization anisotropy are described. One uses a single fluorescence detector and signal processing with a lock-in amplifier that is similar to the measurement of circular dichroism. The second approach uses classic ''T'' format detection optics, and thus can be used with conventional photon-counting detection electronics. Simple extensions permit the simultaneous measurement of the absorption and excitation intensity corrected fluorescence intensity.

  6. Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy

    CERN Document Server

    Komarov, S; Churazov, E; Schekochihin, A

    2016-01-01

    Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g., conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is $\\sim 0.1 \\%$ at energies $\\gtrsim kT$. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scale...

  7. Irreversible magnetic processes under biaxial and uniaxial magnetic anisotropies

    Directory of Open Access Journals (Sweden)

    S. Pokharel

    2016-05-01

    Full Text Available Irreversible magnetic processes have been investigated in magnetic systems with two different anisotropy symmetries (uniaxial and biaxial through angular measurement of the switching field, the irreversible susceptibility and the magnetic viscosity. These two systems consist of two-dimensional cobalt ferrite hetero-structures epitaxially grown on (100 and (110 MgO substrate. It is found that for uniaxial anisotropy the irreversible characteristics of the magnetization are large and display a strong angular dependence, which exhibits its maximum at the easy axis and drops quickly to vanish at the hard axis. However, for biaxial anisotropy the magnetization irreversible characteristics are considerably reduced and are less sensitive to the field angle.

  8. Cosmic Ray Small Scale Anisotropies and Local Turbulent Magnetic Fields

    CERN Document Server

    López-Barquero, Vanessa; Xu, S; Desiati, P; Lazarian, A

    2015-01-01

    Cosmic ray anisotropy is observed in a wide energy range and at different angular scales by a variety of experiments. However, a comprehensive and satisfactory explanation has been elusive for over a decade now. The arrival distribution of cosmic rays on Earth is the convolution of the distribution of their sources and of the effects of geometry and properties of the magnetic field through which particles propagate. It is generally believed that the anisotropy topology at the largest angular scale is adiabatically shaped by diffusion in the structured interstellar magnetic field. On the contrary, the medium and small angular scale structure could be an effect of non diffusive propagation of cosmic rays in perturbed magnetic fields. In particular, a possible explanation of the observed small scale anisotropy observed at TeV energy scale, may come from the effect of particle scattering in turbulent magnetized plasmas. We perform numerical integration of test particle trajectories in low-$\\beta$ compressible mag...

  9. Stress-induced permeability anisotropy in fractured reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Du, J.; Wong, R.C.K. [Calgary Univ., AB (Canada)

    2002-07-01

    The approach generally used to analyze the anisotropy of a heterogeneous, naturally fractured reservoirs was examined to verify if the approach is appropriate. Most reservoir simulations account for permeability anisotropy in fractured reservoirs through 3 principal permeabilities and 3 mutually orthogonal principal axes. It is demonstrated that the deformation of the fractures from changes in stress could result in an offset of the permeability tensor. This would result in an error in well interpretation because the conventional simple anisotropy model does not consider the cross permeability effect. The stress displacement behaviour of the fracture was also examined in this study through a non-linear model that can be used to describe the closure process of the fracture under varying stresses. The authors propose a comprehensive coupled model for geomechanical reservoir analysis. The advantage of the newly proposed model is that it takes into account the full permeability tensor and non-linear deformation properties of the fracture. 10 refs., 8 figs.

  10. Temperature-dependent interplay of Dzyaloshinskii-Moriya interaction and single-ion anisotropy in multiferroic BiFeO3.

    Science.gov (United States)

    Jeong, Jaehong; Le, Manh Duc; Bourges, P; Petit, S; Furukawa, S; Kim, Shin-Ae; Lee, Seongsu; Cheong, S-W; Park, Je-Geun

    2014-09-01

    Low-energy magnon excitations in multiferroic BiFeO3 were measured in detail as a function of temperature around several Brillouin zone centers by inelastic neutron scattering experiments on single crystals. Unique features around 1 meV are directly associated with the interplay of the Dzyaloshinskii-Moriya interaction and a small single-ion anisotropy. The temperature dependence of these and the exchange interactions were determined by fitting the measured magnon dispersion with spin-wave calculations. The spectra best fit an easy-axis type magnetic anisotropy and the deduced exchange and anisotropy parameters enable us to determine the anharmonicity of the magnetic cycloid. We then draw a direct connection between the changes in the parameters of spin Hamiltonian with temperature and the physical properties and structural deformations of BiFeO3. PMID:25238381

  11. Effective magnetic anisotropy of amorphous and nanocrystalline Fe71.5Al2Cu1Nb3Si13.5B9 alloy ribbon

    International Nuclear Information System (INIS)

    The effective magnetic anisotropy of the Fe71.5Al2Cu1Nb3Si13.5B9 alloy with different nanostructures has been investigated. The nanostructured phase was produced by means of thermal treatment (520 - 600 degreeC during 1 h) to develop the devitrification of the precursor amorphous material. The effective magnetic anisotropy was evaluated from the measurement of the bias field dependence of the transverse susceptibility. Values of the effective anisotropy field, Hk, from 20 Oe (as-quenched sample) down to 7 Oe (optimum nanocrystalline state) were obtained. Such values of Hk are close to those obtained in the classical nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy (8 - 10 Oe) alloy. The Al could enhance the intergranular coupling, leading to the ultrasoft magnetic character of this nanocrystalline Al-containing alloy. [copyright] 2001 American Institute of Physics

  12. Studies of anisotropy of iron based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jason [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    To study the electronic anisotropy in iron based superconductors, the temperature dependent London penetration depth, Δλ (T), have been measured in several compounds, along with the angular dependent upper critical field, Hc2(T). Study was undertaken on single crystals of Ba(Fe1-xCox)2As2 with x=0.108 and x=0.127, in the overdoped range of the doping phase diagram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation with matching field doses of 6 T and 6.5 T respectively, were used to create columnar defects and to study their effect on the temperature Δλ (T). The variation of the low-temperature penetration depth in both pristine and irradiated samples was fitted with a power-law function Δλ (T) = ATn. Irradiation increases the magnitude of the pre-factor A and decreases the exponent n, similar to the effect on the optimally doped samples. This finding supports the universal s± scenario for the whole doping range. Knowing that the s± gap symmetry exists across the superconducting dome for the electron doped systems, we next looked at λ (T), in optimally - doped, SrFe2(As1-xPx)2, x =0.35. Both, as-grown (Tc ~ 25 K) and annealed (Tc ~ 35 K) single crystals of SrFe2(As1-xPx)2 were measured. Annealing decreases the absolute value of the London penetration depth from λ(0) = 300 ± 10 nm in as-grown samples to λ (0) = 275±10 nm. At low temperatures, λ (T) ~ T indicates a superconducting gap with line nodes. Analysis of the full-temperature range superfluid density is consistent with the line nodes, but differs from the simple single-gap d-wave. The observed behavior is very similar to that of BaFe2(As1-xPx)2, showing that isovalently substituted pnictides are inherently different from

  13. Enhancement of rotatable anisotropy in ferrite doped FeNi thin film with oblique sputtering

    Science.gov (United States)

    Zhou, Cai; Jiang, Changjun; Zhao, Zhong

    2015-07-01

    Rotatable anisotropy of stripe domain (SD) was investigated in a ferrite doped FeNi thin film with different oblique angles. Rotation of SD under an in-plane magnetic field was observed by magnetic force microscopy, suggesting the existence of rotatable anisotropy. A rotatable anisotropy field Hrot was derived from the fitting curves of the in-plane resonance field versus the angle between the orientation of easy axis and applied field. As the oblique angle increases, an increase of Hrot from 305 Oe to 468 Oe was observed and the perpendicular anisotropy increased as well, indicating a correlation between rotatable anisotropy and perpendicular anisotropy.

  14. Three dimensional solar anisotropy of galactic cosmic rays near the recent solar minimum 23/24

    CERN Document Server

    Modzelewska, R

    2015-01-01

    Three dimensional (3D) galactic cosmic ray (GCR) anisotropy has been studied for 2006- 2012. The GCR anisotropy, both in the ecliptic plane and in polar direction, were obtained based on the neutron monitors (NMs) and Nagoya muon telescopes (MT) data. We analyze two dimensional (2D) GCR anisotropy in the ecliptic plane and north-south anisotropy normal to the ecliptic plane. We reveal quasi-periodicities - the annual and 27-days waves in the GCR anisotropy in 2006-2012. We investigate the relationship of the 27-day variation of the GCR anisotropy in the ecliptic plane and in the polar direction with the parameters of solar activity and solar wind.

  15. Characteristics of trapped proton anisotropy at Space Station Freedom altitudes

    Science.gov (United States)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W.

    1990-01-01

    The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness

  16. Seismic anisotropy in granite at the Underground Research Laboratory, Manitoba

    International Nuclear Information System (INIS)

    The Shear-Wave Experiment at Atomic Energy of Canada Limited's Underground Research Laboratory was probably the first controlled-source shear-wave survey in a mine environment. Taking place in conjunction with the excavation of the Mine-by test tunnel at 420 m depth, the shear-wave experiment was designed to measure the in situ anisotropy of the rockmass and to use shear waves to observe excavation effects using the greatest variety of raypath directions of any in situ shear-wave survey to date. Inversion of the shear-wave polarizations shows that the anisotropy of the in situ rockmass is consistent with hexagonal symmetry with an approximate fabric orientation of strike 023degree and dip 35degree. The in situ anisotropy is probably due to microcracks with orientations governed by the in situ stress field and to mineral alignment within the weak gneissic layering. However, there is no unique interpretation as to the cause of the in situ anisotropy as the fabric orientation agrees approximately with both the orientation expected from extensive-dilatancy anisotropy and that of the gneissic layering. Eight raypaths with shear waves propagating wholly or almost wholly through granodiorite, rather than granite, do not show the expected shear-wave splitting and indicate a lower in situ anisotropy, which may be due to the finer grain size and/or the absence of gneissic layering within the granodiorite. These results suggest that shear waves may be used to determine crack and mineral orientations and for remote monitoring of a rockmass. This has potential applications in mining and waste monitoring

  17. In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ian Randal

    2012-05-08

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

  18. Magnetocrystalline anisotropy and Gilbert damping of Co2MnAl films epitaxially grown on GaAs

    Science.gov (United States)

    Yan, Wei; Wang, Hailong; Du, Wenna; Zhao, Jianhua; Zhang, Xinhui

    2016-02-01

    The thickness dependence of both the magnetocrystalline anisotropy and Gilbert damping are investigated for L 21-ordered Co2MnAl films by time-resolved magneto-optical Kerr (TR-MOKE) measurements. The intrinsic damping parameter of 0.0039 is evaluated by applying both the in-plane and out-of-plane external magnetic field. The magnetocrystalline anisotropy and intrinsic damping parameter are found to show the similar dependence on film’s thickness, revealing their same physical origination related to the spin-orbit coupling. Our experimental findings provide essential information for the dynamic magnetization property of Co2MnAl films for its promising application in spintronic devices.

  19. Perpendicular Magnetic Anisotropy in CoFeB/Pd Bilayers

    OpenAIRE

    COEY, JOHN; FOWLEY, CIARAN; OGUZ, KAAN; Rode, Karsten; Kurt, Huseyin

    2010-01-01

    PUBLISHED Perpendicular magnetic anisotropy is observed in ultrathin (0.6 nm) amorphous Co40Fe40B20 when sputtered on an MgO (001) buffer layer and capped with Pd. The layers are superparamagnetic with a blocking temperature of similar to 230 K, below which they show an exponential temperature dependence of coercivity. Perpendicular magnetic anisotropy is observed in the as-deposited state and the mechanism is different from that of CoFeB/Pt, which requires postannealing. These ultrathin l...

  20. Depth dependence of anisotropy of Earth's inner core

    OpenAIRE

    Song, Xiaodong; Helmberger, Don V.

    1995-01-01

    Both body wave (PKP) travel times (Creager, 1992; Song and Helmberger, 1993a; McSweeney and Creager, 1993; Shearer, 1994) and fits to the splitting of core modes (Tromp, 1993) show general agreement that the top 300 km of inner core is very anisotropic. The anisotropy displays axial symmetry around the Earth's spin axis, with the polar direction 3% faster than the equatorial direction. One key problem now is the depth dependence of the inner core anisotropy. Here we extend our polar path stud...

  1. Anisotropy of charge and spin motion in perylene hexafluoroarsenate salts

    Energy Technology Data Exchange (ETDEWEB)

    Warth, A; Jauregui, D Saez de; Dormann, E [Physikalisches Institut, Universitaet Karlsruhe (Thailand), D-76128 Karlsruhe, Germany

    2005-08-03

    Conduction electron spin echo attenuation in well defined magnetic field gradients provides more accurate values of the anisotropy of electron spin motion than microwave conductivity measurements. The electron spin diffusion coefficient for motion along the perylene (PE) radical cation stack, D{sub parallel}(T), in the PE hexafluoroarsenate salt is influenced temperature dependently by perpendicular-to-stack motion and reflects the varying average unrestricted chain length, l{sub parallel}bar(T). The anisotropy of D{sub parallel}(T):D{sub perpendicular}(T) is larger than 7300:1 at 250 K.

  2. Anisotropy of charge and spin motion in perylene hexafluoroarsenate salts

    International Nuclear Information System (INIS)

    Conduction electron spin echo attenuation in well defined magnetic field gradients provides more accurate values of the anisotropy of electron spin motion than microwave conductivity measurements. The electron spin diffusion coefficient for motion along the perylene (PE) radical cation stack, Dparallel(T), in the PE hexafluoroarsenate salt is influenced temperature dependently by perpendicular-to-stack motion and reflects the varying average unrestricted chain length, lparallelbar(T). The anisotropy of Dparallel(T):Dperpendicular(T) is larger than 7300:1 at 250 K

  3. The magnetocaloric effect: The role of magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, L.H.; McMichael, R.D.; Shull, R.D.; Swartzendruber, L.J. (NIST, Gaithersburg, Maryland 20899 (United States)); Watson, R.E. (Brookhaven National Laboratory, Upton, New York 11973 (United States))

    1993-05-15

    In a ferromagnet, the magnetic entropy change induced by the application of a magnetic field is greatest in the temperature regime near the Curie point. In the paramagnetic temperature regime, the magnitude of the magnetocaloric effect is expected to rise monotonically with the size of the individual moments that make up the material. The magnetic properties of such materials are relevant to devices employing magnetic refrigeration. One aspect of the problem, namely the impact of uniaxial magnetic anisotropy on the magnetocaloric effect, is explored. The results of Monte Carlo simulations for classical Heisenberg ferromagnets on a fcc lattice with anisotropy are presented.

  4. The magnetocaloric effect: The role of magnetic anisotropy

    International Nuclear Information System (INIS)

    In a ferromagnet, the magnetic entropy change induced by the application of a magnetic field is greatest in the temperature regime near the Curie point. In the paramagnetic temperature regime, the magnitude of the magnetocaloric effect is expected to rise monotonically with the size of the individual moments that make up the material. The magnetic properties of such materials are relevant to devices employing magnetic refrigeration. One aspect of the problem, namely the impact of uniaxial magnetic anisotropy on the magnetocaloric effect, is explored. The results of Monte Carlo simulations for classical Heisenberg ferromagnets on a fcc lattice with anisotropy are presented

  5. Fabrication of epitaxial Fe nanodot arrays and anisotropy engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H. M.; Kim, S. H.; Lee, H. S.; Lee, J. [Yonsei University, Seoul (Korea, Republic of)

    2010-04-15

    Arrays of Fe nanodots were fabricated from an epitaxial Fe (20 nm) film on Cu (001)/Si(001) by using laser interference lithography and chemical wet etching. The nanodots were aligned parallel to the two magnetic hard directions of the film and were arranged on rectangular lattices of different periods in order to engineer the magnetic anisotropy of the system by using the shape of array. As the separation between dots along one direction decrease from 550 nm to 150 nm, the dipole interaction effect became strong, and finally a uniaxial magnetic anisotropy were realized.

  6. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    International Nuclear Information System (INIS)

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di (heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined

  7. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    Energy Technology Data Exchange (ETDEWEB)

    Dobrun, L. A., E-mail: l.dobrun@spbu.ru; Sakhatskii, A. S.; Kovshik, A. P.; Ryumtsev, E. I.; Kolomiets, I. P. [St. Petersburg State University (Russian Federation); Knyazev, A. A.; Galyametdinov, Yu. G. [Kazan National Research Technological University (Russian Federation)

    2015-05-15

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di (heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined.

  8. Influence of temperature on the Zircaloy-4 plastic anisotropy

    International Nuclear Information System (INIS)

    In order to improve the comportment modelling of PWR fuel pin, and more precisely their canning tubes, Framatome and the CEA have undertake an important study program of Zircaloy-4 mechanical properties. It includes in particular the study of the plasticity between 20 and 400 degree Celsius. This material being not isotropic because of the zirconium hexagonal crystal network and the texture presented by the canning tubes, its plastic anisotropy has been measured. The obtained results for the canning in *slack* and recrystallized before irradiation Zircaloy-4 are presented and the deformation systems able to explain the observed anisotropy is researched. (O.L.). 6 refs., 4 figs., 1 tab

  9. Creep anisotropy of recrystallized Zircaloy-4 TREX using impression tests

    International Nuclear Information System (INIS)

    It is well known that zirconium alloys develop preferred orientation (texture) during forming processes. This arises from the anisotropy of hcp single crystal Zr and from the limited number of operating slip systems. These measurements were complemented by calculations of R and P based on lower bound plasticity models (Murty and Adams, 1985, Murty et al., 1985) using Crystallite Orientation Distribution Functions [CODFs] generated from X-ray crystallographic techniques. This two-fold approach leads to a comparison between the creep anisotropy measured by the impression test and that derived from the plasticity model. (orig./GL)

  10. Group constant estimation and account for scattering anisotropy

    International Nuclear Information System (INIS)

    Suggested approach to estimation of group constants lies in preservation of characteristics of neutron flux which is formed after interaction with nucleus-target in exact and approximate descriptions of scattering anisotropy. Requirement of preserving a series of corresponding harmonics of resulting secondary flux, multiplying properties of substance, matrix elements of intergroup approaches and energy release leads to formulas of generalized transport approximation for scattering anisotropy. Introduction of limitations on the value of cross section correction leads to consistent values of probability of intergroup transitions. 6 refs

  11. Small-angle anisotropies in the CMBR from active sources

    CERN Document Server

    Battye, R A

    1997-01-01

    We consider the effects of photon diffusion on the small-angle microwave background anisotropies due to active source models. We find that fluctuations created just before the time of last scattering allow anisotropy to be created on scales much smaller than allowed by standard Silk damping. Using simple models for string and texture structure functions as examples, we illustrate the differences in the angular power spectrum at scales of order a few arcminutes. In particular, we find that the Doppler peak heights are modified by 10-50% and the small-angle fall-off is power law rather than exponential.

