Polarization-controlled anisotropic coding metamaterials at terahertz frequencies
Liu, Shuo; Xu, Quan; Bao, Di; Du, Liangliang; Wan, Xiang; Tang, Wen Xuan; Ouyang, Chunmei; Zhou, Xiao Yang; Yuan, Hao; Ma, Hui Feng; Jiang, Wei Xiang; Han, Jiaguang; Zhang, Weili; Cheng, Qiang
2015-01-01
Metamaterials based on effective media have achieved a lot of unusual physics (e.g. negative refraction and invisibility cloaking) owing to their abilities to tailor the effective medium parameters that do not exist in nature. Recently, coding metamaterials have been suggested to control electromagnetic waves by designing the coding sequences of digital elements '0' and '1', which possess opposite phase responses. Here, we propose the concept of anisotropic coding metamaterial at terahertz frequencies, in which coding behaviors in different directions are dependent on the polarization status of terahertz waves. We experimentally demonstrate an ultrathin and flexible polarization-controlled anisotropic coding metasurface functioning in the terahertz regime using specially- designed coding elements. By encoding the elements with elaborately-designed digital sequences (in both 1 bit and 2 bits), the x- and y-polarized reflected waves can be deflected or diffused independently in three dimensions. The simulated f...
Eastern Frequency Response Study
Energy Technology Data Exchange (ETDEWEB)
Miller, N.W.; Shao, M.; Pajic, S.; D' Aquila, R.
2013-05-01
This study was specifically designed to investigate the frequency response of the Eastern Interconnection that results from large loss-of-generation events of the type targeted by the North American Electric Reliability Corp. Standard BAL-003 Frequency Response and Frequency Bias Setting (NERC 2012a), under possible future system conditions with high levels of wind generation.
Frequency Response Analysis Tool
Energy Technology Data Exchange (ETDEWEB)
Etingov, Pavel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kosterev, Dmitry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dai, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-12-01
Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.
Frequency Response Analysis Tool
Energy Technology Data Exchange (ETDEWEB)
Etingov, Pavel V.; Kosterev, Dmitry; Dai, T.
2014-12-31
Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.
Institute of Scientific and Technical Information of China (English)
Sun Yong-Zhi; Ran Li-Xin; Peng Liang; Wang Wei-Guang; Li Ting; Zhao Xu; Chen Qiu-Lin
2009-01-01
This paper uses a Computer Simulation Technology microwave studio to simulate the performance of a new highdirectivity anisotropic magnetic metamaterial antenna loaded with a frequency-selective surface. Frequency-selective surface with cross-dipole element has a great effect on the directivity, radiation pattern, and gain of such an antenna. The experimental results show that frequency-selective surface (FSS) significantly improve the radiation performance of anisotropic magnetic metamaterial antenna. For example, as a single anisotropic magnetic metamaterial antenna, half power beam width is 4 degrees in the H planes, and the gain of this antenna is 19.5dBi at 10GHz, achieving a 2.1 degree increment in half power beam width, and a 7.3dB gain increment by loading with the FSS reflector. The simulating results are consistent with our experimental results.
2000-09-29
electromagnetic waves by a Narrow anisotropically conductive strip," Radiotekh. Elektron ., vol. 44, no. 7, pp. 800-805, 1999. [3] A. N. Sivov, A. D...Chuprin, and A. D. Shatrov, "Low-frequency resonance in a hollow circular cylinder with perfect conductivity along helical lines," Radiotekh. Elektron
Linear and nonlinear optical response of spherical anisotropic semiconductor microcrystallites
Ramaniah, Lavanya M.; Nair, Selvakumar V.; Rustagi, Kailash C.
1989-12-01
We present a phenomenological theory of the linear and nonlinear optical properties associated with the Fröhlich resonances of an optically anisotropic, spherical semiconductor crystallite. Using the Maxwell-Garnett approach, we calculate the effective dielectric function of a composite medium containing such crystallites. To study the effect of anisotropy, we take CdS and CdSe quantum dots as examples for the inclusions, and use a two-resonance model for the dielectric function. Even for randomly oriented inclusions, the Fröhlich resonances split as a result of anisotropic local-field corrections. At higher laser intensities, absorption saturation leads to bistability or tristability in the optical response of individual crystallites, while the response of the composite medium with randomly oriented inclusions shows multistability, with many intermediate branches. The nonlinear response of such a composite medium also exhibits a new kind of orientation-induced broadening of resonances. We also find that tristability is possible in another kind of inhomogeneous material, viz., a composite medium containing two types of isotropic spherical crystallites.
Low frequency eigenmodes of thin anisotropic current sheets and Cluster observations
Directory of Open Access Journals (Sweden)
L. M. Zelenyi
2009-02-01
Full Text Available The eigenmodes of low frequency perturbations of thin anisotropic current sheets with a finite value of the normal magnetic field, are investigated in this paper. It is shown that two possible polarizations of symmetric and asymmetric modes (sausage and kink exist where the growth rate of instabilities is positive. In addition, we demonstrate that a tearing instability might have a positive growth rate in thin anisotropic current sheets. The class of relatively fast wavy flapping oscillations observed by Cluster is described. The main direction of wave motion coincides with the direction of the current and the typical velocity of this motion is comparable with the plasma drift velocity in the current sheet. The comparison of these characteristics with theoretical predictions of the model of anisotropic thin current sheets, demonstrates that, in principle, the theory adequately describes the observations.
Institute of Scientific and Technical Information of China (English)
蔡阳健; 林强
2002-01-01
The generalized Collins formula for partially coherent beams through axially non-symmetrical optical systems in the spatial-frequency domain is derived by means of the tensor method. Based on this formula, the tensor ABCD law in the spatial-frequency domain for partially coherent twisted anisotropic Gaussian-Schell model (GSM) beams is derived, which governs the transformation of the twisted anisotropic GSM beams in the spatialfrequency domain. An example of an application is provided.
Barkat, Ouarda; Benghalia, Abdelmadjid
2009-10-01
In this work, the full-wave method is used for computing the resonant frequency, the bandwidth, and radiation pattern of High temperature superconductor, or an imperfectly conducting annular ring microstrip, which is printed on uniaxial anisotropic substrate. Galerkin’s method is used in the resolution of the electric field integral equation. The TM set of modes issued from the cavity model theory are used to expand the unknown currents on the patch. Numerical results concerning the effect of the anisotropic substrates on the antenna performance are presented and discussed. It is found that microstrip superconducting could give high efficiency with high gain in millimeter wavelengths. Results are compared with previously published data and are found to be in good agreement.
Mateos, I; Lobo, A
2016-01-01
A detailed study about magnetic sensing techniques based on anisotropic magnetoresistive sensors shows that the technology is suitable for low-frequency space applications like the eLISA mission. Low noise magnetic measurements at the sub-millihertz frequencies were taken by using different electronic noise reduction techniques in the signal conditioning circuit. We found that conventional modulation techniques reversing the sensor bridge excitation do not reduce the potential $1/f$ noise of the magnetoresistors, so alternative methods such as flipping and electro-magnetic feedback are necessary. In addition, a low-frequency noise analysis of the signal conditioning circuits has been performed in order to identify and minimize the different main contributions from the overall noise. The results for chip-scale magnetoresistances exhibit similar noise along the eLISA bandwidth ($0.1\\,{\\rm mHz}-1\\,{\\rm Hz}$) to the noise measured by means of the voluminous fluxgate magnetometers used in its precursor mission, kn...
Energy Technology Data Exchange (ETDEWEB)
Fleury, W.H.; Rosinger, H.E.; Ritchie, I.G.
1975-09-01
A set of computer programs for the calculation of the flexural and torsional resonant frequencies of rectangular section bars of materials of orthotropic or high symmetry are described. The calculations are used in the experimental determination and verification of the elastic constants of anisotropic materials. The simple finite element technique employed separates the inertial and elastic properties of the beam element into station and field transfer matrices respectively. It includes the Timoshenko beam corrections for flexure and Lekhnitskii's theory for torsion-flexure coupling. The programs also calculate the vibration shapes and surface nodal contours or Chladni figures of the vibration modes. (auth)
Low-frequency dispersion and attenuation in anisotropic partially saturated rocks
Cavallini, Fabio; Carcione, José M.; Vidal de Ventós, Daniel; Engell-Sørensen, Lisbeth
2017-03-01
The mesoscopic-loss mechanism is believed to be the most important attenuation mechanism in porous media at seismic frequencies. It is caused by P-wave conversion to slow diffusion (Biot) modes at material inhomogeneity on length scales of the order of centimeters. It is very effective in partially saturated media, particularly in the presence of gas. We explicitly extend the theory of wave propagation at normal incidence to three periodic thin layers and using this result we obtain the five complex and frequency-dependent stiffness components of the corresponding periodic finely layered medium, where the equivalent medium is anisotropic, specifically transversely isotropic. The relaxation behaviour can be described by a single complex and frequency-dependent stiffness component, since the medium consists of plane homogeneous layers. The media can be dissimilar in any property, but a relevant example in hydrocarbon exploration is the case of partial saturation and the same frame skeleton, where the fluid can be brine, oil and gas. The numerical examples illustrate the implementation of the theory to compute the wave velocities (phase and energy) and quality factors. We consider two main cases, namely, the same frame (or skeleton) and different fluids, and the same fluid and different frame properties. Unlike the two-phase case (two fluids), the results show two relaxation peaks. This scenario is more realistic since usually reservoirs rocks contain oil, brine and gas. The theory is quite general since it is not only restricted to partial saturation, but also applies to important properties such as porosity and permeability heterogeneities.
Okano, Makoto; Watanabe, Shinichi
2016-12-01
Elastomers are one of the most important materials in modern society because of the inherent viscoelastic properties due to their cross-linked polymer chains. Their vibration-absorbing and adhesive properties are especially useful and thus utilized in various applications, for example, tires in automobiles and bicycles, seismic dampers in buildings, and seals in a space shuttle. Thus, the nondestructive inspection of their internal states such as the internal deformation is essential in safety. Generally, industrial elastomers include various kinds of additives, such as carbon blacks for reinforcing them. The additives make most of them opaque in a wide spectral range from visible to mid-infrared, resulting in that the nondestructive inspection of the internal deformation is quite difficult. Here, we demonstrate transmission terahertz polarization spectroscopy as a powerful technique for investigating the internal optical anisotropy in optically opaque elastomers with conductive additives, which are transparent only in the terahertz frequency region. The internal deformation can be probed through the polarization changes inside the material due to the anisotropic dielectric response of the conductive additives. Our study about the polarization-dependent terahertz response of elastomers with conductive additives provides novel knowledge for in situ, nondestructive evaluation of their internal deformation.
Kim, Jooncheol; Kim, Minsoo; Kim, Jung-Kwun; Herrault, Florian; Allen, Mark G.
2015-11-01
This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300-1000 nm thick metallic alloys (i.e. Ni80Fe20 or Co44Ni37Fe19) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50-100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500-1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc-dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors.
Frequency Responses Of Hot-Wire Anemometers
Watmuff, Jonathan H.
1992-01-01
Report describes theoretical study of frequency response of constant-temperature hot-wire anemometer, with view toward increasing frequency response while maintaining stable operation in supersonic flow. Effects of various circuit parameters discussed.
Institute of Scientific and Technical Information of China (English)
Qin Weiping; Fang Dagang
2001-01-01
The anisotropic Perfectly Matched Layer(PML) absorbing boundary condition is implemented in a 2-D finite element formulation to solve dielectric waveguide discontinuity problems. The choice of parameters of anisotropic PML has been investigated. Using the boundary truncating technique, the solution process of Finite-Element Method (FEM) has been greatly simplified compared with other hybrid methods. The required computational resources have also significantly declined since the anisotropic PML interface can be placed much closer to the scatterer compared to other well known artificial boundary.
Djebbi, Ramzi
2013-08-19
Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it\\'s kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.
Han, Kai-Feng; Zeng, Xin-Wu
2011-06-01
Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth (1993), a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed. By using this dual source cumulative rotation technique in the frequency-domain (DCTF), anisotropic parameters, including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves, can be estimated for each frequency component in the frequency domain. It avoids the possible error which comes from using a narrow-band filter in the current commonly used method. By using synthetic seismograms, the feasibility and validity of the technique was tested and a comparison with the currently used method was also given. The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF. In the presence of larger scale fractures, substantial frequency dependence would be found in the seismic frequency range, which implies that dispersion would occur at seismic frequencies. Our study shows that shear-wave anisotropy decreases as frequency increases.
Golykh, R. N.
2016-06-01
Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.
Effective dielectric response of graded composite materials containing anisotropic particles
Institute of Scientific and Technical Information of China (English)
Sang Zhi-Fang; Li Zhen-Ya
2005-01-01
The effective dielectric response of granular composites, in which spheroidal particles with graded shells are randomly distributed in a host matrix, is investigated. General expressions for the effective dielectric constant of the composites and partial resonant condition are obtained in the dilute limit by use of a quasi-static approximation. In particular, spheroidal particles with a power-law gradation profile in the shells are studied in detail. We find that, by adjusting the dielectric gradient profile in the shells, the shape and structure of particles, it is possible to enhance the effective dielectric constant of the composite and to realize partial resonance. Under the partial resonant conditions,the coated spheroidal particles with graded shells within the host matrix can be regarded as equivalent homogeneous spheroids embedded in the same host. The equivalent spheroids have the same dielectric constant as the original cores and semiaxes equal to those of the original shells: i.e., the partial resonant system behaves as if the cores of the particles were enlarged and the shells were absent.
Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li
2016-12-01
Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.
Primary Frequency Response with Aggregated DERs: Preprint
Energy Technology Data Exchange (ETDEWEB)
Guggilam, Swaroop S.; Dhople, Sairaj V.; Zhao, Changhong; Dall' Anese, Emiliano; Chen, Yu Christine
2017-03-03
Power networks have to withstand a variety of disturbances that affect system frequency, and the problem is compounded with the increasing integration of intermittent renewable generation. Following a large-signal generation or load disturbance, system frequency is arrested leveraging primary frequency control provided by governor action in synchronous generators. In this work, we propose a framework for distributed energy resources (DERs) deployed in distribution networks to provide (supplemental) primary frequency response. Particularly, we demonstrate how power-frequency droop slopes for individual DERs can be designed so that the distribution feeder presents a guaranteed frequency-regulation characteristic at the feeder head. Furthermore, the droop slopes are engineered such that injections of individual DERs conform to a well-defined fairness objective that does not penalize them for their location on the distribution feeder. Time-domain simulations for an illustrative network composed of a combined transmission network and distribution network with frequency-responsive DERs are provided to validate the approach.
Slot Machine Response Frequency Predicts Pathological Gambling
DEFF Research Database (Denmark)
Linnet, Jakob; Rømer Thomsen, Kristine; Møller, Arne
2013-01-01
Slot machines are among the most addictive forms of gambling, and pathological gambling slot machine players represent the largest group of treatment seekers, accounting for 35% to 93% of the population. Pathological gambling sufferers have significantly higher response frequency (games / time......) on slot machines compared with non-problem gamblers, which may suggest increased reinforcement of the gambling behavior in pathological gambling. However, to date it is unknown whether or not the increased response frequency in pathological gambling is associated with symptom severity of the disorder....... This study tested the hypothesis that response frequency is associated with symptom severity in pathological gambling. We tested response frequency among twenty-two pathological gambling sufferers and twenty-one non-problem gamblers on a commercially available slot machine, and screened for pathological...
Anisotropic high-field terahertz response of free-standing carbon nanotubes
Lee, Byounghwak; Mousavian, Ali; Paul, Michael J.; Thompson, Zachary J.; Stickel, Andrew D.; McCuen, Dalton R.; Jang, Eui Yun; Kim, Yong Hyup; Kyoung, Jisoo; Kim, Dai-Sik; Lee, Yun-Shik
2016-06-01
We demonstrate that unidirectionally aligned, free-standing multi-walled carbon nanotubes (CNTs) exhibit highly anisotropic linear and nonlinear terahertz (THz) responses. For the polarization parallel to the CNT axis, strong THz pulses induce nonlinear absorption in the quasi-one-dimensional conducting media, while no nonlinear effect is observed in the perpendicular polarization configuration. Time-resolved measurements of transmitted THz pulses and a theoretical analysis of the data reveal that intense THz fields enhance permittivity in carbon nanotubes by generating charge carriers.
Terahertz-frequency dielectric response of liquids
DEFF Research Database (Denmark)
Jepsen, Peter Uhd; Møller, Uffe; Cooke, David
-induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric......The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision...
Bonatsos, Dennis; Kolokotronis, P; Lenis, D; Bonatsos, Dennis
1994-01-01
The symmetry algebra of the two-dimensional quantum harmonic oscillator with rational ratio of frequencies is identified as a non-linear extension of the u(2) algebra. The finite dimensional representation modules of this algebra are studied and the energy eigenvalues are determined using algebraic methods of general applicability to quantum superintegrable systems.
Saleeb, A. F.; Wilt, T. E.
1993-01-01
The mathematical structure underlying the rate equations of a recently-developed constitutive model for the coupled viscoplastic-damage response of anisotropic composites is critically examined. In this regard, a number of tensor projection operators have been identified, and their properties were exploited to enable the development of a general computational framework for their numerical implementation using the Euler fully-implicit integration method. In particular, this facilitated (i) the derivation of explicit expressions of the (consistent) material tangent stiffnesses that are valid for both three-dimensional as well as subspace (e.g. plane stress) formulations, (ii) the implications of the symmetry or unsymmetry properties of these tangent operators from a thermodynamic standpoint, and (iii) the development of an effective time-step control strategy to ensure accuracy and convergence of the solution. In addition, the special limiting case of inviscid elastoplasticity is treated. The results of several numerical simulations are given to demonstrate the effectiveness of the schemes developed.
78 FR 45479 - Frequency Response and Frequency Bias Setting Reliability Standard
2013-07-29
... Energy Regulatory Commission 18 CFR Part 40 Frequency Response and Frequency Bias Setting Reliability...: The Commission proposes to approve Reliability Standard BAL- 003-1 (Frequency Response and Frequency... of frequency response needed for reliable operations for each Balancing Authority within...
Namekata, Daisuke
2016-01-01
We explore the gas dynamics near the dust sublimation radius of active galactic nucleus (AGN). For the purpose, we perform axisymmetric radiation hydrodynamic simulations of a dusty gas disk of radius $\\approx 1\\,\\mathrm{pc}$ around a supermassive black hole of mass $10^{7}\\,\\mathrm{M_{\\odot}}$ taking into account (1) anisotropic radiation of accretion disk, (2) X-ray heating by corona, (3) radiative transfer of infrared (IR) photons reemitted by dust, (4) frequency dependency of direct and IR radiations, and (5) separate temperatures for gas and dust. As a result, we find that for Eddington ratio $\\approx 0.77$, a nearly neutral, dense ($\\approx 10^{6\\operatorname{-}8}\\;\\mathrm{cm^{-3}}$), geometrically-thin ($h/r<0.06$) disk forms with a high velocity ($\\approx 200 \\sim 3000\\;\\mathrm{km/s}$) dusty outflow launched from the disk surface. The disk temperature is determined by the balance between X-ray heating and various cooling, and the disk is almost supported by thermal pressure. Contrary to \\citet{krol...
Nonlinear frequency response analysis of structural vibrations
Weeger, Oliver; Wever, Utz; Simeon, Bernd
2014-12-01
In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.
Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien
2016-08-05
In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.
Step response and frequency response of an air conditioning system
Crommelin, R.D.; Jackman, P.J.
1978-01-01
A system of induction units of an existing air conditioning system has been analyzed with respect to its dynamic properties. Time constants were calculated and measured by analogue models. Comparison with measurements at the installation itself showed a reasonable agreement. Frequency responses were
Experimental model updating using frequency response functions
Hong, Yu; Liu, Xi; Dong, Xinjun; Wang, Yang; Pu, Qianhui
2016-04-01
In order to obtain a finite element (FE) model that can more accurately describe structural behaviors, experimental data measured from the actual structure can be used to update the FE model. The process is known as FE model updating. In this paper, a frequency response function (FRF)-based model updating approach is presented. The approach attempts to minimize the difference between analytical and experimental FRFs, while the experimental FRFs are calculated using simultaneously measured dynamic excitation and corresponding structural responses. In this study, the FRF-based model updating method is validated through laboratory experiments on a four-story shear-frame structure. To obtain the experimental FRFs, shake table tests and impact hammer tests are performed. The FRF-based model updating method is shown to successfully update the stiffness, mass and damping parameters of the four-story structure, so that the analytical and experimental FRFs match well with each other.
Frequency response of Lamb-Oseen vortex
Blanco-Rodríguez, F. J.; Parras, L.; del Pino, C.
2016-12-01
In this numerical study we present the frequency response of the Lamb-Oseen (Gaussian) vortex for two synthetic jet configurations. The first one consists of an annular axial jet that is superimposed on the Gaussian vortex. The other configuration deals with an off-axis, single-point, axial jet (SPI). We detect that the system responds to the forcing for a given axial wavenumber, k, exciting natural modes of the vortex by a resonance mechanism. We propose an explanation for the physical mechanism responsible for the maximum energy gain obtained by comparing our results with the different branches found theoretically by Fabre et al (2006 J. Fluid Mech. 551 235-74). We find high energy gains in both cases ({G}∞ ≃ {10}3 for the annular jet and {G}∞ ≃ {10}4 for the SPI jet), so these types of forcing are able to produce responses of the system strong enough to reach a non-linear state. Axisymmetric modes, with azimuthal wavenumber m = 0, produce the highest energy gain while applying an annular forcing. However, other modes, such as the helical one m = 1 and also double helix modes with m = 2, contribute in the SPI configuration. We find that the best region to be tested experimentally in both cases is the region that corresponds to the L2 branch described by Fabre and his collaborators. Furthermore, and whenever using these L2 branch frequencies, the response of the system is always axisymmetric, independently of the type of excitation. Finally, we conclude that the energy gain with the SPI jet is one order of magnitude greater than for the annular jet, so that the single-point off-axis jet is a feasible candidate to design a control device.
Rajasekaran, G.; Parashar, Avinash
2016-09-01
The mechanical properties of graphene sheet can be tailored with the help of topological defects. In this research article, the effects of Stone-Thrower-Wales (STW) defects on the mechanical properties of graphene sheet was investigated with the help of molecular dynamics based simulations. Authors has made an attempt to analyse the stress field developed in and around the vicinity of defect due to bond reorientation and further systematic evaluation has been carried out to study the effect of these stress fields against the applied axial compressive load. The results obtained with the pristine graphene were made to compare with the available open literature and the results were reported to be in good agreement with theoretical and experimental data. It was predicted that graphene with STW defect cannot able to bear compressive strength in zigzag direction, whereas on the other hand it was predicted that graphene sheet containing STW defect can bear higher compressive load in armchair direction, which shows an anisotropic response of STW defects in graphene. From the obtained results it can be observed that orientation of STW defects and the loading direction plays an important role to alter the strength of graphene under axial compression.
Conductivities in an anisotropic medium
Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong
2016-10-01
In order to imitate the anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in the low frequency limit shows a Drude peak and that, in the intermediate frequency regime, it reveals the power law behavior. Specifically, when the anisotropy increases, the exponent of the power law becomes smaller. In addition, we find that a critical value for the anisotropy exists at which the dc conductivity reaches to its maximum value.
Conductivities in an anisotropic medium
Khimphun, Sunly; Park, Chanyong
2016-01-01
In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.
The incremental response of a stressed, anisotropic granular material: loading and unloading
Ragione, Luigi La
2016-10-01
In this paper, we investigate the incremental response of a transversely isotropic granular material through numerical simulations (Distinct Element Method) and a theoretical model. A granular material is idealized by a random aggregate made of elastic, identical, frictional particles. We consider an initial isotropic compression followed by a uni-axial deformation, at constant pressure. The regime of deformation of our interest is quite narrow and it encompasses shear strains small compared to the volume strain associated with the pressure. In this regime, the contact network is almost the same as in the initial, isotropic, state, and anisotropy is induced by the applied strain through the contacts. In numerical simulations, particles deform according to local force and moment equilibrium, given an applied strain. In the theory, we do something similar and we allow a pair of contacting particles to deform while satisfying force and moment equilibrium, approximately. An average expression of the first moment of the contact forces is employed to obtain the stiffness tensor Aijkl relating the increments in stress with the increments in total average strain. We determine the non-zero components of Aijkl in stressed, anisotropic, states. The results refer to two cases: (a) when the contact friction coefficient is the same as in the uni-axial compression; (b) when a relatively high-contact friction coefficient is introduced (e.g. elastic response with a full mobilization of contact network). In the latter case, we recover, within a reasonable approximation, the typical structure of a transversely isotropic stiffness tensor Aijkl, itself a function of five independent constants; in the former, in case of forward incremental loading, we find the lack of major symmetry of the stiffness tensor, Aijkl ≠Aklij. We show that this occurs because particle deformation is not affine and because anisotropy is present in the aggregate. Theory and numerical DEM simulations agree
Plant Responses to High Frequency Electromagnetic Fields
Directory of Open Access Journals (Sweden)
Alain Vian
2016-01-01
Full Text Available High frequency nonionizing electromagnetic fields (HF-EMF that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc. are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor, and growth reduced (stem elongation and dry weight after low power (i.e., nonthermal HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism.
