WorldWideScience

Sample records for anisotropic galactic outflows

  1. FIRE simulations: galactic outflows and their consequences

    Science.gov (United States)

    Keres, Dusan; FIRE team

    2016-06-01

    We study gaseous outflows and their consequences in high-resolution galaxy formation simulations with explicit stellar feedback from the Feedback in Realistic Environments project. Collective, galaxy scale, effect of stellar feedback results in episodic ejections of large amount of gas and heavy elements into the circum-galactic medium. Gas ejection episodes follow strong bursts of star formation. Properties of galactic star formation and ejection episodes depend on galaxy mass and redshift and, together with gas infall and recycling, shape the evolution of the circum-galactic medium and galaxies. As a consequence, our simulated galaxies have masses, star formation histories and heavy element content in good agreement with the observed population of galaxies.

  2. SUPERNOVAE AND AGN DRIVEN GALACTIC OUTFLOWS

    International Nuclear Information System (INIS)

    We present analytical solutions for winds from galaxies with a Navarro-Frank-White (NFW) dark matter halo. We consider winds driven by energy and mass injection from multiple supernovae (SNe), as well as momentum injection due to radiation from a central black hole. We find that the wind dynamics depends on three velocity scales: (1) v*∼( E-dot / 2 M-dot )1/2 describes the effect of starburst activity, with E-dot and M-dot as energy and mass injection rate in a central region of radius R; (2) v . ∼ (GM ./2R)1/2 for the effect of a central black hole of mass M . on gas at distance R; and (3) vs=(GMh / 2Crs)1/2, which is closely related to the circular speed (vc ) for an NFW halo, where rs is the halo scale radius and C is a function of the halo concentration parameter. Our generalized formalism, in which we treat both energy and momentum injection from starbursts and radiation from the central active galactic nucleus (AGN), allows us to estimate the wind terminal speed to be (4v 2* + 6(Γ – 1)v .2 – 4v 2s)1/2, where Γ is the ratio of force due to radiation pressure to gravity of the central black hole. Our dynamical model also predicts the following: (1) winds from quiescent star-forming galaxies cannot escape from 1011.5 M ☉ ≤ Mh ≤ 1012.5 M ☉ galaxies; (2) circumgalactic gas at large distances from galaxies should be present for galaxies in this mass range; (3) for an escaping wind, the wind speed in low- to intermediate-mass galaxies is ∼400-1000 km s–1, consistent with observed X-ray temperatures; and (4) winds from massive galaxies with AGNs at Eddington limit have speeds ∼> 1000 km s–1. We also find that the ratio [2v 2* – (1 – Γ)v .2]/v 2c dictates the amount of gas lost through winds. Used in conjunction with an appropriate relation between M . and Mh and an appropriate opacity of dust grains in infrared (K band), this ratio has the attractive property of being minimum at a certain halo mass scale (Mh ∼ 1012-1012.5 M ☉) that

  3. Ultra Fast Outflows: Galaxy-Scale Active Galactic Nucleus Feedback

    OpenAIRE

    Wagner, A. Y.; Umemura, M; Bicknell, G. V.

    2012-01-01

    We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous hot hydrostatic medium. The outflow floods through the inter-cloud channels, sweeps up the hot ISM, and ablates and disperses the dense cl...

  4. Suppression of galactic outflows by cosmological infall and circumgalactic medium

    Science.gov (United States)

    Singh, Priyanka; Rana, Sandeep; Bagla, Jasjeet S.; Nath, Biman B.

    2016-06-01

    We investigate the relative importance of two galactic outflow suppression mechanisms: (a) cosmological infall of the intergalactic gas on to the galaxy, and (b) the existence of a hot circumgalactic medium (CGM). Considering only radial motion, the infall reduces the speed of outflowing gas and even halts the outflow, depending on the mass and redshift of the galaxy. For star-forming galaxies, there exists an upper mass limit beyond which outflows are suppressed by the gravitational field of the galaxy. We find that infall can reduce this upper mass limit approximately by a factor of 2 (independent of the redshift). Massive galaxies (≳1012 M⊙) host large reservoir of hot, diffuse CGM around the central part of the galaxy. The CGM acts as a barrier between the infalling and outflowing gas and provides an additional source of outflow suppression. We find that at low redshifts (z ≲ 3.5), the CGM is more effective than the infall in suppressing the outflows. Together, these two processes give a mass range in which galaxies are unable to have effective outflows. We also discuss the impact of outflow suppression on the enrichment history of the galaxy and its environment.

  5. Scaling Relations Between Warm Galactic Outflows and Their Host Galaxies

    CERN Document Server

    Chisholm, John; Leitherer, Claus; Chen, Yanmei; Wofford, Aida; Lundgren, Britt

    2014-01-01

    We report on a sample of 51 nearby, star-forming galaxies observed with the Cosmic Origin Spectrograph on the Hubble Space Telescope. We calculate Si II kinematics and densities arising from warm gas entrained in galactic outflows. We use multi-wavelength ancillary data to estimate stellar masses (M$_\\ast$), star-formation rates (SFR), and morphologies. We derive significant correlations between outflow velocity and SFR$^{\\sim 0.1}$, M$_\\ast^{\\sim 0.1}$ and v$_\\text{circ}^{\\sim 1/2}$. Some mergers drive outflows faster than these relations prescribe, launching the outflow faster than the escape velocity. Calculations of the mass outflow rate reveal strong scaling with SFR$^{\\sim 1/2}$ and M$_\\ast^{\\sim 1/2}$. Additionally, mass-loading efficiency factors (mass outflow rate divided by SFR) scale approximately as M$_\\ast^{-1/2}$. Both the outflow velocity and mass-loading scaling suggest that these outflows are powered by supernovae, with only 0.7% of the total supernovae energy converted into the kinetic energ...

  6. The role of cosmic ray pressure in accelerating galactic outflows

    CERN Document Server

    Simpson, Christine M; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C O; Clark, Paul C; Smith, Rowan J

    2016-01-01

    We study the formation of galactic outflows from supernova explosions (SNe) with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SNe placement and energy feedback, including cosmic rays (CR), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows...

  7. Suppression of galactic outflows by cosmological infall and circumgalactic medium

    CERN Document Server

    Singh, Priyanka; Bagla, Jasjeet S; Nath, Biman B

    2016-01-01

    We investigate the relative importance of two galactic outflow suppression mechanisms : a) Cosmological infall of the intergalactic gas onto the galaxy, and b) the existence of a hot circumgalactic medium (CGM). Considering only radial motion, the infall reduces the speed of outflowing gas and even halts the outflow, depending on the mass and redshift of the galaxy. For star forming galaxies there exists an upper mass limit beyond which outflows are suppressed by the gravitational field of the galaxy. We find that infall can reduce this upper mass limit approximately by a factor of two (independent of the redshift). Massive galaxies ($\\gtrsim 10^{12} M_{\\odot}$) host large reservoir of hot, diffuse CGM around the central part of the galaxy. The CGM acts as a barrier between the infalling and outflowing gas and provides an additional source of outflow suppression. We find that at low redshifts ($z\\lesssim3.5$), the CGM is more effective than the infall in suppressing the outflows. Together, these two processes...

  8. The role of cosmic ray pressure in accelerating galactic outflows

    OpenAIRE

    Simpson, Christine M.; Pakmor, Ruediger; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.

    2016-01-01

    We study the formation of galactic outflows from supernova explosions (SNe) with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SNe placement and energy feedback, including cosmic rays (CR), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with ...

  9. An Analytic Model of Galactic Winds and Mass Outflows

    Institute of Scientific and Technical Information of China (English)

    Cheng-Gang Shu; Hou-Jun Mo; Shu-De Mao

    2005-01-01

    Galactic winds and mass outflows are observed both in nearby starburst galaxies and in high-redshift star-forming galaxies. We develop a simple analytic model to understand the observed superwind phenomenon with a discussion of the model uncertainties. Our model is built upon the model of McKee & Ostriker for the interstellar medium. It allows one to predict how properties of a superwind,such as wind velocity and mass outflow rate, are related to properties of its star forming host galaxy, such as size, gas density and star formation rate. The model predicts a threshold of star formation rate density for the generation of observable galactic winds. Galaxies with more concentrated star formation activities produce superwinds with higher velocities. The predicted mass outflow rates are compara ble to (or slightly larger than) the corresponding star formation rates. We apply our model to both local starburst galaxies and high-redshift Lyman break galaxies, and find its predictions to be in good agreement with current observations. Our model is simple and so can be easily incorporated into numerical simulations and semi-analytical models of galaxy formation.

  10. An analytic model for the galactic winds and mass outflows

    CERN Document Server

    Shu, C; Mao, S; Shu, Chenggang; Mao, Shude

    2003-01-01

    Galactic winds and mass outflows are observed both in nearby starburst galaxies and in high-redshift star-forming galaxies. In this paper we develop a simple analytic model to understand the observed superwind phenomenon. Our model is built upon the model of McKee & Ostriker (1977) for the interstellar medium. It allows one to predict how properties of a superwind, such as wind velocity and mass outflow rate, are related to properties of its star-forming host galaxy, such as size, gas density and star formation rate. The model predicts a threshold of star formation rate density for the generation of observable galactic winds. Galaxies with more concentrated star formation produce superwinds with higher velocities. The predicted mass outflow rates are comparable to (or slightly larger than) the corresponding star formation rates. We apply our model to both local starburst galaxies and high-redshift Lyman break galaxies, and find its predictions to be in good agreement with current observations. Our model i...

  11. Galactic winds driven by isotropic and anisotropic cosmic ray diffusion in disk galaxies

    CERN Document Server

    Pakmor, Ruediger; Simpson, Christine M; Springel, Volker

    2016-01-01

    The physics of cosmic rays (CR) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high resolution simulations of isolated disk galaxies in a $10^{11}\\rm{M_\\odot}$ halo with the moving mesh code {\\sc Arepo} that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. We show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in th...

  12. Galactic Winds Driven by Isotropic and Anisotropic Cosmic-Ray Diffusion in Disk Galaxies

    Science.gov (United States)

    Pakmor, R.; Pfrommer, C.; Simpson, C. M.; Springel, V.

    2016-06-01

    The physics of cosmic rays (CRs) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high-resolution simulations of isolated disk galaxies in a 1011 M ⊙ halo with the moving-mesh code Arepo that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. We show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in the simulation with anisotropic diffusion, most CRs remain in the disk once the magnetic field becomes dominated by its azimuthal component, which occurs after ∼300 Myr. This has important consequences for the gas dynamics in the disk. In particular, we show that isotropic diffusion strongly suppresses the amplification of the magnetic field in the disk compared to anisotropic or no diffusion models. We therefore conclude that reliable simulations which include CR transport inevitably need to account for anisotropic diffusion.

  13. Powerful Outflows and Feedback from Active Galactic Nuclei

    CERN Document Server

    King, Andrew

    2015-01-01

    Active Galactic Nuclei (AGN) represent the growth phases of the supermassive black holes in the center of almost every galaxy. Powerful, highly ionized winds, with velocities $\\sim 0.1- 0.2c$ are a common feature in X--ray spectra of luminous AGN, offering a plausible physical origin for the well known connections between the hole and properties of its host. Observability constraints suggest that the winds must be episodic, and detectable only for a few percent of their lifetimes. The most powerful wind feedback, establishing the $M -\\sigma$ relation, is probably not directly observable at all. The $M - \\sigma$ relation signals a global change in the nature of AGN feedback. At black hole masses below $M-\\sigma$ feedback is confined to the immediate vicinity of the hole. At the $M-\\sigma$ mass it becomes much more energetic and widespread, and can drive away much of the bulge gas as a fast molecular outflow.

  14. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    Science.gov (United States)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  15. Ultra Fast Outflows: Galaxy-Scale Active Galactic Nucleus Feedback

    CERN Document Server

    Wagner, A Y; Bicknell, G V

    2012-01-01

    We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous hot hydrostatic medium. The outflow floods through the inter-cloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically, rather than in a disc. In the latter case the turbulent backflow...

  16. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A. Y.; Umemura, M. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  17. Stellar Feedback: A Multiphase Interstellar Medium and Galactic Outflows

    Science.gov (United States)

    Ceverino, D.

    2009-12-01

    I am presenting new results in our ongoing effort of improving the theory of galaxy formation in a ΛCDM Universe. I pay a special attention to the role of supernova explosions and stellar winds in the galaxy assembly. These processes happen at very small scales, they affect the interstellar medium (ISM) at galactic scales and regulate the formation of a whole galaxy. Previous attempts of mimicking these effects in simulations of galaxy formation use very simplified assumptions. I develop a much more realistic prescription for modeling the feedback, which minimizes any ad hoc sub-grid physics. I start with developing high resolution models of the ISM and formulate the conditions required for its realistic functionality: formation of multi-phase medium with hot chimneys, super-bubbles, cold molecular phase, and very slow consumption of gas. Once these effects are resolved in cosmological simulations, galaxy formation proceeds more realistically. For example, I do not have the overcooling problem. The angular momentum problem (resulting in a too massive bulge) is also reduced substantially: the rotation curves are nearly flat. The galaxy formation also becomes more violent. At high redshift, I routinely find substantial gas outflows from star-forming galaxies. I describe several scaling relations between outflow properties and galaxy properties: maximum velocity, mass and kinetic energy versus stellar mass and SFR. The simulations reproduce this picture only if the resolution is very high: better than 70 pc.

  18. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    International Nuclear Information System (INIS)

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  19. Ultrafast outflows in radio-loud active galactic nuclei

    Science.gov (United States)

    Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.

    2014-09-01

    Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.

  20. Radiation-driven Outflows from and Radiative Support in Dusty Tori of Active Galactic Nuclei

    Science.gov (United States)

    Chan, Chi-Ho; Krolik, Julian H.

    2016-07-01

    Substantial evidence points to dusty, geometrically thick tori obscuring the central engines of active galactic nuclei (AGNs), but so far no mechanism satisfactorily explains why cool dust in the torus remains in a puffy geometry. Near-Eddington infrared (IR) and ultraviolet (UV) luminosities coupled with high dust opacities at these frequencies suggest that radiation pressure on dust can play a significant role in shaping the torus. To explore the possible effects of radiation pressure, we perform three-dimensional radiative hydrodynamics simulations of an initially smooth torus. Our code solves the hydrodynamics equations, the time-dependent multi–angle group IR radiative transfer (RT) equation, and the time-independent UV RT equation. We find a highly dynamic situation. IR radiation is anisotropic, leaving primarily through the central hole. The torus inner surface exhibits a break in axisymmetry under the influence of radiation and differential rotation; clumping follows. In addition, UV radiation pressure on dust launches a strong wind along the inner surface; when scaled to realistic AGN parameters, this outflow travels at ˜ 5000 {(M/{10}7{M}ȯ )}1/4 {[{L}{UV}/(0.1{L}{{E}})]}1/4 {km} {{{s}}}-1 and carries ˜ 0.1 {(M/{10}7{M}ȯ )}3/4 {[{L}{UV}/(0.1{L}{{E}})]}3/4 M ⊙ yr‑1, where M, {L}{UV}, and {L}{{E}} are the mass, UV luminosity, and Eddington luminosity of the central object respectively.

  1. A Robust Measurement of the Mass Outflow Rate of the Galactic Outflow from NGC 6090

    Science.gov (United States)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei

    2016-08-01

    To evaluate the impact of stellar feedback, it is critical to estimate the mass outflow rates of galaxies. Past estimates have been plagued by uncertain assumptions about the outflow geometry, metallicity, and ionization fraction. Here we use Hubble Space Telescope ultraviolet spectroscopic observations of the nearby starburst NGC 6090 to demonstrate that many of these quantities can be constrained by the data. We use the Si IV absorption lines to calculate the scaling of velocity (v), covering fraction (Cf), and density with distance from the starburst (r), assuming the Sobolev optical depth and a velocity law of the form: v~∝(1 - Ri/r)β (where Ri is the inner outflow radius). We find that the velocity (β=0.43) is consistent with an outflow driven by an r-2 force with the outflow radially accelerated, while the scaling of the covering fraction (Cf∝r-0.82) suggests that cool clouds in the outflow are in pressure equilibrium with an adiabatically expanding medium. We use the column densities of four weak metal lines and CLOUDY photoionization models to determine the outflow metallicity, the ionization correction, and the initial density of the outflow. Combining these values with the profile fitting, we find Ri = 63 pc, with most of the mass within 300 pc of the starburst. Finally, we find that the maximum mass outflow rate is 2.3 M⊙ yr-1 and the mass loading factor (outflow divided by the star formation rate) is 0.09, a factor of 10 lower than the value calculated using common assumptions for the geometry, metallicity and ionization structure of the outflow.

  2. Anisotropic Models for Globular Clusters, Galactic Bulges and Dark Halos

    CERN Document Server

    Nguyen, P H

    2013-01-01

    Spherical systems with a polytropic equation of state are of great interest in astrophysics. They are widely used to describe neutron stars, red giants, white dwarfs, brown dwarfs, main sequence stars, galactic halos and globular clusters of diverse sizes. In this paper we construct analytically a family of self-gravitating spherical models in the post-Newtonian approximation of general relativity. These models present interesting cusps in their density profiles which are appropriate for the modeling of galaxies and dark matter halos. The systems described here are anisotropic in the sense that their equiprobability surfaces in velocity space are non-spherical, leading to an overabundance of radial or circular orbits, depending on the parameters of the model in consideration. Among the family, we find the post-Newtonian generalization of the Plummer and Hernquist models. A close inspection of their equation of state reveals that these solutions interpolate smoothly between a polytropic sphere in the asymptoti...

  3. A Robust Measurement of the Mass Outflow Rate of the Galactic Outflow from NGC 6090

    CERN Document Server

    Chisholm, John; Leitherer, Claus; Chen, Yanmei

    2016-01-01

    To evaluate the impact of stellar feedback, it is critical to estimate the mass outflow rates of galaxies. Past estimates have been plagued by uncertain assumptions about the outflow geometry, metallicity, and ionization fraction. Here we use Hubble Space Telescope ultraviolet spectroscopic observations of the nearby starburst NGC 6090 to demonstrate that many of these quantities can be constrained by the data. We use the Si~{\\sc IV} absorption lines to calculate the scaling of velocity (v), covering fraction (C$_f$), and density with distance from the starburst (r), assuming the Sobolev optical depth and a velocity law of the form: $v \\propto(1 -R_i/r )^\\beta$ (were R$_i$ is the inner outflow radius). We find that the velocity ($\\beta$=0.43) is consistent with an outflow driven by an r$^{-2}$ force, while the scaling of the covering fraction ($C_f \\propto r^{-0.82}$) suggests that cool clouds in the outflow are in pressure equilibrium with an adiabatically expanding medium. We use the column densities of fou...

  4. Galactic outflow and diffuse gas properties at z>=1 using different baryonic feedback models

    CERN Document Server

    Barai, Paramita; Murante, Giuseppe; Ragagnin, Antonio; Viel, Matteo

    2014-01-01

    We measure and quantify properties of galactic outflows and diffuse gas at $z \\geq 1$ in cosmological hydrodynamical simulations. Our novel sub-resolution model, MUPPI, implements supernova feedback using fully local gas properties, where the wind velocity and mass loading are not given as input. We find the following trends at $z = 2$ by analysing central galaxies having a stellar mass higher than $10^{9} M_{\\odot}$. The outflow velocity and mass outflow rate ($\\dot{M}_{\\rm out}$) exhibit positive correlations with galaxy mass and with the star formation rate (SFR). However, most of the relations present a large scatter. The outflow mass loading factor ($\\eta$) is between $0.2 - 10$. The comparison Effective model generates a constant outflow velocity, and a negative correlation of $\\eta$ with halo mass. The number fraction of galaxies where outflow is detected decreases at lower redshifts, but remains more than $80 \\%$ over $z = 1 - 5$. High SF activity at $z \\sim 2 - 4$ drives strong outflows, causing the ...

  5. The Role of Cosmic-Ray Pressure in Accelerating Galactic Outflows

    Science.gov (United States)

    Simpson, Christine M.; Pakmor, Rüdiger; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.

    2016-08-01

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.

  6. Highly ionised plasma in the Large Magellanic Cloud: Evidence for outflows and a possible galactic wind

    OpenAIRE

    Lehner, N.; Howk, J. C.

    2007-01-01

    Based on an analysis of the interstellar highly ionised species C IV, Si IV, N V, and O VI observed in the FUSE and HST/STIS E140M spectra of four hot stars in the Large Magellanic Cloud (LMC), we find evidence for a hot LMC halo fed by energetic outflows from the LMC disk and even possibly an LMC galactic wind. Signatures for such outflows are the intermediate and high-velocity components (v_LSR>100 km/s) relative to the LMC disk observed in the high- and low-ion absorption profiles. The ste...

  7. Stellar Populations And Galactic Outflows At z ˜ 3

    Science.gov (United States)

    McLinden, Emily; Rhoads, J. E.; Malhotra, S.; Finkelstein, S. L.; Hibon, P.; Richardson, M. L. A.

    2012-01-01

    We have measured a velocity offset between the Lyman-α emission line and the [OIII] nebular emission line in three spectroscopically confirmed z 3.1 Lyman-α emitting galaxies (LAEs). Such velocity offsets indicate the presence of powerful outflows in these galaxies. We made these measurements by combining near-infrared spectroscopy of the [OIII] line (from LBT/LUCIFER) with optical spectroscopy of the Lyman-α line (from MMT/Hectospec). We contend that tracing the kinematics of these galaxies is crucial for understanding how the prominent Ly-α emission from these galaxies is produced and how it escapes. LAEs are an exciting tool for studying the early universe, as Lyman-α emission is a prominent sign of young star forming galaxies at high redshift. It can be used to identify galaxy samples with characteristic continuum luminosities and stellar masses well below those typically obtained from Lyman break selection or other high-redshift galaxy search methods. To further understand what these young, low-mass objects tell us about galaxy formation, assembly, and evolution we have used our NIR spectroscopic data to demonstrate how the [OIII] emission line in the Ks filter alters SED fitting results of our z 3.1 LAEs. This information allows us to produce more accurate SED fits of those LAEs with NIR data, and predict [OIII] line fluxes in those LAEs that have yet to be observed in the NIR. Our SED fitting sample of 30 confirmed z 3.1 LAEs is one of the largest produced to date and provides a powerful look at accurate ages, masses, metallicities, dust characteristics and star formation histories of these early galaxies.

  8. Time-dependent galactic winds I. Structure and evolution of galactic outflows accompanied by cosmic ray acceleration

    CERN Document Server

    Dorfi, E A; 10.1051/0004-6361/201118082

    2013-01-01

    Cosmic rays are transported out of the galaxy by diffusion and advection due to streaming along magnetic field lines and resonant scattering off self-excited MHD waves. Thus momentum is transferred to the plasma via the frozen-in waves as a mediator assisting the thermal pressure in driving a galactic wind. The bulk of the Galactic CRs are accelerated by shock waves generated in SNRs, a significant fraction of which occur in OB associations on a timescale of several $10^7$ years. We examine the effect of changing boundary conditions at the base of the galactic wind due to sequential SN explosions on the outflow. Thus pressure waves will steepen into shock waves leading to in situ post-acceleration of GCRs. We performed simulations of galactic winds in flux tube geometry appropriate for disk galaxies, describing the CR diffusive-advective transport in a hydrodynamical fashion along with the energy exchange with self-generated MHD waves. Our time-dependent CR hydrodynamic simulations confirm the existence of ti...

  9. Can galactic outflows explain the properties of Ly-alpha emitters?

    CERN Document Server

    Orsi, Alvaro; Baugh, Carlton M

    2011-01-01

    We study the properties of Ly-alpha emitters in a cosmological framework by computing the escape of Ly-alpha photons through galactic outflows. We combine the GALFORM semi-analytical model of galaxy formation with a Monte Carlo Ly-alpha radiative transfer code. The properties of Ly-alpha emitters at 0outflow geometries: a Shell of neutral gas and a Wind ejecting material, both expanding at constant velocity. We characterise the differences in the Ly-alpha line profiles predicted by the two outflow geometries in terms of their width, asymmetry and shift from the line centre for a set of outflows with different hydrogen column densities, expansion velocities and metallicities. In general, the Ly-alpha line profile of the Shell geometry is broader and more asymmetric, and the Ly-alpha escape fraction is lower than with the Wind geometry for the same set of parameters. In order to implement the outflow geometries in the semi-analytical model GALFORM, a number of free parameters ...

  10. Galactic Outflows and the pollution of the Galactic Environment by Supernovae

    CERN Document Server

    Pino, E M de Gouveia Dal; Ercole, A D; Brighenti, F; Raga, A

    2008-01-01

    We here explore the effects of the SN explosions into the environment of star-forming galaxies like the Milky Way. Successive randomly distributed and clustered SNe explosions cause the formation of hot superbubbles that drive either fountains or galactic winds above the galactic disk, depending on the amount and concentration of energy that is injected by the SNe. In a galactic fountain, the ejected gas is re-captured by the gravitational potential and falls back onto the disk. From 3D nonequilibrium radiative cooling hydrodynamical simulations of these fountains, we find that they may reach altitudes up to about 5 kpc in the halo and thus allow for the formation of the so called intermediate-velocity-clouds (IVCs) which are often observed in the halos of disk galaxies. The high-velocity-clouds that are also observed but at higher altitudes (of up to 12 kpc) require another mechanism to explain their production. We argue that they could be formed either by the capture of gas from the intergalactic medium and...

  11. Fueling active galactic nuclei. II. Spatially resolved molecular inflows and outflows

    Energy Technology Data Exchange (ETDEWEB)

    Davies, R. I.; Erwin, P.; Burtscher, L.; Lin, M.; Orban de Xivry, G.; Rosario, D. J.; Schnorr-Müller, A. [Max-Planck-Institute für Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Maciejewski, W. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park, 146 Brownlow Hill, L3 5RF (United Kingdom); Hicks, E. K. S. [Astronomy Department, University of Alaska, Anchorage, Alaska 99508 (United States); Emsellem, E. [European Southern Observatory, Karl-Schwarzschild Str. 1, D-85748 Garching (Germany); Dumas, G. [Institut de Radio Astronomie Millimétrique (IRAM), 300 Rue de la Piscine, Domaine Universitaire, F-38406 Saint Martin d' Heres (France); Malkan, M. A. [Astronomy Division, University of California, Los Angeles, CA 90095-1562 (United States); Müller-Sánchez, F. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389 (United States); Tran, A. [Department of Astronomy, University of Washington Seattle, WA 98195 (United States)

    2014-09-10

    We analyze the two-dimensional distribution and kinematics of the stars as well as molecular and ionized gas in the central few hundred parsecs of five active and five matched inactive galaxies. The equivalent widths of the Brγ line indicate that there is no ongoing star formation in their nuclei, although recent (terminated) starbursts are possible in the active galaxies. The stellar velocity fields show no signs of non-circular motions, while the 1-0 S(1) H{sub 2} kinematics exhibit significant deviations from simple circular rotation. In the active galaxies the H{sub 2} kinematics reveal inflow and outflow superimposed on disk rotation. Steady-state circumnuclear inflow is seen in three active galactic nuclei (AGNs), and hydrodynamical models indicate it can be driven by a large-scale bar. In three of the five AGNs, molecular outflows are spatially resolved. The outflows are oriented such that they intersect, or have an edge close to, the disk, which may be the source of molecular gas in the outflow. The relatively low speeds imply the gas will fall back onto the disk, and with moderate outflow rates, they will have only a local impact on the host galaxy. H{sub 2} was detected in two inactive galaxies. These exhibit chaotic circumnuclear dust morphologies and have molecular structures that are counter-rotating with respect to the main gas component, which could lead to gas inflow in the near future. In our sample, all four galaxies with chaotic dust morphology in the circumnuclear region exist in moderately dense groups with 10-15 members where accretion of stripped gas can easily occur.

  12. Velocities of warm galactic outflows from synthetic Hα observations of star-forming galaxies

    Science.gov (United States)

    Ceverino, Daniel; Arribas, Santiago; Colina, Luis; Rodríguez Del Pino, Bruno; Dekel, Avishai; Primack, Joel

    2016-08-01

    The velocity structure imprinted in the H{\\alpha} emission line profiles contains valuable information about galactic outflows. Using a set of high-resolution zoom-in cosmological simulations of galaxies at z=2, we generate H{\\alpha} emission line profiles, taking into account the temperature-dependent H{\\alpha} emissivity, as well as dust extinction. The H{\\alpha} line can be described as a sum of two gaussians, as typically done with observations. In general, its properties are in good agreement with those observed in local isolated galaxies with similar masses and star formation rates, assuming a spatially constant clumping factor of c=24. Blueshifted outflows are very common in the sample. They extend several kpc above the galaxy discs. They are also spread over the full extent of the discs. However, at small radii, the material with high velocities tends to remain confined within a thick disc, as part of galactic fountains or a turbulent medium, most probably due to the deeper gravitational potential at the galaxy centre.

  13. FEEDBACK FROM MASS OUTFLOWS IN NEARBY ACTIVE GALACTIC NUCLEI. I. ULTRAVIOLET AND X-RAY ABSORBERS

    International Nuclear Information System (INIS)

    We present an investigation into the impact of feedback from outflowing UV and X-ray absorbers in nearby (z out) and kinetic luminosity (LKE) for each AGN, summed over all of its absorbers. These calculations make use of values (or limits) for the radial locations of the absorbers determined from variability, excited-state absorption, and other considerations. From a sample of 10 Seyfert 1 galaxies with detailed photoionization models for their absorbers, we find that 7 have sufficient constraints on the absorber locations to determine M-dotout and LKE. For the low-luminosity AGN NGC 4395, these values are low, although we do not have sufficient constraints on the X-ray absorbers to make definitive conclusions. At least five of the six Seyfert 1s with moderate bolometric luminosities (Lbol = 1043 – 1045 erg s–1) have mass outflow rates that are 10-1000 times the mass accretion rates needed to generate their observed luminosities, indicating that most of the mass outflow originates from outside the inner accretion disk. Three of these (NGC 4051, NGC 3516, and NGC 3783) have LKE in the range 0.5%-5% Lbol, which is the range typically required by feedback models for efficient self-regulation of black hole and galactic bulge growth. At least two of the other three (NGC 5548, NGC 4151, and NGC 7469) have LKE ∼> 0.1%Lbol, although these values may increase if radial locations can be determined for more of the absorbers. We conclude that the outflowing UV and X-ray absorbers in moderate-luminosity AGNs have the potential to deliver significant feedback to their environments.

  14. NIHAO VIII: Circum-galactic medium and outflows - The puzzles of HI and OVI gas distributions

    CERN Document Server

    Gutcke, Thales A; Macciò, Andrea V; Wang, Liang; Dutton, Aaron A

    2016-01-01

    We study the hot and cold circum-galactic medium (CGM) of galaxies of the cosmological, hydrodynamical simulation suite NIHAO. NIHAO allows a study of how the z = 0 CGM varies across 5 orders of magnitude of stellar mass using OVI and HI as proxies for hot and cold gas. The cool Hi covering fraction and column density profiles match observations well, particularly in the inner CGM. OVI shows increasing column densities with mass, a trend seemingly echoed in the observations. As in multiple previous simulations, the OVI column densities in simulations are lower than observed and optically thick HI does not extend as far out as in observations. We make observable predictions of the bipolarity of outflows and their effect on the general shape of the CGM. Bipolar outflows can be seen out to around 40 kpc, but outside that radius, the CGM is too well mixed to detect an elongated shape. The simulated CGM is remarkably spherical even in low mass simulations. The chemical enrichment of both halo and disc gas follow e...

  15. A Multiwavelength View of a Mass Outflow from the Galactic Center

    CERN Document Server

    Law, C J

    2009-01-01

    The Galactic center (GC) lobe is a degree-tall shell of gas that spans the central degree of our Galaxy. It has been cited as evidence for a mass outflow from our GC region, which has inspired diverse models for its origin. However, most work has focused on the morphology of the GC lobe, which has made it difficult to draw strong conclusions about its nature. Here, I present a coherent, multiwavelength analysis of new and archival observations of the GC lobe. Radio continuum emission shows that the GC lobe has a magnetized layer with a diameter of 110 pc and an equipartition field strength ranging from 40 to 100 $\\mu$G. Recombination line emission traces an ionized shell nested within the radio continuum with diameter of 80 pc and height 165 pc. Mid-infrared maps at 8 and 15 $\\mu$m show that the GC lobe has a third layer of warm dust and PAH-emission that surrounds the radio continuum shell with a diameter of 130 pc. Assuming adiabatic expansion of the gas in the GC lobe, its formation required an energy inpu...

  16. Stochastic non-circular motion and outflows driven by magnetic activity in the Galactic bulge region

    Science.gov (United States)

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-12-01

    By performing a global magnetohydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches ≳0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. This is a natural extension into the central few 100 pc of the magnetic activity, which is observed as molecular loops at radii from a few 100 pc to 1 kpc. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which we discuss from a viewpoint of the outflow from the bulge.

  17. ON THE DIVERSITY AND COMPLEXITY OF ABSORPTION LINE PROFILES PRODUCED BY OUTFLOWS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Understanding the origin of active galactic nucleus (AGN) absorption line profiles and their diversity could help to explain the physical structure of the accretion flow, and also to assess the impact of accretion on the evolution of the AGN host galaxies. Here, we present our first attempt to systematically address the issue of the origin of the complexities observed in absorption profiles. Using a simple method, we compute absorption line profiles against a continuum point source for several simulations of accretion disk winds. We investigate the geometrical, ionization, and dynamical effects on the absorption line shapes. We find that significant complexity and diversity of the absorption line profile shapes can be produced by the non-monotonic distribution of the wind velocity, density, and ionization state. Non-monotonic distributions of such quantities are present even in steady-state, smooth disk winds, and naturally lead to the formation of multiple and detached absorption troughs. These results demonstrate that the part of a wind where an absorption line is formed is not representative of the entire wind. Thus, the information contained in the absorption line is incomplete if not even insufficient to well estimate gross properties of the wind such as the total mass and energy fluxes. In addition, the highly dynamical nature of certain portions of disk winds can have important effects on the estimates of the wind properties. For example, the mass outflow rates can be off by up to two orders of magnitude with respect to estimates based on a spherically symmetric, homogeneous, constant velocity wind.

  18. Detection of a high brightness temperature radio core in the active-galactic-nucleus-driven molecular outflow candidate NGC 1266

    Energy Technology Data Exchange (ETDEWEB)

    Nyland, Kristina; Young, Lisa M. [Physics Department, New Mexico Tech, Socorro, NM 87801 (United States); Alatalo, Katherine [Department of Astronomy, Hearst Field Annex, University of California-Berkeley, CA 94720 (United States); Wrobel, J. M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Morganti, Raffaella [Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Davis, Timothy A.; De Zeeuw, P. T. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Deustua, Susana [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bureau, Martin, E-mail: knyland@nmt.edu [Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-12-20

    We present new high spatial resolution Karl G. Jansky Very Large Array (VLA) H I absorption and Very Long Baseline Array (VLBA) continuum observations of the active-galactic-nucleus-(AGN-)driven molecular outflow candidate NGC 1266. Although other well-known systems with molecular outflows may be driven by star formation (SF) in a central molecular disk, the molecular mass outflow rate of 13 M {sub ☉} yr{sup –1} in NGC 1266 reported by Alatalo et al. exceeds SF rate estimates from a variety of tracers. This suggests that an additional energy source, such as an AGN, may play a significant role in powering the outflow. Our high spatial resolution H I absorption data reveal compact absorption against the radio continuum core co-located with the putative AGN, and the presence of a blueshifted spectral component re-affirms that gas is indeed flowing out of the system. Our VLBA observations at 1.65 GHz reveal one continuum source within the densest portion of the molecular gas, with a diameter d < 8 mas (1.2 pc), a radio power P {sub rad} = 1.48 × 10{sup 20} W Hz{sup –1}, and a brightness temperature T {sub b} > 1.5 × 10{sup 7} K that is most consistent with an AGN origin. The radio continuum energetics implied by the compact VLBA source, as well as archival VLA continuum observations at lower spatial resolution, further support the possibility that the AGN in NGC 1266 could be driving the molecular outflow. These findings suggest that even low-level AGNs may be able to launch massive outflows in their host galaxies.

  19. Effect of an isotropic outflow from the Galactic centre on the bow-shock evolution along the orbit

    CERN Document Server

    Zajacek, Michal; Karas, Vladimir; Kunneriath, Devaky; Shahzamanian, Banafsheh; Sabha, Nadeen; Muzic, Koraljka; Valencia-Schneider, Monica

    2015-01-01

    Motivated by the observations of several infrared-excess bow-shock sources and proplyd-like objects near the Galactic centre, we analyse the effect of a potential outflow from the centre on bow shock properties. We show that due to the non-negligible isotropic central outflow the bow-shock evolution along the orbit becomes asymmetric between the pre-peribothron and post-peribothron phases. This is demonstrated by the calculation of the bow-shock size evolution, the velocity along the shocked layer, the surface density of the bow-shock, and by emission-measure maps close to the peribothron passage. Within the ambient velocity range of $\\lesssim 2000\\,{\\rm km\\, s^{-1}}$ the asymmetry is profound and the changes are considerable for different outflow velocities. As a case study we perform model calculations for the Dusty S-cluster Object (DSO/G2) as a potential young stellar object that is currently being monitored and has passed the pericentre at $\\sim 2000$ Schwarzschild radii from the supermassive black hole ...

  20. A New Concept of Transonic Galactic Outflows in a Cold Dark Matter Halo with a Central Super-Massive Black Hole

    CERN Document Server

    Igarashi, Asuka; Nitta, Shin-ya

    2014-01-01

    We study fundamental properties of isothermal, steady and spherically symmetric galactic outflow in the gravitational potential of a cold dark matter halo and a central super-massive black hole. We find that there are two transonic solutions having different properties: each solution is mainly produced by the dark matter halo and the super-massive black hole, respectively. Furthermore, we apply our model to the Sombrero galaxy. In this galaxy, Chandra X-ray observatory detected the diffuse hot gas as the trace of galactic outflows while the star-formation rate is low and the observed gas density distribution presumably indicates the hydrostatic equilibrium. To solve this discrepancy, we propose a solution that this galaxy has a transonic outflow, however, the transonic point forms in a very distant region from the galactic center (?$\\sim$ 127 kpc). In this slowly accelerated transonic outflow, the outflow velocity is less than the sound velocity for most of the galactic halo. Since the gas density distributio...

  1. Effect of an isotropic outflow from the Galactic Centre on the bow-shock evolution along the orbit

    Science.gov (United States)

    Zajaček, M.; Eckart, A.; Karas, V.; Kunneriath, D.; Shahzamanian, B.; Sabha, N.; Mužić, K.; Valencia-S., M.

    2016-01-01

    Motivated by the observations of several infrared-excess bow-shock sources and proplyd-like objects near the Galactic Centre, we analyse the effect of a potential outflow from the centre on bow-shock properties. We show that due to the non-negligible isotropic central outflow the bow-shock evolution along the orbit becomes asymmetric between the pre-peribothron and post-peribothron phases. This is demonstrated by the calculation of the bow-shock size evolution, the velocity along the shocked layer, the surface density of the bow shock, and by emission-measure maps close to the peribothron passage. Within the ambient velocity range of ≲2000 km s-1 the asymmetry is profound and the changes are considerable for different outflow velocities. As a case study we perform model calculations for the Dusty S-cluster Object (DSO/G2) as a potential young stellar object that is currently being monitored and has passed the pericentre at ˜2000 Schwarzschild radii from the supermassive black hole (Sgr A*) in 2014. We show that the velocity field of the shocked layer can contribute to the observed increasing line width of the DSO source up to the peribothron. Subsequently, supposing that the line emission originates in the bow shock, a decrease of the line width is expected. Furthermore, the decline of the bow-shock emission measure in the post-peribothron phase could help to reveal the emission of the putative star. The dominant contribution of circumstellar matter (either inflow or outflow) is consistent with the observed stable luminosity and compactness of the DSO/G2 source during its pericentre passage.

  2. ALMA Observations of the Galactic Center: SiO Outflows and High Mass Star Formation Near Sgr A

    Science.gov (United States)

    Yusef-Zadeh, F.; Royster, M.; Wardle, M.; Arendt, R.; Bushouse, H.; Gillessen, S.; Lis, D.; Pound, M. W.; Roberts, D. A.; Whitney, B.; Wooten, A.

    2013-01-01

    Using ALMA observations of the Galactic center with a spatial resolution of 2.61" x 0.97 ", we detected 11 SiO (5-4) clumps of molecular gas in the within 0.6pc (15") of Sgr A*, interior of the 2-pc circumnuclear molecular ring. Three SiO (5-4) clumps closest to Sgr A* show the largest central velocities of approximately 150 kilometers per second and broadest asymmetric linewidths with total linewidths FWZI approximately 110-147 kilometers per second. Other clumps are distributed mainly to the NE of the ionized minispiral with narrow linewidths of FWHM approximately 11-27 kilometers per second. Using CARMA data, LVG modeling of the broad velocity clumps, the SiO (5-4) and (2-1) line ratios constrain the column density N(SiO) approximately 10(exp 14) per square centimeter, and the H2 gas density n(sub H2) = (3-9) x 10(exp 5) per cubic centimeter for an assumed kinetic temperature 100-200K. The SiO (5-4) clumps with broad and narrow linewidths are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 104 years. Additional support for the presence of YSO outflows is that the luminosities and velocity widths lie in the range detected from protostellar outflows in star forming regions in the Galaxy. Furthermore, SED modeling of stellar sources along the N arm show two YSO candidates near SiO clumps supporting in-situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhance the gas density, before the gas cloud become gravitationally unstable near Sgr A*.

  3. The Fossil Nuclear Outflow in the Central 30 pc of the Galactic Center

    CERN Document Server

    Hsieh, Pei-Ying; Hwang, Chorng-Yuan; Shimajiri, Yoshito; Matsushita, Satoki; Koch, Patrick M; Iono, Daisuke

    2016-01-01

    We report a new 1-pc (30") resolution CS($J=2-1$) line map of the central 30 pc of the Galactic Center (GC), made with the Nobeyama 45m telescope. We revisit our previous study of the extraplanar feature called polar arc (PA), which is a molecular cloud located above SgrA* with a velocity gradient perpendicular to the Galactic plane. We find that the PA can be traced back to the Galactic disk. This provides clues of the launching point of the PA , roughly $6\\times10^{6}$ years ago. Implications of the dynamical time scale of the PA might be related to the Galactic Center Lobe (GCL) at parsec scale. Our results suggest that in the central 30 pc of the GC, the feedback from past explosions could alter the orbital path of the molecular gas down to the central tenth of parsec. In the follow-up work of our new CS($J=2-1$) map, we also find that near the systemic velocity, the molecular gas shows an extraplanar hourglass-shaped feature (HG-feature) with a size of $\\sim$13 pc. The latitude-velocity diagrams show tha...

  4. On Peculiarities of the Anisotropic Diffusion during Forbush Effects of Galactic Cosmic Rays

    International Nuclear Information System (INIS)

    Experimental data of neutron super monitors, solar wind velocity and components of the interplanetary magnetic field (IMF) have been used to study a relationship between the temporal changes of the energy spectrum of the Forbush effects of galactic cosmic rays (GCR) and the power spectral density (PSD) of the IMF's strength fluctuations. Based on the energy spectrum of the Forbush effects of GCR a structure of the IMF's fluctuations is determined in the disturbed vicinity of the interplanetary space when the direct (in situ) measurements of the IMF are absent. In order to study anisotropic diffusion propagation of GCR a second order four dimensional Fokker-Plank's type partial differential equation has been numerically solved. Diffusion, convection, drift due to the regular component of the IMF and adiabatic energy changes of the GCR particles because of the interaction with the diverged solar wind inhomogeneities are included in the transport equation. The spatial distributions of the density, radial, heliolatitudinal and heliolongitudinal gradients during the Forbush effect of GCR intensity have been found for the positive (qA > 0) period of solar magnetic cycle. It is shown that a stationary diffusion-convection-drift approximation of GCR transport is an acceptable model for describing the recurrent Forbush effects of GCR associated with the established corotating disturbances in the inner heliosphere. (author)

  5. Ultra-fast outflows in radio-loud active galactic nuclei

    OpenAIRE

    Tombesi, F.; Tazaki, F; Mushotzky, RF; Ueda, Y; Cappi, M.; Gofford, J.; Reeves, JN; Guainazzi, M.

    2014-01-01

    Recent X-ray observations show absorbing winds with velocities up to mildly-relativistic values of the order of ~0.1c in a limited sample of 6 broad-line radio galaxies. They are observed as blue-shifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultra-fast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud AGNs observed with XMM-Newton and Suzaku. The sample is drawn from the Swift...

  6. Outflowing Diffuse Gas in the Active Galactic Nucleus of NGC 1068

    CERN Document Server

    Geballe, T R; Oka, T

    2015-01-01

    Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 microns have revealed a weak absorption feature due to two lines of the molecular ion H3+. The observed wavelength of the feature corresponds to velocity of -70 km/s relative to the systemic velocity of the galaxy, implying an outward flow from the nucleus along the line of sight. The absorption by H3+ along with the previously known broad hydrocarbon absorption at 3.4~microns probably are formed in diffuse gas that is in close proximity to the continuum source, i.e. within a few tens of parsecs of the central engine. Based on that conclusion and the measured H3+ absorption velocity and with the assumption of a spherically symmetric wind we estimate a rate of mass outflow from the AGN of ~1 Msun/yr.

  7. ALMA OBSERVATIONS OF THE GALACTIC CENTER: SiO OUTFLOWS AND HIGH-MASS STAR FORMATION NEAR Sgr A*

    International Nuclear Information System (INIS)

    ALMA observations of the Galactic center with a spatial resolution of 2.''61 × 0.''97 resulted in the detection of 11 SiO (5-4) clumps of molecular gas within 0.6 pc (15'') of Sgr A*, interior to the 2 pc circumnuclear molecular ring. The three SiO (5-4) clumps closest to Sgr A* show the largest central velocities, ∼150 km s–1, and the broadest asymmetric line widths with full width zero intensity (FWZI) ∼110-147 km s–1. The remaining clumps, distributed mainly to the NE of the ionized mini-spiral, have narrow FWZI (∼18-56 km s–1). Using CARMA SiO (2-1) data, Large Velocity Gradient modeling of the SiO line ratios for the broad velocity clumps constrains the column density N(SiO) ∼1014 cm–2, and the H2 gas density nH2 = (3-9) x 105 cm–3 for an assumed kinetic temperature 100-200 K. The SiO clumps are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 104-105 yr. Support for this interpretation is provided by the SiO (5-4) line luminosities and velocity widths which lie in the range measured for protostellar outflows in star-forming regions in the Galaxy. Furthermore, spectral energy distribution modeling of stellar sources shows two young stellar object candidates near SiO clumps, supporting in situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhances the gas density, before the gas cloud becomes gravitationally unstable near Sgr A*. Alternatively, collisions between clumps in the ring may trigger gravitational collapse.

  8. Stochastic Noncircular Motion and Outflows Driven by Magnetic Activity in the Galactic Bulge Region

    CERN Document Server

    Suzuki, Takeru K; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-01-01

    By performing a global magneto-hydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic center region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches >~ 0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the i...

  9. Ultra-fast outflows in radio-loud active galactic nuclei

    CERN Document Server

    Tombesi, F; Mushotzky, R F; Ueda, Y; Cappi, M; Gofford, J; Reeves, J N; Guainazzi, M

    2014-01-01

    Recent X-ray observations show absorbing winds with velocities up to mildly-relativistic values of the order of ~0.1c in a limited sample of 6 broad-line radio galaxies. They are observed as blue-shifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultra-fast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud AGNs observed with XMM-Newton and Suzaku. The sample is drawn from the Swift BAT 58-month catalog and blazars are excluded. X-ray bright FR II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27% of the sources. However, correcting for the number of spectra with insufficient signal-to-noise, we can estimate that the incidence of UFOs is this sample of radio-loud AGNs is likely in the range f=(50+/-20)%. A photo-ionization modeling of the absorption lines with XSTAR allows to estimate the d...

  10. ALMA Observations of the Galactic Center: SiO Outflows and High Mass Star Formation near Sgr A*

    CERN Document Server

    Yusef-Zadeh, F; Wardle, M; Arendt, R; Bushouse, H; Lis, D C; Pound, M W; Roberts, D A; Whitney, B; Wootten, A

    2013-01-01

    ALMA observations of the Galactic center with spatial resolution $2.61"\\times0.97"$ resulted in the detection of 11 SiO (5-4) clumps of molecular gas within 0.6pc (15$"$) of Sgr A*, interior to the 2-pc circumnuclear molecular ring. The three SiO (5-4) clumps closest to Sgr A* show the largest central velocities, $\\sim150$ \\kms, and broadest asymmetric linewidths with full width zero intensity (FWZI) $\\sim110-147$ \\kms. The remaining clumps, distributed mainly to the NE of the ionized mini-spiral, have narrow FWZI ($\\sim18-56$ \\kms). Using CARMA SiO (2-1) data, LVG modeling of the the SiO line ratios for the broad velocity clumps, constrains the column density N(SiO) $\\sim10^{14}$ cm$^{-2}$, and the H$_2$ gas density n$_{\\rm H_2}=(3-9)\\times10^5$ cm$^{-3}$ for an assumed kinetic temperature 100-200K. The SiO clumps are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last $10^4-10^5$ years. Support for this interpretation is provided ...

  11. THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT z {approx} 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Shen Sijing; Madau, Piero; Prochaska, J. Xavier [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Guedes, Javiera [Institute for Astronomy, ETH Zurich, Wolgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Mayer, Lucio [Institute of Theoretical Physics, University of Zurich, Winterthurerstrasse 190, CH-9057 Zurich (Switzerland); Wadsley, James [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2013-03-10

    We present new results on the kinematics, thermal and ionization state, and spatial distribution of metal-enriched gas in the circumgalactic medium (CGM) of massive galaxies at redshift {approx}3, using the Eris suite of cosmological hydrodynamic ''zoom-in'' simulations. The reference run adopts a blastwave scheme for supernova feedback that produces large-scale galactic outflows, a star formation recipe based on a high gas density threshold, metal-dependent radiative cooling, and a model for the diffusion of metals and thermal energy. The effect of the local UV radiation field is added in post-processing. The CGM (defined as all gas at R > 0.2 R{sub vir} = 10 kpc, where R{sub vir} is the virial radius) contains multiple phases having a wide range of physical conditions, with more than half of its heavy elements locked in a warm-hot component at T > 10{sup 5} K. Synthetic spectra, generated by drawing sightlines through the CGM, produce interstellar absorption-line strengths of Ly{alpha}, C II, C IV, Si II, and Si IV as a function of the galactocentric impact parameter (scaled to the virial radius) that are in broad agreement with those observed at high redshift by Steidel et al. The covering factor of absorbing material declines less rapidly with impact parameter for Ly{alpha} and C IV compared to C II, Si IV, and Si II, with Ly{alpha} remaining strong (W{sub Ly{alpha}} > 300 mA) to {approx}> 5 R{sub vir} = 250 kpc. Only about one third of all the gas within R{sub vir} is outflowing. The fraction of sightlines within one virial radius that intercept optically thick, N{sub H{sub I}}>10{sup 17.2} cm{sup -2} material is 27%, in agreement with recent observations by Rudie et al. Such optically thick absorption is shown to trace inflowing ''cold'' streams that penetrate deep inside the virial radius. The streams, enriched to metallicities above 0.01 solar by previous episodes of star formation in the main host and in nearby

  12. THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT z ∼ 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS

    International Nuclear Information System (INIS)

    We present new results on the kinematics, thermal and ionization state, and spatial distribution of metal-enriched gas in the circumgalactic medium (CGM) of massive galaxies at redshift ∼3, using the Eris suite of cosmological hydrodynamic ''zoom-in'' simulations. The reference run adopts a blastwave scheme for supernova feedback that produces large-scale galactic outflows, a star formation recipe based on a high gas density threshold, metal-dependent radiative cooling, and a model for the diffusion of metals and thermal energy. The effect of the local UV radiation field is added in post-processing. The CGM (defined as all gas at R > 0.2 Rvir = 10 kpc, where Rvir is the virial radius) contains multiple phases having a wide range of physical conditions, with more than half of its heavy elements locked in a warm-hot component at T > 105 K. Synthetic spectra, generated by drawing sightlines through the CGM, produce interstellar absorption-line strengths of Lyα, C II, C IV, Si II, and Si IV as a function of the galactocentric impact parameter (scaled to the virial radius) that are in broad agreement with those observed at high redshift by Steidel et al. The covering factor of absorbing material declines less rapidly with impact parameter for Lyα and C IV compared to C II, Si IV, and Si II, with Lyα remaining strong (WLyα > 300 mÅ) to ∼> 5 Rvir = 250 kpc. Only about one third of all the gas within Rvir is outflowing. The fraction of sightlines within one virial radius that intercept optically thick, NHI>1017.2 cm-2 material is 27%, in agreement with recent observations by Rudie et al. Such optically thick absorption is shown to trace inflowing ''cold'' streams that penetrate deep inside the virial radius. The streams, enriched to metallicities above 0.01 solar by previous episodes of star formation in the main host and in nearby dwarfs, are the origin of strong (NCII>1013 cm-2) C II absorption with a covering factor of 22% within Rvir and 10% within 2 Rvir

  13. ALMA OBSERVATIONS OF THE GALACTIC CENTER: SiO OUTFLOWS AND HIGH-MASS STAR FORMATION NEAR Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Yusef-Zadeh, F.; Royster, M.; Roberts, D. A. [Department of Physics and Astronomy and Center for Interdisciplinary Research in Astronomy, Northwestern University, Evanston, IL 60208 (United States); Wardle, M. [Department of Physics and Astronomy, and Centre for Astronomy, Astrophysics, and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Arendt, R. [CREST/UMBC/NASA GSFC, Code 665, Greenbelt, MD 20771 (United States); Bushouse, H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lis, D. C. [California Institute of Technology, MC 320-47, Pasadena, CA 91125 (United States); Pound, M. W. [Department of Astronomy, University of Maryland, MD 20742 (United States); Whitney, B. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Wootten, A. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2013-04-20

    ALMA observations of the Galactic center with a spatial resolution of 2.''61 Multiplication-Sign 0.''97 resulted in the detection of 11 SiO (5-4) clumps of molecular gas within 0.6 pc (15'') of Sgr A*, interior to the 2 pc circumnuclear molecular ring. The three SiO (5-4) clumps closest to Sgr A* show the largest central velocities, {approx}150 km s{sup -1}, and the broadest asymmetric line widths with full width zero intensity (FWZI) {approx}110-147 km s{sup -1}. The remaining clumps, distributed mainly to the NE of the ionized mini-spiral, have narrow FWZI ({approx}18-56 km s{sup -1}). Using CARMA SiO (2-1) data, Large Velocity Gradient modeling of the SiO line ratios for the broad velocity clumps constrains the column density N(SiO) {approx}10{sup 14} cm{sup -2}, and the H{sub 2} gas density n{sub H{sub 2}} = (3-9) x 10{sup 5} cm{sup -3} for an assumed kinetic temperature 100-200 K. The SiO clumps are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 10{sup 4}-10{sup 5} yr. Support for this interpretation is provided by the SiO (5-4) line luminosities and velocity widths which lie in the range measured for protostellar outflows in star-forming regions in the Galaxy. Furthermore, spectral energy distribution modeling of stellar sources shows two young stellar object candidates near SiO clumps, supporting in situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhances the gas density, before the gas cloud becomes gravitationally unstable near Sgr A*. Alternatively, collisions between clumps in the ring may trigger gravitational collapse.