  12. Re-entrant behaviour in a random anisotropy magnet

    International Nuclear Information System (INIS)

    Amorphous Gd7-xDyxNi3 is a model random anisotropy system in which the exchange J can be varied whilst maintaining a constant single ion anisotropy D. Investigation of the magnetic phase diagram as x, and hence D/J, increases reveals a re-entrant transition from correlated speromagnet to speromagnet for x4 the paramagnetic-speromagnetic transition is direct. A multicritical point is observed at x=4, at which the exponent γ increases suddenly from 1.35 to 2. ((orig.))

  13. Random-anisotropy Blume-Emery-Griffiths model

    Science.gov (United States)

    Maritan, Amos; Cieplak, Marek; Swift, Michael R.; Toigo, Flavio; Banavar, Jayanth R.

    1992-01-01

    The results are described of studies of a random-anisotropy Blume-Emery-Griffiths spin-1 Ising model using mean-field theory, transfer-matrix calculations, and position-space renormalization-group calculations. The interplay between the quenched randomness of the anisotropy and the annealed disorder introduced by the spin-1 model leads to a rich phase diagram with a variety of phase transitions and reentrant behavior. The results may be relevant to the study of the phase separation of He-3 - He-4 mixtures in porous media in the vicinity of the superfluid transition.

  14. Anisotropy in layered half-metallic Heusler alloy superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Azadani, Javad G.; Munira, Kamaram; Sivakumar, Chockalingam; Butler, William H. [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Romero, Jonathon [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Ma, Jianhua; Ghosh, Avik W. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-01-28

    We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.

  15. Anisotropies of Cosmic Background Radiation from a Local Collapse

    OpenAIRE

    Wu, Xiang-Ping; Fang, Li-Zhi

    1993-01-01

    We present an exact solution of the anisotropies of cosmic background radiation (CBR) from a local collapse described by a spherical over-dense region embedded in a flat universe, with the emphasis on the relationship between the dipole $(\\Delta {\\sf T}/{\\sf T})_d$ and the quadrupole $(\\Delta {\\sf T}/{\\sf T})_q$ anisotropy. This result has been used to examine the kinematic quadrupole correction $(\\Delta {\\sf T}/{\\sf T})_q=(\\Delta {\\sf T}/{\\sf T})_d^2/2$, which is usually applied to remove th...

  16. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  17. Friction anisotropy dependence on lattice orientation of graphene

    Science.gov (United States)

    Zhang, Yu; Liu, LianQing; Xi, Ning; Wang, YueChao; Dong, ZaiLi; Wejinya, Uchechukwu C.

    2014-04-01

    The observation of friction anisotropy on graphene by friction measurement at atomic scale has been reported in this paper. Atomic-scale friction measurement revealed friction anisotropy with a periodicity of 60°, which is consistent with the hexagonal periodicity of the graphene. Both experiments and theory show that the value of the friction force is related to the graphene lattice orientation, and the friction force along armchair orientation is also larger than the one along zigzag orientation. These results will play a critical role in the use of graphene to manufacture nanoscale devices.

  18. Influence of Elastic Anisotropy on Extended Dislocation Nodes

    International Nuclear Information System (INIS)

    The interaction forces between the partial dislocations forming an extended dislocation node are calculated using elasticity theory for anisotropic media.s are carried out for nodes of screw, edge and mixed character in Ag, which has an anisotropy ratio A equal to 3, and in a hypothetic material with A = 1 and the same shear modulus as Ag. The results are compared with three previous theories using isotropic elasticity theory. As expected, in Ag the influence of anisotropy is of the same order as the uncertainty due to the dislocation core energy

  19. Anisotropy of mechanical properties of zirconium and zirconium alloys

    International Nuclear Information System (INIS)

    In studies of technological applications of zirconium to fuel elements of nuclear reactor, it was found that the use of plasticity equations for isotropic materials is not in agreement with experimental results, because of the strong anisotropy of zirconium. The present review describes recent progress on the knowledge of the influence of anisotropy on mechanical properties, after Douglass' review in 1971. The review was written to be selfconsistent, changing drastically the presentation of some of the referenced papers. It is also suggested some particular experiments to improve developments in this area

  20. Electronic nematic phase transition in the presence of anisotropy

    OpenAIRE

    Yamase, Hiroyuki

    2014-01-01

    We study the phase diagram of electronic nematic instability in the presence of xy anisotropy. While a second order transition cannot occur in this case, mean-field theory predicts that a first order transition occurs near van Hove filling and its phase boundary forms a wing structure, which we term a Griffiths wing, referring to his original work of He3-He4 mixtures. When crossing the wing, the anisotropy of the electronic system exhibits a discontinuous change, leading to a meta-nematic tra...

  1. Galactic foreground contribution to the BEAST CMB Anisotropy Maps

    OpenAIRE

    Mejía, Jorge; Bersanelli, Marco; Burigana, Carlo; Childers, Jeff; Figueiredo, Newton; Kangas, Miikka; Lubin, Philip; Maino, Davide; Mandolesi, Nazzareno; Marvil, Josh; Meinhold, Peter; O'Dwyer, Ian; O'Neill, Hugh,; Platania, Paola; Seiffert, Michael

    2004-01-01

    We report limits on the Galactic foreground emission contribution to the Background Emission Anisotropy Scanning Telescope (BEAST) Ka- and Q-band CMB anisotropy maps. We estimate the contribution from the cross-correlations between these maps and the foreground emission templates of an H${\\alpha}$ map, a de-striped version of the Haslam et al. 408 MHz map, and a combined 100 $\\mu$m IRAS/DIRBE map. Our analysis samples the BEAST $\\sim10^\\circ$ declination band into 24 one-hour (RA) wide sector...

  2. Dipole anisotropy of galaxy distribution: Does the CMB rest frame exist in the local universe?

    International Nuclear Information System (INIS)

    The peculiar motion of the Earth causes a dipole anisotropy modulation in the distant galaxy distribution due to the aberration effect. However, the amplitude and angular direction of the effect is not necessarily the same as those of the cosmic microwave background (CMB) dipole anisotropy due to the growth of cosmic structures. In other words exploring the aberration effect may give us a clue to the horizon-scale physics perhaps related to the cosmic acceleration. In this paper we develop a method to explore the dipole angular modulation from the pixelized galaxy data on the sky, properly taking into account the covariances due to the shot noise and the intrinsic galaxy clustering contamination as well as the partial sky coverage. We applied the method to the galaxy catalogs constructed from the Sloan Digital Sky Survey Data Release 6 data. After constructing the four galaxy catalogs that are different in the ranges of magnitudes and photometric redshifts to study possible systematics, we found that the most robust sample against systematics indicates no dipole anisotropy in the galaxy distribution. This finding is consistent with the expectation from the concordance Λ-dominated cold dark matter model. Finally, we argue that an almost full-sky galaxy survey such as Large Synoptic Survey Telescope may allow for a significant detection of the aberration effect of the CMB dipole having the precision of constraining the angular direction to ∼20 deg in radius. Assuming a hypothetical Large Synoptic Survey Telescope galaxy survey, we find that this method can confirm or reject the result implied from a stacked analysis of the kinetic Sunyaev-Zel'dovich effect of X-ray luminous clusters in Kashlinsky et al. (2008, 2009) if the implied cosmic bulk flow is not extended out to the horizon.

  3. Experimental constraints on the electrical anisotropy of the lithosphere-asthenosphere system.

    Science.gov (United States)

    Pommier, Anne; Leinenweber, Kurt; Kohlstedt, David L; Qi, Chao; Garnero, Edward J; Mackwell, Stephen J; Tyburczy, James A

    2015-06-11

    The relative motion of lithospheric plates and underlying mantle produces localized deformation near the lithosphere-asthenosphere boundary. The transition from rheologically stronger lithosphere to weaker asthenosphere may result from a small amount of melt or water in the asthenosphere, reducing viscosity. Either possibility may explain the seismic and electrical anomalies that extend to a depth of about 200 kilometres. However, the effect of melt on the physical properties of deformed materials at upper-mantle conditions remains poorly constrained. Here we present electrical anisotropy measurements at high temperatures and quasi-hydrostatic pressures of about three gigapascals on previously deformed olivine aggregates and sheared partially molten rocks. For all samples, electrical conductivity is highest when parallel to the direction of prior deformation. The conductivity of highly sheared olivine samples is ten times greater in the shear direction than for undeformed samples. At temperatures above 900 degrees Celsius, a deformed solid matrix with nearly isotropic melt distribution has an electrical anisotropy factor less than five. To obtain higher electrical anisotropy (up to a factor of 100), we propose an experimentally based model in which layers of sheared olivine are alternated with layers of sheared olivine plus MORB or of pure melt. Conductivities are up to 100 times greater in the shear direction than when perpendicular to the shear direction and reproduce stress-driven alignment of the melt. Our experimental results and the model reproduce mantle conductivity-depth profiles for melt-bearing geological contexts. The field data are best fitted by an electrically anisotropic asthenosphere overlain by an isotropic, high-conductivity lowermost lithosphere. The high conductivity could arise from partial melting associated with localized deformation resulting from differential plate velocities relative to the mantle, with subsequent upward melt percolation

  4. Analysis of image versus position, scale and direction reveals pattern texture anisotropy

    Directory of Open Access Journals (Sweden)

    Roland eLehoucq

    2015-01-01

    Full Text Available Pattern heterogeneities and anisotropies often carry significant physical information. We provide a toolbox which: (i cumulates analysis in terms of position, direction and scale; (ii is as general as possible; (iii is simple and fast to understand, implement, execute and exploit.It consists in dividing the image into analysis boxes at a chosen scale; in each box an ellipse (the inertia tensor is fitted to the signal and thus determines the direction in which the signal is more present. This tensor can be averaged in position and/or be used to study the dependence with scale. This choice is formally linked with Leray transforms and anisotropic wavelet analysis. Such protocol is intutively interpreted and consistent with what the eye detects: relevant scales, local variations in space, priviledged directions. It is fast and parallelizable.Its several variants are adaptable to the user's data and needs. It is useful to statistically characterize anisotropies of 2D or 3D patterns in which individual objects are not easily distinguished, with only minimal pre-processing of the raw image, and more generally applies to data in higher dimensions.It is less sensitive to edge effects, and thus better adapted for a multiscale analysis down to small scale boxes, than pair correlation function or Fourier transform.Easy to understand and implement,it complements more sophisticated methods such as Hough transform or diffusion tensor imaging.We use it on various fracture patterns (sea ice cover, thin sections of granite, granular materials, to pinpoint the maximal anisotropy scales. The results are robust to noise and to user choices. This toolbox could turn also useful for granular materials, hard condensed matter, geophysics, thin films, statistical mechanics, characterisation of networks, fluctuating amorphous systems, inhomogeneous and disordered systems, or medical imaging, among others.

  5. Magnetic anisotropy in GaMnAs; Magnetische Anisotropie in GaMnAs

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler, Joachim

    2009-07-02

    The goal of the present work was the detailed investigation of the impact of parameters like vertical strain, hole concentration, substrate orientation and patterning on the MA in GaMnAs. At first a method is introduced enabling us to determine the MA from angle-dependent magnetotransport measurements. This method was used to analyze the impact of vertical strain {epsilon}{sub zz} on the MA in a series of GaMnAs layers with a Mn content of 5% grown on relaxed InGaAs-templates. While hole concentration and Curie temperature were found to be unaffected by vertical strain, a significant dependence of the MA on {epsilon}{sub zz} was found. The most pronounced dependence was observed for the anisotropy parameter B{sub 2} {sub perpendicular} {sub to}, representing the intrinsic contribution to the MA perpendicular to the layer plane. For this parameter a linear dependence on {epsilon}{sub zz} was found, resulting in a strain-induced transition of the magnetic easy axis with increasing strain from in-plane to out-of-plane at {epsilon}{sub zz} {approx} -0.13%. Post-growth annealing of the samples leads to an outdiffusion and/or regrouping of the highly mobile Mn interstitial donor defects, resulting in an increase in both p and T{sub C}. For the annealed samples, the transition from in-plane to out-of-plane easy axis takes place at {epsilon}{sub zz} {approx} -0.07%. From a comparison of as-grown and annealed samples, B{sub 2} {sub perpendicular} {sub to} was found to be proportional to both p and {epsilon}{sub zz}, B{sub 2} {sub perpendicular} {sub to} {proportional_to} p .{epsilon}{sub zz}. To study the influence of substrate orientation on the magnetic properties of GaMnAs, a series of GaMnAs layers with Mn contents up to 5% was grown on (001)- and (113)A-oriented GaAs substrates. The hole densities and Curie temperatures, determined from magnetotransport measurements, are drastically reduced in the (113)A layers. The differences in the magnetic properties of (113)A- and

  6. Unexpected high-order anisotropy contributions in magnetic RE-TM compounds (RE = Rare Earth, TM = Transition Metal)

    International Nuclear Information System (INIS)

    In a large number of studies of magnetic anisotropy in intermetallic compounds, the high-order contributions to the magnetic free energy are neglected, and only the lowest (second) order term is taken into account. Sometimes, this choice is justified by simple models or by the physical consideration that high-order anisotropy constants vanish at high temperatures. Nevertheless, there are particular cases where the presence of these unexpected high-order contributions can explain physical behaviours which cannot be accounted for otherwise. Two of these situations are examined: the basal-plane anisotropy of Sm2Co17, which is entirely due to the sixth-order term in the crystal-field Hamiltonian and has zero value if calculated within the ground J multiplet of the rare-earth ion, and the various types of magnetic field-induced transitions detected up to room temperature in the Pr2(Co,Fe)17 class of compounds, whose variety could be explained in the frame of a rigidly coupled model only by considering unphysical large values of terms of eight-order or higher. Two different mechanisms are proposed to account for the experimental data: for Sm2Co17, the nonzero value of the basal-plane anisotropy is reproduced by taking into account the mixing of small fractions of excited states in the ground J multiplet of the RE ion, while the opening of a canting angle between magnetic sublattices can explain the peculiar behaviour of the magnetic transition in the Pr2(Co,Fe)17 system. (author)

  7. Detection of zero anisotropy at 5.2 AU during the November 1998 solar particle event: Ulysses Anisotropy Telescopes observations

    OpenAIRE

    Dalla, S.; Balogh, A.

    2000-01-01

    For the first time during the mission, the Anisotropy Telescopes instrument on board the Ulysses spacecraft measured constant zero anisotropy of protons in the 1.3-2.2 MeV energy range, for a period lasting more than three days. This measurement was made during the energetic particle event taking place at Ulysses between 25 November and 15 December 1998, an event characterised by constant high proton fluxes within a region delimited by two interplanetary forward shocks, at a distance of 5.2 A...

  8. Experimental Study of Rock Drill-ability Anisotropy by Acoustic Velocity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Rock drill-ability anisotropy has significant effects on directional drilling and deviation control. Its evaluation is an important but difficult research subject. Definitions of drill-ability anisotropy and acoustic anisotropy of rock are given in this paper. The acoustic velocities and the drill-ability parameters of several rock samples from the Engineering Center for Chinese Continental Scientific Drilling (CCSD) are respectively measured with the device for testing the rock drill-ability and the ultrasonic testing system in laboratory, so that their drill-ability anisotropy and acoustic anisotropy are respectively calculated and discussed in detail by using the experimental data. On the basis of these experimental results and calculations, correlations between drill-ability anisotropy and acoustic anisotropy of the rock samples are illustrated through regression analyses. Thus, a mathematical model developed may be used to evaluate the rock drill-ability anisotropy with the acoustic logging or seismic data to a certain extent.

  9. Anisotropy of sublimation from equivalent crystal faces of carbon-containing tungsten monocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dekhtyar, I.Ya.; Kolesnik, V.N.; Ovsienko, D.E.; Patoka, V.I.; Silant' ev, V.I.; Sosnina, E.I. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1981-08-01

    Anisotropy of sublimation parameters was found in equivalent faces (100) or (1O0) of W single crystals oriented perpendicular or parallel to the growth direction. The anisotropy value depends on C concentration in W single crystals.

  10. Anisotropy of sublimation from equivalent crystal faces of carbon-containing tungsten monocrystals

    International Nuclear Information System (INIS)

    Anisotropy of sublimation parameters was found in equivalent faces (100) or (1O0) of W single crystals oriented perpendicular or parallel to the growth direction. The anisotropy value depends on C concentration in W single crystals

  11. Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD

    CERN Document Server

    Bali, G S; Endrodi, G; Gruber, F; Schaefer, A

    2013-01-01

    We study the influence of strong external magnetic fields on gluonic and fermionic observables in the QCD vacuum at zero and nonzero temperatures, via lattice simulations with N_f=1+1+1 staggered quarks of physical masses. The gluonic action density is found to undergo magnetic catalysis at low temperatures and inverse magnetic catalysis near and above the transition temperature, similar to the quark condensate. Moreover, the gluonic action develops an anisotropy: the chromo-magnetic field parallel to the external field is enhanced, while the chromo-electric field in this direction is suppressed. We demonstrate that the same hierarchy is obtained using the Euler-Heisenberg effective action. Conversely, the topological charge density correlator does not reveal a significant anisotropy up to magnetic fields eB~1 GeV^2. Furthermore, we show that the pressure remains isotropic even for nonzero magnetic fields, if it is defined through a compression of the system at fixed external field. In contrast, if the flux o...

  12. Microstructural characterization of creep anisotropy at 673 K in the M5® alloy

    International Nuclear Information System (INIS)

    Zirconium alloy tubing is used in pressurized water nuclear reactors in order to prevent fissile material from leaking into the coolant. It can be the first safety wall of nuclear fuel, and is submitted to complex thermomechanical loadings. In consequence, new Nb-modified alloys, such as the M5® alloy, and fine numerical models are being developed to guarantee a better and longer mechanical integrity of these tubes. To identify the physical mechanisms that could be considered in such models, an experimental approach, combining creep tests with electron backscattered diffraction and Transmission electron microscopy investigations, was carried out. Tubular specimens were submitted to multiaxial creep tests at a temperature of 673 K. Seven ratios between the axial and hoop applied stresses were investigated. It enabled a macroscopic evidence of the creep anisotropy. Besides, EBSD analyses on a mesoscopic-sized non deformed area led to the characterization of the variation of the average Schmid factor with the direction of loading. Finally, TEM observations were done on seven crept samples, corresponding to the seven directions of loading tested mechanically. The variations of the different parameters investigated (activated slip systems, dislocation densities, curvatures of the dislocations) can be seen as the effects of the creep anisotropy at a microscopic scale. The correlation between results is then discussed in a multiscale frame.