Fractures in anisotropic media
Shao, Siyi
Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The
Galvis, Leonardo; Dunlop, John W C; Duda, Georg; Fratzl, Peter; Masic, Admir
2013-01-01
In this study, polarized Raman spectroscopy (PRS) was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.
Directory of Open Access Journals (Sweden)
Leonardo Galvis
Full Text Available In this study, polarized Raman spectroscopy (PRS was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.
Multiple and broad frequency response Gunn diodes
Pilgrim, N. J.; Macpherson, R. F.; Khalid, A.; Dunn, G. M.; Cumming, D. R. S.
2009-10-01
Gunn diodes, operating in transit time mode, are usually thought of as incapable of generating power at multiple frequencies or over a broad frequency range. In this paper, we report experimental results showing that these diodes can generate power at several frequencies and, using Monte Carlo simulations of both planar and vertical devices, we offer an explanation of how this unusual behaviour may come into being and suggest possible applications for this novel device.
Kite, Benjamin A.; Pearson, Matthew R.; Henson, James M.
2013-01-01
The purpose of the present studies was to examine the effects of response scale on the observed relationships between protective behavioral strategies (PBS) measures and alcohol-related outcomes. We reasoned that an ‘absolute frequency’ scale (stem: “how many times…”; response scale: 0 times to 11+ times) conflates the frequency of using PBS with the frequency of consuming alcohol; thus, we hypothesized that the use of an absolute frequency response scale would result in positive relationship...
Research on Frequency Response Characteristics of Rolling Mill
Institute of Scientific and Technical Information of China (English)
CaiZhengguo; ZhangKenan
2005-01-01
The measurement method of frequency response characteristics for rolling mill is established by imposing different signal excitation on PID input of rolling mill under the different rolling conditions. The analysis results declare that sweep sine signal was relative efficient to evaluation for the frequency response character of hydraulic system. The practical application shows that the corresponding relationship between the parameters and the frequency response range of the rolling mill is helpful for parameters verification of process control and condition monitoring of hydraulic system.
Alternative Approaches for Incentivizing the Frequency Responsive Reserve Ancillary Service
Energy Technology Data Exchange (ETDEWEB)
Ela, E.; Milligan, M.; Kirby, B.; Tuohy, A.; Brooks, D.
2012-03-01
Frequency responsive reserve is the autonomous response of generators and demand response to deviations of system frequency, usually as a result of the instantaneous outage of a large supplier. Frequency responsive reserve arrests the frequency decline resulting in the stabilization of system frequency, and avoids the triggering of under-frequency load-shedding or the reaching of unstable frequencies that could ultimately lead to system blackouts. It is a crucial service required to maintain a reliable and secure power system. Regions with restructured electricity markets have historically had a lack of incentives for frequency responsive reserve because generators inherently provided the response and on large interconnected systems, more than sufficient response has been available. This may not be the case in future systems due to new technologies and declining response. This paper discusses the issues that can occur without proper incentives and even disincentives, and proposes alternatives to introduce incentives for resources to provide frequency responsive reserve to ensure an efficient and reliable power system.
Open-loop frequency response for a chaotic masking system
Institute of Scientific and Technical Information of China (English)
Huang Xian-Gao; Yu Pei; Huang Wei
2006-01-01
In this paper, a new numerical simulation approach is proposed for the study of open-loop frequency response of a chaotic masking system. Using Chua's circuit and the Lorenz system as illustrative examples, we have shown that one can employ chaos synchronization to separate the feedback network from a chaotic masking system, and then use numerical simulation to obtain the open-loop synchronization response, the phase response, and the amplitude response of a chaotic masking system. Based on the analysis of the frequency response, we have also proved that changing the amplitude of the exciting (input) signal within normal working domain does not influence the frequency response of the chaotic masking system. The new numerical simulation method developed in this paper can be extended to consider the open-loop frequency response of other systems described by differential or difference equations.
Kite, Benjamin A; Pearson, Matthew R; Henson, James M
2013-12-01
The purpose of the present studies was to examine the effects of response scale on the observed relationships between protective behavioral strategies (PBS) measures and alcohol-related outcomes. We reasoned that an "absolute frequency" scale (stem: "how many times …"; response scale: 0 times to 11+ times) conflates the frequency of using PBS with the frequency of consuming alcohol; thus, we hypothesized that the use of an absolute frequency response scale would result in positive relationships between types of PBS and alcohol-related outcomes. Alternatively, a "contingent frequency" scale (stem: "When drinking … how often …"; response scale: never to always) does not conflate frequency of alcohol use with use of PBS; therefore, we hypothesized that use of a contingent frequency scale would result in negative relationships between use of PBS and alcohol-related outcomes. Two published measures of PBS were used across studies: the Protective Behavioral Strategies Survey (PBSS) and the Strategy Questionnaire (SQ). Across three studies, we demonstrate that when measured using a contingent frequency response scale, PBS measures relate negatively to alcohol-related outcomes in a theoretically consistent manner; however, when PBS measures were measured on an absolute frequency response scale, they were nonsignificantly or positively related to alcohol-related outcomes. We discuss the implications of these findings for the assessment of PBS.
Long-term anisotropic mechanical response of surgical meshes used to repair abdominal wall defects.
Hernández-Gascón, B; Peña, E; Pascual, G; Rodríguez, M; Bellón, J M; Calvo, B
2012-01-01
Routine hernia repair surgery involves the implant of synthetic mesh. However, this type of procedure may give rise to pain and bowel incarceration and strangulation, causing considerable patient disability. The purpose of this study was to compare the long-term behaviour of three commercial meshes used to repair the partially herniated abdomen in New Zealand White rabbits: the heavyweight (HW) mesh, Surgipro(®) and lightweight (LW) mesh, Optilene(®), both made of polypropylene (PP), and a mediumweight (MW) mesh, Infinit(®), made of polytetrafluoroethylene (PTFE). The implanted meshes were mechanical and histological assessed at 14, 90 and 180 days post-implant. This behaviour was compared to the anisotropic mechanical behaviour of the unrepaired abdominal wall in control non-operated rabbits. Both uniaxial mechanical tests conducted in craneo-caudal and perpendicular directions and histological findings revealed substantial collagen growth over the repaired hernial defects causing stiffness in the repair zone, and thus a change in the original properties of the meshes. The mechanical behaviour of the healthy tissue in the craneo-caudal direction was not reproduced by any of the implanted meshes after 14 days or 90 days of implant, whereas in the perpendicular direction, SUR and OPT achieved similar behaviour. From a mechanical standpoint, the anisotropic PP-lightweight meshes may be considered a good choice in the long run, which correlates with the structure of the regenerated tissue.
An Exoplanet's Response to Anisotropic Stellar Mass-Loss During Birth and Death
Veras, Dimitri; Tout, Christopher A
2013-01-01
The birth and death of planets may be affected by mass outflows from their parent stars during the T-Tauri or post-main-sequence phases of stellar evolution. These outflows are often modelled to be isotropic, but this assumption is not realistic for fast rotators, bipolar jets and supernovae. Here we derive the general equations of motion for the time evolution of a single planet, brown dwarf, comet or asteroid perturbed by anisotropic mass loss in terms of a complete set of planetary orbital elements, the ejecta velocity, and the parent star's co-latitude and longitude. We restrict our application of these equations to 1) rapidly rotating giant stars, and 2) arbitrarily-directed jet outflows. We conclude that the isotropic mass-loss assumption can safely be used to model planetary motion during giant branch phases of stellar evolution within distances of hundreds of au. In fact, latitudinal mass loss variations anisotropically affect planetary motion only if the mass loss is asymmetric about the stellar equa...
Root responses to nitrogen pulse frequency under different nitrogen amounts
Yuan, Qing-Ye; Wang, Pu; Liu, Lu; Dong, Bi-Cheng; Yu, Fei-Hai
2017-04-01
Responses of morphology and biomass allocation of roots to frequency of nitrogen (N) pulse potentially influence the fitness of plants, but such responses may be determined by root size. We grew 12 plant species of three functional groups (grasses, forbs, and legumes) under two N pulse frequencies (high vs. low supply frequency) and two N amounts (high vs. low supply amount). Compared to low-amount N supply, high-amount N supply stimulated biomass accumulation and root growth by either increasing the thickness and length of roots or decreasing the root mass fraction. Compared to low-frequency N supply, high-frequency N supply improved biomass accumulation and root growth in forbs or grasses, but not in legumes. Furthermore, the magnitude of the response to N frequency was significantly negatively correlated with root size at the species scale, but this was only true when the N amount was high. We conclude that root responses to N frequency are related to plant functional types, and non-legume species is more sensitive to N frequency than legume species. Our results also suggest that root size is a determinant of root responses to N frequency when N supply amount is high.
Anisotropic Frequency Response of Critical Density Fluctuations of NIPA Gel under Oscillation Shear
DEFF Research Database (Denmark)
Sugiyama, M.; Vigild, Martin Etchells; Fukunaga, Toshiharu
2006-01-01
A relation between rheology and structure of high density NIPA gel around criticai point on volume phase transition was studied by a simultaneous rheology and smail-angle neutron scattering measuÆmeiit Just below the critical temperature, the NIPA gel showed softening: G’ and G” get doser (G’> G...
Regional frequency response analysis under normal and emergency conditions
Energy Technology Data Exchange (ETDEWEB)
Bevrani, Hassan [Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, PO Box 416 (Iran); Ledwich, Gerard; Ford, Jason J. [School of Engineering Systems, Queensland University of Technology, Brisbane, Qld 4001 (Australia); Dong, Zhao Yang [Department of Electrical Engineering, The Hong Kong Polytechnic University (China)
2009-05-15
This paper presents a frequency response analysis approach suitable for a power system control area in a wide range of operating conditions. The analytic approach uses the well-known system frequency response model for the turbine-governor and load units to obtain the mathematical representation of the basic concepts. Primary and supplementary frequency controls are properly considered and the effect of emergency control/protection schemes is included. Therefore, the proposed analysis/modeling approach could be grainfully used for the power system operation during the contingency and normal conditions. Time-domain nonlinear simulations with a power system example showed that the results agree with those predicted analytically. (author)
Institute of Scientific and Technical Information of China (English)
Shen Jinsong; Su Benyu; Guo Naichuan
2009-01-01
In fractured reservoirs, the fractures not only provide the storage space for hydrocarbons, but also form the main flow channels which connect the pores of the matrix, so fractures dominate the productivity of reservoirs.However, because of the heterogeneity and randomness of the distribution of fractures, exploration and evaluation of fractured reservoirs is still one of the most difficult problems in the oil industry.In recent years, seismic anisotropy has been applied to the assessment of fractured formations, whereas electrical anisotropy which is more intense in fractured formations than seismic anisotropy has not been studied or used so extensively.In this study, fractured reservoir models which considered multiple sets of fractures with smooth and partly closed, rough surfaces were established based on the fractures and pore network, and the vertical and horizontal electrical resistivities were derived as a function of the matrix and fracture porosities according to Ohm's law.By using the anisotropic resistivity equations, variations of the electrical anisotropy of three types of fractured models under the conditions of free pressure and confining pressure were analyzed through the variations of the exerted pressure, matrix porosity, fracture aperture and formation water resistivity.The differences of the vertical and horizontal resistivities and the anisotropy between the connected and non-connected fractures were also analyzed.It is known from the simulated results that an increase of the confining pressure causes a decrease of electrical anisotropy because of the elasticity of the closed fractures and the decrease of the fracture aperture.For a fixed fracture porosity, the higher the matrix porosity, the weaker the electrical anisotropy in the rock formation.
Phase responses of harmonics reflected from radio-frequency electronics
Mazzaro, Gregory J.; McGowan, Sean F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Martone, Anthony F.; Narayanan, Ram M.
2016-05-01
The phase responses of nonlinear-radar targets illuminated by stepped frequencies are studied. Data is presented for an experimental radar and two commercial electronic targets at short standoff ranges. The amplitudes and phases of harmonics generated by each target at each frequency are captured over a 100-MHz-wide transmit band. As in the authors' prior work, target detection is demonstrated by receiving at least one harmonic of at least one transmit frequency. In the present work, experiments confirm that the phase of a harmonic reflected from a radio-frequency electronic target at a standoff distance is linear versus frequency. Similar to traditional wideband radar, the change of the reflected phase with respect to frequency indicates the range to the nonlinear target.
Institute of Scientific and Technical Information of China (English)
Pan Jin; Wang De-yu
2006-01-01
In this paper, adaptive genetic algorithm (AGA) is applied to topology optimization of truss structure with frequency domain excitations. The optimization constraints include fundamental frequency, displacement responses under force excitations and acceleration responses under foundation acceleration excitations. The roulette wheel selection operator, adaptive crossover and mutation operators are used as genetic operators. Some heuristic strategies are put forward to direct the deletion of the extra bars and nodes on truss structures. Three examples demonstrate that the proposed method can yield the optimum structure form and the lightest weight of the given ground structure while satisfying dynamic response constraints.
Alexander, C. S.; Key, C. T.; Schumacher, S. C.
2014-05-01
Recently there has been renewed interest in the dynamic response of composite materials; specifically low density epoxy matrix binders strengthened with continuous reinforcing fibers. This is in part due to the widespread use of carbon fiber composites in military, commercial, industrial, and aerospace applications. The design community requires better understanding of these materials in order to make full use of their unique properties. Planar impact testing was performed resulting in pressures up to 15 GPa on a unidirectional carbon fiber - epoxy composite, engineered to have high uniformity and low porosity. Results illustrate the anisotropic nature of the response under shock loading. Along the fiber direction, a two-wave structure similar to typical elastic-plastic response is observed, however, when shocked transverse to the fibers, only a single bulk shock wave is detected. At higher pressures, the epoxy matrix dissociates resulting in a loss of anisotropy. Greater understanding of the mechanisms responsible for the observed response has been achieved through numerical modeling of the system at the micromechanical level using the CTH hydrocode. From the simulation results it is evident that the observed two-wave structure in the longitudinal fiber direction is the result of a fast moving elastic precursor wave traveling in the carbon fibers ahead of the bulk response in the epoxy resin. Similarly, in the transverse direction, results show a collapse of the resin component consistent with the experimental observation of a single shock wave traveling at speeds associated with bulk carbon. Experimental and simulation results will be discussed and used to show where additional mechanisms, not fully described by the currently used models, are present.
Dynamic frequency tuning of electric and magnetic metamaterial response
O'Hara, John F; Averitt, Richard; Padilla, Willie; Chen, Hou-Tong
2014-09-16
A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substrate electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate.
Frequency- dependent cell responses to an electromagnetic stimulus
Taghian, Toloo; Sheikh, Abdul; Narmoneva, Daria; Kogan, Andrei
2013-03-01
External electric field (EF) acting on cells in the ionic environment can trigger a variety of mechanical and chemical cell responses that regulate cell functions, such as adhesion, migration and cell signaling; thus manipulation of EF can be used in therapeutic applications. To optimize this process, realistic studies of EF interaction with cells are essential. We have developed a combined theoretical-experimental approach to study cell response to the external EF in the native configuration. The cell is modeled as a membrane-enclosed hemisphere which is cultured on a substrate and is surrounded by electrolyte. Maxwell's equations are solved numerically (ANSYS-HFSS) to obtain 3D EF distribution inside and near the cell subjected to an external EF. Theoretical results indicate that the cell response is frequency dependent, where at low frequency EF is excluded from the cell interior while EF penetration into the cell increases for higher frequencies. In both regimes the spatial distribution and strength of induced EF in membrane varies with frequency. Experimental results are consistent with theoretical predictions and show frequency-dependent cell response, including both membrane-initiated and intracellular pathway activation and growth factor release. The authors acknowledge the financial support from the NSF (DMR-1206784 & DMR-0804199 to AK); the NIH (1R21 DK078814-01A1 to DN) and the University of Cincinnati (Interdisciplinary Faculty Research Support Grant to DN and AK).
Estimation of Frequency Response Functions by Random Decrement
DEFF Research Database (Denmark)
Asmussen, J. C.; Brincker, Rune
1996-01-01
A method for estimating frequency response functions by the Random Decrement technique is investigated in this paper. The method is based on the auto and cross Random Decrement functions of the input process and the output process of a linear system. The Fourier transformation of these functions...... is used to calculate the frequency response functions. The Random Decrement functions are obtained by averaging time segments of the processes under given initial conditions. The method will reduce the leakage problem, because of the natural decay of the Random Decrement functions. Also, the influence...
Evaluation of Piloted Inputs for Onboard Frequency Response Estimation
Grauer, Jared A.; Martos, Borja
2013-01-01
Frequency response estimation results are presented using piloted inputs and a real-time estimation method recently developed for multisine inputs. A nonlinear simulation of the F-16 and a Piper Saratoga research aircraft were subjected to different piloted test inputs while the short period stabilator/elevator to pitch rate frequency response was estimated. Results show that the method can produce accurate results using wide-band piloted inputs instead of multisines. A new metric is introduced for evaluating which data points to include in the analysis and recommendations are provided for applying this method with piloted inputs.
Control and Coordination of Frequency Responsive Residential Water Heaters
Energy Technology Data Exchange (ETDEWEB)
Williams, Tess L.; Kalsi, Karanjit; Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Pratt, Richard M.
2016-07-31
Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This paper presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC). The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.
Neuromagnetic responses to frequency modulation of a continuous tone.
Hari, R; Mäkelä, J P
1986-01-01
Neuromagnetic responses to frequency modulation of a continuous tone were studied in nine subjects. The latencies of the transient responses increased and the amplitudes decreased with decreasing speed of modulation. The equivalent dipoles for modulation of a 1,000 Hz tone were slightly but statistically significantly anterior to the dipoles activated by modulation of a 500 Hz tone. The generation mechanisms of N100m are discussed.
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian
2016-01-15
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing
2016-02-01
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
Unrecorded wideband instrumentation reference tape feasibility study: Frequency response results
Hust, D. R.
1980-03-01
An investigation was conducted to determine signal response variations when a variety of wideband instrumentation magnetic tapes is used on a cross section of recorder/reproducer systems. Data for the investigation were collected by transmitting a set of eight sample test tapes to participating data recording/reproducing facilities for the purpose of making data measurements. Data collected represent measurements made with 16 different recorder/reproducer systems at 11 different testing facilities located throughout the United States. The data-collection process involved approximately 2 years of testing. The originating/coordinating facility was the Pacific Missile Test Center, Point Mugu, California. The test results indicated the following: all of the sample test tapes exhibited bidirectional performance within the limits of measurement repeatability; overall system stability was better in the low-band regions than in the upper-band regions; and the overall relative frequency response of the sample test tapes did not change appreciably during the 2 year investigative period. The most significant result of the test measurements is that at least 90% of the frequency response values were within + or - 2.0 dB at all frequencies. Machine stability factors such as azimuth, equalizer, and gain changes had more effect on data variability than did magnetic tape or tape speed. The use of a reference tape system is recommended as a method to assure that relative frequency response variations will be less than or equal to + or - 2.0 dB.
Estimation of Frequency Response Functions by Random Decrement
DEFF Research Database (Denmark)
Brincker, Rune; Asmussen, J. C.
A method for estimating frequency response functions by the random decrement technique is investigated in this paper. The method is based on the auto and cross Random Decrement functions of the input process and the output process of a linear system. The Fourier transformation of these functions...
Modal Identification from Ambient Responses Using Frequency Domain Decomposition
DEFF Research Database (Denmark)
Brincker, Rune; Zhang, Lingmi; Andersen, Palle
2000-01-01
In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, i.e. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical...
Modal Identification from Ambient Responses using Frequency Domain Decomposition
DEFF Research Database (Denmark)
Brincker, Rune; Zhang, L.; Andersen, P.
2000-01-01
In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, ie. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical...
Understanding Inertial and Frequency Response of Wind Power Plants: Preprint
Energy Technology Data Exchange (ETDEWEB)
Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.
2012-07-01
The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).
Frequency Response of Modulated Electroluminescence of Light-Emitting Diodes
Institute of Scientific and Technical Information of China (English)
FENG Lie-Feng; LI Yang; LI Ding; WANG Cun-Da; ZHANG Guo-Yi; YAO Dong-Sheng; LIU Wei-Fang; XING Peng-Fei
2011-01-01
Frequency responses of modulated electroluminescence (EL) of light-emitting diodes were measured using a testing setup.With increasing frequency of the ac signal,the relative light intensity (RLI) clearly decreases.Furthermore,a peculiar asynchrony between the RLI and ac small-signal is observed.At frequencies higher than 10kHz,the RLI clearly lags behind the ac signal and the absolute value of the lagging angle is nearly proportional to the signal frequency.Using the classical recombination model of light-emitting diodes under ac small-signal modulation,these abnormal characteristics of modulated EL can be clearly explained.High-power light-emitting diodes (LEDs) have received great attention recently owing to their applications in energy-saving lights,display items and many other fields;therefore,the optical and electrical characteristics of LEDs at forward bias hold significant potential for research.[1-4] However,for a new kind of light emission device,the general research on its performance focuses on the light emission and dc currentvoltage (I-V) characteristics.%Frequency responses of modulated electroluminescence (EL) of light-emitting diodes were measured using a testing setup. With increasing frequency of the ac signal, the relative light intensity (RLI) clearly decreases. Furthermore, a peculiar asynchrony between the RLI and ac small-signal is observed. At frequencies higher than 10kHz, the RLI clearly lags behind the ac signal and the absolute value of the lagging angle is nearly proportional to the signal frequency. Using the classical recombination model of light-emitting diodes under ac small-signal modulation, these abnormal characteristics of modulated EL can be clearly explained.
Wind Generation Participation in Power System Frequency Response: Preprint
Energy Technology Data Exchange (ETDEWEB)
Gevorgian, Vahan; Zhang, Yingchen
2017-01-01
The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from that of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.
Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors
Directory of Open Access Journals (Sweden)
Sergio Iván Ravelo Arias
2013-12-01
Full Text Available Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function is obtained considering it as the relationship between sensor output voltage and input sensing current,[PLEASE CHECK FORMULA IN THE PDF]. The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR, giant magnetoresistance (GMR, spin-valve (GMR-SV and tunnel magnetoresistance (TMR. The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.
Schuster, Patricia
2015-01-01
This paper reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline anthracene to incident DT neutrons, DD neutrons, Cs-137 gamma rays, and, for the first time, cosmic ray muons. The neutron measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature. In similar measurements using incident gamma rays, no directional effect is evident, and any anisotropy with respect to the electron recoil direction is constrained to have a magnitude of less than a tenth of that present in the proton recoil events. Cosmic muons are measured at two directions, and no anisotropy is observed. This set of observations indicates that high dE/dx is necessary for an anisotropy to be present for a given type of scintillation event, which in turn could be used to discriminate among different hypotheses for the underlying causes of the anisotropy, ...
Frequency response of electrolyte-gated graphene electrodes and transistors
Drieschner, Simon; Guimerà, Anton; Cortadella, Ramon G.; Viana, Damià; Makrygiannis, Evangelos; Blaschke, Benno M.; Vieten, Josua; Garrido, Jose A.
2017-03-01
The interface between graphene and aqueous electrolytes is of high importance for applications of graphene in the field of biosensors and bioelectronics. The graphene/electrolyte interface is governed by the low density of states of graphene that limits the capacitance near the Dirac point in graphene and the sheet resistance. While several reports have focused on studying the capacitance of graphene as a function of the gate voltage, the frequency response of graphene electrodes and electrolyte-gated transistors has not been discussed so far. Here, we report on the impedance characterization of single layer graphene electrodes and transistors, showing that due to the relatively high sheet resistance of graphene, the frequency response is governed by the distribution of resistive and capacitive circuit elements along the graphene/electrolyte interface. Based on an analytical solution for the impedance of the distributed circuit elements, we model the graphene/electrolyte interface both for the electrode and the transistor configurations. Using this model, we can extract the relevant material and device parameters such as the voltage-dependent intrinsic sheet and series resistances as well as the interfacial capacitance. The model also provides information about the frequency threshold of electrolyte-gated graphene transistors, above which the device exhibits a non-resistive response, offering an important insight into the suitable frequency range of operation of electrolyte-gated graphene devices.
Modeling the frequency response of microwave radiometers with QUCS
Zonca, A.; Roucaries, B.; Williams, B.; Rubin, I.; D'Arcangelo, O.; Meinhold, P.; Lubin, P.; Franceschet, C.; Jahn, S.; Mennella, A.; Bersanelli, M.
2010-12-01
Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.
Modeling the frequency response of microwave radiometers with QUCS
Energy Technology Data Exchange (ETDEWEB)
Zonca, A; Williams, B; Rubin, I; Meinhold, P; Lubin, P [Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Roucaries, B [Universite Paris-Est, Laboratoire Central des Ponts et Chaussees, 75732 Paris (France); D' Arcangelo, O [IFP-CNR, via Cozzi 53, 20125 Milano (Italy); Franceschet, C; Mennella, A; Bersanelli, M [Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Jahn, S, E-mail: zonca@deepspace.ucsb.edu [Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Munich (Germany)
2010-12-15
Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.
Schuster, Patricia; Brubaker, Erik
2016-06-01
This paper reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline anthracene to incident DT neutrons, DD neutrons, Cs-137 gamma rays, and, for the first time, cosmic ray muons. The neutron measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature. In similar measurements using incident gamma rays, no directional effect is evident, and any anisotropy with respect to the electron recoil direction is constrained to have a magnitude of less than a tenth of that present in the proton recoil events. Cosmic muons are measured at two directions, and no anisotropy is observed. This set of observations indicates that high dE/dx is necessary for an anisotropy to be present for a given type of scintillation event, which in turn could be used to discriminate among different hypotheses for the underlying causes of the anisotropy, which are not well understood.