  14. HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE DOUBLE-PEAKED EMISSION LINES IN THE SEYFERT GALAXY MARKARIAN 78: MASS OUTFLOWS FROM A SINGLE ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Previous ground-based observations of the Seyfert 2 galaxy Mrk 78 revealed a double set of emission lines, similar to those seen in several active galactic nuclei (AGNs) from recent surveys. Are the double lines due to two AGNs with different radial velocities in the same galaxy, or are they due to mass outflows from a single AGN? We present a study of the outflowing ionized gas in the resolved narrow-line region (NLR) of Mrk 78 using observations from the Space Telescope Imaging Spectrograph (STIS) and Faint Object Camera aboard the Hubble Space Telescope as part of an ongoing project to determine the kinematics and geometries of AGN outflows. From the spectroscopic information, we determined the fundamental geometry of the outflow via our kinematics modeling program by recreating radial velocities to fit those seen in four different STIS slit positions. We determined that the double emission lines seen in ground-based spectra are due to an asymmetric distribution of outflowing gas in the NLR. By successfully fitting a model for a single AGN to Mrk 78, we show that it is possible to explain double emission lines with radial velocity offsets seen in AGN similar to Mrk 78 without requiring dual supermassive black holes.

  15. The dependence of galactic outflows on the properties and orientation of zCOSMOS galaxies at z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, R. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Lilly, S. J.; Hardmeier, E.; Carollo, C. M. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich (Switzerland); Contini, T. [Institut de Recherche en Astrophysique et Planétologie, CNRS, 14, avenue Edouard Belin, F-31400 Toulouse (France); Kneib, J.-P.; Fevre, O. Le; Garilli, B. [Laboratoire d' Astrophysique de Marseille, CNRS/Aix-Marseille Université, 38 rue Frédéric Joliot-Curie, F-13388, Marseille cedex 13 (France); Mainieri, V. [European Southern Observatory, Garching (Germany); Renzini, A. [Dipartimento di Astronomia, Universita di Padova, Padova (Italy); Scodeggio, M. [INAF-IASF Milano, Milan (Italy); Zamorani, G.; Bardelli, S.; Bolzonella, M. [INAF Osservatorio Astronomico di Bologna, Bologna (Italy); Bongiorno, A. [Max Planck Institut für Extraterrestrische Physik, Garching (Germany); Caputi, K. [Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen (Netherlands); Cucciati, O. [INAF-Osservatorio Astronomico di Trieste, Trieste (Italy); De la Torre, S.; De Ravel, L. [SUPA, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 1BD (United Kingdom); Iovino, A., E-mail: bordoloi@stsci.edu [INAF Osservatorio Astronomico di Brera, Milan (Italy); and others

    2014-10-20

    We present an analysis of cool outflowing gas around galaxies, traced by Mg II absorption lines in the coadded spectra of a sample of 486 zCOSMOS galaxies at 1 ≤ z ≤ 1.5. These galaxies span a range of stellar masses (9.45 ≤ log{sub 10}[M {sub *}/M {sub ☉}] ≤ 10.7) and star formation rates (0.14 ≤ log{sub 10}[SFR/M {sub ☉} yr{sup –1}] ≤ 2.35). We identify the cool outflowing component in the Mg II absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses, the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong correlation with the star formation surface density (Σ{sub SFR}) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from –150 km s{sup –1} ∼–200 km s{sup –1} and, on average, the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit mass outflow rates >5-7 M {sub ☉} yr{sup –1} and a mass loading factor (η = M-dot {sub out}/SFR) comparable to the star formation rates of the galaxies.

  16. YSO jets in the Galactic Plane from UWISH2: III - Jets and Outflows in Cassiopeia and Auriga

    CERN Document Server

    Froebrich, D

    2016-01-01

    We present the analysis of 35.5 square degrees of images in the 1-0S(1) line of H2 from the UK Widefield Infrared Survey for H2 (UWISH2) towards Cassiopeia and Auriga. We have identified 98 Molecular Hydrogen emission-line Objects (MHOs) driven by Young Stellar Objects, 60% of which are bipolar outflows and all are new discoveries. We estimate that the UWISH2 extended emission object catalogue contains fewer than % false positives and is complete at the 95% level for jets and outflows brighter than the UWISH2 detection limit. We identified reliable driving source candidates for three quarters of the detected outflows, 40% of which are associated with groups and clusters of stars. The driving source candidates are 20% protostars, the remainder are CTTSs. We also identified 15 new star cluster candidates near MHOs in the survey area. We find that the typical outflow identified in the sample has the following characteristics: the position angles are randomly orientated; bipolar outflows are straight within a few...

  17. The dependence of Galactic outflows on the properties and orientation of zCOSMOS galaxies at z ~ 1

    CERN Document Server

    Bordoloi, R; Hardmeier, E; Contini, T; Kneib, J -P; Fevre, O Le; Mainieri, V; Renzini, A; Scodeggio, M; Zamorani, G; Bardelli, S; Bolzonella, M; Bongiorno, A; Caputi, K; Carollo, C M; Cucciati, O; de la Torre, S; de Ravel, L; Garilli, B; Iovino, A; Kampczyk, P; Kovac, K; Knobel, C; Lamareille, F; Borgne, J -F Le; Brun, V Le; Maier, C; Mignoli, M; Oesch, P; Pello, R; Peng, Y; Montero, E Perez; Presotto, V; Silverman, J; Tanaka, M; Tasca, L; Tresse, L; Vergani, D; Zucca, E; Cappi, A; Cimatti, A; Coppa, G; Franzetti, P; Koekemoer, A; Moresco, M; Nair, P; Pozzetti, L

    2013-01-01

    We present an analysis of cool outflowing gas around galaxies, traced by MgII absorption lines in the co-added spectra of a sample of 486 zCOSMOS galaxies at 1 5-7 Msun/yr and a mass loading factor ({\\eta} = dMout/dt /SFR) comparable to the star formation rates of the galaxies.

  18. Evidence for wide-spread active galactic nucleus-driven outflows in the most massive z ∼ 1-2 star-forming galaxies

    International Nuclear Information System (INIS)

    In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M */M ☉) ≥ 10.9) z ∼ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M */M ☉) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS3Dspectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ∼450-5300 km s–1), with large [N II]/Hα ratios, above log(M */M ☉) ∼ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ∼ 1 and ∼2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

  19. EVIDENCE FOR ULTRA-FAST OUTFLOWS IN RADIO-QUIET ACTIVE GALACTIC NUCLEI. II. DETAILED PHOTOIONIZATION MODELING OF Fe K-SHELL ABSORPTION LINES

    International Nuclear Information System (INIS)

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s–1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ∼10,000 km s–1 (∼0.03c) up to ∼100,000 km s–1 (∼0.3c), with a peak and mean value of ∼42,000 km s–1 (∼0.14c). The ionization parameter is very high and in the range log ξ ∼ 3-6 erg s–1 cm, with a mean value of log ξ ∼ 4.2 erg s–1 cm. The associated column densities are also large, in the range NH ∼ 1022-1024 cm–2, with a mean value of NH ∼ 1023 cm–2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback

  20. Evidence for Ultra-fast Outflows in Radio-quiet Active Galactic Nuclei. II. Detailed Photoionization Modeling of Fe K-shell Absorption Lines

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-11-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s-1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ~10,000 km s-1 (~0.03c) up to ~100,000 km s-1 (~0.3c), with a peak and mean value of ~42,000 km s-1 (~0.14c). The ionization parameter is very high and in the range log ξ ~ 3-6 erg s-1 cm, with a mean value of log ξ ~ 4.2 erg s-1 cm. The associated column densities are also large, in the range N H ~ 1022-1024 cm-2, with a mean value of N H ~ 1023 cm-2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can

  1. Evidence for ubiquitous collimated galactic-scale outflows along the star-forming sequence at z ∼ 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Kate H. R.; Prochaska, J. Xavier [Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg (Germany); Koo, David C.; Phillips, Andrew C. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Martin, Crystal L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Winstrom, Lucas O., E-mail: krubin@cfa.harvard.edu [Newman Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853 (United States)

    2014-10-20

    We analyze Mg II λλ2796, 2803 and Fe II λλ2586, 2600 absorption profiles in individual spectra of 105 galaxies at 0.3 < z < 1.4. The galaxies, drawn from redshift surveys of the GOODS fields and the Extended Groth Strip, sample the range in star formation rates (SFRs) occupied by the star-forming sequence with stellar masses log M {sub *}/M {sub ☉} ≳ 9.6 down to SFR ≳ 2 M {sub ☉} yr{sup –1} at 0.3 < z < 0.7. Using the Doppler shifts of Mg II and Fe II absorption as tracers of cool gas kinematics, we detect large-scale winds in 66 ± 5% of the galaxies. Hubble Space Telescope Advanced Camera for Surveys imaging and our spectral analysis indicate that the outflow detection rate depends primarily on galaxy orientation: winds are detected in ∼89% of galaxies having inclinations (i) <30° (face-on), while the wind detection rate is ∼45% in objects having i > 50° (edge-on). Combined with the comparatively weak dependence of wind detection rate on intrinsic galaxy properties, this implies that biconical outflows are ubiquitous in normal, star-forming galaxies at z ∼ 0.5. We find that wind velocity is correlated with galaxy M {sub *} at 3.4σ significance, while outflow equivalent width is correlated with SFR at 3.5σ significance, suggesting hosts with higher SFR launch more material and/or generate a larger velocity spread for the absorbing clouds. Assuming the gas is driven into halos with isothermal density profiles, the wind velocities (∼200-400 km s{sup –1}) permit escape from the halo potentials only for the lowest-M {sub *} systems in the sample. However, the gas carries sufficient energy to reach distances ≳ 50 kpc, and may therefore be a viable source of material for the massive, cool circumgalactic medium around bright galaxies at z ∼ 0.

  2. Formation of Turbulent Cones in Accretion Disk Outflows and Application to Broad Line Regions of Active Galactic Nuclei

    CERN Document Server

    Poludnenko, A Y; Frank, A

    2002-01-01

    We consider the stability of an accretion disk wind to cloud formation when subject to a central radiation force. For a vertical launch velocity profile that is Keplerian or flatter and the presence of a significant radiation pressure, the wind flow streamlines cross in a conical layer. We argue that such regions are highly unstable, and are natural sites for supersonic turbulence and, consequently, density compressions. We suggest that combined with thermal instability these will all conspire to produce clouds. Such clouds can exist in dynamical equilibrium, constantly dissipating and reforming. As long as there is an inner truncation radius to the wind, our model emerges with a biconical structure similar to that inferred by Elvis (2000) for the broad line region (BLR) of active galactic nuclei (AGN). Our results may also apply to other disk-wind systems.

  3. Near-ultraviolet Spectroscopy of Star-forming Galaxies from eBOSS: Signatures of Ubiquitous Galactic-scale Outflows

    CERN Document Server

    Zhu, Guangtun Ben; Kneib, Jean-Paul; Delubac, Timothée; Raichoor, Anand; Dawson, Kyle S; Newman, Jeffrey; Yèche, Christophe; Zhou, Xu; Schneider, Donald P

    2015-01-01

    We present the rest-frame near-ultraviolet (NUV) spectroscopy of star-forming galaxies (SFGs) at 0.60.6. We use the data from the pilot observations of this program, including 8620 spectra of SFGs at 0.6outflows driven by star formation at these redshifts. For the absorption lines, we find a variety of velocity profiles with different degrees of blueshift. Comparing our new observations with the literature, we do not observe the non-resonant emission in the small-aperture (<40 pc) spectra of local star-forming regions with the Hubble Space Telescope, and find the observed line ratios in the SFG spectra to be different from those in the spectra of local star-forming regions, as well as those of quasar absorption-line systems in the same redshift range. We ...

  4. Near-ultraviolet Spectroscopy of Star-forming Galaxies from eBOSS: Signatures of Ubiquitous Galactic-scale Outflows

    Science.gov (United States)

    Zhu, Guangtun Ben; Comparat, Johan; Kneib, Jean-Paul; Delubac, Timothée; Raichoor, Anand; Dawson, Kyle S.; Newman, Jeffrey; Yèche, Christophe; Zhou, Xu; Schneider, Donald P.

    2015-12-01

    We present rest-frame near-ultraviolet (NUV) spectroscopy of star-forming galaxies (SFGs) at 0.6 line galaxies (ELGs) at redshift z ≳ 0.6. We use the data from the pilot observations of this program, including 8620 spectra of SFGs at 0.6 composite spectra of these SFGs at 2200 Å lines, we find a variety of velocity profiles with different degrees of blueshift. Comparing our new observations with the literature, we do not observe the non-resonant emission in the small-aperture (line ratios in the SFG spectra to be different from those in the spectra of local star-forming regions, as well as those of quasar absorption-line systems in the same redshift range. We introduce an outflow model that can simultaneously explain the multiple observed properties and suggest that the variety of absorption velocity profiles and the line ratio differences are caused by scattered fluorescent emission filling in on top of the absorption in the large-aperture eBOSS spectra. We develop an observation-driven, model-independent method to correct the emission infill to reveal the true absorption profiles. Finally, we show that the strengths of both the non-resonant emission and the emission-corrected resonant absorption increase with [O ii] λλ3727, 3730 rest equivalent width and luminosity, with a slightly larger dependence on the former. Our results show that the eBOSS and future dark-energy surveys (e.g., Dark Energy Spectroscopic Instrument survey and Prime Focus Spectrograph survey) will provide rich data sets of rest-frame NUV spectroscopy for astrophysical applications.

  5. DRIVING OUTFLOWS WITH RELATIVISTIC JETS AND THE DEPENDENCE OF ACTIVE GALACTIC NUCLEUS FEEDBACK EFFICIENCY ON INTERSTELLAR MEDIUM INHOMOGENEITY

    International Nuclear Information System (INIS)

    We examine the detailed physics of the feedback mechanism by relativistic active galactic nucleus (AGN) jets interacting with a two-phase fractal interstellar medium (ISM) in the kpc-scale core of galaxies using 29 three-dimensional grid-based hydrodynamical simulations. The feedback efficiency, as measured by the amount of cloud dispersal generated by the jet-ISM interactions, is sensitive to the maximum size of clouds in the fractal cloud distribution but not to their volume filling factor. Feedback ceases to be efficient for Eddington ratios Pjet/Ledd ∼–4, although systems with large cloud complexes ∼> 50 pc require jets of Eddington ratio in excess of 10–2 to disperse the clouds appreciably. Based on measurements of the bubble expansion rates in our simulations, we argue that sub-grid AGN prescriptions resulting in negative feedback in cosmological simulations without a multi-phase treatment of the ISM are good approximations if the volume filling factor of warm-phase material is less than 0.1 and the cloud complexes are smaller than ∼25 pc. We find that the acceleration of the dense embedded clouds is provided by the ram pressure of the high-velocity flow through the porous channels of the warm phase, flow that has fully entrained the shocked hot-phase gas it has swept up, and is additionally mass loaded by ablated cloud material. This mechanism transfers 10% to 40% of the jet energy to the cold and warm gas, accelerating it within a few 10 to 100 Myr to velocities that match those observed in a range of high- and low-redshift radio galaxies hosting powerful radio jets.

  6. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    International Nuclear Information System (INIS)

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥1011 M ☉) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s–1, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M ☉ yr–1 and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s–1 and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  7. Particle Acceleration in Relativistic Outflows

    Science.gov (United States)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  8. Outflows and Shock Chemistry

    Science.gov (United States)

    Tafalla, M.

    2016-05-01

    Bipolar outflows result from the supersonic ejection of material by a protostar, and constitute one of the most characteristic signposts of stellar birth. They also provide ideal targets to test chemical models, and can serve as templates for more complex systems of galactic and extragalactic astronomy where supersonic interactions between gas components take place.

  9. On the disappearance of broad-line region in low-luminosity active galactic nuclei: the role of the outflows from advection dominated accretion flows

    CERN Document Server

    Cao, Xinwu

    2010-01-01

    The broad-line region (BLR) disappears in many low-luminosity AGNs, the reason of which is still controversial. The BLRs in AGNs are believed to be associated with the outflows from the accretion disks. Most of the low-luminosity AGNs (LLAGNs) contain advection dominated accretion flows (ADAFs), which are very hot and have a positive Bernoulli parameter. ADAFs are therefore associated with strong outflows. We estimate the cooling of the outflows from the ADAFs, and find that the gases in such hot outflows always cannot be cooled efficiently by bremsstrahlung radiation. The ADAF may co-exist with the standard disk, i.e., the inner ADAF connects to the outer thin accretion disk at radius R_tr, in the sources accreting at slightly lower than the critical rate. For the ADAFs with >0.001 L_edd, a secondary small inner cold disk is suggested to co-exist with the ADAF due to the condensation process. We estimate the Compton cooling of the outflow, of which the soft seed photons either come from the outer cold disk o...

  10. AGN outflow feedback: Constraints from variability

    CERN Document Server

    Detmers, R G

    2009-01-01

    We present an overview on how variability can be used to constrain the location of the ionized outflow in nearby Active Galactic Nuclei using high-resolution X-ray spectroscopy. Without these constraints on the location of the outflow, the kinetic luminosity and mass loss rate can not be determined. We focus on the Seyfert 1 galaxy NGC 5548, which is arguably the best studied AGN on a timescale of 10 years. Our results show that frequent observations combined with long term monitoring, such as with the \\textit{Rossi X-ray Timing Explorer (RXTE)} satellite, are crucial to investigate the effects of these outflows on their surroundings.

  11. The Implications of Extreme Outflows from Extreme Starbursts

    CERN Document Server

    Heckman, Timothy M

    2016-01-01

    Interstellar ultraviolet absorption-lines provide crucial information about the properties of galactic outflows. In this paper, we augment our previous analysis of the systematic properties of starburst-driven galactic outflows by expanding our sample to include a rare population of starbursts with exceptionally high outflow velocities. In principle, these could be a qualitatively different phenomenon from more typical outflows. However, we find that instead these starbursts lie on, or along the extrapolation of, the trends defined by the more typical systems studied previously by us. We exploit the wide dynamic range provided by this new sample to determine scaling relations of outflow velocity with galaxy stellar mass (M*), circular velocity, star-formation rate (SFR), SFR/M*, and SFR/area. We argue that these results can be accommodated within the general interpretational framework we previously advocated, in which a population of ambient interstellar or circum-galactic clouds is accelerated by the combine...

  12. Supernovae and AGN driven galactic outflows

    CERN Document Server

    Sharma, Mahavir

    2012-01-01

    We present analytical solutions for winds from galaxies with NFW dark matter halo. We consider winds driven by energy and mass injection from multiple supernovae, as well as momentum injection due to radiation from a central black hole. We find that the wind dynamics depends on three velocity scales: (a) v_star \\sim (\\dot{E} / 2 \\dot{M})^{1/2} describes the effect of starburst activity, with \\dot{E}, \\dot{M} as energy and mass injection rate in a central region of radius R; (b) \\vbh ~ (G\\mbh / 2 R)^{1/2} for the effect of a central black hole of mass \\mbh on gas at distance R and (c) v_{s} =(GM_h/ 2Cr_s)^{1/2} which is closely related to the virial velocity, with C as a function of halo concentration parameter. We find the wind terminal speed to be 2 (v_star^2 +1.5(\\Gamma -1) \\vbh^2 -v_s^2)^{1/2}, where \\Gamma is the ratio of force due to radiation pressure to gravity of the central black hole. We also find that: (a) winds from quiescent star forming galaxies cannot escape from 10^{11.5} \\le M_h \\le 10^{12.5}...

  13. Synergies in extragalactic and Galactic jet research

    CERN Document Server

    Romero, Gustavo E

    2014-01-01

    The discovery of relativistic jets and superluminal sources associated with accreting X-ray binaries in the Galaxy opened new ways of investigating the physics of outflows from compact objects. The short timescales and relatively large angular sizes of Galactic jets allow to probe the physics of relativistic outflows to unprecedented details. In this article I discuss results of recent modelling of Galactic jets, covering both radiative and dynamical aspects, which can shed light on different features of their extragalactic cousins.

  14. Galactic Dynamos and Galactic Winds

    CERN Document Server

    Beck, Rainer

    2007-01-01

    Spiral galaxies host dynamically important magnetic fields which can affect gas flows in the disks and halos. Total magnetic fields in spiral galaxies are strongest (up to 30 \\muG) in the spiral arms where they are mostly turbulent or tangled. Polarized synchrotron emission shows that the resolved regular fields are generally strongest in the interarm regions (up to 15 \\muG). Faraday rotation measures of radio polarization vectors in the disks of several spiral galaxies reveal large-scale patterns which are signatures of coherent fields generated by a mean-field dynamo. -- Magnetic fields are also observed in radio halos around edge-on galaxies at heights of a few kpc above the disk. Cosmic-ray driven galactic winds transport gas and magnetic fields from the disk into the halo. The magnetic energy density is larger than the thermal energy density, but smaller than the kinetic energy density of the outflow. The orientation of field lines allows to estimate the wind speed and direction. There is no observation ...

  15. The Implications of Extreme Outflows from Extreme Starbursts

    Science.gov (United States)

    Heckman, Timothy M.; Borthakur, Sanchayeeta

    2016-05-01

    Interstellar ultraviolet absorption lines provide crucial information about the properties of galactic outflows. In this paper, we augment our previous analysis of the systematic properties of starburst-driven galactic outflows by expanding our sample to include a rare population of starbursts with exceptionally high outflow velocities. In principle, these could be a qualitatively different phenomenon from more typical outflows. However, we find that instead these starbursts lie on, or along the extrapolation of, the trends defined by the more typical systems studied previously by us. We exploit the wide dynamic range provided by this new sample to determine scaling relations of outflow velocity with galaxy stellar mass (M *), circular velocity, star formation rate (SFR), SFR/M *, and SFR/area. We argue that these results can be accommodated within the general interpretational framework we previously advocated, in which a population of ambient interstellar or circumgalactic clouds is accelerated by the combined forces of gravity and the momentum flux from the starburst. We show that this simple physical picture is consistent with both the strong cosmological evolution of galactic outflows in typical star-forming galaxies and the paucity of such galaxies with spectra showing inflows. We also present simple parameterizations of these results that can be implemented in theoretical models and numerical simulations of galaxy evolution.

  16. AGN-driven outflows without immediate quenching in simulations of high-redshift disk galaxies

    OpenAIRE

    Gabor, Jared M.; Bournaud, Frédéric

    2014-01-01

    We study outflows driven by Active Galactic Nuclei (AGNs) using high- resolution simulations of idealized z=2 isolated disk galaxies. Episodic accretion events lead to outflows with velocities >1000 km/s and mass outflow rates up to the star formation rate (several tens of Msun/yr). Outflowing winds escape perpendicular to the disk with wide opening angles, and are typically asymmetric (i.e. unipolar) because dense gas above or below the AGN in the resolved disk inhibits outflow. Owing to rap...

  17. Global simulations of galactic winds including cosmic ray streaming

    CERN Document Server

    Ruszkowski, Mateusz; Zweibel, Ellen

    2016-01-01

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magneto-hydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of cosmic rays along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching and mass loading factors depending on the details of the plasma physics. Due to the cosmic ray streaming instability, cosmic rays propagating in the interstellar medium scatter on self-excited Alfven waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as the turbulent damping, the cosmic ...

  18. DISCOVERY OF RELATIVISTIC OUTFLOW IN THE SEYFERT GALAXY Ark 564

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Mathur, S. [Astronomy Department, Ohio State University, Columbus, OH 43210 (United States); Krongold, Y. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Nicastro, F., E-mail: agupta@astronomy.ohio-state.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-07-20

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as K{alpha} transitions of O VII (two lines) and O VI at outflow velocities of {approx}0.1c. These lines are detected at 6.9{sigma}, 6.2{sigma}, and 4.7{sigma}, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectral fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find E-dot (outflow)/L{sub bol} lower limit of {>=}0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved.

  19. Discovery of Relativistic Outflow in the Seyfert Galaxy Ark 564

    Science.gov (United States)

    Gupta, A.; Mathur, S.; Krongold, Y.; Nicastro, F.

    2013-07-01

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as Kα transitions of O VII (two lines) and O VI at outflow velocities of ~0.1c. These lines are detected at 6.9σ, 6.2σ, and 4.7σ, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectral fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find \\dot{E}(outflow)/L_{bol} lower limit of >=0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved.

  20. The Galactic Center compared with nuclei of nearby galaxies

    CERN Document Server

    Combes, F

    2016-01-01

    Understanding our Galactic Center is easier with insights from nearby galactic nuclei. Both the star formation activity in nuclear gas disks, driven by bars and nuclear bars, and the fueling of low-luminosity AGN, followed by feedback of jets, driving molecular outflows, were certainly present in our Galactic Center, which appears now quenched. Comparisons and diagnostics are reviewed, in particular of m=2 and m=1 modes, lopsidedness, different disk orientations, and fossil evidences of activity and feedback.

  1. UBIQUITOUS OUTFLOWS IN DEEP2 SPECTRA OF STAR-FORMING GALAXIES AT z = 1.4

    International Nuclear Information System (INIS)

    Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium (IGM) and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption-line systems. We use a sample of 1406 galaxy spectra at z ∼ 1.4 from the DEEP2 redshift survey to show that blueshifted Mg IYI λλ 2796, 2803 absorption is ubiquitous in star-forming galaxies at this epoch. This is the first detection of frequent outflowing galactic winds at z ∼ 1. The presence and depth of absorption are independent of active galactic nuclei spectral signatures or galaxy morphology; major mergers are not a prerequisite for driving a galactic wind from massive galaxies. Outflows are found in co-added spectra of galaxies spanning a range of 30 times in stellar mass and 10 times in star formation rate (SFR), calibrated from K-band and from the Multiband Imaging Photometer for Spitzer IR fluxes. The outflows have column densities of order NH ∼ 1020 cm-2 and characteristic velocities of ∼ 300-500 km s-1, with absorption seen out to 1000 km s-1 in the most massive, highest SFR galaxies. The velocities suggest that the outflowing gas can escape into the IGM and that massive galaxies can produce cosmologically and chemically significant outflows. Both the Mg II equivalent width and the outflow velocity are larger for galaxies of higher stellar mass and SFR, with V wind ∼ SFR0.3, similar to the scaling in low redshift IR-luminous galaxies. The high frequency of outflows in the star-forming galaxy population at z ∼ 1 indicates that galactic winds occur in the progenitors of massive spirals as well as those of ellipticals. The increase of outflow velocity with mass and SFR constrains theoretical models of galaxy evolution that include feedback from galactic winds, and may favor momentum-driven models for the wind physics.

  2. Cosmic Rays in a Galactic Breeze

    CERN Document Server

    Taylor, Andrew M

    2016-01-01

    Motivated by the discovery of the non-thermal Fermi bubble features both below and above the Galactic plane, we investigate a scenario in which these bubbles are formed through Galacto-centric outflow. Cosmic rays (CR) both diffusing and advecting within a Galactic breeze outflow, interacting with the ambient gas present, give rise to gamma-ray emission, providing an approximately flat surface brightness profile of this emission, as observed. Applying the same outflow profile further out within the disk, the resultant effects on the observable CR spectral properties are determined. A hardening in the spectra due to the competition of advective and diffusive propagation within a particular energy range is noted, even in the limiting case of equal CR diffusion coefficients in the disk and halo. It is postulated that this hardening effect may relate to the observed hardening feature in the CR spectrum at a rigidity of $\\approx 200$ GV.

  3. AGN-driven outflows without quenching in simulations of high-redshift disk galaxies

    CERN Document Server

    Gabor, Jared M

    2014-01-01

    Recent observations have revealed nuclear outflows in high-redshift, star forming galaxies. We study outflows driven by Active Galactic Nuclei (AGNs) using high- resolution simulations of idealized z=2 isolated disk galaxies. Episodic accretion events lead to outflows with velocities >1000 km/s and mass outflow rates up to the star formation rate (several tens of Msun/yr). Outflowing winds escape perpendicular to the disk with wide opening angles, and are typically asymmetric (i.e. unipolar) because dense gas above or below the AGN in the resolved disk inhibits outflow. Owing to rapid variability in the accretion rates, outflowing gas may be detectable even when the AGN is effectively "off." The highest velocity outflows are concentrated within 2-3 kpc of the galactic center during the peak accretion. With our purely thermal AGN feedback model -- standard in previous literature -- the outflowing material is mostly hot (10^6 K) and diffuse (nH<10^(-2) cm-3), but includes a cold component entrained in the ho...

  4. The Resolved Outflow from 3C 48

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2014-10-01

    We investigate the properties of the high-velocity outflow driven by the young radio jet of 3C 48, a compact-steep-spectrum source. We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telecope to obtain (1) low-resolution UV and optical spectra and (2) multi-slit medium-resolution spectra of the ionized outflow. With supporting data from ground-based spectrographs, we are able to accurately measure the ratios of diagnostic emission lines such as [O III] λ5007, [O III] λ3727, [N II] λ6548, Hα, Hβ, [Ne V] λ3425, and [Ne III] λ3869. We fit the observed emission-line ratios using a range of ionization models, powered by active galactic nucleus (AGN) radiation and shocks, produced by the MAPPINGS code. We have determined that AGN radiation is likely the dominant ionization source. The outflow's density is estimated to be in the range n = 103-104 cm-3, the mass is ~6 × 106 M ⊙, and the metallicity is likely equal to or higher than solar. Compared with the typical outflows associated with more evolved radio jets, this young outflow is denser, less massive, and more metal rich. Multi-slit observations allow us to construct a two-dimensional velocity map of the outflow that shows a wide range of velocities with distinct velocity components, suggesting a wide-angle clumpy outflow. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11574. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the

  5. Massive molecular outflows

    OpenAIRE

    Beuther, H.; Schilke, P.; Menten, K. M.; Walmsley, C. M.; Sridharan, T. K.; Wyrowski, F.

    2001-01-01

    We present a mapping study of massive molecular outflows in 26 high-mass star-forming regions at 11'' spatial resolution. Bipolar morpholgy is found in 80% of the sources and the collimation is higher than previously thought. Additionally, we find that well known low-mass correlations continue up to the high-mass regime, and accretion rates are around 10^(-4) Msun/yr rising as high as 10^(-3) Msun/yr. A tight correlation between the outflow and the core mass is established, implying that the ...

  6. Metallicity and Quasar Outflows

    CERN Document Server

    Wang, Huiyuan; Yuan, Weimin; Wang, Tinggui

    2012-01-01

    Correlations are investigated of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the CIV line (Wang et al. 2011), with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey. We find that most of the line ratios of other ions to CIV prominently increases with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of dominant coolant, CIV line, decreases and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using SiIV+OIV]/CIV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicitiy and the outflow strength of quasars over a wide range of 1.7 to 6.9 times solar abundance. Our result implies that the metallicity plays an important role in the formation of quasar outflows, likely via affecting outflow acceleration. This ...

  7. Starburst Galaxies: Outflows of Metals and Energy into the IGM

    CERN Document Server

    Strickland, David K; Ptak, Andrew; Schlegel, Eric; Tremonti, Christy; Tsuru, Takeshi; Tuellmann, Ralph; Zezas, Andreas

    2009-01-01

    What is the contribution of mass, metals and energy from starburst galaxies to the Intergalactic Medium? Starburst galaxies drive galactic-scale outflows or "superwinds" that may be responsible for removing metals from galaxies and polluting the Intergalactic Medium (IGM). In the last decade tremendous progress was made in mapping cool entrained gas in superwinds through UV/optical imaging and absorption line spectroscopy. These studies demonstrated that superwinds are ubiquitous in galaxies forming stars at high surface densities and that the most powerful starbursts can drive outflows near escape velocity. Theoretical models of galaxy evolution have begun to incorporate superwinds, using various ad-hoc prescriptions based on our knowledge of the cool gas. However, these efforts are fundamentally impeded by our lack of information about the hot phase of these outflows. The hot X-ray emitting phase of a superwind contains the majority of its energy and newly-synthesized metals, and given its high specific ene...

  8. Fast outflows and star formation quenching in quasar host galaxies

    Science.gov (United States)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2016-06-01

    Negative feedback from active galactic nuclei (AGN) is considered a key mechanism in shaping galaxy evolution. Fast, extended outflows are frequently detected in the AGN host galaxies at all redshifts and luminosities, both in ionised and molecular gas. However, these outflows are only potentially able to quench star formation, and we are still lacking decisive evidence of negative feedback in action. Here we present observations obtained with the Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) H- and K-band integral-field of two quasars at z ~ 2.4 that are characterised by fast, extended outflows detected through the [Oiii]λ5007 line. The high signal-to-noise ratio of our observations allows us to identify faint narrow (FWHManti-correlated with the fast outflows. The ionised outflows therefore appear to be able to suppress star formation in the region where the outflow is expanding. However, the detection of narrow spatially extended Hα emission indicates star formation rates of at least ~50-90 M⊙ yr-1, suggesting either that AGN feedback does not affect the whole galaxy or that many feedback episodes are required before star formation is completely quenched. On the other hand, the narrow Hα emission extending along the edges of the outflow cone may also lead also to a positive feedback interpretation. Our results highlight the possible double role of galaxy-wide outflows in host galaxy evolution. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, P.ID: 086.B-0579(A) and 091.A-0261(A).The reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A28

  9. Galaxy Outflows Without Supernovae

    CERN Document Server

    Sur, Sharanya; Ostriker, Eve C

    2016-01-01

    High surface density, rapidly star-forming galaxies are observed to have $\\approx 50-100\\,{\\rm km\\,s^{-1}}$ line-of-sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly-compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds $\\approx 35\\,{\\rm km\\...

  10. AGN and stellar feedback in star-forming galaxies at redshift 2 : outflows, mass-loading and quenching

    Science.gov (United States)

    Roos, O.

    2016-06-01

    Galactic-scale outflows are ubiquitous in observations of star-forming galaxies, up to high redshift. Such galactic outflows are mainly generated by internal sources of feedback: young stars, supernovae and active galactic nuclei (AGNs). Still, the physical origins of such outflows are not well understood, and their main driver is still debated. Up to now, most simulations take into account AGN feedback or stellar feedback but not both, because both phenomena happen on very different spatial and time scales. Most of them also still fail to reproduce all observed parameters from first principles. In this poster, we present the POGO project: Physical Origins of Galactic Outflows. With this suite of 23 simulations, we model AGN and stellar feedback simultaneously based on physical assumptions for the first time at very high resolution (6 to 1.5 pc), and investigate their impact on the outflow parameters of the host-galaxy. Here, we show that AGN and stellar feedback couple non-linearly, and that the mass-loading of the resulting outflow highly depends on the mass of the host, all the more because the coupling can either be positive (small masses) or negative (intermediate masses). Nevertheless, the main driver of the outflow remains the AGN at all masses.

  11. Jets from black hole binaries and Galactic Nuclei

    OpenAIRE

    Mirabel, I.F.

    2000-01-01

    Relativistic outflows are a common phenomenon in accreting black holes. Despite the enormous differences in scale, stellar-mass black holes in binaries and supermassive black holes in Galactic Nuclei produce jets with analogous properties. In both are observed two types of relativistic outflows: 1) steady compact jets with flat-spectrum, and 2) sporadic extended jets with steep-spectrum and apparent superluminal motions. Besides, the most common class of gamma-ray bursts are afterglows from u...

  12. Galactic Winds

    Science.gov (United States)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  13. On the X-ray low- and high-velocity outflows in AGNs

    OpenAIRE

    Ramirez, J. M.; Tombesi, F.

    2011-01-01

    An exploration of the relationship between bolometric luminosity and outflow velocity, for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v~100-1000 km/s, and on comparable but less stringent grounds the ultra-fast outflows (UFOs), v~0.03-0.3c. If comparable with the escape velocity of the system; the first is naturally ...

  14. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS

    International Nuclear Information System (INIS)

    We carry out radiation hydrodynamical simulations of the formation of massive stars in the super-Eddington regime including both their radiative feedback and protostellar outflows. The calculations start from a prestellar core of dusty gas and continue until the star stops growing. The accretion ends when the remnants of the core are ejected, mostly by the force of the direct stellar radiation in the polar direction and elsewhere by the reradiated thermal infrared radiation. How long the accretion persists depends on whether the protostellar outflows are present. We set the mass outflow rate to 1% of the stellar sink particle's accretion rate. The outflows open a bipolar cavity extending to the core's outer edge, through which the thermal radiation readily escapes. The radiative flux is funneled into the polar directions while the core's collapse proceeds near the equator. The outflow thus extends the ''flashlight effect'', or anisotropic radiation field, found in previous studies from the few hundred AU scale of the circumstellar disk up to the 0.1 parsec scale of the core. The core's flashlight effect allows core gas to accrete on the disk for longer, in the same way that the disk's flashlight effect allows disk gas to accrete on the star for longer. Thus although the protostellar outflows remove material near the core's poles, causing slower stellar growth over the first few free-fall times, they also enable accretion to go on longer in our calculations. The outflows ultimately lead to stars of somewhat higher mass

  15. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, Rolf [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Yorke, Harold W.; Turner, Neal J., E-mail: kuiper@mpia.de, E-mail: Harold.W.Yorke@jpl.nasa.gov, E-mail: Neal.J.Turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-02-20

    We carry out radiation hydrodynamical simulations of the formation of massive stars in the super-Eddington regime including both their radiative feedback and protostellar outflows. The calculations start from a prestellar core of dusty gas and continue until the star stops growing. The accretion ends when the remnants of the core are ejected, mostly by the force of the direct stellar radiation in the polar direction and elsewhere by the reradiated thermal infrared radiation. How long the accretion persists depends on whether the protostellar outflows are present. We set the mass outflow rate to 1% of the stellar sink particle's accretion rate. The outflows open a bipolar cavity extending to the core's outer edge, through which the thermal radiation readily escapes. The radiative flux is funneled into the polar directions while the core's collapse proceeds near the equator. The outflow thus extends the ''flashlight effect'', or anisotropic radiation field, found in previous studies from the few hundred AU scale of the circumstellar disk up to the 0.1 parsec scale of the core. The core's flashlight effect allows core gas to accrete on the disk for longer, in the same way that the disk's flashlight effect allows disk gas to accrete on the star for longer. Thus although the protostellar outflows remove material near the core's poles, causing slower stellar growth over the first few free-fall times, they also enable accretion to go on longer in our calculations. The outflows ultimately lead to stars of somewhat higher mass.

  16. Protostellar outflow-driven turbulence

    CERN Document Server

    Matzner, C D

    2007-01-01

    Protostellar outflows crisscross the regions of star cluster formation, stirring turbulence and altering the evolution of the forming cluster. We model the stirring of turbulent motions by protostellar outflows, building on an observation that the scaling law of supersonic turbulence implies a momentum cascade analogous to the energy cascade in Kolmogorov turbulence. We then generalize this model to account for a diversity of outflow strengths, and for outflow collimation, both of which enhance turbulence. For a single value of its coupling coefficient the model is consistent with turbulence simulations by Li & Nakamura and, plausibly, with observations of the NGC 1333 cluster-forming region. Outflow-driven turbulence is strong enough to stall collapse in cluster-forming regions for several crossing times, relieving the mismatch between star formation and turbulent decay rates. The predicted line-width-size scaling implies radial density indices between -1 and -2 for regions supported by outflow-driven tu...

  17. Galactic cluster winds in presence of a dark energy

    CERN Document Server

    Bisnovatyi-Kogan, G S

    2013-01-01

    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating center, in presence of the uniform Dark Energy (DE). The antigravity of DE is enlightening the outflow and make the outflow possible at smaller initial temperature, at the same density. The main property of the wind in presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind could lead to the formation of a highest energy cosmic rays.

  18. Galactic cluster winds in presence of a dark energy

    Science.gov (United States)

    Bisnovatyi-Kogan, G. S.; Merafina, M.

    2013-10-01

    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating centre, in the presence of the uniform dark energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature, at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters, we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of a highest energy cosmic rays.

  19. Magnetic propeller outflows

    OpenAIRE

    Lovelace, R. V. E.; Romanova, M. M.; Bisnovatyi-Kogan, G. S.

    1998-01-01

    A model is developed for magnetic `propeller'-driven outflows which cause a rapidly rotating magnetized star accreting from a disk to spin-down. Energy and angular momentum lost by the star goes into expelling most of the accreting disk matter. The theory gives an expression for the effective Alfven radius $R_A$ (where the inflowing matter is effectively stopped) which depends on the mass accretion rate, the star's mass and magnetic moment, and the star's rotation rate. The model points to a ...

  20. Cosmic ray driven outflows

    CERN Document Server

    Hanasz, Michal; Naab, Thorsten; Gawryszczak, Artur; Kowalik, Kacper; Wóltański, Dominik

    2013-01-01

    We present simulations of the magnetized interstellar medium (ISM) in models of massive star forming (40 Msun / yr) disk galaxies with high gas surface densities (~100 Msun / pc^2) similar to observed star forming high-redshift disks. We assume that type II supernovae deposit 10 per cent of their energy into the ISM as cosmic rays and neglect the additional deposition of thermal energy or momentum. With a typical Galactic diffusion coefficient for CRs (3e28 cm^2 / s) we demonstrate that this process alone can trigger the local formation of a strong low density galactic wind maintaining vertically open field lines. Driven by the additional pressure gradient of the relativistic fluid the wind speed can exceed 1000 km/s, much higher than the escape velocity of the galaxy. The global mass loading, i.e. the ratio of the gas mass leaving the galactic disk in a wind to the star formation rate becomes of order unity once the system has settled into an equilibrium. We conclude that relativistic particles accelerated i...

  1. Hydrodynamics and stability of galactic cooling flows

    CERN Document Server

    Kritsuk, A G; Müller, E

    1998-01-01

    Using numerical techniques we studied the global stability of cooling flows in giant elliptical galaxies. As an initial equilibrium state we choose the hydrostatic gas recycling model (Kritsuk 1996). Non-equilibrium radiative cooling, stellar mass loss, heating by type Ia supernovae, distributed mass deposition, and thermal conductivity are included. Although the recycling model reproduces the basic X-ray observables, it appears to be unstable with respect to the development of inflow or outflow. In spherically symmetry the inflows are subject to a central cooling catastrophe, while the outflows saturate in a form of a subsonic galactic wind. Two-dimensional axisymmetric random velocity perturbations of the equilibrium model trigger the onset of a cooling catastrophe, which develops in an essentially non-spherical way. The simulations show a patchy pattern of mass deposition and the formation of hollow gas jets, which penetrate through the outflow down to the galaxy core. The X-ray observables of such a hybri...

  2. Massive Star Formation: Characterising Infall and Outflow in dense cores.

    Science.gov (United States)

    Akhter, Shaila; Cunningham, Maria; Harvey-Smith, Lisa; Jones, Paul Andrew; Purcell, Cormac; Walsh, Andrew John

    2015-08-01

    Massive stars are some of the most important objects in the Universe, shaping the evolution of galaxies, creating chemical elements, and hence shaping the evolution of the Universe. However, the processes by which they form, and how they shape their environment during their birth processes, are not well understood. We are using NH3 data from the "The H2O Southern Galactic Plane Survey" (HOPS) to define the positions of dense cores/clumps of gas in the southern Galactic plane that are likely to form stars. Due to its effective critical density, NH3 can detect massive star forming regions effectively compared to other tracers. We did a comparative study with different methods for finding clumps and found Fellwalker as the best. We found ~ 10% of the star forming clumps with multiple components and ~ 90% clumps with single component along the line of sight. Then, using data from the "The Millimetre Astronomy Legacy Team 90 GHz" (MALT90) survey, we search for the presence of infall and outflow associated with these cores. We will subsequently use the "3D Molecular Line Radiative Transfer Code" (MOLLIE) to constrain properties of the infall and outflow, such as velocity and mass flow. The aim of the project is to determine how common infall and outflow are in star forming cores, hence providing valuable constraints on the timescales and physical process involved in massive star formation.

  3. An ultra-relativistic outflow from a neutron star accreting gas from a companion

    NARCIS (Netherlands)

    R.P. Fender; K. Wu; H. Johnston; T. Tzioumis; P.G. Jonker; R. Spencer; M. van der Klis

    2004-01-01

    Collimated relativistic outflows-also known as jets-are amongst the most energetic phenomena in the Universe. They are associated with supermassive black holes in distant active galactic nuclei, accreting stellar-mass black holes and neutron stars in binary systems and are believed to be responsible

  4. DETECTION OF HIGH VELOCITY OUTFLOWS IN THE SEYFERT 1 GALAXY Mrk 590

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A. [Department of Biological and Physical Sciences, Columbus State Community College, Columbus, OH 43215 (United States); Mathur, S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Krongold, Y., E-mail: agupta1@cscc.edu [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico)

    2015-01-01

    We report on the detection of ultra-fast outflows in the Seyfert 1 galaxy Mrk 590. These outflows are identified through highly blueshifted absorption lines of O VIII and Ne IX in the medium energy grating spectrum and Si XIV and Mg XII in the high energy grating spectrum on board the Chandra X-ray observatory. Our best-fit photoionization model requires two absorber components at outflow velocities of 0.176c and 0.0738c and a third tentative component at 0.0867c. The components at 0.0738c and 0.0867c have high ionization parameters and high column densities, similar to other ultra-fast outflows detected at low resolution by Tombesi et al. We also found suggestive evidence for super-solar silicon in these components. These outflows carry sufficient mass and energy to provide effective feedback proposed by theoretical models. The component at 0.176c, on the other hand, has a low ionization parameter and low column density, similar to those detected by Gupta et al. in Ark 564. These absorbers occupy a different locus on the velocity versus ionization parameter plane and have opened up a new parameter space of active galactic nucleus (AGN) outflows. The presence of ultra-fast outflows in moderate luminosity AGNs poses a challenge to models of AGN outflows.

  5. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy

    CERN Document Server

    Geach, J E; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J

    2014-01-01

    Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and are restricted to sub-kiloparsec scales. It is also apparent that input from active galactic nuclei is in at least some cases dynamically important, so pure stellar feedback has been considered incapable of aggressively terminating star formation on galactic scales. Extraplanar molecular gas has been detected in the archetype starburst galaxy M82, but so far there has been no evidence that starbursts can propel significant quantities of cold molecular gas to the same galactocentric radius (~10 kpc) as the warmer gas traced by metal absorbers. Here we report observations of molecular gas in a compact (effective radius 100 pc) massive starburst galaxy at z...

  6. On Einstein clusters as galactic dark matter halos

    OpenAIRE

    Böhmer, CG; Harko, T.

    2007-01-01

    We consider global and gravitational lensing properties of the recently suggested Einstein clusters of weakly interacting massive particles (WIMPs) as galactic dark matter haloes. Being tangential pressure dominated, Einstein clusters are strongly anisotropic systems which can describe any galactic rotation curve by specifying the anisotropy. Due to this property, Einstein clusters may be considered as dark matter candidates. We analyse the stability of the Einstein clusters against both radi...

  7. Scalar fields properties for flat galactic rotation curves

    CERN Document Server

    Fay, S

    2004-01-01

    The whole class of minimally coupled and massive scalar fields which may be responsible for flattening of galactic rotation curves is found. An interesting relation with a class of scalar-tensor theories able to isotropise anisotropic models of Universe is shown. The resulting metric is found and its stability and scalar field properties are tested with respect to the presence of a second scalar field or a small perturbation of the rotation velocity at galactic outer radii.

  8. Fast outflows and star formation quenching in quasar host galaxies

    CERN Document Server

    Carniani, S; Maiolino, R; Balmaverde, B; Brusa, M; Cano-Díaz, M; Cicone, C; Comastri, A; Cresci, G; Fiore, F; Feruglio, C; La Franca, F; Mainieri, V; Mannucci, F; Nagao, T; Netzer, H; Piconcelli, E; Risaliti, G; Schneider, R; Shemmer, O

    2016-01-01

    Negative feedback from active galactic nuclei (AGN) is considered a key mechanism in shaping galaxy evolution. Fast, extended outflows are frequently detected in the AGN host galaxies at all redshifts and luminosities, both in ionised and molecular gas. However, these outflows are only "potentially" able to quench star formation and we are still missing a decisive evidence of negative feedback in action. Here we present Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) H- and K-band integral-field spectroscopic observations of two quasars at $z\\sim$2.4 characterised by fast, extended outflows detected through the [OIII]$\\lambda$5007 line (Carniani et al. 2015). The high signal-to-noise ratio of our observations allows us to identify faint narrow (FWHM $< 500$ km/s), and spatially extended components in [OIII]$\\lambda$5007 and H$\\alpha$ emission associated with star formation in the host galaxy. Such star-formation powered emission is spatially anti-correlated with the fast outflow...

  9. Tracing Inflows and Outflows with Absorption Lines in Circumgalactic Gas

    CERN Document Server

    Ford, Amanda Brady; Oppenheimer, Benjamin D; Katz, Neal; Kollmeier, Juna A; Thompson, Robert; Weinberg, David H

    2013-01-01

    We examine how HI and metal absorption lines within low-redshift galaxy halos trace the dynamical state of circumgalactic gas, using cosmological hydrodynamic simulations that include a well-vetted heuristic model for galactic outflows. We categorize inflowing, outflowing, and ambient gas based on its history and fate as tracked in our simulation. Following our earlier work showing that the ionisation level of absorbers was a primary factor in determining the physical conditions of absorbing gas, we show here that it is also a governing factor for its dynamical state. Low-ionisation metal absorbers (e.g. MgII) tend to arise in gas that will fall onto galaxies within several Gyr, while high-ionisation metal absorbers (e.g. OVI) generally trace material that was deposited by outflows many Gyr ago. Inflowing gas is dominated by enriched material that was previously ejected in an outflow, hence accretion at low redshifts is typically substantially enriched. Recycling wind material is preferentially found closer t...