  13. Impact of momentum space anisotropy on heavy quark dynamics in a QGP medium

    Science.gov (United States)

    Chandra, Vinod; Das, Santosh K.

    2016-05-01

    Momentum space anisotropy present in the quark and gluon distribution functions in relativistic heavy ion collisions induces Chromo-Weibel instability in the hot QCD medium created therein. The impact of the Chromo-Weibel instability on the dynamics of a heavy quark (HQ) traversing in the QGP medium is investigated within the framework of kinetic theory by studying the momentum and temperature behavior of HQ drag and diffusion coefficients. The physics of anisotropy is captured in an effective Vlasov term in the transport equation. The effects of the instability are handled by making a relation with the phenomenologically known jet-quenching parameter in RHIC and LHC. Interestingly, the presence of instability significantly affects the temperature and momentum dependences of the HQ drag and diffusion coefficients. These results may have appreciable impact on the experimental observables such as the nuclear suppression factor, RA A(pT) , and the elliptic flow, v2(pT), of heavy mesons in heavy ion collisions at RHIC and LHC energies which is a matter of future investigation.

  14. Anisotropy mapping in rat brains using Intermolecular Multiple Quantum Coherence Effects

    CERN Document Server

    Han, Yi

    2014-01-01

    This document reports an unconventional and rapidly developing approach to magnetic resonance imaging (MRI) using intermolecular multiple-quantum coherences (iMQCs). Rat brain images are acquired using iMQCs. We detect iMQCs between spins that are 10 {\\mu}m to 500 {\\mu}m apart. The interaction between spins is dependent on different directions. We can choose the directions on physical Z, Y and X axis by choosing correlation gradients along those directions. As an important application, iMQCs can be used for anisotropy mapping. In the rat brains, we investigate tissue microstructure. We simulated images expected from rat brains without microstructure. We compare those with experimental results to prove that the dipolar field from the overall shape only has small contributions to the experimental iMQC signal. Because of the underlying low signal to noise ratio (SNR) in iMQCs, this anisotropy mapping method still has comparatively large potentials to grow. The ultimate goal of my project is to develop creative a...

  15. On the Origin of Grid Anisotropy in the Simulation of Dendrite Growth by a VFT Model

    Science.gov (United States)

    Djaraoui, Afaf; Nebti, Samia

    2016-04-01

    A virtual front tracking model, based on solute and heat diffusion in two dimensions, is chosen to capture the full microstructural behavior of dendritic solidification in a binary alloy. We use a simple method of calculation, easy to perform, with relatively high stable time step, to simulate the dendrite growth in an Al-8 wt pct Mg alloy for which no numerical simulation has been carried out in the past. Local equilibrium at the liquid solid interface and the buildup of solute ahead of the interface are solved, and the dendrite growth process is simulated in isothermal solidification conditions. We show that the artificial grid anisotropy originates from the four cell neighborhood method adopted for capturing the moving front. By a correct neighborhood configuration, a grid independent set of results and expected phenomena are reproduced for a free dendrite growing either aligned or inclined with the grid. The dendrite morphology and orientation, and the growth velocity are explored via physical simulation parameters such as undercooling and surface tension anisotropy.

  16. Physics without physical constants

    International Nuclear Information System (INIS)

    Following the general principles of both Newton's mechanics and Maxwell's electrodynamics, a new approach to basic equations of physics is presented. The new basic equations express fundamental laws of physics and are free from any physical constants. The necessary constants appear only through some kind of constitutive relations and by considering special solutions of the basic equations. The presented approach admits a new interpretation of fundamental physical constants, such as the Planck gravitational ones. 4 refs. (author)

  17. 3D analyses of cavitation instabilities accounting for plastic anisotropy

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Tvergaard, Viggo

    2010-01-01

    main focus is on the effect of different degrees of plastic anisotropy. Loading cases are considered, where all the macroscopic principal stresses differ. The numerical quasi‐static solutions are obtained by a full transient analysis of the equations of motion, in which the loading is applied so slowly...

  18. Window Function for Non-Circular Beam CMB Anisotropy Experiment

    OpenAIRE

    Souradeep, Tarun; Ratra, Bharat

    2001-01-01

    We develop computationally rapid methods to compute the window function for a cosmic microwave background anisotropy experiment with a non-circular beam which scans over large angles on the sky. To concretely illustrate these methods we compute the window function for the Python V experiment which scans over large angles on the sky with an elliptical Gaussian beam.

  19. The importance of anisotropy for relativistic fluids with spherical symmetry

    OpenAIRE

    Ivanov, B. V.

    2010-01-01

    It is shown that an effective anisotropic spherically symmetric fluid model with heat flow can absorb the addition to a perfect fluid of pressure anisotropy, heat flow, bulk and shear viscosity, electric field and null fluid. In most cases the induction of effective heat flow can be avoided.

  20. Flow stress anisotropy caused by geometrically necessary boundaries

    DEFF Research Database (Denmark)

    Hansen, N.; Juul Jensen, D.

    1992-01-01

    The microstructural anisotropy of deformed metal is related to the formation of geometrically necessary boundaries such as dense dislocation walls and microbands. These boundaries have a macroscopic orientation with respect to the sample axes and they can resist slip due to a high concentration of...

  1. K Variations and Anisotropy: Microstructure Effect and Numerical Predictions

    Institute of Scientific and Technical Information of China (English)

    李旭东; 李华清

    2003-01-01

    Computer experiments were performed on simulated polycrystalline material samples that possess locally anisotropic microstructures to investigate stress intensity factor ( K ) variations and anisotropy along fronts of microcracks of different sizes. The anisotropic K , arising from inhomogeneous stresses in broken grains, was determined for planar microcracks by using a weight function-based numerical technique. It has been found that the grain-orientation-geometry-induced local anisotropy produces large variations in K along front of microcracks, when the crack size is of the order of few grain diameters. Synergetic effect of grain orientation and geometry of broken grains control K variations and evolution along the microcrack front. The K variations may diminish at large crack sizes, signifying a shift of K calculation to bulk stress dependence from local stress dependence. Local grain geometry and texture may lead to K anisotropy, producing unusually higher/lower K at a segment of the crack front. Either K variation or anisotropy cannot be ignored when assessing a microcrack.

  2. The large scale microwave background anisotropy in decaying particle cosmology

    International Nuclear Information System (INIS)

    We investigate the large-scale anisotropy of the microwave background radiation in cosmological models with decaying particles. The observed value of the quadrupole moment combined with other constraints gives an upper limit on the redshift of the decay z/sub d/ < 3-5. 12 refs., 2 figs

  3. Large-Angular-Scale Anisotropy in the Cosmic Background Radiation

    Science.gov (United States)

    Gorenstein, M. V.; Smoot, G. F.

    1980-05-01

    We report the results of an extended series of airborne measurements of large-angular-scale anisotropy in the 3 K cosmic background radiation. Observations were carried out with a dual-antenna microwave radiometer operating at 33 GHz (.089 cm wavelength) flown on board a U-2 aircraft to 20 km altitude. In eleven flights, between December 1976 and May 1978, the radiometer measured differential intensity between pairs of directions distributed over most of the northern hemisphere with an rms sensitivity of 47 mK Hz{sup 1�}. The measurements how clear evidence of anisotropy that is readily interpreted as due to the solar motion relative to the sources of the radiation. The anisotropy is well fit by a first order spherical harmonic of amplitude 360{+ or -}50km sec{sup -1} toward the direction 11.2{+ or -}0.5 hours of right ascension and 19 {+ or -}8 degrees declination. A simultaneous fit to a combined hypotheses of dipole and quadrupole angular distributions places a 1 mK limit on the amplitude of most components of quadrupole anisotropy with 90% confidence. Additional analysis places a 0.5 mK limit on uncorrelated fluctuations (sky-roughness) in the 3 K background on an angular scale of the antenna beam width, about 7 degrees.

  4. Diamagnetic Anisotropy: Two Iron Complexes as Laboratory Examples

    Science.gov (United States)

    Fernandez, Ignacio; Sanchez, Jorge Fernando Fernandez

    2010-01-01

    There are relatively few experiments describing the NMR properties of bis(amine) iron(II) phthalocyanine complexes. Several features make this experiment attractive: First, it nicely illustrates the diamagnetic anisotropy phenomena, providing both students and teachers an opportunity to gain insight into aspects such as phase correction and…

  5. Effect of earthquake locations on Rayleigh wave azimuthal anisotropy

    Science.gov (United States)

    Ma, Z.; Masters, G.

    2013-12-01

    We have compiled a large dataset for Rayleigh wave phase arrival times from 5mHz to 35mHz by using cluster analysis method. Estimation of source phase is improved by using a second order approximation of the associated Legendre functions. Currently, we have about 300,000 measurements for 5mHz, 600,000 for 10mHz, 400,000 for 20mHz and 280,000 for 35mHz. We use our new dataset to invert for the 2-phi terms of Rayleigh wave azimuthal anisotropy. We have found differences in the inverted fast directions when using PDE versus CMT source locations, especially near subduction zones where most earthquakes happen. Allowing small changes in earthquake locations (latitude and longitude) in our inversion greatly reduces such discrepancies. Residue patterns and checkerboard tests both indicate that the azimuthal anisotropy patterns in ocean basins are likely coherent over large distances, especially in the Pacific. To model the change of anisotropy amplitudes in the Pacific for different frequencies, we follow the approach proposed by Montagner and Nataf (1986). Values of elastic constants are compiled from Anderson and Isaak (1995) and Abramson et al (1997). The depth extent of anisotropy will be discussed.

  6. Anisotropie d'agrégats de cobalt

    OpenAIRE

    Morel, Robert

    2009-01-01

    Ce mémoire présente une revue sur la croissance d'agrégats de cobalt par condensation en phase gazeuse. Suit une revue des différent mécanismes physiques à l'origine de l'anisotropie magnétique du cobalt, et de leurs manifestations dans des particules nanométriques.

  7. Influence of thermal heating to elastic anisotropy of granulites

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Rudajev, Vladimír; Goel, R.; Dwivedi, R.; Swarup, A.

    s. l. : European Seismological Comission, 2010. -----. [European Seismological Comission General Assembly /32./. 06.09.2010-10.09.2010, Montpellier] R&D Projects: GA AV ČR IAA300130906 Institutional research plan: CEZ:AV0Z30130516 Keywords : elastic anisotropy * granulites * thermal heating Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  8. Photoinduzierte Mikrostrukturierung und Anisotropie in Bakteriorhodopsin-Filmen

    OpenAIRE

    Yang, Zijiang

    2009-01-01

    Im Rahmen dieser Dissertation wurden zwei Effekte von Bakteriorhodopsin untersucht. Im ersten Teil der Arbeit wurde die photoinduzierte Mikrostrukturierung erforscht und ihre Anwendung zur Darstellung von Beugungsgittern gezeigt. Im zweiten Teil wurde die photoinduzierte Anisotropie untersucht und für die Datenspeicherung mit mehreren Informationen angewendet.

  9. AMiBA-array for microwave background anisotropy

    Science.gov (United States)

    Kesteven, M.

    2002-03-01

    AMiBA is a 90 GHz interferometric array of the ASIAA (Academia Sinica, Institue of Astronomy and Astrophysics). It will make a detailed study of the polarization of the CMB anisotropy; it will also undertake a survey of Sunyaev-Zel'dovich clusters. It is under construction at present, with an expected completion date of late 2003. .

  10. Seismic anisotropy of serpentinite from Val Malenco, Italy

    Czech Academy of Sciences Publication Activity Database

    Kern, H.; Lokajíček, Tomáš; Svitek, Tomáš; Wenk, H.-R.

    2015-01-01

    Roč. 120, č. 6 (2015), s. 4113-4129. ISSN 2169-9313 R&D Projects: GA MŠk LH13102 Institutional support: RVO:67985831 Keywords : serpentinite * anisotropy Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.440, year: 2013

  11. On the magnetocrystalline anisotropy of greigite (Fe3S4)

    Science.gov (United States)

    Winklhofer, Michael; Chang, Liao; Eder, Stephan H. K.

    2014-04-01

    ferrimagnetic mineral greigite (cubic Fe3S4) is well known as an intracellular biomineralization product in magnetic bacteria and as a widely occurring authigenic mineral in anoxic sediments. Due to the lack of suitable single-crystal specimens, the magnetic anisotropy parameters of greigite have remained poorly constrained, to the point where not even the easy axis of magnetization is known. Here we report on an effort to determine the anisotropy parameters on the basis of ferromagnetic resonance (FMR) powder spectroscopy on hydrothermally synthesized, chemically pure greigite microcrystals dispersed in a nonmagnetic matrix. In terms of easy axis orientations, the FMR data are consistent with or , or less likely, a more general type. With a g factor of 2.09, the anisotropy field is about 90 mT and in some samples may reach 125 mT, compared to 30 mT for cubic magnetite. This confirms the dominating role of cubic anisotropy on the magnetic properties of greigite, which we show to be responsible for large SIRM/k values. K1 is in the range -15 … -23 J/m3 () or +10 … +15 kJ/m3 (), yielding upper limits of 44 or 34 nm for the superparamagnetic grain size, respectively.

  12. On the magnetocrystalline anisotropy of greigite (Fe3S 4)

    NARCIS (Netherlands)

    Winklhofer, M.; Chang, L.; Eder, S.H.K.

    2014-01-01

    The ferrimagnetic mineral greigite (cubic Fe3S4) is well known as an intracellular biomineralization product in magnetic bacteria and as a widely occurring authigenic mineral in anoxic sediments. Due to the lack of suitable single-crystal specimens, the magnetic anisotropy parameters of greigite hav

  13. Photoinduced Circular Anisotropy in Side-Chain Azobenzene Polyesters

    DEFF Research Database (Denmark)

    Nikolova, L.; Todorov, T.; Ivanov, M.;

    1997-01-01

    We report for the first time the inducing of large circular anisotropy in previously unoriented films of side-chain azobenzene polyesters on illumination with circularly polarized light at a wavelength of 488 nm. The circular dichroism and optical activity are measured simultaneously in real time...

  14. Controlling the structural and functional anisotropy of engineered cardiac tissues

    International Nuclear Information System (INIS)

    The ability to control the degree of structural and functional anisotropy in 3D engineered cardiac tissues would have high utility for both in vitro studies of cardiac muscle physiology and pathology as well as potential tissue engineering therapies for myocardial infarction. Here, we applied a high aspect ratio soft lithography technique to generate network-like tissue patches seeded with neonatal rat cardiomyocytes. Fabricating longer elliptical pores within the patch networks increased the overall cardiomyocyte and extracellular matrix alignment within the patch. Improved uniformity of cell and matrix alignment yielded an increase in anisotropy of action potential propagation and faster longitudinal conduction velocity (LCV). Cardiac tissue patches with a higher degree of cardiomyocyte alignment and electrical anisotropy also demonstrated greater isometric twitch forces. After two weeks of culture, specific measures of electrical and contractile function (LCV = 26.8 ± 0.8 cm s−1, specific twitch force = 8.9 ± 1.1 mN mm−2 for the longest pores studied) were comparable to those of neonatal rat myocardium. We have thus described methodology for engineering of highly functional 3D engineered cardiac tissues with controllable degree of anisotropy. (paper)

  15. Anisotropy signature in reverse-time migration extended images

    KAUST Repository

    Sava, Paul C.

    2014-11-04

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common-image-point gathers, carry rich information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common-image-point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common-image-point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V-shaped residual moveout with the slope of the "V" flanks depending on the anisotropic parameter η regardless of the complexity of the velocity model. It reflects the fourth-order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.

  16. Galactic foreground contribution to the BEAST CMB Anisotropy Maps

    CERN Document Server

    Mejia, J; Burigana, C; Childers, J; Figueiredo, N; Kangas, M; Lubin, P; Maino, D; Mandolesi, N; Marvil, J; Meinhold, P; O'Dwyer, I; O'Neill, H; Platania, P; Seiffert, M; Stebor, N; Tello, C A S; Villela, T; Wandelt, B; Wünsche, C A; Mej\\'{\\i}a, Jorge; Bersanelli, Marco; Burigana, Carlo; Childers, Jeff; Figueiredo, Newton; Kangas, Miikka; Lubin, Philip; Maino, Davide; Mandolesi, Nazzareno; Marvil, Josh; Meinhold, Peter; Dwyer, Ian O'; Neill, Hugh O'; Platania, Paola; Seiffert, Michael; Stebor, Nathan; Tello, Camilo; Villela, Thyrso; Wandelt, Benjamin; Wuensche, Carlos Alexandre

    2004-01-01

    We report limits on the Galactic foreground emission contribution to the Background Emission Anisotropy Scanning Telescope (BEAST) Ka- and Q-band CMB anisotropy maps. We estimate the contribution from the cross-correlations between these maps and the foreground emission templates of an H${\\alpha}$ map, a de-striped version of the Haslam et al. 408 MHz map, and a combined 100 $\\mu$m IRAS/DIRBE map. Our analysis samples the BEAST $\\sim10^\\circ$ declination band into 24 one-hour (RA) wide sectors with $\\sim7900$ pixels each, where we calculate: (a) the linear correlation coefficient between the anisotropy maps and the templates; (b) the coupling constants between the specific intensity units of the templates and the antenna temperature at the BEAST frequencies and (c) the individual foreground contributions to the BEAST anisotropy maps. The peak sector contributions of the contaminants in the Ka-band are of 56.5% free-free with a coupling constant of $8.3\\pm0.4$ $\\mu$K/R, and 67.4% dust with $45.0\\pm2.0$ $\\mu$K/...

  17. Magnetism of One-Dimensional Dipolar-Interaction Spin Chains with Perpendicular Anisotropy*

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai-Cheng; ZHU Yan

    2011-01-01

    We have investigated the magnetism of one-dimensional dipolar-interaction spin chains with perpendicular anisotropy by simulation.The behaviors of the magnetizations and the orientation correlations change dramatically as the anisotropy increases to the critical value.The domain length can be controlled by adjusting the temperature and the external field as well as the anisotropy.These properties are interesting and arise from the competition between the anisotropy and the interaction along the chain.