Frequency-independent response of self-complementary checkerboard screens
Urade, Yoshiro; Nakanishi, Toshihiro; Kitano, Masao
2015-01-01
This research resolves a long-standing problem on the electromagnetic response of self-complementary metallic screens with checkerboard-like geometry. Although Babinet's principle implies that they show a frequency-independent response, this unusual characteristic has not been observed yet due to the singularities of the metallic point contacts in the checkerboard geometry. We overcome this difficulty by replacing the point contacts with resistive sheets. The proposed structure is prepared and characterized by terahertz time-domain spectroscopy. It is experimentally confirmed that the resistive checkerboard structures exhibit a flat transmission spectrum over 0.1--1.1 THz. It is also demonstrated that self-complementarity can eliminate even the frequency-dependent transmission characteristics of resonant metamaterials.
Doping dependent frequency response of MQW infrared photodetector
Billaha, Md. Aref; Das, Mukul K.; Kumar, S.
2017-04-01
This work is to study the effect of doping concentration in the active layer on the performance of multiple quantum well (MQW) infrared photodetector based on inter sub-band transitions. A theoretical model for the photocurrent and hence, responsivity of the detector in frequency domain is developed considering the effect of doping dependent absorption and carrier capture at the hetero-interfaces. Transit time and capture time limited bandwidth of the detector is computed from the frequency dependent photocurrent. Results show that, besides the usual effect of capture time, doping concentration in the active layer has an important effect on the bandwidth and responsivity of the device particularly for high value of capture time.
Dynamic modelling of an electromechanical valve using frequency response data
Miller, R L; Smith, D. L.
1986-01-01
Dynamic modelling of electromechanical parts is often accomplished by conducting an analysis from first physical principles. While this is always a useful effort for physical insight, it may lead to transfer function models which are unnecessarily complex. This paper presents a supplementary dynamic modelling method based on frequency response data. The method is applied to modelling of a globe valve use for water flow control Naval Postgraduate School, Monterey, CA. http://archive.org/...
Memory-based mismatch response to frequency changes in rats.
Directory of Open Access Journals (Sweden)
Piia Astikainen
Full Text Available Any occasional changes in the acoustic environment are of potential importance for survival. In humans, the preattentive detection of such changes generates the mismatch negativity (MMN component of event-related brain potentials. MMN is elicited to rare changes ('deviants' in a series of otherwise regularly repeating stimuli ('standards'. Deviant stimuli are detected on the basis of a neural comparison process between the input from the current stimulus and the sensory memory trace of the standard stimuli. It is, however, unclear to what extent animals show a similar comparison process in response to auditory changes. To resolve this issue, epidural potentials were recorded above the primary auditory cortex of urethane-anesthetized rats. In an oddball condition, tone frequency was used to differentiate deviants interspersed randomly among a standard tone. Mismatch responses were observed at 60-100 ms after stimulus onset for frequency increases of 5% and 12.5% but not for similarly descending deviants. The response diminished when the silent inter-stimulus interval was increased from 375 ms to 600 ms for +5% deviants and from 600 ms to 1000 ms for +12.5% deviants. In comparison to the oddball condition the response also diminished in a control condition in which no repetitive standards were presented (equiprobable condition. These findings suggest that the rat mismatch response is similar to the human MMN and indicate that anesthetized rats provide a valuable model for studies of central auditory processing.
Delphinid behavioral responses to incidental mid-frequency active sonar.
Henderson, E Elizabeth; Smith, Michael H; Gassmann, Martin; Wiggins, Sean M; Douglas, Annie B; Hildebrand, John A
2014-10-01
Opportunistic observations of behavioral responses by delphinids to incidental mid-frequency active (MFA) sonar were recorded in the Southern California Bight from 2004 through 2008 using visual focal follows, static hydrophones, and autonomous recorders. Sound pressure levels were calculated between 2 and 8 kHz. Surface behavioral responses were observed in 26 groups from at least three species of 46 groups out of five species encountered during MFA sonar incidents. Responses included changes in behavioral state or direction of travel, changes in vocalization rates and call intensity, or a lack of vocalizations while MFA sonar occurred. However, 46% of focal groups not exposed to sonar also changed their behavior, and 43% of focal groups exposed to sonar did not change their behavior. Mean peak sound pressure levels when a behavioral response occurred were around 122 dB re: 1 μPa. Acoustic localizations of dolphin groups exhibiting a response gave insight into nighttime movement patterns and provided evidence that impacts of sonar may be mediated by behavioral state. The lack of response in some cases may indicate a tolerance of or habituation to MFA sonar by local populations; however, the responses that occur at lower received levels may point to some sensitization as well.
Identification of damage based on frequency response function (FRF data
Directory of Open Access Journals (Sweden)
Sulaiman M. S. A.
2017-01-01
Full Text Available Mechanical joints, particularly fasteners such as bolted joints have a complex non-linear behaviour. The non-linearity might emerge from the material, geometry or by the contacts in the joints. However, damage to a structure can be happened either their connections or the material of components. The effect of damage can change the dynamic properties of the structure such as natural frequencies and mode shapes and structural performance and can cause premature failure to structure. This paper presents a damage detection method using a vibration based damage detection method based on the frequency response function (FRF data. A combination of numerical model and physical bolted jointed structure of damaged and undamaged structure will be investigated. The validation is employed to detect the presence of damage in the structure based on the frequency response function (FRF data from the parameter values used in the benchmark model and damaged model. The comparisons of the undamaged and damaged structure of the FRF have revealed the damaged structure was shifted from the undamaged structure. The effect of the FRF between undamaged and damaged structure is clearly affected by the reduction of stiffness for the damaged structure.
Response growth using a low-frequency suppressor.
DiGiovanni, Jeffrey J; Nair, Padmaja
2007-12-01
Numerous psychophysical studies on two-tone suppression have been carried out. More recently, researchers have attempted to relate the magnitude of suppression to the level of suppressee. [Wojtczak, M., Viemeister, N.F., 2005. Psychophysical response growth under suppression. In: Pressnitzer, D., de Cheveigne, A., McAdams, S., Collet, L. (Eds.), Auditory Signal Processing: Physiology, Psychoaccoustics, and Models. Springer, New York, pp. 67-74] demonstrated that the magnitude of suppression for a higher-frequency, fixed-level suppressor decreases with increasing level of the suppressee. This suggests a linearization of the basilar membrane response in presence of a high-frequency suppressor. The present study expands these results to a low-frequency suppressor of varying intensity levels. Detection of a 10-ms, 4.0-kHz probe was measured under different forward-masking conditions: one with a 200-ms, 4.0-kHz masker (suppressee) presented with no suppressor and another with the same masker paired with a 2.2-kHz, 200-ms suppressor. The 4.0-kHz masker level was varied adaptively and a range of probe levels was used to measure the growth of suppression. Results indicate that (1) the magnitude of suppression increases with increasing suppressor level and (2) generally, the probe level was not related to the magnitude of suppression.
Modeling the frequency response of microwave radiometers with QUCS
Zonca, Andrea; Williams, Brian; Rubin, Ishai; D'Arcangelo, Ocleto; Meinhold, Peter; Lubin, Philip; Franceschet, Cristian; Yahn, Stefan; Mennella, Aniello; Bersanelli, Marco
2010-01-01
Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measureme...
Aircraft Fault Detection Using Real-Time Frequency Response Estimation
Grauer, Jared A.
2016-01-01
A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.
Energy Technology Data Exchange (ETDEWEB)
Anovitz, Lawrence {Larry} M [ORNL; Mamontov, Eugene [ORNL; Ishai, Paul ben [The Hebrew University of Jerusalem, Israel; Kolesnikov, Alexander I [ORNL
2013-01-01
The properties of fluids can be significantly altered by the geometry of their confining environments. While there has been significant work on the properties of such confined fluids, the properties of fluids under ultraconfinement, environments where, at least in one plane, the dimensions of the confining environment are similar to that of the confined molecule, have not been investigated. This paper investigates the dynamic properties of water in beryl (Be3Al2Si6O18), the structure of which contains approximately 5-A-diam channels parallel to the c axis. Three techniques, inelastic neutron scattering, quasielastic neutron scattering, and dielectric spectroscopy, have been used to quantify these properties over a dynamic range covering approximately 16 orders of magnitude. Because beryl can be obtained in large single crystals we were able to quantify directional variations, perpendicular and parallel to the channel directions, in the dynamics of the confined fluid. These are significantly anisotropic and, somewhat counterintuitively, show that vibrations parallel to the c-axis channels are significantly more hindered than those perpendicular to the channels. The effective potential for vibrations in the c direction is harder than the potential in directions perpendicular to it. There is evidence of single-file diffusion of water molecules along the channels at higher temperatures, but below 150 K this diffusion is strongly suppressed. No such suppression, however, has been observed in the channel-perpendicular direction. Inelastic neutron scattering spectra include an intramolecular stretching O-H peak at 465 meV. As this is nearly coincident with that known for free water molecules and approximately 30 meV higher than that in liquid water or ice, this suggests that there is no hydrogen bonding constraining vibrations between the channel water and the beryl structure. However, dielectric spectroscopic measurements at higher temperatures and lower frequencies
Frequency Response Adaptive Control of a Refrigeration Cycle
Directory of Open Access Journals (Sweden)
Jens G. Balchen
1989-01-01
Full Text Available A technique for the adaptation of controller parameters in a single control loop based upon the estimation of frequency response parameters has been presented in an earlier paper. This paper contains an extension and a generalization of the first method and results in a more versatile solution which is applicable to a wider range of process characteristics. The application of this adaptive control technique is illustrated by a laboratory refrigeration cycle in which the evaporator pressure controls the speed of the compressor.
Effect of geometry in frequency response modeling of nanomechanical resonators
Esfahani, M. Nasr; Yilmaz, M.; Sonne, M. R.; Hattel, J. H.; Alaca, B. Erdem
2016-06-01
The trend towards nanomechanical resonator sensors with increasing sensitivity raises the need to address challenges encountered in the modeling of their mechanical behavior. Selecting the best approach in mechanical response modeling amongst the various potential computational solid mechanics methods is subject to controversy. A guideline for the selection of the appropriate approach for a specific set of geometry and mechanical properties is needed. In this study, geometrical limitations in frequency response modeling of flexural nanomechanical resonators are investigated. Deviation of Euler and Timoshenko beam theories from numerical techniques including finite element modeling and Surface Cauchy-Born technique are studied. The results provide a limit beyond which surface energy contribution dominates the mechanical behavior. Using the Surface Cauchy-Born technique as the reference, a maximum error on the order of 50 % is reported for high-aspect ratio resonators.
Frequency response function-based model updating using Kriging model
Wang, J. T.; Wang, C. J.; Zhao, J. P.
2017-03-01
An acceleration frequency response function (FRF) based model updating method is presented in this paper, which introduces Kriging model as metamodel into the optimization process instead of iterating the finite element analysis directly. The Kriging model is taken as a fast running model that can reduce solving time and facilitate the application of intelligent algorithms in model updating. The training samples for Kriging model are generated by the design of experiment (DOE), whose response corresponds to the difference between experimental acceleration FRFs and its counterpart of finite element model (FEM) at selected frequency points. The boundary condition is taken into account, and a two-step DOE method is proposed for reducing the number of training samples. The first step is to select the design variables from the boundary condition, and the selected variables will be passed to the second step for generating the training samples. The optimization results of the design variables are taken as the updated values of the design variables to calibrate the FEM, and then the analytical FRFs tend to coincide with the experimental FRFs. The proposed method is performed successfully on a composite structure of honeycomb sandwich beam, after model updating, the analytical acceleration FRFs have a significant improvement to match the experimental data especially when the damping ratios are adjusted.
Bourlier, C.; Berginc, G.
2004-07-01
This second part presents illustrative examples of the model developed in the companion paper, which is based on the first- and second-order optics approximation. The surface is assumed to be Gaussian and the correlation height is chosen as anisotropic Gaussian. The incoherent scattering coefficient is computed for a height rms range from 0.5lgr to 1lgr (where lgr is the electromagnetic wavelength), for a slope rms range from 0.5 to 1 and for an incidence angle range from 0 to 70°. In addition, simulations are presented for an anisotropic Gaussian surface and when the receiver is not located in the plane of incidence. For a metallic and dielectric isotropic Gaussian surfaces, the cross- and co-polarizations are also compared with a numerical approach obtained from the forward-backward method with a novel spectral acceleration algorithm developed by Torrungrueng and Johnson (2001, JOSA A 18).
Coupled vibro-acoustic model updating using frequency response functions
Nehete, D. V.; Modak, S. V.; Gupta, K.
2016-03-01
Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.
Individual brain-frequency responses to self-selected music.
Höller, Yvonne; Thomschewski, Aljoscha; Schmid, Elisabeth Verena; Höller, Peter; Crone, Julia Sophia; Trinka, Eugen
2012-12-01
Music is a stimulus which may give rise to a wide range of emotional and cognitive responses. Therefore, brain reactivity to music has become a focus of interest in cognitive neuroscience. It is possible that individual preference moderates the effectof music on the brain. In the present study we examined whether there are common effects of listening to music even if each subject in a sample chooses their own piece of music. We invited 18 subjects to bring along their favorite relaxing music, and their favourite stimulating music. Additionally, a condition with tactile stimulation on the foot and a baseline condition (rest) without stimulation were used. The tactile stimulation was chosen to provide a simple, non-auditory condition which would be identical for all subjects. The electroencephalogram was recorded for each of the 3 conditions and during rest. We found responses in the alpha range mainly on parietal and occipital sites that were significant compared to baseline in 13 subjects during relaxing music, 15 subjects during activating music, and 16 subjects during tactile stimulation. Most subjects showed an alpha desynchronization in a lower alpha range followed by a synchronization in an upper frequency range. However, some subjects showed an increase in this area, whereas others showed a decrease only. In addition, many subjects showed reactivity in the beta range. Beta activity was especially increased while listening to activating music and during tactile stimulation in most subjects. We found interindividual differences in the response patterns even though the stimuli provoked comparable subjective emotions (relaxation, activation), and even if the stimulus was the same for all subjects (somatosensory stimulation). We suggest that brain responsivity to music should be examined individually by considering individual characteristics.
Cropping frequency and area response to climate variability can exceed yield response
Cohn, Avery S.; Vanwey, Leah K.; Spera, Stephanie A.; Mustard, John F.
2016-06-01
The sensitivity of agricultural output to climate change has often been estimated by modelling crop yields under climate change scenarios or with statistical analysis of the impacts of year-to-year climatic variability on crop yields. However, the area of cropland and the number of crops harvested per growing season (cropping frequency) both also affect agricultural output and both also show sensitivity to climate variability and change. We model the change in agricultural output associated with the response of crop yield, crop frequency and crop area to year-to-year climate variability in Mato Grosso (MT), Brazil, a key agricultural region. Roughly 70% of the change in agricultural output caused by climate was determined by changes in frequency and/or changes in area. Hot and wet conditions were associated with the largest losses and cool and dry conditions with the largest gains. All frequency and area effects had the same sign as total effects, but this was not always the case for yield effects. A focus on yields alone may therefore bias assessments of the vulnerability of agriculture to climate change. Efforts to reduce climate impacts to agriculture should seek to limit production losses not only from crop yield, but also from changes in cropland area and cropping frequency.
Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu
2016-01-01
Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities.
Dynamic Response to Pedestrian Loads with Statistical Frequency Distribution
DEFF Research Database (Denmark)
Krenk, Steen
2012-01-01
Pedestrian loads depend on the regularity and frequency of the footfall process. Traditionally, pedestrian loads have been represented by one or more specific harmonic components with a well-defined frequency, and light footbridges have been investigated for resonance vibration generated by the h......Pedestrian loads depend on the regularity and frequency of the footfall process. Traditionally, pedestrian loads have been represented by one or more specific harmonic components with a well-defined frequency, and light footbridges have been investigated for resonance vibration generated...
Modal response of 4-rod type radio frequency quadrupole linac
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Avik; Mahapatra, Abhijit [Central Mechanical Engineering Research Institute (CMERI), M.G. Avenue, Durgapur 713209 (India); Mondal, Manas; Chakrabarti, Alok [Variable Energy Cyclotron Centre (VECC), Sector-1/AF, Bidhannagar, Kolkata 700064 (India)
2009-10-15
This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.
Day-Ahead Scheduling Considering Demand Response as a Frequency Control Resource
Directory of Open Access Journals (Sweden)
Yu-Qing Bao
2017-01-01
Full Text Available The development of advanced metering technologies makes demand response (DR able to provide fast response services, e.g., primary frequency control. It is recognized that DR can contribute to the primary frequency control like thermal generators. This paper proposes a day-ahead scheduling method that considers DR as a frequency control resource, so that the DR resources can be dispatched properly with other resources. In the proposed method, the objective of frequency control is realized by defining a frequency limit equation under a supposed contingency. The frequency response model is used to model the dynamics of system frequency. The nonlinear frequency limit equation is transformed to a linear arithmetic equation by piecewise linearization, so that the problem can be solved by mixed integer linear programming (MILP. Finally, the proposed method is verified on numerical examples.
Frequency Response Function Based Damage Identification for Aerospace Structures
Oliver, Joseph Acton
Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite
Improved Controller Design of Grid Friendly™ Appliances for Primary Frequency Response
Energy Technology Data Exchange (ETDEWEB)
Lian, Jianming; Sun, Yannan; Marinovici, Laurentiu D.; Kalsi, Karanjit
2015-09-01
The Grid Friendly$^\\textrm{TM}$ Appliance~(GFA) controller, developed at Pacific Northwest National Laboratory, can autonomously switch off the appliances by detecting the under-frequency events. In this paper, the impacts of curtailing frequency threshold on the performance of frequency responsive GFAs are carefully analyzed first. The current method of selecting curtailing frequency thresholds for GFAs is found to be insufficient to guarantee the desired performance especially when the frequency deviation is shallow. In addition, the power reduction of online GFAs could be so excessive that it can even impact the system response negatively. As a remedy to the deficiency of the current controller design, a different way of selecting curtailing frequency thresholds is proposed to ensure the effectiveness of GFAs in frequency protection. Moreover, it is also proposed to introduce a supervisor at each distribution feeder to monitor the curtailing frequency thresholds of online GFAs and take corrective actions if necessary.
Ultra-wide frequency response measurement of an optical system with a DC photo-detector
Kuntz, Katanya B; Song, Hongbin; Webb, James G; Mabrok, Mohamed A; Huntington, Elanor H; Yonezawa, Hidehiro
2016-01-01
Precise knowledge of an optical device's frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity's optical response as a function of modulation frequency, which is also used to determine the modulator's frequency response. Knowledge of the frequency-dependent modulation d...
Developmental changes in ERP responses to spatial frequencies
van den Boomen, Carlijn; Jonkman, Lisa M; Jaspers-Vlamings, Petra H J M; Cousijn, Janna; Kemner, Chantal
2015-01-01
Social interaction starts with perception of other persons. One of the first steps in perception is processing of basic information such as spatial frequencies (SF), which represent details and global information. However, although behavioural perception of SF is well investigated, the developmental
Sudarshanam, V. S.; Claus, Richard O.
1993-03-01
A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.
The effect of feeding frequency on insulin and ghrelin responses in human subjects
DEFF Research Database (Denmark)
Solomon, Thomas; Chambers, Edward S; Jeukendrup, Asker E;
2008-01-01
Recent work shows that increased meal frequency reduces ghrelin responses in sheep. Human research suggests there is an interaction between insulin and ghrelin. The effect of meal frequency on this interaction is unknown. Therefore, we investigated the effect of feeding frequency on insulin and g...... might be due, at least partially, to the rise in insulin and that high-frequency feeding may disrupt this relationship....
Aeroelastic modal dynamics of wind turbines including anisotropic effects
Energy Technology Data Exchange (ETDEWEB)
Fisker Skjoldan, P.
2011-03-15
Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies, damping, and periodic mode shapes of a rotating wind turbine by describing the rotor degrees of freedom in the inertial frame. This approach is valid only for an isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating in wind shear, are treated with the general approaches of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases are small, but indicate that the controller creates nonlinear damping. In isotropic conditions the periodic mode shape contains up to three harmonic components, but in anisotropic conditions it can contain an infinite number of harmonic components with frequencies that are multiples of the rotor speed. These harmonics appear in calculated frequency responses of the turbine. Extreme wind shear changes the modal damping when the flow is separated due to an interaction between
Effects of quinine on the mechanical frequency response of the cupula in the fish lateral line.
van Netten, S M; Karlsson, K K; Khanna, S M; Flock, A
1994-03-01
Quinine induces changes in the motion of the cupula in the lateral line canal of the African knife-fish in response to sinusoidal water movements. Two different phases in the action of quinine on the cupular frequency response can be discerned. In the first phase the best frequency, i.e., the frequency at which the cupular vibratory displacement is maximal in response to constant-amplitude sinusoidal canal fluid displacement, shifts toward higher frequencies. During this phase, lasting about 70-100 min, the best frequency increases by a factor between 1.3 and 1.5. In the second phase, during roughly the following 90 min, the best frequency decreases gradually to a value 0.3-0.5 times that observed before the application of quinine.
Test method of frequency response based on diamond surface acoustic wave devices
Institute of Scientific and Technical Information of China (English)
CHEN Xi-ming; YANG Bao-he; WU Xiao-guo; WU Yi-zhuo
2011-01-01
In order to reduce the noises affixed to the signals when testing high frequency devices, a single-port test mode (S11) is used to test frequency response of high frequency (GHz) and dual-port surface acoustic wave devices (SAWDs) in this paper.The feasibility of the test is proved by simulating the Fabry-Perot model. The frequency response of the high-frequency dual-port resonant-type diamond SAWD is measured by S11 and the dual-port test mode (S21), respectively. The results show that the quality factor of the device is 51.29 and the 3 dB bandwidth is 27.8 MHz by S11 -mode measurement, which is better than the S21 mode, and is consistent with the frequency response curve by simulation.
Energy Technology Data Exchange (ETDEWEB)
Borgne, H.
2004-12-01
Seismic imaging is an important tool for ail exploration. From the filtered seismic traces and a subsurface velocity model, migration allows to localize the reflectors and to estimate physical properties of these interfaces. The subsurface is split up into a reference medium, corresponding to the low spatial frequencies (a smooth medium), and a perturbation medium, corresponding to the high spatial frequencies. The propagation of elastic waves in the medium of reference is modelled by the ray theory. The association of this theory with a principle of diffraction or reflection allows to take into account the high spatial frequencies: the Kirchhoff approach represents so the medium of perturbations with continuous surfaces, characterized by reflection coefficients. The target of the quantitative migration is to reconstruct this reflection coefficient, notably its behaviour according to the incidence angle. These information will open the way to seismic characterization of the reservoir domain, with. a stratigraphic inversion for instance. In order to improve the qualitative and quantitative migration results, one of the current challenges is to take into account the anisotropy of the subsurface. Taking into account rocks anisotropy in the imaging process of seismic data requires two improvements from the isotropic case. The first one roughly concerns the modelling aspect: an anisotropic propagator should be used to avoid a mis-positioning or bad focusing of the imaged reflectors. The second correction concerns the migration aspect: as anisotropy affects the reflectivity of subsurface, a specific anisotropic imaging formula should be applied in the migration kernel, in order to recover the correct A V A behavior of the subsurface reflectors, If the first correction is DOW made in most so-called anisotropic imaging algorithms, the second one is currently ignored. The first part of my work concerns theoretical aspects. 1 study first the preservation of amplitudes in the
Correction of frequency response of infrared photodetector signal path
Opalska, Katarzyna
2016-09-01
The paper presents the investigations targeted at broadening the bandwidth of the high speed photodector signal path. Photodetector output signal is formed in the signal path composed of the photodiode with appropriate cooling circuitry, short segment of transmission line and a high-speed amplifier. Bandwidth widening is achieved by including extra circuits in the signal tract (lossless and possibly also lossy one), which - together with inevitable mismatch at both ends of the transmission line - enable correction of the frequency characteristic. The trade-offs between gain, ripples of the AC characteristic and bandwidth are studied and presented in the paper.
Mortazavi, Bohayra; Shahrokhi, Masoud; Makaremi, Meysam; Rabczuk, Timon
2017-03-01
Transition metal carbides include a wide variety of materials with attractive properties that are suitable for numerous and diverse applications. A most recent experimental advance could provide a path toward the successful synthesis of large-area and high-quality ultrathin Mo2C membranes with superconducting properties. In the present study, we used first-principles density functional theory calculations to explore the mechanical and optical response of single-layer and free-standing Mo2C. Uniaxial tensile simulations along the armchair and zigzag directions were conducted and we found that while the elastic properties are close along various loading directions, the nonlinear regimes in stress-strain curves are considerably different. We found that Mo2C sheets present negative Poisson’s ratio and thus can be categorized as an auxetic material. Our simulations also reveal that Mo2C films retain their metallic electronic characteristic upon uniaxial loading. We found that for Mo2C nanomembranes the dielectric function becomes anisotropic along in-plane and out-of-plane directions. Our findings can be useful for the practical application of Mo2C sheets in nanodevices.
A double expansion method for the frequency response of finite-length beams with periodic parameters
Ying, Z. G.; Ni, Y. Q.