  10. Evidence for a chemically differentiated outflow in Mrk 231

    CERN Document Server

    Lindberg, J E; Muller, S; Martí-Vidal, I; Falstad, N; Costagliola, F; Henkel, C; van der Werf, P; García-Burillo, S; González-Alfonso, E

    2015-01-01

    Aims: Our goal is to study the chemical composition of the outflows of active galactic nuclei and starburst galaxies. Methods: We obtained high-resolution interferometric observations of HCN and HCO$^+$ $J=1\\rightarrow0$ and $J=2\\rightarrow1$ of the ultraluminous infrared galaxy Mrk~231 with the IRAM Plateau de Bure Interferometer. We also use previously published observations of HCN and HCO$^+$ $J=1\\rightarrow0$ and $J=3\\rightarrow2$, and HNC $J=1\\rightarrow0$ in the same source. Results: In the line wings of the HCN, HCO$^+$, and HNC emission, we find that these three molecular species exhibit features at distinct velocities which differ between the species. The features are not consistent with emission lines of other molecular species. Through radiative transfer modelling of the HCN and HCO$^+$ outflow emission we find an average abundance ratio $X(\\mathrm{HCN})/X(\\mathrm{HCO}^+)\\gtrsim1000$. Assuming a clumpy outflow, modelling of the HCN and HCO$^+$ emission produces strongly inconsistent outflow masses....

  11. Methanol Maser Associated Outflows: Detection statistics and properties

    CERN Document Server

    de Villiers, H M; Thompson, M A; Ellingsen, S P; Urquhart, J S; Breen, S L; Burton, M G; Csengeri, T; Ward-Thompson, D

    2014-01-01

    We have selected the positions of 54 6.7GHz methanol masers from the Methanol Multibeam Survey catalogue, covering a range of longitudes between $20^{\\circ}$ and $34^{\\circ}$ of the Galactic Plane. These positions were mapped in the J=3-2 transition of both the $\\rm{^{13}CO}$ and $\\rm{C^{18}O}$ lines. A total of 58 $\\rm{^{13}CO}$ emission peaks are found in the vicinity of these maser positions. We search for outflows around all $\\rm{^{13}CO}$ peaks, and find evidence for high-velocity gas in all cases, spatially resolving the red and blue outflow lobes in 55 cases. Of these sources, 44 have resolved kinematic distances, and are closely associated with the 6.7GHz masers, a sub-set referred to as Methanol Maser Associated Outflows (MMAOs). We calculate the masses of the clumps associated with each peak using 870 $\\rm{\\mu m}$ continuum emission from the ATLASGAL survey. A strong correlation is seen between the clump mass and both outflow mass and mechanical force, lending support to models in which accretion is...

  12. Scaling ultraviolet outflows in Seyferts

    OpenAIRE

    Stoll, R.; S Mathur; Krongold, Y.; Nicastro, F.

    2009-01-01

    X-ray and UV absorbing outflows are frequently seen in AGN and have been cited as a possible feedback mechanism. Whether or not they can provide adequate feedback depends on how massive they are and how much energy they carry, but it depends in a more fundamental way upon whether they escape the potential of the black hole. If the outflows have reached their asymptotic velocity when we observe them, then all of these properties critically depend on the radius of the outflow: a value which is ...

  13. The Impact of Modeling Assumptions in Galactic Chemical Evolution Models

    CERN Document Server

    Côté, Benoit; Ritter, Christian; Herwig, Falk; Venn, Kim A

    2016-01-01

    We use the OMEGA galactic chemical evolution code to investigate how the assumptions used for the treatment of galactic inflows and outflows impact numerical predictions. The goal is to determine how our capacity to reproduce the chemical evolution trends of a galaxy is affected by the choice of implementation used to include those physical processes. In pursuit of this goal, we experiment with three different prescriptions for galactic inflows and outflows and use OMEGA within a Markov Chain Monte Carlo code to recover the set of input parameters that best reproduces the chemical evolution of nine elements in the dwarf spheroidal galaxy Sculptor. Despite their different degrees of intended physical realism, we found that all three prescriptions can reproduce in an almost identical way the stellar abundance trends observed in Sculptor. While the three models have the same capacity to fit the data, the best values recovered for the parameters controlling the number of Type Ia supernovae and the strength of gal...

  14. Semianalytic Models of Two-Phase Disk Winds in Active Galactic Nuclei with Combined Hydromagnetic and Radiative Driving

    OpenAIRE

    Everett, John E.

    2002-01-01

    (abridged) We present a semianalytic model of steady-state magnetically and radiatively driven disk outflows in Active Galactic Nuclei (AGNs) consisting of a continuous wind with embedded clouds. The continuous outflow is launched from the disk surface as a centrifugally driven wind, whereas the clouds are uplifted from the disk by the ram pressure of the continuous outflow. In addition, the continuous wind and clouds are subject to both line and continuum radiative acceleration. We describe ...

  15. Energy exchanges in reconnection outflows

    CERN Document Server

    Lapenta, Giovanni; Newman, Davd L; Markidis, Stefano

    2016-01-01

    Reconnection outflows are highly energetic directed flows that interact with the ambient plasma or with flows from other reconnection regions. Under these conditions the flow becomes highly unstable and chaotic, as any flow jets interacting with a medium. We report here massively parallel simulations of the two cases of interaction between outflow jets and between a single outflow with an ambient plasma. We find in both case the development of a chaotic magnetic field, subject to secondary reconnection events that further complicate the topology of the field lines. The focus of the present analysis is on the energy balance. We compute each energy channel (electromagnetic, bulk, thermal, for each species) and find where the most energy is exchanged and in what form. The main finding is that the largest energy exchange is not at the reconnection site proper but in the regions where the outflowing jets are destabilized.

  16. The Prevalence of Ionized Gas Outflows in Type 2 AGNs II. 3-D Biconical Outflow Models

    CERN Document Server

    Bae, Hyun-Jin

    2016-01-01

    We present 3-D models of biconical outflows combined with a thin dust plane for investigating the physical properties of the ionized gas outflows and their effect on the observed gas kinematics in type 2 active galactic nuclei (AGNs). Using a set of input parameters, we construct a number of models in 3-D and calculate the spatially integrated velocity and velocity dispersion for each model. We find that three primary parameters, i.e., intrinsic velocity, bicone inclination, and the amount of dust extinction, mainly determine the simulated velocity and velocity dispersion. Velocity dispersion increases as the intrinsic velocity or the bicone inclination increases, while velocity (i.e., velocity shift with respect to systemic velocity) increases as the amount of dust extinction increases. Simulated emission-line profiles well reproduce the observed [O III] line profiles, e.g., a narrow core and a broad wing components. By comparing model grids and Monte Carlo simulations with the observed [O III] velocity-velo...

  17. Scaling ultraviolet outflows in Seyferts

    CERN Document Server

    Stoll, R; Krongold, Y; Nicastro, F

    2009-01-01

    X-ray and UV absorbing outflows are frequently seen in AGN and have been cited as a possible feedback mechanism. Whether or not they can provide adequate feedback depends on how massive they are and how much energy they carry, but it depends in a more fundamental way upon whether they escape the potential of the black hole. If the outflows have reached their asymptotic velocity when we observe them, then all of these properties critically depend on the radius of the outflow: a value which is difficult to measure. The tightest limit on the distance of an X-ray warm absorber from the ionizing source is that of Krongold et al. (2007) for NGC 4051. We use NGC 4051 to model other observed UV outflows, and find that on the whole they may not provide meaningful feedback. The outflow velocities are below or just above the escape velocity of the black hole. This may be because they are not yet fully accelerated, or the duty cycle of high-velocity outflows may be small. Another possibility is that they may only provide...

  18. Probing the gaseous halo of galaxies through non-thermal emission from AGN-driven outflows

    CERN Document Server

    Wang, Xiawei

    2015-01-01

    Feedback from outflows driven by active galactic nuclei (AGN) can affect the distribution and properties of the gaseous halos of galaxies. We study the hydrodynamics and non-thermal emission from the forward outflow shock produced by an AGN-driven outflow. We consider a few possible profiles for the halo gas density, self-consistently constrained by the halo mass, redshift and the disk baryonic concentration of the galaxy. We show that the outflow velocity levels off at $\\sim 10^3\\,\\rm km\\, s^{-1}$ within the scale of the galaxy disk. Typically, the outflow can reach the virial radius around the time when the AGN shuts off. We show that the outflows are energy-driven, consistently with observations. The outflow shock lights up the halos of massive galaxies across a broad wavelength range. For Milky Way (MW) mass halos, radio observations by The Jansky Very Large Array (JVLA) and The Square Kilometer Array (SKA) and infrared/optical observations by The James Webb Space Telescope (JWST) and Hubble Space Telesco...

  19. Magnetically-Driven Accretion-Disk Winds and Ultra-Fast Outflows in PG1211+143

    OpenAIRE

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-01-01

    We present a study of X-ray ionization of magnetohydrodynamic (MHD) accretion-disk winds in an effort to constrain the physics underlying the highly-ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub-classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically-driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectro...

  20. Accretion Disk Outflows from Compact Object Mergers

    Science.gov (United States)

    Metzger, Brian

    nuclear reaction network along characteristic Lagrangian trajectories. Results of these calculations will be used to (1) reassess NS-NS/NS-BH mergers as an astrophysical source of heavy r-process nuclei; and (2) calculate the light curves of the optical transients (`kilonovae') powered by the radioactive decay. Separate work will assess the effects that neutrino irradiation from a long-lived neutron star remnant has on the electron fraction of the disk outflows. The strong contrast between the opacities of proton- and neutron-rich matter imply that the presence and lifetime of such a remnant could be imprinted on the kilonova emission. Our investigation sheds light on the central engines of GRBs and other high-energy transients and hence is relevant to NASA's Swift, MAXI, and Fermi missions. Our results will also impact the interpretation of future observations of supernovae and their galactic environments with the Hubble Space Telescope (HST). Our results will also impact follow-up observations of kilonovae, maximizing the impact of HST to constrain the key open questions such as the progenitors of gamma-ray bursts and the origin of r-process nuclei.

  1. New results from a survey of galactic outflows in nearby active galactic nuclei

    Directory of Open Access Journals (Sweden)

    S. Veilleux

    2002-01-01

    Full Text Available Se presentan resultados recientes de un levantamiento multifrecuencia de ujos espacialmente resueltos en galaxias activas cercanas. Se combinan datos espectrosc opicos opticos de Fabry-Perot y de rendija larga con im agenes del VLA (siglas en ingl es de \\Very Large Array" y de ROSAT (siglas en alem an de \\Roentgen Satel- lit", cuando disponibles, para estudiar las componentes gaseosas tibias, relativistas y calientes involucradas en el ujo. Se pone enfasis en objetos que contienen ujos de angulo amplios y escala gal actica, pero tambi en que muestran evidencia de fen omenos tipo jet colimado a longitudes de ondas de radio y opticas (p.ej., Circi- nus, NGC 4388, y con menor intensidad NGC 2992. Nuestros resultados se comparan con las predicciones publicadas de modelos de vientos t ermicos impulsados por jets.

  2. Galactic bulges

    CERN Document Server

    Peletier, Reynier; Gadotti, Dimitri

    2016-01-01

    This book consists of invited reviews on Galactic Bulges written by experts in the field. A central point of the book is that, while in the standard picture of galaxy formation a significant amount of the baryonic mass is expected to reside in classical bulges, the question what is the fraction of galaxies with no classical bulges in the local Universe has remained open. The most spectacular example of a galaxy with no significant classical bulge is the Milky Way. The reviews of this book attempt to clarify the role of the various types of bulges during the mass build-up of galaxies, based on morphology, kinematics, and stellar populations, and connecting their properties at low and high redshifts. The observed properties are compared with the predictions of the theoretical models, accounting for the many physical processes leading to the central mass concentration and their destruction in galaxies. This book serves as an entry point for PhD students and non-specialists and as a reference work for researchers...

  3. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    Science.gov (United States)

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows). PMID:25810204

  4. From nearby low-mass protostars to high redshift starbursts: protostellar outflows tracing the IMF

    Science.gov (United States)

    Kristensen, Lars E.; Bergin, Edwin

    2015-08-01

    Embedded low-mass protostars are notoriously difficult to observe even in the nearest Galactic high-mass clusters where they outnumber the high-mass protostars by orders of magnitude. Thus, without a good tracer of the low-mass population, we do not have a good handle on the shape of the initial (core) mass function, leaving little hope for extrapolating to extragalactic regions where we will never have neither the sensitivity nor the resolution to directly observe this population. A good tracer of the low-mass population is needed.One such physical tracer is outflows. Outflow emission is directly proportional to envelope mass, and outflows are predominantly active during the deeply embedded phases of star formation. What is required for this method to work is species and transitions tracing outflows uniquely such that any signal is not diluted by the surrounding cloud, such as certain methanol transitions, water, high-J CO (J > 10).I will present a statistical model of a forming high-mass cluster. The model includes what we currently know about Galactic high-mass clusters and incorporates outflow emission from low-mass protostars. The latter component is obtained from observations of tens of nearby embedded low-mass protostellar outflows in the above-mentioned tracers. The model is benchmarked against ALMA and Herschel-HIFI observations of Galactic clusters proving the concept, and preliminary extrapolations to the extragalactic regime are presented. With this new probe, and traditional probes of the distant star formation which predominantly trace high mass stars, we will be able to explore the IMF in starburst galaxies from low to high redshift.

  5. Mediterranean Outflow Mixing and Dynamics

    Science.gov (United States)

    Price, James F.; O'Neil Baringer, Molly; Lueck, Rolf G.; Johnson, Gregory C.; Ambar, Isabel; Parrilla, Gregorio; Cantos, Alain; Kennelly, Maureen A.; Sanford, Thomas B.

    1993-02-01

    The Mediterranean Sea produces a salty, dense outflow that is strongly modified by entrainment as it first begins to descend the continental slope in the eastern Gulf of Cadiz. The current accelerates to 1.3 meters per second, which raises the internal Froude number above 1, and is intensely turbulent through its full thickness. The outflow loses about half of its density anomaly and roughly doubles its volume transport as it entrains less saline North Atlantic Central water. Within 100 kilometers downstream, the current is turned by the Coriolis force until it flows nearly parallel to topography in a damped geostrophic balance. The mixed Mediterranean outflow continues westward, slowly descending the continental slope until it becomes neutrally buoyant in the thermocline where it becomes an important water mass.

  6. How supernova explosions power galactic winds

    Science.gov (United States)

    Creasey, Peter; Theuns, Tom; Bower, Richard G.

    2013-03-01

    Feedback from supernovae is an essential aspect of galaxy formation. In order to improve subgrid models of feedback, we perform a series of numerical experiments to investigate how supernova explosions shape the interstellar medium (ISM) in a disc galaxy and power a galactic wind. We use the FLASH hydrodynamic code to model a simplified ISM, including gravity, hydrodynamics, radiative cooling above 104 K and star formation that reproduces the Kennicutt-Schmidt relation. By simulating a small patch of the ISM in a tall box perpendicular to the disc, we obtain subparsec resolution allowing us to resolve individual supernova events. The hot interiors of supernova explosions combine into larger bubbles that sweep-up the initially hydrostatic ISM into a dense, warm cloudy medium, enveloped by a much hotter and tenuous medium, all phases in near pressure equilibrium. The unbound hot phase develops into an outflow with wind speed increasing with distance as it accelerates from the disc. We follow the launch region of the galactic wind, where hot gas entrains and ablates warm ISM clouds leading to significantly increased mass loading of the flow, although we do not follow this material as it interacts with the galactic halo. We run a large grid of simulations in which we vary gas surface density, gas fraction and star formation rate in order to investigate the dependencies of the mass loading, β equiv dot{M}_wind/dot{M}_star. In the cases with the most effective outflows, we observe β = 4; however, in other cases we find β ≪ 1. We find that outflows are more efficient in discs with lower surface densities or gas fractions. A simple model in which the warm cloudy medium is the barrier that limits the expansion of the blast wave reproduces the scaling of outflow properties with disc parameters at high star formation rates. We extend the scaling relations derived from an ISM patch to infer an effective mass loading for a galaxy with an exponential disc, finding that the

  7. Spin properties of supermassive black holes with powerful outflows

    Science.gov (United States)

    Daly, Ruth. A.

    2016-05-01

    Relationships between beam power and accretion disc luminosity are studied for a sample of 55 high excitation radio galaxies (HERG), 13 low excitation radio galaxies (LERG), and 29 radio loud quasars (RLQ) with powerful outflows. The ratio of beam power to disc luminosity tends to be high for LERG, low for RLQ, and spans the full range of values for HERG. Writing general expressions for the disc luminosity and beam power and applying the empirically determined relationships allows a function that parametrizes the spins of the holes to be estimated. Interestingly, one of the solutions that is consistent with the data has a functional form that is remarkably similar to that expected in the generalized Blandford-Znajek model with a magnetic field that is similar in form to that expected in magnetically arrested disk (MAD) and advection-dominated accretion flow (ADAF) models. Values of the spin function, obtained independent of specific outflow models, suggest that spin and active galactic nucleus type are not related for these types of sources. The spin function can be used to solve for black hole spin in the context of particular outflow models, and one example is provided.

  8. The Anisotropic Geometrodynamics For Cosmology

    Science.gov (United States)

    Siparov, Sergey V.

    2009-05-01

    The classical geometrodynamics (GRT) and its modern features based on the use of the Fridman-Robertson-Walker type metrics are still unable to explain several important issues of extragalactic observations like flat rotation curves of the spiral galaxies, Tully-Fisher law, globular clusters behavior in comparisson to that of the stars belonging to the galactic plane etc. The chalenging problem of the Universe expansion acceleration stemming from the supernovae observations demands the existence of the repulsion forces which brings one to the choice between the cosmological constant and some quintessence. The popular objects of discussion are now still dark (matter and energy), nevertheless, they are supposed to correspond to more than 95% of the Universe which seems to be far from satisfactory. According to the equivalence principle we can not experimentally distinguish between the inertial forces and the gravitational ones. Since there exist the inertial forces depending on velocity (Coriolis), it seems plausible to explore the velocity dependent gravitational forces. From the mathematical point of view it means that we should use the anisotropic metric. It immediately turns out that the expression for the Einstein-Hilbert action changes in a natural way - contrary to the cases of f(R)-theories, additional scalar fields, arbitrary MOND functions etc.. We use the linear approximation for the metric and derive the generalized geodesics and the equation for the gravity force that contains not only the Newton-Einstein term. The relation between the obtained results and those of Lense-Thirring approach are discussed. The resulting anisotropic geometrodynamics includes all the results of the GRT and is used to give the explanation to the problems mentioned above. One of the impressive consequences is the possibility to explain the observed Hubble red shift not by the Doppler effect as usually but by the gravitational red shift originating from the metric anisotropy.

  9. Radiation pressure from massive star clusters as a launching mechanism for super-galactic winds

    OpenAIRE

    Murray, Norman; Ménard, Brice; Thompson, Todd A.

    2010-01-01

    Galactic outflows of low ionization, cool gas are ubiquitous in local starburst galaxies, and in the majority of galaxies at high redshift. How these cool outflows arise is still in question. Hot gas from supernovae has long been suspected as the primary driver, but this mechanism suffers from its tendency to destroy the cool gas as the latter is accelerated. We propose a modification of the supernova scenario that overcomes this difficulty. Star formation is observed to take place in cluster...

  10. Molecular outflows in starburst nuclei

    CERN Document Server

    Roy, Arpita; Sharma, Prateek; Shchekinov, Yuri

    2016-01-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with $N_{OB}\\ge 10^5$ (corresponding to a star formation rate (SFR)$\\ge 1$ M$_{\\odot}$ yr$^{-1}$ in the nuclear region), in a stratified disk with mid-plane density $n_0\\sim 200\\hbox{--}1000$ cm$^{-3}$ and scale height $z_0\\ge 200 (n_0/10^2 \\, {\\rm cm}^{-3})^{-3/5}$ pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is $\\ge 10^7$ M$_\\odot$ at a distance of a few hundred pc, with a speed of several tens of km s$^{-1}$. We show that a SFR surface density of $10 \\le \\Sigma_{SFR} \\le 50$ M$_\\odot$ yr$^{-1}$ kpc$^{-2}$ favours the production of molecular outflows, consistent with observed values.

  11. Molecular outflows in starburst nuclei

    Science.gov (United States)

    Roy, Arpita; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-08-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with NOB ≥ 105 (corresponding to a star formation rate (SFR)≥1 M⊙ yr-1 in the nuclear region), in a stratified disk with mid-plane density n0 ˜ 200-1000 cm-3 and scale height z0 ≥ 200(n0/102 cm-3)-3/5 pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is ≥107 M⊙ at a distance of a few hundred pc, with a speed of several tens of km s-1. We show that a SFR surface density of 10 ≤ ΣSFR ≤ 50 M⊙ yr-1 kpc-2 favours the production of molecular outflows, consistent with observed values.

  12. Knowledge Outflows from Foreign Subsidiaries

    DEFF Research Database (Denmark)

    Perri, Alessandra; Andersson, Ulf

    This paper analyzes the MNC subsidiaries’ trade-off between the need for knowledge creation and the need for knowledge protection, and relates it to the extent of knowledge outflows generated within the host location. Combining research in International Business with Social Theory, we find that s...

  13. High Velocity Outflows in Quasars

    CERN Document Server

    Hidalgo, P R; Nestor, D; Shields, J; Hidalgo, Paola Rodriguez; Hamann, Fred; Nestor, Daniel; Shields, Joseph

    2007-01-01

    High velocity (HV) outflows are an important but poorly understood aspect of quasar/SMBH evolution. Outflows during the luminous accretion phase might play a critical role in "unveiling" young dusty AGN and regulating star formation in the host galaxies. Most quasar studies have focussed on the broad absorption lines (BALs). We are involved in a program to study a nearly unexplored realm of quasar outflow parameter space: HV winds with v>10,000 km/s up to v~0.2c but small velocity dispersions (narrow absorption lines), such that (Delta v)/v << 1. Narrow-line HV flows merit specific attention because they complement the BAL work and pose unique challenges for models of the wind acceleration, mass loss rates, launch radii, geometry, etc. We have selected the brightest quasars at 1.8outflow lines (CIV 1548 A) in existing SDSS spectra and followed up with monitoring observations to i) characterize, for the first time, the variability in a sample of absorbers spanning a ...

  14. PROBING THE FERMI BUBBLES IN ULTRAVIOLET ABSORPTION: A SPECTROSCOPIC SIGNATURE OF THE MILKY WAY'S BICONICAL NUCLEAR OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Andrew J.; Bordoloi, Rongmon; Hernandez, Svea; Tumlinson, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Savage, Blair D.; Wakker, Bart P. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Lockman, Felix J. [National Radio Astronomy Observatory, P.O. Box 2, Rt. 28/92, Green Bank, WV 24944 (United States); Jenkins, Edward B.; Bowen, David V. [Princeton University Observatory, Princeton, NJ 08544 (United States); Bland-Hawthorn, Joss [Institute of Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Kim, Tae-Sun [Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34143 Trieste (Italy); Benjamin, Robert A., E-mail: afox@stsci.edu [Department of Physics, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190 (United States)

    2015-01-20

    Giant lobes of plasma extend ≈55° above and below the Galactic center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity of the outflowing gas within these regions, targeting the quasar PDS 456 (ℓ, b = 10.°4, +11.°2). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v {sub LSR} = –235 and +250 km s{sup –1}, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic center. We develop simple kinematic biconical outflow models that can explain the observed profiles with an outflow velocity of ≳900 km s{sup –1} and a full opening angle of ≈110° (matching the X-ray bicone). This indicates Galactic center activity over the last ≈2.5-4.0 Myr, in line with age estimates of the Fermi Bubbles. The observations illustrate the use of UV spectroscopy to probe the properties of swept-up gas venting into the Fermi Bubbles.

  15. Gemini GMOS and WHT SAURON integral-field spectrograph observations of the AGN-driven outflow in NGC 1266

    NARCIS (Netherlands)

    Davis, Timothy A.; Krajnovic, Davor; McDermid, Richard M.; Bureau, Martin; Sarzi, Marc; Nyland, Kristina; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2012-01-01

    We use the Spectrographic Areal Unit for Research on Optical Nebulae and Gemini Multi-Object Spectrograph integral-field spectrographs to observe the active galactic nucleus (AGN) powered outflow in NGC?1266. This unusual galaxy is relatively nearby (D = 30?Mpc), allowing us to investigate the proce

  16. PROBING THE FERMI BUBBLES IN ULTRAVIOLET ABSORPTION: A SPECTROSCOPIC SIGNATURE OF THE MILKY WAY'S BICONICAL NUCLEAR OUTFLOW

    International Nuclear Information System (INIS)

    Giant lobes of plasma extend ≈55° above and below the Galactic center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity of the outflowing gas within these regions, targeting the quasar PDS 456 (ℓ, b = 10.°4, +11.°2). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v LSR = –235 and +250 km s–1, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic center. We develop simple kinematic biconical outflow models that can explain the observed profiles with an outflow velocity of ≳900 km s–1 and a full opening angle of ≈110° (matching the X-ray bicone). This indicates Galactic center activity over the last ≈2.5-4.0 Myr, in line with age estimates of the Fermi Bubbles. The observations illustrate the use of UV spectroscopy to probe the properties of swept-up gas venting into the Fermi Bubbles

  17. Probing the Fermi Bubbles in Ultraviolet Absorption: A Spectroscopic Signature of the Milky Way's Biconical Nuclear Outflow

    CERN Document Server

    Fox, Andrew J; Savage, Blair D; Lockman, Felix J; Jenkins, Edward B; Wakker, Bart P; Bland-Hawthorn, Joss; Hernandez, Svea; Kim, Tae-Sun; Benjamin, Robert A; Bowen, David V; Tumlinson, Jason

    2014-01-01

    Giant lobes of plasma extend 55 degrees above and below the Galactic Center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves (the WMAP haze) and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity structure of the outflowing gas within these regions, targeting the quasar PDS 456 (Galactic coordinates l,b=10.4, +11.2 degrees). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v_LSR=-235 and +250 km/s, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic Center. We develop simple kinematic biconical outflow models that can explain these observed profiles with an outflow velocity of ~900 km/s and a full opening angl...

  18. Subparsec-scale dynamics of a dusty gas disk exposed to anisotropic AGN radiation with frequency-dependent radiative transfer

    CERN Document Server

    Namekata, Daisuke

    2016-01-01

    We explore the gas dynamics near the dust sublimation radius of active galactic nucleus (AGN). For the purpose, we perform axisymmetric radiation hydrodynamic simulations of a dusty gas disk of radius $\\approx 1\\,\\mathrm{pc}$ around a supermassive black hole of mass $10^{7}\\,\\mathrm{M_{\\odot}}$ taking into account (1) anisotropic radiation of accretion disk, (2) X-ray heating by corona, (3) radiative transfer of infrared (IR) photons reemitted by dust, (4) frequency dependency of direct and IR radiations, and (5) separate temperatures for gas and dust. As a result, we find that for Eddington ratio $\\approx 0.77$, a nearly neutral, dense ($\\approx 10^{6\\operatorname{-}8}\\;\\mathrm{cm^{-3}}$), geometrically-thin ($h/r<0.06$) disk forms with a high velocity ($\\approx 200 \\sim 3000\\;\\mathrm{km/s}$) dusty outflow launched from the disk surface. The disk temperature is determined by the balance between X-ray heating and various cooling, and the disk is almost supported by thermal pressure. Contrary to \\citet{krol...

  19. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    International Nuclear Information System (INIS)

    The inner region of a luminous accretion disk is radiation-pressure-dominated. We estimate the surface temperature of a radiation-pressure-dominated accretion disk, Θ=cs2/r2ΩK2≪(H/r)2, which is significantly lower than that of a gas-pressure-dominated disk, Θ ∼ (H/r)2. This means that the outflow can be launched magnetically from the photosphere of the radiation-pressure-dominated disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow will probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation-pressure-dominated disk, which provides a natural explanation for the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated from the hot corona above the disk by the magnetic field and radiation force of the accretion disk. We find that with the help of the radiation force, the mass loss rate in the outflow is high, which leads to a slow outflow. This may be why the jets in radio-loud narrow-line Seyfert galaxies are in general mildly relativistic compared with those in blazars.

  20. X-Ray Evidence for the Accretion Disc-Outflow Connection in 3C 111

    Science.gov (United States)

    Tombesi, Frank; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.

    2011-01-01

    We present the spectral analysis of three Suzaku X-ray Imaging Spectrometer observations of 3C III requested to monitor the predicted variability of its ultrafast outflow on approximately 7 d time-scales. We detect an ionized iron emission line in the first observation and a blueshifted absorption line in the second, when the flux is approximately 30 per cent higher. The location of the material is constrained at less than 0.006 pc from the variability. Detailed modelling supports an identification with ionized reflection off the accretion disc at approximately 20-100rg from the black hole and a highly ionized and massive ultrafast outflow with velocity approximately 0.1c, respectively. The outflow is most probably accelerated by radiation pressure, but additional magnetic thrust cannot be excluded. The measured high outflow rate and mechanical energy support the claims that disc outflows may have a significant feedback role. This work provides the first direct evidence for an accretion disc-outflow connection in a radio-loud active galactic nucleus, possibly linked also to the jet activity.

  1. Anisotropic Stars II Stability

    CERN Document Server

    Dev, K; Dev, Krsna; Gleiser, Marcelo

    2003-01-01

    We investigate the stability of self-gravitating spherically symmetric anisotropic spheres under radial perturbations. We consider both the Newtonian and the full general-relativistic perturbation treatment. In the general-relativistic case, we extend the variational formalism for spheres with isotropic pressure developed by Chandrasekhar. We find that, in general, when the tangential pressure is greater than the radial pressure, the stability of the anisotropic sphere is enhanced when compared to isotropic configurations. In particular, anisotropic spheres are found to be stable for smaller values of the adiabatic index $\\gamma$.

  2. The gaseous environments of quasars: outflows, feedback & cold mode accretion

    Science.gov (United States)

    Chen, Chen

    2016-01-01

    We are interested in the early stages of massive galaxy formation at high redshifts, when cold mode accretion and outflows that drive galaxy-scale blowouts and feedback are expected to occur. It is quite possible that infall (e.g. cold mode accretion) and outflow (e.g. a blowout) occur together, leading to complex gas structures. We are conducting a study of rich complexes of narrow CIV absorption lines to find direct evidence for cold mode accretion and gaseous fragments shredded and dispersed by powerful outflows. Study of these rich complexes will provide us critical information of gas, such as velocity, ionization, metallicity, column density, kinetic energy, etc. The information could help us to understand the gas origins. We search SDSS, VLT and Keck archives for quasars with complex multi-component CIV systems or/and strong infalling systems. We obtain particular interesting results for the quasar Q0119-046. The spectra show rich infalling and partial covering complexes. The electron density of the gas is ~103.4 cm-3, and the gas is at a distance ~3.6 kpc from the central source. The gas is metal poor and seems to be infalling at the speed ~70 km/s into the galaxy. And it appears to partially cover the continuum source, requiring absorber size scales less than 0.01 pc. This result for very small clouds on galactic ($>$ kpc) scales is unusual but not unprecedented. It may provide evidence that the clouds are fragments from a shredded cloud, dispersed by an unseen high-speed quasar-driven outflow.

  3. Giant Magnetized Outflows from the Centre of the Milky Way

    CERN Document Server

    Carretti, E; Staveley-Smith, L; Haverkorn, M; Purcell, C; Gaensler, B M; Bernardi, G; Kesteven, M J; Poppi, S; 10.1038/nature11734

    2013-01-01

    The nucleus of the Milky Way is known to harbour regions of intense star formation activity as well as a super-massive black hole. Recent Fermi space telescope observations have revealed regions of \\gamma-ray emission reaching far above and below the Galactic Centre, the so-called Fermi bubbles. It is uncertain whether these were generated by nuclear star formation or by quasar-like outbursts of the central black hole and no information on the structures' magnetic field has been reported. Here we report on the detection of two giant, linearly-polarized radio Lobes, containing three ridge-like sub-structures, emanating from the Galactic Centre. The Lobes each extend ~60 deg, bear a close correspondence to the Fermi bubbles, are located in the Galactic bulge, and are permeated by strong magnetic fields of up to 15 \\mu G. Our data signal that the radio Lobes originate in a bi-conical, star-formation (rather than black hole) driven outflow from the Galaxy's central 200 pc that transports a massive magnetic energy...

  4. Radiation Hydrodynamic Simulations of Line-Driven Disk Winds for Ultra Fast Outflows

    OpenAIRE

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2015-01-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate origin of the ultra fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (~30 Schwarzschild radii). A wide range of black hole masses ($M_{\\rm BH}$) and Eddington ratios ($\\varepsilon$) was investigated to study conditions...

  5. Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum

    OpenAIRE

    Brook, C. B.; Governato, F.; Roskar, R.; Stinson, G.; Brooks, A. M.; J. Wadsley(McMaster Univ., Hamilton, Canada); Quinn, T.; Gibson, B.K.; Snaith, O.; Pilkington, K.; House, E.; Pontzen, A.

    2011-01-01

    Using high resolution, fully cosmological smoothed particle hydro-dynamical simulations of dwarf galaxies in a Lambda cold dark matter Universe, we show how baryons attain a final angular momentum distribution which allows pure disc galaxies to form. Blowing out substantial amounts of gas through supernovae and stellar winds, which is well supported observationally, is a key ingredient in forming bulgeless discs. We outline why galactic outflows preferentially remove low angular momentum mate...

  6. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    International Nuclear Information System (INIS)

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z –1, and the highest velocities (2000-3000 km s–1) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.

  7. Production of 56Ni in black hole-neutron star merger accretion disc outflows

    International Nuclear Information System (INIS)

    The likely outcome of a compact object merger event is a central black hole surrounded by a rapidly accreting torus of debris. This disc of debris is a rich source of element synthesis, the outcome of which is needed to predict electromagnetic counterparts of individual events and to understand the contribution of mergers to galactic chemical evolution. Here we study disc outflow nucleosynthesis in the context of a two-dimensional, time-dependent black hole-neutron star merger accretion disc model. We use two time snapshots from this model to examine the impact of the evolution of the neutrino fluxes from the disc on the element synthesis. While the neutrino fluxes from the early-time disc snapshot appear to favor neutron-rich outflows, by the late-time snapshot the situation is reversed. As a result we find copious production of 56Ni in the outflows. (paper)

  8. On the X-ray low- and high-velocity outflows in AGNs

    CERN Document Server

    Ramirez, J M

    2011-01-01

    An exploration of the relationship between bolometric luminosity and outflow velocity, for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v~100-1000 km/s, and on comparable but less stringent grounds the ultra-fast outflows (UFOs), v~0.03-0.3c. If comparable with the escape velocity of the system; the first is naturally located at distances of the dusty torus, ~ 1 pc, and the second at sub-parsec scales, ~ 0.01 pc, in accordance with large set of observational evidence existing in the literature. The presentation of this relationship might give us key clues for our understanding of the different physical mechanisms acting in the center of galaxies, the feedback process and its impact on the evolution of the host galaxy.

  9. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    Science.gov (United States)

    Veilleux, S.; Melendez, M.; Sturm, E.; Garcia-Carpio, J.; Fischer, J.; Gonzalez-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; deJong, J. A.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H.; Polisensky, E.

    2013-01-01

    We report the results from a systematic search for molecular (OH 119 micron) outflows with Herschel/PACS in a sample of 43 nearby (z galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 micron silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than-50 km/s, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (approx. 145 deg.) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km/s is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of approx. -1000 km/s are measured in several objects, but median outflow velocities are typically approx.-200 km/s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L(sub AGN)/L(sub solar)) => 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  10. Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z=1.4

    CERN Document Server

    Weiner, Benjamin J; Prochaska, Jason X; Newman, Jeffrey A; Cooper, Michael C; Bundy, Kevin; Conselice, Christopher J; Dutton, Aaron A; Faber, S M; Koo, David C; Lotz, Jennifer M; Rieke, G H; Rubin, K H R

    2008-01-01

    Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption line systems. We use a sample of 1406 galaxy spectra at z~1.4 from the DEEP2 redshift survey to show that blueshifted Mg II 2796, 2803 A absorption is ubiquitous in starforming galaxies at this epoch. This is the first detection of frequent outflowing galactic winds at z~1. The presence and depth of absorption are independent of AGN spectral signatures or galaxy morphology; major mergers are not a prerequisite for driving a galactic wind from massive galaxies. Outflows are found in coadded spectra of galaxies spanning a range of 30x in stellar mass and 10x in star formation rate (SFR), calibrated from K-band and from MIPS IR fluxes. The outflows have column densities of order N_H ~ 10^20 cm^-2 and characteristic velocities of ~ 300-500 km/sec, with absorption seen out to 1000 km/sec in the most massive, highest SFR galaxi...

  11. Galactic cosmic ray propagation models using Picard

    CERN Document Server

    Kissmann, Ralf; Strong, Andrew W

    2015-01-01

    We present results obtained from our newly developed Galactic cosmic-ray transport code PICARD, that solves the cosmic-ray transport equation. This code allows for the computation of cosmic-ray spectra and the resulting gamma-ray emission. Relying on contemporary numerical solvers allows for efficient computation of models with deca-parsec resolution. PICARD can handle locally anisotropic spatial diffusion acknowledging a full diffusion tensor. We used this framework to investigate the transition from axisymmetric to spiral-arm cosmic-ray source distributions. Wherever possible we compare model predictions with constraining observables in cosmic-ray astrophysics.

  12. Absorption-line measurements of AGN outflows

    Science.gov (United States)

    Fields, Dale L.

    Investigations into the elemental abundances in two nearby active galaxies, the narrow-line Seyfert 1 Markarian 1044 and the Seyfert 1 Markarian 279, are reported. Spectra from three space-based observatories HST, FUSE, and CHANDRA, are used to measure absorption lines in material outflowing from the nucleus. I make multi-wavelength comparisons to better convert the ionic column densities into elemental column densities which can then be used to determine abundances (metallicities). Narrow-line Seyfert 1 galaxies are known to have extreme values of a number of properties compared to active galactic nuclei (AGNs) as a class. In particular, emission-line studies have suggested that NLS1s are unusually metal-rich compared to broad-line AGNs of comparable luminosity. To test these suggestions I perform absorption-line studies on the NLS1 Markarian 1044, a nearby and bright AGN. I use lines of H I, C IV, N V, and O VI to properly make the photoionization correction through the software Cloudy and determine abundances of Carbon, Nitrogen and Oxygen. I find two results. The first is that Markarian 1044 has a bulk metallicity greater than five times solar. The second is that the N/C ratio in Markarian 1044 is consistent with a solar mixture. This is in direct contradiction of extrapolations from local H II regions which state N/ C should scale with bulk metallicity. This implies a different enrichment history in Markarian 1044 than in the Galactic disk. I also report discovery of three new low-redshift Lya forest lines with log N HI >= 12:77 in the spectrum of Markarian 1044. This number is consistent with the 2.6 expected Lya forest lines in the path length to Markarian 1044. I also investigate the CHANDRA X-ray spectrum of Markarian 279, a broad-line Seyfert 1. I use a new code, PHASE, to self-consistently model the entire absorption spectrum simultaneously. Using solely the X-ray spectrum I am able to determine the physical parameters of this absorber to a degree only

  13. Scaling Relations of Starburst-Driven Galactic Winds

    CERN Document Server

    Tanner, Ryan; Heitsch, Fabian

    2016-01-01

    Using synthetic absorption lines generated from 3D hydro-dynamical simulations we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations until the scaling relations flatten abruptly at a point set by the mass loading of the starburst. Below this point the scaling relation depends on the temperature regime being probed by the absorption line, not on the mass loading. The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas is four to five times lower than the average velocity of the hottest gas, with the difference in velocity between the neutral and ionized gas increasing with gas ionization. Thus, absorption lines of neutral or low ionized gas will underestimate the outflow velocity of hot gas, severely underestimating outflow energetics.

  14. Narrow UV Absorption Line Outflows from Quasars

    CERN Document Server

    Hamann, Fred; Hidalgo, Paola Rodriguez; Capellupo, Daniel

    2012-01-01

    Narrow absorption line (NAL) outflows are an important yet poorly understood part of the quasar outflow phenomenon. We discuss one particular NAL outflow that has high speeds, time variability, and moderate ionizations like typical BAL flows, at an estimated location just ~5 pc from the quasar. It also has a total column density and line widths (internal velocity dispersions) ~100 times smaller than BALs, with no substantial X-ray absorption. We argue that radiative shielding (in the form of an X-ray/warm absorber) is not critical for the outflow acceleration and that the moderate ionizations occur in dense substructures that have an overall small volume filling factor in the flow. We also present new estimates of the overall incidence of quasar outflow lines; e.g., ~43% of bright quasars have a C IV NAL outflow while ~68% have a C IV outflow line of any variety (NAL, BAL, or mini-BAL).

  15. CO mapping of bipolar outflows

    International Nuclear Information System (INIS)

    We present CO J =2→1 mapping of the high velocity outflow zones NGC 1333, Cep A, K3-50, S 88B, NGC 2264, and NGC 6334V, NGC 6334B, a compact region of CO emission located within a very much more extended star-forming complex. For most of these sources, the present observations represent the highest resolution mapping so far obtained, and this leads to a variety of new insights into their spatial structures and kinematics

  16. Hot Outflows in Galaxy Clusters

    CERN Document Server

    Kirkpatrick, C C

    2015-01-01

    The gas-phase metallicity distribution has been analyzed for the hot atmospheres of 29 galaxy clusters using {\\it Chandra X-ray Observatory} observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the "iron radius") and jet power is found with the form $R_{\\rm Fe} \\propto P_{\\rm jet}^{0.45}$. The estimated outflow rates are typically tens of solar masses per year but exceed $100 ~\\rm M_\\odot ~yr^{-1}$ in the most powerful AGN. The outflow rates are 10% to 20% of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at ...

  17. Averaging anisotropic cosmologies

    International Nuclear Information System (INIS)

    We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of anisotropic pressure-free models. Adopting the Buchert scheme, we recast the averaged scalar equations in Bianchi-type form and close the standard system by introducing a propagation formula for the average shear magnitude. We then investigate the evolution of anisotropic average vacuum models and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. The presence of nonzero average shear in our equations also allows us to examine the constraints that a phase of backreaction-driven accelerated expansion might put on the anisotropy of the averaged domain. We close by assessing the status of these and other attempts to define and calculate 'average' spacetime behaviour in general relativity

  18. Anisotropic Metamaterial Optical Fibers

    CERN Document Server

    Pratap, Dheeraj; Pollock, Justin G; Iyer, Ashwin K

    2014-01-01

    Internal physical structure can drastically modify the properties of waveguides: photonic crystal fibers are able to confine light inside a hollow air core by Bragg scattering from a periodic array of holes, while metamaterial loaded waveguides for microwaves can support propagation at frequencies well below cutoff. Anisotropic metamaterials assembled into cylindrically symmetric geometries constitute light-guiding structures that support new kinds of exotic modes. A microtube of anodized nanoporous alumina, with nanopores radially emanating from the inner wall to the outer surface, is a manifestation of such an anisotropic metamaterial optical fiber. The nanopores, when filled with a plasmonic metal such as silver or gold, greatly increase the electromagnetic anisotropy. The modal solutions in anisotropic circular waveguides can be uncommon Bessel functions with imaginary orders.

  19. The connection between AGN-driven dusty outflows and the surrounding environment

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.

    2016-04-01

    Significant reservoirs of cool gas are observed in the circumgalactic medium (CGM) surrounding galaxies. The CGM is also found to contain substantial amounts of metals and dust, which require some transport mechanism. We consider AGN (active galactic nucleus) feedback-driven outflows based on radiation pressure on dust. Dusty gas is ejected when the central luminosity exceeds the effective Eddington luminosity for dust. We obtain that a higher dust-to-gas ratio leads to a lower critical luminosity, implying that the more dusty gas is more easily expelled. Dusty outflows can reach large radii with a range of velocities (depending on the outflowing shell configuration and the ambient density distribution) and may account for the observed CGM gas. In our picture, dust is required in order to drive AGN feedback, and the preferential expulsion of dusty gas in the outflows may naturally explain the presence of dust in the CGM. On the other hand, the most powerful AGN outflow events can potentially drive gas out of the local galaxy group. We further discuss the effects of radiation pressure of the central AGN on satellite galaxies. AGN radiative feedback may therefore have a significant impact on the evolution of the whole surrounding environment.

  20. Unravelling the complex structure of AGN-driven outflows: II. Photoionization and energetics

    CERN Document Server

    Karouzos, Marios; Bae, Hyun-Jin

    2016-01-01

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs) and present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph IFU data of 6 local (z<0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence that connect the extreme kinematics of the ionized gas with the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that from 30% up to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially i...

  1. The connection between AGN-driven dusty outflows and the surrounding environment

    CERN Document Server

    Ishibashi, W

    2016-01-01

    Significant reservoirs of cool gas are observed in the circumgalactic medium (CGM) surrounding galaxies. The CGM is also found to contain substantial amounts of metals and dust, which require some transport mechanism. We consider AGN (active galactic nucleus) feedback-driven outflows based on radiation pressure on dust. Dusty gas is ejected when the central luminosity exceeds the effective Eddington luminosity for dust. We obtain that a higher dust-to-gas ratio leads to a lower critical luminosity, implying that the more dusty gas is more easily expelled. Dusty outflows can reach large radii with a range of velocities (depending on the outflowing shell configuration and the ambient density distribution) and may account for the observed CGM gas. In our picture, dust is required in order to drive AGN feedback, and the preferential expulsion of dusty gas in the outflows may naturally explain the presence of dust in the CGM. On the other hand, the most powerful AGN outflow events can potentially drive gas out of ...

  2. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  3. Anisotropic Weyl invariance

    CERN Document Server

    Pérez-Nadal, Guillem

    2016-01-01

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates "scaling like time" is generically greater than one. We propose the Cartesian product of two curved spaces, with the metric of each space parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry.

  4. Worker Inflow, Outflow, and Churning

    OpenAIRE

    Ilmakunnas, Pekka; Maliranta, Mika

    2003-01-01

    Linked employer-employee data from the Finnish business sector is used in an analysis of worker turnover. The data is an unbalanced panel with over 219 000 observations in the years 1991-97. The churning (excess worker turnover), worker inflow (hiring), and worker outflow (separation) rates are explained by various plant and employee characteristics in type 2 Tobit models where the explanatory variables can have a different effect on the probability of the flow rates to be non-zero and on the...

  5. Bipolar Outflows and the Evolution of Stars

    OpenAIRE

    Frank, Adam

    1998-01-01

    Hypersonic bipolar outflows are a ubiquitous phenomena associated with both young and highly evolved stars. Observations of Planetary Nebulae, the nebulae surrounding Luminous Blue Variables such as $\\eta$ Carinae, Wolf Rayet bubbles, the circumstellar environment of SN 1987A and Young Stellar Objects all revealed high velocity outflows with a wide range of shapes. In this paper I review the current state of our theoretical understanding of these outflows. Beginning with Planetary Nebulae con...

  6. Propeller-driven Outflows and Disk Oscillations

    OpenAIRE

    Romanova, M. M.; Ustyugova, G. V.; Koldoba, A. V.; Lovelace, R. V. E.

    2005-01-01

    We report the discovery of propeller-driven outflows in axisymmetric magnetohydrodynamic simulations of disk accretion to rapidly rotating magnetized stars. Matter outflows in a wide cone and is centrifugally ejected from the inner regions of the disk. Closer to the axis there is a strong, collimated, magnetically dominated outflow of energy and angular momentum carried by the open magnetic field lines from the star. The ``efficiency'' of the propeller may be very high in the respect that mos...

  7. Outflows, dusty cores, and a burst of star formation in the North America and Pelican nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Bally, John [Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Ginsburg, Adam [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Munchen (Germany); Probst, Ron [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii at Manoa, 640 North A' ohoku Place, Hilo, HI 96720 (United States); Shirley, Yancy L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Stringfellow, Guy S., E-mail: John.Bally@colorado.edu, E-mail: aginsburg@eso.org, E-mail: probst@noao.edu, E-mail: reipurth@ifa.hawaii.edu, E-mail: yshirley@as.arizona.edu, E-mail: Guy.Stringfellow@colorado.edu [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States)

    2014-12-01

    We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionization front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The 'Gulf of Mexico', located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M {sub ☉} BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An 'activity index' formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.

  8. Disc outflows and high-luminosity true type 2 AGN

    Science.gov (United States)

    Elitzur, Moshe; Netzer, Hagai

    2016-06-01

    The absence of intrinsic broad-line emission has been reported in a number of active galactic nuclei (AGN), including some with high Eddington ratios. Such `true type 2 AGN' are inherent to the disc-wind scenario for the broad-line region: broad-line emission requires a minimal column density, implying a minimal outflow rate and thus a minimal accretion rate. Here we perform a detailed analysis of the consequences of mass conservation in the process of accretion through a central disc. The resulting constraints on luminosity are consistent with all the cases where claimed detections of true type 2 AGN pass stringent criteria, and predict that intrinsic broad-line emission can disappear at luminosities as high as ˜4 × 1046 erg s-1 and any Eddington ratio, though more detections can be expected at Eddington ratios below ˜1 per cent. Our results are applicable to every disc outflow model, whatever its details and whether clumpy or smooth, irrespective of the wind structure and its underlying dynamics. While other factors, such as changes in spectral energy distribution or covering factor, can affect the intensities of broad emission lines, within this scenario they can only produce true type 2 AGN of higher luminosity then those prescribed by mass conservation.

  9. Disk Outflows and High-Luminosity True Type 2 AGN

    CERN Document Server

    Elitzur, Moshe

    2016-01-01

    The absence of intrinsic broad line emission has been reported in a number of active galactic nuclei (AGN), including some with high Eddington ratios. Such "true type 2 AGN" are inherent to the disk-wind scenario for the broad line region: Broad line emission requires a minimal column density, implying a minimal outflow rate and thus a minimal accretion rate. Here we perform a detailed analysis of the consequences of mass conservation in the process of accretion through a central disk. The resulting constraints on luminosity are consistent with all the cases where claimed detections of true type 2 AGN pass stringent criteria, and predict that intrinsic broad line emission can disappear at luminosities as high as about 4x$10^{46}$ erg s$^{-1}$ and any Eddington ratio, though more detections can be expected at Eddington ratios below about 1%. Our results are applicable to every disk outflow model, whatever its details and whether clumpy or smooth, irrespective of the wind structure and its underlying dynamics. ...

  10. Outflows and complex stellar kinematics in SDSS star forming galaxies

    CERN Document Server

    Cicone, Claudia; Marconi, Alessandro

    2016-01-01

    We investigate the properties of star formation-driven outflows by using a large spectroscopic sample of ~160,000 local "normal" star forming galaxies, drawn from the SDSS, spanning a wide range of star formation rates and stellar masses. The galaxy sample is divided into a fine grid of bins in the M_*-SFR parameter space, for each of which we produce a composite spectrum by stacking together the SDSS spectra of the galaxies contained in that bin. We exploit the high signal-to-noise of the stacked spectra to study the emergence of faint features of optical emission lines that may trace galactic outflows and would otherwise be too faint to detect in individual galaxy spectra. We adopt a novel approach that relies on the comparison between the line-of-sight velocity distribution (LoSVD) of the ionised gas (as traced by the [OIII]5007 and Halpha+[NII]6548,6583 emission lines) and the LoSVD of the stars, which are used as a reference tracing virial motions. Significant deviations of the gas kinematics from the st...

  11. HNCO enhancement by shocks in the L1157 molecular outflow

    CERN Document Server

    Rodriguez-Fernandez, Nemesio; Gueth, Frederic; Bachiller, Rafael

    2010-01-01

    The isocyanic acid (HNCO) presents an extended distribution in the centers of the Milky Way and the spiral galaxy IC342. Based on the morphology of the emission and the HNCO abundance with respect to H2, several authors made the hypothesis that HNCO could be a good tracer of interstellar shocks. Here we test this hypothesis by observing a well-known Galactic source where the chemistry is dominated by shocks. We have observed several transitions of HNCO towards L1157-mm and two positions (B1 and B2) in the blue lobe of the molecular outflow. The HNCO line profiles exhibit the same characteristics of other well-known shock tracers like CH3OH, H2CO, SO or SO2. HNCO, together with SO2 and OCS, are the only three molecules detected so far whose emission is much more intense in B2 than in B1, making these species valuable probes of chemical differences along the outflow. The HNCO abundance with respect to H2 is 0.4-1.8 10^-8 in B1 and 0.3-1 10^-7 in B2. These abundances are the highest ever measured, and imply an i...