  18. Anisotropy of thermal expansion and electric resistance of cermet germanium telluride

    International Nuclear Information System (INIS)

    Anisotropies of thermal expansion α and electric resistance ρ of cermet germanium telluride were investigated depending on pressing conditions. It is shown that anisotropy of cermet germanium telluride depends sufficiently on pressing conditions with respect to thermal expansion and electric resistance. It was established that anisotropy of the cermet germanium telluride was strongly affected by pressing force and temperature. Anisotropy of the cermet germanium telluride also depends with respect to α and ρ on the material and size of the mould

  19. Unconventional superconductors. Anisotropy and multiband effects

    Energy Technology Data Exchange (ETDEWEB)

    Askerzade, Iman [Ankara Univ. (Turkey). Center of Excellence of Superconductivity Research of Turkey; Azerbaijan National Academy of Sciences (Azerbaijan). Inst. of Physics

    2012-07-01

    This book deals with the new class of materials unconventional superconductors, cuprate compounds, borocarbides, magnesium-diboride and oxypnictides. It gives a systematical review of physical properties of novel superconductors. There is an increasing number of fundamental properties of these compounds which are relevant to future applications, opening new possibilities. The theoretical explanation is presented as generalization of Ginzburg-Landau phenomenology and microscopical Eliashberg theory for multiband and anisotropic superconductors. Various applications of this approaches and time dependent version of two-band Ginzburg-Landau theory are considered. An important topic are fluctuations in two-band and anisotropic superconductors. Significant new results on current problems are presented to stimulate further research. Numerous illustrations, diagrams and tables make this book useful as a reference for students and researchers. (orig.)

  20. Unconventional superconductors anisotropy and multiband effects

    CERN Document Server

    Askerzade, Iman

    2012-01-01

    This book deals with the new class of materials unconventional superconductors, cuprate compounds, borocarbides, magnesium-diboride and oxypnictides. It gives a systematical review of physical properties of novel  superconductors. There is an increasing number of fundamental properties of these compounds which are relevant to future applications, opening new possibilities. The theoretical explanation is presented as generalization of Ginzburg-Landau phenomenology and microscopical Eliashberg theory for multiband and anisotropic superconductors. Various applications of this approachs and time dependent version of two-band Ginzburg-Landau theory are considered. An important topic are fluctuations in two-band and anisotropic superconductors. Significant  new results on current problems are presented to stimulate further research. Numerous illustrations, diagrams and tables make this book useful as a reference for students and researchers.

  1. Small-angle CMB temperature anisotropies induced by cosmic strings

    International Nuclear Information System (INIS)

    We use Nambu-Goto numerical simulations to compute the cosmic microwave background (CMB) temperature anisotropies induced at arcminute angular scales by a network of cosmic strings in a Friedmann-Lemaitre-Robertson-Walker (FLRW) expanding universe. We generate 84 statistically independent maps on a 7.2 deg. field of view, which we use to derive basic statistical estimators such as the one-point distribution and two-point correlation functions. At high multipoles, the mean angular power spectrum of string-induced CMB temperature anisotropies can be described by a power law slowly decaying as l-p, with p=0.889 (+0.001,-0.090) (including only systematic errors). Such a behavior suggests that a nonvanishing string contribution to the overall CMB anisotropies may become the dominant source of fluctuations at small angular scales. We therefore discuss how well the temperature gradient magnitude operator can trace strings in the context of a typical arcminute diffraction-limited experiment. Including both the thermal and nonlinear kinetic Sunyaev-Zel'dovich effects, the Ostriker-Vishniac effect, and the currently favored adiabatic primary anisotropies, we find that, on such a map, strings should be 'eye visible', with at least of order ten distinctive string features observable on a 7.2 deg. gradient map, for tensions U down to GU≅2x10-7 (in Planck units). This suggests that, with upcoming experiments such as the Atacama Cosmology Telescope (ACT), optimal non-Gaussian, string-devoted statistical estimators applied to small-angle CMB temperature or gradient maps may put stringent constraints on a possible cosmic string contribution to the CMB anisotropies.

  2. Weak-anisotropy moveout approximations for P-waves in homogeneous layers of monoclinic or higher anisotropy symmetries

    Czech Academy of Sciences Publication Activity Database

    Farra, V.; Pšenčík, Ivan; Jílek, P.

    2016-01-01

    Roč. 81, č. 2 (2016), C39-C59. ISSN 0016-8033 R&D Projects: GA ČR(CZ) GAP210/11/0117 Keywords : anisotropy * P-wave * traveltime * moveout Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  3. Testing distance duality with CMB anisotropies

    CERN Document Server

    Rasanen, Syksy; Kosonen, Ville

    2015-01-01

    We constrain deviations of the form $T\\propto (1+z)^{1+\\epsilon}$ from the standard redshift-temperature relation, corresponding to modifying distance duality as $D_L=(1+z)^{2(1+\\epsilon)} D_A$. We consider a consistent model, in which both the background and perturbation equations are changed. For this purpose, we introduce a species of dark radiation particles to which photon energy density is transferred, and assume $\\epsilon\\ge0$. The Planck 2015 release high multipole temperature plus low multipole data give the limit $\\epsilon<4.5\\times 10^{-3}$ at 95% C.L. The main obstacle to improving this CMB-only result is strong degeneracy between $\\epsilon$ and the physical matter densities $\\omega_{\\rm b}$ and $\\omega_{\\rm c}$. A constraint on deuterium abundance improves the limit to $\\epsilon<1.8\\times 10^{-3}$. Adding the Planck high-multipole CMB polarisation and BAO data leads to a small improvement; with this maximal dataset we obtain $\\epsilon<1.3\\times 10^{-3}$. This dataset constrains the prese...

  4. Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: A comparative study

    Science.gov (United States)

    Qin, Guangzhao; Qin, Zhenzhen; Fang, Wu-Zhang; Zhang, Li-Chuan; Yue, Sheng-Ying; Yan, Qing-Bo; Hu, Ming; Su, Gang

    2016-05-01

    New classes of two-dimensional (2D) materials beyond graphene, including layered and non-layered, and their heterostructures, are currently attracting increasing interest due to their promising applications in nanoelectronics, optoelectronics and clean energy, where thermal transport is a fundamental physical parameter. In this paper, we systematically investigated the phonon transport properties of the 2D orthorhombic group IV-VI compounds of GeS, GeSe, SnS and SnSe by solving the Boltzmann transport equation (BTE) based on first-principles calculations. Despite their similar puckered (hinge-like) structure along the armchair direction as phosphorene, the four monolayer compounds possess diverse anisotropic properties in many aspects, such as phonon group velocity, Young's modulus and lattice thermal conductivity (κ), etc. Especially, the κ along the zigzag and armchair directions of monolayer GeS shows the strongest anisotropy while monolayer SnS and SnSe show almost isotropy in phonon transport. The origin of the diverse anisotropy is fully studied and the underlying mechanism is discussed in details. With limited size, the κ could be effectively lowered, and the anisotropy could be effectively modulated by nanostructuring, which would extend the applications to nanoscale thermoelectrics and thermal management. Our study offers fundamental understanding of the anisotropic phonon transport properties of 2D materials, and would be of significance for further study, modulation and applications in emerging technologies.

  5. Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: A comparative study.

    Science.gov (United States)

    Qin, Guangzhao; Qin, Zhenzhen; Fang, Wu-Zhang; Zhang, Li-Chuan; Yue, Sheng-Ying; Yan, Qing-Bo; Hu, Ming; Su, Gang

    2016-06-01

    New classes of two-dimensional (2D) materials beyond graphene, including layered and non-layered, and their heterostructures, are currently attracting increasing interest due to their promising applications in nanoelectronics, optoelectronics and clean energy, where thermal transport is a fundamental physical parameter. In this paper, we systematically investigated the phonon transport properties of the 2D orthorhombic group IV-VI compounds of GeS, GeSe, SnS and SnSe by solving the Boltzmann transport equation (BTE) based on first-principles calculations. Despite their similar puckered (hinge-like) structure along the armchair direction as phosphorene, the four monolayer compounds possess diverse anisotropic properties in many aspects, such as phonon group velocity, Young's modulus and lattice thermal conductivity (κ), etc. Especially, the κ along the zigzag and armchair directions of monolayer GeS shows the strongest anisotropy while monolayer SnS and SnSe show almost isotropy in phonon transport. The origin of the diverse anisotropy is fully studied and the underlying mechanism is discussed in details. With limited size, the κ could be effectively lowered, and the anisotropy could be effectively modulated by nanostructuring, which would extend the applications to nanoscale thermoelectrics and thermal management. Our study offers fundamental understanding of the anisotropic phonon transport properties of 2D materials, and would be of significance for further study, modulation and applications in emerging technologies. PMID:27189263

  6. MICROWAVE EMISSION FROM THE EDGEWORTH-KUIPER BELT AND THE ASTEROID BELT CONSTRAINED FROM THE WILKINSON MICROWAVE ANISOTROPY PROBE

    International Nuclear Information System (INIS)

    Objects in the Edgeworth-Kuiper Belt and the main asteroid belt should emit microwaves that may give rise to extra anisotropy signals in the multipole of the cosmic microwave background (CMB) experiment. Constraints are derived from the absence of positive detection of such anisotropies for l ∼+. This limit is consistent with the mass extrapolated from the observable population with the size of a ∼> 15 km, assuming that the small-object population follows the power law in size dN/da ∼ a-q with the canonical index expected for collisional equilibrium, q ≅ 3.5, with which 23% of the mass is ascribed to objects smaller than are observationally accessible down to grains. A similar argument applied to the main asteroid belt indicates that the grain population should not increase more quickly than q ≅ 3.6 toward smaller radii, if the grain population follows the power law that continues to observed asteroids with larger radii. Both cases are at or only slightly above the limit that can be physically significant, implying the importance of further tightening the CMB anisotropy limit, which may be attained with observation at higher radio frequencies.

  7. Lithospheric deformation inferred from electrical anisotropy of magnetotelluric data

    Science.gov (United States)

    Yin, Y.; Wei, W.; Jin, S.; Ye, G.; Unsworth, M. J.; Zhang, L.

    2013-12-01

    In our research, a comprehensive procedure of analyzing and modeling electrical anisotropy for MT data is suggested, based on the field examples of the Great Slave Lake shear zone (GSLsz) in western Canada, the North China Craton (NCC) and the Altyn Tagh fault in northern Tibet. Diverse dimensionality tools are used to distinguish heterogeneity and anisotropy from MT data. In addition to the phase splits and phase tensor polarizations, a combination of the phase tensor and induction arrows is applied to judge anisotropy. The skin depths of specific period band are considered to determine whether these features result from anisotropy or heterogeneity. Specific resistivity structures in the 2-D isotropic inversion models can indicate electrical anisotropy as well, like the dike-like media or a series of conductive ';blobs' can be observed in the 2-D isotropic inversion models of the GSLsz and NCC data. Anisotropic inversions can be undertaken using an improved inversion code based on isotropic code but incorporating a trade-off parameter for electrical anisotropy named anisotropic tau. A series of anisotropic tau have been applied to test its effect and to get a best trade-off between anisotropy and heterogeneity. Then, 2-D and 3-D forward modeling works are undertaken to test the robustness of the major anisotropic features. The anisotropic structures inferred from the inversion models are replaced by various alternating isotropic or anisotropic structures to see if they are required. The fitting of the response curves compared with the field data and corresponding r.m.s misfits can help us choose the best model that can generally illustrate the underground structure. Finally, the analysis and modeling result of the MT data from North China Craton is taken as an example to demonstrate how the electrical anisotropy can be linked with the lithospheric deformation. According to the reliable models we got, there may be an anisotropic layer at the mid-lower crustal to

  8. Reversible magnetization and anisotropy in YBa2Cu4O8

    International Nuclear Information System (INIS)

    The reversible magnetization for H parallel ab has been studied for grain-aligned YBa2Cu4O8 in order to determine whether the Hao-Clem theory can properly describe the vortex state in this orientation, as well as the orientation for H parallel c. Between temperatures of 70 and 76 K, the magnetization is reversible to better than 2% and the results scale very well to the universal Hao-Clem curve even though the supercurrents have a highly noncircular path as they circulate around a vortex parallel to the ab plane. The thermodynamic critical field is the same for H parallel ab as for H parallel c, as expected, and the Ginzburg-Landau parameter κab=380 compared to κc=70 is consistent with an anisotropy value γ=5.8±0.4. copyright 1996 The American Physical Society

  9. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Khmelevskyi, S.; Mryasov, O. N.; Wunderlich, J.; Jungwirth, Tomáš

    2010-01-01

    Roč. 81, č. 21 (2010), 212409/1-212409/4. ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100912; GA ČR GA202/07/0456; GA AV ČR KAN400100652; GA ČR GEFON/06/E002 Grant ostatní: EU FP7(XE) #215368; EU FP7 NAMASTE(XE) No.214499 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : magnetic anisotropy * tunneling anisotropic magneto -resistance * exchange bias Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010 http://link.aps.org/doi/10.1103/PhysRevB.81.212409

  10. A SEARCH FOR CONCENTRIC CIRCLES IN THE 7 YEAR WILKINSON MICROWAVE ANISOTROPY PROBE TEMPERATURE SKY MAPS

    International Nuclear Information System (INIS)

    In this Letter, we search for concentric circles with low variance in cosmic microwave background sky maps. The detection of such circles would hint at new physics beyond the current cosmological concordance model, which states that the universe is isotropic and homogeneous, and filled with Gaussian fluctuations. We first describe a set of methods designed to detect such circles, based on matched filters and χ2 statistics, and then apply these methods to the best current publicly available data, the 7 year Wilkinson Microwave Anisotropy Probe (WMAP) temperature sky maps. We compare the observations with an ensemble of 1000 Gaussian ΛCDM simulations. Based on these tests, we conclude that the WMAP sky maps are fully compatible with the Gaussian and isotropic hypothesis as measured by low-variance ring statistics.

  11. Observation of the East-West Anisotropy of the Atmospheric Neutrino Flux

    International Nuclear Information System (INIS)

    The east-west anisotropy, caused by the deflection of primary cosmic rays in the Earth close-quote s magnetic field, is observed for the first time in the flux of atmospheric neutrinos. Using a 45thinspthinspktthinspyr exposure of the Super-Kamiokande detector, 552thinspthinspe -like and 633thinspthinspμ -like horizontally going events are selected in the momentum range between 400 and 3000 MeV/c . The azimuthal distributions of e -like and μ -like events agree with the expectation from atmospheric neutrino flux calculations, verifying that the flux of atmospheric neutrinos in the GeV energy range is reasonably well modeled by calculations that account for the geomagnetic field. copyright 1999 The American Physical Society

  12. Temporal and Spatial Turbulent Spectra of MHD Plasma and an Observation of Variance Anisotropy

    CERN Document Server

    Schaffner, D A; Lukin, V S

    2014-01-01

    The nature of MHD turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind-tunnel configuration of the Swarthmore Spheromak Experiment (SSX). The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparison amongst magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor Hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed as well as the role laboratory experiment can play in understanding turbulence typica...

  13. Stress, strain rate and anisotropy in Kyushu, Japan

    Science.gov (United States)

    Savage, M. K.; Aoki, Y.; Unglert, K.; Ohkura, T.; Umakoshi, K.; Shimizu, H.; Iguchi, M.; Tameguri, T.; Ohminato, T.; Mori, J.

    2016-04-01

    Seismic anisotropy, the directional dependence of wave speeds, may be caused by stress-oriented cracks or by strain-oriented minerals, yet few studies have quantitatively compared anisotropy to stress and strain over large regions. Here we compare crustal stress and strain rates on the Island of Kyushu, Japan, as measured from inversions of focal mechanisms, GPS and shear wave splitting. Over 85,000 shear wave splitting measurements from local and regional earthquakes are obtained from the NIED network between 2004 and 2012, and on Aso, Sakurajima, Kirishima and Unzen volcano networks. Strain rate measurements are made from the Japanese Geonet stations. JMA-determined S arrival times processed with the MFAST shear wave splitting code measure fast polarisations (Φ), related to the orientation of the anisotropic medium and time delays (dt), related to the path length and the percent anisotropy. We apply the TESSA 2-D delay time tomography and spatial averaging code to the highest quality events, which have nearly vertical incidence angles, separating the 3455 shallow (depth = 40 km) earthquakes. Using square grids with 30 km sides for all the inversions, the best correlations are observed between splitting from shallow earthquakes and stress. Axes of maximum horizontal stress (SHmax) and Φ correlate with a coefficient c of 0.56, significant at the 99% confidence level. Their mean difference is 31.9°. Axes of maximum compressional strain rate and SHmax are also well aligned, with an average difference of 28°, but they do not correlate with each other, meaning that where they differ, the difference is not systematic. Anisotropy strength is negatively correlated with the stress ratio parameter determined from focal mechanism inversion (c = - 0.64; significant at the 99% confidence level). The anisotropy and stress results are consistent with stress-aligned microcracks in the crust in a dominantly strike-slip regime. Eigenvalues of maximum horizontal strain rate

  14. Constraining depth-dependent anisotropy: A new approach

    Science.gov (United States)

    Ishii, M.; Okeler, A.