2017-03-01
A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response
Efficient 3D frequency response modeling with spectral accuracy by the rapid expansion method
Chu, Chunlei
2012-07-01
Frequency responses of seismic wave propagation can be obtained either by directly solving the frequency domain wave equations or by transforming the time domain wavefields using the Fourier transform. The former approach requires solving systems of linear equations, which becomes progressively difficult to tackle for larger scale models and for higher frequency components. On the contrary, the latter approach can be efficiently implemented using explicit time integration methods in conjunction with running summations as the computation progresses. Commonly used explicit time integration methods correspond to the truncated Taylor series approximations that can cause significant errors for large time steps. The rapid expansion method (REM) uses the Chebyshev expansion and offers an optimal solution to the second-order-in-time wave equations. When applying the Fourier transform to the time domain wavefield solution computed by the REM, we can derive a frequency response modeling formula that has the same form as the original time domain REM equation but with different summation coefficients. In particular, the summation coefficients for the frequency response modeling formula corresponds to the Fourier transform of those for the time domain modeling equation. As a result, we can directly compute frequency responses from the Chebyshev expansion polynomials rather than the time domain wavefield snapshots as do other time domain frequency response modeling methods. When combined with the pseudospectral method in space, this new frequency response modeling method can produce spectrally accurate results with high efficiency. © 2012 Society of Exploration Geophysicists.
Fast Anisotropic Gauss Filtering
Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.
2002-01-01
We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction followed by a one dimensional filter in a non-orthogonal direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computin
Fast Anisotropic Gauss Filters
Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.
2003-01-01
We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computing perspective. An implementation scheme for normal covolution and f
Placidi, Luca; Seddik, Hakime; Faria, Sergio H
2009-01-01
A complete theoretical presentation of the CAFFE model (Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large ice masses in which the induced anisotropy can not be neglected. The anisotropic response of the material is considered via a simple anisotropic generalization of Glen's flow law based on a scalar anisotropic enhancement factor. Such an enhancement factor depends upon the orientation mass density, that corresponds to the distribution of lattice orientations or simply to the orientation distribution function. The evolution of anisotropy is assumed to be modeled by the evolution of the orientation mass density, that is governed by the balance of mass of the present mixture with continuous diversity and explicitly depends upon four distinct effects interpreted, respectively, with grain rotation, local rigid body rotation, grain boundary migration (...
Impulse and Frequency Response of a Moving Coil Galvanometer.
McNeill, D. J.
1985-01-01
Describes an undergraduate laboratory experiment in which a moving coil galvanometer is studied and the electromotive force generated by the swinging coil provides the impulse response information in a form suitable for digitizing and inputing to a microcomputer. Background information and analysis of typical data are included. (JN)
Aeroelastic modal dynamics of wind turbines including anisotropic effects
DEFF Research Database (Denmark)
Skjoldan, Peter Fisker
, damping, and periodic mode shapes of a rotating wind turbine by describing the rotor degrees of freedom in the inertial frame. This approach is valid only for an isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating in wind shear, are treated with the general approaches...... of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal...... frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions...
Ultra-wide frequency response measurement of an optical system with a DC photo-detector
Kuntz, Katanya B.
2017-01-09
Precise knowledge of an optical device\\'s frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity\\'s optical response as a function of modulation frequency, which is also used to determine the modulator\\'s frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity\\'s characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.
Variable Temperature High-Frequency Response of Heterostructure Transistors
Laskar, Joy
1992-01-01
The development of high performance heterostructure transistors is essential for emerging opto-electronic integrated circuits (OEICs) and monolithic microwave integrated circuits (MMICs). Applications for OEICs and MMICs include the rapidly growing telecommunications and personal communications markets. The key to successful OEIC and MMIC chip sets is the development of high performance, cost-effective technologies. In this work, several different transistor structures are investigated to determine the potential for high speed performance and the physical mechanisms controlling the ultimate device operation. A cryogenic vacuum microwave measurement system has been developed to study the high speed operation of modulation doped field-effect transistors (MODFETs), doped channel metal insulator field-effect transistors (MISFETs), and metal semiconductor field-effect transistors (MESFETs). This study has concluded that the high field velocity and not the low field mobility is what controls high frequency operation of GaAs based field-effect transistors. Both Al_{rm x} Ga_{rm 1-x}As/GaAs and InP/In_{rm y}Ga _{rm 1-y}As heterostructure bipolar transistors (HBTs) have also been studied at reduced lattice temperatures to understand the role of diffusive transport in the Al_{rm x} Ga_{rm 1-x}As/GaAs HBT and nonequilibrium transport in the InP/In _{rm y}Ga_ {rm 1-y}As HBT. It is shown that drift/diffusion formulation must be modified to accurately estimate the base delay time in the conventional Al _{rm x}Ga_ {rm 1-x}As/GaAs HBT. The reduced lattice temperature operation of the InP/In_ {rm y}Ga_{rm 1-y}As HBT demonstrates extreme nonequilibrium transport in the neutral base and collector space charge region with current gain cut-off frequency exceeding 300 GHz, which is the fastest reported transistor to date. Finally, the MODFET has been investigated as a three-terminal negative differential resistance (NDR) transistor. The existence of real space transfer is confirmed by
Experimental study on vibration frequency response of micro-bend optic-fiber sensor
Institute of Scientific and Technical Information of China (English)
Fuxiang Qin; Honggang Li; Wande Fan; Qiuqin Sheng
2009-01-01
We make an experimental study on vibration frequency response of micro-bend optic-fiber sensor, and single-mode fibers and multi-mode fibers are used as the sensitive optic-fibers. Contrast between the two sensitive fibers is presented. Result shows that the micro-bend optic-fiber sensor has good frequency response characteristics and strong ability to restore the waveform. With the frequency varying in the range of 500 - 4762 Hz, the vibration sensors using multi-mode optic-fiber as the sensitive fiber is more sensitive than that using single-mode optic-fiber. And the former has better frequency response characteristics and stronger capacity of waveform revivification. But with the frequency in the range of 287 - 500 Hz, the latter is better.
Acoustics of fish shelters: frequency response and gain properties.
Lugli, Marco
2012-11-01
Many teleosts emit sounds from cavities beneath stones and other types of submerged objects, yet the acoustical properties of fish shelters are virtually unexplored. This study examines the gain properties of shelters commonly used by Mediterranean gobies as hiding places and/or nest sites in the field (flat stones, shells belonging to five bivalve species), or within aquarium tanks (tunnel-shaped plastic covers, concrete blocks, concrete cylinder pipe, halves of terracotta flower pots). All shelters were acoustically stimulated using a small underwater buzzer, placed inside or around the shelter to mimic a fish calling from the nest site, and different types of driving stimuli (white noise, pure tones, and artificial pulse trains). Results showed the presence of significant amplitude gain (3-18 dB) at frequencies in the range 100-150 Hz in all types of natural shelters but one (Mytilus), terracotta flower pots, and concrete blocks. Gain was higher for stones and artificial shelters than for shells. Gain peak amplitude increased with the weight of stones and shells. Conclusions were verified by performing analogous acoustical tests on flat stones in the stream. Results draw attention to the use of suitable shelters for proper recording of sounds produced by fishes kept within laboratory aquaria.
H.R.A.P. Geis (H.-Rüdiger A.P.); J.G.G. Borst (Gerard)
2013-01-01
textabstractFrequency modulations occur in many natural sounds, including vocalizations. The neuronal response to frequency modulated (FM) stimuli has been studied extensively in different brain areas, with an emphasis on the auditory cortex and the central nucleus of the inferior colliculus. Here,
Study on DFIG wind turbines control strategy for improving frequency response characteristics
Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu
2012-01-01
The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.
Unfolded Frequency Response and Model of a Multi-Tap Direct Sampling Mixer
Institute of Scientific and Technical Information of China (English)
PAN Yun; GE Ning; DONG Zaiwang
2008-01-01
A transform method was used to model a discrete time multi-tap direct sampling mixer. The method transforms the mixed filtering and down.sampling stages to separate cascade filtering and sampling stages to determine the unfolded frequency response which shows the anti-aliasing ability of the mixer. The transformation can also be applied to other mixed signal and multi-rate receiver systems to analyze their unfolded frequency responses. The transformed system architecture was used to calculate the unfolded frequency response of the multi-tap direct sampling mixer and compared with the mixer model without noise in the ad-vanced design system 2005A environment to further evaluate the frequency response. The simulations show that the -3 dB bandwidth is 3.0 MHz and the voltage gain is attenuated by 1.5 dB within a 1-MHz baseband bandwidth.
Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao
2013-01-01
The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.
High frequency wide-band transformer uses coax to achieve high turn ratio and flat response
De Parry, T.
1966-01-01
Center-tap push-pull transformer with toroidal core helically wound with a single coaxial cable creates a high frequency wideband transformer. This transformer has a high-turn ratio, a high coupling coefficient, and a flat broadband response.
Developmental changes in ERP responses to spatial frequencies.
Directory of Open Access Journals (Sweden)
Carlijn van den Boomen
Full Text Available Social interaction starts with perception of other persons. One of the first steps in perception is processing of basic information such as spatial frequencies (SF, which represent details and global information. However, although behavioural perception of SF is well investigated, the developmental trajectory of the temporal characteristics of SF processing is not yet well understood. The speed of processing of this basic visual information is crucial, as it determines the speed and possibly accuracy of subsequent visual and social processes. The current study investigated developmental changes in the temporal characteristics of selective processing of high SF (HSF; details versus low SF (LSF; global. To this end, brain activity was measured using EEG in 108 children aged 3-15 years, while HSF or LSF grating stimuli were presented. Interest was in the temporal characteristics of brain activity related to LSF and HSF processing, specifically at early (N80 or later (P1 or N2 peaks in brain activity. Analyses revealed that from 7-8 years onwards HSF but not LSF stimuli evoked an N80 peak. In younger children, aged 3-8 years, the visual manipulation mainly affected the visual N2 peak. Selective processing of HSF versus LSF thus occurs at a rather late time-point (N2 peak in young children. Although behavioural research previously showed that 3-6 year-olds can perceive detailed information, the current results point out that selective processing of HSF versus LSF is still delayed in these children. The delayed processing in younger children could impede the use of LSF and HSF for emotional face processing. Thus, the current study is a starting point for understanding changes in basic visual processing which underlie social development.
Neuromagnetic auditory steady state response to chords: effect of frequency ratio.
Otsuka, Asuka; Yumoto, Masato; Kuriki, Shinya; Nakagawa, Seiji
2013-01-01
Perceptual degree of consonance or dissonance of a chord is known to be varied as a function of frequency ratio between tones composing the chord. It has been indicated that generation of a sense of dissonance is associated with the auditory steady-state response (ASSR) phase-locked to difference frequencies which are salient in the chords with complex frequency ratios. This study further investigated how the neuromagnetic ASSR would be modulated as a function of the frequency ratio when the acoustic properties of the difference frequency, to which the ASSR was synchronized, was identical in terms of its number, energy and frequency. Neuronal frequency characteristics intrinsic to the ASSR were compensated by utilizing responses to a SAM (Sinusoidally Amplitude Modulated) chirp tone sweeping through the corresponding frequency range. The results showed that ASSR was significantly smaller for the chords with simple frequency ratios than for those with complex frequency ratios. It indicates that the basic neuronal correlates underlying the sensation of consonance/dissonance might be associated with the attenuation rate applied to encode the input information through the afferent auditory pathway. Attentional gating of the thalamo-cortical function might also be one of the factors.
Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.
2017-01-01
We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.
Effects of mistuning and matrix structure on the topology of frequency response curves
Afolabi, Dare
1989-01-01
The stability of a frequency response curve under mild perturbations of the system's matrix is investigated. Using recent developments in the theory of singularities of differentiable maps, it is shown that the stability of a response curve depends on the structure of the system's matrix. In particular, the frequency response curves of a cylic system are shown to be unstable. Consequently, slight parameter variations engendered by mistuning will induce a significant difference in the topology of the forced response curves, if the mistuning transformation crosses the bifurcation set.
Di Lillo, Luigi; Bergamini, Andrea; Albino Carnelli, Dario; Ermanni, Paolo
2012-07-01
A physical model for the frequency-dependent dielectric response of multilayered structures is reported. Two frequency regimes defined by the relative permittivities and volume resistivities of the layers have been analytically identified and experimentally investigated on a structure consisting of polyimide and poly(vinilydenefluoride) layers. The relative permittivity follows an effective medium model at high frequency while showing a dependence on the volume resistivity at low frequency. In this regime, relative permittivities exceeding those expected from effective medium model are recorded. These findings provide insights into inhomogeneous dielectrics behavior for the development of high energy density dielectric films.
Institute of Scientific and Technical Information of China (English)
何艳丽; 董石麟
2002-01-01
Large span spatial lattice structures have many natural frequencies in a narrow frequency range, the conventional frequency domain method is difficult to contain all significant contribution modes. Through numerical examples, it is found that some high order modes are likely to be overlooked because of their higher positions of modal order, in spite of their significance to wind response. According to the contributions of modes to strain energy of system, the paper presented an efficient method to compensate the errors owing to missing out some significant high order modes. The effectiveness of the proposed method is verified through a numerical analysis of the wind responses of a spherical dome.
Rapid estimation of frequency response functions by close-range photogrammetry
Tripp, J. S.
1985-01-01
The accuracy of a rapid method which estimates the frequency response function from stereoscopic dynamic data is computed. It is shown that reversal of the order of the operations of coordinate transformation and Fourier transformation, which provides a significant increase in computational speed, introduces error. A portion of the error, proportional to the perturbation components normal to the camera focal planes, cannot be eliminated. The remaining error may be eliminated by proper scaling of frequency data prior to coordinate transformation. Methods are developed for least squares estimation of the full 3x3 frequency response matrix for a three dimensional structure.
Hierarchical Decentralized Control Strategy for Demand-Side Primary Frequency Response
Energy Technology Data Exchange (ETDEWEB)
Lian, Jianming; Hansen, Jacob; Marinovici, Laurentiu D.; Kalsi, Karanjit
2016-07-21
The Grid Friendly$^\\textrm{TM}$ Appliance~(GFA) controller, developed at Pacific Northwest National Laboratory, was designed for the purpose of autonomously switching off appliances by detecting under-frequency events. In this paper, a new frequency responsive load~(FRL) controller is first proposed by extending the functionality of the original GFA controller. The proposed FRL controller can autonomously switch on (or off) end-use loads by detecting over-frequency (or under-frequency) events through local frequency measurement. Then, a hierarchical decentralized control framework is developed for engaging the end-use loads to provide primary frequency response with the proposed FRL controller. The developed framework has several important features that are desirable in terms of providing primary frequency control. It not only exclusively maintains the autonomous operation of the end-use loads, but also effectively overcomes the stability issue associated with high penetration of FRLs. The simulation results illustrate the effectiveness of the developed hierarchical control framework for providing primary frequency response with the proposed FRL controller.
Implementation of Time and Frequency Response Analysis for Web-Based Laboratories
Directory of Open Access Journals (Sweden)
Teyana Sapula
2011-04-01
Full Text Available The University of Dar Es Salaam has developed the web-based laboratory for Time and Frequency Response Analysis. The purpose of this web-based laboratory is the utilization of real data from real experiments, in terms of instrumentation and experimental circuits, rather than simulations. The use of webbased laboratory came after realizing the difficulties imposed by the traditional laboratories. Web-based laboratories allow students and educators to interact with real laboratory equipment located anywhere in the world at anytime. This paper presents the implementation of web-based laboratory of single stage common emitter, resistor capacitor coupled amplifier using National Instruments Educational Laboratory Virtual Instrument Suite platform. Two components are deployed: time response analysis and frequency response analysis. The experiment allows students to carryout time and frequency analysis of the amplifier. The modular can be used to any microelectronic circuits to carry out any time response and frequency response analysis. Both the time response and frequency response analysis results of the amplifier are validated.
Anisotropic Contrast Optical Microscope
Peev, D; Kananizadeh, N; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M
2016-01-01
An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. We demonstrate the anisotropic contrast optical microscope by mea...
One-Dimensional Anisotropic Band Gap Structure
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.
On the quantification of SSVEP frequency responses in human EEG in realistic BCI conditions.
Directory of Open Access Journals (Sweden)
Rafał Kuś
Full Text Available This article concerns one of the most important problems of brain-computer interfaces (BCI based on Steady State Visual Evoked Potentials (SSVEP, that is the selection of the a-priori most suitable frequencies for stimulation. Previous works related to this problem were done either with measuring systems that have little in common with actual BCI systems (e.g., single flashing LED or were presented on a small number of subjects, or the tested frequency range did not cover a broad spectrum. Their results indicate a strong SSVEP response around 10 Hz, in the range 13-25 Hz, and at high frequencies in the band of 40-60 Hz. In the case of BCI interfaces, stimulation with frequencies from various ranges are used. The frequencies are often adapted for each user separately. The selection of these frequencies, however, was not yet justified in quantitative group-level study with proper statistical account for inter-subject variability. The aim of this study is to determine the SSVEP response curve, that is, the magnitude of the evoked signal as a function of frequency. The SSVEP response was induced in conditions as close as possible to the actual BCI system, using a wide range of frequencies (5-30 Hz, in step of 1 Hz. The data were obtained for 10 subjects. SSVEP curves for individual subjects and the population curve was determined. Statistical analysis were conducted both on the level of individual subjects and for the group. The main result of the study is the identification of the optimal range of frequencies, which is 12-18 Hz, for the registration of SSVEP phenomena. The applied criterion of optimality was: to find the largest contiguous range of frequencies yielding the strong and constant-level SSVEP response.
DEFF Research Database (Denmark)
Strelcyk, Olaf; Christoforidis, Dimitrios; Dau, Torsten
2009-01-01
for some of the HI listeners. The behavioral auditory-filter bandwidths accounted for the across-listener variability in the ABR latencies: Cochlear response time decreased with increasing filter bandwidth, consistent with linear-system theory. The results link cochlear response time and frequency...
Adams, T. N. G.; Leonard, K. M.; Minerick, A. R.
2013-01-01
Alternating current (AC) dielectrophoresis (DEP) experiments for biological particles in microdevices are typically done at a fixed frequency. Reconstructing the DEP response curve from static frequency experiments is laborious, but essential to ascertain differences in dielectric properties of biological particles. Our lab explored the concept of sweeping the frequency as a function of time to rapidly determine the DEP response curve from fewer experiments. For the purpose of determining an ideal sweep rate, homogeneous 6.08 μm polystyrene (PS) beads were used as a model system. Translatability of the sweep rate approach to ∼7 μm red blood cells (RBC) was then verified. An Au/Ti quadrapole electrode microfluidic device was used to separately subject particles and cells to 10Vpp AC electric fields at frequencies ranging from 0.010 to 2.0 MHz over sweep rates from 0.00080 to 0.17 MHz/s. PS beads exhibited negative DEP assembly over the frequencies explored due to Maxwell-Wagner interfacial polarizations. Results demonstrate that frequency sweep rates must be slower than particle polarization timescales to achieve reliable incremental polarizations; sweep rates near 0.00080 MHz/s yielded DEP behaviors very consistent with static frequency DEP responses for both PS beads and RBCs. PMID:24396548
Directory of Open Access Journals (Sweden)
Alexandre Lehmann
Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.
Lehmann, Alexandre; Schönwiesner, Marc
2014-01-01
Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.
General-form 3-3-3 interpolation kernel and its simplified frequency-response derivation
Deng, Tian-Bo
2016-11-01
An interpolation kernel is required in a wide variety of signal processing applications such as image interpolation and timing adjustment in digital communications. This article presents a general-form interpolation kernel called 3-3-3 interpolation kernel and derives its frequency response in a closed-form by using a simple derivation method. This closed-form formula is preliminary to designing various 3-3-3 interpolation kernels subject to a set of design constraints. The 3-3-3 interpolation kernel is formed through utilising the third-degree piecewise polynomials, and it is an even-symmetric function. Thus, it will suffice to consider only its right-hand side when deriving its frequency response. Since the right-hand side of the interpolation kernel contains three piecewise polynomials of the third degree, i.e. the degrees of the three piecewise polynomials are (3,3,3), we call it the 3-3-3 interpolation kernel. Once the general-form frequency-response formula is derived, we can systematically formulate the design of various 3-3-3 interpolation kernels subject to a set of design constraints, which are targeted for different interpolation applications. Therefore, the closed-form frequency-response expression is preliminary to the optimal design of various 3-3-3 interpolation kernels. We will use an example to show the optimal design of a 3-3-3 interpolation kernel based on the closed-form frequency-response expression.
Effect of ischemia and cooling on the response to high frequency stimulation in rat tail nerves
DEFF Research Database (Denmark)
Andersen, Henning; Feldbæk Nielsen, Jørgen; Sørensen, Bodil
2000-01-01
In normal rat tail nerves the effect of temperature and ischemia on the response to long-term high frequency stimulation (HFS) (143 Hz) was studied. The effect of temperature was studied in two consecutive tests at 14 degrees C and 35 degrees C. Prior to the HFS the peak-to-peak amplitude (PP-amp...... ischemia to the rat tail, an additional fall of the PP-amp was seen after 15-20 min of HFS at both low (20 Hz) and high (143 Hz) stimulation frequencies. In conclusion, ischemia and cooling result in an impaired ability to transmit high frequency impulses.......In normal rat tail nerves the effect of temperature and ischemia on the response to long-term high frequency stimulation (HFS) (143 Hz) was studied. The effect of temperature was studied in two consecutive tests at 14 degrees C and 35 degrees C. Prior to the HFS the peak-to-peak amplitude (PP...
Directory of Open Access Journals (Sweden)
D. L. Alvarez
2015-11-01
Full Text Available In this paper the influence of core parameters in Frequency Response Analysis is analyzed through the equivalent circuit impedance matrix of the transformer winding; the parameters of the circuit have been computed using the Finite Element Method. In order to appreciate the behavior of the iron core in comparison to the air core, the frequency dependence of resonances is calculated to show how the air core only influences the results at low frequencies. The core is modeled using a complex permeability, and the parameters of conductivity and permeability are varied to show their influence in the resonances, which turned out to be negligible. In order to explain this behavior, the eigenvalues of the inverse impedance matrix are calculated showing that they are similar for different values of conductivity and permeability. Finally, the magnetic flux inside and outside the core and its influence in the frequency response is studied.
Liquid-filled transient pressure measuring systems: A method for determining frequency response
Anderson, R. C.; Englund, D. R., Jr.
1971-01-01
An equation is given and experimentally verified for computing the resonant frequency of liquid-filled transient pressure measuring systems. Resonant frequencies of 100 to 1000 Hz are typical of those systems tested. The effect of noncondensable gas bubbles on system response is described. A method for determining transducer volumetric compliance is presented. An example system is described and analyzed to demonstrate the use of the theory.
Frequency response of the vestibulo-ocular reflex /VOR/ in the monkey
Buettner, U. W.; Henn, V.; Young, L. R.
1981-01-01
The frequency response of the vestibulo-ocular reflex has been investigated in the alert monkey during sinusoidal rotation about a vertical axis in a frequency range of 0.001-0.5 Hz. Phase and gain of nystagmus slow phase velocity was determined. In the frequency range above 0.1 Hz, nystagmus slow phase velocity was in phase with (compensated for) head velocity. At lower frequencies, an increasing phase lead was present which could reach more than 90 deg. Gain fell off correspondingly at low frequencies. Calculated time constants were 10-40 s in different monkeys. Animals which had been exposed to numerous previous rotary stimuli in the laboratory showed much shorter time constants than did 'native' monkeys.
Neural Network Model Of The PXIE RFQ Cooling System and Resonant Frequency Response
Energy Technology Data Exchange (ETDEWEB)
Edelen, Auralee [Fermilab; Biedron, Sandra [Colorado State U., Fort Collins; Bowring, Daniel [Fermilab; Chase, Brian [Fermilab; Edelen, Jonathan [Fermilab; Milton, Stephen [Colorado State U., Fort Collins; Steimel, Jim [Fermilab
2016-06-01
As part of the PIP-II Injector Experiment (PXIE) accel-erator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H' ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model of the RFQ frequency response to changes in the cooling system and RF power conditions during pulsed operation. A neural network model will be used in a model predictive control scheme to regulate the resonant frequency of the RFQ.
Design PID controllers for desired time-domain or frequency-domain response.
Zhang, Weidong; Xi, Yugeng; Yang, Genke; Xu, Xiaoming
2002-10-01
Practical requirements on the design of control systems, especially process control systems, are usually specified in terms of time-domain response, such as overshoot and rise time, or frequency-domain response, such as resonance peak and stability margin. Although numerous methods have been developed for the design of the proportional-integral-derivative (PID) controller, little work has been done in relation to the quantitative time-domain and frequency-domain responses. In this paper, we study the following problem: Given a nominal stable process with time delay, we design a suboptimal PID controller to achieve the required time-domain response or frequency-domain response for the nominal system or the uncertain system. An H(infinity) PID controller is developed based on optimal control theory and the parameters are derived analytically. Its properties are investigated and compared with that of two developed suboptimal controllers: an H2 PID controller and a Maclaurin PID controller. It is shown that all three controllers can provide the quantitative time-domain and frequency-domain responses.