  12. On the Newtonian anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Fazel, M.R.; Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Sciences, Tehran (Iran, Islamic Republic of)

    2015-06-15

    In this paper we are concerned with the effects of an anisotropic pressure on the boundary conditions of the anisotropic Lane-Emden equation and the homology theorem. Some new exact solutions of this equation are derived. Then some of the theorems governing the Newtonian perfect fluid star are extended, taking the anisotropic pressure into account. (orig.)

  13. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    B B Bhowmik; A Rajput

    2004-06-01

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  14. Anisotropic Ambient Volume Shading.

    Science.gov (United States)

    Ament, Marco; Dachsbacher, Carsten

    2016-01-01

    We present a novel method to compute anisotropic shading for direct volume rendering to improve the perception of the orientation and shape of surface-like structures. We determine the scale-aware anisotropy of a shading point by analyzing its ambient region. We sample adjacent points with similar scalar values to perform a principal component analysis by computing the eigenvectors and eigenvalues of the covariance matrix. In particular, we estimate the tangent directions, which serve as the tangent frame for anisotropic bidirectional reflectance distribution functions. Moreover, we exploit the ratio of the eigenvalues to measure the magnitude of the anisotropy at each shading point. Altogether, this allows us to model a data-driven, smooth transition from isotropic to strongly anisotropic volume shading. In this way, the shape of volumetric features can be enhanced significantly by aligning specular highlights along the principal direction of anisotropy. Our algorithm is independent of the transfer function, which allows us to compute all shading parameters once and store them with the data set. We integrated our method in a GPU-based volume renderer, which offers interactive control of the transfer function, light source positions, and viewpoint. Our results demonstrate the benefit of anisotropic shading for visualization to achieve data-driven local illumination for improved perception compared to isotropic shading. PMID:26529745

  15. Dynamics of Anisotropic Universes

    CERN Document Server

    Pérez, J

    2006-01-01

    We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in some precise sence.

  16. Energetic outflows from young stars

    International Nuclear Information System (INIS)

    In our galaxy, stars are born in clouds of gas, bodies so cold they do not emit any radiation at the visible wavelengths. Moreover, the clouds are permeated by cosmic dust, so that the visible radiation emitted by new stars is absorbed. Radiation at the wavelengths of infrared waves and the shortest radio waves penetrate these clouds. With the development of new telescopes and equipment for the detection of radiation at those wavelengths, astronomers are now able to explore the dark clouds where stars are born. A prime probe of the conditions within star-forming clouds has turned out to be the molecule carbon monoxide (CO). In interstellar molecular clouds, CO molecules emit radiation at a wavelength of 2.6 mm. The study of such radiation has recently revealed a new and intriguing phenomena closely associated with the birth and early evolution of stars. When certain stars are in the earliest stages of their life, they appear to be associated with violent outflows of mass. In a number of instances, molecular gas is found to be flowing outward from around newly formed stars in two supersonic streams 1800 apart. The origin and nature of these energetic outflows is a mystery. (SC)

  17. RADIATION PRESSURE FROM MASSIVE STAR CLUSTERS AS A LAUNCHING MECHANISM FOR SUPER-GALACTIC WINDS

    International Nuclear Information System (INIS)

    Galactic outflows of cool (∼104 K) gas are ubiquitous in local starburst galaxies and in most high-redshift galaxies. Hot gas from supernovae has long been suspected as the primary driver, but this mechanism suffers from its tendency to destroy the cool gas. We propose a modification of the supernova scenario that overcomes this difficulty. Star formation is observed to take place in clusters. We show that, for L* galaxies, the radiation pressure from clusters with Mcl ∼> 106 Msun is able to expel the surrounding gas at velocities in excess of the circular velocity vc of the disk galaxy. This cool gas travels above the galactic disk before supernovae erupt in the driving cluster. Once above the disk, the cool outflowing gas is exposed to radiation and hot gas outflows from the galactic disk, which in combination drive it to distances of ∼50 kpc. Because the radiatively driven clouds grow in size as they travel, and because the hot gas is more dilute at large distance, the clouds are less subject to destruction. Therefore, unlike wind-driven clouds, radiatively driven clouds can give rise to the metal absorbers seen in quasar spectra. We identify these cluster-driven winds with large-scale galactic outflows. The maximum cluster mass in a galaxy is an increasing function of the galaxy's gas surface density, so only starburst galaxies are able to drive cold outflows. We find the critical star formation rate for launching large-scale cool outflows to be Σ-dot*crit approx. 0.05 Msun yr-1 kpc-2, in good agreement with observations.

  18. Acceleration of petaelectronvolt protons in the Galactic Centre

    Science.gov (United States)

    HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2016-03-01

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  19. Molecular Hydrogen Outflows in W51

    OpenAIRE

    Hodapp, Klaus W.; Davis, Christopher J.

    2002-01-01

    We present the results of a deep search for the molecular hydrogen shock fronts associated with young stellar outflows in the giant molecular cloud and massive star forming region W51. A total of 14 outflows were identified, and a few of these were studied in detail with high-resolution imaging and spectroscopy.

  20. A Three Parsec-Scale Jet-Driven Outflow from Sgr A

    Science.gov (United States)

    Yusef-Zadeh, F.; Arendt, R.; Bushouse, H.; Cotton, W.; Haggard, D.; Pound, M. W.; Roberts, D. A.; Royster, M.; Wardle, M.

    2012-01-01

    The compact radio source Sgr A* is coincident with a 4x 10(exp 6) solar Mass black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high resolution radio continuum images of the central 3' and report a faint continuous linear structure centered on Sgr A*. This feature is rotated by 28 deg in PA with respect to the Galactic plane. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. In addition, the continuous linear feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, approx 75" from Sgr A*. The linear structure is best characterized by a mildly relativistic jet-driven outflow from Sgr A*, and an outflow rate 10(exp 6) solar M / yr. The near and far-sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for the origin of a 2" hole, the "minicavity", where disturbed kinematics, enhanced FeII/III line emission, and diffuse X-ray gas have been detected. The estimated kinetic luminosity of the outflow is approx 1.2 X 10(exp 41) erg/s which can produce the Galactic center X-ray flash that has recently been identified

  1. High velocity outflows in quasars

    Directory of Open Access Journals (Sweden)

    Paola Rodríguez Hidalgo

    2007-01-01

    Full Text Available Active Galactic Nuclei (AGN are believed to be powered by accretion onto a Super- Massive Black Hole (SMBH. In order to have material falling into the SMBH, angular momentum conservation requires a counter- part for this accretion that is fueling the SMBH in the AGN. Outows might play an essential role in active galactic nuclei. They show common occurance, both in quasars (30%-40% in optically selected quasars and Seyfert galaxies (approx. 60%, but might be ubiquitous if they subtend a small angular distance in the sky. Moreover, they bring information from the AGN inner regions, which is not accesible through other ways. Although for more than a decade models have included material outowing from an accretion disk around a SMBH, surprisingly there is no consensus in our understanding of basic properties like the acceleration mechanism(s, launch radii, mass loss rates, terminal velocities, etc. We are involved in a program to derive basic dynamical char- acteristics for some well-studied individual ows, and, in particular, we are interested in High Velocity (HV outows since they will present unique challenges for the above mentioned theoretical models.

  2. Fractures in anisotropic media

    Science.gov (United States)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  3. Anisotropic progressive photon mapping

    Science.gov (United States)

    Liu, XiaoDan; Zheng, ChangWen

    2014-01-01

    Progressive photon mapping solves the memory limitation problem of traditional photon mapping. It gives the correct radiance with a large passes, but it converges slowly. We propose an anisotropic progressive photon mapping method to generate high quality images with a few passes. During the rendering process, different from standard progressive photon mapping, we store the photons on the surfaces. At the end of each pass, an anisotropic method is employed to compute the radiance of each eye ray based on the stored photons. Before move to a new pass, the photons in the scene are cleared. The experiments show that our method generates better results than the standard progressive photon mapping in both numerical and visual qualities.

  4. Molecular anisotropic magnetoresistance

    OpenAIRE

    Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy

    2015-01-01

    Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by $3d$ transition-metal wires. We show that the gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symm...

  5. Diagnostics of AGN-driven Molecular Outflows in ULIRGs from Herschel-PACS Observations of OH at 119um

    CERN Document Server

    Spoon, H W W; Lebouteiller, V; Gonzalez-Alfonso, E; Bernard-Salas, J; Urrutia, T; Rigopoulou, D; Westmoquette, M S; Smith, H A; Afonso, J; Pearson, C; Cormier, D; Efstathiou, A; Borys, C; Verma, A; Etxaluze, M; Clements, D L

    2013-01-01

    We report on our observations of the 79 and 119um doublet transitions of OH for 24 local (z<0.262) ULIRGs observed with Herschel-PACS as part of the Herschel ULIRG Survey (HERUS). Some OH119 profiles display a clear P-Cygni shape and therefore imply outflowing OH gas, other profiles are predominantly in absorption or are completely in emission. We find that the relative strength of the OH emission component decreases as the silicate absorption increases. This locates the OH outflows inside the obscured nuclei. The maximum outflow velocities for our sources range from less than 100 to 2000 km/s, with 15/24 (10/24) sources showing OH absorption at velocities exceeding 700 km/s (1000 km/s). Three sources show maximum OH outflow velocities exceeding that of Mrk231. Since outflow velocities above 500-700 km/s are thought to require an active galactic nucleus (AGN) to drive them, about 2/3 of our ULIRG sample may host AGN-driven molecular outflows. This finding is supported by the correlation we find between the...

  6. Extremely Anisotropic Scintillations

    CERN Document Server

    Walker, Mark; Bignall, Hayley

    2008-01-01

    A small number of quasars exhibit interstellar scintillation on time-scales less than an hour; their scintillation patterns are all known to be anisotropic. Here we consider a totally anisotropic model in which the scintillation pattern is effectively one-dimensional. For the persistent rapid scintillators J1819+3845 and PKS1257-326 we show that this model offers a good description of the two-station time-delay measurements and the annual cycle in the scintillation time-scale. Generalising the model to finite anisotropy yields a better match to the data but the improvement is not significant and the two additional parameters which are required to describe this model are not justified by the existing data. The extreme anisotropy we infer for the scintillation patterns must be attributed to the scattering medium rather than a highly elongated source. For J1819+3845 the totally anisotropic model predicts that the particular radio flux variations seen between mid July and late August should repeat between late Au...

  7. Cluster magnetic fields from active galactic nuclei

    CERN Document Server

    Sutter, P M; Yang, H -Y

    2009-01-01

    Active galactic nuclei (AGN) found at the centers of clusters of galaxies are a possible source for weak cluster-wide magnetic fields. To evaluate this scenario, we present 3D adaptive mesh refinement MHD simulations of a cool-core cluster that include injection of kinetic, thermal, and magnetic energy via an AGN-powered jet. Using the MHD solver in FLASH 2, we compare several sub-resolution approaches that link the estimated accretion rate as measured on the simulation mesh to the accretion rate onto the central black hole and the resulting feedback. We examine the effects of magnetized outflows on the accretion history of the black hole and discuss the ability of these models to magnetize the cluster medium.

  8. Outflows Driven by Quasars in High-Redshift Galaxies with Radiation Hydrodynamics

    CERN Document Server

    Bieri, Rebekka; Rosdahl, Joakim; Wagner, Alexander Y; Silk, Joseph; Mamon, Gary A

    2016-01-01

    The quasar mode of Active Galactic Nuclei (AGN) in the high-redshift Universe is routinely observed in gas-rich galaxies together with large-scale AGN-driven winds. It is crucial to understand how photons emitted by the central AGN source couple to the ambient interstellar-medium to trigger large-scale outflows. By means of radiation-hydrodynamical simulations of idealised galactic discs, we study the coupling of photons with the multiphase galactic gas, and how it varies with gas cloud sizes, and the radiation bands included in the simulations, which are ultraviolet (UV), optical, and infrared (IR). We show how a quasar with a luminosity of $10^{46}$ erg/s can drive large-scale winds with velocities of $10^2-10^3$ km/s and mass outflow rates around $10^3$ M$_\\odot$/yr for times of order a few million years. Infrared radiation is necessary to efficiently transfer momentum to the gas via multi-scattering on dust in dense clouds. However, IR multi-scattering, despite being extremely important at early times, qu...

  9. ALMA observations of a candidate molecular outflow in an obscured quasar

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ai-Lei; Greene, Jenny E. [Department of Astrophysics, Princeton University, Princeton, NJ 08540 (United States); Zakamska, Nadia L. [Department of Physics and Astronomy, Bloomberg Center, Johns Hopkins University, Baltimore, MD 21218 (United States); Nesvadba, Nicole P. H. [Institut d' Astrophysique Spatiale, CNRS, Université Paris-Sud, Bat. 120-121, F-91405 Orsay (France)

    2014-08-01

    We present Atacama Large Millimeter/Submillimeter Array CO (1-0) and CO (3-2) observations of SDSS J135646.10+102609.0, an obscured quasar and ultra-luminous infrared galaxy with two merging nuclei and a known 20 kpc scale ionized outflow. The total molecular gas mass is M{sub mol}≈9{sub −6}{sup +19}×10{sup 8} M{sub ☉}, mostly distributed in a compact rotating disk at the primary nucleus (M{sub mol} ≈ 3 × 10{sup 8} M{sub ☉}) and an extended tidal arm (M{sub mol} ≈ 5 × 10{sup 8} M{sub ☉}). The tidal arm is one of the most massive molecular tidal features known; we suggest that it is due to the lower chance of shock dissociation in this elliptical/disk galaxy merger. In the spatially resolved CO (3-2) data, we find a compact (r ≈ 0.3 kpc) high-velocity (v ≈ 500 km s{sup –1}) redshifted feature in addition to the rotation at the N nucleus. We propose a molecular outflow as the most likely explanation for the high-velocity gas. The outflowing mass of M{sub mol} ≈ 7 × 10{sup 7} M{sub ☉} and the short dynamical time of t{sub dyn} ≈ 0.6 Myr yield a very high outflow rate of M-dot{sub mol}≈350 M{sub ☉} yr{sup –1} and can deplete the gas in a million years. We find a low star formation rate (<16 M{sub ☉} yr{sup –1} from the molecular content and <21 M{sub ☉} yr{sup –1} from the far-infrared spectral energy distribution decomposition) that is inadequate to supply the kinetic luminosity of the outflow ( E-dot ≈3×10{sup 43} erg s{sup –1}). Therefore, the active galactic nucleus (AGN), with a bolometric luminosity of 10{sup 46} erg s{sup –1}, likely powers the outflow. The momentum boost rate of the outflow ( p-dot /(L{sub bol}/c)≈3) is lower than typical molecular outflows associated with AGNs, which may be related to its compactness. The molecular and ionized outflows are likely two distinct bursts induced by episodic AGN activity which varies on a timescale of 10{sup 7} yr.

  10. Virgin Galactic explores CERN

    CERN Multimedia

    2016-01-01

    Virgin Galactic visited CERN with a group of future astronauts and Sir Richard Branson. During their visit the group was shown around various experiments, including the Globe, SM18, AMS and the CERN Control Centre.

  11. Outflows, Dusty Cores, and a Burst of Star Formation in the North America and Pelican Nebulae

    CERN Document Server

    Bally, John; Probst, Ron; Reipurth, Bo; Shirley, Yancy L; Stringfellow, Guy S

    2014-01-01

    We present observations of near-infrared 2.12 micro-meter molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000 / IC 5070 / W80 HII region are among the most active sites of on-going star formation in the Solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionization front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80 degrees. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The `Gulf of Mexico' located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen ...

  12. Effects of Comptonization By Outflowing Plasma in Compact X-ray Sources

    Science.gov (United States)

    Shrader, C. R.; Titarchuk, L. G.

    2003-12-01

    We describe our study of the effects outflowing plasma on the high-energy continuum spectra of accretion powered compact objects. The basic idea is that Thomson scattering of the photons from the central source entering the expanding flow experience a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c is the speed of light. We predict that the emergent spectrum should be closely related to the distribution of photons diffusing through the wind. To test this hypothesis, we have developed an analytical formulation for the emergent spectrum of a compact accretion driven system in a circumstellar wind environment, and performed model fitting on several Galactic X-ray binaries. Notably, Cygnus X-3 is which is widely believed to be characterized by hot, dense circumstellar winds provides the prototypical test case. Observational data from INTEGRAL and RXTE are included in our analysis. In addition to Cyg X-3, we have applied our model to several other well known X-ray binaries, for which the presence of wind outflow is not firmly established, but may nonetheless be present. We further consider the possibility that the well documented distortion of the pure power-law continuum above 10 keV, the so called "reflection bump", may in some cases be explained by the spectral softening effects of the outflow.

  13. CHANG-ES. VII. Magnetic Outflows from the Virgo Cluster Galaxy NGC 4388

    Science.gov (United States)

    Damas-Segovia, A.; Beck, R.; Vollmer, B.; Wiegert, T.; Krause, M.; Irwin, J.; Weżgowiec, M.; Li, J.; Dettmar, R.-J.; English, J.; Wang, Q. D.

    2016-06-01

    We investigate the effects of ram pressure on the ordered magnetic field of a galaxy hosting a radio halo and strong nuclear outflows. New radio images in total and polarized intensity of the edge-on Virgo galaxy NGC 4388 were obtained within the CHANG-ES EVLA project. The unprecedented noise level reached allows us to detect striking new features of the ordered magnetic field. The nuclear outflow extends far into the halo to about 5 kpc from the center and is spatially correlated with the {{H}}α and X-ray emission. For the first time, the southern outflow is detected. Above and below both spiral arms we find extended blobs of polarized emission with an ordered field oriented perpendicular to the disk. The synchrotron lifetime of the cosmic-ray electrons (CREs) in these regions yields a mean outflow velocity of 270+/- 70 {km} {{{s}}}-1, in agreement with a galactic wind scenario. The observed symmetry of the polarized halo features in NGC 4388 excludes a compression of the halo gas by the ram pressure of the intracluster medium (ICM). The assumption of equilibrium between the halo pressure and the ICM ram pressure yields an estimate of the ICM density that is consistent with both the ICM density derived from X-ray observations and the recent Planck Sunyaev–Zel’dovich measurements. The detection of a faint radio halo around cluster galaxies could thus be used for an estimate of ICM ram pressure.

  14. CHANG-ES VII: Magnetic outflows from the Virgo cluster galaxy NGC 4388

    CERN Document Server

    Damas-Segovia, Ancor; Vollmer, Bernd; Wiegert, Theresa; Krause, Marita; Irwin, Judith; Wezgowiec, Marek; Li, Jiang-Tao; Dettmar, Ralf-Jurgen; English, Jayanne; Wang, Q Daniel

    2016-01-01

    We investigate the effects of ram pressure on the ordered magnetic field of a galaxy hosting a radio halo and strong nuclear outflows. New radio images in total and polarized intensity of the edge-on Virgo galaxy NGC\\,4388 were obtained within the CHANG-ES EVLA project. The unprecedented noise level reached allows us to detect striking new features of the ordered magnetic field. The nuclear outflow extends far into the halo to about 5\\,kpc from the center and is spatially correlated with the $\\rm{H}\\alpha$ and X-ray emission. For the first time, the southern outflow is detected. Above and below both spiral arms we find extended blobs of polarized emission with an ordered field oriented perpendicular to the disk. The synchrotron lifetime of the cosmic ray electrons (CREs) in these regions yields a mean outflow velocity of $(270\\pm70)\\kms$, in agreement with a galactic wind scenario. The observed symmetry of the polarized halo features in NGC 4388 excludes a compression of the halo gas by the ram pressure of th...

  15. Accretion and plasma outflow from dissipationless discs

    OpenAIRE

    Bogovalov, Sergei; Kelner, Stanislav

    2008-01-01

    We consider an extreme case of disc accretion onto a gravitating centre when the viscosity in the disc is negligible. The angular momentum and the rotational energy of the accreted matter is carried out by a magnetized wind outflowing from the disc. The outflow of matter from the disc occurs due to the Blandford & Payne(1982) centrifugal mechanism. The disc is assumed to be cold. Accretion and outflow are connected by the conservation of the energy, mass and the angular momentum. The basic pr...

  16. Is there any evidence that ionized outflows quench star formation in type 1 quasars at z < 1?

    Science.gov (United States)

    Balmaverde, B.; Marconi, A.; Brusa, M.; Carniani, S.; Cresci, G.; Lusso, E.; Maiolino, R.; Mannucci, F.; Nagao, T.

    2016-01-01

    Aims: The aim of this paper is to test the basic model of negative active galactic nuclei (AGN) feedback. According to this model, once the central black hole accretes at the Eddington limit and reaches a certain critical mass, AGN driven outflows blow out gas, suppressing star formation in the host galaxy and self-regulating black hole growth. Methods: We consider a sample of 224 quasars selected from the Sloan Digital Sky Survey (SDSS) at zvelocity of the outflow, a trend previously reported in the literature for pure starburst galaxies. Conclusions: We conclude that the basic AGN negative feedback scenario seems not to agree with our results. Although we use a large sample of quasars, we did not find any evidence that the star formation rate is suppressed in the presence of AGN driven outflows on large scale. A possibility is that feedback is effective over much longer timescales than those of single episodes of quasar activity.

  17. Model anisotropic quantum Hall states

    OpenAIRE

    Qiu, R. -Z.; Haldane, F.D.M.; Wan, Xin; Yang, Kun; Yi, Su

    2012-01-01

    Model quantum Hall states including Laughlin, Moore-Read and Read-Rezayi states are generalized into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding anisotropic two- or multi-body Hamiltonians, and explicitly illustrate the existence of geometric degrees of in the fractional quantum Hall effect. These generalized model quantum Hall states can provide a good description of the quantum Hall system with anisotropic interactions. Some numeri...

  18. Hierarchical formation of bulgeless galaxies: Why outflows have low angular momentum

    CERN Document Server

    Brook, C B; Roskar, R; Stinson, G; Brooks, A; Wadsley, J; Quinn, T; Gibson, B K; Snaith, O; Pilkington, K; House, E

    2010-01-01

    Using high resolution, fully cosmological smoothed particle hydro-dynamical simulations of dwarf galaxies in a Lambda cold dark matter Universe, we show how baryons attain a final angular momentum distribution which allows pure disc galaxies to form. Blowing out substantial amounts of gas through supernovae and stellar winds, which is well supported observationally, is a key ingredient in forming bulgeless discs. We outline why galactic outflows preferentially remove low angular momentum material, and show that this is a natural result when structure forms in a cold dark matter cosmology. The driving factors are a) the mean angular momentum of accreted material increases with time, b) lower potentials at early times, c) the existence of an extended reservoir of high angular momentum gas which is not within star forming regions, meaning that only gas from the inner region (low angular momentum gas) is expelled and d) the tendency for outflows to follow the path of least resistance which is perpendicular to the...

  19. On the Relativistic anisotropic configurations

    CERN Document Server

    Shojai, F; Stepanian, A

    2016-01-01

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov (TOV) equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behaviour of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.

  20. Outflows in Sodium Excess Objects

    CERN Document Server

    Park, Jongwon; Yi, Sukyoung K

    2015-01-01

    van Dokkum and Conroy revisited the unexpectedly strong Na I lines at 8200 A found in some giant elliptical galaxies and interpreted it as evidence for unusually bottom-heavy initial mass function. Jeong et al. later found a large population of galaxies showing equally-extraordinary Na D doublet absorption lines at 5900 A (Na D excess objects: NEOs) and showed that their origins can be different for different types of galaxies. While a Na D excess seems to be related with the interstellar medium (ISM) in late-type galaxies, smooth-looking early-type NEOs show little or no dust extinction and hence no compelling sign of ISM contributions. To further test this finding, we measured the doppler components in the Na D lines. We hypothesized that ISM would have a better (albeit not definite) chance of showing a blueshift doppler departure from the bulk of the stellar population due to outflow caused by either star formation or AGN activities. Many of the late-type NEOs clearly show blueshift in their Na D lines, wh...

  1. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar; Yue, Yuanzheng

    2004-01-01

    Anisotropic glasses are obtained from uniaxial compressing and pulling of glass forming liquids above the transition temperature range. To freeze-in, at least partly the structural state of the flowing melt, cylindrical samples were subjected to a controlled cooling process under constant load...... differential scanning calorimetry (DSC) and dilatometry. The energy release and expansion-shrinkage behaviour of the glasses are investigated as a function of the applied deformation stress. Structural origins of the frozen-in birefringence induced by viscous flow are discussed and correlation between the...

  2. Anisotropically Inflating Universes

    CERN Document Server

    Barrow, J D; Barrow, John D.; Hervik, Sigbjorn

    2008-01-01

    We show that in theories of gravity that add quadratic curvature invariants to the Einstein-Hilbert action there exist expanding vacuum cosmologies with positive cosmological constant which do not approach the de Sitter universe. Exact solutions are found which inflate anisotropically. This behaviour is driven by the Ricci curvature invariant and has no counterpart in the general relativistic limit. These examples show that the cosmic no-hair theorem does not hold in these higher-order extensions of general relativity and raises new questions about the ubiquity of inflation in the very early universe and the thermodynamics of gravitational fields.

  3. Anisotropic Stars Exact Solutions

    CERN Document Server

    Dev, K; Dev, Krsna; Gleiser, Marcelo

    2000-01-01

    We study the effects of anisotropic pressure on the properties of spherically symmetric, gravitationally bound objects. We consider the full general relativistic treatment of this problem and obtain exact solutions for various form of equations of state connecting the radial and tangential pressures. It is shown that pressure anisotropy can have significant effects on the structure and properties of stellar objects. In particular, the maximum value of 2M/R can approach unity (2M/R < 8/9 for isotropic objects) and the surface redshift can be arbitrarily large.

  4. Disk-Driven Outflows in AGNs

    CERN Document Server

    Koenigl, A

    2003-01-01

    Analysis of spectral absorption features has led to the identification of several distinct outflow components in AGNs. The outflowing gas is evidently photoionized by the nuclear continuum source and originates in the accretion flow toward the central black hole. The most likely driving mechanisms are continuum and line radiation pressure and magnetic stresses. The theoretical modeling of these outflows involves such issues as: (1) Which of the above mechanisms actually contributes in each case? (2) How is the gas uplifted from the underlying accretion disk? (3) How can the intense central continuum radiation be shielded to allow efficient radiative driving? (4) Is the outflow continuous or clumpy, and, if clumpy, what is the nature and dynamical state of the ``clouds''? This review summarizes recent theoretical and observational results that bear on these questions and outlines prospects for further progress.

  5. Magnetosphere sawtooth oscillations induced by ionospheric outflow.

    Science.gov (United States)

    Brambles, O J; Lotko, W; Zhang, B; Wiltberger, M; Lyon, J; Strangeway, R J

    2011-06-01

    The sawtooth mode of convection of Earth's magnetosphere is a 2- to 4-hour planetary-scale oscillation powered by the solar wind-magnetosphere-ionosphere (SW-M-I) interaction. Using global simulations of geospace, we have shown that ionospheric O(+) outflows can generate sawtooth oscillations. As the outflowing ions fill the inner magnetosphere, their pressure distends the nightside magnetic field. When the outflow fluence exceeds a threshold, magnetic field tension cannot confine the accumulating fluid; an O(+)-rich plasmoid is ejected, and the field dipolarizes. Below the threshold, the magnetosphere undergoes quasi-steady convection. Repetition and the sawtooth period are controlled by the strength of the SW-M-I interaction, which regulates the outflow fluence. PMID:21636770

  6. On the presence of ultra-fast outflows in the WAX sample of Seyfert galaxies

    OpenAIRE

    Tombesi, Francesco; Cappi, Massimo

    2014-01-01

    The study of winds in active galactic nuclei (AGN) is of utmost importance as they may provide the long sought-after link between the central black hole and the host galaxy, establishing the AGN feedback. Recently, Laha et al. (2014) reported the X-ray analysis of a sample of 26 Seyferts observed with XMM-Newton, which are part of the so-called warm absorbers in X-rays (WAX) sample. They claim the non-detection of Fe K absorbers indicative of ultra-fast outflows (UFOs) in four observations pr...

  7. The Properties of Intergalactic CIV Absorption II: Which Systems Are Associated With Galaxy Outflows?

    OpenAIRE

    Songaila, Antoinette

    2005-01-01

    Using the extremely high S/N quasar absorption-line sample described in the first paper of the series, we investigate which intergalactic CIV absorption line systems could be directly associated with galactic outflows at z = 2 - 3.5 from an analysis of the velocity widths of the CIV absorption line systems. Only about half the systems with a peak tau(CIV) above 0.4 in the 1548 Angstrom line (roughly a column density of CIV above about 2 x 10^13 cm^-2) have velocity widths large enough to orig...

  8. Magnetized galactic halos and velocity lags

    CERN Document Server

    Henriksen, Richard N

    2016-01-01

    We present an analytic model of a magnetized galactic halo surrounding a Mestel gravitating disc. The magnetic field is taken to be in energy equipartition with the pressure dominant rotating halo gas ({\\it not} with the cosmic rays), and the whole system is in a steady state. A more flexible `anisotropic equipartition' model is also explored. A definite pressure law is required to maintain the equilibrium, but the halo density is constant. The velocity/magnetic system is scale-free. The objective is to find the rotational velocity lag in such a halo. The magnetic field is not force-free so that angular momentum may be transported from the halo to the intergalactic medium. We find that the `X'-shaped structure observed for halo magnetic fields can be obtained together with a simple analytic formula for the rate of decline of the velocity with height $z$. The formula also predicts the change in lag with radius, $r$.

  9. Magnetized galactic haloes and velocity lags

    Science.gov (United States)

    Henriksen, R. N.; Irwin, J. A.

    2016-06-01

    We present an analytic model of a magnetized galactic halo surrounding a Mestel gravitating disc. The magnetic field is taken to be in energy equipartition with the pressure dominant rotating halo gas (not with the cosmic rays), and the whole system is in a steady state. A more flexible `anisotropic equipartition' model is also explored. A definite pressure law is required to maintain the equilibrium, but the halo density is constant. The velocity/magnetic system is scale-free. The objective is to find the rotational velocity lag in such a halo. The magnetic field is not force-free so that angular momentum may be transported from the halo to the intergalactic medium. We find that the `X'-shaped structure observed for halo magnetic fields can be obtained together with a simple analytic formula for the rate of decline of the velocity with height z. The formula also predicts the change in lag with radius, r.

  10. Molecular Outflows From the Protocluster, Serpens South

    CERN Document Server

    Nakamura, Fumitaka; Shimajiri, Yoshito; Tsukagoshi, Takashi; Higuchi, Aya E; Nishiyama, Shogo; Kawabe, Ryohei; Takami, Michihiro; Karr, Jennifer L; Gutermuth, Robert A; Wilson, Grant

    2011-01-01

    We present the results of CO ($J=3-2$) and HCO$^+$ ($J=4-3$) mapping observations toward a nearby embedded cluster, Serpens South, using the ASTE 10 m telescope. Our CO ($J=3-2$) map reveals that many outflows are crowded in the dense cluster-forming clump that can be recognized as a HCO$^+$ clump with a size of $\\sim$ 0.2 pc and mass of $\\sim$ 80 M$_\\odot$. The clump contains several subfragments with sizes of $\\sim$ 0.05 pc. By comparing the CO ($J=3-2$) map with the 1.1 mm dust continuum image taken by AzTEC on ASTE, we find that the spatial extents of the outflow lobes are sometimes anti-correlated with the distribution of the dense gas and some of the outflow lobes apparently collide with the dense gas. The total outflow mass, momentum, and energy are estimated at 0.6 $M_\\odot$, 8 $M_\\odot$ km s$^{-1}$, and 64 $M_\\odot$ km$^2$ s$^{-2}$, respectively. The energy injection rate due to the outflows is comparable to the turbulence dissipation rate in the clump, implying that the protostellar outflows can mai...

  11. Optics of anisotropic nanostructures

    Science.gov (United States)

    Rokushima, Katsu; Antoš, Roman; Mistrík, Jan; Višňovský, Štefan; Yamaguchi, Tomuo

    2006-07-01

    The analytical formalism of Rokushima and Yamakita [J. Opt. Soc. Am. 73, 901-908 (1983)] treating the Fraunhofer diffraction in planar multilayered anisotropic gratings proved to be a useful introduction to new fundamental and practical situations encountered in laterally structured periodic (both isotropic and anisotropic) multilayer media. These are employed in the spectroscopic ellipsometry for modeling surface roughness and in-depth profiles, as well as in the design of various frequency-selective elements including photonic crystals. The subject forms the basis for the solution of inverse problems in scatterometry of periodic nanostructures including magnetic and magneto-optic recording media. It has no principal limitations as for the frequencies and period to radiation wavelength ratios and may include matter wave diffraction. The aim of the paper is to make this formalism easily accessible to a broader community of students and non-specialists. Many aspects of traditional electromagnetic optics are covered as special cases from a modern and more general point of view, e.g., plane wave propagation in isotropic media, reflection and refraction at interfaces, Fabry-Perot resonator, optics of thin films and multilayers, slab dielectric waveguides, crystal optics, acousto-, electro-, and magneto-optics, diffraction gratings, etc. The formalism is illustrated on a model simulating the diffraction on a ferromagnetic wire grating.

  12. Anisotropic spheres in general relativity

    International Nuclear Information System (INIS)

    A prescription originally conceived for perfect fluids is extended to the case of anisotropic pressures. The method is used to obtain exact analytical solutions of the Einstein equations for spherically symmetric selfgravitating distribution of anisotropic matter. The solutions are matched to the Schwarzschild exterior metric. (author). 15 refs

  13. DIAGNOSTICS OF AGN-DRIVEN MOLECULAR OUTFLOWS IN ULIRGs FROM HERSCHEL-PACS OBSERVATIONS OF OH AT 119 μm

    Energy Technology Data Exchange (ETDEWEB)

    Spoon, H. W. W.; Lebouteiller, V. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); González-Alfonso, E. [Departamento de Física y Matemáticas, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Bernard-Salas, J. [Department of Physical Sciences, Milton Keynes MK7 6AA (United Kingdom); Urrutia, T. [Leibniz Institut für Astrophysik, Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Rigopoulou, D.; Verma, A. [Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Westmoquette, M. S. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Afonso, J. [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Pearson, C. [RAL Space, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Cormier, D. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Borys, C. [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Etxaluze, M. [Departamento de Astrofísica. Centro de Astrobiología. CSIC-INTA. Torrejón de Ardoz, E-28850 Madrid (Spain); Clements, D. L., E-mail: spoon@isc.astro.cornell.edu [Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2013-10-01

    We report on our observations of the 79 and 119 μm doublet transitions of OH for 24 local (z < 0.262) ULIRGs observed with Herschel-PACS as part of the Herschel ULIRG Survey (HERUS). Some OH 119 μm profiles display a clear P-Cygni shape and therefore imply outflowing OH gas, while other profiles are predominantly in absorption or are completely in emission. We find that the relative strength of the OH emission component decreases as the silicate absorption increases. This result locates the OH outflows inside the obscured nuclei. The maximum outflow velocities for our sources range from less than 100 to ∼2000 km s{sup –1}, with 15/24 (10/24) sources showing OH absorption at velocities exceeding 700 km s{sup –1} (1000 km s{sup –1}). Three sources show maximum OH outflow velocities exceeding that of Mrk231. Since outflow velocities above 500-700 km s{sup –1} are thought to require an active galactic nucleus (AGN) to drive them, about two-thirds of our ULIRG sample may host AGN-driven molecular outflows. This finding is supported by the correlation we find between the maximum OH outflow velocity and the IR-derived bolometric AGN luminosity. No such correlation is found with the IR-derived star formation rate. The highest outflow velocities are found among sources that are still deeply embedded. We speculate that the molecular outflows in these sources may be in an early phase of disrupting the nuclear dust veil before these sources evolve into less-obscured AGNs. Four of our sources show high-velocity wings in their [C II] fine-structure line profiles, implying neutral gas outflow masses of at least (2-4.5) × 10{sup 8} M{sub ☉}.

  14. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Rupke, David S. N. [Department of Physics, Rhodes College, Memphis, TN 38112 (United States); Veilleux, Sylvain, E-mail: drupke@gmail.com [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2013-05-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z < 0.06 using deep integral field spectroscopy with the Gemini Multi-Object Spectrograph (GMOS) on Gemini North. We probe the neutral, ionized, and dusty gas phases using Na I D, strong emission lines ([O I], H{alpha}, and [N II]), and continuum colors, respectively. We separate outflow motions from those due to rotation and tidal perturbations, and find that all of the galaxies in our sample host high-velocity flows on kiloparsec scales. The properties of these outflows are consistent with multiphase (ionized, neutral, and dusty) collimated bipolar winds emerging along the minor axis of the nuclear disk to scales of 1-2 kpc. In two cases, these collimated winds take the form of bipolar superbubbles, identified by clear kinematic signatures. Less collimated (but still high-velocity) flows are also present on scales up to 5 kpc in most systems. The three galaxies in our sample with obscured QSOs host higher velocity outflows than those in the three galaxies with no evidence for an active galactic nucleus. The peak outflow velocity in each of the QSOs is in the range 1450-3350 km s{sup -1}, and the highest velocities (2000-3000 km s{sup -1}) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.

  15. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    Science.gov (United States)

    Salak, Dragan; Nakai, Naomasa; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-05-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out 12CO (J=1-0) mapping observations of the central r ∼ 4 kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array. Four distinct components of molecular gas are revealed at high spatial resolution of 2″ (∼100 pc): (1) a compact (r < 200 pc) circumnuclear disk (CND), (2) r ∼ 500 pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1 kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) a nuclear bar and molecular CND, and (3) an unresolved massive (∼107 M ⊙) core. Two systemic velocities, 998 km s‑1 for the CND and 964 km s‑1 for the 500 pc ring, are revealed, indicating a kinematic offset. The pattern speed of the primary bar, derived by using a cloud-orbit model, is 56 ± 11 km s‑1 kpc‑1. Noncircular motions are detected associated with a nuclear spiral pattern and outflow in the central 1 kpc region. The ratio of the mass outflow rate to the star formation rate is {\\dot{M}}{out}/{SFR}∼ 0.2 in the case of optically thin CO (1–0) emission in the outflow, suggesting low efficiency of star formation quenching.

  16. Averaging anisotropic cosmologies

    CERN Document Server

    Barrow, J D; Barrow, John D.; Tsagas, Christos G.

    2006-01-01

    We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of pressure-free Bianchi-type models. Adopting the Buchert averaging scheme, we identify the kinematic backreaction effects by focussing on spacetimes with zero or isotropic spatial curvature. This allows us to close the system of the standard scalar formulae with a propagation equation for the shear magnitude. We find no change in the already known conditions for accelerated expansion. The backreaction terms are expressed as algebraic relations between the mean-square fluctuations of the models' irreducible kinematical variables. Based on these we investigate the early evolution of averaged vacuum Bianchi type $I$ universes and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. We also discuss the possibility of accelerated expansion due to ...

  17. Thermodynamics of anisotropic branes

    CERN Document Server

    Ávila, Daniel; Patiño, Leonardo; Trancanelli, Diego

    2016-01-01

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a `Minkowski embedding', in which they lie outside of the horizon, and a `black hole embedding', in which they fall into the horizon. This transition depends on two independent dimensionless ratios, which are formed out of the black hole temperature, its anisotropy parameter, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  18. Topics on Galactic Chemical Evolution

    OpenAIRE

    Prantzos, Nikos

    2011-01-01

    I discuss three different topics in Galactic chemical evolution:the "puzzling" absence of any observational signature of secondary elements ; the building of the Galactic halo in the framework of hierarchical galaxy formation, as evidenced from its metallicity distribution ; and the potentially important role that radial migration may play in the evolution of galactic disks, according to recent studies.

  19. Galactic Archaeology: Current Surveys

    CERN Document Server

    Wyse, Rosemary F G

    2016-01-01

    I present an overview of the science goals and achievements of ongoing spectroscopic surveys of individual stars in the nearby Universe. I include a brief discussion of the development of the field of Galactic Archaeology - using the fossil record in old stars nearby to infer how our Galaxy evolved and place the Milky Way in cosmological context.

  20. Evolution of Mass Outflow in Protostars

    CERN Document Server

    Watson, Dan M; Fischer, William J; Forrest, W J; Manoj, P; Megeath, S Thomas; Melnick, Gary J; Najita, Joan; Neufeld, David A; Sheehan, Patrick D; Stutz, Amelia M; Tobin, John J

    2015-01-01

    We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in mid-infrared [Si II], [Fe II] and [S I] line emission, and 11 of these in far-infrared [O I] emission. We use the results to derive their mass outflow rates. Thereby we observe a strong correlation of mass outflow rates with bolometric luminosity, and with the inferred mass accretion rates of the central objects, which continues through the Class 0 range the trend observed in Class II young stellar objects. Along this trend from large to small mass-flow rates, the different classes of young stellar objects lie in the sequence Class 0 -- Class I/flat-spectrum -- Class II, indicating that the trend is an evolutionary sequence in which mass outflow and accretion rates decrease together with increasing age, while maintaining rough proportionality. The survey results include two which are key tests of magnetocentrifugal outflow-acceleration mechanisms: the distribution of the outflow/accretion branching ratio b, and limits on the distribution of...

  1. Bursty star formation feedback and cooling outflows

    CERN Document Server

    Suarez, Teresita; Peiris, Hiranya V; Slyz, Adrianne; Devriendt, Julien

    2016-01-01

    We study how outflows of gas launched from a central galaxy undergoing repeated starbursts propagate through the circumgalactic medium (CGM), using the simulation code RAMSES. We assume that the outflow from the disk can be modelled as a rapidly moving bubble of hot gas at $\\mathrm{\\sim1\\;kpc}$ above disk, then ask what happens as it moves out further into the halo around the galaxy on $\\mathrm{\\sim 100\\;kpc}$ scales. To do this we run 60 two-dimensional simulations scanning over parameters of the outflow. Each of these is repeated with and without radiative cooling, assuming a primordial gas composition to give a lower bound on the importance of cooling. In a large fraction of radiative-cooling cases we are able to form rapidly outflowing cool gas from in situ cooling of the flow. We show that the amount of cool gas formed depends strongly on the 'burstiness' of energy injection; sharper, stronger bursts typically lead to a larger fraction of cool gas forming in the outflow. The abundance ratio of ions in th...

  2. Observations of Protostellar Outflow Feedback in Clustered Star Formation

    CERN Document Server

    Nakamura, Fumitaka

    2015-01-01

    We discuss the role of protostellar outflow feedback in clustered star formation using the observational data of recent molecular outflow surveys toward nearby cluster-forming clumps. We found that for almost all clumps, the outflow momentum injection rate is significantly larger than the turbulence dissipation rate. Therefore, the outflow feedback is likely to maintain supersonic turbulence in the clumps. For less massive clumps such as B59, L1551, and L1641N, the outflow kinetic energy is comparable to the clump gravitational energy. In such clumps, the outflow feedback probably affects significantly the clump dynamics. On the other hand, for clumps with masses larger than about 200 M$_\\odot$, the outflow kinetic energy is significantly smaller than the clump gravitational energy. Since the majority of stars form in such clumps, we conclude that outflow feedback cannot destroy the whole parent clump. These characteristics of the outflow feedback support the scenario of slow star formation.

  3. Anisotropic Inflation with General Potentials

    CERN Document Server

    Shi, Jiaming; Qiu, Taotao

    2015-01-01

    Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.

  4. Zooplankton in the Arctic outflow

    Science.gov (United States)

    Soloviev, K. A.; Dritz, A. V.; Nikishina, A. B.

    2009-04-01

    Climate changes in the Arctic cause the changes in the current system that may have cascading effect on the structure of plankton community and consequently on the interlinked and delicately balanced food web. Zooplankton species are by definition incapable to perform horizontal moving. Their transport is connected with flowing water. There are zooplankton species specific for the definite water masses and they can be used as markers for the different currents. That allows us to consider zooplankton community composition as a result of water mixing in the studied area. Little is known however about the mechanisms by which spatial and temporal variability in advection affect dynamics of local populations. Ice conditions are also very important in the function of pelagic communities. Melting time is the trigger to all "plankton blooming" processes, and the duration of ice-free conditions determines the food web development in the future. Fram Strait is one of the key regions for the Arctic: the cold water outflow comes through it with the East Greenland Current and meets warm Atlantic water, the West Spitsbergen Current, producing complicated hydrological situation. During 2007 and 2008 we investigated the structure functional characteristics of zooplankton community in the Fram Strait region onboard KV "Svalbard" (April 2007, April and May 2008) and RV "Jan Mayen" (May 2007, August 2008). This study was conducted in frame of iAOOS Norway project "Closing the loop", which, in turn, was a part of IPY. During this cruises multidisciplinary investigations were performed, including sea-ice observations, CTD and ADCP profiling, carbon flux, nutrients and primary production measurements, phytoplankton sampling. Zooplankton was collected with the Hydro-Bios WP2 net and MultiNet Zooplankton Sampler, (mouth area 0.25 m2, mesh size 180 um).Samples were taken from the depth strata of 2000-1500, 1500-1000, 1000-500,500-200, 200-100, 100-60, 60-30, 30-0 m. Gut fluorescence

  5. Outflows in Regions of Star Formation

    CERN Document Server

    Liseau, R

    2004-01-01

    The high spatial and spectral resolution offered by the new generation of infrared spectrometers at ESO is optimally suited for the observational study of outflows from young stellar objects. Models of interstellar shock waves would benefit from observations of spectrally resolved line profiles. This applies also to attempts of measuring the rotation rates of jets very close to their driving source, which in general suffer considerable extinction. Observations of forbidden lines of ionised iron, [Fe II], could be used to accomplish this. The possibility of using rotational lines of molecular hydrogen, H2, to study the temporal evolution of outflow and disk gas is discussed. Similarly, high resolution IR observations of fluorescent water lines, H2O, open up the possibility to access outflow and disk water.

  6. AGN Outflow Shocks on Bonnor-Ebert Spheres

    CERN Document Server

    Dugan, Zachary; Bieri, Rebekka; Silk, Joseph; Rahman, Mubdi

    2016-01-01

    Feedback from Active Galactic Nuclei (AGN) and subsequent jet cocoons and outflow bubbles can have a significant impact on star formation in the host galaxy. To investigate feedback physics on small scales, we perform hydrodynamic simulations of realistically fast AGN winds striking Bonnor-Ebert (BE) spheres and examine gravitational collapse and ablation. We test AGN wind velocities ranging from 300--3,000 km s$^{-1}$ and wind densities ranging from 0.5--10 $m_\\mathrm{p}\\,\\mathrm{cm}^{-3}$. We include heating and cooling of low- and high-temperature gas, self-gravity, and spatially correlated perturbations in the shock, with a maximum resolution of 0.01 pc. We find that the ram pressure is the most important factor that determines the fate of the cloud. High ram pressure winds increase fragmentation and decrease the star formation rate, but also cause star formation to occur on a much shorter time scale and with increased velocities of the newly formed stars. We find a threshold ram pressure of $\\sim 2\\times...

  7. Search for Molecular Outflows in Local Volume AGN with Herschel-PACS

    CERN Document Server

    Stone, M; Melendez, M; Sturm, E; Gracia-Carpio, J; Gonzalez-Alfonso, E

    2016-01-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 $\\mu$m) outflows in a sample of 52 Local Volume ($d < 50$ Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGN) with \\emph{Herschel}-PACS. We combine the results from our analysis of the BAT AGN with the published \\emph{Herschel}/PACS data of 43 nearby ($z<0.3$) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGN have, on average, $\\sim 10-100$ times lower AGN luminosities, star formation rates (SFRs), and stellar masses than those of the ULIRG and QSO sample. OH 119 $\\mu$m is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e. OH absorption profiles with median velocities more blueshifted than $-$50 km s$^{-1}$ and/or blueshifted wings with 84-percentile velocities less than $-$300 km s$^{-1}$) is seen in only four BAT AGN (NGC~7479 is the most convincing case). Evidence for molecular inflows (i.e. OH absorption profiles...

  8. Wind influence on a coastal buoyant outflow

    Science.gov (United States)

    Whitney, Michael M.; Garvine, Richard W.

    2005-03-01

    This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.

  9. Episodic High Velocity Outflows from V899 Mon: A Constraint On The Outflow Mechanisms

    CERN Document Server

    Ninan, J P; Philip, N S

    2016-01-01

    We report the detection of large variations in the outflow wind velocity from a young eruptive star, V899 Mon during its ongoing high accretion outburst phase. Such large variations in the outflow velocity (from -722 km s$^{-1}$ to -425 km s$^{-1}$) have never been reported previously in this family of objects. Our continuous monitoring of this source shows that the multi-component, clumpy, and episodic high velocity outflows are stable in the time scale of a few days, and vary over the time scale of a few weeks to months. We detect significant decoupling in the instantaneous outflow strength to accretion rate. From the comparison of various possible outflow mechanisms in magnetospheric accretion of young stellar objects, we conclude magnetically driven polar winds to be the most consistent mechanism for the outflows seen in V899 Mon. The large scale fluctuations in outflow over the short period makes V899 Mon the most ideal source to constrain various magnetohydrodynamics (MHD) simulations of magnetospheric ...

  10. Episodic High-velocity Outflows from V899 Mon: A Constraint On The Outflow Mechanisms

    Science.gov (United States)

    Ninan, J. P.; Ojha, D. K.; Philip, N. S.

    2016-07-01

    We report the detection of large variations in the outflow wind velocity from a young eruptive star, V899 Mon, during its ongoing high accretion outburst phase. Such large variations in the outflow velocity (from ‑722 to ‑425 km s‑1) have never been reported previously in this family of objects. Our continuous monitoring of this source shows that the multi-component, clumpy, and episodic high velocity outflows are stable in the timescale of a few days, and vary over the timescale of a few weeks to months. We detect significant decoupling in the instantaneous outflow strength to accretion rate. From the comparison of various possible outflow mechanisms in magnetospheric accretion of young stellar objects, we conclude magnetically driven polar winds to be the most consistent mechanism for the outflows seen in V899 Mon. The large scale fluctuations in outflow over the short period makes V899 Mon the most ideal source to constrain various magnetohydrodynamics simulations of magnetospheric accretion. Based on observations made with the Southern African Large Telescope (SALT).

  11. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  12. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Deepak Kumar

    2002-08-01

    Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  13. Application of Anisotropic Texture Components

    OpenAIRE

    Eschner, Th.; Fundenberger, J.-J.

    1997-01-01

    The description of textures in terms of texture components is an established conception in quantitative texture analysis. Recent developments lead to the representation of orientation distribution functions as a weighted sum of model functions, each corresponding to one anisotropic texture component. As was shown previously, an adequate texture description is possible with only a very small number of anisotropic texture components. As a result, textures and texture changes can be described by...

  14. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback

    CERN Document Server

    Muratov, Alexander L; Faucher-Giguere, Claude-Andre; Hopkins, Philip F; Quataert, Eliot; Murray, Norman

    2015-01-01

    We present an analysis of the galaxy-scale gaseous outflows from the FIRE (Feedback in Realistic Environments) simulations. This suite of hydrodynamic cosmological zoom simulations provides a sample of halos where star-forming giant molecular clouds are resolved to z=0, and features an explicit stellar feedback model on small scales. In this work, we focus on quantifying the gas mass ejected out of galaxies in winds and how this material travels through the halo. We correlate these quantities to star formation in galaxies throughout cosmic history. Our simulations reveal that a significant portion of every galaxy's evolution, particularly at high redshift, is dominated by bursts of star formation, which are followed by powerful gusts of galactic outflow that sweep up a large fraction of gas in the interstellar medium and send it through the circumgalactic medium. The dynamical effect of these outflows can significantly limit the amount of star formation within the affected galaxy. At low redshift, however, su...

  15. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    CERN Document Server

    Cao, Xinwu

    2014-01-01

    The inner region of a luminous accretion disk is radiation pressure dominated. We estimate the surface temperature of a radiation pressure dominated accretion disk, \\Theta=(c_s/r\\Omega_K)^2<<(H/r)^2, which is significantly lower than that of a gas pressure dominated disk, \\Theta (H/r)^2. This means that the outflow can be launched magnetically from the photosphere of the radiation pressure dominate disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow may probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching a jet from the radiation pressure dominated disk, which provides a natural explanation on the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated f...