    2014-12-01

    Splitting of shear waves is commonly used to infer anisotropy of the Earth's interior. However, most data, such as SKS splitting, provide depth-integrated measure of anisotropy along the ray path, and it is difficult to separate contributions from different layers within the Earth. There have been efforts to focus on specific depth range by analyzing differences in splitting between two ray paths, but these studies only report observed differences or rely upon forward modeling with limited parameter-space search. We have developed a new approach to examine the P-to-S converted phases that allows one to construct depth-dependent multi-layer anisotropy models through combination of inversion and grid search. In addition to the conventional fast splitting direction and delay time, the technique allows one to investigate the tilt of the symmetry axis and dip of the discontinuity associated with the P-to-S conversion. Furthermore, the formulation is such that it naturally extends to include and examine multiple layers with different anisotropic properties. With these flexibilities, we can address anisotropic contributions from different layers in two separate procedures. The first scheme takes advantage of data with similar ray paths (e.g., SKS and SKKS waves recorded at the same station). The rays sample different structure when their ray paths differ (e.g., near the core-mantle boundary), but they sample the same structure when the paths are similar (e.g., in the upper part of the mantle and crust). Using our new approach, we can set up the problem as a two-layer anisotropy model where the layer with ray paths sampling different regions (e.g., lowermost mantle) is allowed to vary laterally. The second type of problem that can be addressed by the new approach is layer-by-layer investigation of anisotropy from top to bottom. This procedure combines the new method with receiver function analysis to obtain anisotropic properties of each layer using P-to-S converted waves

  15. Downscaling Smooth Tomographic Models: Separating Intrinsic and Apparent Anisotropy

    Science.gov (United States)

    Bodin, Thomas; Capdeville, Yann; Romanowicz, Barbara

    2016-04-01

    In recent years, a number of tomographic models based on full waveform inversion have been published. Due to computational constraints, the fitted waveforms are low pass filtered, which results in an inability to map features smaller than half the shortest wavelength. However, these tomographic images are not a simple spatial average of the true model, but rather an effective, apparent, or equivalent model that provides a similar 'long-wave' data fit. For example, it can be shown that a series of horizontal isotropic layers will be seen by a 'long wave' as a smooth anisotropic medium. In this way, the observed anisotropy in tomographic models is a combination of intrinsic anisotropy produced by lattice-preferred orientation (LPO) of minerals, and apparent anisotropy resulting from the incapacity of mapping discontinuities. Interpretations of observed anisotropy (e.g. in terms of mantle flow) requires therefore the separation of its intrinsic and apparent components. The "up-scaling" relations that link elastic properties of a rapidly varying medium to elastic properties of the effective medium as seen by long waves are strongly non-linear and their inverse highly non-unique. That is, a smooth homogenized effective model is equivalent to a large number of models with discontinuities. In the 1D case, Capdeville et al (GJI, 2013) recently showed that a tomographic model which results from the inversion of low pass filtered waveforms is an homogenized model, i.e. the same as the model computed by upscaling the true model. Here we propose a stochastic method to sample the ensemble of layered models equivalent to a given tomographic profile. We use a transdimensional formulation where the number of layers is variable. Furthermore, each layer may be either isotropic (1 parameter) or intrinsically anisotropic (2 parameters). The parsimonious character of the Bayesian inversion gives preference to models with the least number of parameters (i.e. least number of layers, and

  16. Anisotropy magnetic susceptibility measurements of vulcanic rock from merapi mountain in central Java

    International Nuclear Information System (INIS)

    Anisotropy Magnetic susceptibility indicated a differences of Magnetic susceptibility value of a sample due to the direction or orientation of magnetic field on it. The 22 sample's were taken from lour area around Merapi mountain in central Java and their Anisotropy Magnetic susceptibility were measured by using MS2 Bartington. The 22 sample's shown a high susceptibility value about 8037.5 x 105. Eleven sample's have high anisotropy ( it's anisotropy degree about 16% ). The rest of the sample have an anisotropy degree less than 6% (sample's from pasar bubar, Kali Kuning, Kali Gendong, Kali Gendol Utara). This result give an indication that a part of the sample's can be used for paleomagnetic

  17. Structural origins of magnetic anisotropy in sputtered amorphous Tb-Fe films

    International Nuclear Information System (INIS)

    Using x-ray-absorption fine-structure measurements we have obtained clear evidence for structural anisotropy in amorphous sputter-deposited TbFe films exhibiting perpendicular magnetic anisotropy. Modeling of the data shows that perpendicular anisotropy in these films is associated with Fe-Fe and Tb-Tb pair correlations which are greater in plane and Tb-Fe correlations which are greater perpendicular to the film plane. Upon annealing at 300 degree C the measured structural anisotropy disappears and the magnetic anisotropy decreases to a level consistent with magnetoelastic interactions between the film and substrate

  18. Spectroscopic ellipsometry investigations of optical anisotropy in obliquely deposited hafnia thin films

    Science.gov (United States)

    Tokas, R. B.; Jena, Shuvendu; Haque, S. Maidul; Rao, K. Divakar; Thakur, S.; Sahoo, N. K.

    2016-05-01

    In present work, HfO2 thin films have been deposited at various oblique incidences on Si substrates by electron beam evaporation. These refractory oxide films exhibited anisotropy in refractive index predictably due to special columnar microstructure. Spectroscopic ellipsometry being a powerful tool for optical characterization has been employed to investigate optical anisotropy. It was observed that the film deposited at glancing angle (80°) exhibits the highest optical anisotropy. Further, anisotropy was noticed to decrease with lower values of deposition angles while effective refractive index depicts opposite trend. Variation in refractive index and anisotropy has been explained in light of atomic shadowing during growth of thin films at oblique angles.

  19. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy

    Science.gov (United States)

    Hayami, Satoru; Lin, Shi-Zeng; Batista, Cristian D.

    2016-05-01

    We clarify the conditions for the emergence of multiple-Q structures out of lattice and easy-axis spin anisotropy in frustrated magnets. By considering magnets whose exchange interaction has multiple global minima in momentum space, we find that both types of anisotropy stabilize triple-Q orderings. Moderate anisotropy leads to a magnetic-field-induced skyrmion crystal, which evolves into a bubble crystal for increasing spatial and spin anisotropy. The bubble crystal exhibits a quasicontinuous (devil's staircase) temperature-dependent ordering wave vector, characteristic of the competition between frustrated exchange and strong easy-axis anisotropy.

  20. Effects of local field and inherent strain in reflectance anisotropy spectra of AIIIBV semiconductors with naturally oxidized surfaces

    International Nuclear Information System (INIS)

    Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of local field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers

  1. Can Minor Hydrous Minerals Play a Role in Low Crust Seismic Anisotropy: an Experimental and Numerical Investigation to Finero Peridotites

    Science.gov (United States)

    Zhong, X.; Kunze, K.; Zappone, A. S.

    2013-12-01

    The Ivrea-Verbano Zone (South-Alpine basement, NW Italy) offers an unique opportunity to study lower crust/upper mantle rocks unaffected by serpentinization or intense weathering. Peridotites from Finero (northeast Ivrea-Verbano Zone) have been collected to investigate the physical influence , on seismic properties of hydrous minerals (hornblende and phlogopite), which have been formed as a consequence of metasomatism. The methods involve experimental tests using ultrasound wave measurements at increasing hydrostatic confining pressure, electron backscatter diffraction (EBSD), to investigate the crystallographic preferred orientation and its influence on seismic anisotropy, optical microscope, scanning electron microscope (SEM) together with open software simulation (MTEX and OIM Analysis) to investigate the influence of crystal shape and grain boundaries. The seismic anisotropy of compressional wave range from 2% to 8.7% (averaged around 6%) under room temperature and meanwhile shows decreasing trend as confining pressure increases (from 20 to 250 MPa). However, no distinct crystallographic preferred orientation of major minerals including olivine, orthopyroxene and clinopyroxene have been observed in EBSD and EDX maps. Since the fast axis of metasomatic hornblende and phlogopite are better aligned along the lineation direction, one explanation is that the seismic anisotropy is mainly a result of the preferred orientation of minor hornblende and phlogopite, though they only make around 1~5% percent of the whole content based on SEM images. We propose that the well orientated hydrous minerals can strongly influence the seismic anisotropy in the case where the dominate minerals show weak or no crystallographic preferred orientation. Another possible explanation might be due to the influence of crystal shape and geometrical arrangement of grain boundaries . DBSD inverse pole figure map of sample ZAP201. The grains are mostly olivine showing random orientation. Other

  2. Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets.

    Science.gov (United States)

    Zhang, Enze; Wang, Peng; Li, Zhe; Wang, Haifeng; Song, Chaoyu; Huang, Ce; Chen, Zhi-Gang; Yang, Lei; Zhang, Kaitai; Lu, Shiheng; Wang, Weiyi; Liu, Shanshan; Fang, Hehai; Zhou, Xiaohao; Yan, Hugen; Zou, Jin; Wan, Xiangang; Zhou, Peng; Hu, Weida; Xiu, Faxian

    2016-08-23

    Atomically thin 2D-layered transition-metal dichalcogenides have been studied extensively in recent years because of their intriguing physical properties and promising applications in nanoelectronic devices. Among them, ReSe2 is an emerging material that exhibits a stable distorted 1T phase and strong in-plane anisotropy due to its reduced crystal symmetry. Here, the anisotropic nature of ReSe2 is revealed by Raman spectroscopy under linearly polarized excitations in which different vibration modes exhibit pronounced periodic variations in intensity. Utilizing high-quality ReSe2 nanosheets, top-gate ReSe2 field-effect transistors were built that show an excellent on/off current ratio exceeding 10(7) and a well-developed current saturation in the current-voltage characteristics at room temperature. Importantly, the successful synthesis of ReSe2 directly onto hexagonal boron nitride substrates has effectively improved the electron motility over 500 times and the hole mobility over 100 times at low temperatures. Strikingly, corroborating with our density-functional calculations, the ReSe2-based photodetectors exhibit a polarization-sensitive photoresponsivity due to the intrinsic linear dichroism originated from high in-plane optical anisotropy. With a back-gate voltage, the linear dichroism photodetection can be unambiguously tuned both in the electron and hole regime. The appealing physical properties demonstrated in this study clearly identify ReSe2 as a highly anisotropic 2D material for exotic electronic and optoelectronic applications. PMID:27472807

  3. Anisotropy in the electronic states of self-assembled quantum dots

    International Nuclear Information System (INIS)

    Full text: Self-assembled quantum dots (QD) are semiconductor nanostructures that have been widely reported for use in technological devices such as optical memories and detectors. Besides this commercial potential, their zero-dimensional characteristics unveil a vast realm of fundamental physics to be explored in condensed matter physics. An example is the tailorable InAsP QD system, which allows one to control emission energy and QD sizes, among other properties. In this work we use polarized optical techniques in order to determine the origin of some structures previously identified via photoluminescence (PL) and photomodulated transmission (PT). We show that by varying the linear polarization of either excitation beam (PL) or probe beam (PT) it was possible to identify both QD and wetting layer (WL) contributions for the optical spectra of InAsP QDs. PT shows clearly that lower energy spectral structures present an anisotropy as a function of the polarization direction, which can be associated to QD recombination, since some degree of spatial anisotropy is expected for these nanostructures. WL contributions, however, appears at higher energies and shows isotropic behavior as a function of linear polarization, a characteristics of a two-dimensional layer. Polarized PL measurements seem to confirm the above identification, however a slightly dependence on WL intensity as a function of excitation polarization was found; it might be related to the diffraction grating polarization response of our spectrometer, and this is under investigation at the moment. Higher states for both WL and QD, although faint in the spectra, are present for samples with deeper confining potentials. (author)

  4. Crustal anisotropy of Taihang Mountain Range using azimuthal variation of receiver functions

    Institute of Scientific and Technical Information of China (English)

    TIAN Bao-feng; LI Juan; YAO Zhen-xing

    2008-01-01

    We discussed the possibility of studying crust anisotropy by analyzing azimuthal variation of the receiver functions and presented a technique for computing the transmission response of a flat-layered medium with arbitrarily ori- ented hexagonally symmetric anisotropy using the reflectivity algorithm. Using this method we investigated the crust anisotropy of Taihang Mountain Range (TMR). Our result shows that there is significant anisotropy with a slow symmetry axis in the upper crust and a fast symmetry axis in the lower crust. The anisotropy magnitude of about 8%~15% is found in the upper crust and a smaller magnitude of about 3%~5% in the lower crust. Orienta- tion of the symmetry axes and the depth of anisotropy appearance as deduced from the seismic records of four individual seismic stations are different from each other. The crust anisotropy beneath the four stations may be associated with the local crustal fabrics in a small area.

  5. Uniaxial magnetic anisotropy of cobalt thin films on different substrates using CW-MOKE technique

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Vijay, E-mail: shuklavs@rrcat.gov.in [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Mukherjee, C. [Mechanical and Optical Support Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Chari, R. [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Rai, S. [Indus Synchrotron Utilization Division, Raja Ramnna Centre for Advanced Technology, Indore 452013 (India); Bindra, K.S. [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Banerjee, A. [BARC training school at RRCAT and Homi Bhabha National Institute, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-12-15

    Cobalt thin films were deposited on GaAs, Si and Glass substrates by RF-magnetron sputtering. The structure was studied using atomic force microscopy, X-ray reflectivity and grazing incidence X-ray diffraction. Magnetic properties were determined with the magneto-optic Kerr effect. The deposited films have in-plane uniaxial anisotropy and after annealing the anisotropy reduces. The reduction in anisotropy may be due to release of stress and the remaining anisotropy after annealing may be due to shape anisotropy of the particulates. - Highlights: • Deposited cobalt thin films on different substrates and annealed at 300 °C. • Characterized as-grown and annealed films by GIXRD, AFM and MOKE. • Uniaxial magnetic anisotropy observed for all the samples. • Decrease in anisotropy on annealing may be due to release of stress during deposition.

  6. Anisotropy of thermal infrared exitance in sunflower canopies

    Science.gov (United States)

    Tha Paw u, Kyaw; Ustin, Susan L.; Zhang, Chang-An

    1989-01-01

    Anisotropy of thermal infrared exitance above and within a relatively closed fully irrigated sunflower canopy is detailed. Azimuthal variation in thermal infrared exitance above canopies was weakly (statistically) related to solar position and was comparable to or larger than errors in satellite-based canopy estimates. Anisotropy within canopies was significantly lower and decreased with canopy closure and depth into the canopy. Measured azimuthal isotropy within canopies supports the use of this assumption in radiative transfer models. Significant differences in canopy temperature measurements were found depending upon whether the instruments were within or above the canopy. These differences could produce errors of 20-35 percent in latent energy estimates during periods of high evapotranspiration (ET) and greater errors in periods of restricted ET.

  7. Mechanical behaviour of ferritic ODS steels - Temperature dependancy and anisotropy

    Science.gov (United States)

    Fournier, B.; Steckmeyer, A.; Rouffie, A.-L.; Malaplate, J.; Garnier, J.; Ratti, M.; Wident, P.; Ziolek, L.; Tournie, I.; Rabeau, V.; Gentzbittel, J. M.; Kruml, T.; Kubena, I.

    2012-11-01

    Ferritic 14%Cr and 18%Cr ODS steels produced at CEA in round bars or plates were tested mechanically. The present paper reports results obtained in tension, impact, fatigue, creep and toughness tests. These tests were carried out at various temperatures and in different directions. These materials show a pronounced anisotropy at all tested temperatures. No matter the loading, the transversal direction is always found to be far less resistant than the longitudinal one. This anisotropy is mainly observed in terms of damage mechanisms, with intergranular fracture preferentially occurring along the extrusion direction. This intergranular fracture mode leads to very low and anisotropic toughness values and to the absence of tertiairy creep stage, pointing out the unstable nature of fracture, even at high temperature. The unrealistically high values of the Norton exponent measured in creep suggests the existence of a threshold stress, which is consistent with the mainly kinematic nature of the stress as revealed by fatigue tests.

  8. Lateral-drag Casimir forces induced by anisotropy

    CERN Document Server

    Nefedov, Igor S

    2016-01-01

    We predict the existence of lateral drag forces near the flat surface of an absorbing slab of an anisotropic material. The forces originate from the fluctuations of the electromagnetic field, when the anisotropy axis of the material forms a certain angle with the surface. In this situation, the spatial spectra of the fluctuating electromagnetic fields becomes asymmetric, different for positive and negative transverse wave vectors components. Differently from the case of van der Waals interactions in which the forward-backward symmetry is broken due to the particle movement or in quantum noncontact friction where it is caused by the mutual motion of the bodies, in our case the lateral motion results merely from the anisotropy of the slab. This new effect, of particular significance in hyperbolic materials, could be used for the manipulation of nanoparticles.

  9. Deciphering the Dipole Anisotropy of Galactic Cosmic Rays

    CERN Document Server

    Ahlers, Markus

    2016-01-01

    Recent measurements of the dipole anisotropy in the arrival directions of Galactic cosmic rays (CRs) indicate a strong energy dependence of the dipole amplitude and phase in the TeV-PeV range. We argue here that these observations can be well understood within standard diffusion theory as a combined effect of (i) one or more local sources at Galactic longitude 120deg < l < 300deg dominating the CR gradient below 0.1-0.3 PeV, (ii) the presence of a strong ordered magnetic field in our local environment, (iii) the relative motion of the solar system, and (iv) the limited reconstruction capabilities of ground-based observatories. We show that an excellent candidate of the local CR source responsible for the dipole anisotropy at 1-100 TeV is the Vela supernova remnant.

  10. Dynamical Condensation in a Holographic Superconductor Model with Anisotropy

    CERN Document Server

    Bai, Xiaojian; Park, Miok; Sunly, Khimphun

    2014-01-01

    We study dynamical condensation process in a holographic superconductor model with anisotropy. The time-dependent numerical solution is constructed for the Einstein-Maxwell-dilaton theory with complex scalar in asymptotic AdS spacetime. The introduction of dilaton field generates the anisotropy in boundary spatial directions. In analogy of isotropic case, we have two black hole solutions below certain critical temperature $T_c$, the anisotropic charged black hole with and without scalar hair, corresponding respectively to the supercooled normal phase and superconducting phase in the boundary theory. The instability of the supercooled anisotropic black hole will drive a small perturbation of the scalar field to rise exponentially, until the final stable hairy black hole configuration is reached. Via AdS/CFT correspondence, we extract time evolution of the condensate operator and anisotropic pressure of the boundary system. Both of them experience exponential growth and subsequent saturation, but with different...

  11. Monte Carlo simulations of medium-scale CMB anisotropy

    CERN Document Server

    Kogut, A J

    1996-01-01

    Recent detections of cosmic microwave background (CMB) anisotropy at half-degree angular scales show considerable scatter in the reported amplitude even at similar angular resolution. We use Monte Carlo techniques to simulate the current set of medium-scale CMB observations, including all relevant aspects of sky coverage and measurement technique. The scatter in the reported amplitudes is well within the range expected for the standard cold dark matter (CDM) cosmological model, and results primarily from the restricted sky coverage of each experiment. Within the context of standard CDM current observations of CMB anisotropy support the detection of a ``Doppler peak'' in the CMB power spectrum consistent with baryon density 0.01 < Omega_b < 0.13 (95% confidence) for Hubble constant H_0 = 50 km/s/Mpc. The uncertainties are approximately evenly divided between instrument noise and cosmic variance arising from the limited sky coverage.

  12. Structural Anisotropy in Polar Fluids Subjected to Periodic Boundary Conditions

    Science.gov (United States)

    2011-01-01

    A heuristic model based on dielectric continuum theory for the long-range solvation free energy of a dipolar system possessing periodic boundary conditions (PBCs) is presented. The predictions of the model are compared to simulation results for Stockmayer fluids simulated using three different cell geometries. The boundary effects induced by the PBCs are shown to lead to anisotropies in the apparent dielectric constant and the long-range solvation free energy of as much as 50%. However, the sum of all of the anisotropic energy contributions yields a value that is very close to the isotropic one derived from dielectric continuum theory, leading to a total system energy close to the dielectric value. It is finally shown that the leading-order contribution to the energetic and structural anisotropy is significantly smaller in the noncubic simulation cell geometries compared to when using a cubic simulation cell. PMID:22303290

  13. Large scale cosmic-ray anisotropy with KASCADE

    CERN Document Server

    Antoni, T; Badea, A F; Bekk, K; Bercuci, A; Blümer, H; Bozdog, H; Brancus, I M; Büttner, C; Daumiller, K; Doll, P; Engel, R; Engler, J; Fessler, F; Gils, H J; Glasstetter, R; Haungs, A; Heck, D; Hörandel, J R; Kampert, K H; Klages, H O; Maier, G; Mathes, H J; Mayer, H J; Milke, J; Müller, M; Obenland, R; Oehlschläger, J; Ostapchenko, S; Petcu, M; Rebel, H; Risse, A; Risse, M; Roth, M; Schatz, G; Schieler, H; Scholz, J; Thouw, T; Ulrich, H; Van, J; Buren; Vardanyan, A S; Weindl, A; Wochele, J; Zabierowski, J

    2004-01-01

    The results of an analysis of the large scale anisotropy of cosmic rays in the PeV range are presented. The Rayleigh formalism is applied to the right ascension distribution of extensive air showers measured by the KASCADE experiment.The data set contains about 10^8 extensive air showers in the energy range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right ascension distributions in this energy range. This accounts for all showers as well as for subsets containing showers induced by predominantly light respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary energy.