Calibration scheme for large Kinetic Inductance Detector Arrays based on Readout Frequency Response
Bisigello, L; Murugesan, V; Baselmans, J J A; Baryshev, A M
2016-01-01
Microwave kinetic inductance detector (MKID) provides a way to build large ground based sub-mm instruments such as NIKA and A-MKID. For such instruments, therefore, it is important to understand and characterize the response to ensure good linearity and calibration over wide dynamic range. We propose to use the MKID readout frequency response to determine the MKID responsivity to an input optical source power. A signal can be measured in a KID as a change in the phase of the readout signal with respect to the KID resonant circle. Fundamentally, this phase change is due to a shift in the KID resonance frequency, in turn due to a radiation induced change in the quasiparticle number in the superconducting resonator. We show that shift in resonant frequency can be determined from the phase shift by using KID phase versus frequency dependence using a previously measured resonant frequency. Working in this calculated resonant frequency, we gain near linearity and constant calibration to a constant optical signal ap...
Statistical Anisotropy from Anisotropic Inflation
Soda, Jiro
2012-01-01
We review an inflationary scenario with the anisotropic expansion rate. An anisotropic inflationary universe can be realized by a vector field coupled with an inflaton, which can be regarded as a counter example to the cosmic no-hair conjecture. We show generality of anisotropic inflation and derive a universal property. We formulate cosmological perturbation theory in anisotropic inflation. Using the formalism, we show anisotropic inflation gives rise to the statistical anisotropy in primordial fluctuations. We also explain a method to test anisotropic inflation using the cosmic microwave background radiation (CMB).
Brown, Andrew M.; Schmauch, Preston
2012-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engine turbines is to decompose a computational fluid dynamics (CFD).generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies using cyclically symmetric structural dynamic models. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non ]harmonic excitation sources that become present in complex flows. This complex content can only be captured by a CFD flow field encompassing at least an entire revolution. A substantial development effort to create a series of software programs to enable application of the 360 degree forcing function in a frequency response analysis on cyclic symmetric models has been completed (to be described in a future paper), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements and the disk modeled with plates (using the finite element code MSC/NASTRAN). The focus of this model is to be representative of response of realistic bladed disks, and so the dimensions are roughly equivalent to the new J2X rocket engine 1st stage fuel pump turbine. The simplicity of the model allows
Boundary implications for frequency response of interval FIR and IIR filters
Bose, N. K.; Kim, K. D.
1991-01-01
It is shown that vertex implication results in parameter space apply to interval trigonometric polynomials. Subsequently, it is shown that the frequency responses of both interval FIR and IIR filters are bounded by the frequency responses of certain extreme filters. The results apply directly in the evaluation of properties of designed filters, especially because it is more realistic to bound the filter coefficients from above and below instead of determining those with infinite precision because of finite arithmetic effects. Illustrative examples are provided to show how the extreme filters might be easily derived in any specific interval FIR or IIR filter design problem.
Effects of noise on the frequency response of the monostable Duffing oscillator
Perkins, Edmon
2017-03-01
The influence of noise on the frequency response of the monostable, hardening Duffing oscillator is studied. These changes are studied via the averaged dynamics (using Euler-Maruyama simulations) as well as experiments. It is found that for intermediate noise amplitudes, the qualitative shape of the frequency response curve is changed. For large noise amplitudes, the upper and lower branches of the hysteresis curve collapse into one curve. These results could be of practical significance, if an oscillator is desired to be placed on the upper or lower branch of the hysteresis curve.
Anisotropic hydrodynamics -- basic concepts
Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael
2013-01-01
Due to the rapid longitudinal expansion of the quark-gluon plasma created in relativistic heavy ion collisions, potentially large local rest frame momentum-space anisotropies are generated. The magnitude of these momentum-space anisotropies can be so large as to violate the central assumption of canonical viscous hydrodynamical treatments which linearize around an isotropic background. In order to better describe the early-time dynamics of the quark gluon plasma, one can consider instead expanding around a locally anisotropic background which results in a dynamical framework called anisotropic hydrodynamics. In this proceedings contribution we review the basic concepts of the anisotropic hydrodynamics framework presenting viewpoints from both the phenomenological and microscopic points of view.
Quasiparticle anisotropic hydrodynamics
Alqahtani, Mubarak
2016-01-01
We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.
Anisotropic contrast optical microscope
Peev, D.; Hofmann, T.; Kananizadeh, N.; Beeram, S.; Rodriguez, E.; Wimer, S.; Rodenhausen, K. B.; Herzinger, C. M.; Kasputis, T.; Pfaunmiller, E.; Nguyen, A.; Korlacki, R.; Pannier, A.; Li, Y.; Schubert, E.; Hage, D.; Schubert, M.
2016-11-01
An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves
Pérez-Nadal, Guillem
2016-01-01
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates "scaling like time" is generically greater than one. We propose the Cartesian product of two curved spaces, with the metric of each space parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry.
Molecular anisotropic magnetoresistance
Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy
2015-12-01
Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by 3 d transition-metal wires. We show that a gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symmetry filtering properties of the molecules. We further discuss how this molecular anisotropic magnetoresistance (MAMR) can be tuned by the proper choice of materials and their electronic properties.
Florkowski, W.; Maj, R.
The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.
Florkowski, Wojciech
2013-01-01
The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Sauvé, Alexandre; Montier, Ludovic
2016-12-01
Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. Results: The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.
Anisotropic models for compact stars
Maurya, S K; Ray, Saibal; Dayanandan, Baiju
2015-01-01
In the present paper we obtain an anisotropic analogue of Durgapal-Fuloria (1985) perfect fluid solution. The methodology consists of contraction of anisotropic factor $\\Delta$ by the help of both metric potentials $e^{\
Directory of Open Access Journals (Sweden)
A. Mirzajani
2006-07-01
Full Text Available Background/Objective: The brain response to temporal frequencies (TF has been already reported. However, there is no study on different TF with respect to various spatial frequencies (SF. Materials and Methods: Functional magnetic resonance imaging (fMRI was done by a 1.5 T General Electric system for 14 volunteers (9 males and 5 females, aged 19–26 years during square-wave reversal checkerboard visual stimulation with different temporal frequencies of 4, 6, 8 and 10 Hz in 2 states of low SF of 0.4 and high SF of 8 cycles/degree (cpd. All subjects had normal visual acuity of 20/20 based on Snellen’s fraction in each eye with good binocular vision and normal visual field based on confrontation test. The mean luminance of the entire checkerboard was 161.4 cd/m2 and the black and white check contrast was 96%. The activation map was created using the data obtained from the block designed fMRI study. Pixels with a Z score above a threshold of 2.3, at a statistical significance level of 0.05, were considered activated. The average percentage blood oxygenation level dependent (BOLD signal change for all activated pixels within the occipital lobe, multiplied by the total number of activated pixels within the occipital lobe, was used as an index for the magnitude of the fMRI signal at each state of TF&SF. Results: The magnitude of the fMRI signal in response to different TF’s was maximum at 6 Hz for a high SF value of 8 cpd; it was however, maximum at a TF of 8 Hz for a low SF of 0.4 cpd. Conclusion: The results of this study agree with those of animal invasive neurophysiologic studies showing SF and TF selectivity of neurons in visual cortex. These results can be useful for vision therapy and selecting visual tasks in fMRI studies.
Time-frequency analysis of railway bridge response in forced vibration
Cantero, Daniel; Ülker-Kaustell, Mahir; Karoumi, Raid
2016-01-01
This paper suggests the use of the Continuous Wavelet Transform in combination with the Modified Littlewood-Paley basis to analyse bridge responses exited by traversing trains. The analysis provides an energy distribution map in the time-frequency domain that offers a better resolution compared to previous published studies. This is demonstrated with recorded responses of the Skidträsk Bridge, a 36 m long composite bridge located in Sweden. It is shown to be particularly useful to understand ...
Reproductive phase locking of mosquito populations in response to rainfall frequency.
Directory of Open Access Journals (Sweden)
Jeffrey Shaman
Full Text Available The frequency of moderate to heavy rainfall events is projected to change in response to global warming. Here we show that these hydrologic changes may have a profound effect on mosquito population dynamics and rates of mosquito-borne disease transmission. We develop a simple model, which treats the mosquito reproductive cycle as a phase oscillator that responds to rainfall frequency forcing. This model reproduces observed mosquito population dynamics and indicates that mosquito-borne disease transmission can be sensitive to rainfall frequency. These findings indicate that changes to the hydrologic cycle, in particular the frequency of moderate to heavy rainfall events, could have a profound effect on the transmission rates of some mosquito-borne diseases.
Frequency response for electromotility of isolated outer hair cells of the guinea pig
Wit, HP; vanDijk, P; Segenhout, HM
1996-01-01
Frequency and impulse responses were determined for isolated guinea pig outer hair cells by electrically stimulating the cells between two wire electrodes with white noise. Cells were attached to the bottom of a small culture dish at one end while the other end was freely moving. Results have the ch
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Sebastiao E.M. de; Padua Guarini, Antonio de [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Souza, Joao A. de; Valgas, Helio M.; Pinto, Roberto del Giudice R. [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)
1994-12-31
This work describes the results of the set frequency response tests performed in the generator number 2, 6.9 kV, 25 MVA, of Camargos hydroelectric power plant, CEMIG, and the parameters relatives to determined structures of model. This tests are unpublished in Brazil. (author) 7 refs., 16 figs., 7 tabs.
Bias Errors due to Leakage Effects When Estimating Frequency Response Functions
Directory of Open Access Journals (Sweden)
Andreas Josefsson
2012-01-01
Full Text Available Frequency response functions are often utilized to characterize a system's dynamic response. For a wide range of engineering applications, it is desirable to determine frequency response functions for a system under stochastic excitation. In practice, the measurement data is contaminated by noise and some form of averaging is needed in order to obtain a consistent estimator. With Welch's method, the discrete Fourier transform is used and the data is segmented into smaller blocks so that averaging can be performed when estimating the spectrum. However, this segmentation introduces leakage effects. As a result, the estimated frequency response function suffers from both systematic (bias and random errors due to leakage. In this paper the bias error in the H1 and H2-estimate is studied and a new method is proposed to derive an approximate expression for the relative bias error at the resonance frequency with different window functions. The method is based on using a sum of real exponentials to describe the window's deterministic autocorrelation function. Simple expressions are derived for a rectangular window and a Hanning window. The theoretical expressions are verified with numerical simulations and a very good agreement is found between the results from the proposed bias expressions and the empirical results.
Directory of Open Access Journals (Sweden)
Liping Wang
2016-01-01
Full Text Available Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies.
Sauvé, Alexandre
2016-01-01
Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for {\
Sizing of an Energy Storage System for Grid Inertial Response and Primary Frequency Reserve
DEFF Research Database (Denmark)
Knap, Vaclav; Chaudhary, Sanjay Kumar; Stroe, Daniel Loan
2016-01-01
event in the power system with a high penetration of wind power. An energy storage system (ESS) might be a viable solution for providing inertial response and primary frequency regulation. A methodology has been presented here for the sizing of the ESS in terms of required power and energy. It describes...
Frequency response of vestibular reflexes in neck, back, and lower limb muscles
Forbes, P.A.; Dakin, C.J.; Vardy, A.N.; Happee, R.; Siegmund, G.P.; Schouten, A.C.; Blouin, J.S.
2013-01-01
Vestibular pathways form short-latency disynaptic connections with neck motoneurons, whereas they form longer-latency disynaptic and polysynaptic connections with lower limb motoneurons. We quantified frequency responses of vestibular reflexes in neck, back, and lower limb muscles to explain between
Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2004-01-01
In the present paper, the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserte...
Mid Frequency Shock Response Determination by Using Energy Flow Method and Time Domain Correction
Directory of Open Access Journals (Sweden)
Sung-Hyun Woo
2013-01-01
Full Text Available Shock induced vibration can be more crucial in the mid frequency range where the dynamic couplings with structural parts and components play important roles. To estimate the behavior of structures in this frequency range where conventional analytical schemes, such as statistical energy analysis (SEA and finite element analysis (FEA methods may become inaccurate, many alternative methodologies have been tried up to date. This study presents an effective and practical method to accurately predict transient responses in the mid frequency range without having to resort to the large computational efforts. Specifically, the present study employs the more realistic frequency response functions (FRFs from the energy flow method (EFM which is a hybrid method combining the pseudo SEA equation (or SEA-Like equation and modal information obtained by the finite element analysis (FEA. Furthermore, to obtain the time responses synthesized with modal characteristics, a time domain correction is practiced with the input force signal and the reference FRF on a position of the response subsystem. A numerical simulation is performed for a simple five plate model to show its suitability and effectiveness over the standard analytical schemes.
Directory of Open Access Journals (Sweden)
Lingyu Zhu
Full Text Available The capacitors in high-voltage direct-current (HVDC converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.
Role of Wind Power in Primary Frequency Response of an Interconnection: Preprint
Energy Technology Data Exchange (ETDEWEB)
Zhang, Y. C.; Gevorgian, V.; Ela, E.; Singhvi, V.; Pourbeik, P.
2013-09-01
The electrical frequency of an interconnection must be maintained very close to its nominal level at all times. Large frequency deviations can lead to unintended consequences such as load shedding, instability, and machine damage, among others. Turbine governors of conventional generating units provide primary frequency response (PFR) to ensure that frequency deviations are not significant duringlarge transient events. Increasing penetrations of variable renewable generation, such as wind and solar power, and planned retirements of conventional thermal plants - and thus a reduction in the amount of suppliers with PFR capabilities - causes concerns about a decline of PFR and system inertia in North America. The capability of inverter-coupled wind generation technologies to contribute toPFR and inertia, if appropriately equipped with the necessary control features, can help alleviate concerns. However, these responses differ from those supplied by conventional generation and inertia, and it is not entirely understood how variable renewable generation will affect the system response at different penetration levels. This paper evaluates the impact of wind generation providing PFRand synthetic inertial response on a large interconnection.
Piai, V.; Roelofs, A.P.A.; Maris, E.G.G.
2014-01-01
Two fundamental factors affecting the speed of spoken word production are lexical frequency and sentential constraint, but little is known about their timing and electrophysiological basis. In the present study, we investigated event-related potentials (ERPs) and oscillatory brain responses induced
Wahab, M Farooq; Dasgupta, Purnendu K; Kadjo, Akinde F; Armstrong, Daniel W
2016-02-11
With increasingly efficient columns, eluite peaks are increasingly narrower. To take full advantage of this, choice of the detector response time and the data acquisition rate a.k.a. detector sampling frequency, have become increasingly important. In this work, we revisit the concept of data sampling from the theorem variously attributed to Whittaker, Nyquist, Kotelnikov, and Shannon. Focusing on time scales relevant to the current practice of high performance liquid chromatography (HPLC) and optical absorbance detection (the most commonly used method), even for very narrow simulated peaks Fourier transformation shows that theoretical minimum sampling frequency is still relatively low (fast chromatography on a state-of-the-art column (38,000 plates), we evaluate the responses produced by different present generation instruments, each with their unique black box digital filters. We show that the common wisdom of sampling 20 points per peak can be inadequate for high efficiency columns and that the sampling frequency and response choices do affect the peak shape. If the sampling frequency is too low or response time is too large, the observed peak shapes will not remain as narrow as they really are - this is especially true for high efficiency and high speed separations. It is shown that both sampling frequency and digital filtering affect the retention time, noise amplitude, peak shape and width in a complex fashion. We show how a square-wave driven light emitting diode source can reveal the nature of the embedded filter. We discuss time uncertainties related to the choice of sampling frequency. Finally, we suggest steps to obtain optimum results from a given system.
Indian Academy of Sciences (India)
B B Bhowmik; A Rajput
2004-06-01
Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.
Wave propagation and radiation in gyrotropic and anisotropic media
Eroglu, Abdullah
2010-01-01
""Wave Propagation and Radiation in Gyrotropic and Anisotropic Media"" fills the gap in the area of applied electromagnetics for the design of microwave and millimeter wave devices using composite structures where gyrotropic, anisotropic materials are used. The book provides engineers with the information on theory and practical skills they need to understand wave propagation and radiation characteristics of materials and the ability to design devices at higher frequencies with optimum device performance.
Directory of Open Access Journals (Sweden)
David B. Stone
2014-11-01
Full Text Available Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46 and healthy controls (N = 57 using magnetoencephalography (MEG. Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia.
Hou, Chang-Yu; Sen, Pabitra N
2016-01-01
We study the low-frequency polarization response of a surface-charged oblate spheroidal particle immersed in an electrolyte solution. Because the charged spheroid attracts counter-ions which form the electric double layer around the particle, using usual boundary conditions at the interface between the particle and electrolyte can be quite complicated and challenging. Hence, we generalize Fixman's boundary conditions, originally derived for spherical particles, to the case of the charged oblate spheroid. Given two different counter-ion distributions in the thin electric double layer limit, we obtain analytic expressions for the polarization coefficients to the first non-trivial order in frequency. We find that the polarization response normal to the symmetry axis depends on the total amount of charge carried by the oblate spheroid while that parallel to the symmetry axis is suppressed when there is less charge on the edge of the spheroid. We further study the overall dielectric response for a dilute suspensio...
Behavioral responses by grey seals (Halichoerus grypus) to high frequency sonar.
Hastie, Gordon D; Donovan, Carl; Götz, Thomas; Janik, Vincent M
2014-02-15
The use of high frequency sonar is now commonplace in the marine environment. Most marine mammals rely on sound to navigate, and for detecting prey, and there is the potential that the acoustic signals of sonar could cause behavioral responses. To investigate this, we carried out behavioral response tests with grey seals to two sonar systems (200 and 375 kHz systems). Results showed that both systems had significant effects on the seals behavior; when the 200 kHz sonar was active, seals spent significantly more time hauled out and, although seals remained swimming during operation of the 375 kHz sonar, they were distributed further from the sonar. The results show that although peak sonar frequencies may be above marine mammal hearing ranges, high levels of sound can be produced within their hearing ranges that elicit behavioral responses; this has clear implications for the widespread use of sonar in the marine environment.
Estimation of bending wave intensity in beams using the frequency response technique
Linjama, J.; Lahti, T.
1992-02-01
The frequency response approach is applied to the measurement of bending wave intensity, with two or four accelerometers being used. Based on the known structural intensity equations, a comprehensive set of frequency domain expressions is derived for power measurements in a beam. A practical procedure is developed for the general four-transducer method, which allows a usual dual channel FFT analyzer to be employed in multi-channel measurements. The procedure uses the sequential frequency response technique, and is applicable if the situation remains stationary during the data acquisition. In addition, expressions are derived for the determination of the force- and moment-related bending wave power components separately. In a laboratory experiment, the power carried by bending waves was measured in a simple beam, and the methods developed were tested and compared. The frequency response approach was shown to work well in detecting the total power. The estimation of the two bending wave power components, both in the near and the far field, was also demonstrated.
Study of the frequency response of the mutual coupling between overhead lines
Directory of Open Access Journals (Sweden)
Selivanov V. N.
2016-12-01
Full Text Available The paper investigates the frequency response of the mutual coupling between multi-wire overhead lines with length comparable to the wavelengths of the highest power frequency harmonics. Deenergized overhead transmission lines are influenced by electromagnetic interference from neighboring in-service overhead lines, railway traction lines, as well as other extended conductors with currents. The voltages induced on the overhead lines are dangerous to life or health of maintenance personnel. The values of the induced voltages can be determined either by direct measurement or by calculation. The paper presents the results of experimental studies of double-circuit overhead lines of the Kola energy system. It has been shown that the frequency spectrum of the induced voltage is different from the spectrum of the source of interference, and this difference has a resonant nature. The amplitude of the voltage induced by higher harmonics can be comparable with the amplitude of the voltage induced by the power frequency. The similar results have been received in studies of influence of the AC railway traction line on adjacent overhead transmission lines. ATP-EMTP numerical analysis has been performed to receive the frequency characteristics that explain the experimental results. Preliminary estimates indicate that the cause of the phenomenon is most likely due to the resonant nature of the frequency response of the mutual coupling. The resonant nature is characterized by the interrelation of the length of overhead lines and the wavelength of the higher harmonics. A wave resonance of currents and voltages that appears in the lines lead to the "magnification" of the individual induced voltage harmonics falling in the maxima of the frequency characteristics of mutual coupling.
Broadband frequency and angular response of a sinusoidal bull’s eye antenna
Beaskoetxea, U.; Navarro-Cía, M.; Beruete, M.
2016-07-01
A thorough experimental study of the frequency and beaming angle response of a metallic leaky-wave bull’s eye antenna working at 77 GHz with a sinusoidally corrugated profile is presented. The beam scanning property of these antennas as frequency is varied is experimentally demonstrated and corroborated through theoretical and numerical results. From the experimental results the dispersion diagram of the n = -1 and n = -2 space harmonics is extracted, and the operation at different frequency regimes is identified and discussed. In order to show the contribution of each half of the antenna, numerical examples of the near-field behavior are also displayed. Overall, experimental results are in good qualitative and quantitative agreement with theoretical and numerical calculations. Finally, an analysis of the beamwidth as a function of frequency is performed, showing that it can achieve values below 1.5° in a fractional bandwidth of 4% around the operation frequency, which is an interesting frequency-stable broadside radiation.
Zimmerman, William B
2005-10-05
The hypothesis that frequency and amplitude response can be used in a complicated metabolic pathway kinetics model for optimal parameter estimation, as speculated by its successful prior usage for a mechanical oscillator and a heterogeneous chemical system, is tested here. Given the complexity of the glycolysis model of yeast chosen, this question is limited to three kinetics parameters of the 87 in the in vitro model developed in the literature. The direct application of the approach, used with the uninformed selection of operating conditions for the oscillation of external glucose concentration, led to miring the data assimilation process in local minima. Application of linear systems theory, however, identified two natural resonant frequencies that, when excited by external forced oscillations of the same frequency, result in the expression of many harmonics in the Fourier spectra, that is, information-rich experiments. A single such information-rich experiment at one of the resonant frequencies was sufficient to break away from the local minima to find the optimum kinetics parameter estimates. The resonant frequencies themselves represent oscillation modes in glycolysis akin to those previously observed. Furthermore, operation of the bioreactor with large amplitude oscillations of glucose feed (25%) leads to enhanced ethanol average yield by 1.6% at the resonant frequency.
Directory of Open Access Journals (Sweden)
Farah I. Corona-Strauss
2012-02-01
Full Text Available It has been shown recently that chirp-evoked auditory brainstem responses (ABRs show better performance than click stimulations, especially at low intensity levels. In this paper we present the development, test, and evaluation of a series of notched-noise embedded frequency specific chirps. ABRs were collected in healthy young control subjects using the developed stimuli. Results of the analysis of the corresponding ABRs using a time-scale phase synchronization stability (PSS measure are also reported. The resultant wave V amplitude and latency measures showed a similar behavior as for values reported in literature. The PSS of frequency specific chirp-evoked ABRs reflected the presence of the wave V for all stimulation intensities. The scales that resulted in higher PSS are in line with previous findings, where ABRs evoked by broadband chirps were analyzed, and which stated that low frequency channels are better for the recognition and analysis of chirp-evoked ABRs. We conclude that the development and test of the series of notched-noise embedded frequency specific chirps allowed the assessment of frequency specific ABRs, showing an identifiable wave V for different intensity levels. Future work may include the development of a faster automatic recognition scheme for these frequency specific ABRs.
Correspondence between phasor transforms and frequency response function in RLC circuits
Abdalla, Hassan Mohamed Abdelalim
2016-01-01
The analysis of RLC circuits is usually made by considering phasor transforms of sinusoidal signals (characterized by constant amplitude, period and phase) that allow the calculation of the AC steady state of RLC circuits by solving simple algebraic equations. In this paper I try to show that phasor representation of RLC circuits is analogue to consider the frequency response function (commonly designated by FRF) of the total impedance of the circuit. In this way I derive accurate expressions for the resonance and anti-resonance frequencies and their corresponding values of impedances of the parallel and series RLC circuits respectively, notwithstanding the presence of damping effects.
Frequency and Phase Synchronization in Neuromagnetic Cortical Responses to Flickering-Color Stimuli
Timashev, S F; Yulmetyev, R M; Demin, S A; Panischev, O Yu; Shimojo, S; Bhattacharya, J
2009-01-01
In our earlier study dealing with the analysis of neuromagnetic responses (magnetoencephalograms - MEG) to flickering-color stimuli for a group of control human subjects (9 volunteers) and a patient with photosensitive epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy (FNS) was able to identify specific differences in the responses of each organism. The high specificity of individual MEG responses manifested itself in the values of FNS parameters for both chaotic and resonant components of the original signal. The present study applies the FNS cross-correlation function to the analysis of correlations between the MEG responses simultaneously measured at spatially separated points of the human cortex processing the red-blue flickering color stimulus. It is shown that the cross-correlations for control (healthy) subjects are characterized by frequency and phase synchronization at different points of the cortex, with the dynamics of neuromagnetic responses being determined by the low-fr...