  16. Evidence for 1000 km/s Molecular Outflows in the Local ULIRG Population

    CERN Document Server

    Chung, Aeree; Naraynan, Gopal; Heyer, Mark; Erickson, Neal R

    2011-01-01

    The feedback from galactic outflows is thought to play an important role in shaping the gas content, star formation history, and ultimately the stellar mass function of galaxies. Here we present evidence for massive molecular outflows associated with ultra-luminous infrared galaxies (ULIRGs) in the coadded Redshift Search Receiver 12CO(1-0) spectrum. Our stacked spectrum of 27 ULIRGs at z = 0.043-0.11 (freq_rest = 110-120 GHz) shows broad wings around the CO line with delta_V(FWZI)~2000 km/s. Its integrated line flux accounts for up to 25+/-5% of the total CO line luminosity. When interpreted as a massive molecular outflow wind, the associated mechanical energy can be explained by a concentrated starburst with SFR \\geq 100 M_sun/yr, which agrees well with their SFR derived from the FIR luminosity. Using the high signal-to-noise stacked composite spectrum, we also probe 13CO and 12CN emission in the sample and discuss how the chemical abundance of molecular gas may vary depending on the physical conditions of ...

  17. Wind from black hole accretion disk as the driver of a molecular outflow in a galaxy

    CERN Document Server

    Tombesi, F; Veilleux, S; Reeves, J N; Gonzalez-Alfonso, E; Reynolds, C S

    2015-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. Recent observations of large-scale molecular outflows in ultra-luminous infrared galaxies (ULIRGs) have provided the evidence to support these studies, as they directly trace the gas out of which stars form. Theoretical models suggest an origin of these outflows as energy-conserving flows driven by fast AGN accretion disk winds. Previous claims of a connection between large-scale molecular outflows and AGN activity in ULIRGs were incomplete because they were lacking the detection of the putative inner wind. Conversely, studies of powerful AGN accretion disk winds to date have focused only on X-ray observations of local Seyferts and a few higher redshift quasars. Here we show the clear detection of a powerful AGN accretion disk wind with a mildly relativistic ...

  18. FeLoBAL Outflow Variability Constraints from Multi-Year Observations

    CERN Document Server

    McGraw, Sean M; Hamann, Frederick W; Capellupo, Daniel M; Gallagher, Sarah C; Brandt, William N

    2013-01-01

    The physical properties and dynamical behavior of Broad Absorption Line (BAL) outflows are crucial themes in understanding the connections between galactic centers and their hosts. FeLoBALs (identified with the presence of low-ionization Fe II BALs) are a peculiar class of quasar outflows that constitute approximately 1% of the BAL population. With their large column densities and apparent outflow kinetic luminosities, FeLoBALs appear to be exceptionally powerful and are strong candidates for feedback in galaxy evolution. We conducted variability studies of 12 FeLoBAL quasars with emission redshifts between 0.69 and 1.93, spanning both weekly and multi-year timescales in the quasar's rest frame. We detected absorption-line variability from low-ionization species (Fe II, Mg II) in four of our objects, with which we established a representative upper limit for the distance of the absorber from the supermassive black hole (SMBH) to be approximately 20 parsecs. Our goals are to understand the mechanisms producing...

  19. Supernova-Driven Outflows in NGC 7552: A Comparison of H-alpha and UV Tracers

    CERN Document Server

    Wood, Corey M; Calzetti, Daniela; Leitherer, Claus; Chisholm, John; Gallagher, John S

    2015-01-01

    We investigate the supernova-driven galactic wind of the barred spiral galaxy NGC 7552, using both ground-based optical nebular emission lines and far-ultraviolet absorption lines measured with the Hubble Space Telescope Cosmic Origins Spectrograph. We detect broad (~300 km/s) blueshifted (-40 km/s) optical emission lines associated with the galaxy's kpc-scale star-forming ring. The broad line kinematics and diagnostic line ratios suggest that the H-alpha emission comes from clouds of high density gas entrained in a turbulent outflow. We compare the H-alpha emission line profile to the UV absorption line profile measured along a coincident sight line and find significant differences. The maximum blueshift of the H-alpha-emitting gas is ~290 km/s, whereas the UV line profile extends to blueshifts upwards of 1000 km/s. The mass outflow rate estimated from the UV is roughly nine times greater than that estimated from H-alpha. We argue that the H-alpha emission traces a cluster-scale outflow of dense, low velocit...

  20. The Search for Molecular Outflows in Local Volume AGNs with Herschel-PACS

    Science.gov (United States)

    Stone, M.; Veilleux, S.; Meléndez, M.; Sturm, E.; Graciá-Carpio, J.; González-Alfonso, E.

    2016-08-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 μm) outflows in a sample of 52 Local Volume (d\\lt 50 Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGNs) with Herschel-PACS. We combine the results from our analysis of the BAT AGNs with the published Herschel/PACS data of 43 nearby (z\\lt 0.3) galaxy mergers, mostly ultra-luminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGNs have, on average, ∼ 10{--}100 times lower AGN luminosities, star formation rates, and stellar masses than those of the ULIRG and QSO samples. OH 119 μm is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e., OH absorption profiles with median velocities more blueshifted than ‑50 km s‑1 and/or blueshifted wings with 84% velocities less than ‑300 km s‑1) is seen in only four BAT AGNs (NGC 7479 is the most convincing case). Evidence for molecular inflows (i.e., OH absorption profiles with median velocities more redshifted than 50 km s‑1) is seen in seven objects, although an inverted P-Cygni profile is detected unambiguously in only one object (Circinus). Our data show that both the starburst and AGN contribute to driving OH outflows, but the fastest OH winds require AGNs with quasar-like luminosities. We also confirm that the total absorption strength of OH 119 μm is a good proxy for dust optical depth as it correlates strongly with the 9.7 μm silicate absorption feature, a measure of obscuration originating in both the nuclear torus and host galaxy disk. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. Galactic-scale civilization

    Science.gov (United States)

    Kuiper, T. B. H.

    1980-01-01

    Evolutionary arguments are presented in favor of the existence of civilization on a galactic scale. Patterns of physical, chemical, biological, social and cultural evolution leading to increasing levels of complexity are pointed out and explained thermodynamically in terms of the maximization of free energy dissipation in the environment of the organized system. The possibility of the evolution of a global and then a galactic human civilization is considered, and probabilities that the galaxy is presently in its colonization state and that life could have evolved to its present state on earth are discussed. Fermi's paradox of the absence of extraterrestrials in light of the probability of their existence is noted, and a variety of possible explanations is indicated. Finally, it is argued that although mankind may be the first occurrence of intelligence in the galaxy, it is unjustified to presume that this is so.

  2. Radiation pressure from massive star clusters as a launching mechanism for super-galactic winds

    CERN Document Server

    Murray, Norman; Thompson, Todd A

    2010-01-01

    Galactic outflows of low ionization, cool gas are ubiquitous in local starburst galaxies, and in the majority of galaxies at high redshift. How these cool outflows arise is still in question. Hot gas from supernovae has long been suspected as the primary driver, but this mechanism suffers from its tendency to destroy the cool gas as the latter is accelerated. We propose a modification of the supernova scenario that overcomes this difficulty. Star formation is observed to take place in clusters; in a given galaxy, the bulk of the star formation is found in the ~20 most massive clusters. We show that, for L* galaxies, the radiation pressure from clusters with M>10^6 M_sun is able to expel the surrounding gas at velocities in excess of the circular velocity of the disk galaxy. This cool gas can travel above the galactic disk in less than 2 Myr, well before any supernovae erupt in the driving cluster. Once above the disk, the cool outflowing gas is exposed to radiation, and supernovae induced hot gas outflows, fr...

  3. Quintessence at Galactic Level?

    OpenAIRE

    Matos, T.; Guzman, F. S.

    2000-01-01

    Recently it has been proposed that the main contributor to the dark energy of the Universe is a dynamical, slow evolving, spatially inhomogeneous scalar field called quintessence. We investigate the behavior of this scalar field at galactic level by assuming that it is the dark matter compossing the halos of galaxies. Using an exact solution of the Einstein's equations we find an excellent concordance between our results and observations.

  4. The Galactic Center

    OpenAIRE

    R. Genzel; Karas, V.

    2007-01-01

    In the past decade high resolution measurements in the infrared employing adaptive optics imaging on 10m telescopes have allowed determining the three dimensional orbits stars within ten light hours of the compact radio source at the center of the Milky Way. These observations show the presence of a three million solar mass black hole in Sagittarius A* beyond any reasonable doubt. The Galactic Center thus constitutes the best astrophysical evidence for the existence of black holes which have ...

  5. Galactic oscillator symmetry

    Science.gov (United States)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  6. Galactic Diffuse Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Digel, Seth W.; /SLAC

    2007-10-25

    Interactions of cosmic rays with interstellar nucleons and photons make the Milky Way a bright, diffuse source of high-energy {gamma}-rays. Observationally, the results from EGRET, COMPTEL, and OSSE have now been extended to higher energies by ground-based experiments, with detections of diffuse emission in the Galactic center reported by H.E.S.S. in the range above 100 GeV and of diffuse emission in Cygnus by MILAGRO in the TeV range. In the range above 100 keV, INTEGRAL SPI has found that diffuse emission remains after point sources are accounted for. I will summarize current knowledge of diffuse {gamma}-ray emission from the Milky Way and review some open issues related to the diffuse emission -- some old, like the distribution of cosmic-ray sources and the origin of the 'excess' of GeV emission observed by EGRET, and some recently recognized, like the amount and distribution of molecular hydrogen not traced by CO emission -- and anticipate some of the advances that will be possible with the Large Area Telescope on GLAST. We plan to develop an accurate physical model for the diffuse emission, which will be useful for detecting and accurately characterizing emission from Galactic point sources as well as any Galactic diffuse emission from exotic processes, and for studying the unresolved extragalactic emission.

  7. Bubbles in galactic haloes

    CERN Document Server

    Shchekinov, Yu A; Schröer, A; Steinacker, A; Shchekinov, Yu. A.

    2001-01-01

    We briefly discuss a possible interconnection of vertical HI structures observed in the Milky Way Galaxy with large scale blow-outs caused by the explosions of multiple clustered SNe. We argue that the observed OB associations can produce only about 60 such events, or approximately one chimney per 3 kpc$^2$ within the solar circle. We also discuss the overall properties of HI shells in nearby face-on galaxies and the distribution of H$\\alpha$ and dust in edge-on galaxies. We argue that the presence of dust in galactic haloes may indicate that radiation pressure is the most probable mechanism capable of transporting dust to large heights above the galactic plane. In order to make this possible, the galactic magnetic field must have a strong vertical component. We mention that SNe explosions can initiate the Parker instability which in turn creates large scale magnetic loops with a strong vertical component. Recent observations of nearby edge-on galaxies favour this suggestion.

  8. Numerical solution of the quasistationary problem about the 27-day modulation of galactic cosmic rays using the perturbation theory

    International Nuclear Information System (INIS)

    The method of perturbation theory has been used to obtain a set of differential equations in partial derivatives which describes the galactic cosmic ray variations with the Sun's rotation period in quasistationary case to the approximation of anisotropic diffusion including adiabatic cooling of particles. (orig.)

  9. Accretion, Outflows, and Winds of Magnetized Stars

    CERN Document Server

    Romanova, M M

    2016-01-01

    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars...

  10. Propeller-driven Outflows and Disk Oscillations

    CERN Document Server

    Romanova, M M; Koldoba, A V; Lovelace, R V E

    2005-01-01

    We report the discovery of propeller-driven outflows in axisymmetric magnetohydrodynamic simulations of disk accretion to rapidly rotating magnetized stars. Matter outflows in a wide cone and is centrifugally ejected from the inner regions of the disk. Closer to the axis there is a strong, collimated, magnetically dominated outflow of energy and angular momentum carried by the open magnetic field lines from the star. The ``efficiency'' of the propeller may be very high in the respect that most of the incoming disk matter is expelled from the system in winds. The star spins-down rapidly due to the magnetic interaction with the disk through closed field lines and with corona through open field lines. Diffusive and viscous interaction between magnetosphere and the disk are important: no outflows were observed for very small values of the diffusivity and viscosity. These simulation results are applicable to the early stages of evolution of classical T Tauri stars and to different stages of evolution of cataclysmi...

  11. Left ventricular outflow obstruction and necrotizing enterocolitis

    Energy Technology Data Exchange (ETDEWEB)

    Allen, H.A.; Haney, P.J.

    1984-02-01

    Two neonates had unusually rapid development of necrotizing enterocolitis within 24 hours of birth. Both patients had decreased systemic perfusion secondary to aortic atresia. Onset of either clinical or radiographic manifestations of necrotizing enterocolitis in the first day of life should alert one to the possible presence of severe left ventricular outflow obstruction.

  12. PROBING THE STRUCTURE OF THE OUTFLOW IN THE TIDAL DISRUPTION FLARE Sw J1644+57 WITH LONG-TERM RADIO EMISSION

    International Nuclear Information System (INIS)

    The recently discovered high-energy transient Sw J1644+57 is thought to arise from the tidal disruption of a passing star by a dormant massive black hole. The long-term, bright radio emission of Sw J1644+57 is believed to result from the synchrotron emission of the blast wave produced by an outflow expanding into the surrounding medium. Using the detailed multi-epoch radio spectral data, we are able to determine the total number of radiating electrons in the outflow at different times, and further the evolution of the cross section of the outflow with time. We find that the outflow gradually transits from a conical jet to a cylindrical one at later times. The transition may be due to collimation of the outflow by the pressure of the shocked jet cocoon that forms while the outflow is propagating in the ambient medium. Since cylindrical jets usually exist in active galactic nuclei (AGNs) and extragalactic jets, this may provide independent evidence that Sw J1644+57 signals the onset of an AGN.

  13. An Exoplanet's Response to Anisotropic Stellar Mass-Loss During Birth and Death

    CERN Document Server

    Veras, Dimitri; Tout, Christopher A

    2013-01-01

    The birth and death of planets may be affected by mass outflows from their parent stars during the T-Tauri or post-main-sequence phases of stellar evolution. These outflows are often modelled to be isotropic, but this assumption is not realistic for fast rotators, bipolar jets and supernovae. Here we derive the general equations of motion for the time evolution of a single planet, brown dwarf, comet or asteroid perturbed by anisotropic mass loss in terms of a complete set of planetary orbital elements, the ejecta velocity, and the parent star's co-latitude and longitude. We restrict our application of these equations to 1) rapidly rotating giant stars, and 2) arbitrarily-directed jet outflows. We conclude that the isotropic mass-loss assumption can safely be used to model planetary motion during giant branch phases of stellar evolution within distances of hundreds of au. In fact, latitudinal mass loss variations anisotropically affect planetary motion only if the mass loss is asymmetric about the stellar equa...

  14. Magnetically Driven Accretion Disk Winds and Ultra-fast Outflows in PG 1211+143

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-05-01

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξc[erg cm s-1]) ≃ 5-6 and a column density on the order of NH ≃ 1023 cm-2 outflowing at a characteristic velocity of vc/c ≃ 0.1-0.2 (where c is the speed of light). The best-fit model favors its radial location at rc ≃ 200 Ro (Ro is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at Rt ≃ 30 Ro. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.

  15. Comparison of ejection events in the jet and accretion disc outflows in 3C 111

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Marscher, A. P.; Jorstad, S. G.; Reynolds, C. S.; Markowitz, A.

    2012-07-01

    We present a comparison of the parameters of accretion disc outflows and the jet of the broad-line radio galaxy 3C 111 on subparsec (sub-pc) scales. We make use of published X-ray observations of ultra-fast outflows (UFOs) and new 43-GHz Very Long Baseline Array images to track the jet knot ejection. We find that the superluminal jet coexists with the mildly relativistic outflows on sub-pc scales, possibly indicating a transverse stratification of a global flow. The two are roughly in pressure equilibrium, with the UFOs potentially providing additional support for the initial jet collimation. The UFOs are much more massive than the jet, but their kinetic power is probably about an order of magnitude lower, at least for the observations considered here. However, their momentum flux is equivalent and both of them are powerful enough to exert a concurrent feedback impact on the surrounding environment. A link between these components is naturally predicted in the context of magnetohydrodynamic models for jet/outflow formation. However, given the high radiation throughput of active galactic nuclei, radiation pressure should also be taken into account. From the comparison with the long-term 2-10 keV Rossi X-ray Timing Explorer light curve, we find that the UFOs are preferentially detected during periods of increasing flux. We also find the possibility to place the UFOs within the known X-ray dips-jet ejection cycles, which has been shown to be a strong proof of the disc-jet connection, in analogue with stellar mass black holes. However, given the limited number of observations presently available, these relations are only tentative and additional spectral monitoring is needed to test them conclusively.

  16. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    Science.gov (United States)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  17. Accretion, winds and outflows in young stars

    Science.gov (United States)

    Günther, H. M.

    2013-02-01

    Young stars and planetary systems form in molecular clouds. After the initial radial infall an accretion disk develops. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius by the stellar magnetic field. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. Hα, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many (if not all) accreting systems also drive strong outflows which are ultimately powered by accretion. However, the exact driving mechanism is still unclear. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner disk rim, and thermally driven stellar winds. In any case, the outflows contain material of very different temperatures and speeds. The disk wind is cool and can have a molecular component with just a few tens of km s-1, while the central component of the outflow can reach a few 100 km s-1. In some cases the inner part of the outflow is collimated to a small-angle jet. These jets have an onion-like structure, where the inner components are consecutively hotter and faster. The jets can contain working surfaces, which show up as Herbig-Haro knots. Accretion and outflows in the CTTS phase do not only determine stellar parameters like the rotation rate on the main-sequence, they also can have a profound impact on the environment of young stars. This review concentrates on CTTS in near-by star forming regions where

  18. An analytical model for galaxy metallicity: What do metallicity relations tell us about star formation and outflow?

    CERN Document Server

    Lu, Yu; Benson, Andrew

    2015-01-01

    We develop a simple analytical model that tracks galactic metallicities governed by star formation and feedback to gain insight from the observed galaxy stellar mass-metallicity relations over a large range of stellar masses and redshifts. The model reveals the following implications of star formation and feedback processes in galaxy formation. First, the observed metallicity relations provide a stringent upper limit for the averaged outflow mass-loading factors of local galaxies, which is ~20 for M_*~10^9Msun galaxies and monotonically decreases to ~1 for M_*~10^{11}Msun galaxies. Second, the inferred upper-limit for the outflow mass-loading factor sensitively depends on whether the outflow is metal-enriched with respect to the ISM metallicity. If half of the metals ejected from SNe leave the galaxy in metal-enriched winds, the outflow mass-loading factor for galaxies at any mass can barely be higher than ~10, which puts strong constraints on galaxy formation models. Third, the relatively lower stellar-phase...

  19. Gas Inflow and Outflow Histories in Disk Galaxies as Revealed from Observations of Distant Star-Forming Galaxies

    CERN Document Server

    Toyouchi, Daisuke

    2015-01-01

    We investigate gas inflow and outflow histories in Milky Way-like disk galaxies, to get new insights into the baryonic processes in galaxy formation and evolution. For this purpose, we solve the equations for the evolutions of the surface mass densities of gas and metals at each radius in a galactic disk, based on the observed structural properties of distant star-forming galaxies, including the redshift evolution of their stellar mass distribution, their scaling relation between the mass of baryonic components, star formation rate (SFR) and chemical abundance, as well as the supposed evolution of their radial metallicity gradients (RMGs). We find that the efficiency of gas inflow for a given SFR decreases with time and that the inflow rate is always nearly proportional to the SFR. For gas outflow, although its efficiency for a given SFR is a decreasing function of time, similarly to gas inflow, the outflow rate is not necessarily proportional to the SFR and the relation between the outflow rate and SFR stron...

  20. Cold-gas outflows in typical low-redshift galaxies are driven by stars formation, not AGN

    CERN Document Server

    Sarzi, Marc; Nedelchev, Boris; Tiffany, Joshua; Shabala, Stanislav S; Deller, Adam T; Middleberg, Enno

    2015-01-01

    Energetic feedback from active galactic nuclei (AGN) is an important ingredient for regulating the star-formation history of galaxies in models of galaxy formation, which makes it important to study how AGN feedback actually occurs in practice. In order to catch AGNs in the act of quenching star formation we have used the interstellar NaD absorption lines to look for cold-gas outflows in a sample of 456 nearby galaxies for which we could unambigously ascertain the presence of radio AGN activity, thanks to radio imaging at milli-arcsecond scales. While compact radio emission indicating a radio AGN was found in 103 galaxies (23% of the sample), and 23 objects (5%) exhibited NaD absorption-line kinematics suggestive of cold-gas outflows, not one object showed evidence of a radio AGN and of a cold-gas outflow simultaneously. Radio AGN activity was found predominantly in early-type galaxies, while cold-gas outflows were mainly seen in spiral galaxies with central star-formation or composite star-formation/AGN acti...

  1. Models of high redshift luminosity functions and galactic outflows: The dependence on halo mass function

    CERN Document Server

    Samui, Saumyadip; Srianand, Raghunathan

    2009-01-01

    The form of the halo mass function is a basic ingredient in any semi-analytical galaxy formation model. We study the existing forms of the mass functions in the literature and compare their predictions for semi-analytical galaxy formation models. Two methods are used in the literature to compute the net formation rate of halos, one by simply taking the derivative of the halo mass function and the other using the prescription due to Sasaki (1994). For the Press-Schechter (PS) mass function, we compare various model predictions, using these two methods. However, as the Sasaki formalism cannot be easily generalized for other mass functions, we use the derivative while comparing model predictions of different mass functions. We show that the reionization history and UV luminosity function of Lyman break galaxies (LBGs) predicted by the PS mass function differs from those using any other existing mass function, like Sheth-Tormen (ST) mass function.In particular the reionization efficiency of molecular cooled halos...

  2. X-ray outflows of active galactic nuclei warm absorbers: A 900 ks Chandra simulated spectrum

    CERN Document Server

    Ramirez-Velasquez, J M

    2016-01-01

    We report on the performance of the statistical, X-ray absorption lines identification procedure XLINE-ID. As illustration, it is used to estimate the time averaged gas density $n_H(r)$ of a representative AGN's warm absorber ($T\\approx 10^5$~K) X-ray simulated spectrum. The method relies on three key ingredients: (1) a well established emission continuum level; (2) a robust grid of photoionisation models spanning several orders of magnitude in gas density ($n_H$), plasma column density ($N_H$), and in ionization states; (3) theoretical curves of growth for a large set of atomic lines. By comparing theoretical and observed equivalent widths of a large set of lines, spanning highly ionized charge states from O, Ne, Mg, Si, S, Ar, and the Fe L-shell and K-shell, we are able to infer the location of the X-ray warm absorber.

  3. X-ray outflows of active galactic nuclei warm absorbers: A 900 ks Chandra simulated spectrum

    OpenAIRE

    Ramirez-Velasquez, J. M.; Garcia, J.

    2016-01-01

    We report on the performance of the statistical, X-ray absorption lines identification procedure XLINE-ID. As illustration, it is used to estimate the time averaged gas density $n_H(r)$ of a representative AGN's warm absorber ($T\\approx 10^5$~K) X-ray simulated spectrum. The method relies on three key ingredients: (1) a well established emission continuum level; (2) a robust grid of photoionisation models spanning several orders of magnitude in gas density ($n_H$), plasma column density ($N_H...

  4. Recollimation shocks in the relativistic outflows of active galactic nuclei. Doctoral Thesis Award Lecture 2014

    Science.gov (United States)

    Fromm, C. M.

    2015-06-01

    We analysed the single-dish radio light curves of the blazar CTA 102 during its major flare around April 2006. The modelling of these data revealed a possible travelling shock-recollimation shock interaction during the flare. To verify this hypothesis, we used multi-epoch and multi-frequency very-long baseline interferometry (VLBI) observations and performed a detailed kinematic and spectral analysis. The results confirmed the hypothesis of a shock-shock interaction causing the 2006 radio flare and provided indications for additional recollimation shocks farther downstream.

  5. A high-redshift quasar absorber without CIV - a galactic outflow caught in the act?

    CERN Document Server

    Fox, Anne

    2016-01-01

    We present a detailed analysis of a very unusual sub-damped Lyman alpha (sub-DLA) system at redshift z=2.304 towards the quasar Q0453-423, based on high signal-to-noise (S/N), high-resolution spectral data obtained with VLT/UVES. With a neutral hydrogen column density of log N(HI)=19.23 and a metallicity of -1.61 as indicated by [OI/HI] the sub-DLA mimics the properties of many other optically thick absorbers at this redshift. A very unusual feature of this system is, however, the lack of any CIV absorption at the redshift of the neutral hydrogen absorption, although the relevant spectral region is free of line blends and has very high S/N. Instead, we find high-ion absorption from CIV and OVI in another metal absorber at a velocity more than 220km/s redwards of the neutral gas component. We explore the physical conditions in the two different absorption systems using Cloudy photoionisation models. We find that the weakly ionised absorber is dense and metal-poor while the highly ionised system is thin and mor...

  6. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  7. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  8. Superlens from complementary anisotropic metamaterials

    Science.gov (United States)

    Li, G. X.; Tam, H. L.; Wang, F. Y.; Cheah, K. W.

    2007-12-01

    Metamaterials with isotropic property have been shown to possess novel optical properties such as a negative refractive index that can be used to design a superlens. Recently, it was shown that metamaterials with anisotropic property can translate the high-frequency wave vector k values from evanescence to propagating. However, electromagnetic waves traveling in single-layer anisotropic metamaterial produce diverging waves of different spatial frequency. In this work, it is shown that, using bilayer metamaterials that have complementary anisotropic property, the diverging waves are recombined to produce a subwavelength image, i.e., a superlens device can be designed. The simulation further shows that the design can be achieved using a metal/oxide multilayer, and a resolution of 30 nm can be easily obtained in the optical frequency range.

  9. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    International Nuclear Information System (INIS)

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis

  10. Stochastic Variations of Galactic Cosmic Rays

    International Nuclear Information System (INIS)

    The generalized anisotropic diffusion tensor, streams and drift velocities of Galactic Cosmic Rays (GCR) for the three dimensional Interplanetary Magnetic Field (IMF) have been analysed. Stochastic and regular changes of GCR, especially 11-year and 27-day variations have been studied. It is stressed that in seventies the generalized anisotropic diffusion tensor has been rarely used due to lack of the direct evidence of the latitudinal component of the IMF. However, now this tensor must be largely used as far as the experimental data and theoretical investigations show the existence of the latitudinal component of the IMF, i.e. heliospheric magnetic field is three-dimensional. The nature of the 11-year variation of GCR is critically considered. It is concluded that the general mechanism of the 11-year variation of GCR must be the change of the structure of the stochastic IMF. Particularly the effective size of the irregularities of the IMF responsible for the diffusion of GCR increases in the minima epochs of solar activity with respect to the maxima epochs. Thus, the different character of the diffusion of GCR in different epochs of solar activity is the general mechanism of 11-year variation of GCR. The temporal changes of the energy spectrum of the 11-year variations of GCR versus the solar activity, namely soft energy spectrum in the maxima epochs and hard one in the minima epochs, conform this conclusion. The modelling and experimental investigations show that the amplitude of the 27-day variations of GCR is greater about 1.5 times in the period of the q A>0 solar magnetic cycle than in the period of the solar magnetic cycle q A<0, which is not yet well explained according to the modern theory of GCR modulation. (author)

  11. Launching of Active Galactic Nuclei Jets

    Science.gov (United States)

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  12. A Versatile Family of Galactic Wind Models

    CERN Document Server

    Bustard, Chad; D'Onghia, Elena

    2015-01-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass-loading and high energy-loading are the most efficient. Our model also produces low-temperature, high-...

  13. Dynamical analysis of anisotropic inflation

    Science.gov (United States)

    Karčiauskas, Mindaugas

    2016-06-01

    The inflaton coupling to a vector field via the f(φ)2F μνFμν term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation, and to circumvent the η-problem. In this work, I perform dynamical analysis of this system allowing for the most general Bianchi I initial conditions. I also confirm the stability of attractor fixed points along phase-space directions that had not been investigated before.

  14. Latest developments in anisotropic hydrodynamics

    CERN Document Server

    Tinti, Leonardo

    2015-01-01

    We discuss the leading order of anisotropic hydrodynamics expansion. It has already been shown that in the (0+1) and (1+1)-dimensional cases it is consistent with the second order viscous hydrodynamics, and it provides a striking agreement with the exact solutions of the Boltzmann equation. Quite recently, a new set of equations has been proposed for the leading order of anisotropic hydrodynamics, which is consistent with the second order viscous hydrodynamics in the most general (3+1)-dimensional case, and does not require a next-to-leading treatment for describing pressure anisotropies in the transverse plane.

  15. Anisotropic hydrodynamics: Motivation and methodology

    International Nuclear Information System (INIS)

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches

  16. Protostellar outflows with Smoothed Particle Magnetohydrodynamics (SPMHD)

    CERN Document Server

    Bürzle, Florian; Stasyszyn, Federico; Dolag, Klaus; Klessen, Ralf S

    2011-01-01

    The protostellar collapse of a molecular cloud core is usually accompanied by outflow phenomena. The latter are thought to be driven by magnetorotational processes from the central parts of the protostellar disc. While several 3D AMR/nested grid studies of outflow phenomena in collapsing magnetically supercritical dense cores have been reported in the literature, so far no such simulation has been performed using the Smoothed Particle Hydrodynamics (SPH) method. This is mainly due to intrinsic numerical difficulties in handling magnetohydrodynamics within SPH, which only recently were partly resolved. In this work, we use an approach where we evolve the magnetic field via the induction equation, augmented with stability correction and divergence cleaning schemes. We consider the collapse of a rotating core of one solar mass, threaded by a weak magnetic field initially parallel to the rotation axis so that the core is magnetically supercritical. We show, that Smoothed Particle Magnetohydrodynamics (SPMHD) is a...

  17. Hepatic venous outflow obstruction: Three similar syndromes

    Institute of Scientific and Technical Information of China (English)

    Ulas Darda Bayraktar; Soley Seren; Yusuf Bayraktar

    2007-01-01

    Our goal is to provide a detailed review of venoocclusive disease (VOD), Budd-Chiari syndrome (BCS),and congestive hepatopathy (CH), all of which results in hepatic venous outflow obstruction. This is the first article in which all three syndromes have been reviewed,enabling the reader to compare the characteristics of these disorders. The histological findings in VOD, BCS,and CH are almost identical: sinusoidal congestion and cell necrosis mostly in perivenular areas of hepatic acini which eventually leads to bridging fibrosis between adjacent central veins. Tender hepatomegaly with jaundice and ascites is common to all three conditions.However, the clinical presentation depends mostly on the extent and rapidity of the outflow obstruction.Although the etiology and treatment are completely different in VOD, BCS, and CH; the similarities in clinical manifestations and liver histology may suggest a common mechanism of hepatic injury and adaptation in response to increased sinusoidal pressure.

  18. Extracellular Matrix Turnover and Outflow Resistance

    OpenAIRE

    Kate E Keller; Mini, Aga; Bradley, John M.; Kelley, Mary J.; Acott, Ted S.

    2008-01-01

    Normal homeostatic adjustment of elevated intraocular pressure (IOP) involves remodeling the extracellular matrix (ECM) of the trabecular meshwork (TM). This entails sensing elevated IOP, releasing numerous activated proteinases to degrade existing ECM and concurrent biosynthesis of replacement ECM components. To increase or decrease IOP, the quantity, physical properties and/or organization of new components should be somewhat different from those replaced in order to modify outflow resistan...

  19. DLA kinematics and outflows from starburst galaxies

    CERN Document Server

    Razoumov, Alexei O

    2008-01-01

    We present results from a numerical study of the multiphase interstellar medium in sub-Lyman-break galaxy protogalactic clumps. Such clumps are abundant at z=3 and are thought to be a major contributor to damped Ly-alpha absorption. We model the formation of winds from these clumps and show that during star formation episodes they feature outflows with neutral gas velocity widths up to several hundred km/s. Such outflows are consistent with the observed high-velocity dispersion in DLAs. In our models thermal energy feedback from winds and supernovae results in efficient outflows only when cold (~ 300 K), dense (> 100 msun/pc^3) clouds are resolved at grid resolution of 12 pc. At lower 24 pc resolution the first signs of the multiphase medium are spotted; however, at this low resolution thermal injection of feedback energy cannot yet create hot expanding bubbles around star-forming regions -- instead feedback tends to erase high-density peaks and suppress star formation. At 12 pc resolution feedback compresses...

  20. Hot Electromagnetic Outflows I: Acceleration and Spectra

    CERN Document Server

    Russo, Matthew

    2013-01-01

    The theory of cold, relativistic, magnetohydrodynamic outflows is generalized by the inclusion of an intense radiation source. In some contexts, such the breakout of a gamma-ray burst jet from a star, the outflow is heated to a high temperature at a large optical depth. Eventually it becomes transparent and is pushed to a higher Lorentz factor by a combination of the Lorentz force and radiation pressure. We obtain its profile, both inside and outside the fast magnetosonic critical point, when the poloidal magnetic field is radial and monopolar. Most of the energy flux is carried by the radiation field and the toroidal magnetic field that is wound up close to the rapidly rotating engine. Although the entrained matter carries little energy, it couples the radiation field to the magnetic field. Then the fast critical point is pushed inward from infinity and, above a critical radiation intensity, the outflow is accelerated mainly by radiation pressure. We identify a distinct observational signature of this hybrid...

  1. Magnotospheric imaging of high latitude ion outflows

    Directory of Open Access Journals (Sweden)

    D. E. Garrido

    Full Text Available High latitude ion outflows mostly consist of upward streaming O+ and He+ emanating from the ionosphere. At heights above 1000 km, these flows consist of cold and hot components which resonantly scatter solar extreme ultraviolet (EUV light, however, the ion populations respond differently to Doppler shifting resulting from the large relative velocities between the ions and the Sun. The possibility of optical detection of the Doppler effect on the scattering rate will be discussed for the O+ (83.4 nm ions. We have contrasted the EUV solar resonance images of these outflows by simulations of the 30.4 nm He+ and 83.4 nm O+ emissions for both quiet and disturbed geomagnetic conditions. Input data for the 1000 km level has been obtained from the EICS instrument aboard the Dynamics Explorer satellite. Our results show emission rates of 50 and 56 milli-Rayleighs at 30.4 nm for quiet and disturbed conditions and 65 and 75 milli-Rayleighs at 83.4 nm for quiet and disturbed conditions, respectively, obtained for a polar orbiting satellite and viewing radially outward. We also find that an imager at an equatorial distance of 9 RE or more is in a favourable position for detecting ion outflows, particularly when the plasmapause is depressed in latitude. However, an occultation disk is necessary to obscure the bright plasmaspheric emissions.

  2. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending on...

  3. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse or...

  4. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback

    Science.gov (United States)

    Muratov, Alexander L.; Kereš, Dušan; Faucher-Giguère, Claude-André; Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2015-12-01

    We present an analysis of the galaxy-scale gaseous outflows from the Feedback in Realistic Environments (FIRE) simulations. This suite of hydrodynamic cosmological zoom simulations resolves formation of star-forming giant molecular clouds to z = 0, and features an explicit stellar feedback model on small scales. Our simulations reveal that high-redshift galaxies undergo bursts of star formation followed by powerful gusts of galactic outflows that eject much of the interstellar medium and temporarily suppress star formation. At low redshift, however, sufficiently massive galaxies corresponding to L* progenitors develop stable discs and switch into a continuous and quiescent mode of star formation that does not drive outflows far into the halo. Mass-loading factors for winds in L* progenitors are η ≈ 10 at high redshift, but decrease to η ≪ 1 at low redshift. Although lower values of η are expected as haloes grow in mass over time, we show that the strong suppression of outflows with decreasing redshift cannot be explained by mass evolution alone. Circumgalactic outflow velocities are variable and broadly distributed, but typically range between one and three times the circular velocity of the halo. Much of the ejected material builds a reservoir of enriched gas within the circumgalactic medium, some of which could be later recycled to fuel further star formation. However, a fraction of the gas that leaves the virial radius through galactic winds is never regained, causing most haloes with mass Mh ≤ 1012 M⊙ to be deficient in baryons compared to the cosmic mean by z = 0.

  5. Modeling galactic extinction

    Directory of Open Access Journals (Sweden)

    C. Cecchi-Pestellini

    2011-09-01

    Full Text Available We present a model for interstellar extinction dust, in which we assume a bimodal distribution of extinction carriers, a dispersion of core-mantle grains, supplemented by a collection of PAHs in free molecular form. We use state-of-the-art methods to calculate the extinction due to macroscopic dust particles, and the absorption cross-sections of PAHs in four different charge states. While successfull for most of observed Galactic extinction curves, in few cases the model cannot provide reliable results. Paradoxically, these failures appear to be very promising, suggesting that the whole body of dust extinction features might be described within the cycle of carbon in the interstellar medium.

  6. Galactic Diffuse Polarized Emission

    Indian Academy of Sciences (India)

    Ettore Carretti

    2011-12-01

    Diffuse polarized emission by synchrotron is a key tool to investigate magnetic fields in the Milky Way, particularly the ordered component of the large scale structure. Key observables are the synchrotron emission itself and the RM is by Faraday rotation. In this paper the main properties of the radio polarized diffuse emission and its use to investigate magnetic fields will be reviewed along with our current understanding of the galactic magnetic field and the data sets available. We will then focus on the future perspective discussing RM-synthesis – the new powerful instrument devised to unlock the information encoded in such an emission – and the surveys currently in progress like S-PASS and GMIMS.

  7. Shock Waves in Outflows from Young Stars

    Science.gov (United States)

    Hartigan, Patrick

    This review focuses on physics of the cooling zones behind radiative shocks and the emission line diagnostics that can be used to infer physical conditions and mass loss rates in jets from young stars. Spatial separations of the cooling zones from the shock fronts, now resolvable with HST, and recent evidence for C-shocks have greatly increased our understanding of how shocks in outflows interact with the surrounding medium and with other material within the flow. By combining multiple epoch HST images, one can create `movies' of flows like those produced from numerical codes, and learn what kinds of instabilities develop within these systems.

  8. Iodine-131 monitoring in sewage plant outflow

    International Nuclear Information System (INIS)

    Three different hospital sites (Oxford, Sutton and Guildford) have performed sampling of their local sewage plant outflow to determine levels of radioactivity resulting from iodine-131 patients undergoing radionuclide therapies. It was found that a maximum of 20% of activity discharged from the hospitals was present in the sewage plant final effluent channel. This is significantly below the level predicted by mathematical models in current use. The results further show that abatement systems to reduce public exposure are unlikely to be warranted at hospital sites. (paper)

  9. GGD 37: An Extreme Protostellar Outflow

    CERN Document Server

    Green, J D; Bergin, E; Maret, S; Melnick, G; Sonnentrucker, P; Tolls, V; Sargent, B A; Forrest, W J; Kim, K H; Raines, S N

    2010-01-01

    We present the first Spitzer-IRS spectral maps of the Herbig-Haro flow GGD 37 detected in lines of [Ne III], [O IV], [Ar III], and [Ne V]. The detection of extended [O IV] (55 eV) and some extended emission in [Ne V] (97 eV) indicates a shock temperature in excess of 100,000 K, in agreement with X-ray observations, and a shock speed in excess of 200 km s-1. The presence of an extended pho- toionization or collisional ionization region indicates that GGD 37 is a highly unusual protostellar outflow.

  10. The end of the Galactic spectrum

    CERN Document Server

    De Donato, C

    2007-01-01

    We use a diffusion galactic model to analyze the end of the Galactic cosmic ray spectrum and its mixing with the extragalactic cosmic ray flux. We analyze the transition between Galactic and extragalactic components using two different extragalactic models. We compare the sum of the diffusive galactic spectrum and extragalactic spectrum with the available experimental data.

  11. Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows

    Science.gov (United States)

    Hopkins, Philip F.; Torrey, Paul; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman

    2016-05-01

    We study the interaction of feedback from active galactic nuclei (AGN) and a multiphase interstellar medium (ISM), in simulations including explicit stellar feedback, multiphase cooling, accretion-disc winds, and Compton heating. We examine radii ˜0.1-100 pc around a black hole (BH), where the accretion rate on to the BH is determined and where AGN-powered winds and radiation couple to the ISM. We conclude: (1) the BH accretion rate is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates ˜0.03-1 M⊙ yr-1, sufficient to power luminous AGN. (2) The gas disc in the galactic nucleus undergoes an initial burst of star formation followed by several million years where stellar feedback suppresses the star formation rate (SFR). (3) AGN winds injected at small radii with momentum fluxes ˜LAGN/c couple efficiently to the ISM and have dramatic effects on ISM properties within ˜100 pc. AGN winds suppress the nuclear SFR by factors ˜10-30 and BH accretion rate by factors ˜3-30. They increase the outflow rate from the nucleus by factors ˜10, consistent with observational evidence for galaxy-scale AGN-driven outflows. (4) With AGN feedback, the predicted column density distribution to the BH is consistent with observations. Absent AGN feedback, the BH is isotropically obscured and there are not enough optically thin sightlines to explain type-I AGN. A `torus-like' geometry arises self-consistently as AGN feedback evacuates gas in polar regions.

  12. [CII] synthetic emission maps of simulated galactic disks

    Science.gov (United States)

    Franeck, A.; Walch, S.; Glover, S. C. O.; Seifried, D.; Girichidis, P.; Naab, T.; Klessen, R.; Peters, T.; Wünsch, R.; Gatto, A.; Clark, P. C.

    2016-05-01

    We carry out radiative transfer simulations for the [CII] emission of simulated galactic disks from the SILCC project.6 Here we present the integrated [CII] intensity map of a typical simulation which assumes solar neighbourhood conditions with ΣGAS = 10 M⊙/pc2 and a supernova rate of 15 SN/Myr with randomly distributed supernovae (SNe) at t = 50 Myr. We analyse the intensity profile which reveals different components. These are clearly distinguishable and trace cold, molecular as well as warm, outflowing gas. We find that [CII] is a promising tool to analyse the multi-phase structure of the ISM. SILCC: Simulating the LIfe Cycle of molecular Clouds: hera.ph1.uni-koeln.de/˜silcc/

  13. A Jet Model of the Galactic Center Nonthermal Radio Filaments

    CERN Document Server

    Yusef-Zadeh, F

    2004-01-01

    Protostellar sources in star forming regions are responsible for driving jets with flow velocities ranging between 300 and 400 km s$^{-1}$. This class of jets consists of highly collimated outflows which include thermal knots with number densities estimated to be greater than that of their ambient medium. On the other hand, extragalactic FR I jets consist of light fluid with low Mach number burrowing through a denser medium as the magnetized jets radiate nonthermal emission. Both protostellar and extragalactic jets are believed to be launched by accretion disks. Here we consider a jet model in which the characteristics common to both protostellar and extragalactic jets are used to explain the origin of nonthermal filaments in the Galactic center region. We argue that these filaments are analogous to FR I extragalactic sources but are launched by embedded young stars or clusters of stars in star-forming regions.

  14. Discovery of Relativistic Outflow in the Seyfert Galaxy Ark 564

    OpenAIRE

    Gupta, A; Mathur, S; Krongold, Y.; F. Nicastro

    2013-01-01

    We present \\chandra high energy transmission grating spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low velocity outflow components usually observed in Seyfert galaxies \\citep{Gupta2013}. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here we present identifications of the strongest lines as $K\\alpha$ transitions of \\oviin (two lines) and \\ovin at outflow ve...

  15. Cumulative neutrino background from quasar-driven outflows

    CERN Document Server

    Wang, Xiawei

    2016-01-01

    Quasar-driven outflows naturally account for the missing component of the extragalactic $\\gamma$-ray background through neutral pion production in interactions between protons accelerated by the forward outflow shock and interstellar protons. We study the simultaneous neutrino emission by the same protons. We adopt outflow parameters that best fit the extragalactic $\\gamma$-ray background data and derive a cumulative neutrino background of $\\sim10^{-7}\\,\\rm GeV\\,cm^{-2}\\,s^{-1}\\,sr^{-1}$ at neutrino energies $E_{\

  16. Conductivities in an anisotropic medium

    CERN Document Server

    Khimphun, Sunly; Park, Chanyong

    2016-01-01

    In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.

  17. Anisotropic Inflation and Cosmological Observations

    CERN Document Server

    Emami, Razieh

    2015-01-01

    Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation the...

  18. Stealths on Anisotropic Holographic Backgrounds

    CERN Document Server

    Ayón-Beato, Eloy; Juárez-Aubry, María Montserrat

    2015-01-01

    In this paper, we are interested in exploring the existence of stealth configurations on anisotropic backgrounds playing a prominent role in the non-relativistic version of the gauge/gravity correspondence. By stealth configuration, we mean a nontrivial scalar field nonminimally coupled to gravity whose energy-momentum tensor evaluated on the anisotropic background vanishes identically. In the case of a Lifshitz spacetime with a nontrivial dynamical exponent z, we spotlight the role played by the anisotropy to establish the holographic character of the stealth configurations, i.e. the scalar field is shown to only depend on the radial holographic direction. This configuration which turns out to be massless and without integration constants is possible for a unique value of the nonminimal coupling parameter. Then, using a simple conformal argument, we map this configuration into a stealth solution defined on the so-called hyperscaling violation metric which is conformally related to the Lifshitz spacetime. Thi...

  19. Jet acceleration of the fast molecular outflows in the Seyfert galaxy IC5063

    CERN Document Server

    Tadhunter, C; Rose, M; Oonk, J B R; Oosterloo, T

    2014-01-01

    Massive outflows driven by active galactic nuclei (AGN) are widely recognised to play a key role in the evolution of galaxies, heating the ambient gas, expelling it from the nuclear regions, and thereby affecting the star formation histories of the galaxy bulges. It has been proposed that the powerful jets of relativistic particles launched by some AGN can both accelerate and heat the molecular gas, which often dominates the mass budgets of the outflows. However, clear evidence for this mechanism in the form of detailed associations between the molecular gas kinematics and features in the radio-emitting jets has been lacking. Here we show that the warm molecular hydrogen gas in the western radio lobe of the Seyfert galaxy IC5063 is moving at high velocities - up to 600 km/s - relative to the galaxy disk. This suggests that the molecules have been accelerated by fast shocks driven into the interstellar medium (ISM) by the expanding radio jets. These results demonstrate the general feasibility of accelerating m...

  20. A 3 pc SCALE JET-DRIVEN OUTFLOW FROM SGR A*

    International Nuclear Information System (INIS)

    The compact radio source Sgr A* is coincident with a 4 × 106 M☉ black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high-resolution radio continuum images of the central 3' and report a faint continuous linear structure centered on Sgr A* with a P.A. ∼ 60°. The extension of this feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, ∼75'' from Sgr A*. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. The linear structure is best characterized by a mildly relativistic jet from Sgr A* with an outflow rate 10–6 M☉ yr–1. The near and far sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for a 2'' hole, the 'minicavity', characterized by disturbed kinematics, enhanced Fe II/III line emission, and diffuse X-ray gas. The estimated kinetic luminosity of the outflow is ∼1.2 × 1041 erg s–1, so the interaction with the bar may be responsible for the Galactic center X-ray flash inferred to be responsible for much of the fluorescent Fe Kα line emission from the inner 100 pc of the Galaxy.

  1. Radiation Pressure Confinement -- III. The origin of the broad ionization distribution in AGN outflows

    CERN Document Server

    Stern, Jonathan; Laor, Ari; Baskin, Alexei; Holczer, Tomer

    2014-01-01

    The winds of ionized gas driven by Active Galactic Nuclei (AGN) can be studied through absorption features in their X-ray spectra. A recurring feature of these outflows is their broad ionization distribution, including essentially all ionization levels (e.g., Fe^0+ to Fe^25+). The absorption measure distribution (AMD) is defined as the distribution of column density with ionization parameter |dN / dlog xi|. The AMD extends over a wide range of 0.1 < xi < 10^4 (cgs), and is remarkably similar in different objects. Power-law fits to the observed AMDs (|dN / dlog xi| ~ N_1 xi^a) yield N_1 = 3x10^21 cm^-2 +- 0.4 dex and a = 0 -- 0.4. What is the source of this broad ionization distribution, and what sets the small range of observed $N_1$ and $a$ values? A common interpretation is a multiphase outflow, with a wide range of gas densities in a uniform pressure medium. However, it has already been shown that the incident radiation pressure leads to a gas pressure gradient in the photoionized gas, and therefore ...

  2. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    CERN Document Server

    Salak, Dragan; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-01-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out \\(^{12}\\)CO (\\(J=1-0\\)) mapping observations of the central \\(r\\sim4\\) kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array (ALMA). Four distinct components of molecular gas are revealed at high spatial resolution of 2\\arcsec (\\(\\sim100\\) pc): (1) a compact (\\(r<200\\) pc) circumnuclear disk (CND), (2) \\(r\\sim500\\) pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1-kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) nuclear bar and molecular CND, and (3) unresolved massive (\\(\\sim10^7~M_\\sun\\)) core. Two systemic velocities, 998 km s\\(^{-1}\\) for the CND and 964 km s\\(^{-1}\\) for the 500-pc ring, are revealed, indicating ...

  3. Mirage technique in anisotropic solids

    OpenAIRE

    Quelin, X.; Perrin, B; Perrin, Bernard; Louis, G.

    1994-01-01

    Theoretical and experimental analysis of heat diffusion in an anisotropic medium are presented. The solution of the 3D thermal conduction equation in an orthorhombic medium is calculated by the mean of a Fourier transforms method. Experiments were performed on an orthorhombic polydiacetylene single crystal sample. The temperature field at the sample surface was determined using the photothermal probe beam deflection technique. Then the 3 coefficients of the thermal conductivity tensor have be...

  4. Galactic structure from infrared studies

    International Nuclear Information System (INIS)

    Star densities on a galactic scale are traced by far infrared emission of dust heated by young stars and by the 2.4 μm radiation of stars in the red giant phase. Coherent results are obtained, pointing to a very strong star formation rate during the last approximately 200 My in a ring 5 kpc from the galactic center. A steepening of the initial mass function compared to that observed in the solar vicinity is also suggested. (Auth.)

  5. Galactic turbulence and paleoclimate variability

    CERN Document Server

    Bershadskii, A

    2010-01-01

    The wavelet regression detrended fluctuations of the reconstructed temperature for the past three ice ages: approximately 340000 years (Antarctic ice cores isotopic data), exhibit clear evidences of the galactic turbulence modulation up to 2500 years time-scales. The observed strictly Kolmogorov turbulence features indicates the Kolmogorov nature of galactic turbulence, and provide explanation to random-like fluctuations of the global temperature on the millennial time scales.

  6. Quasar feedback revealed by giant molecular outflows

    CERN Document Server

    Feruglio, Chiara; Piconcelli, Enrico; Menci, Nicola; Aussel, Herve'; Lamastra, Alessandra; Fiore, Fabrizio

    2010-01-01

    In the standard scenario for galaxy evolution the transformation of young star-forming galaxies into red bulge-dominated spheroids, where star formation has been quenched, is often explained by invoking a strong negative feedback generated by accretion onto a central super-massive black hole. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead to the black hole "suicide" for starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, since outflows previously observed in quasars are associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occur in the central regions. We used the IRAM PdBI to observe the CO(1-0) transition in Mrk 231, the closest quasar known. We detect broad wings of the CO line, with velocities up to 750 km/s and spatially resolved on the kpc scale. Such broad CO wings trace a giant molecular o...

  7. Magnetospheric and Thermospheric Influence on Ionospheric Outflow

    Science.gov (United States)

    Garcia-Sage, K.; Moore, T. E.; Mitchell, E. J.; Olson, D. K.

    2013-12-01

    The Fast Auroral SnapshoT (FAST) small explorer has been used extensively to study ionospheric outflow. Past research has used particle and field data to examine the contemporaneous transfer of electromagnetic energy and particle flow downward from the magnetosphere and upward from the ionosphere. Single event studies published by Strangeway et al. [2005] and Brambles et al. [2011, Supporting Online Material] showed that downward electromagnetic energy and particle flow into the ionosphere are correlated with the upward flow of ions out of the ionosphere. It is expected, however, that this correlation will be affected by circumstances that are unique to each specific event, including but not limited to the outflow location (cusp or nightside), preconditioning due to prior geomagnetic activity, and thermospheric neutral densities. Although knowledge of the thermospheric neutral density is usually unavailable, data from the CHAllenging Minisatellite Payload (CHAMP) is able to provide insight into thermospheric populations at altitudes of about 400 km for a few select events. We expand on the previously-mentioned studies by looking at FAST particle and field data for additional events, and we further examine the influence of thermospheric neutral populations, based on CHAMP data.

  8. Accretion, winds and outflows in young stars

    CERN Document Server

    Günther, Hans Moritz

    2012-01-01

    Young stars and planetary systems form in molecular clouds. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. H\\alpha, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many accreting systems also drive strong outflows which are ultimately powered by accretion. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner dis...