  14. Nondestructive evaluation of plastic anisotropy in sheets with ultrasound

    International Nuclear Information System (INIS)

    According to the method of production the deep-drawing behavior of sheets more or less distinctly depends on the direction of rolling. It is generally descirbed by coefficients of anisotropy of the plastic behavior like R, r, Rsub(m) and ΔR. There are alternatives to this time-consuming and destructive method, like the X-ray texture image (nondestructive) or measurement of Young's modulus at specimens (i.e. taking of a sample). They are based on a correlation between elastic (texture) and plastic anisotropy. This paper describes a simple nondestructive method applied to the sheet itself: measurement of the directional dependence of the group velocity of guided ultrasonic waves. The positive results obtained up to now show that the method is appropriate for practical application. (orig.)

  15. TEXTURE ET ANISOTROPIE PLASTIQUE D'ALLIAGES AI-Li

    OpenAIRE

    MIZERA, Jaroslaw

    1993-01-01

    Le rôle spécifique des éléments d'alliage Li, Zr et Cu dans les alliages A1Li est déterminé en termes de leur influence sur l'évolution de la texture pendant un laminage et de leur incidence sur l'anisotropie plastique. Trois alliages modèles (Al-2,3% Li; Al-2,3% Li-0,1% Zr; Al-2,3%-1,2% Cu-0,1% Zr) sont lamines à chaud et à froid jusqu'à une réduction d'épaisseur de 92%. L'évolution de la texture et l'anisotropie des propriétés mécaniques de ces alliages sont caractérisées systématiquement a...

  16. Backscatter, anisotropy, and polarization of solar hard X-rays

    Science.gov (United States)

    Bai, T.; Ramaty, R.

    1978-01-01

    The problems of anisotropy, polarization, center-to-limb variation of the X-ray spectrum, and Compton backscatter are investigated in a study of solar hard X-rays. Effect of backscatter are found particularly important for anisotropic sources which emit hard X-rays predominantly toward the photosphere; for such anisotropic primary X-ray sources, the observed X-ray flux near 30 keV does not depend significantly on the position of the flare. In addition, the degree of polarization of the sum of the primary and reflected X-rays with energies in the 15 to 30 keV range may be as high as 30%. Determination of the height and anisotropy of the primary X-ray sources from study of the albedo patch is also discussed.

  17. Anisotropy Spectra for Enantiomeric Differentiation of Biomolecular Building Blocks

    DEFF Research Database (Denmark)

    Evans, Amanda C.; Meinert, Cornelia; Bredehoft, Jan H.;

    2013-01-01

    All biopolymers are composed of homochiral building blocks, and both D-sugars and L-amino acids uniquely constitute life on Earth. These monomers were originally enantiomerically differentiated under prebiotic conditions. Particular progress has recently been made in support of the photochemical...... model for this differentiation: the interaction of circularly polarized light with racemic molecules is currently thought to have been the original source for life’s biological homochirality. The differential asymmetric photoreactivity of particular small molecules can be characterized by both circular...... light. This chapter will: (1) present the theory and configuration of anisotropy spectroscopy; (2) explain experimentally recorded anisotropy spectra of selected chiral biomolecules such as amino acids; and (3) discuss the relevance of these spectra for the investigation of the origin of the molecular...

  18. Non-elliptic wavevector anisotropy for magnetohydrodynamic turbulence

    Science.gov (United States)

    Narita, Y.

    2015-11-01

    A model of non-elliptic wavevector anisotropy is developed for the inertial-range spectrum of magnetohydrodynamic turbulence and is presented in the two-dimensional wavevector domain spanning the directions parallel and perpendicular to the mean magnetic field. The non-elliptic model is a variation of the elliptic model with different scalings along the parallel and the perpendicular components of the wavevectors to the mean magnetic field. The non-elliptic anisotropy model reproduces the smooth transition of the power-law spectra from an index of -2 in the parallel projection with respect to the mean magnetic field to an index of -5/3 in the perpendicular projection observed in solar wind turbulence, and is as competitive as the critical balance model to explain the measured frequency spectra in the solar wind. The parameters in the non-elliptic spectrum model are compared with the solar wind observations.

  19. Exhaustive Study of Cosmic Microwave Background Anisotropies in Quintessential Scenarios

    CERN Document Server

    Brax, P; Riazuelo, A; Brax, Philippe; Martin, Jerome; Riazuelo, Alain

    2000-01-01

    Recent high precision measurements of the CMB anisotropies performed by the BOOMERanG and MAXIMA-1 experiments provide an unmatched set of data allowing to probe different cosmological models. Among these scenarios, motivated by the recent measurements of the luminosity distance versus redshift relation for type Ia supernovae, is the quintessence hypothesis. It consists in assuming that the acceleration of the Universe is due to a scalar field whose final evolution is insensitive to the initial conditions. Within this framework we investigate the cosmological perturbations for two well-motivated potentials: the Ratra-Peebles and the SUGRA tracking potentials. We show that the solutions of the perturbed equations possess an attractor and that, as a consequence, the insensitivity to the initial conditions is preserved at the perturbed level. Then, we study the predictions of these two models for structure formation and CMB anisotropies and investigate the general features of the multipole moments in the presenc...

  20. Magnetic anisotropy in EuS-PbS multilayers

    International Nuclear Information System (INIS)

    We present the results of ferromagnetic resonance studies of the thickness dependence of magnetic anisotropy in 2 series of EuS-PbS multilayers grown on (111) BaF2 and (100) KCl substrates with the EuS thickness varying in the range d = 6-70 A. The anisotropy constant K was found to follow the dependence K(d) = KV + 2KS/d, with the surface term KS larger for layers grown on BaF2 as compared to KCl.This difference is discussed in terms of different thermal stress-induced distortions of cubic crystal lattice of EuS. We found that the thickness of EuS layer required for the perpendicular (to the layer) magnetization is d ≤ 2-3 A, i,e., it is below 1 monolayer. (author)

  1. Optimization of artificial flockings by means of anisotropy measurements

    CERN Document Server

    Makiguchi, Motohiro

    2010-01-01

    An effective procedure to determine the optimal parameters appearing in artificial flockings is proposed in terms of optimization problems. We numerically examine genetic algorithms (GAs) to determine the optimal set of such parameters such as the weights for three essential interactions in BOIDS by Reynolds (1987) under `zero-collision' and `no-breaking-up' constraints. As a fitness function (the energy function) to be maximized by the GA, we choose the so-called the $\\textyen gamma$-value of anisotropy which can be observed empirically in typical flocks of starling. We confirm that the GA successfully finds the solution having a large $\\textyen gamma$-value leading-up to a strong anisotropy. The numerical experience shows that the procedure might enable us to make more realistic and efficient artificial flocking of starling even in our personal computers.

  2. Magnetic anisotropy of metal functionalized phthalocyanine 2D networks

    Science.gov (United States)

    Zhu, Guojun; Zhang, Yun; Xiao, Huaping; Cao, Juexian

    2016-06-01

    The magnetic anisotropy of metal including Cr, Mn, Fe, Co, Mo, Tc, Ru, Rh, W, Re, Os, Ir atoms functionalized phthalocyanine networks have been investigated with first-principles calculations. The magnetic moments can be expressed as 8-n μB with n the electronic number of outmost d shell in the transition metals. The huge magnetocrystalline anisotropy energy (MAE) is obtained by torque method. Especially, the MAE of Re functionalized phthalocyanine network is about 20 meV with an easy axis perpendicular to the plane of phthalocyanine network. The MAE is further manipulated by applying the external biaxial strain. It is found that the MAE is linear increasing with the external strain in the range of -2% to 2%. Our results indicate an effective approach to modulate the MAE for practical application.

  3. Edge anisotropy and the geometric perspective on flow networks

    CERN Document Server

    Molkenthin, Nora; Tupikina, Liubov; Marwan, Norbert; Donges, Jonathan F; Feudel, Ulrike; Kurths, Jürgen; Donner, Reik V

    2016-01-01

    Spatial networks have recently attracted great interest in various fields of research. While the traditional network-theoretic viewpoint is commonly restricted to their topological characteristics (often disregarding existing spatial constraints), this work takes a geometric perspective, which considers vertices and edges as objects in a metric space and quantifies the corresponding spatial distribution and alignment. For this purpose, we introduce the concept of edge anisotropy and define a class of measures characterizing the spatial directedness of connections. Specifically, we demonstrate that the local anisotropy of edges incident to a given vertex provides useful information about the local geometry of geophysical flows based on networks constructed from spatio-temporal data, which is complementary to topological characteristics of the same flow networks. Taken both structural and geometric viewpoints together can thus assist the identification of underlying flow structures from observations of scalar v...

  4. Controlling magnetic anisotropy in epitaxial FePt(001) films

    International Nuclear Information System (INIS)

    Epitaxial equiatomic Fe50Pt50 thin films with a variable order parameter ranging from 0 to 0.9 and Fe100-xPtx thin films with x ranging from 33 to 50 were deposited on MgO (001) substrates by dc sputtering. A seed layer consisting of nonmagnetic Cr (4 nm)/Pt (12 nm) was used to promote the crystallinity of the magnetic films. The crystal structure and magnetic properties were gauged using x-ray diffraction and magnetometry. The magnetic anisotropy can be controlled by changing the order parameter. For Fe100-xPtx films, the increase in Fe composition leads to an increase in coercivity in the hard axis loop and causes a loss of perpendicular anisotropy.

  5. Differential expansion of space and the Hubble flow anisotropy

    CERN Document Server

    Bolejko, Krzysztof; Wiltshire, David L

    2015-01-01

    The Universe on scales $10-100~h^{-1}$ Mpc is dominated by a cosmic web of voids, filaments, sheets and knots of galaxy clusters. These structures participate differently in the global expansion of the Universe: from non-expanding clusters to the above average expansion rate of voids. In this paper we characterize Hubble expansion anisotropies in the COMPOSITE sample of 4534 galaxies and clusters. We concentrate on the dipole and quadrupole in the rest frame of the Local Group. These both have statistically significant amplitudes. These anisotropies, and their redshift dependence, cannot be explained solely by a boost of the Local Group in the Friedmann-Lema\\^{i}tre-Robertson-Walker (FLRW) model which expands isotropically in the rest frame of the cosmic microwave background (CMB) radiation. We simulate the local expansion of the Universe with inhomogeneous Szekeres models, which match the standard FLRW model on $> 100~ h^{-1}$ Mpc scales but exhibit nonkinematic differential expansion on small scales. We res...

  6. Local control of magnetocrystalline anisotropy in (Ga,Mn)As microdevices: demonstration in current-induced switching

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, J.; Irvine, A.C.; Zemen, Jan; Holý, V.; Rushforth, A.W.; De Ranieri, E.; Rana, U.; Výborný, Karel; Sinova, J.; Foxon, C. T.; Campion, R. P.; Williams, D.A.; Gallagher, B. L.; Jungwirth, Tomáš

    2007-01-01

    Roč. 76, č. 5 (2007), 054424/1-054424/8. ISSN 1098-0121 R&D Projects: GA ČR GA202/05/0575; GA ČR GA202/06/0025; GA ČR GA202/04/1519; GA ČR GEFON/06/E002; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductors * magnetocrystalline anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.172, year: 2007

  7. Electron temperature anisotropy constraints in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Trávníček, Pavel M.; Maksimovic, M.; Marsch, E.; Fazakerley, A.; Scime, E. E.

    2008-01-01

    Roč. 113, A3 /2008/ (2008), A03103/1-A03103/10. ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420602 Grant ostatní: EU(XE) ESA-PECS project No. 98024 Institutional research plan: CEZ:AV0Z10030501; CEZ:AV0Z30420517 Keywords : solar wind electrons * temperature anisotropy * radial Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.147, year: 2008

  8. Alterations in white matter fractional anisotropy in subsyndromal perimenopausal depression

    OpenAIRE

    Wang, Xianglan; Tao, Jiong; Li, Lingjiang; Zhong, Zhiyong; Liu, Sha; Jiang, Tianzi; Zhang, Jinbei

    2014-01-01

    Background Subsyndromal depression (SSD) is considered as a predictor for future depressive disorders, however whether white matter abnormalities are involved in the high-susceptibility of women to depressive disorders during perimenopause is unknown. The purpose of this study was to investigate fractional anisotropy (FA) in the white matter of the whole brain in perimenopausal women with SSD using diffusion tensor imaging (DTI). Methods In a cross-sectional study, 24 perimenopausal women wit...

  9. Flow anisotropies due to momentum deposition from hard partons

    CERN Document Server

    Tomasik, Boris

    2015-01-01

    In nuclear collisions at the LHC large number of hard partons are created in initial partonic interactions, so that it is reasonable to suppose that they do not thermalise immediately but deposit their energy and momentum later into the evolving hot quark-gluon fluid. We show that this mechanism leads to contribution to flow anisotropies at all orders which are non-negligible and should be taken into account in realistic simulations.

  10. Structural Anisotropy in Polar Fluids Subjected to Periodic Boundary Conditions

    OpenAIRE

    Stenhammar, Joakim; Karlström, Gunnar; Linse, Per

    2011-01-01

    A heuristic model based on dielectric continuum theory for the long-range solvation free energy of a dipolar system possessing periodic boundary conditions (PBCs) is presented. The predictions of the model are compared to simulation results for Stockmayer fluids simulated using three different cell geometries. The boundary effects induced by the PBCs are shown to lead to anisotropies in the apparent dielectric constant and the long-range solvation free energy of as much as 50%. However, the s...

  11. Multi-region relaxed magnetohydrodynamics with anisotropy and flow

    OpenAIRE

    Dennis, Graham R.; Hudson, Stuart R.; Dewar, Robert L.; Hole, Matthew J.

    2014-01-01

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit...

  12. Soliton collisions in soft magnetic nanotube with uniaxial anisotropy

    OpenAIRE

    Usov, N. A.

    2016-01-01

    The structure of stable magnetic solitons of various orders in soft magnetic nanotube with uniaxial magnetic anisotropy has been studied using numerical simulation. Solitons of even order are immobile in axially applied magnetic field. Odd solitons show decreased mobility with respect to that of head-to head domain wall. Solitons of various orders can participate in nanotube magnetization reversal process. Various coalescence and decomposition processes in soliton assembly are considered. It ...

  13. Simulation of erasure of photoinduced anisotropy by circularly polarized light

    DEFF Research Database (Denmark)

    Sajti, Sz.; Kerekes, Á.; Barabás, M.; Lorincz, E; Hvilsted, Søren; Ramanujam, P.S.

    The temporal evolution of photoinduced birefringence is investigated on the basis of a model proposed by Pedersen and co-workers, This model is extended for the case of elliptically polarized light, and used to describe the erasure of photoinduced birefringence by circularly polarized light. It i...... shown that the anisotropy is not erased, only the direction of the optical axis is changed, and this is measured as erasure. The computed results are compared with measurements and show good agreement for several intensities....

  14. Electric Field Controlled Magnetic Anisotropy in a Single Molecule

    OpenAIRE

    Zyazin, Alexander S.; Berg, Johan W. G. van den; Osorio, Edgar A; Van Der Zant, Herre S J; Konstantinidis, Nikolaos P.; Leijnse, Martin; Wegewijs, Maarten R; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea

    2010-01-01

    We have measured quantum transport through an individual Fe$_4$ single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties, and moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition / subtraction controlled with the gate voltag...

  15. The Yuan-Tseh Lee Array for Microwave Background Anisotropy

    OpenAIRE

    Ho, Paul T. P.; Altamirano, Pablo; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Chung-Cheng; Chen, Ke-Jung; Chen, Ming-Tang; Han, Chih-Chiang; Ho, West M.; Huang, Yau-De; Hwang, Yuh-Jing; Ibanez-Romano, Fabiola; Jiang, Homin; Koch, Patrick M.

    2008-01-01

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is the first interferometer dedicated to studying the cosmic microwave background (CMB) radiation at 3mm wavelength. The choice of 3mm was made to minimize the contributions from foreground synchrotron radiation and Galactic dust emission. The initial configuration of seven 0.6m telescopes mounted on a 6-m hexapod platform was dedicated in October 2006 on Mauna Loa, Hawaii. Scientific operations began with the detection of a ...

  16. Elastic anisotropy changes of granulites due to their thermal heating

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Rudajev, Vladimír; Dwivedi, R.

    Prague : Institute of Geology , Academy of Sciences of the Czech Republic, v. v. i, 2011 - (Rudajev, V.; Živor, R.). s. 17-17 ISBN 978-80-87443-04-0. [Polish-Czech-Slovak Symposium on Mining and Environmental Geophysics /33./. 19.09.2011-22.09.2011, Staré Splavy] Institutional research plan: CEZ:AV0Z30130516 Keywords : elastic anisotropy * ultrasonic sounding * granulite * rock heating Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  17. Seismic anisotropy below Mexico and its implications for mantle dynamics

    OpenAIRE

    Stubailo, Igor

    2015-01-01

    We use data from seismic networks with unprecedented dense coverage to study the Earth's structure under Mexico. First, we develop a three-dimensional (3-D) model of shear-wave velocity and anisotropy for the Mexico subduction zone using fundamental mode Rayleigh wave phase velocity dispersion measurements. The 3-D nature of our surface-wave-based results allows for better understanding of the interaction between the subducting slab, mantle lithosphere, and asthenosphere in the top 200 km. ...

  18. Conductivity anisotropy of layered BiTe-SbTe-heterostructures

    International Nuclear Information System (INIS)

    Transport properties of ordered bismuth and antimony tellurides are studied theoretically based on first-principle electronic structure calculations using a screened Korringa-Kohn-Rostoker Greens function method. The anisotropy of the electron mobility both in the bulk materials and in layered BiTe-SbTe-heterostructures is analyzed within the relaxation time approximation of the Boltzmann theory. The influence of doping on the electrical conductivity is discussed applying the rigid band approximation.