Directory of Open Access Journals (Sweden)
Pei-Chen Lin
2016-02-01
Full Text Available In the ICU, fluid therapy is conventional strategy for the patient in shock. However, only half of ICU patients have well-responses to fluid therapy, and fluid loading in non-responsive patient delays definitive therapy. Prediction of fluid responsiveness (FR has become intense topic in clinic. Most of conventional FR prediction method based on time domain analysis, and it is limited ability to indicate FR. This study proposed a method which predicts FR based on frequency domain analysis, named instantaneous pulse rate variability (iPRV. iPRV provides a new indication in very high frequency (VHF range (0.4-0.8Hz of spectrum for peripheral responses. Twenty six healthy subjects participated this study and photoplethysmography signal was recorded in supine baseline, during head-up tilt (HUT, and passive leg raising (PLR, which induces variation of venous return and helps for quantitative assessment of FR individually. The result showed the spectral power of VHF decreased during HUT (573.96±756.36 ms2 in baseline; 348.00±434.92 ms2 in HUT and increased during PLR (573.96±756.36 ms2 in baseline; 718.92±973.70 ms2 in PLR, which present the compensated regulation of venous return and FR. This study provides an effective indicator for assessing FR in frequency domain and has potential to be a reliable system in ICU.
Wang, X.; Zheng, G. T.
2016-02-01
A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.
Time and frequency response of a resistance-wire aircraft atmospheric temperature sensor
Payne, G. A.; Friehe, C. A.; Edwards, D. K.
1994-04-01
The heat transfer characteristics of an aircraft-mounted resistance-wire atmospheric temperature sensor are modeled to determine the time and frequency responses. The sensor element (Rosemount 102E4AL) consists of a 25-micron-diameter platinum wire wound around a cruciform mica support with approximately 143 diameters of wire between contacts with the mica. A longitudinally distributed, radially lumped capacitance model provided for the convective heat transfer to the wire and the transient heat conduction along it. Similarly, the temperature gradient across the thin dimension of the mica support was neglected, and a radially distributed model provided for the convective heat transfer to the mica and the transient conduction within it. The two solutions are coupled by the boundary conditions at the wire-mica contact. The equations were solved to produce the temperature distribution along the wire and in the mica support as a function of the frequency of a free-stream sinusoidal temperature fluctuation. The frequency response transfer function was determined and fit to a two-time-constant transfer function by regression analysis. The two-time-constant model fits the general solution very well. The small (fast response) time constant is essentially determined by the wire itself. The larger (slow response) time constant is due to conduction into and out of the mica supports. The model predicts that the effects of the mica supports are important for frequencies greater than about 0.1 Hz. The responses to five different temperature waveform inputs (sinusoid, step, pulse, ramp, and ramp level) are derived using the two-time-constant model with Laplace transform techniques for both infinite-length wire (no mica support effects) and the finite-length wire of the 102 probe. The actual temperature signals are distorted by the larger time constant of the mica supports, especially for the pulse and ramp inputs that are typical of aircraft measurements of thermals and
Prediction of power system frequency response after generator outages using neural nets
Energy Technology Data Exchange (ETDEWEB)
Djukanovic, M.B.; Popovic, D.P. (Electrotechnicki Inst. ' Nikola Tesla' , Belgrade (Yugoslavia)); Sobajic, D.J.; Pao, Y.-H. (Case Western Reserve Univ., Cleveland, OH (United States))
1993-09-01
A new methodology is presented for estimating the frequency behaviour of power systems necessary for an indication of under-frequency load shedding in steady-state security assessment. It is well known that large structural disturbances such as generator tripping or load outages can initiate cascading outages, system separation into islands, and even the complete breakup. The approach provides a fairly accurate method of estimating the system average frequency response without making simplifications or neglecting non-linearities and small time constants in the equations of generating units, voltage regulators and turbines. The efficiency of the new procedure is demonstrated using the New England power system model for a series of characteristic perturbations. The validity of the proposed approach is verified by comparison with the simulation of short-term dynamics including effects of control and automatic devices. (author)
Shah, Krupa; Ragavan, K.
2013-10-01
This article focuses on developing a non-invasive method for determining capacitances using frequency response data. The proposed methodology involves acquiring driving-point impedance of the winding under consideration over wide frequency range. With certain terminal conditions and using the terminal impedance measured at specific frequencies, input and shunt capacitances are determined. For the purpose of estimating series capacitance of the winding, an algorithm is proposed. To demonstrate the capability of the method, initially model coils that have provisions for connecting external capacitances are considered. Then, it is found that the estimated values of capacitances are nearly same as those of connected capacitances. The method is, then, extended to transformer winding, and a capacitive ladder network is constructed. To assess the accuracy of estimation, capacitive voltage distribution is utilized. That is, the voltage distribution in the winding is compared with that of synthesized circuit. A good agreement between those data reveals that the estimated capacitance values are accurate.
Le, Thien-Phu; Argoul, Pierre
2016-12-01
This paper proposes a new modal identification method of ambient vibration responses. The application of the singular value decomposition to continuous wavelet transform of power spectral density matrix gives singular values and singular vectors in frequency-scale domain. Analytical development shows a direct relation between local maxima in frequency-scale representation of singular values and modal parameters. This relation is then carried on for the identification of modal parameters via a complete practical procedure. The main novelties of this work involve the new formulation in frequency-scale domain and the capacity for the identification of modal parameters without the step of ridges extraction in comparison with previous wavelet-based modal identification methods.
Frequency-Speed Control Model Identification of Ultrasonic Motor Using Step Response
Institute of Scientific and Technical Information of China (English)
Shi Jingzhuo; Zhang Caixia
2015-01-01
Control model of ultrasonic motor is the foundation for high control performance .The frequency of driv-ing voltage is commonly used as control variable in the speed control system of ultrasonic motor .Speed control model with the input frequency can significantly improve speed control performance .Step response of rotating speed is tested .Then ,the transfer function model is identified through characteristic point method .Considering time-varying characteristics of the model parameters ,the variables are fitted with frequency and speed as the inde-pendent variables ,and the variable model of ultrasonic motor system is obtained ,with consideration of the nonlin-earity of ultrasonic motor system .The proposed model can be used in the design and analysis of the speed control system in ultrasonic motor .
The Response of Long-Span Bridges to Low Frequency, Near-Fault Earthquake Ground Motions
Energy Technology Data Exchange (ETDEWEB)
McCallen, David; Astaneh-Asl, A.; Larsen, S.C.; Hutchings, Larry
2009-02-27
Historical seismic hazard characterizations did not include earthquake ground motion waveforms at frequencies below approximately 0.2 Hz (5 seconds period). This resulted from limitations in early strong motion instrumentation and signal processing techniques, a lack of measurements in the near-field of major earthquakes and therefore no observational awareness, and a delayed understanding in the engineering community of the potential significance of these types of motions. In recent years, there is a growing recognition of the relevance of near-fault, low frequency motions, particularly for long-period structures such as large bridges. This paper describes a computationally based study of the effects of low frequency (long-period) near-fault motions on long-span bridge response. The importance of inclusion of these types of motions for long span cable supported bridges is demonstrated using actual measured broad-band, near-fault motions from large earthquakes.
Effect of tip mass on frequency response and sensitivity of AFM cantilever in liquid.
Farokh Payam, Amir; Fathipour, Morteza
2015-03-01
The effect of tip mass on the frequency response and sensitivity of atomic force microscope (AFM) cantilever in the liquid environment is investigated. For this purpose, using Euler-Bernoulli beam theory and considering tip mass and hydrodynamic functions in a liquid environment, an expression for the resonance frequencies of AFM cantilever in liquid is derived. Then, based on this expression, the effect of the surface contact stiffness on the flexural mode of a rectangular AFM cantilever in fluid is investigated and compared with the case where the AFM cantilever operates in the air. The results show that in contrast with an air environment, the tip mass has no significant impact on the resonance frequency and sensitivity of the AFM cantilever in the liquid. Hence, analysis of AFM behaviour in liquid environment by neglecting the tip mass is logical.
Henry, Kenneth S; Kale, Sushrut; Scheidt, Ryan E; Heinz, Michael G
2011-10-01
Noninvasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise-induced hearing loss. ABRs were recorded for 1-8 kHz tone burst stimuli both before and several weeks after 4 h of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL. Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL, on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity.
Kenemans, J.L.; Kok, A.; Smulders, F.T.
1993-01-01
Event-related potentials (ERPs) were recorded from 7 male graduate students who were required to push a button in response to a given conjunction of spatial frequency and orientation (target) and to ignore conjunctions sharing with the target only frequency (frequency-relevant), only orientation (or
Using optimized wall section to improve low frequency response in a room
Institute of Scientific and Technical Information of China (English)
ZHU Xiaotian; ZHU Zhemin; CHENG Jianchun
2006-01-01
Three different wall sections with step shape were applied in the finite element analysis models set up to investigate the effect on low frequency sound field by wall modification.The heights of the step in three cases are taken as equal, random and optimized. The optimized value is obtained by using an optimization process with an objective function of minimum fluctuation in sound field. The frequency responses of rooms with original and modified walls were calculated in a range from 60 Hz to 120 Hz. The results showed that the room with an optimized wall section had the flattest frequency response. Same thing was true as the ratio of the room was changed. The largest improvement on fluctuation reached 4.5 dB. In addition, wall section with semicircle and triangle were studied. The rooms that wall section had optimized radius and heights also gave a better performance than those that had fixed radius and heights.Therefore, it is possible to use optimized wall section to improve low frequency sound field.
Directory of Open Access Journals (Sweden)
Marijn Van Dongen
2015-03-01
Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.
Open Photoacoustic Cell for Blood Sugar Measurement: Numerical Calculation of Frequency Response
Baumann, Bernd; Teschner, Mark
2015-01-01
A new approach for continuous and non-invasive monitoring of the glucose concentration in human epidermis has been suggested recently. This method is based on photoacoustic (PA) analysis of human interstitial fluid. The measurement can be performed in vitro and in vivo and, therefore, may form the basis for a non-invasive monitoring of the blood sugar level for diabetes patients. It requires a windowless PA cell with an additional opening that is pressed onto the human skin. Since signals are weak, advantage is taken of acoustic resonances of the cell. Recently, a numerical approach based on the Finite Element (FE) Method has been successfully used for the calculation of the frequency response function of closed PA cells. This method has now been adapted to obtain the frequency response of the open cell. Despite the fact that loss due to sound radiation at the opening is not included, fairly good accordance with measurement is achieved.
Multivariable low order structured-controller design by frequency response approximation
Directory of Open Access Journals (Sweden)
J.O. Trierweiler
2000-12-01
Full Text Available The method presented here offers an effective and time saving tool for multivariable controller design. The relation between controller complexity and closed loop performance can easily be evaluated. The method consists of five steps: 1. A desired behavior of the closed loop system is specified. Considering the nonminimum phase part of the process model the closed loop attainable performance is determined. 2. The process model and the attainable performance are scaled by the RPN-scaling procedure. 3. This defines an "ideal" scaled controller, which is usually too complex to be realized. 4. The frequency response of the ideal scaled compensator is approximated by a simpler one with structure and order chosen by the user. 5. Since the approximation in frequency response is performed with the scaled system, it is necessary to return to the original system’s units.
Directory of Open Access Journals (Sweden)
Pedram Zamani
2016-04-01
Full Text Available Modal analysis is a progressive science in the experimental evaluation of dynamic properties of the structures. Mechanical devices such as accelerometers are one of the sources of lack of quality in measuring modal testing parameters. In this article, elimination of the accelerometer’s mass effect of the frequency response of the structure is studied. So, a strategy is used for eliminating the mass effect using sensitivity analysis. In this method, the amount of mass change and the place to measure the structure’s response with least error in frequency correction is chosen. Experimental modal testing is carried out on a steel plate, and the effect of accelerometer’s mass is omitted using this strategy. Finally, a good agreement is achieved between numerical and experimental results.
Human thermal sensation: frequency response to sinusoidal stimuli at the surface of the skin
DEFF Research Database (Denmark)
Ring, J.W.; de Dear, Richard; Melikov, Arsen Krikor
1993-01-01
The question of how the human organism perceives changing thermal stimuli has been recently studied and reported in experiments where these stimuli were either ramps and plateaux or simply step changes. Other experiments have been done in which the stimuli have been periodically varying airflows...... function. This function is then compared with the functional form found in two experiments where the stimuli were pulsating airflows of differing frequency. The PSI model seems to simulate well the form of the response of the human skin system to varying temperature changes of a whole range of frequencies....... A psychosensory intensity (PSI) model has been developed to relate experimentally derived sensation data to simulated cutaneous thermoreceptor responses to the temperature ramp-plateaux and step stimuli applied to the skin surface by thermodes. From the point of view of signal processing, a natural extension...
Crowgey, Benjamin Reid
Rectangular waveguide methods are appealing for measuring isotropic and anisotropic materials because of high signal strength due to field confinement, and the ability to control the polarization of the applied electric field. As a stepping stone to developing methods for characterizing materials with fully-populated anisotropic tensor characteristics, techniques are presented in this dissertation to characterize isotropic, biaxially anisotropic, and gyromagnetic materials. Two characterization techniques are investigated for each material, and thus six different techniques are described. Additionally, a waveguide standard is introduced which may be used to validate the measurement of the permittivity and permeability of materials at microwave frequencies. The first characterization method examined is the Nicolson-Ross-Weir (NRW) technique for the extraction of isotropic parameters of a sample completely filling the cross-section of a rectangular waveguide. A second technique is proposed for the characterization of an isotropic conductor-backed sample filling the cross-section of a waveguide. If the sample is conductor-backed, and occupies the entire cross-section, a transmission measurement is not available, and thus a method must be found for providing two sufficiently different reflection measurements.The technique proposed here is to place a waveguide iris in front of the sample, exposing the sample to a spectrum of evanescent modes. By measuring the reflection coefficient with and without an iris, the necessary two data may be obtained to determine the material parameters. A mode-matching approach is used to determine the theoretical response of a sample placed behind the waveguide iris. This response is used in a root-searching algorithm to determine permittivity and permeability by comparing to measurements of the reflection coefficient. For the characterization of biaxially anisotropic materials, the first method considers an extension of the NRW technique
Sauvé, Alexandre; Montier, Ludovic
2016-10-01
uc(Context): Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν knowledge of detector response. However bolometers have highly nonlinear characteristics, coming from their electrical and thermal coupling making them very difficult to model. uc(Goal): We present a method to build the analytical transfer function in frequency domain which describe the voltage response of an Alternative Current (AC) biased bolometer to optical excitation, based on the standard bolometer model. This model is built using the setup of the Planck/HFI instrument and offers the major improvement of being based on a physical model rather than the currently in use had-hoc model based on Direct Current (DC) bolometer theory. uc(Method): The analytical transfer function expression will be presented in matrix form. For this purpose, we build linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. uc(Results): The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.
Real-time open-loop frequency response analysis of flight test data
Bosworth, J. T.; West, J. C.
1986-01-01
A technique has been developed to compare the open-loop frequency response of a flight test aircraft real time with linear analysis predictions. The result is direct feedback to the flight control systems engineer on the validity of predictions and adds confidence for proceeding with envelope expansion. Further, gain and phase margins can be tracked for trends in a manner similar to the techniques used by structural dynamics engineers in tracking structural modal damping.
Banoushi, A; Setayeshi, S
2003-01-01
In this paper, the frequency and time responses of a separated absorption and multiplication avalanche photodiode are studied by solving the carrier continuity equations, in the low gain regime. The discrepancy between the carrier velocities in different layers is considered for the first time. It is shown that considerable error occurs, if the device d characteristics are calculated assuming uniformly distributed velocities in the depletion layer, especially when the different layers have almost equal thickness.
Bruel and Kjaer 4944 Microphone Grid Frequency Response Function System Identification
Bennett, Reginald; Lee, Erik
2010-01-01
Br el & Kjaer (B&K) 4944B pressure field microphone was judiciously selected to measure acoustic environments, 400Hz 50kHz, in close proximity of the nozzle during multiple firings of solid propellant rocket motors. It is well known that protective grids can affect the frequency response of microphones. B&K recommends operation of the B&K 4944B without a protective grid when recording measurements above 10 to 15 kHz.
High frequency dynamic bending response of piezoresistive GaN microcantilevers
Talukdar, Abdul; Qazi, Muhammad; Koley, Goutam
2012-12-01
Static and dynamic ac responses of piezoresistive GaN microcantilevers, with integrated AlGaN/GaN heterostructure field effect transistors as highly sensitive deflection transducers, have been investigated. Very high gauge factor exceeding 3500 was exhibited by the microcantilevers, with quality factor determined from electronically transduced ac response exceeding 200 in air and 4500 at low pressure. The gauge factor reduced at resonance frequency of the cantilevers, possibly due to reduced charge exchange with surface donor and trap states. Ultrasonic waves generated in air by a piezochip, and in the Si substrate through photoacoustic effect, could be detected by the cantilevers with high sensitivity.
Research on the iterative method for model updating based on the frequency response function
Institute of Scientific and Technical Information of China (English)
Wei-Ming Li; Jia-Zhen Hong
2012-01-01
Model reduction technique is usually employed in model updating process,In this paper,a new model updating method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the model reduction technique is investigated.The new model updating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency response function,which could greatly increase the number of the equations and the updating parameters.Based on the traditional iterative method,a correction term related to the errors resulting from the replacement of the reduction matrix of the experimental model with that of the finite element model is added in the new iterative method.Comparisons between the traditional iterative method and the proposed iterative method are shown by model updating examples of solar panels,and both of these two iterative methods combine the CMCF method and the succession-level approximate reduction technique.Results show the effectiveness of the CMCF method and the proposed iterative method.
Responses of Waveform-Selective Absorbing Metasurfaces to Oblique Waves at the Same Frequency.
Wakatsuchi, Hiroki; Gao, Fei; Yagitani, Satoshi; Sievenpiper, Daniel F
2016-08-12
Conventional materials vary their electromagnetic properties in response to the frequency of an incoming wave, but these responses generally remain unchanged at the same frequency unless nonlinearity is involved. Waveform-selective metasurfaces, recently developed by integrating several circuit elements with planar subwavelength periodic structures, allowed us to distinguish different waves even at the same frequency depending on how long the waves continued, namely, on their pulse widths. These materials were thus expected to give us an additional degree of freedom to control electromagnetic waves. However, all the past studies were demonstrated with waves at a normal angle only, although in reality electromagnetic waves scatter from various structures or boundaries and therefore illuminate the metasurfaces at oblique angles. Here we study angular dependences of waveform-selective metasurfaces both numerically and experimentally. We demonstrate that, if designed properly, capacitor-based waveform-selective metasurfaces more effectively absorb short pulses than continuous waves (CWs) for a wide range of the incident angle, while inductor-based metasurfaces absorb CWs more strongly. Our study is expected to be usefully exploited for applying the concept of waveform selectivity to a wide range of existing microwave devices to expand their functionalities or performances in response to pulse width as a new capability.
EFFECTS OF QUININE ON THE MECHANICAL FREQUENCY-RESPONSE OF THE CUPULA IN THE FISH LATERAL-LINE
van Netten, S.M.; KARLSSON, KK; KHANNA, SM; FLOCK, A
1994-01-01
Quinine induces changes in the motion of the cupula in the lateral line canal of the African knife-fish in response to sinusoidal water movements. Two different phases in the action of quinine on the cupular frequency response can be discerned. In the first phase the best frequency, i.e., the freque
Frequency dependence of CA3 spike phase response arising from h-current properties
Directory of Open Access Journals (Sweden)
Melodie eBorel
2013-12-01
Full Text Available The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarisation-activated mixed cation current (Ih, which differs between CA3 and CA1 pyramidal neurons. Here, we compared the phase response of these two cell types, as well as their intrinsic membrane properties. We found that both CA3 and CA1 pyramidal neurons show a voltage sag in response to negative current steps but that this voltage sag is significantly smaller in CA3 cells. Moreover, CA3 pyramidal neurons have less prominent resonance properties compared to CA1 pyramidal neurons. This is consistent with differential expression of Ih by the two cell types. Despite their distinct intrinsic membrane properties, both CA3 and CA1 pyramidal neurons displayed bidirectional spike phase control by excitatory conductance inputs during theta oscillations. In particular, excitatory inputs delivered at the descending phase of a dynamic clamp-induced membrane potential oscillation delayed the subsequent spike by nearly 50 mrad. The effect was shown to be mediated by Ih and was counteracted by increasing inhibitory conductance driving the membrane potential oscillation. Using our experimental data to feed a computational model, we showed that differences in Ih between CA3 and CA1 pyramidal neurons could predict frequency-dependent differences in phase response properties between these cell types. We confirmed experimentally such frequency-dependent spike phase control in CA3 neurons. Therefore, a decrease in theta frequency, which is observed in intact animals during novelty, might switch the CA3 spike phase response from unidirectional to bidirectional and thereby promote encoding of the new context.
Theta frequency background tunes transmission but not summation of spiking responses.
Directory of Open Access Journals (Sweden)
Dhanya Parameshwaran
Full Text Available Hippocampal neurons are known to fire as a function of frequency and phase of spontaneous network rhythms, associated with the animal's behaviour. This dependence is believed to give rise to precise rate and temporal codes. However, it is not well understood how these periodic membrane potential fluctuations affect the integration of synaptic inputs. Here we used sinusoidal current injection to the soma of CA1 pyramidal neurons in the rat brain slice to simulate background oscillations in the physiologically relevant theta and gamma frequency range. We used a detailed compartmental model to show that somatic current injection gave comparable results to more physiological synaptically driven theta rhythms incorporating excitatory input in the dendrites, and inhibitory input near the soma. We systematically varied the phase of synaptic inputs with respect to this background, and recorded changes in response and summation properties of CA1 neurons using whole-cell patch recordings. The response of the cell was dependent on both the phase of synaptic inputs and frequency of the background input. The probability of the cell spiking for a given synaptic input was up to 40% greater during the depolarized phases between 30-135 degrees of theta frequency current injection. Summation gain on the other hand, was not affected either by the background frequency or the phasic afferent inputs. This flat summation gain, coupled with the enhanced spiking probability during depolarized phases of the theta cycle, resulted in enhanced transmission of summed inputs during the same phase window of 30-135 degrees. Overall, our study suggests that although oscillations provide windows of opportunity to selectively boost transmission and EPSP size, summation of synaptic inputs remains unaffected during membrane oscillations.
Multi-frequency response of a cylinder subjected to vortex shedding and support motions
Energy Technology Data Exchange (ETDEWEB)
Vikestad, Kyrre
1998-12-31
This thesis deals with an experimental investigation of vortex induced vibrations of a circular cylinder. The purpose of the experiment was to identify the influence from a controlled disturbance of the cylinder motions on the response caused by vortex shedding. The cylinder investigated is 2 m long and the diameter is 10 cm. The cylinder is elastically mounted in an apparatus using springs, where the foundation of one of the springs can have a harmonic motion. The apparatus is placed on a carriage in a 25 m long towing tank. Towing velocities are varied between 0.140 m/s and 0.655 m/s corresponding to reduced velocity range from 2.8 to 13.2. The still water natural frequency is 0.497 Hz, and the natural frequency in air is 0.634 Hz. The cylinder is only able to oscillate in the cross-flow direction. The support motion frequency was varied between 0.26 Hz and 1.01 Hz, and the force motion amplitude was varied using 2, 4 and 6 cm support amplitudes. Three sets of experiments were carried out: (1) Still water oscillations due to harmonic support motion excitation, support amplitude and frequencies varied, (2) Towing tests with no support motion, the velocity is varied, (3) Combined excitation: Towing tests with support motion. All possible combinations of experiments (1) and (2) are carried out. The two first experiments provide reference values for the combined excitation experiments and for verification purposes. The results reveal the ability of the external disturbance to influence the vortex shedding process both regarding frequency and the resulting response amplitudes. Results for added mass, in-line drag and damping are also obtained. The work may be of use in deep water floating petroleum production. 81 refs., 73 figs., 6 tabs.
Beskardes, G. D.; Weiss, C. J.; Everett, M. E.
2016-11-01
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Quantifying the relationship between multiscale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. We present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, supporting the notion of a "rough geology" exhibiting multi-scale hierarchical structure. Bounded by end member cases from homogenized isotropic and anisotropic media, we present numerical modeling results of the electromagnetic responses of textured and spatially-correlated, stochastic geologic media, demonstrating that the electromagnetic response is a power law distribution, rather than a smooth response polluted with random, incoherent noise as commonly assumed. Our modeling results show that these electromagnetic responses due to spatially-correlated geologic textures are examples of fractional Brownian motion. Furthermore, our results suggest that the fractal behavior of the electromagnetic responses is correlated with degree of the spatial correlation, the contrasts in ground conductivity, and the preferred orientation of small-scale heterogeneity. In addition, the EM responses acquired across a fault zone comprising different lithological units and varying wavelengths of geologic heterogeneity also support our inferences from numerical modeling.
Beskardes, G. D.; Weiss, C. J.; Everett, M. E.
2017-02-01
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Quantifying the relationship between multiscale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. We present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, supporting the notion of a `rough geology' exhibiting multiscale hierarchical structure. Bounded by end member cases from homogenized isotropic and anisotropic media, we present numerical modelling results of the electromagnetic responses of textured and spatially correlated, stochastic geologic media, demonstrating that the electromagnetic response is a power law distribution, rather than a smooth response polluted with random, incoherent noise as commonly assumed. Our modelling results show that these electromagnetic responses due to spatially correlated geologic textures are examples of fractional Brownian motion. Furthermore, our results suggest that the fractal behaviour of the electromagnetic responses is correlated with degree of the spatial correlation, the contrasts in ground conductivity, and the preferred orientation of small-scale heterogeneity. In addition, the EM responses acquired across a fault zone comprising different lithological units and varying wavelengths of geologic heterogeneity also support our inferences from numerical modelling.