  9. Power spectra of outflow-driven turbulence

    CERN Document Server

    Moraghan, Anthony; Yoon, Suk-Jin

    2015-01-01

    We investigate the power spectra of outflow-driven turbulence through high-resolution three-dimensional isothermal numerical simulations where the turbulence is driven locally in real-space by a simple spherical outflow model. The resulting turbulent flow saturates at an average Mach number of ~2.5 and is analysed through density and velocity power spectra, including an investigation of the evolution of the solenoidal and compressional components. We obtain a shallow density power spectrum with a slope of ~-1.2 attributed to the presence of a network of localised dense filamentary structures formed by strong shock interactions. The total velocity power spectrum slope is found to be ~-2.0, representative of Burgers shock dominated turbulence model. The density weighted velocity power spectrum slope is measured as ~-1.6, slightly less than the expected Kolmogorov scaling value (slope of -5/3) found in previous works. The discrepancy may be caused by the nature of our real space driving model and we suggest ther...

  10. Disks and Outflows Around Young Stars

    Science.gov (United States)

    Beckwith, Steven; Staude, Jakob; Quetz, Axel; Natta, Antonella

    The subject of the book, the ubiquitous circumstellar disks around very young stars and the corresponding jets of outflowing matter, has recently become one of the hottest areas in astrophysics. The disks are thought to be precursors to planetary systems, and the outflows are thought to be a necessary phase in the formation of a young star, helping the star to get rid of angular momentum and energy as it makes its way onto the main sequence. The possible connections to planetary systems and stellar astrophysics makes these topics especially broad, appealing to generalists and specialists alike. The CD not only contains papers that could not be printed in the book but allows the authors to include a fair amount of data, often displayed as color images. The CD-ROM contains all the contributions printed in the corresponding book (Lecture Notes in Physics Vol. 465) and, in addition, those presented exclusively in digital form. Each contribution consists of a file in portable document format (PDF). The electronic version allows full-text searching within each file using Adobe's Acrobat Reader providing instructions for installation on Unix (Sun), PC and Macintosh computers, respectively. All contributions can be printed out; the color diagrams and color frames, which are printed in black and white in the book, can be viewed in color on screen.

  11. Multidimensional chemical modelling, II. Irradiated outflow walls

    CERN Document Server

    Bruderer, Simon; Doty, Steven D; van Dishoeck, Ewine F; Bourke, Tyler L

    2009-01-01

    Observations of the high-mass star forming region AFGL 2591 reveal a large abundance of CO+, a molecule known to be enhanced by far UV (FUV) and X-ray irradiation. In chemical models assuming a spherically symmetric envelope, the volume of gas irradiated by protostellar FUV radiation is very small due to the high extinction by dust. The abundance of CO+ is thus underpredicted by orders of magnitude. In a more realistic model, FUV photons can escape through an outflow region and irradiate gas at the border to the envelope. Thus, we introduce the first 2D axi-symmetric chemical model of the envelope of a high-mass star forming region to explain the CO+ observations as a prototypical FUV tracer. The model assumes an axi-symmetric power-law density structure with a cavity due to the outflow. The local FUV flux is calculated by a Monte Carlo radiative transfer code taking scattering on dust into account. A grid of precalculated chemical abundances, introduced in the first part of this series of papers, is used to ...

  12. Ionized Outflows from Compact Steep Spectrum Sources

    CERN Document Server

    Shih, Hsin-Yi; Kewley, Lisa

    2013-01-01

    Massive outflows are known to exist, in the form of extended emission-line regions (EELRs), around about one-third of powerful FR II radio sources. We investigate the origin of these EELRs by studying the emission-line regions around compact-steep-spectrum (CSS) radio galaxies that are younger (10$^3$ to 10$^5$ years old) versions of the FR II radio galaxies. We have searched for and analyzed the emission-line regions around 11 CSS sources by taking integral field spectra using GMOS on Gemini North. We fit the [\\ion{O}{3}] $\\lambda 5007$ line and present the velocity maps for each detected emission-line region. We find, in most cases, that the emission-line regions have multi-component velocity structures with different velocity dispersions and/or flux distributions for each component. The velocity gradients of the emission-line gas are mostly well aligned with the radio axis, suggesting a direct causal link between the outflowing gas and the radio jets. The complex velocity structure may be a result of diffe...

  13. Galactic Open Clusters

    CERN Document Server

    Von Hippel, T

    2005-01-01

    The study of open clusters has a classic feel to it since the subject predates anyone alive today. Despite the age of this topic, I show via an ADS search that its relevance and importance in astronomy has grown faster in the last few decades than astronomy in general. This is surely due to both technical reasons and the interconnection of the field of stellar evolution to many branches of astronomy. In this review, I outline what we know today about open clusters and what they have taught us about a range of topics from stellar evolution to Galactic structure to stellar disk dissipation timescales. I argue that the most important astrophysics we have learned from open clusters is stellar evolution and that its most important product has been reasonably precise stellar ages. I discuss where open cluster research is likely to go in the next few years, as well as in the era of 20m telescopes, SIM, and GAIA. Age will continue to be of wide relevance in astronomy, from cosmology to planet formation timescales, an...

  14. Active Galactic Nuclei under the scrutiny of CTA

    CERN Document Server

    Sol, H; Boisson, C; de Almeida, U Barres; Biteau, J; Contreras, J -L; Giebels, B; Hassan, T; Inoue, Y; Katarzynski, K; Krawczynski, H; Mirabal, N; Poutanen, J; Rieger, F; Totani, T; Benbow, W; Cerruti, M; Errando, M; Fallon, L; Pino, E de Gouveia Dal; Hinton, J -A; Inoue, S; Lenain, J -P; Neronov, A; Takahashi, K; Takami, H; White, R

    2013-01-01

    Active Galactic Nuclei (hereafter AGN) produce powerful outflows which offer excellent conditions for efficient particle acceleration in internal and external shocks, turbulence, and magnetic reconnection events. The jets as well as particle accelerating regions close to the supermassive black holes (hereafter SMBH) at the intersection of plasma inflows and outflows, can produce readily detectable very high energy gamma-ray emission. As of now, more than 45 AGN including 41 blazars and 4 radiogalaxies have been detected by the present ground-based gamma-ray telescopes, which represents more than one third of the cosmic sources detected so far in the VHE gamma-ray regime. The future Cherenkov Telescope Array (CTA) should boost the sample of AGN detected in the VHE range by about one order of magnitude, shedding new light on AGN population studies, and AGN classification and unification schemes. CTA will be a unique tool to scrutinize the extreme high-energy tail of accelerated particles in SMBH environments, t...

  15. AN INFRARED-LUMINOUS MERGER WITH TWO BIPOLAR MOLECULAR OUTFLOWS: ALMA AND SMA OBSERVATIONS OF NGC 3256

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Kazushi [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Aalto, Susanne [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, Onsala (Sweden); Combes, Francoise [Observatoire de Paris, 61 Av. de l' Observatoire, F-75014 Paris (France); Evans, Aaron; Peck, Alison [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2014-12-20

    We report Atacama Large Millimeter/sub-millimeter Array and Submillimeter Array observations of the infrared-luminous merger NGC 3256, the most luminous galaxy within z = 0.01. Both of the two merger nuclei separated by 5'' (0.8 kpc) have a molecular gas concentration, a nuclear disk, with Σ{sub mol} > 10{sup 3} M {sub ☉} pc{sup –2}. The northern nucleus is more massive and is surrounded by molecular spiral arms. Its nuclear disk is face-on, while the southern nuclear disk is almost edge-on. The high-velocity molecular gas in the system can be resolved into two molecular outflows from the two nuclei. The one from the northern nucleus is part of a starburst-driven superwind seen nearly pole-on. Its maximum velocity is >750 km s{sup –1} and its mass outflow rate is >60 M {sub ☉} yr{sup –1} for a conversion factor X{sub CO}=N{sub H{sub 2}}/I{sub CO(1−0)} of 1 × 10{sup 20} cm{sup –2} (K km s{sup –1}){sup –1}. The molecular outflow from the southern nucleus is a highly collimated bipolar jet seen nearly edge-on. Its line-of-sight velocity increases with distance, out to 300 pc from the nucleus, to the maximum de-projected velocity of ∼2000 km s{sup –1} for the estimated inclination and ≳1000 km s{sup –1} taking into account the uncertainty. Its mass outflow rate is estimated to be >50 M {sub ☉} yr{sup –1} for the same X {sub CO}. This southern outflow has indications of being driven by a bipolar radio jet from an active galactic nucleus that recently weakened. The sum of these outflow rates, although subject to the uncertainty in the molecular mass estimate, either exceeds or compares to the total star formation rate. The feedback from nuclear activity through molecular outflows is therefore significant in the gas consumption, and hence evolution, of this system.

  16. A catalog of extended green objects in the Glimpse survey: A new sample of massive young stellar object outflow candidates

    International Nuclear Information System (INIS)

    Using images from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), we have identified more than 300 extended 4.5 μm sources (Extended Green Objects (EGOs), for the common coding of the [4.5] band as green in three-color composite InfraRed Array Camera images). We present a catalog of these EGOs, including integrated flux density measurements at 3.6, 4.5, 5.8, 8.0, and 24 μm from GLIMPSE and the Multiband Imaging Photometer for Spitzer Galactic Plane Survey. The average angular separation between a source in our sample and the nearest IRAS point source is greater than 1'. The majority of EGOs are associated with infrared dark clouds (IRDCs), and where high-resolution 6.7 GHz CH3OH maser surveys overlap the GLIMPSE coverage, EGOs and 6.7 GHz CH3OH masers are strongly correlated. Extended 4.5 μm emission is thought to trace shocked molecular gas in protostellar outflows; the association of EGOs with IRDCs and 6.7 GHz CH3OH masers suggests that the extended 4.5 μm emission may pinpoint outflows specifically from massive protostars. The mid-IR colors of EGOs lie in regions of color-color space occupied by young protostars still embedded in infalling envelopes.

  17. ACTIVE GALACTIC NUCLEI WITH DOUBLE-PEAKED NARROW LINES: ARE THEY DUAL ACTIVE GALACTIC NUCLEI?

    International Nuclear Information System (INIS)

    Double-peaked [O III] profiles in active galactic nuclei (AGNs) may provide evidence for the existence of dual AGNs, but a good diagnostic for selecting them is currently lacking. Starting from ∼7000 active galaxies in Sloan Digital Sky Survey DR7, we assemble a sample of 87 type 2 AGNs with double-peaked [O III] profiles. The nuclear obscuration in the type 2 AGNs allows us to determine redshifts of host galaxies through stellar absorption lines. We typically find that one peak is redshifted and another is blueshifted relative to the host galaxy. We find a strong correlation between the ratios of the shifts and the double peak fluxes. The correlation can be naturally explained by the Keplerian relation predicted by models of co-rotating dual AGNs. The current sample statistically favors that most of the [O III] double-peaked sources are dual AGNs and disfavors other explanations, such as rotating disk and outflows. These dual AGNs have a separation distance at ∼1 kpc scale, showing an intermediate phase of merging systems. The appearance of dual AGNs is about ∼10-2, impacting on the current observational deficit of binary supermassive black holes with a probability of ∼10-4 (Boroson and Lauer).

  18. Measurement of Outflow Facility Using iPerfusion.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Elevated intraocular pressure (IOP is the predominant risk factor for glaucoma, and reducing IOP is the only successful strategy to prevent further glaucomatous vision loss. IOP is determined by the balance between the rates of aqueous humour secretion and outflow, and a pathological reduction in the hydraulic conductance of outflow, known as outflow facility, is responsible for IOP elevation in glaucoma. Mouse models are often used to investigate the mechanisms controlling outflow facility, but the diminutive size of the mouse eye makes measurement of outflow technically challenging. In this study, we present a new approach to measure and analyse outflow facility using iPerfusion™, which incorporates an actuated pressure reservoir, thermal flow sensor, differential pressure measurement and an automated computerised interface. In enucleated eyes from C57BL/6J mice, the flow-pressure relationship is highly non-linear and is well represented by an empirical power law model that describes the pressure dependence of outflow facility. At zero pressure, the measured flow is indistinguishable from zero, confirming the absence of any significant pressure independent flow in enucleated eyes. Comparison with the commonly used 2-parameter linear outflow model reveals that inappropriate application of a linear fit to a non-linear flow-pressure relationship introduces considerable errors in the estimation of outflow facility and leads to the false impression of pressure-independent outflow. Data from a population of enucleated eyes from C57BL/6J mice show that outflow facility is best described by a lognormal distribution, with 6-fold variability between individuals, but with relatively tight correlation of facility between fellow eyes. iPerfusion represents a platform technology to accurately and robustly characterise the flow-pressure relationship in enucleated mouse eyes for the purpose of glaucoma research and with minor modifications, may be applied

  19. Resolving Galactic Feedback and Gas Accretion in NaI Absorption with MaNGA

    Science.gov (United States)

    Rubin, Kate; MaNGA Team

    2016-01-01

    Current models of galaxy formation require that the buildup of galactic stellar mass proceeds at a rate much slower than the rate at which gas is accreted onto dark matter halos. The implementation of winds in these models, however, has been primarily via ad hoc prescriptions, as the relationship between outflow morphology and kinematics and star formation activity is not well understood. In addition, empirical evidence for the inflow of gas onto star-forming galaxies has remained elusive. To address these issues, we analyze absorption line profiles for the NaI λλ5890, 5896 transition in spatially-resolved spectroscopy of nearby galaxies observed in the MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) survey. We identify outflows of cool (T~102 K) gas via the blueshift of the absorption lines. Initial results suggest that in systems in which outflows are detected, the equivalent width of the flow varies significantly over the surface of the galaxy, revealing a changing flow covering fraction/velocity within individual objects. We also measure the incidence of redshifted NaI absorption in this sample for constraints on the frequency and cross section of cool gas accretion. This analysis offers unique insight into the morphology, surface density, and velocity of cool inflow and outflow around nearby galaxies. Accurate estimates of these quantities are fundamental to understanding the role of gas flows in regulating galaxy growth.

  20. A 10 kpc SCALE SEYFERT GALAXY OUTFLOW: HST/COS OBSERVATIONS OF IRAS F22456-5125

    Energy Technology Data Exchange (ETDEWEB)

    Borguet, Benoit C. J.; Edmonds, Doug; Arav, Nahum [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Dunn, Jay [Augusta Perimeter College, Atlanta, GA (United States); Kriss, Gerard A., E-mail: benbo@vt.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-06-01

    We present analysis of the UV spectrum of the low-z AGN IRAS F22456-5125 obtained with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The spectrum reveals six main kinematic components, spanning a range of velocities of up to 800 km s{sup -1}, which for the first time are observed in troughs associated with C II, C IV, N V, Si II, Si III, Si IV, and S IV. We also obtain data on the O VI troughs, which we compare to those available from an earlier Far Ultraviolet Spectroscopic Explorer epoch. Column densities measured from these ions allow us to derive a well-constrained photoionization solution for each outflow component. Two of these kinematic components show troughs associated with transitions from excited states of Si II and C II. The number density inferred from these troughs, in combination with the deduced ionization parameter, allows us to determine the distance to these outflow components from the central source. We find these components to be at a distance of {approx}10 kpc. The distances and the number densities derived are consistent with the outflow being part of a galactic wind.

  1. Magnetically-Driven Accretion-Disk Winds and Ultra-Fast Outflows in PG1211+143

    CERN Document Server

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-01-01

    We present a study of X-ray ionization of magnetohydrodynamic (MHD) accretion-disk winds in an effort to constrain the physics underlying the highly-ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub-classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically-driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an {\\it XMM-Newton}/EPIC spectrum of the narrow-line Seyfert, \\pg. We find, through identifying the detected features with Fe K$\\alpha$ transitions, that the absorber has a characteristic ionization parameter of $\\log (\\xi_c [erg~cm~s$^{-1}...

  2. Standing Shocks around Black Holes and Estimation of Outflow Rates

    Indian Academy of Sciences (India)

    Santabrata Das; Sandip K. Chakrabarti

    2002-03-01

    We self-consistently obtain shock locations in an accretion flow by using an analytical method. One can obtain the spectral properties, quasi-periodic oscillation frequencies and the outflowrates when the inflow parameters are known. Since temperature of the CENBOL decides the spectral states of the black hole, and also the outflow rate, the outflow rate is directly related to the spectral states.

  3. Collective outflow from a small multiple stellar system

    International Nuclear Information System (INIS)

    The formation of high-mass stars is usually accompanied by powerful protostellar outflows. Such high-mass outflows are not simply scaled-up versions of their lower-mass counterparts, since observations suggest that the collimation degree degrades with stellar mass. Theoretically, the origins of massive outflows remain open to question because radiative feedback and fragmentation of the accretion flow around the most massive stars, with M > 15 M ☉, may impede the driving of magnetic disk winds. We here present a three-dimensional simulation of the early stages of core fragmentation and massive star formation that includes a subgrid-scale model for protostellar outflows. We find that stars that form in a common accretion flow tend to have aligned outflow axes, so that the individual jets of multiple stars can combine to form a collective outflow. We compare our simulation to observations with synthetic H2 and CO observations and find that the morphology and kinematics of such a collective outflow resembles some observed massive outflows, such as Cepheus A and DR 21. We finally compare physical quantities derived from simulated observations of our models to the actual values in the models to examine the reliability of standard methods for deriving physical quantities, demonstrating that those methods indeed recover the actual values to within a factor of two to three.

  4. Multidisciplinary approach to cylindrical anisotropic metamaterials

    OpenAIRE

    Carbonell Olivares, Jorge; Torrent Martí, Daniel; Diaz Rubio, Ana; Sánchez-Dehesa Moreno-Cid, José

    2011-01-01

    Anisotropic characteristics of cylindrically corrugated microstructures are analyzed in terms of their acoustic and electromagnetic (EM) behavior paying special attention to their differences and similarities. A simple analytical model has been developed using effective medium theory to understand the anisotropic features of both types of waves in terms of radial and angular components of the wave propagation velocity. The anisotropic constituent parameters have been obtained by measuring the...

  5. A Disturbed Galactic Duo

    Science.gov (United States)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this

  6. Type-Ia Supernova-driven Galactic Bulge Wind

    CERN Document Server

    Tang, Shikui; Mac Low, Mordecai-Mark; Joung, M Ryan

    2009-01-01

    Stellar feedback in galactic bulges plays an essential role in shaping the evolution of galaxies. To quantify this role and facilitate comparisons with X-ray observations, we conduct 3D hydrodynamical simulations with the adaptive mesh refinement code, FLASH, to investigate the physical properties of hot gas inside a galactic bulge, similar to that of our Galaxy or M31. We assume that the dynamical and thermal properties of the hot gas are dominated by mechanical energy input from SNe, primarily Type Ia, and mass injection from evolved stars as well as iron enrichment from SNe. We study the bulge-wide outflow as well as the SN heating on scales down to ~4 pc. An embedding scheme that is devised to plant individual SNR seeds, allows to examine, for the first time, the effect of sporadic SNe on the density, temperature, and iron ejecta distribution of the hot gas as well as the resultant X-ray morphology and spectrum. We find that the SNe produce a bulge wind with highly filamentary density structures and patch...

  7. Simulations of galactic winds and starbursts in galaxy clusters

    CERN Document Server

    Kapferer, W; Domainko, W; Mair, M; Kronberger, T; Schindler, S; Kimeswenger, S; Van Kampen, E; Breitschwerdt, D; Ruffert, M

    2005-01-01

    We present an investigation of the metal enrichment of the intra-cluster medium (ICM) by galactic winds and merger-driven starbursts. We use combined N-body/hydrodynamic simulations with a semi-numerical galaxy formation model. The mass loss by galactic winds is obtained by calculating transonic solutions of steady state outflows, driven by thermal, cosmic ray and MHD wave pressure. The inhomogeneities in the metal distribution caused by these processes are an ideal tool to reveal the dynamical state of a galaxy cluster. We present surface brightness, X-ray emission weighted temperature and metal maps of our model clusters as they would be observed by X-ray telescopes like XMM-Newton. We show that X-ray weighted metal maps distinguish between pre- or post-merger galaxy clusters by comparing the metallicity distribution with the galaxy-density distribution: pre-mergers have a metallicity gap between the subclusters, post-mergers a high metallicity between subclusters. We apply our approach to two observed gala...

  8. Simulation of Breach Outflow for Earthfill Dam

    Science.gov (United States)

    Razad, Azwin Zailti Abdul; Sabri Muda, Rahsidi; Mohd Sidek, Lariyah; Azia, Intan Shafilah Abdul; Hanum Mansor, Faezah; Yalit, Ruzaimei

    2013-06-01

    Dams have been built for many reasons such as irrigation, hydropower, flood mitigation, and water supply to support development for the benefit of human. However, the huge amount of water stored behind the dam can seriously pose adverse impacts to the downstream community should it be released due to unwanted dam break event. To minimise the potential loss of lives and property damages, a workable Emergency Response Plan is required to be developed. As part of a responsible dam owner and operator, TNB initiated a study on dam breach modelling for Cameron Highlands Hydroelectric Scheme to simulate the potential dam breach for Jor Dam. Prediction of dam breach parameters using the empirical equations of Froehlich and Macdonal-Langridge-Monopolis formed the basis of the modelling, coupled with MIKE 11 software to obtain the breach outflow due to Probable Maximum Flood (PMF). This paper will therefore discuss the model setup, simulation procedure and comparison of the prediction with existing equations.

  9. Propeller outflows from an MRI disc

    CERN Document Server

    Lii, Patrick S; Ustyugova, Galina V; Koldoba, Alexander V; Lovelace, Richard V E

    2013-01-01

    We present the results of axisymmetric simulations of MRI-driven accretion onto a rapidly rotating, magnetized star accreting in the propeller regime. The stellar magnetosphere corotates with the star, forming a centrifugal barrier at the disc-magnetosphere boundary which inhibits matter accretion onto the star. Instead, the disc matter accumulates at the disc-magnetosphere interface and slowly diffuses into the inner magnetosphere where it picks up angular momentum and is quickly ejected from the system as an outflow. Due to the interaction of the matter with the magnetosphere, this wind is discontinuous and is launched as discrete plasmoids. If the ejection rate is lower than the disc accretion rate, the matter accumulates at the disc-magnetosphere boundary faster than it can be ejected. In this case, accretion onto the star proceeds through the episodic accretion instability in which episodes of matter accumulation are followed by simultaneous accretion and ejection. During the accretion phase of this inst...

  10. Simulation of Breach Outflow for Earthfill Dam

    International Nuclear Information System (INIS)

    Dams have been built for many reasons such as irrigation, hydropower, flood mitigation, and water supply to support development for the benefit of human. However, the huge amount of water stored behind the dam can seriously pose adverse impacts to the downstream community should it be released due to unwanted dam break event. To minimise the potential loss of lives and property damages, a workable Emergency Response Plan is required to be developed. As part of a responsible dam owner and operator, TNB initiated a study on dam breach modelling for Cameron Highlands Hydroelectric Scheme to simulate the potential dam breach for Jor Dam. Prediction of dam breach parameters using the empirical equations of Froehlich and Macdonal-Langridge-Monopolis formed the basis of the modelling, coupled with MIKE 11 software to obtain the breach outflow due to Probable Maximum Flood (PMF). This paper will therefore discuss the model setup, simulation procedure and comparison of the prediction with existing equations.

  11. Interplay among Cooling, AGN Feedback and Anisotropic Conduction in the Cool Cores of Galaxy Clusters

    CERN Document Server

    Yang, H -Y K

    2015-01-01

    Feedback from the active galactic nuclei (AGN) is one of the most promising heating mechanisms to circumvent the cooling-flow problem in galaxy clusters. However, the role of thermal conduction remains unclear. Previous studies have shown that anisotropic thermal conduction in cluster cool cores (CC) could drive the heat-flux driven buoyancy instabilities (HBI) that re-orient the field lines in the azimuthal directions and isolate the cores from conductive heating from the outskirts. However, how the AGN interacts with the HBI is still unknown. To understand these interwined processes, we perform the first 3D magnetohydrodynamic (MHD) simulations of isolated CC clusters that include anisotropic conduction, radiative cooling, and AGN feedback. We find that: (1) For realistic magnetic field strengths in clusters, magnetic tension can suppress a significant portion of HBI-unstable modes and thus the HBI is either completely inhibited or significantly impaired, depending on the unknown magnetic field coherence le...

  12. Cluster Formation in Protostellar Outflow-Driven Turbulence

    CERN Document Server

    Li, Z Y; Li, Zhi-Yun; Nakamura, Fumitaka

    2006-01-01

    Most, perhaps all, stars go through a phase of vigorous outflow during formation. We examine, through 3D MHD simulation, the effects of protostellar outflows on cluster formation. We find that the initial turbulence in the cluster-forming region is quickly replaced by motions generated by outflows. The protostellar outflow-driven turbulence (``protostellar turbulence'' for short) can keep the region close to a virial equilibrium long after the initial turbulence has decayed away. We argue that there exist two types of turbulence in star-forming clouds: a primordial (or ``interstellar'') turbulence and a protostellar turbulence, with the former transformed into the latter mostly in embedded clusters such as NGC 1333. Since the majority of stars are thought to form in clusters, an implication is that the stellar initial mass function is determined to a large extent by the stars themselves, through outflows which individually limit the mass accretion onto forming stars and collectively shape the environments (de...

  13. Searching for molecular outflows in Hyper-Luminous Infrared Galaxies

    CERN Document Server

    Calderón, D; Veilleux, S; Graciá-Carpio, J; Sturm, E; Lira, P; Schulze, S; Kim, S

    2016-01-01

    We present constraints on the molecular outflows in a sample of five Hyper-Luminous Infrared Galaxies using Herschel observations of the OH doublet at 119 {\\mu}m. We have detected the OH doublet in three cases: one purely in emission and two purely in absorption. The observed emission profile has a significant blueshifted wing suggesting the possibility of tracing an outflow. Out of the two absorption profiles, one seems to be consistent with the systemic velocity while the other clearly indicates the presence of a molecular outflow whose maximum velocity is about ~1500 km/s. Our analysis shows that this system is in general agreement with previous results on Ultra-luminous Infrared Galaxies and QSOs, whose outflow velocities do not seem to correlate with stellar masses or starburst luminosities (star formation rates). Instead the galaxy outflow likely arises from an embedded AGN.

  14. INTERACTION OF RECOILING SUPERMASSIVE BLACK HOLES WITH STARS IN GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Supermassive black hole binaries (SMBHBs) are the products of frequent galaxy mergers. The coalescence of the SMBHBs is a distinct source of gravitational wave (GW) radiation. The detections of the strong GW radiation and their possible electromagnetic counterparts are essential. Numerical relativity suggests that the post-merger supermassive black hole (SMBH) gets a kick velocity up to 4000 km s–1 due to the anisotropic GW radiations. Here, we investigate the dynamical coevolution and interaction of the recoiling SMBHs and their galactic stellar environments with one million direct N-body simulations including the stellar tidal disruption by the recoiling SMBHs. Our results show that the accretion of disrupted stars does not significantly affect the SMBH dynamical evolution. We investigate the stellar tidal disruption rates as a function of the dynamical evolution of oscillating SMBHs in the galactic nuclei. Our simulations show that most stellar tidal disruptions are contributed by the unbound stars and occur when the oscillating SMBHs pass through the galactic center. The averaged disruption rate is ∼10–6 M☉ yr–1, which is about an order of magnitude lower than that by a stationary SMBH at similar galactic nuclei. Our results also show that a bound star cluster is around the oscillating SMBH of about ∼0.7% the black hole mass. In addition, we discover a massive cloud of unbound stars following the oscillating SMBH. We also investigate the dependence of the results on the SMBH masses and density slopes of the galactic nuclei.

  15. New charged anisotropic compact models

    Science.gov (United States)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  16. Model for Anisotropic Directed Percolation

    OpenAIRE

    Nguyen, V. Lien; Canessa, Enrique

    1997-01-01

    We propose a simulation model to study the properties of directed percolation in two-dimensional (2D) anisotropic random media. The degree of anisotropy in the model is given by the ratio $\\mu$ between the axes of a semi-ellipse enclosing the bonds that promote percolation in one direction. At percolation, this simple model shows that the average number of bonds per site in 2D is an invariant equal to 2.8 independently of $\\mu$. This result suggests that Sinai's theorem proposed originally fo...

  17. Anisotropic spectra of acoustic turbulence

    International Nuclear Information System (INIS)

    We found universal anizopropic spectra of acoustic turbulence with the linear dispersion law ω(k)=ck within the framework of generalized kinetic equation which takes into account the finite time of three-wave interactions. This anisotropic spectra can assume both scale-invariant and non-scale-invariant form. The implications for the evolution of the acoustic turbulence with nonisotropic pumping are discussed. The main result of the article is that the spectra of acoustic turbulence tend to become more isotropic. (c) 2000 The American Physical Society

  18. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  19. BRDF Interpolation using Anisotropic Stencils

    Czech Academy of Sciences Publication Activity Database

    Vávra, Radomír; Filip, Jiří

    Springfield: Society for Imaging Science and Technology , 2016 - (Imai, F.; Ortiz Segovia, M.; Urban, P.), MMRMA-356.1-MMRMA-356.6 ISSN 2470-1173. [IS&T International Symposium on Electronic Imaging 2016, Measuring, Modeling, and Reproducing Material Appearance 2016. San Francisco (US), 14.2.2016-18.2.2016] R&D Projects: GA ČR(CZ) GA14-02652S Institutional support: RVO:67985556 Keywords : BRDF * stencil * anisotropic * interpolation Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2016/RO/vavra-0457068.pdf

  20. Spitzer spectral line mapping of protostellar outflows: I. Basic data and outflow energetics

    CERN Document Server

    Neufeld, David A; Giannini, Teresa; Melnick, Gary J; Bergin, Edwin A; Yuan, Yuan; Maret, Sebastien; Tolls, Volker; Guesten, Rolf; Kaufman, Michael J

    2009-01-01

    We report the results of spectroscopic mapping observations carried out toward protostellar outflows in the BHR71, L1157, L1448, NGC 2071, and VLA 1623 molecular regions using the Infrared Spectrograph (IRS) of the Spitzer Space Telescope. These observations, covering the 5.2 - 37 micron spectral region, provide detailed maps of the 8 lowest pure rotational lines of molecular hydrogen and of the [SI] 25.25 micron and [FeII] 26.0 micron fine structure lines. The molecular hydrogen lines, believed to account for a large fraction of the radiative cooling from warm molecular gas that has been heated by a non-dissociative shock, allow the energetics of the outflows to be elucidated. Within the regions mapped towards these 5 outflow sources, total H2 luminosities ranging from 0.02 to 0.75 L(solar) were inferred for the sum of the 8 lowest pure rotational transitions. By contrast, the much weaker [FeII] 26.0 micron fine structure transition traces faster, dissociative shocks; here, only a small fraction of the fast ...

  1. Scattering of energetic particles by anisotropic magnetohydrodynamic turbulence with a goldreich-sridhar power spectrum

    Science.gov (United States)

    Chandran

    2000-11-27

    Scattering rates for a Goldreich-Sridhar (GS) spectrum of anisotropic, incompressible, magnetohydrodynamic turbulence are calculated in the quasilinear approximation. Because the small-scale fluctuations are constrained to have wave vectors nearly perpendicular to the background magnetic field, scattering is too weak to provide either the mean-free paths commonly used in Galactic cosmic-ray propagation models or the mean-free paths required for acceleration of cosmic rays at quasiparallel shocks. Where strong pitch-angle scattering occurs, it is due to fluctuations not described by the GS spectrum, such as fluctuations generated by streaming cosmic rays. PMID:11082620

  2. On the Contribution of Gamma Ray Bursts to the Galactic Inventory of Some Intermediate Mass Nuclei

    CERN Document Server

    Pruet, J; McLaughlin, G C; Pruet, Jason; Surman, Rebecca; Laughlin, Gail C. Mc

    2004-01-01

    Light curves from a growing number of Gamma Ray Bursts (GRBs) indicate that GRBs copiously produce radioactive Ni moving outward at fractions of the speed of light. We calculate nuclear abundances of elements accompanying the outflowing Ni under the assumption that this Ni originates from a wind blown off of a viscous accretion disk. We also show that GRB's likely contribute appreciably to the galactic inventory of 42Ca, 45Sc, 46Ti, 49Ti, 63Cu, and may be a principal site for the production of 64Zn.

  3. An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei

    Science.gov (United States)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We report on time-dependent axisymmetric simulations of an X-ray-excited flow from a parsec-scale, rotating, cold torus around an active galactic nucleus. Our simulations account for radiative heating and cooling and radiation pressure force. The simulations follow the development of a broad biconical outflow induced mainly by X-ray heating. We compute synthetic spectra predicted by our simulations. The wind characteristics and the spectra support the hypothesis that a rotationally supported torus can serve as the source of a wind which is responsible for the warm absorber gas observed in the X-ray spectra of many Seyfert galaxies.

  4. On the Contribution of Gamma Ray Bursts to the Galactic Inventory of Some Intermediate Mass Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Surman, R; McLaughlin, G C

    2004-01-23

    Light curves from a growing number of Gamma Ray Bursts (GRBs) indicate that GRBs copiously produce radioactive Ni moving outward at fractions of the speed of light. We calculate nuclear abundances of elements accompanying the outflowing Ni under the assumption that this Ni originates from a wind blown off of a viscous accretion disk. We also show that GRB's likely contribute appreciably to the galactic inventory of {sup 42}Ca, {sup 45}Sc, {sup 46}Ti, {sup 49}Ti, {sup 63}Cu, and may be an important site for the production of {sup 64}Zn.

  5. Interstellar extinction and galactic structure

    International Nuclear Information System (INIS)

    Colour excesses and photometric distances of open clusters compiled by previous authors have been used to study the distribution of interstellar matter within a few kiloparsecs of the Sun. In general the reddening material is highly concentrated near the galactic plane. It is found that the plane defined by the distribution of interstellar matter is inclined to the formal galactic plane by an angle of 00.8 + -00.2 and shows a maximum upward tilt towards l approx. 600. The scale height of the reddening material is found to be 0.16 + - 0.02 kpc. Based on the distribution of whole interstellar matter, the Sun is found to be situated at a distance of about 10 pc above the galactic plane of symmetry defined by the reddening material, while from a subsample in the direction of maximum tilt this figure is found to be 3 + -4 pc. (author)

  6. The Galactic centre pulsar population

    CERN Document Server

    Chennamangalam, Jayanth

    2013-01-01

    The recent discovery of a magnetar in the Galactic centre region has allowed Spitler et al. to characterize the interstellar scattering in that direction. They find that the temporal broadening of the pulse profile of the magnetar is substantially less than that predicted by models of the electron density of that region. This raises the question of what the plausible limits for the number of potentially observable pulsars - i.e., the number of pulsars beaming towards the Earth - in the Galactic centre region are. In this paper, using realistic assumptions, we show that the potentially observable population of pulsars in the inner parsec has a conservative upper limit of $\\sim$950, and that it is premature to conclude that the number of pulsars in this region is small. We also show that the observational results so far are consistent with this number and make predictions for future radio pulsar surveys of the Galactic centre.

  7. The inner Galactic globular clusters

    Directory of Open Access Journals (Sweden)

    Mateo M.

    2013-03-01

    Full Text Available Galactic globular clusters located towards the inner regions of the Milky Way have been historically neglected, mainly due to the difficulties caused by the presence of an elevated extinction by foreground dust, and high field star densities along the lines of sight where most of them lie. To overcome these difficulties we have developed a new method to map the differential extinction suffered by these clusters, which was successfully applied to a sample of moderately-extincted, luminous, extended, inner Galactic globular clusters observed in the optical, for which we have been able to determine more accurate physical parameters. For the most extincted inner Galactic globular clusters, near-infrared wavelengths provide a more suitable window for their study. The VVV survey, which is currently observing the central regions of the Milky Way at these wavelengths, will provide a comprehensive view, from the inner regions out to their tidal radii and beyond, of most of these globular clusters.

  8. The San Pedro M\\'artir Kinematic Catalogue of Galactic Planetary Nebulae

    CERN Document Server

    López, J A; García-Díaz, M T; Clark, D M; Meaburn, J; Riesgo, H; Steffen, W; Lloyd, M

    2011-01-01

    The San Pedro M\\'artir kinematic catalogue of galactic planetary nebulae provides spatially resolved, long-slit Echelle spectra for about 600 planetary nebulae. The data are presented wavelength calibrated and corrected for heliocentric motion. For most objects multiple spectra have been acquired and images with accurate slit positions on the nebulae are also presented for each object. This is the most extensive and homogeneous single source of data concerning the internal kinematics of the ionized nebular material in planetary nebulae. Data can be retrieved for individual objects or selected by groups that share some common characteristics, such as by morphological classes, galactic population, binary cores, presence of fast outflows, etc. The catalogue is available through the world wide web at http://kincatpn.astrosen.unam.mx .

  9. Molecular outflows driven by low-mass protostars. I. Correcting for underestimates when measuring outflow masses and dynamical properties

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Arce, Héctor G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Matthews, Brenda C. [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Williams, Jonathan P., E-mail: mdunham@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-03-01

    We present a survey of 28 molecular outflows driven by low-mass protostars, all of which are sufficiently isolated spatially and/or kinematically to fully separate into individual outflows. Using a combination of new and archival data from several single-dish telescopes, 17 outflows are mapped in {sup 12}CO (2-1) and 17 are mapped in {sup 12}CO (3-2), with 6 mapped in both transitions. For each outflow, we calculate and tabulate the mass (M {sub flow}), momentum (P {sub flow}), kinetic energy (E {sub flow}), mechanical luminosity (L {sub flow}), and force (F {sub flow}) assuming optically thin emission in LTE at an excitation temperature, T {sub ex}, of 50 K. We show that all of the calculated properties are underestimated when calculated under these assumptions. Taken together, the effects of opacity, outflow emission at low velocities confused with ambient cloud emission, and emission below the sensitivities of the observations increase outflow masses and dynamical properties by an order of magnitude, on average, and factors of 50-90 in the most extreme cases. Different (and non-uniform) excitation temperatures, inclination effects, and dissociation of molecular gas will all work to further increase outflow properties. Molecular outflows are thus almost certainly more massive and energetic than commonly reported. Additionally, outflow properties are lower, on average, by almost an order of magnitude when calculated from the {sup 12}CO (3-2) maps compared to the {sup 12}CO (2-1) maps, even after accounting for different opacities, map sensitivities, and possible excitation temperature variations. It has recently been argued in the literature that the {sup 12}CO (3-2) line is subthermally excited in outflows, and our results support this finding.

  10. Electromagnetism on anisotropic fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  11. Discovery of Ultra-fast Outflows in a Sample of Broad-line Radio Galaxies Observed with Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Ballo, L.; Gofford, J.; Cappi, M.; Mushotzky, R. F.

    2010-08-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ~= 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ~= 4-5.6 erg s-1 cm and column densities of N H ~= 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ~0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  12. DISCOVERY OF ULTRA-FAST OUTFLOWS IN A SAMPLE OF BROAD-LINE RADIO GALAXIES OBSERVED WITH SUZAKU

    International Nuclear Information System (INIS)

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ≅ 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ≅ 4-5.6 erg s-1 cm and column densities of N H ≅ 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ∼0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  13. The Wide-angle Outflow of the Lensed z = 1.51 AGN HS 0810+2554

    Science.gov (United States)

    Chartas, G.; Cappi, M.; Hamann, F.; Eracleous, M.; Strickland, S.; Giustini, M.; Misawa, T.

    2016-06-01

    We present results from X-ray observations of the gravitationally lensed z = 1.51 active galactic nucleus (AGN) HS 0810+2554 performed with the Chandra X-ray Observatory and XMM-Newton. Blueshifted absorption lines are detected in both observations at rest-frame energies ranging between ˜1 and 12 keV at ≳99% confidence. The inferred velocities of the outflowing components range between ˜0.1c and ˜0.4c. A strong emission line at ˜6.8 keV that is accompanied by a significant absorption line at ˜7.8 keV is also detected in the Chandra observation. The presence of these lines is a characteristic feature of a P-Cygni profile supporting the presence of an expanding, outflowing, highly ionized iron absorber in this quasar. Modeling of the P-Cygni profile constrains the covering factor of the wind to be ≳0.6, assuming disk shielding. A disk-reflection component is detected in the XMM-Newton observation accompanied by blueshifted absorption lines. The XMM-Newton observation constrains the inclination angle to be detection of an ultrafast and wide-angle wind in an AGN with intrinsic narrow absorption lines (NALs) would suggest that quasar winds may couple efficiently with the intergalactic medium and provide significant feedback if ubiquitous in all NAL and broad absorption line (BAL) quasars. We estimate the mass-outflow rate of the absorbers to lie in the range of 1.5–3.4 M ⊙ yr‑1 for the two observations. We find that the fraction of kinetic to electromagnetic luminosity released by HS 0810+2554 is large (ɛ k = 9{}-6+8), which suggests that magnetic driving is likely a significant contributor to the acceleration of this outflow.

  14. The contribution of quasar outflows to cosmological structure formation

    Science.gov (United States)

    Arav, Nahum

    2011-10-01

    A vast new discovery space is opened up by the high sensitivity of COS in the far UV. These new capabilities are ushering a revolution in the study of AGN outflows. We now have the ability to obtain high quality data on objects up to a redshift of about 1, providing access to ten times more {and better} diagnostic absorption lines than was possible with STIS {which could only observe outflows at z<0.05 with sufficient S/N}. These diagnostics will allow us to quantify how much do quasar outflow contribute to AGN feedback. On the way to this lofty goal, we'll be able to resolve important questions in the study of these outflows: Where are they situated within the host galaxy? What is their ionization equilibrium and chemical abundances? Unlike ground-based observations, COS data can yield the answers to all these questions for the most ubiquitous outflows, and therefore connect them to our developing understanding of cosmological structure formation.Our analysis of recent archived COS observations gives a concrete example for the above claims; including the first determination of the distance from the central source for a high-ionization outflow. Here we propose an archive program to look through the 520 COS G130M and G160M orbits of AGN archive observations, identify quasar outflows and publish the analyses of the best cases.

  15. High-velocity molecular outflows hear massive young stellar objects

    Institute of Scientific and Technical Information of China (English)

    吴月芳; 李月兴; 杨传义; 雷成明; 孙金江; 吕静; 韩溥

    1999-01-01

    By mapping the 12CO J=1—0 lines in IRAS 05391-0217, 06114+1745 and 06291+0421, three new high-velocity bipolar molecular outflows are found. Parameters of these outflows are derived, which suggest that they are massive and energetic outflows with total kinetic energies of about 1038 J and mass loss rates about 10-5 M⊙/a. The driving sources are identified by analyzing the positions, intensities and color temperatures of the associated infrared sources. These outflows are most likely driven by single sources which correspond to massive young stellar objects. In these regions H2O masers have been detected located near the embedded infrared sources, which indicates that their exciting mechanism may be correlated with that of the CO outflows. The relationship between the parameters of outflows and central sources shows that high-velocity outflow and thermal radiation of a star are two basic correlated but different features in the evolution of young stars.

  16. Evolution of Protostellar Outflow around Low-mass Protostar

    CERN Document Server

    Machida, Masahiro N

    2013-01-01

    The evolution of protostellar outflow is investigated with resistive magneto-hydrodynamic nested-grid simulations that cover a wide range of spatial scales (\\sim 1AU - 1pc). We follow cloud evolution from the pre-stellar core stage until the infalling envelope dissipates long after the protostar formation. We also calculate protostellar evolution to derive protostellar luminosity with time-dependent mass accretion through a circumstellar disk. The protostellar outflow is driven by the first core prior to protostar formation and is directly driven by the circumstellar disk after protostar formation. The opening angle of the outflow is large in the Class 0 stage. A large fraction of the cloud mass is ejected in this stage, which reduces the star formation efficiency to \\sim 50%. After the outflow breaks out from the natal cloud, the outflow collimation is gradually improved in the Class I stage. The head of the outflow travels more than \\sim 10^5AU in \\sim 10^5 yr. The outflow momentum, energy and mass derived ...

  17. PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS

    International Nuclear Information System (INIS)

    A protostellar jet and outflow are calculated for ∼270 yr following the protostar formation using a three-dimensional magnetohydrodynamics simulation, in which both the protostar and its parent cloud are spatially resolved. A high-velocity (∼100 km s–1) jet with good collimation is driven near the disk's inner edge, while a low-velocity (≲ 10 km s–1) outflow with a wide opening angle appears in the outer-disk region. The high-velocity jet propagates into the low-velocity outflow, forming a nested velocity structure in which a narrow high-velocity flow is enclosed by a wide low-velocity flow. The low-velocity outflow is in a nearly steady state, while the high-velocity jet appears intermittently. The time-variability of the jet is related to the episodic accretion from the disk onto the protostar, which is caused by gravitational instability and magnetic effects such as magnetic braking and magnetorotational instability. Although the high-velocity jet has a large kinetic energy, the mass and momentum of the jet are much smaller than those of the low-velocity outflow. A large fraction of the infalling gas is ejected by the low-velocity outflow. Thus, the low-velocity outflow actually has a more significant effect than the high-velocity jet in the very early phase of the star formation

  18. ANISOTROPIC POLARIZATION TENSORS FOR ELLIPSES AND ELLIPSOIDS

    Institute of Scientific and Technical Information of China (English)

    Hyeonbae Kang; Kyoungsun Kim

    2007-01-01

    In this paper we present a systematic way of computing the polarization tensors,anisotropic as well as isotropic, based on the boundary integral method. We then use this method to compute the anisotropic polarization tensor for ellipses and ellipsoids. The computation reveals the pair of anisotropy and ellipses which produce the same polarization tensors.

  19. Anisotropic weak Hardy spaces and interpolation theorems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, the authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also given. As some applications of the above results, the authors prove some interpolation theorems and obtain the boundedness of the singular integral operators on these Hardy spaces.

  20. Characterization of anisotropic acoustic metamaterial slabs

    Science.gov (United States)

    Park, Jun Hyeong; Lee, Hyung Jin; Kim, Yoon Young

    2016-01-01

    In an anisotropic acoustic metamaterial, the off-diagonal components of its effective mass density tensor should be considered in order to describe the anisotropic behavior produced by arbitrarily shaped inclusions. However, few studies have been carried out to characterize anisotropic acoustic metamaterials. In this paper, we propose a method that uses the non-diagonal effective mass density tensor to determine the behavior of anisotropic acoustic metamaterials. Our method accurately evaluates the effective properties of anisotropic acoustic metamaterials by separately dealing with slabs made of single and multiple unit cells along the thickness direction. To determine the effective properties, the reflection and transmission coefficients of an acoustic metamaterial slab are calculated, and then the wave vectors inside of the slab are determined using these coefficients. The effective material properties are finally determined by utilizing the spatial dispersion relation of the anisotropic acoustic metamaterial. Since the dispersion relation of an anisotropic acoustic metamaterial is explicitly used, its effective properties can be easily determined by only using a limited number of normal and oblique plane wave incidences into a metamaterial slab, unlike existing approaches requiring a large number of wave incidences. The validity of the proposed method is verified by conducting wave simulations for anisotropic acoustic metamaterial slabs with Z-shaped elastic inclusions of tilted principal material axes.

  1. A High Fraction of Double-peaked Narrow Emission Lines in Powerful Active Galactic Nuclei

    Science.gov (United States)

    Lyu, Yang; Liu, Xin

    2016-08-01

    One percent of redshift z ˜ 0.1 Active Galactic Nuclei (AGNs) show velocity splitting of a few hundred km s-1 in the narrow emission lines in spatially integrated spectra. Such line profiles have been found to arise from the bulk motion of ionized gas clouds associated with galactic-scale outflows, merging pairs of galaxies each harboring a supermassive black hole (SMBH), and/or galactic-scale disk rotation. It remains unclear, however, how the frequency of narrow-line velocity splitting may depend on AGN luminosity. Here we study the correlation between the fraction of Type 2 AGNs with double-peaked narrow emission lines and AGN luminosity as indicated by [O III]λ5007 emission-line luminosity L[O III]. We combine the sample of Liu et al. (2010a) at z ˜ 0.1 with a new sample of 178 Type 2 AGNs with double-peaked [O III] emission lines at z ˜ 0.5. We select the new sample from a parent sample of 2089 Type 2 AGNs from the SDSS-III/Baryon Oscillation Spectroscopic Survey. We find a statistically significant (˜4.2σ) correlation between L[O III] and the fraction of objects that exhibit double-peaked narrow emission lines among all Type 2 AGNs, corrected for selection bias and incompleteness due to [O III] line width, equivalent width, splitting velocity, and/or equivalent width ratio between the two velocity components. Our result suggests that galactic-scale outflows and/or merging pairs of SMBHs are more prevalent in more powerful AGNs, although spatially resolved follow up observations are needed to resolve the origin(s) for the narrow-line velocity splitting for individual AGNs.

  2. STRONG MOLECULAR HYDROGEN EMISSION AND KINEMATICS OF THE MULTIPHASE GAS IN RADIO GALAXIES WITH FAST JET-DRIVEN OUTFLOWS

    International Nuclear Information System (INIS)

    Observations of ionized and neutral gas outflows in radio galaxies (RGs) suggest that active galactic nucleus (AGN) radio jet feedback has a galaxy-scale impact on the host interstellar medium, but it is still unclear how the molecular gas is affected. Thus, it is crucial to determine the physical conditions of the molecular gas in powerful RGs to understand how radio sources may regulate the star formation in their host galaxies. We present deep Spitzer Infrared Spectrograph (IRS) high-resolution spectroscopy of eight nearby RGs that show fast H I outflows. Strikingly, all of these H I-outflow RGs have bright H2 mid-IR lines that cannot be accounted for by UV or X-ray heating. This strongly suggests that the radio jet, which drives the H I outflow, is also responsible for the shock excitation of the warm H2 gas. In addition, the warm H2 gas does not share the kinematics of the ionized/neutral gas. The mid-IR-ionized gas lines (with FWHM up to 1250 km s–1 for [Ne II] 12.8 μm) are systematically broader than the H2 lines, which are resolved by the IRS in ≈60% of the detected lines (with FWHM up to 900 km s–1). In five sources, 3C 236, 3C 293, 3C 459, 4C 12.50, and PKS 1549-79, the [Ne II] 12.8 μm line, and to a lesser extent the [Ne III] 15.5 μm and [Ne V] 14.3 μm lines, clearly exhibits blueshifted wings (up to –900 km s–1 with respect to the systemic velocity) that match well the kinematics of the outflowing H I or ionized gas. The H2 lines do not show these broad wings, except tentative detections in 4C 12.50, 3C 459, and PKS 1549-79. This shows that, contrary to the H I gas, the H2 gas is inefficiently coupled to the AGN jet-driven outflow of ionized gas. While the dissipation of a small fraction (<10%) of the jet kinetic power can explain the turbulent heating of the molecular gas, our data show that the bulk of the warm molecular gas is not expelled from these galaxies.

  3. Outflow and hot dust emission in broad absorption line quasars

    International Nuclear Information System (INIS)

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (βNIR) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here βNIR is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with βNIR in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with βNIR than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as βNIR increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  4. Contribution of alluvial groundwater to the outflow of mountainous catchments

    Science.gov (United States)

    Käser, Daniel; Hunkeler, Daniel

    2016-02-01

    Alluvial aquifers in mountainous regions cover typically a limited area. Their contribution to catchment storage and outflow is rarely isolated; alluvial groundwater discharge under gauging stations is generally assumed negligible; and hydrological models tend to lump alluvial storage with other units. The role of alluvial aquifers remains therefore unclear: can they contribute significantly to outflow when they cover a few percent of catchment area? Should they be considered a dynamic storage unit or merely a transmission zone? We address these issues based on the continuous monitoring of groundwater discharge, river discharge (one year), and aquifer storage (6 months) in the 6 km2 alluvial system of a 194 km2 catchment. River and groundwater outflow were measured jointly through "coupled gauging stations." The contribution of alluvial groundwater to outflow was highest at the outlet of a subcatchment (52 km2), where subsurface discharge amounted to 15% of mean annual outflow, and 85% of outflow during the last week of a drought. In this period, alluvial-aquifer depletion supported 75% of the subcatchment outflow and 35% of catchment outflow—thus 3% of the entire catchment supported a third of the outflow. Storage fluctuations occurred predominantly in the aquifer's upstream part, where heads varied over 6 m. Not only does this section act as a significant water source, but storage recovers also rapidly at the onset of precipitation. Storage dynamics were best conceptualized along the valley axis, rather than across the more conventional riparian-channel transect. Overall the contribution of alluvial aquifers to catchment outflow deserves more attention.