  19. Conductivity anisotropy of layered BiTe-SbTe-heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yavorsky, Bogdan; Hinsche, Nicki; Zahn, Peter [Martin-Luther-Universitaet Halle-Wittenberg, Institut fuer Physik, Halle (Germany); Gradhand, Martin; Mertig, Ingrid [Martin-Luther-Universitaet Halle-Wittenberg, Institut fuer Physik, Halle (Germany); MPI fuer Mikrostrukturphysik, Halle (Germany)

    2010-07-01

    Transport properties of ordered bismuth and antimony tellurides are studied theoretically based on first-principle electronic structure calculations using a screened Korringa-Kohn-Rostoker Greens function method. The anisotropy of the electron mobility both in the bulk materials and in layered BiTe-SbTe-heterostructures is analyzed within the relaxation time approximation of the Boltzmann theory. The influence of doping on the electrical conductivity is discussed applying the rigid band approximation.

  20. Optical and mechanical anisotropy of oxide glass fibers

    DEFF Research Database (Denmark)

    Deubener, J.; Yue, Yuanzheng

    2012-01-01

    Upon fiber drawing, glass forming oxide melts are thermally quenched and mechanically stretched. High cooling rates (up to 106 K/min) of quenched glass fibres lead to higher enthalpy state of liquids, thereby, to higher fictive temperature than regular quenching (e.g. 20 K/min) of bulk glass prod...... anisotropic shrinkage in silica and phosphate fibers with recent studies on relaxation of optical anisotropy in E-glass fibers [3,4]....

  1. High Vp/Vs ratio: Saturated cracks or anisotropy effects?

    Science.gov (United States)

    Wang, X.-Q.; Schubnel, A.; Fortin, J.; David, E. C.; Guéguen, Y.; Ge, H.-K.

    2012-06-01

    We measured Vp/Vs ratios of thermally cracked Westerly granite, thermally cracked Carrara marble and 4% porosity Fontainebleau sandstone, for an effective mean pressure ranging from 2 to 95 MPa. Samples were fluid-saturated alternatively with argon gas and water (5 MPa constant pore pressure). The experimental results show that at ultrasonic frequencies, Vp/Vs ratio of water saturated specimen never exceeded 2.15, even at effective mean pressure as low as 2 MPa, or for a lithology for which the Poisson's ratio of minerals is as high as 0.3 (calcite). In order to check these results against theoretical models: we examine first a randomly oriented cracked medium (with dispersion but without anisotropy); and second a medium with horizontally aligned cracks (with anisotropy but without dispersion). The numerical results show that experimental data agree well with the first model: at high frequency, Vp/Vs ratios range from 1.6 to 1.8 in the dry case and from 1.6 to 2.2 in the saturated case. The second model predicts both Vp/Sv and Vp/Sh to vary from 1.2 to 3.5, depending on the raypath angle relative to the crack fabric. In addition, perpendicular to the crack fabric, a high Vp/Vs ratio is predicted in the absence of shear wave splitting. From these results, we argue the possibility that high Vp/Vs ratio (>2.2) as recently imaged by seismic tomography in subduction zones, may come from zones presenting important crack anisotropy. The cumulative effects of crack anisotropy and high pore fluid pressure are required to get Vp/Vs ratios above 2.2.

  2. A method to detect positron anisotropies with Pamela data

    Energy Technology Data Exchange (ETDEWEB)

    Panico, B. [INFN, Sezione di Naples, I-80126 Naples (Italy); Adriani, O. [University of Florence, Department of Physics and Astronomy, I-50019 Sesto Fiorentino, Florence (Italy); INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G.C. [INFN, Sezione di Naples, I-80126 Naples (Italy); University of Naples Federico II”, Department of Physics, I-80126 Naples (Italy); Bazilevskaya, G.A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R. [University of Bari, Department of Physics, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Boezio, M. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E.A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bongi, M. [University of Florence, Department of Physics and Astronomy, I-50019 Sesto Fiorentino, Florence (Italy); INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Bonvicini, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bottai, S. [University of Naples Federico II”, Department of Physics, I-80126 Naples (Italy); Bruno, A. [University of Bari, Department of Physics, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M. [INFN, Sezione di Rome Tor Vergata, I-00133 Rome (Italy); RIKEN, Advanced Science Institute, Wako-shi, Saitama (Japan); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); De Donato, C. [INFN, Sezione di Rome Tor Vergata, I-00133 Rome (Italy); and others

    2014-11-15

    The PAMELA experiment is collecting data since 2006; its results indicate the presence of a large flux of positron with respect to electrons in the CR spectrum above 10 GeV. This excess might also be originated in objects such as pulsars and microquasars or through dark matter annihilation. Here the electrons and positrons events collected by PAMELA have been analized searching for anisotropies. The analysis is performed at different angular scales and results will be presented at the conference.

  3. The BEAN experiment - An EISCAT study of ion temperature anisotropies

    Directory of Open Access Journals (Sweden)

    I. W. McCrea

    Full Text Available Results are presented from a novel EISCAT special programme, SP-UK-BEAN, intended for the direct measurement of the ion temperature anisotropy during ion frictional heating events in the high-latitude F-region. The experiment employs a geometry which provides three simultaneous estimates of the ion temperature in a single F-region observing volume at a range of aspect angles from 0° to 36°. In contrast to most previous EISCAT experiments to study ion temperature anisotropies, field-aligned observations are made using the Sodankylä radar, while the Kiruna radar measures at an aspect angle of the order of 30°. Anisotropic effects can thus be studied within a small common volume whose size and altitude range is limited by the radar beamwidth, rather than in volumes which overlap but cover different altitudes. The derivation of line-of-sight ion temperature is made more complex by the presence of an unknown percentage of atomic and molecular ions at the observing altitude and the possibility of non-Maxwellian distortion of the ion thermal velocity distribution. The first problem has been partly accounted for by insisting that a constant value of electron temperature be maintained. This enables an estimate of the ion composition to be made, and facilitates the derivation of more realistic line-of-sight ion temperatures and temperature anisotropies. The latter problem has been addressed by assuming that the thermal velocity distribution remains bi-Maxwellian. The limitations of these approaches are discussed. The ion temperature anisotropies and temperature partition coefficients during two ion heating events give values intermediate between those expected for atomic and for molecular species. This result is consistent with an analysis which indicates that significant proportions of molecular ions (up to 50% were present at the times of greatest heating.

  4. Seismic anisotropy of serpentinite from Val Malenco, Italy

    OpenAIRE

    Kern, H; Lokajicek, T; Svitek, T; Wenk, HR

    2015-01-01

    © 2015. American Geophysical Union. All Rights Reserved. Serpentinites, deformed in mantle subduction zones, are thought to contribute significantly to seismic anisotropy of the upper mantle and have therefore been of great interest with studies on deformation, preferred orientation, and elastic properties. Here we present a combined study of a classical sample from Val Malenco, Italy, investigating the microstructure and texture with state-of-the art synchrotron X-ray and neutron diffraction...

  5. Seismic Anisotropy Along the Eurasian-Arabian Plate Boundary

    Science.gov (United States)

    Sandvol, E. A.; Skobeltsyn, G.; Turkelli, N.; Polat, G.; Yetirmishli, G.; Godoladze, T.; Mellors, R. J.; Gok, R.

    2014-12-01

    The Anatolian plateau and Caucasus are part of the orogenic belt that formed as the result of the closure of the Neo Tethys Ocean and the ensuing continental collision of Arabian and Eurasian plates. Multiple tomographic studies of both P and S wave velocities all show a broad low velocity zone beneath East Anatolian and North Iranian plateaus. The low velocity zone appears to range from the Moho to a depth 150 km, which suggests asthenospheric material underlying a very thin lithosphere of eastern Anatolia. This low velocity zone coincides with widespread Late Miocene - Quaternary calc-alkaline volcanic products of mantle origin. This very shallow asthenosphere strongly implies that any present day anisotropy is likely to reflect very recent mantle deformation. In order to image seismic anisotropy and improve understanding of the nature of mantle deformation in young continental collision zone we analyzed data from the IRIS station KIV and the regional seismic networks of Turkey, Azerbaijan and Georgia to determine shear wave splitting fast polarization directions and delay times in the region. Our results show that the fast polarization directions are quite uniformly parallel to NE-SW across the East Anatolian Plateau and the westernmost part of the Greater Caucasus. The observed delay times decrease northward with the shortest located in the western Greater Caucasus. However, to the east, the fast polarization direction rotates clockwise until it becomes parallel to the EW topographic? trend in the Lesser Caucasus where the delay times are the largest in the region. The situation becomes more complex north of the Lesser Caucasus, in the central and eastern parts of the Greater Caucasus, where the fast polarization directions shift abruptly to the NNE-SSW. Furthemore, we find relatively strong evidence of layered anisotropy using a new method we have developed to image multi-layered polarization anisotropy from teleseismic core phases such as SKS.

  6. Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy

    Science.gov (United States)

    Komarov, S. V.; Khabibullin, I. I.; Churazov, E. M.; Schekochihin, A. A.

    2016-09-01

    Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g. conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is ˜0.1 per cent at energies ≳kT. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scales, which are impossible to resolve spatially. The absence of the effect at the predicted level may set a lower limit on the electron collisionality in the ICM. At the same time, the small value of the effect implies that it does not preclude the use of clusters as (unpolarized) calibration sources for X-ray polarimeters at this level of accuracy.

  7. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency

    Science.gov (United States)

    Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.

    2015-11-01

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.

  8. Electrical anisotropy in coatings of aligned silver nanowires

    Science.gov (United States)

    Xu, Ye; Galderon-Ortiz, Gabriel; Exarhos, Annemarie; Alsayed, Ahmed; Winey, Karen; Kikkawa, Jay; Yodh, Arjun

    2015-03-01

    Conductive and transparent coatings consisting of silver nanowires (AgNWs) have been suggested as a promising candidate to replace traditional ITO coatings for emerging flexible electronics applications. The electrical properties of such AgNW coatings depend strongly on the structure of nanowire networks formed by various processing methods. In this work, we study how the alignment of nanowires affects the electrical anisotropy in AgNW coatings. Specifically, we introduce a robust method to prepare coatings of well-aligned AgNWs on glass substrates; the method utilizes the rapid flow of AgNW suspensions through a confined geometry. The angle-dependent sheet resistance of the coatings was measured, and large anisotropy in surface conductivity was found to characterize the aligned AgNW networks. We also explore the degree of alignment and surface coverage of AgNWs in the networks, thereby establishing connections between microscopy network structures and macroscopic electrical anisotropy. This work was supported by the NSF DMR12-05463, DMR-1305199, PENN MRSEC DMR11-20901, NASA NNX08AO0G grants, and Solvay.

  9. Magnetic anisotropies in ultrathin bismuth iron garnet films

    International Nuclear Information System (INIS)

    Ultrathin bismuth iron garnet Bi3Fe5O12 films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi3Fe5O12 films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi3Fe5O12 films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi3Fe5O12 were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed

  10. Anisotropy is Everywhere, to See, to Measure, and to Model

    Science.gov (United States)

    Barton, Nick; Quadros, Eda

    2015-07-01

    Anisotropy is everywhere. Isotropy is rare. Round stones are collectors' items, and any almost cubic blocks are photographed, as they are the exception. The reasons for rock masses to frequently exhibit impressive degrees of anisotropy, with properties varying with direction of observation and measurement, are clearly their varied geological origins. Origins may provide distinctive bedding cycles in sedimentary rocks, distinctive flows and flow-tops in basalts, foliation in gneisses, schistosity in schists and cleavage in slates, and faults through all the above. We can add igneous dykes, sills, weathered horizons, and dominant joint sets. Each of the above are rich potential or inevitable sources of velocity, modulus, strength and permeability anisotropy—and inhomogeneity. The historic and present-day stress anisotropy provides a wealth of effects concerning the preferentially oriented jointing, with its reduced roughness and greater continuity. High stress may also have induced oriented micro-cracks. All the above reinforce disbelief in the elastic-isotropic-continuum or intact-medium-based assumptions promoted by commercial software companies and used by so many for modelling rock masses. RQD and Q are frequently anisotropic as well, and Q is anisotropic not just because of RQD. The authors, therefore, question whether the a priori assumption of homogeneous-isotropic-elastic behaviour has any significant place in the scientific practice of realistic rock mechanics.

  11. Effects of spacetime anisotropy on the galaxy rotation curves

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Zhe; Li, Xin [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Center for Science Facilities, Beijing (China); Li, Ming-Hua; Lin, Hai-Nan; Wang, Sai [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2013-05-15

    The observations on galaxy rotation curves show significant discrepancies from the Newtonian theory. This issue could be explained by the effect of the anisotropy of the spacetime. Conversely, the spacetime anisotropy could also be constrained by the galaxy rotation curves. Finsler geometry is a kind of intrinsically anisotropic geometry. In this paper, we study the effect of the spacetime anisotropy at galactic scales in the Finsler spacetime. It is found that the Finslerian model has close relations with the Milgrom's MOND. By performing the best-fit procedure to the galaxy rotation curves, we find that the anisotropic effects of the spacetime become significant when the Newtonian acceleration GM/r{sup 2} is smaller than the critical acceleration a{sub 0}. Interestingly, the critical acceleration a{sub 0}, although varies between different galaxies, is in the order of magnitude cH{sub 0}/2{pi} {proportional_to} 10{sup -10}ms{sup -2}. (orig.)

  12. Induced anisotropy in nanocrystalline FeCuNbSiB

    International Nuclear Information System (INIS)

    The kinetics of induced anisotropy Kind was studied in nanocrystalline Fe73.5Cu1Nb3Si13.5B9, as well as in the amorphous precursor and in amorphous Fe78B13Si9. The nanocrystalline alloy was produced from the precursor by annealing at 813 K for 1 h and possessed an average FeSi grain size of 13 nm, as determined from x-ray diffraction. Annealing in a 0.2 T field at 723--773 K, above Tc of the amorphous phase, resulted in low values of Kind. The data were compared to the micromagnetic theory of Kronmueller to determine activation energy spectra. Kind for the nanocrystalline alloy is well described by this theory, however, with an activation energy spectrum that is much narrower than for the amorphous alloys. The limiting value of the anisotropy is K∞ ∼ 13 J/m3 consistent with that expected for the anisotropy in Fe-20at%.Si with the DO3 structure

  13. Pseudospin anisotropy of trilayer semiconductor quantum Hall ferromagnets

    Science.gov (United States)

    Miravet, D.; Proetto, C. R.

    2016-08-01

    When two Landau levels are brought to a close coincidence between them and with the chemical potential in the integer quantum Hall regime, the two Landau levels can just cross or collapse while the external or pseudospin field that induces the alignment changes. In this work, all possible crossings are analyzed theoretically for the particular case of semiconductor trilayer systems, using a variational Hartree-Fock approximation. The model includes tunneling between neighboring layers, bias, intralayer, and interlayer Coulomb interaction among the electrons. We have found that the general pseudospin anisotropy classification scheme used in bilayers applies also to the trilayer situation, with the simple crossing corresponding to an easy-axis ferromagnetic anisotropy analogy, and the collapse case corresponding to an easy-plane ferromagnetic analogy. An isotropic case is also possible, with the levels just crossing or collapsing depending on the filling factor and the quantum numbers of the two nearby levels. While our results are valid for any integer filling factor ν (=1 ,2 ,3 ,... ), we have analyzed in detail the crossings at ν =3 and 4, and we have given clear predictions that will help in their experimental search. In particular, the present calculations suggest that by increasing the bias, the trilayer system at these two filling factors can be driven from an easy-plane anisotropy regime to an easy-axis regime, and then can be driven back to the easy-plane regime. This kind of reentrant behavior is a unique feature of the trilayers, compared with the bilayers.

  14. Extended analytical approach for electrical anisotropy of geomaterials

    Science.gov (United States)

    Nguyen, S. T.; Vu, M.-H.; Vu, M. N.

    2015-12-01

    We model the anisotropy of the electrical conductivity of geomaterials based on the micro-macro homogenization theory. These materials are considered as random mixtures of solid grains and pores filled by fluids, both are supposed to have ellipsoidal shapes with their long axes oriented in horizontal direction. The electrical behavior of such material is transversely isotropic. The classical Eshelby's concept of a mixture of an ellipsoidal inclusion in an infinite homogeneous matrix, that was developed to study elastic properties of heterogeneous materials, is extended to analyze the conductivity of rocks. A combination of the self-consistent and the differential effective medium techniques allows developing a theoretical formula for the simulation of conductivity of anisotropic heterogeneous materials. For particular isotropic cases, this formula is similar to the classical well-known solutions that are largely used in practice such as Archie's law, Bruggman's theory and Bussian's equation. When applying to geomaterials, the developed theory provides the conductivities in both horizontal and vertical directions. The anisotropy, defined as the ratio between these two conductivities, is a function of the porosity, the shapes and the conductivities of each phase of rocks. This paper, focusing on a purely theoretical approach, shows how the micromechanical parameters affect the macroscopic anisotropy of electrical conductivity and resistivity of anisotropic materials.

  15. The upper mantle anisotropy in Yunnan area, China

    Institute of Scientific and Technical Information of China (English)

    阮爱国; 王椿镛

    2002-01-01

    Shear wave phase SKS of 11 earthquakes, collected from 23 stations of Yunnan Digital Seismic Network, is analyzed by fitting the theoretical transverse component with the observed one for determining the orientation and extent of polarization seismic anisotropy of upper mantle. Shear wave splitting is obviously observed in all stations except Heqing station (HQ). The results show that the polarization of fast split S-wave of upper mantle in Yunnan area is north-northeast in general and the time delay between fast and slow split shear waves is 0.5~2.0 s. It suggests that the influence of faults upon anisotropy analysis could not be neglected in such a geologically complex area. As the transitional zone between Qinghai-Tibetan plateau and the block of southern China, in Yunnan area the orientation of fast shear wave polarization indicating the subduction of Indian plate into Eurasian plate is the fundamental background of earth dynamics. While the southeast or south-southeast movement of Sichuan-Yunnan rhomb block, formed by the uplift of Qinghai-Tibetan plateau, plays an important role in the composition of complicated structural and stress environment of Yunnan area. The divergence between the fast direction and the movement of upper mantle indicates in Yunnan area there exists complex coupling effect between lower velocity layer or asthenosphere and crustal block. The distribution of structure driving force looks like a palm extending to northeast. According to the time delay between fast and slow split shear waves, it is deduced that the thickness of anisotropy layer is 60~225 km with variation range roughly equal to that of 104~260 km of the buried depth of lower velocity layer of the earth in Yunnan area. So it suggests the top of anisotropy zone starts from the bottom of crust or from the lower velocity layer varying with specific locations related to the tremendous variation of the Moho discontinuity in Yunnan area. Furthermore, it is deduced that the

  16. Comparative study of tight-binding and ab initio electronic structure calculations focused on magnetic anisotropy in ordered CoPt alloy

    Czech Academy of Sciences Publication Activity Database

    Zemen, Jan; Mašek, Jan; Kučera, Jan; Mol, J.A.; Motloch, P.; Jungwirth, Tomáš

    2014-01-01

    Roč. 356, Apr (2014), s. 87-94. ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant ostatní: AVČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : magnetic anisotropy * tight-binding model Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.970, year: 2014

  17. Magnetic anisotropy of the Fe sublattice in R.sub.2./sub.Fe.sub.14./sub.Si.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.