Development of laser ablation plasma by anisotropic self-radiation
Directory of Open Access Journals (Sweden)
Ohnishi Naofumi
2013-11-01
Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.
On the relativistic anisotropic configurations
Energy Technology Data Exchange (ETDEWEB)
Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)
2016-06-15
In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)
Directory of Open Access Journals (Sweden)
Bigdeli Mehdi
2016-03-01
Full Text Available Transformers are one of the most important components of the power system. It is important to maintain and assess the condition. Transformer lifetime depends on the life of its insulation and insulation life is also strongly influenced by moisture in the insulation. Due to importance of this issue, in this paper a new method is introduced for determining the moisture content of the transformer insulation system using dielectric response analysis in the frequency domain based on artificial bee colony algorithm. First, the master curve of dielectric response is modeled. Then, using proposed method the master curve and the measured dielectric response curves are compared. By analyzing the results of the comparison, the moisture content of paper insulation, electrical conductivity of the insulating oil and dielectric model dimensions are determined. Finally, the proposed method is applied to several practical samples to demonstrate its capabilities compared with the well-known conventional method.
Time-frequency analysis of railway bridge response in forced vibration
Cantero, Daniel; Ülker-Kaustell, Mahir; Karoumi, Raid
2016-08-01
This paper suggests the use of the Continuous Wavelet Transform in combination with the Modified Littlewood-Paley basis to analyse bridge responses exited by traversing trains. The analysis provides an energy distribution map in the time-frequency domain that offers a better resolution compared to previous published studies. This is demonstrated with recorded responses of the Skidträsk Bridge, a 36 m long composite bridge located in Sweden. It is shown to be particularly useful to understand the evolution of the energy content during a vehicle crossing event. With this information it is possible to distinguish the effect of several of the governing factors involved in the dynamic response including vehicle's speed and axle configuration as well as non-linear behaviour of the structure.
Meltzner, Geoffrey S.; Kobler, James B.; Hillman, Robert E.
2003-08-01
Measurements of the neck frequency response function (NFRF), defined as the ratio of the spectrum of the estimated volume velocity that excites the vocal tract to the spectrum of the acceleration delivered to the neck wall, were made at three different positions on the necks of nine laryngectomized subjects (five males and four females) and four normal laryngeal speakers (two males and two females). A minishaker driven by broadband noise provided excitation to the necks of subjects as they configured their vocal tracts to mimic the production of the vowels /aye/, /æ/, and /I/. The sound pressure at the lips was measured with a microphone and an impedance head mounted on the shaker measured the acceleration. The neck wall passed low-frequency sound energy better than high-frequency sound energy, and thus the NFRF was accurately modeled as a low-pass filter. The NFRFs of the different subject groups (female laryngeal, male laryngeal speakers, laryngectomized males, and laryngectomized females) differed from each other in terms of corner frequency and gain, with both types of male subjects presenting NFRFs with larger overall gains. In addition, there was a notable amount of intersubject variability within groups. Because the NFRF is an estimate of how sound energy passes through the neck wall, these results should aid in the design of improved neck-type electrolarynx devices.
Frequency characteristic of response of surface air pressure to changes in flux of cosmic rays
Bogdanov, M. B.
2014-11-01
We compare the series of daily-average values of the surface air pressure for De Bilt and Lugano meteorological stations with subtracted linear trends and seasonal harmonics, as well as the series of the flux of galactic cosmic rays (GCRs) at Jungfraujoch station with subtracted moving average over 200 days. Using the method of superposed epochs, we show that the Forbush decreases at both stations are accompanied by increased pressure. Spectral analysis allows us to conclude that the analyzed series are characterized by nonzero coherence in almost the entire frequency range: from 0.02 day-1 day up to the Nyquist frequency of 0.5 day-1. Using changes in the GCR flux as a probing signal, we obtain amplitude-frequency characteristics of the pressure reaction. For both stations, these characteristics are in qualitative agreement with each other and indicate that the atmospheric response can be described by a second-order linear dynamic system that has wide resonance with a maximum at a frequency of 0.15 day-1.
Management Process of a Frequency Response Flight Test for Rotorcraft Flying Qualities Evaluation
Directory of Open Access Journals (Sweden)
João Otávio Falcão Arantes Filho
2016-07-01
Full Text Available This paper applies the frequency response methodology to characterize and analyze the flying qualities of longitudinal and lateral axes of a rotary-wing aircraft, AS355-F2. Using the results, it is possible to check the suitability of the aircraft in accordance with ADS-33E-PRF standard, whose flying qualities specifications criteria are based on parameters in the frequency domain. The key steps addressed in the study involve getting, by means of flight test data, the closed-loop dynamic responses including the design of the instrumentation and specification of the sensors to be used in the flight test campaign, the definition of the appropriate maneuvers characteristics for excitation of the aircraft, the planning and execution of the flight test to collect the data, and the proper data treatment, processing and analysis after the flight. After treatment of the collected data, single input-single output spectral analysis is performed. The results permit the analysis of the flying qualities characteristics, anticipation of the demands to which the pilot will be subjected during closed-loop evaluations and check of compliance with the aforementioned standard, within the range of consistent excitation frequencies for flight tests, setting the agility level of the test aircraft.
Directory of Open Access Journals (Sweden)
Ruediger eGeis
2013-01-01
Full Text Available Frequency modulations occur in many natural sounds, including vocalizations. The neuronal response to frequency modulated (FM stimuli has been studied extensively in different brain areas, with an emphasis on the auditory cortex and the central nucleus of the inferior colliculus. Here, we measured the responses to FM sweeps in whole-cell recordings from neurons in the dorsal cortex of the mouse inferior colliculus. Both up- and downward logarithmic FM sweeps were presented at two different speeds to both the ipsi- and the contralateral ear. Based on the number of action potentials that were fired, between 10-24% of cells were selective for rate or direction of the FM sweeps. A somewhat lower percentage of cells, 6-21%, showed selectivity based on EPSP size. To study the mechanisms underlying the generation of FM selectivity, we compared FM responses with responses to simple tones in the same cells. We found that if pairs of neurons responded in a similar way to simple tones, they generally also responded in a similar way to FM sweeps. Further evidence that FM selectivity can be generated within the dorsal cortex was obtained by reconstructing FM sweeps from the response to simple tones using three different models. In about half of the direction selective neurons the selectivity was generated by spectrally asymmetric synaptic inhibition. In addition, evidence for direction selectivity based on the timing of excitatory responses was also obtained in some cells. No clear evidence for the local generation of rate selectivity was obtained. We conclude that FM direction selectivity can be generated within the dorsal cortex of the mouse inferior colliculus by multiple mechanisms.
Dunlap, K D; DiBenedictis, B T; Banever, S R
2010-07-01
Brown ghost knife fish (Apteronotus leptorhynchus) can briefly increase their electric organ discharge (EOD) frequency to produce electrocommunication signals termed chirps. The chirp rate increases when fish are presented with conspecific fish or high-frequency (700-1100 Hz) electric signals that mimic conspecific fish. We examined whether A. leptorhynchus also chirps in response to artificial low-frequency electric signals and to heterospecific electric fish whose EOD contains low-frequency components. Fish chirped at rates above background when presented with low-frequency (10-300 Hz) sine-wave stimuli; at 30 and 150 Hz, the threshold amplitude for response was 1 mV cm(-1). Low-frequency (30 Hz) stimuli also potentiated the chirp response to high-frequency ( approximately 900 Hz) stimuli. Fish increased their chirp rate when presented with two heterospecific electric fish, Sternopygus macrurus and Brachyhypopomus gauderio, but did not respond to the presence of the non-electric fish Carassius auratus. Fish chirped to low-frequency (150 Hz) signals that mimic those of S. macrurus and to EOD playbacks of B. gauderio. The response to the B. gauderio playback was reduced when the low-frequency component (electric signals of heterospecific electric fish, and the low-frequency components of heterospecific EODs significantly influence chirp rate. These results raise the possibility that chirps function to communicate to conspecifics about the presence of a heterospecific fish or to communicate directly to heterospecific fish.
Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D
2015-05-01
oscillations, obtaining single-trial estimate of response latency, frequency, and magnitude. This permits within-subject statistical comparisons, correlation with pre-stimulus features, and integration of simultaneously-recorded EEG and fMRI.
Qiu, Q.; Fang, Z. P.; Wan, H. C.; Zheng, L.
2013-07-01
Based on the Donnell assumptions and linear visco-elastic theory, the constitutive equations of the cylindrical shell with multilayer Passive Constrained Layer Damping (PCLD) treatments are described. The motion equations and boundary conditions are derived by Hamilton principle. After trigonometric series expansion and Laplace transform, the state vector is introduced and the dynamic equations in state space are established. The transfer function method is used to solve the state equation. The dynamic performance including the natural frequency, the loss factor and the frequency response of clamped-clamped multi-layer PCLD cylindrical shell is obtained. The results show that multi-layer PCLD cylindrical shell is more effective than the traditional three-layer PCLD cylindrical shell in suppressing vibration and noise if the same amount of material is applied. It demonstrates a potential application of multi-layer PCLD treatments in many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability
Energy Technology Data Exchange (ETDEWEB)
Miller, N. W. [GE Energy Management, Schenectady, NY (United States); Shao, M. [GE Energy Management, Schenectady, NY (United States); Pajic, S. [GE Energy Management, Schenectady, NY (United States); D' Aquila, R. [GE Energy Management, Schenectady, NY (United States)
2014-12-01
Power system operators and utilities worldwide have concerns about the impact of high-penetration wind and solar generation on electric grid reliability (EirGrid 2011b, Hydro-Quebec 2006, ERCOT 2010). The stability of North American grids under these conditions is a particular concern and possible impediment to reaching future renewable energy goals. Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) considers a 33% wind and solar annual energy penetration level that results in substantial changes to the characteristics of the bulk power system, including different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior of wind and solar generation. WWSIS-3 evaluates two specific aspects of fundamental frequency system stability: frequency response and transient stability.
Energy Technology Data Exchange (ETDEWEB)
Visser, P. J. de, E-mail: p.j.devisser@tudelft.nl [Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Yates, S. J. C. [SRON Netherlands Institute for Space Research, Landleven 12, 9747AD Groningen (Netherlands); Guruswamy, T.; Goldie, D. J.; Withington, S. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Neto, A.; Llombart, N. [Faculty of Electrical Engineering, Mathematics and Computer Science, Terahertz Sensing Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft (Netherlands); Baryshev, A. M. [SRON Netherlands Institute for Space Research, Landleven 12, 9747AD Groningen (Netherlands); Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen (Netherlands); Klapwijk, T. M. [Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Baselmans, J. J. A. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Faculty of Electrical Engineering, Mathematics and Computer Science, Terahertz Sensing Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft (Netherlands)
2015-06-22
We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on, the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice, this is a measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements.
Anisotropic microstructure near the sun
Coles, W. A.; Grall, R. R.; Spangler, S. R.; Sakurai, T.; Harmon, J. K.
1996-07-01
Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 Rsolar [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ``background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 Rsolar which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a ``Maltese Cross'' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 Rsolar, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 Rsolar
Frequency response of laminated composite plates and shells with matrix cracks type of damage mode
Emam, Aly A.
The present study has been designed to tackle a new set of problems for structural composites, as these materials are finding new applications in civil engineering field. An attempt has been made to study the frequency response of laminated polymer composite plates and shallow shells containing matrix cracks type of damage with arbitrary support conditions and free vibratory motions. The shell governing equations are derived using a simplified shallow shell theory based on a first order shear deformation field. The continuum damage mechanics approach has been used to model the matrix cracks in a damaged region within the plates and shallow shells. In such approach, the damage is accounted for in the laminate constitutive equations by using a set of second order tensor internal state variables which are strain-like quantities. The simplified damage model was then used to study the changes in frequency response of laminated composite plates and shallow cylindrical shells. The Ritz method and a finite element method have been proposed and developed as approximate solution procedures to quantify the change in the free vibration frequencies due to matrix cracks type of damage under both material as well as geometrical variables such as size, shape and extent of damage, degree of curvature, ratio of orthotropy, thickness ratio as well as support conditions. The analysis of various plates and shells with a centrally located damaged-zone depicts a typical trend of reduction in the vibration frequencies. This reduction is more pronounced for higher frequency modes and it shows greater sensitivity toward the size of the damaged region and density of cracks. The results also show that the changes in the frequency, especially for the fundamental mode, appear to be less sensitive to the shell boundary conditions as well as small values of curvature. The investigation of various undamaged plates and shallow shells demonstrates the importance of a first-order shear deformation
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Gardiner, Thomas
2013-10-01
Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.
Inhomogeneous anisotropic cosmology
Energy Technology Data Exchange (ETDEWEB)
Kleban, Matthew [Center for Cosmology and Particle Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States)
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Effects of low-spatial-frequency response of phase plates on TEM imaging
Edgcombe, C. J.
2015-10-01
Images of simple objects produced by a perfect lens and a phase plate have been calculated by use of Abbe theory for Foucault, Hilbert and Zernike phase plates. The results show that with a Zernike plate, white outlines and ringing like those observed previously can be caused by the beam hole, which limits the low-spatial-frequency response of the system even when the lens behaves perfectly. When the change of phase added by the phase plate is distributed over a range of radius rather than a simple step, the unwanted effects are substantially reduced.
Anisotropic Power-law Inflation
Kanno, Sugumi; Watanabe, Masa-aki
2010-01-01
We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.
Neural Network Algorithm for Designing FIR Filters Utilizing Frequency-Response Masking Technique
Institute of Scientific and Technical Information of China (English)
Xiao-Hua Wang; Yi-Gang He; Tian-Zan Li
2009-01-01
This paper presents a new joint optimization method for the design of sharp linear-phase finite-impulse response (FIR) digital filters which are synthesized by using basic and multistage frequency-response-masking (FRM) techniques. The method is based on a batch back-propagation neural network algorithm with a variable learning rate mode. We propose the following two-step optimization technique in order to reduce the complexity. At the first step, an initial FRM filter is designed by alternately optimizing the subfilters. At the second step, this solution is then used as a start-up solution to further optimization. The further optimization problem is highly nonlinear with respect to the coefficients of all the subfilters. Therefore, it is decomposed into several linear neural network optimization problems. Some examples from the literature are given, and the results show that the proposed algorithm can design better FRM filters than several existing methods.
Cachectic skeletal muscle response to a novel bout of low-frequency stimulation
Puppa, Melissa J.; Murphy, E. Angela; Fayad, Raja; Hand, Gregory A.
2014-01-01
While exercise benefits have been well documented in patients with chronic diseases, the mechanistic understanding of cachectic muscle's response to contraction is essentially unknown. We previously demonstrated that treadmill exercise training attenuates the initiation of cancer cachexia and the development of metabolic syndrome symptoms (Puppa MJ, White JP, Velazquez KT, Baltgalvis KA, Sato S, Baynes JW, Carson JA. J Cachexia Sarcopenia Muscle 3: 117–137, 2012). However, cachectic muscle's metabolic signaling response to a novel, acute bout of low-frequency contraction has not been determined. The purpose of this study was to determine whether severe cancer cachexia disrupts the acute contraction-induced response to low-frequency muscle contraction [low-frequency stimulation (LoFS)]. Metabolic gene expression and signaling was examined 3 h after a novel 30-min bout of contraction (10 Hz) in cachectic ApcMin/+ (Min) and C57BL/6 (BL-6) mice. Pyrrolidine dithiocarbamate, a STAT/NF-κB inhibitor and free radical scavenger, was administered systemically to a subset of mice to determine whether this altered the muscle contraction response. Although glucose transporter-4 mRNA was decreased by cachexia, LoFS increased muscle glucose transporter-4 mRNA in both BL-6 and Min mice. LoFS also induced muscle peroxisome proliferator-activated receptor-γ and peroxisome proliferator-activated receptor-α coactivator-1 mRNA. However, in Min mice, LoFS was not able to induce muscle proliferator-activated receptor-α coactivator-1 targets nuclear respiratory factor-1 and mitochondrial transcription factor A mRNA. LoFS induced phosphorylated-S6 in BL-6 mice, but this induction was blocked by cachexia. Administration of pyrrolidine dithiocarbamate for 24 h rescued LoFS-induced phosphorylated-S6 in cachectic muscle. LoFS increased muscle phosphorylated-AMP-activated protein kinase and p38 in BL-6 and Min mice. These data demonstrate that cachexia alters the muscle metabolic response
Anisotropic properties of TaS2
Institute of Scientific and Technical Information of China (English)
Qiao Yan-Bin; Li Yan-Ling; Zhong Guo-Hua; Zeng Zhi; Qin Xiao-Ying
2007-01-01
The anisotropic properties of 1T- and 2H-TaS2 are investigated by the density functional theory within the framework of full-potential linearized augmented plane wave method. The band structures of 1T- and 2H-TaS2 exhibit anisotropic properties and the calculated electronic specific-heat coefficient γ of 2H-TaS2 accords well with the existing experimental value. The anisotropic frequency-dependent dielectric functions including the effect of the Drude term are analysed, where the εxx(ω) spectra corresponding to the electric field E perpendicular to the z axis show excellent agreement with the measured results except for the ε1xx(ω) of 1T-TaS2 below the energy level of 2.6 eV which is due to the lack of the enough CDW information for reference in our calculation. Furthermore, based on the values of optical effective mass ratio P of 1T and 2H phases it is found that the anisotropy in 2H-TaS2 is stronger than that in 1T-TaS2.
Frequency response of vestibular reflexes in neck, back, and lower limb muscles.
Forbes, Patrick A; Dakin, Christopher J; Vardy, Alistair N; Happee, Riender; Siegmund, Gunter P; Schouten, Alfred C; Blouin, Jean-Sébastien
2013-10-01
Vestibular pathways form short-latency disynaptic connections with neck motoneurons, whereas they form longer-latency disynaptic and polysynaptic connections with lower limb motoneurons. We quantified frequency responses of vestibular reflexes in neck, back, and lower limb muscles to explain between-muscle differences. Two hypotheses were evaluated: 1) that muscle-specific motor-unit properties influence the bandwidth of vestibular reflexes; and 2) that frequency responses of vestibular reflexes differ between neck, back, and lower limb muscles because of neural filtering. Subjects were exposed to electrical vestibular stimuli over bandwidths of 0-25 and 0-75 Hz while recording activity in sternocleidomastoid, splenius capitis, erector spinae, soleus, and medial gastrocnemius muscles. Coherence between stimulus and muscle activity revealed markedly larger vestibular reflex bandwidths in neck muscles (0-70 Hz) than back (0-15 Hz) or lower limb muscles (0-20 Hz). In addition, vestibular reflexes in back and lower limb muscles undergo low-pass filtering compared with neck-muscle responses, which span a broader dynamic range. These results suggest that the wider bandwidth of head-neck biomechanics requires a vestibular influence on neck-muscle activation across a larger dynamic range than lower limb muscles. A computational model of vestibular afferents and a motoneuron pool indicates that motor-unit properties are not primary contributors to the bandwidth filtering of vestibular reflexes in different muscles. Instead, our experimental findings suggest that pathway-dependent neural filtering, not captured in our model, contributes to these muscle-specific responses. Furthermore, gain-phase discontinuities in the neck-muscle vestibular reflexes provide evidence of destructive interaction between different reflex components, likely via indirect vestibular-motor pathways.
On the Analysis Methods for the Time Domain and Frequency Domain Response of a Buried Objects*
Poljak, Dragan; Šesnić, Silvestar; Cvetković, Mario
2014-05-01
There has been a continuous interest in the analysis of ground-penetrating radar systems and related applications in civil engineering [1]. Consequently, a deeper insight of scattering phenomena occurring in a lossy half-space, as well as the development of sophisticated numerical methods based on Finite Difference Time Domain (FDTD) method, Finite Element Method (FEM), Boundary Element Method (BEM), Method of Moments (MoM) and various hybrid methods, is required, e.g. [2], [3]. The present paper deals with certain techniques for time and frequency domain analysis, respectively, of buried conducting and dielectric objects. Time domain analysis is related to the assessment of a transient response of a horizontal straight thin wire buried in a lossy half-space using a rigorous antenna theory (AT) approach. The AT approach is based on the space-time integral equation of the Pocklington type (time domain electric field integral equation for thin wires). The influence of the earth-air interface is taken into account via the simplified reflection coefficient arising from the Modified Image Theory (MIT). The obtained results for the transient current induced along the electrode due to the transmitted plane wave excitation are compared to the numerical results calculated via an approximate transmission line (TL) approach and the AT approach based on the space-frequency variant of the Pocklington integro-differential approach, respectively. It is worth noting that the space-frequency Pocklington equation is numerically solved via the Galerkin-Bubnov variant of the Indirect Boundary Element Method (GB-IBEM) and the corresponding transient response is obtained by the aid of inverse fast Fourier transform (IFFT). The results calculated by means of different approaches agree satisfactorily. Frequency domain analysis is related to the assessment of frequency domain response of dielectric sphere using the full wave model based on the set of coupled electric field integral
Directory of Open Access Journals (Sweden)
MUHAMMAD ARIF
2017-01-01
Full Text Available Ultrasound imaging with the subharmonic component from contrast microbubbles provide improved CTR (Contrast-to-Tissue Ratio, however it is susceptible to the low amplitude of the subharmonic component. In this simulation study, NLFM (Nonlinear Frequency Modulated signals are proposed in order to enhance the subharmonic response from microbubbles. NLFM signals having fractional bandwidths of 10, 20, and 40% with up and down sweeps were used as excitation. The performance of NLFM signals were compared with the reference tone-burst and LFM (Linear Frequency Modulated signals. The results show that the ultrasound contrast microbubbles can produce subharmonic response which is dependent on the applied signal pressure and bandwidth. It is observed that the subharmonic component of the scattered NLFM signal is 3.2dB higher than the LFM signal, whereas it is 9dB higher compared to the sinusoidal tone-burst signal. The results are also presented which show that the up and down sweeps NLFM signals performed better than the LFM signals at the same acoustic pressure and bandwidth.
Jeng, Fuh-Cherng; Peris, Kevin S; Hu, Jiong; Lin, Chia-Der
2013-04-01
To date, observations of the scalp-recorded frequency-following response (FFR) to voice pitch have depended on subjective interpretation of the experimenter. The purpose of this study was to develop and evaluate an automated procedure for detecting the presence of a response. Twenty American (9 boys, 1-3 days) and 20 Chinese (10 boys, 1-3 days) neonates were recruited. A Chinese monosyllable that mimicked the English vowel /i/ with a rising pitch (117-166 Hz) was used as the stimulus. Three objective indices (Frequency Error, Tracking Accuracy, and Pitch Strength) were computed from the recorded brain waves and the test results were compared with human judgments to calculate the sensitivity and specificity values. Results demonstrated that the automated procedure produced sensitivity values between 53-90% and specificity values between 80-100%, and could be used to assess the presence of an FFR for neonates who were born in a tonal or non-tonal language environment.
Analysis of Ripple Effects on Frequency Response Characteristics of Switching Regulators
Sakai, Eiji; Nakahara, Masatoshi
In this paper we clarify for the boost and the buck-boost converter that the ripple effect is not ignorable for the frequency response, and reveal that it causes the unexpected characteristics where either the phase lag or the phase lead appears depending on the shape of waveform of the ramp generator in the PWM circuit. Eventually the phase margin for the stability drastically changes depending on the slope direction (normal or reverse) of the sawtooth waveform of the ramp generator even in the same circuit configuration. For the ripple effects we propose the general analysis model and analyze them of the boost and the buck-boost converters. As the result we identify that the ripple effects are caused mainly by the variation of the slope and the average of the ripple, and reveal that the both converters have the asymmetric characteristics for the slope direction of the sawtooth waveform of the ramp generator and there is more advantage for the stability in case of the reverse slope direction than in case of the normal one. It also clarified that the effect of ESR of the output capacitor of the converter on the frequency response is different according to the shape of the sawtooth waveforms. The proposed analysis method is validated by the experiments and simulations.
Saurav Z. K. Sajib; Woo Chul Jeong; Eun Jung Kyung; Hyun Bum Kim; Tong In Oh; Hyung Joong Kim; Oh In Kwon; Eung Je Woo
2016-01-01
Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjecte...
CRITICAL ILLUMINATION AND CRITICAL FREQUENCY FOR RESPONSE TO FLICKERED LIGHT, IN DRAGONFLY LARVAE
Crozier, W. J.; Wolf, Ernst; Zerrahn-Wolf, Gertrud
1937-01-01
Curves relating flicker frequency (F) to mean critical illumination (Im) for threshold response to flickered light, with equal durations of light and no light intervals, and relating illumination (I) to mean critical flicker frequency (Fm) for the same response, have been obtained from homogeneous data based upon the reactions of dragonfly larvae (Anax junius). These curves exhibit the properties already described in the case of the fish Lepomis. The curve for Fm lies above the curve of Im by an amount which, as a function of I, can be predicted from a knowledge either of the variation of Im or of Fm. The law of the observable connection between F and I is properly expressed as a band, not as a simple curve. The variation of Im (and of Fm) is not due to "experimental error," but is an expression of the variable character of the organism's capacity to exhibit the reaction which is the basis of the measurements. As in other series of measurements, P.E.I is a rectilinear function of Im; P.E.F passes through a maximum as F (or I) increases. The form of P.E.F as a function of I can be predicted from the measurements of P.E.I. It is pointed out that the equations which have been proposed for the interpretation of curves of critical flicker frequency as a function of intensity, based upon the balance of light adaptation and dark adaptation, have in fact the character of "population curves;" and that their contained constants do not have the properties requisite for the consistent application of the view that the shape of the F - I curve is governed by the steady state condition of adaptation. These curves can, however, be understood as resulting from the achievement of a certain level of difference between the average effect of a light flash and its average after effect during the dark interval. PMID:19872997
DeRuiter, Stacy L; Southall, Brandon L; Calambokidis, John; Zimmer, Walter M X; Sadykova, Dinara; Falcone, Erin A; Friedlaender, Ari S; Joseph, John E; Moretti, David; Schorr, Gregory S; Thomas, Len; Tyack, Peter L
2013-08-23
Most marine mammal- strandings coincident with naval sonar exercises have involved Cuvier's beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89-127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78-106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.
van Kats, C. M.