  5. Multidisciplinary approach to cylindrical anisotropic metamaterials

    International Nuclear Information System (INIS)

    Anisotropic characteristics of cylindrically corrugated microstructures are analyzed in terms of their acoustic and electromagnetic (EM) behavior paying special attention to their differences and similarities. A simple analytical model has been developed using effective medium theory to understand the anisotropic features of both types of waves in terms of radial and angular components of the wave propagation velocity. The anisotropic constituent parameters have been obtained by measuring the resonances of cylindrical cavities, as well as from numerical simulations. This permits one to characterize propagation of acoustic and EM waves and to compare the fundamental anisotropic features generated by the corrugated effective medium. Anisotropic coefficients match closely in both physics fields but other relevant parameters show significant differences in the behavior of both types of waves. (paper)

  6. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  7. Designing Anisotropic Inflation with Form Fields

    CERN Document Server

    Ito, Asuka

    2015-01-01

    We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.

  8. Designing anisotropic inflation with form fields

    Science.gov (United States)

    Ito, Asuka; Soda, Jiro

    2015-12-01

    We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.

  9. Misalignment of Magnetic Fields and Outflows in Protostellar Cores

    CERN Document Server

    Hull, Charles L H; Bolatto, Alberto D; Bower, Geoffrey C; Carpenter, John M; Crutcher, Richard M; Fiege, Jason D; Franzmann, Erica; Hakobian, Nicholas S; Heiles, Carl; Houde, Martin; Hughes, A Meredith; Jameson, Katherine; Kwon, Woojin; Lamb, James W; Looney, Leslie W; Matthews, Brenda C; Mundy, Lee; Pillai, Thushara; Pound, Marc W; Stephens, Ian W; Tobin, John J; Vaillancourt, John E; Volgenau, N H; Wright, Melvyn C H

    2012-01-01

    Theoretical models of star formation generally assume that bipolar outflows are parallel to the mean magnetic-field direction in protostellar cores. Here we present results of \\lambda1.3 mm dust polarization observations toward 16 nearby, low-mass protostars, mapped with ~2.5" resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with outflows from the protostars. If one assumes that outflows emerge along the rotation axes of circumstellar disks, then our results imply that these disks are not aligned with the fields in the cores from which they formed.

  10. Gravitational Microlensing and the Structure of Quasar Outflows

    CERN Document Server

    Chelouche, D

    2005-01-01

    We show that invaluable information on the structure of quasar outflows can be obtained by considering microlensing (ML) induced variability of absorption line troughs in lensed quasars. Depending on the structure and geometry of the outflowing gas, such extrinsic line variability can be manifested as changes to the equivalent width of the line as well as line profile distortions. Here we consider several physically distinct outflow models, having very similar spectral predictions, and show how ML induced absorption line variability can be used to distinguish between them. The merits of future systematic studies of these effects are exemplified.

  11. MOND laws of galactic dynamics

    OpenAIRE

    Milgrom, Mordehai

    2012-01-01

    MOND predicts a number of laws that galactic systems should obey irrespective of their complicated, haphazard, and mostly unknowable histories -- as Kepler's laws are obeyed by planetary systems. The main purpose of this work is to show how, and to what extent, these MOND laws follow from only the paradigm's basic tenets: departure from standard dynamics at accelerations a

  12. Dissipation in Relativistic Outflows: A Multisource Overview

    CERN Document Server

    Thompson, Christopher

    2013-01-01

    Relativistically expanding sources of X-rays and gamma-rays cover an enormous range of (central) compactness and Lorentz factor. The underlying physics is discussed, with an emphasis on how the dominant dissipative mode and the emergent spectrum depend on these parameters. Photons advected outward from high optical depth are a potentially important source of Compton seeds. Their characteristic energy is bounded below by ~1 MeV in pair-loaded outflows of relatively low compactness, and remains near ~1 MeV at very high compactness and low matter loading. This is compared with the characteristic energy of O(1) MeV observed in the rest frame spectra of many sources, including gamma-ray bursts, OSSE jet sources, MeV Blazars, and the intense initial 0.1 s pulse of the March 5 event. Additional topics discussed include the feedback of pair creation on electron heating and the formation of non-thermal spectra, their effectiveness at shielding the dissipative zone from ambient photons, direct Compton damping of irregu...

  13. Radiation Transport for Explosive Outflows: Opacity Regrouping

    CERN Document Server

    Wollaeger, Ryan T

    2014-01-01

    Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that, in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure "opacity regrouping". Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in \\supernu, a code designed to do radiation transport in high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck ...

  14. Optically thick outflows in ultraluminous supersoft sources

    CERN Document Server

    Urquhart, Ryan

    2015-01-01

    Ultraluminous supersoft sources (ULSs) are defined by a thermal spectrum with colour temperatures ~0.1 keV, bolometric luminosities ~ a few 10^39 erg/s, and almost no emission above 1 keV. It has never been clear how they fit into the general scheme of accreting compact objects. To address this problem, we studied a sample of seven ULSs with extensive Chandra and XMM-Newton coverage. We find an anticorrelation between fitted temperatures and radii of the thermal emitter, and no correlation between bolometric luminosity and radius or temperature. We compare the physical parameters of ULSs with those of classical supersoft sources, thought to be surface-nuclear-burning white dwarfs, and of ultraluminous X-ray sources (ULXs), thought to be super-Eddington stellar-mass black holes. We argue that ULSs are the sub-class of ULXs seen through the densest wind, perhaps an extension of the soft-ultraluminous regime. We suggest that in ULSs, the massive disk outflow becomes effectively optically thick and forms a large ...

  15. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  16. Warm Anisotropic Inflationary Universe Model

    CERN Document Server

    Sharif, M

    2014-01-01

    This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.

  17. I-Love-Q Anisotropically

    CERN Document Server

    Yagi, Kent

    2015-01-01

    Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum and quadrupole moment) are interrelated in a way that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis for future radio, X-ray and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to phase transitions. We here investigate whether pressure anisotropy affects the approximate universal relations and whether it prevents their use in future observations. We achieve this by numerically constructing slowly-rotating and tidally-deformed, anisotropic, compact stars in General Relativity to third order in spin. We find that anisotropy affects the universal relations only weakly; the relations become less universal by a factor of 1.5-3 relative to the isotropic case, but rem...

  18. Gravitational Baryogenesis after Anisotropic Inflation

    CERN Document Server

    Fukushima, Mitsuhiro; Maeda, Kei-ichi

    2016-01-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  19. Anisotropic invariance in minisuperspace models

    Science.gov (United States)

    Chagoya, Javier; Sabido, Miguel

    2016-06-01

    In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski–Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann–Robertson–Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.

  20. Anisotropic microstructure near the sun

    International Nuclear Information System (INIS)

    Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 R· [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ''background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 R· which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a 'Maltese Cross' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 R·, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 R· contributes to

  1. The galactic cycle of extinction

    Science.gov (United States)

    Gillman, Michael; Erenler, Hilary

    2008-01-01

    Global extinction and geological events have previously been linked with galactic events such as spiral arm crossings and galactic plane oscillation. The expectation that these are repeating predictable events has led to studies of periodicity in a wide set of biological, geological and climatic phenomena. Using data on carbon isotope excursions, large igneous provinces and impact craters, we identify three time zones of high geological activity which relate to the timings of the passage of the Solar System through the spiral arms. These zones are shown to include a significantly large proportion of high extinction periods. The mass extinction events at the ends of the Ordovician, Permian and Cretaceous occur in the first zone, which contains the predicted midpoints of the spiral arms. The start of the Cambrian, end of the Devonian and end of the Triassic occur in the second zone. The pattern of extinction timing in relation to spiral arm structure is supported by the positions of the superchrons and the predicted speed of the spiral arms. The passage times through an arm are simple multiples of published results on impact and fossil record periodicity and galactic plane half-periods. The total estimated passage time through four arms is 703.8 Myr. The repetition of extinction events at the same points in different spiral arm crossings suggests a common underlying galactic cause of mass extinctions, mediated through galactic effects on geological, solar and extra-solar processes. The two largest impact craters (Sudbury and Vredefort), predicted to have occurred during the early part of the first zone, extend the possible pattern to more than 2000 million years ago.

  2. Indirect measurement of Delta outflow using ultrasonic velocity meters and comparison with mass-balance calculated outflow

    Science.gov (United States)

    Oltmann, Richard N.

    1998-01-01

    A measurement of the quantity of water flowing from the Sacramento-San Joaquin Delta into Suisun Bay (Delta outflow) has been desired by those studying and managing the San Francisco Bay/Delta estuary since the 1920s.  Historically, Delta outflow has been estimated using a mass-balance calculation that uses measured Delta inflows and exports, and imprecise estimates of consumptive use for the approximately 2,000 small agricultural diversions with the Delta.  The DWR has estimated Delta outflow for 1929 to present using the computer program DAYFLOW.

  3. Nucleosynthesis in Outflows from the Inner Regions of Collapsars

    CERN Document Server

    Pruet, J; Hoffman, R D; Pruet, Jason; Thompson, Todd

    2004-01-01

    We consider nucleosynthesis in outflows originating from the inner regions of viscous accretion disks formed after the collapse of a rotating massive star. We show that wind-like outflows driven by viscous and neutrino heating can efficiently synthesize Fe-group elements moving at near-relativistic velocities. The mass of 56Ni synthesized and the asymptotic velocities attained in our calculations are in accord with those inferred from observations of SN1998bw and SN2003dh. These steady wind-like outflows are generally proton rich, characterized by only modest entropies, and consequently synthesize essentially nothing heavier than the Fe-group elements. We also discuss bubble-like outflows resulting from rapid energy deposition in localized regions near or in the accretion disk. These intermittent ejecta emerge with low electron fraction and are a promising site for the synthesis of the A=130 r-process peak elements.

  4. Effects of Outflow Area on Pool Boiling in Vertical Annulus

    International Nuclear Information System (INIS)

    To identify the effects of an outflow area on pool boiling heat transfer in a vertical annulus, three different flow recreates were studied experimentally. For the test, a heated tube of smooth stainless steel and water at atmospheric pressure were used. Both annuli with open and closed bottoms were considered. To validate the effects of the outflow area on the heat transfer, the results of the annulus with the reactors were compared with the data for the plain annulus without the reactors. The reduction of the outflow area ultimately results in a decrease in the heat transfer. As the outflow area is very small, a slight increase in heat transfer is also observed. The major cause of this tendency is explained as the difference in the intensity of liquid agitation cause by the movement of coalesced bubbles. It is identified that the convective flow, pulsating flow, and evaporative mechanism are considered as the important mechanisms

  5. Estimation of cold plasma outflow during geomagnetic storms

    CERN Document Server

    Haaland, S; André, M; Maes, L; Baddeley, L; Barakat, A; Chappell, R; Eccles, V; Johnsen, C; Lybekk, B; Li, K; Pedersen, A; Schunk, R; Welling, D

    2016-01-01

    Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized ...

  6. About the seasonal and fortnightly variabilities of the Mediterranean outflow

    Directory of Open Access Journals (Sweden)

    C. Millot

    2011-06-01

    Full Text Available CTD time series from the HYDRO-CHANGES programme and INGRES projects have been collected simultaneously (2004–2008 on the shelf of Morocco and at the sills of Camarinal and Espartel in the strait of Gibraltar. They provide information that supports results recently obtained from the analysis of the two former time series, as well as from a reanalysis of GIBEX CTD profiles (1985–1986. The outflow of Mediterranean Waters, which does not show a clear seasonal variability before entering the strait, strongly mixes within the strait, due mainly to the internal tide, with the seasonally variable inflow of Atlantic Water. The outflow thus gets marked seasonal and fortnightly variabilities within the strait. Furthermore, since the outflowing waters entering the strait display marked spatial heterogeneity and long-term temporal variabilities, accurately predicting the characteristics of the Mediterranean outflow into the North Atlantic Ocean appears almost impossible.

  7. NuSTAR results from the Galactic Center - diffuse emission

    Science.gov (United States)

    Hailey, Charles

    2016-03-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) was launched in June 2012. It carried the first true, hard X-ray (>~10 keV-79 keV) focusing telescopes into orbit. Its twin telescopes provide 10 times better angular resolution and 100 times better sensitivity than previously obtainable in the hard X-ray band. Consequently NuSTAR is able to resolve faint diffuse structures whose hard X-rays offer insight into some of the most energetic processes in the Galactic Center. One of the surprising discoveries that NuSTAR made in the Galactic Center is the central hard X-ray emission (CHXE). The CHXE is a diffuse emission detected from ~10 keV to beyond 50 keV in X-ray energy, and extending spatially over a region ~8 parsecs x ~4 parsecs in and out of the plane of the galaxy respectively, and centered on the supermassive black hole Sgr A*. The CHXE was speculated to be due to a large population of unresolved black hole X-ray binaries, millisecond pulsars (MSP), a class of highly magnetized white dwarf binaries called intermediate polars, or to particle outflows from Sgr A*. The presence of an unexpectedly large population of MSP in the Galactic Center would be particularly interesting, since MSP emitting at higher energies and over a much larger region have been posited to be the origin of the gamma-ray emission that is also ascribed to dark matter annihilation in the galaxy. In addition, the connection of the CHXE to the ~9000 unidentified X-ray sources in the central the the ~100 pc detected by the Chandra Observatory, to the soft X-ray emission detected by the Chandra and XMM/Newton observatories in the Galactic Center, and to the hard X-ray emission detected by both the RXTE and INTEGRAL observatories in the Galactic Ridge, is unclear. I review these results and present recent NuSTAR observations that potentially resolve the origin of the CHXE and point to a unified origin for all these X-ray emissions. Two other noteworthy classes of diffuse structures in the

  8. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    Science.gov (United States)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  9. Searching for molecular outflows in Hyper-Luminous Infrared Galaxies

    OpenAIRE

    D. Calderón; Bauer, F. E.; Veilleux, S; Graciá-Carpio, J; Sturm, E; P. Lira; Schulze, S.; Kim, S.

    2016-01-01

    We present constraints on the molecular outflows in a sample of five Hyper-Luminous Infrared Galaxies using Herschel observations of the OH doublet at 119 {\\mu}m. We have detected the OH doublet in three cases: one purely in emission and two purely in absorption. The observed emission profile has a significant blueshifted wing suggesting the possibility of tracing an outflow. Out of the two absorption profiles, one seems to be consistent with the systemic velocity while the other clearly indi...

  10. Characterization of molecular outflows in the substellar domain

    Energy Technology Data Exchange (ETDEWEB)

    Phan-Bao, Ngoc; Dang-Duc, Cuong [Department of Physics, International University-Vietnam National University HCM, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City (Viet Nam); Lee, Chin-Fei; Ho, Paul T. P. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Di, E-mail: pbngoc@hcmiu.edu.vn, E-mail: pbngoc@asiaa.sinica.edu.tw [National Astronomical Observatories, Chinese Academy of Science, Chaoyang District Datun Rd A20, Beijing (China)

    2014-11-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J = 2 → 1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M {sub J}, which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36°. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9 × 10{sup –6} M {sub ☉} to 2.9 × 10{sup –5} M {sub ☉} and an outflow mass-loss rate from 2.7 × 10{sup –9} M {sub ☉} yr{sup –1} to 4.1 × 10{sup –8} M {sub ☉} yr{sup –1}. These values are comparable to those we have observed in the young brown dwarf ISO-Oph 102 of 60 M {sub J} in ρ Ophiuchi and the very low-mass star MHO 5 of 90 M {sub J} in Taurus. Our results suggest that the outflow process in very low-mass objects is episodic with a duration of a few thousand years and the outflow rate of active episodes does not significantly change for different stages of the formation process of very low-mass objects. This may provide us with important implications that clarify the formation process of brown dwarfs.

  11. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    CERN Document Server

    Cappi, M; Giustini, M

    2013-01-01

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  12. Identifying the Main Driver of Active Region Outflows

    Science.gov (United States)

    Baker, D.; van Driel-Gesztelyi, L.; Mandrini, C. H.; Démoulin, P.; Murray, M. J.

    2012-08-01

    Hinode's EUV Imaging Spectrometer (EIS) has discovered ubiquitous outflows of a few to 50 km s-1 from active regions (ARs). The characteristics of these outflows are very curious in that they are most prominent at the AR boundary and appear over monopolar magnetic areas. They are linked to strong non-thermal line broadening and are stronger in hotter EUV lines. The outflows persist for at least several days. Whereas red-shifted down flows observed in AR closed loops are well understood, to date there is no general consensus for the mechanism(s) driving blue-shifted AR-related outflows. We use Hinode EIS and X-Ray Telescope observations of AR 10942 coupled with magnetic modeling to demonstrate for the first time that the outflows originate from specific locations of the magnetic topology where field lines display strong gradients of magnetic connectivity, namely quasi-separatrix layers (QSLs), or in the limit of infinitely thin QSLs, separatrices. The strongest AR outflows were found to be in the vicinity of QSL sections located over areas of strong magnetic field. We argue that magnetic reconnection at QSLs, separating closed field lines of the AR and either large-scale externally connected or ‘open’ field lines, is a viable mechanism for driving AR outflows which are potentially sources of the slow solar wind. In fact, magnetic reconnection along QSLs (including separatricies) is the first theory to explain the most puzzling characteristics of the outflows, namely their occurrence over monopolar areas at the periphery of ARs and their longevity.

  13. Capital Outflow Controls and Income Distribution in Malaysia

    OpenAIRE

    Jarita Duasa

    2008-01-01

    The study seeks to analyze the impact of capital outflow controls, imposed by Malaysian government on September 1998, on income distribution. Regression analysis using OLS (Ordinary Least Square), 2SLS (Two Stages Least Square) and GMM (Generalised Method of Moment) methods of estimation reveals that the capital outflow controls reduce inequality of income distribution in the country. The controls are believed to result in improvement of export-led industries, through devaluation from control...

  14. Advection-Dominated Accretion with Infall and Outflows

    OpenAIRE

    Beckert, Thomas

    2000-01-01

    We present self-similar solutions for advection-dominated accretion flows with radial viscous force in the presence of outflows from the accretion flow or infall. The axisymmetric flow is treated in variables integrated over polar sections and the effects of infall and outflows on the accretion flow are parametrised for possible configurations compatible with the self-similar solution. We investigate the resulting accretion flows for three different viscosity laws and derive upper limits on t...

  15. Stability of Cloud Orbits in the Broad Line Region of Active Galactic Nuclei

    CERN Document Server

    schartmann, Martin Krause Andreas Burkert Marc

    2010-01-01

    We investigate the global dynamic stability of spherical clouds in the Broad Line Region (BLR) of Active Galactic Nuclei (AGN), exposed to radial radiation pressure, gravity of the central black hole (BH), and centrifugal forces assuming the clouds adapt their size according to the local pressure. We consider both, isotropic and anisotropic light sources. In both cases, stable orbits exist also for very sub-Keplerian rotation for which the radiation pressure contributes substantially to the force budget. We demonstrate that highly excentric, very sub-Keplerian stable orbits may be found that also agree with the recent finding by spectropolarimetry that the BLR is disk-like. This gives further support for the model of Marconi et al. 2008, which is designed to improve the agreement between black hole masses derived in certain active galaxies based on BLR dynamics, and black hole masses derived by other means in other galaxies by inclusion of a luminosity dependent term. For anisotropic illumination, the foresho...

  16. The Revival of Galactic Cosmic-Ray Nucleosynthesis?

    Science.gov (United States)

    Fields, Brian D.; Olive, Keith A.

    1999-05-01

    Because of the roughly linear correlation between Be/H and Fe/H in low-metallicity halo stars, it has been argued that a ``primary'' component in the nucleosynthesis of Be must be present in addition to the ``secondary'' component from standard Galactic cosmic-ray nucleosynthesis. In this paper we critically reevaluate the evidence for the primary versus secondary character of Li, Be, and B (LiBeB) evolution, analyzing both the observations and Galactic chemical evolution models. Although it appears that [Be/H] versus [Fe/H] has a logarithmic slope near 1, it is rather the Be-O trend that directly arises from the physics of spallation production. Using new abundances for oxygen in halo stars based on UV OH lines, we find that in Population II stars for which O has been measured, the Be-O slope has a large uncertainty due to systematic effects. Namely, the Be-O logarithmic slope lies in the range 1.3-1.8, rendering it difficult to distinguish from the data between the secondary slope of 2 and the primary slope of 1. The possible difference between the Be-Fe and Be-O slopes is a consequence of the variation in O/Fe versus Fe: recent data suggest that the best-fit O/Fe-Fe slope for Population II is in the range -0.5 to -0.2, rather than zero (i.e., Fe~O) as is often assumed. In addition to this phenomenological analysis of Be and B evolution, we have also examined the predicted LiBeB, O, and Fe trends in Galactic chemical evolution models that include outflow. Based on our results, it is possible that a good fit to the LiBeB evolution requires only the traditional Galactic cosmic-ray spallation and the (primary) neutrino-process contribution to 11B. We thus suggest that these two processes might be sufficient to explain 6Li, Be, and B evolution in the Galaxy, without the need for an additional primary source of Be and B. However, the uncertainties in the data at this time prevent one from reaching a definitive conclusion. Fortunately, several observational tests of

  17. Tracing outflows in the AGN forbidden region with SINFONI

    CERN Document Server

    Kakkad, D; Padovani, P; Cresci, G; Husemann, B; Carniani, S; Brusa, M; Lamastra, A; Lanzuisi, G; Piconcelli, E; Schramm, M

    2016-01-01

    AGN driven outflows are invoked in numerical simulations to reproduce several observed properties of local galaxies. The z > 1 epoch is of particular interest as it was during this time that the volume averaged star formation and the accretion rate of black holes were maximum. Radiatively driven outflows are therefore believed to be common during this epoch. We aim to trace and characterize outflows in AGN hosts with high mass accretion rates at z > 1 using integral field spectroscopy. We obtain spatially-resolved kinematics of the [OIII]5007 line in two targets which reveal the morphology and spatial extension of the outflows. We present J and H+K band SINFONI observations of 5 AGNs at 1.2 < z < 2.2. To maximize the chance of observing radiatively driven outflows, our sample was pre-selected based on peculiar values of the Eddington ratio and the hydrogen column density of the surrounding interstellar medium. We observe high velocity (~600-1900 km/s) and kiloparsec scale extended ionized outflows in at...

  18. A distance limited sample of massive molecular outflows

    CERN Document Server

    Maud, L T; Lumsden, S L; Mottram, J C; Urquhart, J S; Hoare, M G

    2015-01-01

    We have observed 99 mid-infrared-bright, massive young stellar objects and compact HII regions drawn from the Red MSX source (RMS) survey in the J=3$-$2 transition of $^{12}$CO and $^{13}$CO, using the James Clerk Maxwell Telescope. 89 targets are within 6 kpc of the Sun, covering a representative range of luminosities and core masses. These constitute a relatively unbiased sample of bipolar molecular outflows associated with massive star formation. Of these, 59, 17 and 13 sources (66, 19 and 15 percent) are found to have outflows, show some evidence of outflow, and have no evidence of outflow, respectively. The time-dependent parameters of the high-velocity molecular flows are calculated using a spatially variable dynamic timescale. The canonical correlations between the outflow parameters and source luminosity are recovered and shown to scale with those of low-mass sources. For coeval star formation we find the scaling is consistent with all the protostars in an embedded cluster providing the outflow force,...

  19. Evolution of active region outflows throughout an active region lifetime

    CERN Document Server

    Zangrilli, L

    2016-01-01

    We have shown previously that SOHO/UVCS data allow us to detect active region (AR) outflows at coronal altitudes higher than those reached by other instrumentation. These outflows are thought to be a component of the slow solar wind. Our purpose is to study the evolution of the outflows in the intermediate corona from AR 8100, from the time the AR first forms until it dissolves, after several transits at the solar limb. Data acquired by SOHO/UVCS at the time of the AR limb transits, at medium latitudes and at altitudes ranging from 1.5 to 2.3 R_sun, were used to infer the physical properties of the outflows through the AR evolution. To this end, we applied the Doppler dimming technique to UVCS spectra. These spectra include the H I Lyman alpha line and the O VI doublet lines at 1031.9 and 1037.6 A. Plasma speeds and electron densities of the outflows were inferred over several rotations of the Sun. AR outflows are present in the newly born AR and persist throughout the entire AR life. Moreover, we found two t...

  20. Discovery of Relativistic Outflow in the Seyfert Galaxy Ark 564

    CERN Document Server

    Gupta, A; Krongold, Y; Nicastro, F

    2013-01-01

    We present Chandra high energy transmission grating spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low velocity outflow components usually observed in Seyfert galaxies (Gupta et al. 2013). There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here we present identifications of the strongest lines as K{\\alpha} transitions of OVII(two lines) and OVI at outflow velocities of ~0.1c. These lines are detected at 6.9{\\sigma}, 6.2{\\sigma}, and 4.7{\\sigma} respectively and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improves the spectral fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find E$\\dot{E}(outflow)/L_{bo}$ ranging from < 0.001% to 60% using different a...

  1. Characterization of Molecular Outflows in The Substellar Domain

    CERN Document Server

    Phan-Bao, Ngoc; Ho, Paul T P; Dang-Duc, Cuong; Li, Di

    2014-01-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J=2-1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M_J, which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36 degrees. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9x10^-6 M_Sun to 2.9x10^-5 M_Sun and an outflow mass-loss rate from 2.7x10^-9 M_Sun yr^-1 to 4.1x10^-8 M_Su...

  2. Energy- and momentum-conserving AGN feedback outflows

    CERN Document Server

    Zubovas, Kastytis

    2014-01-01

    It is usually assumed that outflows from luminous AGN are either in the energy-conserving (non-radiative) or in the momentum-conserving (radiative) regime. We show that in a non-spherical geometry the effects of both regimes may manifest at the same time, and that it is the momentum of the outflow that sets the $M_{\\rm BH}-\\sigma$ relation. Considering an initially elliptical distribution of gas in the host galaxy, we show that a non-radiative outflow opens up a wide ``escape route'' over the paths of least resistance. Most of the outflow energy escapes in that direction. At the same time, in the directions of higher resistance, the ambient gas is affected mainly by the incident momentum from the outflow. Quenching SMBH growth requires quenching gas delivery along the paths of highest resistance, and therefore, it is the momentum of the outflow that limits the black hole growth. We present an analytical argument showing that such energy-conserving feedback bubbles driving leaky ambient shells will terminate S...

  3. A new algorithm for anisotropic solutions

    Indian Academy of Sciences (India)

    M Chaisi; S D Maharaj

    2006-02-01

    We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.

  4. Anisotropic inflation in Gauss-Bonnet gravity

    CERN Document Server

    Lahiri, Sayantani

    2016-01-01

    We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.

  5. RADIATION TRANSPORT FOR EXPLOSIVE OUTFLOWS: OPACITY REGROUPING

    International Nuclear Information System (INIS)

    Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure ''opacity regrouping''. Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in SuperNu, a code designed to do radiation transport in high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck factor for modified IMC-DDMC. We test SuperNu using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC-DDMC implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of the light curve calculated using SuperNu is ∼10% less than that calculated using PHOENIX

  6. RADIATION TRANSPORT FOR EXPLOSIVE OUTFLOWS: OPACITY REGROUPING

    Energy Technology Data Exchange (ETDEWEB)

    Wollaeger, Ryan T. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison 1500 Engineering Drive, 410 ERB, Madison, WI 53706 (United States); Van Rossum, Daniel R., E-mail: wollaeger@wisc.edu, E-mail: daan@flash.uchicago.edu [Flash Center for Computational Science, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2014-10-01

    Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure ''opacity regrouping''. Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in SuperNu, a code designed to do radiation transport in high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck factor for modified IMC-DDMC. We test SuperNu using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC-DDMC implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of the light curve calculated using SuperNu is ∼10% less than that calculated using PHOENIX.

  7. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    Science.gov (United States)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  8. A 3 pc SCALE JET-DRIVEN OUTFLOW FROM SGR A*

    Energy Technology Data Exchange (ETDEWEB)

    Yusef-Zadeh, F.; Haggard, D.; Roberts, D. A.; Royster, M. [Department of Physics and Astronomy and Center for Interdisciplinary Research in Astronomy, Northwestern University, Evanston, IL 60208 (United States); Arendt, R. [CRESST/UMBC/NASA GSFC, Code 665, Greenbelt, MD 20771 (United States); Bushouse, H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cotton, W. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Pound, M. W. [Department of Astronomy, University of Maryland, MD 20742 (United States); Wardle, M. [Department of Physics and Astronomy, Macquarie University, Sydney NSW 2109 (Australia)

    2012-10-10

    The compact radio source Sgr A* is coincident with a 4 Multiplication-Sign 10{sup 6} M{sub Sun} black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high-resolution radio continuum images of the central 3' and report a faint continuous linear structure centered on Sgr A* with a P.A. {approx} 60 Degree-Sign . The extension of this feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, {approx}75'' from Sgr A*. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. The linear structure is best characterized by a mildly relativistic jet from Sgr A* with an outflow rate 10{sup -6} M{sub Sun} yr{sup -1}. The near and far sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for a 2'' hole, the 'minicavity', characterized by disturbed kinematics, enhanced Fe II/III line emission, and diffuse X-ray gas. The estimated kinetic luminosity of the outflow is {approx}1.2 Multiplication-Sign 10{sup 41} erg s{sup -1}, so the interaction with the bar may be responsible for the Galactic center X-ray flash inferred to be responsible for much of the fluorescent Fe K{alpha} line emission from the inner 100 pc of the Galaxy.

  9. A possible OB protostar associated with the molecular outflow in G34.4

    Science.gov (United States)

    Bronfman, L.; May, J.; Nuernberger, D.; Shepherd, D.

    1999-10-01

    The most conspicuous massive molecular outflow candidate identified in our CS(2-1) survey of UC HII regions (Bronfman et al 1996) is G34.4 (IRAS 18507+0121) in the I Galactic quadrant. At a distance of 3.8 kpc, it is near (about 11') the very bright HII region G34.3 (Carral & Welch 1992), embedded in the same GMC with a VLSR of 57 km/s. The CS velocity profile obtained with SEST shows very broad wings, about 25 km/s wide at the 0.1 K level, indicating strong outflow activity. Near infrared images of the field, 90'' in size (0.35'' per pixel), obtained with the du Pont 100'' Telescope at Las Campanas, show a remarkably reddenned source visible only in the K' filter, elongated in shape, about 15'' in extent. We have recently observed the G34.4 region, using the OVRO array, in the 3 mm continuum band and in the H13CO+ line, at a resolution of 5''. Most of the H13CO+ flux (33.64 Jy) comes from two strong cores; while one of these cores is closely associated with the ! NIR source, the other one is associated with a single, unresolved continuum source that has a total flux of 56.8 mJy. The mass of gas and dust in this second, possibly "star-less" core is estimated from the millimeter continuum to be approximately 355 MSun, consistent with the presence of a massive, embedded OB protostar. Bronfman, L., May, J., & Nyman, L. 1996, A&AS 115, 81 Carral & Welch 1992, ApJ 385, 244

  10. Spatially Resolved Galactic Wind in Lensed Galaxy RCSGA 032727-132609

    CERN Document Server

    Bordoloi, Rongmon; Tumlinson, Jason; Bayliss, Matthew B; Sharon, Keren; Gladders, Michael D; Wuyts, Eva

    2016-01-01

    We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally-lensed star-forming galaxy at z=1.70. Using MgII and FeII emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of -170 to -250 km/sec. The velocities of MgII emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being back-scattered. By contrast, the FeII fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the MgII and FeII emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the out owing gas, the estimated masses carried out by these outfows are large (> 30 - 50 $\\rm{M_{\\odot} yr^{-1}}$), with mass loading factors several times the star-formation rate. Almost 20% to 50% of the blueshifted absorption probably escapes the gravitatio...

  11. IMPLICATIONS OF INFALLING Fe II-EMITTING CLOUDS IN ACTIVE GALACTIC NUCLEI: ANISOTROPIC PROPERTIES

    International Nuclear Information System (INIS)

    We investigate consequences of the discovery that Fe II emission in quasars, one of the spectroscopic signatures of 'Eigenvector 1', may originate in infalling clouds. Eigenvector 1 correlates with the Eddington ratio L/L Edd so that Fe II/Hβ increases as L/L Edd increases. We show that the 'force multiplier', the ratio of gas opacity to electron scattering opacity, is ∼103-104 in Fe II-emitting gas. Such gas would be accelerated away from the central object if the radiation force is able to act on the entire cloud. As had previously been deduced, infall requires that the clouds have large column densities so that a substantial amount of shielded gas is present. The critical column density required for infall to occur depends on L/L Edd, establishing a link between Eigenvector 1 and the Fe II/Hβ ratio. We see predominantly the shielded face of the infalling clouds rather than the symmetric distribution of emitters that has been assumed. The Fe II spectrum emitted by the shielded face is in good agreement with observations thus solving several long-standing mysteries in quasar emission lines.

  12. Variably saturated flow described with the anisotropic Lattice Boltzmann methods

    OpenAIRE

    Ginzburg, I.

    2006-01-01

    This paper addresses the numerical solution of highly nonlinear parabolic equations with Lattice Boltzmann techniques. They are first developed for generic advection and anisotropic dispersion equations (AADE). Collision configurations handle the anisotropic diffusion forms by using either anisotropic eigenvalue sets or anisotropic equilibrium functions. The coordinate transformation from the orthorhombic (rectangular) discretization grid to the cuboid computational grid is equivalen...

  13. Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population

    CERN Document Server

    Harrison, C M; Mullaney, J R; Swinbank, A M

    2014-01-01

    We present integral field unit (IFU) observations covering the [O III]4959,5007 and H-Beta emission lines of sixteen z~(6-16) kpc in all targets and observe signatures of spherical outflows and bi-polar superbubbles. We show that our targets are representative of z 5x10^41 erg/s) type 2 AGN and that ionised outflows are not only common but also in >=70% (3 sigma confidence) of cases, they are extended over kiloparsec scales. Our study demonstrates that galaxy-wide energetic outflows are not confined to the most extreme star-forming galaxies or radio-luminous AGN; however, there may be a higher incidence of the most extreme outflow velocities in quasars hosted in ultra-luminous infrared galaxies. Both star formation and AGN activity appear to be energetically viable to drive the outflows and we find no definitive evidence that favours one process over the other. Although highly uncertain, we derive mass outflow rates (typically ~10x the SFRs), kinetic energies (~0.5-10% of L[AGN]) and momentum rates (typically...

  14. The multiphase starburst-driven galactic wind in NGC 5394

    Science.gov (United States)

    Martín-Fernández, Pablo; Jiménez-Vicente, Jorge; Zurita, Almudena; Mediavilla, Evencio; Castillo-Morales, África

    2016-05-01

    We present a detailed study of the neutral and ionised gas phases in the galactic wind for the nearby starburst galaxy NGC 5394 based on new integral field spectroscopy obtained with the INTEGRAL fibre system at the William Herschel Telescope. The neutral gas phase in the wind is detected via the interstellar Na I D doublet absorption. After a careful removal of the stellar contribution to these lines, a significant amount of neutral gas (˜107 M⊙) is detected in a central region of ˜1.75 kpc size. This neutral gas is blueshifted by ˜165 km s-1 with respect to the underlying galaxy. The mass outflow of neutral gas is comparable to the star formation rate of the host galaxy. Simultaneously, several emission lines (Hα, [N II], [S II]) are also analysed looking for the ionised warm phase counterpart of the wind. A careful kinematic decomposition of the line profiles reveals the presence of a secondary, broader, kinematic component. This component is found roughly in the same region where the Na I D absorption is detected. It presents higher [N II]/Hα and [S II]/Hα line ratios than the narrow component at the same locations, indicative of contamination by shock ionization. This secondary component also presents blueshifted velocities, although smaller than those measured for the neutral gas, averaging to ˜-30 km s-1. The mass and mass outflow rate of the wind is dominated by the neutral gas, of which a small fraction might be able to escape the gravitational potential of the host galaxy. The observations in this system can be readily understood within a bipolar gas flow scenario.

  15. Composition of the Galactic bulge

    CERN Document Server

    McWilliam, A; William, Andrew Mc

    2003-01-01

    We present detailed abundance results for 9 Galactic bulge stars in Baade's Window, based on HIRES (R=45,000--60,000) spectra taken with the Keck I telescope. The alpha elements show non-uniform enhancements relative to the Solar neighborhood trends: Mg and Si are enhanced in all our bulge stars by $\\sim$0.5--0.3 dex, showing a slight decrease with increasing [Fe/H]. Oxygen is enhanced in most bulge stars, similar to the Galactic halo, but the [O/Fe] ratios suddenly decline beginning at [Fe/H]=$-$0.5 dex, with a slope consistent with no oxygen production in the bulge for [Fe/H]$\\geq

  16. Discovery in the Galactic Bulge

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    In our efforts to map our galaxys structure, one region has remained very difficult to probe: the galactic center. A new survey, however, uses infrared light to peer through the gas and dust in the galactic plane, searching for variable stars in the bulge of the galaxy. This study has discovered a population of very young stars in a thin disk in the galactic center, providing clues to the star formation history of the Milky Way over the last 100 million years.Obscured CenterThe center of the Milky Way is dominated by a region known as the galactic bulge. Efforts to better understand this region in particular, its star formation history have been hindered by the stars, gas, and dust of the galactic disk, which prevent us from viewing the galactic bulge at low latitudes in visible light.The positions of the 35 classical Cepheids discovered in VVV data, projected onto an image of the galactic plane. Click for a better look! The survey area is bounded by the blue lines, and the galactic bar is marked with a red curve. The bottom panel shows the position of the Cepheids overlaid on the VVV bulge extinction map. [Dkny et al. 2015]Infrared light, however, can be used to probe deeper through the dust than visible-light searches. A new survey called VISTA Variables in the Via Lactea (VVV) uses the VISTA telescope in Chile to search, in infrared, for variable stars in the inner part of the galaxy. The VVV survey area spans the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high.Led by Istvn Dkny, a researcher at the Millennium Institute of Astrophysics and the Pontifical Catholic University of Chile, a team has now used VVV data to specifically identify classical Cepheid variable stars in the bulge. Why? Cepheids are pulsating stars with a very useful relation between their periods and luminosities that allows them to be used as distance indicators. Moreover, classical Cepheids are indicators of young stellar populations which can

  17. Introduction to Galactic Chemical Evolution

    CERN Document Server

    Matteucci, Francesca

    2016-01-01

    In this lecture I will introduce the concept of galactic chemical evolution, namely the study of how and where the chemical elements formed and how they were distributed in the stars and gas in galaxies. The main ingredients to build models of galactic chemical evolution will be described. They include: initial conditions, star formation history, stellar nucleosynthesis and gas flows in and out of galaxies. Then some simple analytical models and their solutions will be discussed together with the main criticisms associated to them. The yield per stellar generation will be defined and the hypothesis of instantaneous recycling approximation will be critically discussed. Detailed numerical models of chemical evolution of galaxies of different morphological type, able to follow the time evolution of the abundances of single elements, will be discussed and their predictions will be compared to observational data. The comparisons will include stellar abundances as well as interstellar medium ones, measured in galax...

  18. Spatial interpolation approach based on IDW with anisotropic spatial structures

    Science.gov (United States)

    Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang

    2015-12-01

    In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.

  19. Variability of Active Galactic Nuclei

    OpenAIRE

    Peterson, Bradley M.

    2001-01-01

    Continuum and emission-line variability of active galactic nuclei provides a powerful probe of microarcsecond scale structures in the central regions of these sources. In this contribution, we review basic concepts and methodologies used in analyzing AGN variability. We develop from first principles the basics of reverberation mapping, and pay special attention to emission-line transfer functions. We discuss application of cross-correlation analysis to AGN light curves. Finally, we provide a ...

  20. Coexistence of Gravitationally Bound and Radiation Driven CIV Emission Line Regions in Active Galactic Nuclei

    CERN Document Server

    Wang, Huiyuan; Zhou, Hongyan; Liu, Bo; Wang, Jianguo; Yuan, Weimin; Dong, Xiaobo

    2011-01-01

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g. CIV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally bound BELR, which are supported respectively by blueshift of the CIV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the CIV and MgII lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the CIV region is different from that of MgII, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the CIV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the CIV line region is largely dominated by outflow a...

  1. The Multiphase Structure and Power Sources of Galactic Winds in Major Mergers

    CERN Document Server

    Rupke, David S N

    2013-01-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z < 0.06 using deep integral field spectroscopy with the Gemini Multi-Object Spectrograph (GMOS) on Gemini North. We probe the neutral, ionized, and dusty gas phases using Na I D, strong emission lines ([O I], Halpha, and [N II]), and continuum colors, respectively. We separate outflow motions from those due to rotation and tidal perturbations, and find that all of the galaxies in our sample host high-velocity flows on kiloparsec scales. The properties of these outflows are consistent with multiphase (ionized, neutral, and dusty) collimated bipolar winds emerging along the minor axis of the nuclear disk to scales of 1-2 kpc. In two cases, these collimated winds take the form of bipolar superbubbles, identified by clear kinematic signatures. Less collimated (...

  2. The UKIDSS Galactic Plane Survey

    CERN Document Server

    Lucas, P W; Longmore, A; Schröder, A C; Davis, C J; Adamson, A; Bandyopadhyay, R M; De Grijs, R; Smith, M; Gosling, A; Mitchison, S; Gaspar, A; Coe, M; Tamura, M; Parker, Q; Irwin, M; Hambly, N; Byant, J; Collins, R S; Cross, N; Evans, D W; Gonzalez-Solares, E; Hodgkin, S; Lewis, J; Read, M; Riello, M; Sutorius, E T W; Lawrence, A; Drew, J E; Dye, S

    2007-01-01

    The UKIDSS Galactic Plane Survey (GPS) is one of the five near infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared Telescope. It is surveying 1868 sq.deg. of the northern and equatorial Galactic plane at Galactic latitudes -5

  3. The Galactic Nova Rate Revisited

    CERN Document Server

    Shafter, A W

    2016-01-01

    Despite its fundamental importance, a reliable estimate of the Galactic nova rate has remained elusive. Here, the overall Galactic nova rate is estimated by extrapolating the observed rate for novae reaching $m\\leq2$ to include the entire Galaxy using a two component disk plus bulge model for the distribution of stars in the Milky Way. The present analysis improves on previous work by considering important corrections for incompleteness in the observed rate of bright novae. Several models are considered to account for differences in the assumed properties of bulge and disk nova populations. The simplest models, which assume uniform properties between bulge and disk novae, predict Galactic nova rates between $\\sim$50 to as many as $\\sim$100 per year, depending on the assumed incompleteness at bright magnitudes. Models where the disk novae are assumed to be more luminous than bulge novae are explored, and predict nova rates up to 30% lower, in the range of $\\sim$35 to $\\sim$70 per year. An average of the most p...

  4. Neutral gas outflows in nearby [U]LIRGs via optical NaD feature

    Science.gov (United States)

    Cazzoli, S.; Arribas, S.; Maiolino, R.; Colina, L.

    2016-05-01

    We studied the properties of the neutral gas in a sample of 38 local luminous and ultra luminous infrared galaxies ([U]LIRGs, 51 individual galaxies at z ≤ 0.09), which mainly covers the less explored LIRG luminosity range. This study is based on the analysis of the spatially integrated and spatially resolved spectra of the NaDλλ 5890, 5896 Å feature obtained with the integral field unit (IFU) of VIMOS at the Very Large Telescope. Analyzing spatially integrated spectra, we find that the contribution of the stars to the observed NaD equivalent width is small (pure-ISM integrated spectra generally show blueshifted NaD profiles, indicating neutral gas outflow velocities, V, in the range 65-260 km s-1. Excluding the galaxies with powerful AGNs, V shows a dependency with the star formation rate (SFR) of the type V ∝ SFR0.15, which is in rather good agreement with previous results. The spatially resolved analysis could be performed for 40 galaxies, 22 of which have neutral gas velocity fields dominated by noncircular motions with signatures of cone-like winds. However, a large number of targets (11/40) show disk rotation signatures. Based on a simple model, we found that the wind masses are in the range 0.4-7.5 × 108 M⊙, reaching up to ~3% of the dynamical mass of the host. The mass rates are typically only ~0.2-0.4 times the corresponding global SFR indicating that, in general, the mass loss is too small to slow down the star formation significantly. In the majority of cases, the velocity of the outflowing gas is not sufficient to escape the host potential well and, therefore, most of the gas rains back into the galaxy disk. On average V/vesc is higher in less massive galaxies, confirming that the galaxy mass has a primary role in shaping the recycling of gas and metals. The comparison between the wind power and kinetic power of the starburst associated with SNe indicates that only the starburst could drive the outflows in nearly all the [U]LIRGs galaxies, as

  5. Theory of Compton scattering by anisotropic electrons

    OpenAIRE

    Poutanen, Juri; Vurm, Indrek

    2010-01-01

    Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed so...

  6. Phase space analysis in anisotropic optical systems

    Science.gov (United States)

    Rivera, Ana Leonor; Chumakov, Sergey M.; Wolf, Kurt Bernardo

    1995-01-01

    From the minimal action principle follows the Hamilton equations of evolution for geometric optical rays in anisotropic media. As in classical mechanics of velocity-dependent potentials, the velocity and the canonical momentum are not parallel, but differ by an anisotropy vector potential, similar to that of linear electromagnetism. Descartes' well known diagram for refraction is generalized and a factorization theorem holds for interfaces between two anisotropic media.

  7. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  8. Rainbow metric from quantum gravity: anisotropic cosmology

    OpenAIRE

    Assanioussi, Mehdi; Dapor, Andrea

    2016-01-01

    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformatio...

  9. Anisotropic cosmological solutions in massive vector theories

    OpenAIRE

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between...

  10. Anisotropic Stars: Exact Solutions and Stability

    OpenAIRE

    Dev, Krsna; Gleiser, Marcelo

    2004-01-01

    I report on recent work concerning the existence and stability of self-gravitating spheres with anisotropic pressure. After presenting new exact solutions, Chandrasekhar's variational formalism for radial perturbations is generalized to anisotropic objects and applied to investigate their stability. It is shown that anisotropy can not only support stars of mass M and radius R with 2M/R > 8/9 and arbitrarily large surface redshifts, but that stable configurations exist for values of the adiaba...

  11. Anisotropic surface tension of buckled fluid membrane

    OpenAIRE

    Noguchi, Hiroshi

    2011-01-01

    Solid sheets and fluid membranes exhibit buckling under lateral compression. Here, it is revealed that fluid membranes have anisotropic buckling surface tension contrary to solid sheets. Surprisingly, the surface tension perpendicular to the buckling direction shows stronger dependence than that parallel to it. Our theoretical predictions are supported by numerical simulations of a meshless membrane model. This anisotropic tension can be used to measure the membrane bending rigidity. It is al...

  12. Highly anisotropic elements for acoustic pentamode applications.

    Science.gov (United States)

    Layman, Christopher N; Naify, Christina J; Martin, Theodore P; Calvo, David C; Orris, Gregory J

    2013-07-12

    Pentamode metamaterials are a class of acoustic metafluids that are characterized by a divergence free modified stress tensor. Such materials have an unconventional anisotropic stiffness and isotropic mass density, which allow themselves to mimic other fluid domains. Here we present a pentamode design formed by an oblique honeycomb lattice and producing customizable anisotropic properties. It is shown that anisotropy in the stiffness can exceed 3 orders of magnitude, and that it can be realistically tailored for transformation acoustic applications. PMID:23889408

  13. Anisotropic fluid spheres in general relativity

    International Nuclear Information System (INIS)

    A procedure is developed to find static solutions for anisotropic fluid spheres from known static solutions for perfect fluid spheres. The method is used to obtain four exact analytical solutions of Einstein's equations for spherically symmetric self-gravitating distribution of anisotropic matter. The solutions are matched to the Schwarzschild exterior metric. The physical features of one of the solutions are briefly discussed. Many previously known perfect fluid solutions are derived as particular cases. (author)

  14. On the anisotropic elastic properties of hydroxyapatite.

    Science.gov (United States)

    Katz, J. L.; Ukraincik, K.

    1971-01-01

    Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.

  15. Soft particles with anisotropic interactions

    Science.gov (United States)

    Schurtenberger, Peter

    Responsive colloids such as thermo- or pH-sensitive microgels are ideal model systems to investigate the relationship between the nature of interparticle interactions and the plethora of self-assembled structures that can form in colloidal suspensions. They allow for a variation of the form, strength and range of the interaction potential almost at will. While microgels have extensively been used as model systems to investigate various condensed matter problems such as glass formation, jamming or crystallization, they can also be used to study systems with anisotropic interactions. Here we show results from a systematic investigation of the influence of softness and anisotropy on the structural and dynamic properties of strongly interacting suspensions. We focus first on ionic microgels. Due to their large number of internal counterions they possess very large polarisabilities, and we can thus use external electrical ac fields to generate large dipolar contributions to the interparticle interaction potential. This leads to a number of new crystal phases, and we can trigger crystal-crystal phase transitions through the appropriate choice of the field strength. We then show that this approach can be extended to more complex particle shapes in an attempt to copy nature's well documented success in fabricating complex nanostructures such as virus shells via self assembly. European Research Council (ERC-339678-COMPASS).

  16. Transport theory in anisotropic media

    International Nuclear Information System (INIS)

    A theory of particle scattering in anisotropic media is developed. That is, a medium in which the microstructure causes the mean free paths of the particles to become dependent on their direction of motion with respect to some fixed axis. The equation which results is similar to the normal, one-speed Boltzmann transport equation but has cross-sections which are functions of direction. This equation is solved for arbitrary cross-sectional dependence on direction in plane geometry. Four distinct problems are considered: (1) the particle distribution arising from a plane source in an infinite medium, (2) the albedo problem and Milne problem for a half-space and the corresponding 'thick slab' transmission problem, (3) solution of the integral form of the Boltzmann equation for a special case of cross-sectional dependence which leads to results similar to the well-known rod model and (4) the energy spectrum of particles slowing down from a high energy source by elastic collisions. In each of these four problems the influence of the cross-section is seen to be significant in comparison with the conventional constant cross-section results, to which they revert in this limit. Some suggestions about physical applications of the results are made. (author)

  17. Anisotropic diffusion-limited aggregation.

    Science.gov (United States)

    Popescu, M N; Hentschel, H G E; Family, F

    2004-06-01

    Using stochastic conformal mappings, we study the effects of anisotropic perturbations on diffusion-limited aggregation (DLA) in two dimensions. The harmonic measure of the growth probability for DLA can be conformally mapped onto a constant measure on a unit circle. Here we map m preferred directions for growth to a distribution on the unit circle, which is a periodic function with m peaks in [-pi,pi) such that the angular width sigma of the peak defines the "strength" of anisotropy kappa= sigma(-1) along any of the m chosen directions. The two parameters (m,kappa) map out a parameter space of perturbations that allows a continuous transition from DLA (for small enough kappa ) to m needlelike fingers as kappa--> infinity. We show that at fixed m the effective fractal dimension of the clusters D(m,kappa) obtained from mass-radius scaling decreases with increasing kappa from D(DLA) approximately 1.71 to a value bounded from below by D(min) = 3 / 2. Scaling arguments suggest a specific form for the dependence of the fractal dimension D(m,kappa) on kappa for large kappa which compares favorably with numerical results. PMID:15244564

  18. Modeling jet and outflow feedback during star cluster formation

    International Nuclear Information System (INIS)

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  19. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    International Nuclear Information System (INIS)

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus

  20. Modeling jet and outflow feedback during star cluster formation

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Schrön, Martin [Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, D-04318 Leipzig (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Klessen, Ralf S., E-mail: christoph.federrath@monash.edu [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  1. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  2. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  3. The XMM deep survey in the CDF-S. IX. An X-ray outflow in a luminous obscured quasar at z ≈ 1.6

    Science.gov (United States)

    Vignali, C.; Iwasawa, K.; Comastri, A.; Gilli, R.; Lanzuisi, G.; Ranalli, P.; Cappelluti, N.; Mainieri, V.; Georgantopoulos, I.; Carrera, F. J.; Fritz, J.; Brusa, M.; Brandt, W. N.; Bauer, F. E.; Fiore, F.; Tombesi, F.