    2009-01-01

    Roč. 475, 1-2 (2009), s. 13-15. ISSN 0925-8388 R&D Projects: GA ČR(CZ) GA202/06/0185 Institutional research plan: CEZ:AV0Z10100520 Keywords : rare-earth intermetallics * R 2 Fe 17 * single crystal * ferromagnetism * magnetic anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.135, year: 2009

  18. Magnetization reversal of giant perpendicular magnetic anisotropy at the magnetic-phase transition in FeRh films on MgO

    OpenAIRE

    Odkhuu, Dorj; Park, Noejung

    2015-01-01

    Phenomena originated from spin-orbit interaction, such as magnetic anisotropy (MA), Rashba-type interactions, or topological insulators, have drawn huge attention for its intriguing physics. In particular, the search for a novel antiferromagnetic material, with potentially large perpendicular MA (PMA), has been becoming very intensive for next-generation high density memory applications. Here, we propose that substitutions of transition metals Ru and Ir, neighboring and same group elements in...

  19. Magnetic anisotropy and reduced neodymium magnetic moments in Nd.sub.3./sub.Ru.sub.4./sub.Al.sub.12./sub..

    Czech Academy of Sciences Publication Activity Database

    Gorbunov, Denis; Henriques, Margarida Isabel Sousa; Andreev, Alexander V.; Eigner, Václav; Gukasov, A.; Fabrèges, X.; Skourski, Y.; Petříček, Václav; Wosnitza, J.

    2016-01-01

    Roč. 93, č. 2 (2016), "024407-1"-"024407-11". ISSN 1098-0121 R&D Projects: GA ČR GA16-03593S; GA ČR GA15-12653S EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : rare- earth intermetallics * ferromagnetism * magnetic anisotropy * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  20. Ultra Low Energy Switching of Ferromagnet with Perpendicular Anisotropy on Topological Insulator by Voltage Controlled Magnetic Anisotropy

    Science.gov (United States)

    Ghosh, Bahniman; Pramanik, Tanmoy; Dey, Rik; Roy, Urmimala; Register, Leonard; Banerjee, Sanjay

    2015-03-01

    We propose and demonstrate, through simulation, an ultra low energy memory device on a topological insulator thin film. The device consists of a thin layer of Fe deposited on the surface of a topological insulator, Bi2Se3. The top surface of Fe is covered with MgO so that the ferromagnetic layer has perpendicular anisotropy. Current is passed on the surface of the topological insulator which switches the magnetization of the Fe ferromagnet through strong exchange interaction, between electrons contributing to the surface current on the Bi2Se3 and the d electrons in the ferromagnet, and spin transfer torque due to shunting of current through the ferromagnet. Voltage controlled magnetic anisotropy enables ultra low energy switching. Our micromagnetic simulations, predict switching time of the order of 2.4 ns and switching energy of the order of 0.16 fJ for a ferromagnetic bit with thermal stability of 90 kBT. The proposed structure combines the advantages of both large spin torque from topological insulators and those of perpendicular anisotropy materials. This work is supported by NRI SWAN and NSF NASCENT Center.

  1. Anisotropy in Cosmic-Ray Arrival Directions in the Southern Hemisphere Based on Six Years of Data from the IceCube Detector

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O’Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-08-01

    The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10‑3 up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.

  2. High T physics at STAR

    Indian Academy of Sciences (India)

    Subhasis Chattopadhyay

    2003-05-01

    We discuss the capabilities of STAR in exploring the physics at high T in ultrarelativistic heavy-ion colisions from RHIC at $\\sqrt{S_{NN}}=130$ GeV. Preliminary results show that the spectra of negatively charged particles get suppressed at larger T in comparison to $p\\overline{p}$ data. A strong azimuthal anisotropy observed at large transverse momentum region. A preliminary ratio $\\overline{p}=p$ has been measured by STAR-RICH detector. Some ongoing studies and future plans are discussed.

  3. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles.

    Science.gov (United States)

    Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno

    2016-01-01

    Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize

  4. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles

    Science.gov (United States)

    Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno

    2016-01-01

    Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize

  5. Deviation from quark number scaling of the anisotropy parameter v.sub.2./sub. of pions, kaons, and protons in Au+Au collisions at √s.sub.NN./sub.=200 GeV

    Czech Academy of Sciences Publication Activity Database

    Adare, A.; Afanasiev, S.; Aidala, C.; Mikeš, P.; Růžička, Pavel; Tomášek, Lukáš; Vrba, Václav

    2012-01-01

    Roč. 85, č. 6 (2012), "064914-1"-"064914-16". ISSN 0556-2813 Institutional research plan: CEZ:AV0Z10100502 Keywords : PHENIX * RHIC * nucleus nucleus scattering * gold * K particle identification * momentum dependence anisotropy Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.715, year: 2012 http://arxiv.org/abs/arXiv:1203.2644

  6. Magnetic anisotropy of (U.sub.1-x./sub.Lu.sub.x./sub.).sub.2./sub.Fe.sub.15./sub.Ge.sub.2./sub. solid solutions

    Czech Academy of Sciences Publication Activity Database

    Tomizawa, N.; Homma, Y.; Andreev, Alexander V.; Komatsubara, T.; Shiokawa, Y.

    359-361, - (2005), s. 1027-1029. ISSN 0921-4526 R&D Projects: GA ČR(CZ) GA202/03/0550; GA MŠk(CZ) ME 680 Keywords : rare-earth compounds * uranium intermetallics * R 2 T 17 * ferromagnetism * magnetic anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.796, year: 2005

  7. Physical Abuse

    Science.gov (United States)

    ... Additional Resources Return to: What is Elder Abuse? Physical Abuse Physical abuse is physical force or violence that results in ... may be acquaintances, sons, daughters, grandchildren, or others. Physical abuse that is perpetrated by spouses or intimate partners ...

  8. Working group report: Cosmology and astroparticle physics

    Indian Academy of Sciences (India)

    Raghavan Rangarajan; Ajit Srivastava; A Bandyopadhyay; A Basak; M Bastero-Gil; A Berera; J Bhatt; K Bhattacharya; S Chakraborty; M Das; S Das; K Dutta; D Ghosh; S Goswami; U Gupta; P Jain; Y-Y Keum; E Masso; D Majumdar; A P Mishra; S Mohanty; R Mohapatra; A Nautiyal; T Prokopec; S Rao; D P Roy; N Sahu; A Sarkar; P Saumia; A Sen; A Shivaji

    2011-05-01

    This is the report of the cosmology and astroparticle physics working group at WHEPPXI. We present the discussions carried out during the workshop on selected topics in the above fields. The problems discussed concerned axions, infrared divergences in inflationary theories, supersonic bubbles in a first-order electroweak phase transition, dark matter, MOND, interacting dark energy, composite Higgs models and statistical anisotropy of the Universe.

  9. Time evolution of the anisotropies of the hydrodynamically expanding sQGP

    CERN Document Server

    Bagoly, Attila

    2015-01-01

    In high energy heavy ion collisions of RHIC and LHC, a strongly interacting quark gluon plasma (sQGP) is created. This medium undergoes a hydrodynamic evolution, before it freezes out to form a hadronic matter. The initial state of the sQGP is determined by the initial distribution of the participating nucleons and their interactions. Due to the finite number of nucleons, the initial distribution fluctuates on an event-by-event basis. The transverse plane anisotropy of the initial state can be translated into a series of anisotropy coefficients or eccentricities: second, third, fourth-order anisotropy etc. These anisotropies then evolve in time, and result in measurable momentum-space anisotropies, to be measured with respect to their respective symmetry planes. In this paper we investigate the time evolution of the anisotropies. With a numerical hydrodynamic code, we analyze how the speed of sound and viscosity influence this evolution.

  10. A New Maximum-Likelihood Technique for Reconstructing Cosmic-Ray Anisotropy at All Angular Scales

    CERN Document Server

    Ahlers, Markus; Desiati, Paolo; Díaz-Vélez, Juan Carlos; Fiorino, Daniel W; Westerhoff, Stefan

    2016-01-01

    The arrival directions of TeV-PeV cosmic rays show weak but significant anisotropies with relative intensities at the level of one per mille. Due to the smallness of the anisotropies, quantitative studies require careful disentanglement of detector effects from the observation. We discuss an iterative maximum-likelihood reconstruction that simultaneously fits cosmic ray anisotropies and detector acceptance. The method does not rely on detector simulations and provides an optimal anisotropy reconstruction for ground-based cosmic ray observatories located in the middle latitudes. It is particularly well suited to the recovery of the dipole anisotropy, which is a crucial observable for the study of cosmic ray diffusion in our Galaxy. We also provide general analysis methods for recovering large- and small-scale anisotropies that take into account systematic effects of the observation by ground-based detectors.

  11. Magnetic anisotropy investigations of (Ga,Mn)As with a large epitaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Juszyński, P.; Gryglas-Borysiewicz, M.; Szczytko, J.; Tokarczyk, M.; Kowalski, G. [Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw (Poland); Sadowski, J. [Max-IV Laboratory, Lund University, Lund SE-221 00 (Sweden); Institute of Physics, PAS, Al. Lotników 32/46, 02-668 Warsaw (Poland); Wasik, D. [Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw (Poland)

    2015-12-15

    Magnetic properties of 20 nm thick (Ga,Mn)As layer deposited on (Ga,In)As buffer with very large epitaxial tensile strain are investigated. Ga{sub 1−x}In{sub x}As buffer with x=30% provides a 2% lattice mismatch, which is an important extension of the mismatch range studied so far (up to 0.5%). Evolution of magnetic anisotropy as a function of temperature is determined by magnetotransport measurements. Additionally, results of direct measurements of magnetization are shown. - Highlights: • Magnetic anisotropy parameter in (Ga,Mn)As with a large epitaxial strain is determined. • Extension of a linear magnetic anisotropy dependence on lattice mismatch up to 2% is presented. • A linear dependence of magnetic anisotropy on magnetization is established. • Magnetic anisotropy dependence on temperature is shown. • Electrical transport measurements are successfully applied to study magnetic anisotropy.

  12. Strain-induced magneto-optical anisotropy in epitaxial hcp Co films

    Science.gov (United States)

    Arregi, J. A.; González-Díaz, J. B.; Idigoras, O.; Berger, A.

    2015-11-01

    We investigate the existence and origin of magneto-optical anisotropy in epitaxial hcp Co films. Our results show that a significant magneto-optical anisotropy exists in our samples and, more importantly, they reveal that its amplitude is directly correlated with epitaxial strain. We find a linear coefficient of 16.8 % magneto-optical anisotropy per every 1% epitaxial strain, which is in stark contrast to an isotropic magneto-optical coupling factor Q , a very frequent and common assumption in magneto-optics of metallic thin films and multilayers. In addition, the Co films exhibit a similar strain-induced increase of the magnetocrystalline anisotropy energy, evidencing the fact that both magneto-optical anisotropy and magnetocrystalline anisotropy are dependent on the modification of the spin-orbit coupling introduced by anisotropic lattice distortions.

  13. A New Maximum-likelihood Technique for Reconstructing Cosmic-Ray Anisotropy at All Angular Scales

    Science.gov (United States)

    Ahlers, M.; BenZvi, S. Y.; Desiati, P.; Díaz–Vélez, J. C.; Fiorino, D. W.; Westerhoff, S.

    2016-05-01

    The arrival directions of TeV–PeV cosmic rays show weak but significant anisotropies with relative intensities at the level of one per mille. Due to the smallness of the anisotropies, quantitative studies require careful disentanglement of detector effects from the observation. We discuss an iterative maximum-likelihood reconstruction that simultaneously fits cosmic-ray anisotropies and detector acceptance. The method does not rely on detector simulations and provides an optimal anisotropy reconstruction for ground-based cosmic-ray observatories located in the middle latitudes. It is particularly well suited to the recovery of the dipole anisotropy, which is a crucial observable for the study of cosmic-ray diffusion in our Galaxy. We also provide general analysis methods for recovering large- and small-scale anisotropies that take into account systematic effects of the observation by ground-based detectors.

  14. Analysis of complex anisotropy decays from single-frequency polarized-phasor ellipse plots

    Science.gov (United States)

    Kozer, Noga; Clayton, Andrew H. A.

    2016-06-01

    The anisotropy decay of a fluorescently-labelled macromolecule provides information on the internal and global dynamics of the macromolecule. Weber was a pioneer of fluorescent probes, polarization and polarized phase-modulation methods and revealed the power of combining or comparing these methods to disentangle complex modes of emission depolarization. In this paper we take a similar course and show that when measurements of dynamic depolarization are combined with steady-state anisotropy, complex anisotropy decays can be deduced from measurements at a single modulation frequency. Specifically, a double exponential anisotropy decay can be resolved by combining one of the polarized emission phasors with the steady-state anisotropy. The key is the polarized phasor ellipse plot which provides a convenient visualisation aid and reduces the dimensionality of the minimisation problem from three variables to one variable. We illustrate these concepts with an experimental measurement of the anisotropy decay of a small cytoplasmic fluorescent probe in live cells.

  15. Anisotropy of strength and deformability of fractured rocks

    Directory of Open Access Journals (Sweden)

    Majid Noorian Bidgoli

    2014-04-01

    Full Text Available Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non-regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes containing many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a numerical modeling method. A series of realistic two-dimensional (2D discrete fracture network (DFN models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM, with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and suggestions for future study are also presented.

  16. Angular Anisotropy and Mass Asymmetry of Thorium-232 Fission Fragments

    International Nuclear Information System (INIS)

    A large number of experimental and theoretical papers on the angular distribution of the fission fragments of nuclei indicate that it is satisfactorily described by the parameters of the fissioning nucleus at the saddle point. The problem of the effect of these parameters on the distribution of the fragments according to mass has as yet found no generally accepted solution. It remains unclear to what extent the 'good' quantum numbers characteristic of the nucleus at the saddle point remain equally ''good'' when the nucleus passes from the saddle point to the moment of breakdown. If at the saddle point the nucleus has a set of different configurations, this must be apparent in some way in the distribution of the fragments by mass and in their angular distribution (via the moment of inertia of the nucleus). The paper investigates the angular anisotropy of fragments with different masses in the fission of thorium-232 by fast neutrons. The masses of the fragments were determined by simultaneous recording of the kinetic energy of paired fragments in a double ionization chamber with grids. The direction of flight of the fragments was determined using a mechanical collimator. The neutrons causing fission had an extended spectrum, but the contribution of fissions via the (n, n'f) reaction did not exceed a few per cent. The fragments were sorted out according to energy by a two-dimensional 128 x 128 channel analyser with a memory on ferrite. The dependence of angular anisotropy on the mass of the fragments and on their kinetic energy with fixed mass is discussed. The first dependence makes it possible to judge the degree to which the saddle point affects the distribution of the fragments according to mass, while the second gives information about the degree to which the configuration of the nucleus at the moment of breakdown affects the angular anisotropy of the fragments. (author)

  17. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-04-30

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  18. Measurements of scattering anisotropy in dental tissue and zirconia ceramic

    Science.gov (United States)

    Fernández-Oliveras, Alicia; Pecho, Oscar E.; Rubiño, Manuel; Pérez, María M.

    2012-06-01

    Knowledge of the optical properties of biological structures is useful for clinical applications, especially when dealing with incoming biomaterials engineered to improve the benefits for the patient. One ceramic material currently used in restorative dentistry is yttrium cation-doped tetragonal zirconia polycrystal (3Y-TZP) because of its good mechanical properties. However, its optical properties have not been thoroughly studied. Many methods for the determination of optical parameters from biological media make the assumption that scattered light is isotropically distributed over all angles. Nevertheless, real biological materials may have an angular dependence on light scattering, which may affect the optical behaviour of the materials. Therefore, the recovery of the degree of anisotropy in the scattering angular distribution is important. The phase function that represents the scattering angular distribution is usually characterized by the anisotropy coefficient g, which equals the average cosine of the scattering angle. In this work, we measured angularscattering distributions for two zirconia ceramic samples, pre-sintered and sintered, with similar thicknesses (0.48 mm and 0.50 mm, respectively) and also for a human dentine sample (0.41 mm in thickness). The samples were irradiated with a He-Ne laser beam (λ = 632.8 nm) and the angular-scattering distributions were measured using a rotating goniometer. The g values yielded were: -0.7970 +/- 0.0016 for pre-sintered zirconia, -0.2074 +/- 0.0024 for sintered zirconia and 0.0620 +/- 0.0010 for dentine. The results show that zirconia sintering results in optical behaviour more similar to those of dentine tissue, in terms of scattering anisotropy.

  19. Differential cosmic expansion and the Hubble flow anisotropy

    Science.gov (United States)

    Bolejko, Krzysztof; Nazer, M. Ahsan; Wiltshire, David L.

    2016-06-01

    The Universe on scales 01–100 h‑1Mpc is dominated by a cosmic web of voids, filaments, sheets and knots of galaxy clusters. These structures participate differently in the global expansion of the Universe: from non-expanding clusters to the above average expansion rate of voids. In this paper we characterize Hubble expansion anisotropies in the COMPOSITE sample of 4534 galaxies and clusters. We concentrate on the dipole and quadrupole in the rest frame of the Local Group. These both have statistically significant amplitudes. These anisotropies, and their redshift dependence, cannot be explained solely by a boost of the Local Group in the Friedmann-Lemaitre-Robertson-Walker (FLRW) model which expands isotropically in the rest frame of the cosmic microwave background (CMB) radiation. We simulate the local expansion of the Universe with inhomogeneous Szekeres solutions, which match the standard FLRW model on gtrsim 100 h‑1Mpc scales but exhibit nonkinematic relativistic differential expansion on small scales. We restrict models to be consistent with observed CMB temperature anisotropies, while simultaneously fitting the redshift variation of the Hubble expansion dipole. We include features to account for both the Local Void and the "Great Attractor". While this naturally accounts for the Hubble expansion and CMB dipoles, the simulated quadrupoles are smaller than observed. Further refinement to incorporate additional structures may improve this. This would enable a test of the hypothesis that some large angle CMB anomalies result from failing to treat the relativistic differential expansion of the background geometry; a natural feature of solutions to Einstein's equations not included in the current standard model of cosmology.

  20. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

    OpenAIRE

    Yiwei Liu; Baomin Wang; Qingfeng Zhan; Zhenhua Tang; Huali Yang; Gang Liu; Zhenghu Zuo; Xiaoshan Zhang; Yali Xie; Xiaojian Zhu; Bin Chen; Junling Wang; Run-Wei Li

    2014-01-01

    The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the st...