    2015-11-01

    In active galactic nuclei (AGN)-galaxy co-evolution models, AGN winds and outflows are often invoked to explain why super-massive black holes and galaxies stop growing efficiently at a certain phase of their lives. They are commonly referred to as the leading actors of feedback processes. Evidence of ultra-fast (v ≳ 0.05c) outflows in the innermost regions of AGN has been collected in the past decade by sensitive X-ray observations for sizable samples of AGN, mostly at low redshift. Here we present ultra-deep XMM-Newton and Chandra spectral data of an obscured (NH≈ 2 × 1023 cm-2), intrinsically luminous (L2-10 keV≈ 4 × 1044 erg s-1) quasar (named PID352) at z ≈ 1.6 (derived from the X-ray spectral analysis) in the Chandra Deep Field-South. The source is characterized by an iron emission and absorption line complex at observed energies of E ≈ 2-3 keV. While the emission line is interpreted as being due to neutral iron (consistent with the presence of cold absorption), the absorption feature is due to highly ionized iron transitions (FeXXV, FeXXVI) with an outflowing velocity of , as derived from photoionization models. The mass outflow rate - ~2 M⊙ yr-1 - is similar to the source accretion rate, and the derived mechanical energy rate is ~9.5 × 1044 erg s-1, corresponding to 9% of the source bolometric luminosity. PID352 represents one of the few cases where indications of X-ray outflowing gas have been observed at high redshift thus far. This wind is powerful enough to provide feedback on the host galaxy.

  4. An anisotropic minijets model for the GRB prompt emission

    CERN Document Server

    Duran, Rodolfo Barniol; Giannios, Dimitrios

    2015-01-01

    In order to explain rapid light curve variability in the context of gamma-ray bursts (GRBs) and jets from active galactic nuclei (AGNs), several authors have proposed the existence of "blobs" or "minijets" that move with relativistic speed relative to the main flow of the jet. Here we consider the possibility that these minijets, instead of being isotropically distributed in the co-moving frame of the jet, form primarily perpendicular to the direction of the flow. This anisotropic collection of minijets yields two robust features. First, the main burst of emission is significantly delayed compared with the isotropic case. This delay allows for the peak of the afterglow emission to appear during the prompt emission, in contrast to the simplest isotropic model, where the afterglow peak appears at or after the end of the main burst. Second, the flux decline following the end of the main burst of emission will be steeper than the isotropic case. We find that these two features are realized in the case of GRBs: 1....

  5. Anisotropic pressure and hyperons in neutron stars

    CERN Document Server

    Sulaksono, A

    2014-01-01

    We study the effects of anisotropic pressure on properties of the neutron stars with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of anisotropic pressure on neutron star matter is to increase the stiffness of the equation of state, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of anisotropic pressure model $h \\le 0.8$[1] and $\\Lambda \\le -1.15$ [2]. The radius of the corresponding neutron star at $M$=1.4 $M_\\odot$ is more than 13 km, while the effect of anisotropic pressure on the minimum mass of neutron star is insignificant. Furthermore, due to the anisotropic pressure in the neutron star, the maximum mass limit of higher than 2.1 $M_\\odot$ cannot rule out the presence of hyperons in the neutron star core.

  6. High-resolution CO observation of the carbon star CIT 6 revealing the spiral structure and a nascent bipolar outflow

    CERN Document Server

    Kim, Hyosun; Hirano, Naomi; Zhao-Geisler, Ronny; Trejo, Alfonso; Yen, Hsi-Wei; Taam, Ronald E; Kemper, Francisca; Kim, Jongsoo; Byun, Do-Young; Liu, Tie

    2015-01-01

    CIT 6 is a carbon star in the transitional phase from the asymptotic giant branch (AGB) to the protoplanetary nebulae (pPN). Observational evidences of two point sources in the optical, circumstellar arc segments in an HC$_3$N line emission, and a bipolar nebula in near-infrared provide strong support for the presence of a binary companion. Hence, CIT 6 is very attractive for studying the role of companions in the AGB-pPN transition. We have carried out high resolution $^{12}$CO $J=2-1$ and $^{13}$CO $J=2-1$ observations of CIT 6 with the Submillimeter Array combined with the Submillimeter Telescope (single-dish) data. The $^{12}$CO channel maps reveal a spiral-shell pattern connecting the HC$_3$N segments in a continuous form, and an asymmetric outflow corresponding to the near-infrared bipolar nebula. Rotation of the $^{12}$CO channel peak position may be related to the inner spiral winding and/or the bipolar outflow. An eccentric orbit binary is suggested for the presences of an anisotropic mass loss to th...

  7. SUBMILLIMETER INTERFEROMETRY OF THE LUMINOUS INFRARED GALAXY NGC 4418: A HIDDEN HOT NUCLEUS WITH AN INFLOW AND AN OUTFLOW

    International Nuclear Information System (INIS)

    We have observed the nucleus of the nearby luminous infrared galaxy NGC 4418 with subarcsec resolution at 860 and 450 μm for the first time to characterize its hidden power source. A ∼20 pc (0.''1) hot dusty core was found inside a 100 pc scale concentration of molecular gas at the galactic center. The 860 μm continuum core has a deconvolved (peak) brightness temperature of 120-210 K. The CO(3-2) peak brightness temperature there is as high as 90 K at 50 pc resolution. The core has a bolometric luminosity of about 1011 L ☉, which accounts for most of the galaxy luminosity. It is Compton thick (N H ∼> 1025 cm–2) and has a high luminosity-to-mass ratio (L/M) ∼ 500 L ☉ M ☉–1 as well as a high luminosity surface density 108.5±0.5 L ☉ pc–2. These parameters are consistent with an active galactic nucleus to be the main luminosity source (with an Eddington ratio about 0.3), while they can be also due to a young starburst near its maximum L/M. We also found an optical color (reddening) feature that we attribute to an outflow cone emanating from the nucleus. The hidden hot nucleus thus shows evidence of both an inflow, previously seen with absorption lines, and the new outflow reported here in a different direction. The nucleus must be rapidly evolving with these gas flows.

  8. Supernova feedback in a local vertically stratified medium: interstellar turbulence and galactic winds

    Science.gov (United States)

    Martizzi, Davide; Fielding, Drummond; Faucher-Giguère, Claude-André; Quataert, Eliot

    2016-07-01

    We use local Cartesian simulations with a vertical gravitational potential to study how supernova (SN) feedback in stratified galactic discs drives turbulence and launches galactic winds. Our analysis includes three disc models with gas surface densities ranging from Milky Way-like galaxies to gas-rich ultraluminous infrared galaxies (ULIRGs), and two different SN driving schemes (random and correlated with local gas density). In order to isolate the physics of SN feedback, we do not include additional feedback processes. We find that, in these local box calculations, SN feedback excites relatively low mass-weighted gas turbulent velocity dispersions ≈3-7 km s-1 and low wind mass loading factors η ≲ 1 in all the cases we study. The low turbulent velocities and wind mass loading factors predicted by our local box calculations are significantly below those suggested by observations of gas-rich and rapidly star-forming galaxies; they are also in tension with global simulations of disc galaxies regulated by stellar feedback. Using a combination of numerical tests and analytic arguments, we argue that local Cartesian boxes cannot predict the properties of galactic winds because they do not capture the correct global geometry and gravitational potential of galaxies. The wind mass loading factors are in fact not well defined in local simulations because they decline significantly with increasing box height. More physically realistic calculations (e.g. including a global galactic potential and disc rotation) will likely be needed to fully understand disc turbulence and galactic outflows, even for the idealized case of feedback by SNe alone.

  9. COEXISTENCE OF GRAVITATIONALLY-BOUND AND RADIATION-DRIVEN C IV EMISSION LINE REGIONS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g., C IV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally-bound BELR, which are supported, respectively, by blueshift of the C IV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the C IV and Mg II lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the C IV region is different from that of Mg II, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the C IV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the C IV line region is largely dominated by outflow at high Eddington ratios, while it is primarily gravitationally-bounded at low Eddington ratios. Our results indicate that these two emitting regions coexist in most AGNs. The emission strength from these two gases varies smoothly with Eddington ratio in opposite ways. This explanation naturally reconciles the apparently contradictory views proposed in previous studies. Finally, candidate models are discussed which can account for both the enhancement of outflow emission and suppression of normal BEL in AGNs with high Eddington ratios.

  10. SAS-2 galactic gamma ray results, 1

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma-ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitude 310 and 45 deg, corresponding to a region within 7kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315 deg, 330 deg, 345 deg, 0 deg, and 35 deg. These peaks appear to be correlated with such galactic features and components as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic ray concentrations, and photon fields.

  11. Gas outflow and dust transport of comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Lai, Ian-Lin; Su, Cheng-Chin; Ip, Wing-Huen; Lee, Jui-Chi; Lin, Zhong-Yi; Wu, Jong-Shinn

    2016-04-01

    Because of the diurnal thermal cycle and the irregular shape of the nucleus, gas outflow of comet 67P/Churyumov-Gerasimenko could be highly anisotropic as possibly indicated by the colliminated dust jet structures on the sunlit side. Based on the preliminary study of the outgassing effect from the early phase of the Rosetta mission, a simple model of surface sublimation can be constructed by taking into account the dependence on the solar insolation. By implementing the time variability of the global gas production rate, a sequence of gas coma models can be generated at different epochs before and after perihelion by using an advanced DSMC code [1, 2] to calculate the gas flow near the cometary nucleus. At selected time intervals, we will also investigate the size change of the cometary ionosphere as the nucleus rotates as well as the ejection of dust particles dragged by the gas flow into bounded and unbounded trajectories. Reference: 1. Wu, J.-S., Tseng, K.-C. and Wu, F.-Y., "Parallel three-dimensional DSMC method using mesh refinement and variable time-step scheme", Comput. Phys. Comm., 162, pp. 166-187, 2004. 2. Su, C.-C., Tseng, K.-C., Cave, H.M., Wu, J.-S., Lian, Y.-Y., Kuo, T.-C. and Jermy, M.C., "Implementation of a Transient Adaptive Sub-Cell Module for the Parallel DSMC Code Using Unstructured Grids," Computers & Fluids, Vol. 39, pp. 1136-1145, 2010.

  12. Cluster Formation in Protostellar Outflow-driven Turbulence

    Science.gov (United States)

    Li, Zhi-Yun; Nakamura, Fumitaka

    2006-04-01

    Most, perhaps all, stars go through a phase of vigorous outflow during formation. We examine, through three-dimensional MHD simulation, the effects of protostellar outflows on cluster formation. We find that the initial turbulence in the cluster-forming region is quickly replaced by motions generated by outflows. The protostellar outflow-driven turbulence (``protostellar turbulence'' for short) can keep the region close to a virial equilibrium long after the initial turbulence has decayed away. We argue that there exist two types of turbulence in star-forming clouds: a primordial (or ``interstellar'') turbulence and a protostellar turbulence, with the former transformed into the latter mostly in embedded clusters such as NGC 1333. Since the majority of stars are thought to form in clusters, an implication is that the stellar initial mass function is determined to a large extent by the stars themselves, through outflows that individually limit the mass accretion onto forming stars and collectively shape the environments (density structure and velocity field) in which most cluster members form. We speculate that massive cluster-forming clumps supported by protostellar turbulence gradually evolve toward a highly centrally condensed ``pivotal'' state, culminating in rapid formation of massive stars in the densest part through accretion.

  13. Quasar Outflow Constraints using Broad Absorption Line Variability Studies

    Science.gov (United States)

    McGraw, Sean; Shields, Joseph C.; Hamann, Fred; Capellupo, Daniel M.; Gallagher, Sarah; Brandt, W. Niel; Herbst, Hanna

    2016-01-01

    Quasar outflows are plausible candidates for AGN feedback processes influencing the host galaxy and may explain the established correlations between the supermassive black hole (SMBH) and the surrounding bulge. In order to better understand feedback and the physical conditions of the outflowing gas, observational constraints on absorber kinematics and energetics are needed. We are utilizing multiple epoch, rest frame UV quasar spectra to establish limits on outflow locations and total column densities for the purpose of estimating wind kinetic energies and momenta. We are also investigating the variability patterns of broad absorption lines (BALs) and mini-BALs across a range of ionization states to probe underlying connections between the various classes of absorbers. This work employs observations from the Sloan Digital Sky Survey, Hobby Eberly Telescope, and MDM observatory. We detect BAL variability in 3 out of 12 FeLoBAL quasars over multiple year timescales and conclude that the variable absorbers lie within tens of parsecs of the SMBH based on interpretations of the Fe II and Mg II BALS. We also measure significant BAL changes across daily to yearly timescales in a sample of 71 quasars with plausible detections of the P V 1117,1128 BAL. Detecting phosphorus in absorption is notable because it traces high column density outflows and is therefore relevant for studying AGN feedback. Constraints on outflow energetics and other selected results will be presented.

  14. Estimation of cold plasma outflow during geomagnetic storms

    Science.gov (United States)

    Haaland, S.; Eriksson, A.; André, M.; Maes, L.; Baddeley, L.; Barakat, A.; Chappell, R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R.; Welling, D.

    2015-12-01

    Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.

  15. Star Formation Ecology: YSO Outflow Feedback in Young Clusters

    Science.gov (United States)

    Frank, Adam; Bally, John; Blackman, Eric; Gutermuth, Robert; Pipher, Judy; Quillen, Alice

    2007-05-01

    Energetic outflows associated with young stellar objects exert a strong effect on their parent molecular clouds. The dynamics of this interaction is yet to be well understood. In particular the role of jets and outflows in powering cloud turbulence, modifying the star formation efficiency (SFE) and/or disrupting the parent clouds remains unclear. Spitzer images of young clusters have provided new views of jet-cloud interactions that can help resolve these critical issues. In this proposal we seek to continue a highly successful (cycle 2) theory program to explore theoretical issues of jet-cloud interactions, turbulence and cloud disruption. Our research relies on 3-D Adaptive Mesh Refinement hydrodynamic and MHD simulations developed in house, in concert with Spitzer databases and other complementary observations. The team we have assembled includes computational and analytic theorists (Frank, Blackman) as well as observers who have worked closely with existing Spitzer Datasets (Bally, Quillen, Pipher, Gutermuth) The work funded through the previous TR program revealed fundamentally new aspects of YSO outflow feedback on parent cloud cores including the importance of the temporal evolution of outflow power. In this proposal we seek to extend the understanding gained in those studies to address specific questions on the nature and efficacy of outflow feedback in real systems.

  16. Evidence for outflows in z ~ 6 galaxies with ALMA

    CERN Document Server

    Gallerani, S; Feruglio, C; Ferrara, A; Maiolino, R; Vallini, L; Riechers, D A

    2016-01-01

    We present the first attempt to detect outflows from galaxies approaching the Epoch of Reionization (EoR) using a sample of 9 star-forming (5 < SFR < 70 Msun/yr) z ~ 6 galaxies for which high-quality spectra of the [CII]158 micron line has been previously obtained with ALMA. We first fit each line with a Gaussian function and compute the residuals by subtracting the best fitting model from the data. We combine the residuals of all sample galaxies and find that the total signal is characterized by a flux excess that can be ascribed to broad wings of the [CII] line, which we interpret as a signature of starburst-driven outflows. The tentatively inferred outflow rate is dM/dt ~ 65 Msun/yr. Our interpretation is consistent with results from zoomed hydro- simulations of Dahlia, a z ~ 7 galaxy (SFR ~ 100 Msun/yr) whose feedback-regulated star formation results in an outflow rate dM/dt ~ 30 Msun/yr. These results suggest that starburst-driven outflows are in place in the EoR. Deeper observations of the [CII] l...

  17. Structure and content of the galaxy and galactic gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The conference included papers on ..gamma..-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included. (JFP)

  18. Structure and content of the galaxy and galactic gamma rays

    International Nuclear Information System (INIS)

    The conference included papers on γ-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included

  19. Dark galactic halos without dark matter

    OpenAIRE

    Nesbet, R. K.

    2011-01-01

    Using standard Einstein theory, baryonic mass cannot account for observed galactic rotation velocities and gravitational lensing, attributed to galactic dark matter halos. In contrast, theory constrained by Weyl conformal scaling symmetry explains observed galactic rotation in the halo region without invoking dark matter. An explanation of dark halos, gravitational lensing, and structural stabilization, without dark matter and consistent with conformal theory, is proposed here. Condensation o...

  20. Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - III. Application to a hydrodynamical simulation

    Science.gov (United States)

    Sim, S. A.; Proga, D.; Miller, L.; Long, K. S.; Turner, T. J.

    2010-11-01

    We perform multidimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disc wind from an active galactic nucleus. The synthetic spectra confirm expectations from parametrized models that a disc wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disc plane but ultimately falls back. We also confirm that the strong Fe Kα line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determining the ionization conditions in the wind. We find that scattered radiation is rather effective in ionizing gas which is shielded from direct irradiation from the central source. This effect likely makes the successful launching of a massive disc wind somewhat more challenging and should be considered in future wind simulations.

  1. DEMOGRAPHICS AND PHYSICAL PROPERTIES OF GAS OUTFLOWS/INFLOWS AT 0.4 < z < 1.4

    International Nuclear Information System (INIS)

    We present Keck/LRIS spectra of over 200 galaxies with well-determined redshifts between 0.4 and 1.4. We combine new measurements of near-ultraviolet, low-ionization absorption lines with previously measured masses, luminosities, colors, and star formation rates to describe the demographics and properties of galactic flows. Among star-forming galaxies with blue colors, we find a net blueshift of the Fe II absorption greater than 200 km s–1 (100 km s–1) toward 2.5% (20%) of the galaxies. The fraction of blueshifted spectra does not vary significantly with stellar mass, color, or luminosity but does decline at specific star formation rates less than roughly 0.8 Gyr–1. The insensitivity of the blueshifted fraction to galaxy properties requires collimated outflows at these redshifts, while the decline in outflow fraction with increasing blueshift might reflect the angular dependence of the outflow velocity. The low detection rate of infalling gas, 3%-6% of the spectra, suggests an origin in (enriched) streams favorably aligned with our sightline. We find that four of these nine infalling streams have projected velocities commensurate with the kinematics of an extended disk or satellite galaxy. The strength of the Mg II absorption increases with stellar mass, B-band luminosity, and U – B color, trends arising from a combination of more interstellar absorption at the systemic velocity and less emission filling in more massive galaxies. Our results provide a new quantitative understanding of gas flows between galaxies and the circumgalactic medium over a critical period in galaxy evolution.

  2. Star Formation Histories of the Galactic Satellites

    CERN Document Server

    Gilmore, G; Valls-Gabaud, D; Gilmore, Gerard; Hernandez, Xavier; Valls-Gabaud, David

    1999-01-01

    Late accretion models for formation of the Galactic halo require that many Galactic satellite galaxies have been cannibalised into the halo field. Comparison of the metallicity and age distribution function of stars in the surviving satellites with the apparently exclusively old stars in the field halo can constrain the importance of any such process. We have developed a new objective technique to determine star formation histories in dSph galaxies. We apply this technique to the surviving Galactic satellites, deducing an approximately uniform distribution of ages for the constituents, quite unlike the halo field stars. Thus, late accretion did not play a substantial part in Galactic halo formation.

  3. Discs, outflows, and feedback in collapsing magnetized cores

    CERN Document Server

    Duffin, Dennis

    2010-01-01

    The pre-stellar cores in which low mass stars form are generally well magnetized. Our simulations show that early protostellar discs are massive and experience strong magnetic torques in the form of magnetic braking and protostellar outflows. Simulations of protostellar disk formation suggest that these torques are strong enough to suppress a rotationally supported structure from forming for near critical values of mass-to-flux. We demonstrate through the use of a 3D adaptive mesh refinement code -- including cooling, sink particles and magnetic fields -- that one produces transient 1000 AU discs while simultaneously generating large outflows which leave the core region, carrying away mass and angular momentum. Early inflow/outflow rates suggest that only a small fraction of the mass is lost in the initial magnetic tower/jet event.

  4. The outflow speed of the coma of Halley's comet

    International Nuclear Information System (INIS)

    Data concerning the outflow speed of the coma of Comet Halley are studied in relation to a generalization of the coupled pure-gas-dynamic/Monte Carlo model of Combi and Smyth (1988) to include the dusty-gas dynamics of the inner coma. Measurements made by the Giotto neutral-gas spectrometer, IR water observations from the Kuiper Airborne Observatory, and Doppler radio line profiles of HCN and OH are used to examine the radial dependence of the outflow speed, the asymmetry in the outflow speed, and the overall heliocentric distance dependence of the Doppler profiles, respectively. The results suggest that the model makes it possible to understand the gross long-term behavior and radial structure of the dynamics of the cometary coma. 23 refs

  5. Bipolar Molecular Outflows from High-Mass Protostars

    Science.gov (United States)

    Su, Yu-Nung; Zhang, Qizhou; Lim, Jeremy

    2004-03-01

    We report observations of the bipolar molecular outflows associated with the luminous (~2×104 Lsolar) far-IR sources IRAS 21519+5613 and IRAS 22506+5944, as well the dust and molecular gas condensations on which these outflows appear to be centered. The observations were made in 12CO, 13CO, C18O, and continuum at 3 mm with the BIMA array and in 12CO and 13CO with the NRAO 12 m telescope to recover extended emission filtered out by the interferometric array. We find that the outflow associated with each IRAS source shows a clear bipolar morphology in 12CO, with properties (i.e., total mass of order 10-100 Msolar, mass-outflow rate >~10-3 Msolar, dynamical timescale 104-105 yr, and energetics) comparable with those of other massive outflows associated with luminous young stellar objects. Each outflow appears to be centered on a dust and gas condensation with a mass of 200-300 Msolar, likely marking the location of the driving source. The outflow lobes of both sources are fully resolved along their major but not minor axes, and they have collimation factors that may be comparable with young low-mass stars. The mass-velocity diagrams of both outflows change in slope at a velocity of ~10 km s-1, suggesting that the high-velocity component (HVC) may drive the low-velocity component (LVC). Although the HVC of IRAS 21519+5613 shows evidence for deceleration, no such signature is seen in the HVC of IRAS 22506+5944. Neither HVC has a momentum supply rate sufficient to drive their corresponding LVCs, although it is possible that the HVC is more highly excited and hence its thrust underestimated. Like for other molecular outflows the primary driving agent cannot be ionized gas, leaving atomic gas as the other remaining candidate. Neither IRAS 21519+5613 nor IRAS 22506+5944 exhibits detectable free-free emission, which together with the observed properties of their molecular outflows and surrounding condensations make them credible candidates for high-mass protostars. The mass

  6. Plasma Outflows: Known Knowns, Known Unknowns, and The Unknown

    Science.gov (United States)

    Moore, T. E.

    2012-01-01

    A brief summary is given of i) what we know from observing ionospheric outflows and ii) how outflow parameterizations are being used in global simulations to evaluate their effects on magnetospheric dynamics. Then, a list of unanswered questions and issues to be resolved is given, followed by a description of the known future mission plans expressed in the Heliophysics Roadmap, such as Origin of Near-Earth Plasmas (ONEP), and Ion-Neutral Coupling in the Atmosphere (INCA). Finally, a set of requirements for definitive plasma outflow observations are identified, along with possible methods for fulfilling them in future missions. Since results of the current Heliophysics Decadal Survey are expected soon, it is hoped that future plans can be summarized and discussed without speculation at the GEM 2012 meeting.

  7. Outflow distribution at the distal anastomosis of infrainguinal bypass grafts.

    Science.gov (United States)

    Fisher, R K; How, T V; Bakran, A; Brennan, J A; Harris, P L

    2004-03-01

    Outflow distribution at the distal anastomosis of infrainguinal bypass grafts remains unquantified in vivo, but is likely to influence flow patterns and haemodynamics, thereby impacting upon graft patency. This study measured the ratio of distal to proximal outflow in 30 patients undergoing infrainguinal bypass for lower limb ischaemia, using a flow probe and a transit-time ultrasonic flow meter. The mean outflow distribution was approximately 75% distal to 25% proximal, with above knee anastomoses having a greater proportion of distal flow (84%) compared to below knee grafts (73%). These in vivo flow characteristics differ significantly from those used in theoretical models studying flow phenomena (50:50 and/or 100:0), and should be incorporated into future research. PMID:14757463

  8. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    Science.gov (United States)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  9. On the presence of ultra-fast outflows in the WAX sample of Seyfert galaxies

    CERN Document Server

    Tombesi, Francesco

    2014-01-01

    The study of winds in active galactic nuclei (AGN) is of utmost importance as they may provide the long sought-after link between the central black hole and the host galaxy, establishing the AGN feedback. Recently, Laha et al. (2014) reported the X-ray analysis of a sample of 26 Seyferts observed with XMM-Newton, which are part of the so-called warm absorbers in X-rays (WAX) sample. They claim the non-detection of Fe K absorbers indicative of ultra-fast outflows (UFOs) in four observations previously analyzed by Tombesi et al. (2010). They mainly impute the Tombesi et al. detections to an improper modeling of the underlying continuum in the E=4-10 keV band. We therefore re-address here the robustness of these detections and we find that the main reason for the claimed non-detections is likely due to their use of single events only spectra, which reduces the total counts by 40%. Performing a re-analysis of the data in the whole E=0.3-10 keV energy band using their models and spectra including also double event...

  10. Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows II

    CERN Document Server

    Sim, S A; Long, K S; Turner, T J; Reeves, J N

    2010-01-01

    Highly-ionized fast accretion-disk winds have been suggested as an explanation for a variety of observed absorption and emission features in the X-ray spectra of Active Galactic Nuclei. Simple estimates have suggested that these flows may be massive enough to carry away a significant fraction of the accretion energy and could be involved in creating the link between supermassive black holes and their host galaxies. However, testing these hypotheses, and quantifying the outflow signatures, requires high-quality theoretical spectra for comparison with observations. Here we describe extensions of our Monte Carlo radiative transfer code that allow us to generate realistic theoretical spectra for a much wider variety of disk wind models than possible in our previous work. In particular, we have expanded the range of atomic physics simulated by the code so that L- and M-shell ions can now be included. We have also substantially improved our treatment of both ionization and radiative heating such that we are now abl...

  11. The G2+G2t complex as a fast and massive outflow?

    CERN Document Server

    Ballone, A; Burkert, A; Gillessen, S; Plewa, P M; Genzel, R; Pfuhl, O; Eisenhauer, F; Ott, T; George, E M; Habibi, M

    2016-01-01

    Observations of the gas component of the cloud G2 in the Galactic Center have revealed its connection to a tail (G2t) lying on the same orbit. More recent studies indicate a connection between G2 and G1, another cloud detected on the blueshifted side of G2's orbit, suggesting a scenario in which G2 is a denser clump in a stream of gas. In this Letter we show that a simulation of an outflow by a central source (possibly a T Tauri star) moving on G2's orbit and interacting with a hot atmosphere surrounding SgrA* can have G2 and G2t as a byproduct. G2 would be the bow-shock formed in the head of the source, while G2t might be the result of the stripping of the rest of the shocked material by the ram pressure of the surrounding hot gas and of its successive accumulation in the trailing region. Mock position-velocity diagrams for the Br$\\gamma$ emission for this simulation can indeed reproduce the correct position and velocity of G2t, as well as the more tenuous material in between. Though some tension between the...

  12. Radiation Hydrodynamic Simulations of Line-Driven Disk Winds for Ultra Fast Outflows

    CERN Document Server

    Nomura, Mariko; Takahashi, Hiroyuki R; Wada, Keiichi; Yoshida, Tessei

    2015-01-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate origin of the ultra fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (~30 Schwarzschild radii). A wide range of black hole masses ($M_{\\rm BH}$) and Eddington ratios ($\\varepsilon$) was investigated to study conditions for causing the line-driven winds. For $M_{\\rm BH} = 10^6-10^9 M_\\odot$ and $\\varepsilon = 0.1-0.7$, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70-80 deg and with 10% of the light speed. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as the obscuration by the torus does not affect the observations of X-ray bands, the UFOs could be statistically observe...

  13. The Properties of Intergalactic CIV Absorption II: Which Systems Are Associated With Galaxy Outflows?

    CERN Document Server

    Songaila, A

    2005-01-01

    Using the extremely high S/N quasar absorption-line sample described in the first paper of the series, we investigate which intergalactic CIV absorption line systems could be directly associated with galactic outflows at z = 2 - 3.5 from an analysis of the velocity widths of the CIV absorption line systems. Only about half the systems with a peak tau(CIV) above 0.4 in the 1548 Angstrom line (roughly a column density of CIV above about 2 x 10^13 cm^-2) have velocity widths large enough to originate in this way, and very few of the weaker systems do. The median velocity full width at a tenth max is found to be 50 km/s for systems with peak tau(CIV) in the range 0.1--0.4 and 160 km/s for systems with a peak tau(CIV) in the range 0.4--3. We show that this critical value of tau(CIV) also separates systems that could be ionized by galaxy-like spectra from those in which the ionization is clearly AGN-dominated. Together the results are consistent with a picture in which almost all the lower column density, and at le...

  14. Herbig-Haro objects in the receding lobe of the L 1551 outflow

    Science.gov (United States)

    Graham, J. A.; Rubin, Vera C.

    1992-01-01

    A spectrum has been obtained of two Herbig-Haro objects which are seen against the receding lobe of the bipolar outflow within the dark cloud Lynds 1551. Positive heliocentric velocities up to 90 km/s have been measured from the H-alpha line which point to an association of these emission knots with the embedded infrared source L 1551-IRS 5 rather than with other young stellar objects in this part of the sky. There is a velocity range of 50-100 km/s within each object. (S II) lambda 6716 is also detected at a strength of about 50 pct of H-alpha. Along the entire length of the slit there is broad H-alpha emission with strength about four times that normally seen in emission from the night sky. This feature partially resolves into two components, one of which we suggest is from the general Galactic field, and the other from extended bow-shock emission.

  15. Studying the Outflow-Core Interaction with ALMA Cycle 1 Observations of the HH 46/47 Molecular Outflow

    CERN Document Server

    Zhang, Yichen; Mardones, Diego; Cabrit, Sylvie; Dunham, Michael M; Garay, Guido; Noriega-Crespo, Alberto; Offner, Stella S R; Raga, Alejandro C; Corder, Stuartt A

    2016-01-01

    We present ALMA Cycle 1 observations of the HH 46/47 molecular outflow using combined 12m array and 7m array observations. We use 13CO and C18O emission to correct for the 12CO optical depth, to accurately estimate the outflow mass, momentum and kinetic energy. Applying the optical depth correction increases the mass estimate by a factor of 14, the momentum by a factor of 6, and the kinetic energy by a factor of about 2. The new 13CO(1-0) and C18O(1-0) data also allow us to trace denser and slower outflow material than that traced by 12CO. These species are only detected within about 1~2 km/s from the cloud velocity. The cavity wall of the red lobe appears at very low velocities (~0.2 km/s). Combing the material traced only by 13CO and C18O, the measured total mass of the CO outflow is 1.4 Msun, the total momentum is 1.7 Msun km/s and the total energy is 4.7e43 erg, assuming Tex=15 K. The improved angular resolution and sensitivity in 12CO reveal more details of the outflow structure. Specifically, we find th...

  16. SiO: Not the perfect outflow tracer: Outflow studies of the massive star formation region IRAS 19410+2336

    CERN Document Server

    Widmann, Felix; Schilke, Peter; Stanke, Thomas

    2016-01-01

    Aims: Previous observations of the young massive star formation region IRAS 19410+2336 have revealed strong outflow activity with several interacting outflows. We aim to get a better understanding of the outflow activity in this region by observing the SiO and H$^{13}$CO$^+$ emission with high angular resolution. SiO is known to trace shocked gas, which is often associated with young energetic outflows. With the H$^{13}$CO$^+$ data, we intend to better understand the distribution of the quiescent gaseous component of the region. Methods: The SiO observations in the J=2-1 v=0 transition and H$^{13}$CO$^+$ J=1-0 observations were performed by the Plateau de Bure Interferometer, combined with IRAM 30 m single-dish observations, in order to get the missing short-spacing information. We complement this new high-resolution observation with earlier CO and H$_2$ data. Results: The SiO observations do not trace the previously in CO and H$_2$ identified outflows well. Although we identify regions of highly increased Si...

  17. The Galactic Habitable Zone I. Galactic Chemical Evolution

    CERN Document Server

    González, G; Ward, P; Gonzalez, Guillermo; Brownlee, Donald; Ward, Peter

    2001-01-01

    We propose the concept of a "Galactic Habitable Zone" (GHZ). Analogous to the Circumstellar Habitable Zone (CHZ), the GHZ is that region in the Milky Way where an Earth-like planet can retain liquid water on its surface and provide a long-term habitat for animal-like aerobic life. In this paper we examine the dependence of the GHZ on Galactic chemical evolution. The single most important factor is likely the dependence of terrestrial planet mass on the metallicity of its birth cloud. We estimate, very approximately, that a metallicity at least half that of the Sun is required to build a habitable terrestrial planet. The mass of a terrestrial planet has important consequences for interior heat loss, volatile inventory, and loss of atmosphere. A key issue is the production of planets that sustain plate tectonics, a critical recycling process that provides feedback to stabilize atmospheric temperatures on planets with oceans and atmospheres. Due to the more recent decline from the early intense star formation ac...

  18. Special Features of Galactic Dynamics

    OpenAIRE

    Efthymiopoulos, Christos; Voglis, Nikos; Kalapotharakos, Constantinos

    2006-01-01

    The present lecture notes are an introduction to selected topics of {\\it Galactic Dynamics}. The focus is on topics that we consider more relevant to the main theme of this workshop, {\\it Celestial Mechanics}. This is not intended to be a review article. In fact, any of the topics below could be the subject of a separate review. Only the main ideas and notions are introduced, as well as some important currently open problems in each topic. Some relevant results from our own research are also ...

  19. Galactic Sodium from AGB Stars

    OpenAIRE

    Izzard, Robert G.; Gibson, Brad K.; Stancliffe, Richard J.

    2006-01-01

    Galactic chemical evolution models which include sodium from type II supernovae alone underestimate the abundance of sodium in the interstellar medium by a factor of two to three over about 3 dex in metallicity and predict a flat behaviour in the evolution of [Na/Fe] at super-solar metallicities. Conversely, recent observations of stars with [Fe/H]~+0.4 suggest that [Na/Fe] increases at high metallicity. We have combined stellar evolution models of asymptotic giant branch and Wolf-Rayet stars...

  20. Galactic Sodium from AGB Stars

    CERN Document Server

    Izzard, R G; Stancliffe, R J; Izzard, Robert G.; Gibson, Brad K.; Stancliffe, Richard J.

    2006-01-01

    Galactic chemical evolution models which include sodium from type II supernovae alone underestimate the abundance of sodium in the interstellar medium by a factor of two to three over about 3 dex in metallicity and predict a flat behaviour in the evolution of [Na/Fe] at super-solar metallicities. Conversely, recent observations of stars with [Fe/H]~+0.4 suggest that [Na/Fe] increases at high metallicity. We have combined stellar evolution models of asymptotic giant branch and Wolf-Rayet stars with the latest supernova yields in an attempt to resolve these problems ... and have created many more.

  1. A High Fraction of Double-peaked Narrow Emission Lines in Powerful Active Galactic Nuclei

    CERN Document Server

    Lyu, Yang

    2016-01-01

    One percent of redshift z~0.1 Active Galactic Nuclei (AGNs) show velocity splitting of a few hundred km/s in the narrow emission lines in spatially integrated spectra. Such line profiles have been found to arise from the bulk motion of ionized gas clouds associated with galactic-scale outflows, merging pairs of galaxies each harboring a supermassive black hole (SMBH), and/or galactic-scale disk rotation. It remains unclear, however, how the frequency of narrow-line velocity splitting may depend on AGN luminosity. Here we study the correlation between the fraction of Type 2 AGNs with double-peaked narrow emission lines and AGN luminosity as indicated by [O III]5007 emission-line luminosity L_[O III]. We combine the sample of Liu et al. (2010) at z~0.1 with a new sample of 178 Type 2 AGNs with double-peaked [O III] emission lines at z~0.5. We select the new sample from a parent sample of 2089 Type 2 AGNs from the SDSS-III/Baryon Oscillation Spectroscopic Survey. We find a statistically significant (~4.2\\sigma) ...

  2. Galaxy Interactions in Compact Groups I : The Galactic Winds of HCG16

    CERN Document Server

    Vogt, Frédéric P A; Kewley, Lisa J

    2013-01-01

    Using the WiFeS integral field spectrograph, we have undertaken a series of observations of star-forming galaxies in Compact Groups. In this first paper dedicated to the project, we present the analysis of the spiral galaxy NGC838, a member of the Hickson Compact Group 16, and of its galactic wind. Our observations reveal that the wind forms an asymmetric, bipolar, rotating structure, powered by a nuclear starburst. Emission line ratio diagnostics indicate that photoionization is the dominant excitation mechanism at the base of the wind. Mixing from slow shocks (up to 20%) increases further out along the outflow axis. The asymmetry of the wind is most likely caused by one of the two lobes of the wind bubble bursting out of its HI envelope, as indicated by line ratios and radial velocity maps. The characteristics of this galactic wind suggest that it is caught early (a few Myr) in the wind evolution sequence. The wind is also quite different to the galactic wind in the partner galaxy NGC839 which contains a sy...

  3. Entrainment in Trouble: Cool Cloud Acceleration and Destruction in Hot Supernova-Driven Galactic Winds

    CERN Document Server

    Zhang, Dong; Quataert, Eliot; Murray, Norman

    2015-01-01

    Efficient thermalization of overlapping supernovae within star-forming galaxies may produce a supernova-heated fluid that drives galactic winds. For fiducial assumptions about the timescale for Kelvin-Helmholz (KH) instabilities from high-resolution simulations (which neglect magnetic fields) we show that cool clouds with temperature from T_c ~ 10^2-10^4 K seen in emission and absorption in galactic winds cannot be accelerated to observed velocities by the ram pressure of a hot wind. Taking into account both the radial structure of the hot flow and gravity, we show that this conclusion holds over a wide range of galaxy, cloud, and hot wind properties. This finding calls into question the prevailing picture whereby the cool atomic gas seen in galactic winds is entrained and accelerated by the hot flow. Given these difficulties with ram pressure acceleration, we discuss alternative models for the origin of high velocity cool gas outflows. Another possibility is that magnetic fields in cool clouds are sufficient...

  4. On the thermal line emission from the outflows in ultraluminous X-ray sources

    OpenAIRE

    Xu, Ya-Di; Cao, Xinwu

    2016-01-01

    The atomic features in the X-ray spectra of the ultraluminous X-ray source (ULX) may be associated with the outflow (Middleton et al. 2015), which may provide a way to explore the physics of the ULXs. We construct a conical outflow model, and calculate the thermal X-ray Fe emission lines from the outflows. Our results show that thermal line luminosity decreases with increasing outflow velocity or/and opening angle of the outflow for a fixed kinetic power of the outflows. Assuming the kinetic ...

  5. Can dark energy explain the observed outflow in galaxy clusters?

    CERN Document Server

    Donnari, M; Merafina, M

    2016-01-01

    Recent observations of the Virgo cluster and the Local Group suggested that some galaxies are flowing out from their parent cluster. This may be the signature that dark energy (DE) acts significantly also on small cosmological scales. By means of direct N-body simulations we performed several simulations, in which the effect of DE and gravity are taken into account, aiming to determine whether DE can produce an outflow of galaxies compatible with observations. Comparing the different simulations, our results suggest that the observed outflow of galaxies is likely due to the local effect of DE.

  6. Heating of the Intracluster Medium by Quasar Outflows

    Indian Academy of Sciences (India)

    Suparna Roychowdhury; Biman B. Nath

    2002-03-01

    We study the possibility of quasar outflows in clusters and groups of galaxies heating the intracluster gas in order to explain the recent observation of excess entropy in this gas. We show that radio galaxies alone cannot provide the energy required to explain the observations but the inclusion of Broad Absorption Line (BAL) outflows can do so, and that in this scenario most of the heating takes place at ∼ 1–4, the ``preheating” epoch being at a lower redshift for lower mass clusters.

  7. High Velocity Outflows in Narrow Absorption Line Quasars

    OpenAIRE

    Chartas, G.; Charlton, J.; Eracleous, M.; Giustini, M; Hidalgo, P. Rodriguez; R Ganguly; Hamann, F.; Misawa, T.; Tytler, D.

    2009-01-01

    The current paradigm for the AGN phenomenon is a central engine that consists of an inflow of material accreting in the form of a disk onto a supermassive black hole. Observations in the UV and optical find high velocity ionized material outflowing from the black hole. We present results from Suzaku and XMM-Newton observations of a sample of intrinsic NAL quasars with high velocity outflows. Our derived values of the intrinsic column densities of the X-ray absorbers are consistent with an out...

  8. The effects of vertical outflows on disk dynamos

    OpenAIRE

    Bardou, A.; Rekowski, B. v.; Dobler, W.; Brandenburg, A.; Shukurov, A.

    2000-01-01

    We consider the effect of vertical outflows on the mean-field dynamo in a thin disk. These outflows could be due to winds or magnetic buoyancy. We analyse both two-dimensional finite-difference numerical solutions of the axisymmetric dynamo equations and a free-decay mode expansion using the thin-disk approximation. Contrary to expectations, a vertical velocity can enhance dynamo action, provided it is not too strong. In the nonlinear regime this can lead to super-exponential growth of the ma...

  9. XMM observations of BAL Quasars with polar outflows

    OpenAIRE

    Wang, JunXian; Jiang, Peng; Zhou, Hongyan; Wang, Tinggui; Dong, Xiaobo; Wang, Huiyuan

    2008-01-01

    We have selected a sample of broad absorption line (BAL) quasars which show significant radio variations, indicating the presence of polar BAL outflows. We obtained snapshot XMM observations of four polar BAL QSOs, to check whether strong X-ray absorption, one of the most prominent characteristics of most BAL QSOs, also exist in polar outflows. Two of the sources are detected in X-ray. Spectral fittings show that they are X-ray normal with no intrinsic X-ray absorption, suggesting the X-ray s...

  10. River Outflow of the Conterminous United States, 1939-1988.

    Science.gov (United States)

    Guetter, Alexandre K.; Georgakakos, Konstantine P.

    1993-10-01

    A record of 50 years of daily outflows through the boundaries of the continental United States has been assembled based on observations recorded by U.S. Geological Survey streamflow stations. Only stations with continuous records from 1939 through 1988 were included. These stations (197 total) are near the outlets of rivers located at the vicinity of the Canadian, Mexican, Atlantic (including the Gulf of Mexico), and Pacific borders of the continental United States. The drainage area of the selected stations covers 77% of the conterminous United States, whereas the existing network of gauging stations covers 83% of the conterminous U.S. area. Station daily data were aggregated over the entire boundary of the United States and were integrated in monthly and annual totals. The 50-year average annual streamflow divergence normalized by the aggregated drainage area is 210.2 mm yr1, reaching a peak in April with 27.3 mm month1 and a minimum in September with 8.7 mm month1. The Mississippi-Missouri Basin comprises 50% of the gauged area and dominates the absolute value of the outflow discharge. Spectral analysis of the monthly outflow anomalies shows an 11-year dominant cycle. The 1939-1988 period contains four notable droughts. Two droughts are partially registered in the limits of the records characterized by the negative anomalies extending from 1939 to 1941 and by the 1987-1988 anomalies for the late 1980s drought. The middle 1950s and early 1960s droughts are fully included in the dataset. Periods of high outflows were registered in the middle 1940s, early 1970s, and early 1980s. Analysis of the spatial coherence of the annual anomalies shows large-scale features, whereas analysis of the monthly anomalies yields the frequency and persistence patterns of floods and droughts. An estimate of the climatological land-surface water budget for the continental United States was done based on recorded precipitation, panevaporation, and outflow. Eigenvector analysis of the

  11. Anisotropic thermal conductivity of magnetic fluids

    Institute of Scientific and Technical Information of China (English)

    Xiaopeng Fang; Yimin Xuan; Qiang Li

    2009-01-01

    Considering the forces acting on the particles and the motion of the particles, this study uses a numerical simulation to investigate the three-dimensional microstructure of the magnetic fluids in the presence of an external magnetic field. A method is proposed for predicting the anisotropic thermal conductivity of magnetic fluids. By introducing an anisotropic structure parameter which characterizes the non-uniform distribution of particles suspended in the magnetic fluids, the traditional Maxwell formula is modified and extended to calculate anisotropic thermal conductivity of the magnetic fluids. The results show that in the presence of an external magnetic field the magnetic nanoparticles form chainlike clusters along the direction of the external magnetic field, which leads to the fact that the thermal conduc-tivity of the magnetic fluid along the chain direction is bigger than that along other directions. The thermal conductivity of the magnetic fluids presents an anisotropic feature. With the increase of the magnetic field strength the chainlike clusters in the magnetic fluid appear to be more obvious, so that the anisotropic feature of heat conduction in the fluids becomes more evident.

  12. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  13. The suppression of star formation by powerful active galactic nuclei.

    Science.gov (United States)

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-10

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time. PMID:22575961

  14. RADIO RECOMBINATION LINES TOWARD THE GALACTIC CENTER LOBE

    International Nuclear Information System (INIS)

    The Galactic center (GC) lobe is a degree-tall shell seen in radio continuum images of the GC region. If it is actually located in the GC region, formation models would require massive energy input (e.g., starburst or jet) to create it. At present, observations have not strongly constrained the location or physical conditions of the GC lobe. This paper describes the analysis of new and archival single-dish observations of radio recombination lines toward this enigmatic object. The observations find that the ionized gas has a morphology similar to the radio continuum emission, suggesting that they are associated. We study averages of several transitions from H106α to H191ε and find that the line ratios are most consistent with gas in local thermodynamic equilibrium. The radio recombination line widths are remarkably narrow, constraining the typical electron temperature to be less than about 4000 K. These observations also find evidence of pressure broadening in the higher electronic states, implying a gas density of ne = 910+310-450 cm-3. The electron temperature, gas pressure, and morphology are all consistent with the idea that the GC lobe is located in the GC region. If so, the ionized gas appears to form a shell surrounding the central 100 parsecs of the galaxy with a mass of roughly 105 M sun, similar to ionized outflows seen in dwarf starbursts.

  15. Hydrodynamical Coupling of Mass and Momentum in Multiphase Galactic Winds

    CERN Document Server

    Schneider, Evan E

    2016-01-01

    Using a set of high resolution hydrodynamical simulations run with the Cholla code, we investigate how mass and momentum couple to the multiphase components of galactic winds. The simulations model the interaction between a hot wind driven by supernova explosions and a cooler, denser cloud of interstellar or circumgalactic media. By resolving scales of $\\Delta x 100$ pc distances our calculations capture how the cloud disruption leads to a distribution of densities and temperatures in the resulting multiphase outflow, and quantify the mass and momentum associated with each phase. We find the multiphase wind contains comparable mass and momenta in phases over a wide range of densities extending from the hot wind $(n \\approx 10^{-3}$ $\\mathrm{cm}^{-3})$ to the coldest components $(n \\approx 10^2$ $\\mathrm{cm}^{-3})$. We further find that the momentum distributes roughly in proportion to the mass in each phase, and the mass-loading of the hot phase by the destruction of cold, dense material is an efficient proc...

  16. The multiphase starburst-driven galactic wind in NGC 5394

    CERN Document Server

    Martín-Fernández, P; Zurita, A; Mediavilla, E; Castillo-Morales, A

    2016-01-01

    We present a detailed study of the neutral and ionised gas phases in the galactic wind for the nearby starburst galaxy NGC 5394 based on new integral field spectroscopy obtained with the INTEGRAL fibre system at the William Herschel Telescope. The neutral gas phase in the wind is detected via the interstellar NaI D doublet absorption. After a careful removal of the stellar contribution to these lines, a significant amount of neutral gas (~10^7 Msun) is detected in a central region of ~1.75 kpc size. This neutral gas is blueshifted by ~165 km/s with respect to the underlying galaxy. The mass outflow of neutral gas is comparable to the star formation rate of the host galaxy. Simultaneously, several emission lines (Ha, [NII], [SII]) are also analysed looking for the ionised warm phase counterpart of the wind. A careful kinematic decomposition of the line profiles reveals the presence of a secondary, broader, kinematic component. This component is found roughly in the same region where the NaI D absorption is det...

  17. General Expression of Elastic Tensor for Anisotropic Materials

    Institute of Scientific and Technical Information of China (English)

    HUANG Bo

    2005-01-01

    In order to formulate a general expression of elastic tensor for anisotropic materials, a method of tensor derivative is used for determining relationship between fourth-order elastic tensor and second-order structure tensor that has satisfied material symmetrical conditions. From this general expression of elastic tensor, specific expressions of elastic tensor for different anisotropic materials, such as isotropic materials, transverse isotropic materials and orthogonal-anisotropic materials, can be deduced. This expression underlies the scalar description of anisotropic factors, which are used for classifying and analyzing anisotropic materials. Cubic crystals are analyzed macroscopically by means of the general expression and anisotropic factor.

  18. (abstract) A Test of the Theoretical Models of Bipolar Outflows: The Bipolar Outflow in Mon R2

    Science.gov (United States)

    Xie, Taoling; Goldsmith, Paul; Patel, Nimesh

    1993-01-01

    We report some results of a study of the massive bipolar outflow in the central region of the relatively nearby giant molecular cloud Monoceros R2. We make a quantative comparison of our results with the Shu et al. outflow model which incorporates a radially directed wind sweeping up the ambient material into a shell. We find that this simple model naturally explains the shape of this thin shell. Although Shu's model in its simplest form predicts with reasonable parameters too much mass at very small polar angles, as previously pointed out by Masson and Chernin, it provides a reasonable good fit to the mass distribution at larger polar angles. It is possible that this discrepancy is due to inhomogeneities of the ambient molecular gas which is not considered by the model. We also discuss the constraints imposed by these results on recent jet-driven outflow models.

  19. INTERACTION OF RECOILING SUPERMASSIVE BLACK HOLES WITH STARS IN GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Li Shuo; Liu, F. K. [Astronomy Department, Peking University, 100871 Beijing (China); Berczik, Peter; Spurzem, Rainer [Astronomisches Rechen-Institut, Zentrum fuer Astronomie, Universitaet Heidelberg, Moenchhofstr. 12-14, D-69120 Heidelberg (Germany); Chen Xian, E-mail: lis@bac.pku.edu.cn, E-mail: fkliu@bac.pku.edu.cn, E-mail: chenx@bac.pku.edu.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, 100871 Beijing (China)

    2012-03-20

    Supermassive black hole binaries (SMBHBs) are the products of frequent galaxy mergers. The coalescence of the SMBHBs is a distinct source of gravitational wave (GW) radiation. The detections of the strong GW radiation and their possible electromagnetic counterparts are essential. Numerical relativity suggests that the post-merger supermassive black hole (SMBH) gets a kick velocity up to 4000 km s{sup -1} due to the anisotropic GW radiations. Here, we investigate the dynamical coevolution and interaction of the recoiling SMBHs and their galactic stellar environments with one million direct N-body simulations including the stellar tidal disruption by the recoiling SMBHs. Our results show that the accretion of disrupted stars does not significantly affect the SMBH dynamical evolution. We investigate the stellar tidal disruption rates as a function of the dynamical evolution of oscillating SMBHs in the galactic nuclei. Our simulations show that most stellar tidal disruptions are contributed by the unbound stars and occur when the oscillating SMBHs pass through the galactic center. The averaged disruption rate is {approx}10{sup -6} M{sub Sun} yr{sup -1}, which is about an order of magnitude lower than that by a stationary SMBH at similar galactic nuclei. Our results also show that a bound star cluster is around the oscillating SMBH of about {approx}0.7% the black hole mass. In addition, we discover a massive cloud of unbound stars following the oscillating SMBH. We also investigate the dependence of the results on the SMBH masses and density slopes of the galactic nuclei.

  20. The SINS/zC-SINF survey of z~2 galaxy kinematics: Evidence for powerful AGN-driven nuclear outflows in massive star-forming galaxies

    CERN Document Server

    Schreiber, N M Förster; Newman, S F; Kurk, J D; Lutz, D; Tacconi, L J; Wuyts, S; Bandara, K; Burkert, A; Buschkamp, P; Carollo, C M; Cresci, G; Daddi, E; Davies, R; Eisenhauer, F; Hicks, E K S; Lang, P; Lilly, S J; Mainieri, V; Mancini, C; Naab, T; Peng, Y; Renzini, A; Rosario, D; Griffin, K Shapiro; Shapley, A E; Sternberg, A; Tacchella, S; Vergani, D; Wisnioski, E; Wuyts, E; Zamorani, G

    2013-01-01

    We report the detection of ubiquitous powerful nuclear outflows in massive (> 10^11 Msun) z~2 star-forming galaxies (SFGs), which are plausibly driven by an Active Galactic Nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics (AO) assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Halpha and forbidden [NII] and [SII] line emission, with typical velocity FWHM ~ 1500 km/s, [NII]/Halpha ratio ~ 0.6, and intrinsic extent of 2 - 3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ~ 60 Msun/yr and mass loading of ~ 3. At larger radii, a weaker broad component is detecte...