2008-10-01
The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with
Ultrasonic Linear Motor with Anisotropic Composite
Institute of Scientific and Technical Information of China (English)
曾周末; 王新辉; 赵伯雷
2004-01-01
An idea to make up the vibrating body of ultrasonic motor with anisotropic composite is proposed and a linear piezoelectric motor is developed in this paper. Relative problems such as actuating mechanism, resonant frequency are discussed theoretically. According to the feature that impulse exists between the elastic body of composite ultrasonic linear motor and the base, an impulse analysis is presented to calculate the motor′s friction driving force and frictional conversion efficiency. The impulse analysis essentially explains the reason why the ultrasonic motor has great driving force, and can be applied to analyze the non-linear ultrasonic motor.
Mildren, Robyn Lynne; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sebastien; Carpenter, Mark Gregory; Inglis, J Timothy
2017-02-16
Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine proprioceptive reflexes in the triceps surae muscles in standing healthy young adults (n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied two-minutes of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii were significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory evoked γ-band oscillations. Further examination of the method revealed a) accurate reflex estimates could be obtained with <60 s of low-level (RMS=10 m/s(2)) vibration, b) responses did not habituate over two-minutes of exposure, and importantly c) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize proprioceptive reflexes.
Energy Technology Data Exchange (ETDEWEB)
Eto, Joseph H.; Undrill, John; Mackin, Peter; Daschmans, Ron; Williams, Ben; Haney, Brian; Hunt, Randall; Ellis, Jeff; Illian, Howard; Martinez, Carlos; O' Malley, Mark; Coughlin, Katie; LaCommare, Kristina Hamachi
2010-12-20
An interconnected electric power system is a complex system that must be operated within a safe frequency range in order to reliably maintain the instantaneous balance between generation and load. This is accomplished by ensuring that adequate resources are available to respond to expected and unexpected imbalances and restoring frequency to its scheduled value in order to ensure uninterrupted electric service to customers. Electrical systems must be flexible enough to reliably operate under a variety of"change" scenarios. System planners and operators must understand how other parts of the system change in response to the initial change, and need tools to manage such changes to ensure reliable operation within the scheduled frequency range. This report presents a systematic approach to identifying metrics that are useful for operating and planning a reliable system with increased amounts of variable renewable generation which builds on existing industry practices for frequency control after unexpected loss of a large amount of generation. The report introduces a set of metrics or tools for measuring the adequacy of frequency response within an interconnection. Based on the concept of the frequency nadir, these metrics take advantage of new information gathering and processing capabilities that system operators are developing for wide-area situational awareness. Primary frequency response is the leading metric that will be used by this report to assess the adequacy of primary frequency control reserves necessary to ensure reliable operation. It measures what is needed to arrest frequency decline (i.e., to establish frequency nadir) at a frequency higher than the highest set point for under-frequency load shedding within an interconnection. These metrics can be used to guide the reliable operation of an interconnection under changing circumstances.
Nonlinear dynamic analysis of quasi-symmetric anisotropic structures
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.
Nonlinear Response of Unbiased and Biased Bilayer Graphene at Terahertz Frequencies
McGouran, Riley
The main focus of this thesis is the investigation of the nonlinear response of unbiased and biased bilayer graphene to incident radiation at terahertz frequencies. We present a tight-binding model of biased and unbiased bilayer graphene that is used to calculate the nonlinear terahertz response. Dynamic equations are developed for the electron density matrix within the length gauge. These equations facilitate the calculation of interband and intraband carrier dynamics. We then obtain nonlinear transmitted and reflected terahertz fields using the calculated nonlinear interband and intraband current densities. We examine the nonlinear response of unbiased bilayer graphene as a function of the incident field amplitude. In this case the sample is taken to be undoped. In the reflected field, we find the maximum third harmonic amplitude to be approximately 30% of the fundamental frequency for an incident field of 1.5 kV cm-1, which is greater than that found in undoped monolayer graphene at the same field amplitude. To examine the nonlinear response of biased bilayer graphene, we investigate two different scenarios. In the first scenario, we consider an undoped sample at fixed temperature. We find that when the external bias has a value of 2 meV, the generated third harmonic in the reflected field is approximately 45% of the fundamental for an incident field amplitude of 2 kV cm-1 . When we increase the external bias further to 8 meV, we find the generated third harmonic field is approximately 38% of the fundamental for an incident field amplitude of 1 kV cm-1. For both of these bias values, the generated third harmonic is greater than that found in undoped monolayer graphene. In that system, the generated third harmonic field is approximately 32% of the fundamental for an incident field amplitude of 200 V cm-1. In the second scenario, we consider doped biased bilayer graphene. We fix the carrier density at 2x1012 cm-2, the incident field amplitude at 50 kV cm-1, and
Directory of Open Access Journals (Sweden)
D. A. Robinson
1998-01-01
Full Text Available Capacitance probes are a fast, safe and relatively inexpensive means of measuring the relative permittivity of soils, which can then be used to estimate soil water content. Initial experiments with capacitance probes used empirical calibrations between the frequency response of the instrument and soil water content. This has the disadvantage that the calibrations are instrument-dependent. A twofold calibration strategy is described in this paper; the instrument frequency is turned into relative permittivity (dielectric constant which can then be calibrated against soil water content. This approach offers the advantages of making the second calibration, from soil permittivity to soil water content. instrument-independent and allows comparison with other dielectric methods, such as time domain reflectometry. A physically based model, used to calibrate capacitance probes in terms of relative permittivity (εr is presented. The model, which was developed from circuit analysis, predicts, successfully, the frequency response of the instrument in liquids with different relative permittivities, using only measurements in air and water. lt was used successfully to calibrate 10 prototype surface capacitance insertion probes (SCIPS and a depth capacitance probe. The findings demonstrate that the geometric properties of the instrument electrodes were an important parameter in the model, the value of which could be fixed through measurement. The relationship between apparent soil permittivity and volumetric water content has been the subject of much research in the last 30 years. Two lines of investigation have developed, time domain reflectometry (TDR and capacitance. Both methods claim to measure relative permittivity and should therefore be comparable. This paper demonstrates that the IH capacitance probe overestimates relative permittivity as the ionic conductivity of the medium increases. Electrically conducting ionic solutions were used to test the
Anisotropic Inflation with General Potentials
Shi, Jiaming; Qiu, Taotao
2015-01-01
Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.
Modal parameters of a rotating multiple-disk-shaft system from simulated frequency response data
Directory of Open Access Journals (Sweden)
Khader N.
2014-12-01
Full Text Available Modal parameters of a rotating multiple disk-shaft system are estimated in Multiple Input/Multiple Output (MIMO scheme. The response at multiple output degrees of freedom (dofs and excitations at multiple input (reference dofs are related through the Frequency Response Function (FRF matrix. The corresponding Impulse Response Function (IRF matrix is obtained by Inverse Fast Fourier Transform (IFFT of the FRF matrix. The resulting FRF matrix is not symmetric due to the gyroscopic effects introduced by rotation. The Eigensystem Realization Algorithm (ERA and its equivalent low order time domain algorithm, based on the Unified Matrix Polynomial Approach (UMPA are employed to estimate the desired modal parameters, i.e., system eigenvalues and the associated right hand and left hand eigenvectors. The right hand vectors are estimated from multiple columns of the FRF matrix with the structure rotating in one direction, and the left hand vectors are estimated from the multiple rows of the FRF matrix, which are calculated as the transpose of the same multiple columns of the FRF matrix, estimated with rotation in the opposite direction. The obtained results are found to be in excellent agreement with results obtained from Theoretical Modal Analysis (TMA.
Response of a Hodgkin-Huxley neuron to a high-frequency input
Borkowski, L S
2010-01-01
We study the response of a Hodgkin-Huxley neuron stimulated by a periodic sequence of conductance pulses arriving through the synapse in the high frequency regime. In addition to the usual excitation threshold there is a smooth crossover from the firing to the silent regime for increasing pulse amplitude $g_{syn}$. The amplitude of the voltage spikes decreases approximately linearly with $g_{syn}$. In some regions of parameter space the response is irregular, probably chaotic. In the chaotic regime between the mode-locked regions 3:1 and 2:1 near the lower excitation threshold the output interspike interval histogram (ISIH) undergoes a sharp transition. If the driving period is below the critical value, $T_i T^*$ even multiples of $T_i$ also appear in the histogram, starting from the largest values. Near $T^*$ the ISIH scales logarithmically on both sides of the transition. The coefficient of variation of ISIH has a cusp singularity at $T^*$. The average response period has a maximum slightly above $T^*$. Ne...
Cotgreave, Ian A
2005-03-01
Cells phenotypically adapt to alterations in their intra- and extracellular environment via organised alterations to gene and protein expression. Many chemical and physical stimuli are known to drive such responses, including the induction of oxidative stress and heat shock. Increasing use of mobile telephones in our society, has brought focus on the potential for radio frequency (microwave) electromagnetic radiation to elicit biological stress responses, in association with potentially detrimental effects of this to human health. Here we review evidence suggesting altered gene and protein expression in response to such emissions, with particular focus on heat shock proteins. Non-thermal induction of heat shock proteins has been claimed by a number of investigations in in vitro cellular systems, and appears pleiotropic for many other regulatory events. However, many of these studies are flawed by inconsistencies in exposure models, cell types used and the independent reproducibility of the findings. Further, the paucity of evidence from in vivo experimentation is largely contradictory. Therefore, the validity of these effects in human health risk assessment remain unsubstantiated. Where possible, suggestions for further experimental clarification have been provided.
León, J.; Perpiñà, X.; Altet, J.; Vellvehi, M.; Jordà, X.
2013-11-01
This paper combines the heterodyne modulation technique with lock-in detection approaches to characterize the electrical behaviour of electronic systems in the frequency domain by thermal means. A thermal test chip (TTC), featuring a heating resistor and an embedded thermal sensor, is used as a test vehicle to assess this approach. The frequency response of the heating resistor has been first characterized by electrical measurements, yielding to a suitable TTC equivalent circuit which qualitatively explains its behaviour. Then, in order to infer this behaviour by thermal means, the heating resistor temperature has been heterodynally detected by on-chip local sensing (embedded thermal sensor) and off-chip spatially resolved (infrared lock-in thermography) techniques. The results of this paper show that from low-frequency temperature measurements it is possible to obtain the electrical frequency response of the TTC and to detect and locate capacitive coupling that disturbs the high-frequency operation of the device.
Sajib, Saurav Z. K.; Jeong, Woo Chul; Kyung, Eun Jung; Kim, Hyun Bum; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2016-06-01
Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.
Directory of Open Access Journals (Sweden)
Saurav Z. K. Sajib
2016-06-01
Full Text Available Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.
Human frequency-following responses: representation of steady-state synthetic vowels.
Krishnan, Ananthanarayan
2002-04-01
Auditory nerve single-unit population studies have demonstrated that phase-locking plays a dominant role in the neural encoding of the spectrum of speech sounds. Given this, it was reasoned that the phase-locked neural activity underlying the scalp-recorded human frequency-following response (FFR) might preserve information about certain acoustic features of speech sounds. It was recently reported (Ananthanarayan, A.K., 1999. J. Audiol. Neurootol. 4, 95-103) that the FFR spectrum to simple two-tone approximations of several English back vowels does indeed contain peaks corresponding to the first and second formant frequencies. In this investigation FFRs to the more complex steady-state synthetic English back vowels (/u/, /)/, and /a/) were evaluated. FFRs were obtained from 10 normal-hearing human adults at 85, 75, 65, and 55 dB normal-hearing level (nHL). Spectrum analyses of the FFRs revealed distinct peaks at harmonics adjacent to the first and the second formants across all levels suggesting that phase-locked activity among two distinct populations of neurons is indeed preserved in the FFR. For each vowel the spectral peaks at first formant harmonics dominated the spectrum at high stimulus levels suggesting formant capture. The observation of less robust peaks for harmonics between the formants may very well suggest selective suppression to enhance spectral peaks at the formant frequencies. These results suggest that the scalp-recorded FFR may provide for a non-invasive analytic window to evaluate neural encoding of speech sounds in the brainstem of normal-hearing individuals and how this encoding may be degraded subsequent to cochlear hearing impairment.
Reale, Marcella; Kamal, Mohammad A; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H
2014-01-01
Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-), which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT
Directory of Open Access Journals (Sweden)
Johann Courteaud
2011-05-01
Full Text Available In the present work, the design and the environmental conditions of a micromachined thermal accelerometer, based on convection effect, are discussed and studied in order to understand the behavior of the frequency response evolution of the sensor. It has been theoretically and experimentally studied with different detector widths, pressure and gas nature. Although this type of sensor has already been intensively examined, little information concerning the frequency response modeling is currently available and very few experimental results about the frequency response are reported in the literature. In some particular conditions, our measurements show a cut-off frequency at −3 dB greater than 200 Hz. By using simple cylindrical and planar models of the thermal accelerometer and an equivalent electrical circuit, a good agreement with the experimental results has been demonstrated.
Optimized Multichannel Filter Bank with Flat Frequency Response for Texture Segmentation
Directory of Open Access Journals (Sweden)
Kachouie Nezamoddin N
2005-01-01
Full Text Available Previous approaches to texture analysis and segmentation use multichannel filtering by applying a set of filters in the frequency domain or a set of masks in the spatial domain. This paper presents two new texture segmentation algorithms based on multichannel filtering in conjunction with neural networks for feature extraction and segmentation. The features extracted by Gabor filters have been applied for image segmentation and analysis. Suitable choices of filter parameters and filter bank coverage in the frequency domain to optimize the filters are discussed. Here we introduce two methods to optimize Gabor filter bank. First, a Gabor filter bank with a flat response is implemented and the optimal feature dimension is extracted by competitive networks. Second, a subset of Gabor filter bank is selected to compose the best discriminative filters, so that each filter in this small set can discriminate a pair of textures in a given image. In both approaches, multilayer perceptrons are employed to segment the extracted features. The comparisons of segmentation results generated using the proposed methods and previous research using Gabor, discrete cosine transform (DCT, and Laws filters are presented. Finally, the segmentation results generated by applying the optimized filter banks to textured images are presented and discussed.
Panda, J.; Roozeboom, N. H.; Ross, J. C.
2016-01-01
The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.
Uncertainty analysis of strain modal parameters by Bayesian method using frequency response function
Institute of Scientific and Technical Information of China (English)
Xu Li; Yi Weijian; Zhihua Yi
2007-01-01
Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables, and their uncertainty is analyzed by a Bayesian method based on the structural frequency response function (FRF). The estimates of strain modal parameters with maximal posterior probability are determined. Several independent measurements of the FRF of a four-story reinforced concrete frame structural model were performed in the laboratory. The ability to identify the stiffness change in a concrete column using the strain mode was verified. It is shown that the uncertainty of the natural frequency is very small. Compared with the displacement mode shape, the variations of strain mode shapes at each point are quite different. The damping ratios are more affected by the types of test systems. Except for the case where a high order strain mode does not identify local damage, the first order strain mode can provide an exact indication of the damage location.
Improving quality of Food Frequency Questionnaire response in low-income Mexican American children.
Garcia-Dominic, Oralia; Treviño, Roberto P; Echon, Roger M; Mobley, Connie; Block, Torin; Bizzari, Ansam; Michalek, Joel
2012-11-01
The authors evaluated the validity and reliability of the Block Kids Food Frequency Questionnaire (BKFFQ) and the Block Kid Screener (BKScreener) in Mexican American children living along the Texas-Mexico border who participated in the National Institutes of Health-funded Proyecto Bienestar Laredo. The Bienestar/NEEMA health program is a school-based diabetes and obesity control program, and the Proyecto Bienestar Laredo is the translation of the Bienestar/NEEMA health program to 38 elementary schools in Laredo, Texas. Par ticipants included 2,376 eight-year-old boys (48%) and girls (52%) from two school districts in Laredo. Two Food Frequency Questionnaire (BKFFQ and BKScreener) dietary intakes were collected, and an expert panel of nutritionist assigned a classification response quality of "Good," "Questionable," and "Poor," based on playfulness (systematic or nonrandom) patterns and completion rates. In addition, both instruments were assessed for reliability (test-retest) in 138 students from a San Antonio School District. Children's height, weight, percentage body fat, reported family history of diabetes, and Texas Assessments of Knowledge and Skills in reading and mathematics scores were collected. This study showed that for Mexican American children living along the Texas-Mexico border, within the time constraints of the classroom, BKScreener yielded better data than the BKFFQ.
Frequency Response Properties of Organic Photo-Detectors as Opto-Electrical Conversion Devices
Morimune, Taichiro; Kajii, Hirotake; Ohmori, Yutaka
2006-06-01
Frequency performances and sensitivities for three types of organic photo-detector (OPD) were studied for an opto-electrical conversion device. A high efficiency of 19.4% of the external conversion efficiency and a high cutoff frequency response of 16 MHz were achieved using a mixed-layer between copper phthalocyanine (CuPc) and N, N'-bis (2,5-di-tert- butylphenyl) 3,4,9,10-perylene dicarboximide (BPPC) at a reverse bias voltage of 8 V under red incident light. These results were achieved by increasing exciton dissociation and charge carrier generation and to reduce the number of trapped carriers at the interfaces between CuPc and BPPC. The transmission of a moving picture was successfully demonstrated using mixed-layer OPD as an opto-electrical conversion device. These results indicate that it is possible for an OPD to be used as an opto-electrical conversion device in high-speed optical transmission systems.
Nikolopoulos, G M
2012-01-01
We study the effects of field fluctuations on the total yields of Auger electrons, obtained in the excitation of neutral atoms to a core-excited state by means of short-wavelength free-electron-laser pulses. Beginning with a self-contained analysis of the statistical properties of fluctuating free-electron-laser pulses, we analyse separately and in detail the cases of single and double Auger resonances, focusing on fundamental phenomena such as power broadening and ac Stark (Autler-Townes) splitting. In certain cases, field fluctuations are shown to influence dramatically the frequency response of the resonances, whereas in other cases the signal obtained may convey information about the bandwidth of the radiation as well as the dipole moment between Auger states.
Improved low frequency room responses by considering finiteness of room boundary surfaces
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2013-01-01
For room acoustic simulations, the acoustic characteristics of room boundary surfaces are typically calculated under the assumption that the surfaces are sufficiently large. In this study, a reflection coefficient for finite surfaces is suggested and its performance is assessed through case studies...... surface impedance values that are assigned to all the boundary surfaces, the suggested reflection coefficient is found to improve low frequency responses compared to the infinite panel theory; larger improvements are found for a more disproportionate room, more absorptive surfaces, and surfaces having...... larger negative phase angles of the surface impedance. A larger improvement is also found for a nonuniform absorption case than for a uniform absorption setting having a similar equivalent absorption coefficient....
A multichannel frequency response analyser for impedance spectroscopy on power sources
Directory of Open Access Journals (Sweden)
DANIEL J. L. BRETT
2013-06-01
Full Text Available A low-cost multi-channel frequency response analyser (FRA has been developed based on a DAQ (data acquisition/LabVIEW interface. The system has been tested for electric and electrochemical impedance measurements. This novel association of hardware and software demonstrated performance comparable to a commercial potentiostat / FRA for passive electric circuits. The software has multichannel capabilities with minimal phase shift for 5 channels when operated below 3 kHz. When applied in active (galvanostatic mode in conjunction with a commercial electronic load (by discharging a lead acid battery at 1.5 A the performance was fit for purpose, providing electrochemical information to characterize the performance of the power source.
A Review of Frequency Response Analysis Methods for Power Transformer Diagnostics
Directory of Open Access Journals (Sweden)
Saleh Alsuhaibani
2016-10-01
Full Text Available Power transformers play a critical role in electric power networks. Such transformers can suffer failures due to multiple stresses and aging. Thus, assessment of condition and diagnostic techniques are of great importance for improving power network reliability and service continuity. Several techniques are available to diagnose the faults within the power transformer. Frequency response analysis (FRA method is a powerful technique for diagnosing transformer winding deformation and several other types of problems that are caused during manufacture, transportation, installation and/or service life. This paper provides a comprehensive review on FRA methods and their applications in diagnostics and fault identification for power transformers. The paper discusses theory and applications of FRA methods as well as various issues and challenges faced in the application of this method.
Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2005-01-01
In the present paper the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserted...... into the model by using two different approaches: (a) linearized active oil film forces and the assumption that the hydrodynamic forces and the active hydraulic forces can be decoupled, and (b) equivalent dynamic coefficients of the active oil film and the solution of the modified Reynolds equation...... lubricated tilting-pad bearing. By applying a simple proportional controller it is possible to reach 30% reduction of the resonance peak associated with the first rigid body mode shape of the system. One of the most important consequences of such a vibration reduction in rotating machines is the feasibility...
Institute of Scientific and Technical Information of China (English)
Guo Jian-Chuan; Zuo Yu-Hua; Zhang Yun; Ding Wu-Chang; Cheng Bu-Wen; Yu Jin-Zhong; Wang Qi-Ming
2009-01-01
With consideration of the modulation frequency of the input lightwave itself, we present a new model to calculate the quantum efficiency of RCE p-i-n photodetectors (PD) by superimposition of multiple reflected lightwaves. For the first time, the optical delay, another important factor limiting the electrical bandwidth of RCE p-i-n PD excluding the transit time of the carriers and RCd response of the photodetector, is analyzed and discussed in detail. The optical delay dominates the bandwidth of RCE p-i-n PD when its active layer is thinner than several 10 nm. These three limiting factors must be considered exactly for design of ultra-high-speed RCE p-i-n PD.
Longitudinal fluctuations and decorrelation of anisotropic flow
Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian
2016-12-01
We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.
Anisotropic artificial substrates for microwave applications
Shahvarpour, Attieh
The perfect electromagnetic conductor (PEMC) boundary is a novel fundamental electromagnetic concept. It is a generalized description of the electromagnetic boundary conditions including the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC) and due to its fundamental properties, it has the potential of enabling several electromagnetic applications. However, the PEMC boundaries concept had remained at the theoretical level and has not been practically realized. Therefore, motivated by the importance of this electromagnetic fundamental concept and its potential applications, the first contribution of this thesis is focused on the practical implementation of the PEMC boundaries by exploiting Faraday rotation principle and ground reflection in the ferrite materials which are intrinsically anisotropic. As a result, this thesis reports the first practical approach for the realization of PEMC boundaries. A generalized scattering matrix (GSM) is used for the analysis of the grounded-ferrite PEMC boundaries structure. As an application of the PEMC boundaries, a transverse electromagnetic (TEM) waveguide is experimentally demonstrated using grounded ferrite PMC (as particular case of the PEMC boundaries) side walls. Perfect electromagnetic conductor boundaries may find applications in various types of sensors, reflectors, polarization convertors and polarization-based radio frequency identifiers. Leaky-wave antennas perform as high directivity and frequency beam scanning antennas and as a result they enable applications in radar, point-to-point communications and MIMO systems. The second contribution of this thesis is introducing and analysing a novel broadband and highly directive two-dimensional leaky-wave antenna. This antenna operates differently in the lower and higher frequency ranges. Toward its lower frequencies, it allows full-space conical-beam scanning while at higher frequencies, it provides fixed-beam radiation (at a designable angle
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał
2016-12-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Spaliński, Michał
2016-01-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.
Photon states in anisotropic media
Indian Academy of Sciences (India)
Deepak Kumar
2002-08-01
Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.
Naka, Masami; Fujiwara, Katsuo; Kiyota, Naoe
2015-01-01
The purpose of this study was to determine the role of somatosensory input to the sensory reference system in quiet standing. We applied vibration (0.5 mm amplitude, 1-60 Hz) to the triceps surae and the forefoot sole to stimulate the muscle spindles and the mechanoreceptors, respectively, and evaluated postural responses. Thirteen young healthy adults who showed backward-lean and forward-lean responses to vibration at high and low frequencies, respectively, participated in the full experiment. The lowest vibration frequencies inducing backward-lean responses (B-LF) were 15-55 Hz for the triceps surae and 16-60 Hz for the forefoot sole. The highest frequencies inducing forward-lean responses (F-HF) were 3-18 Hz for the triceps surae and 1-20 Hz for the forefoot sole. When vibration was simultaneously applied to the triceps surae and forefoot sole at F-HF, no response was induced in 70% of trials. A forward-lean response was induced in the remaining 30% of trials. Simultaneous vibration of the triceps surae and forefoot sole at B-LF induced backward-lean responses in all trials. All postural responses occurred 0.5-4.3 s after vibration onset. Postural responses to high-frequency vibration conceivably occur as a compensatory movement to the illusionary perception that standing position is deviating forward from quiet standing, which must be a reference position. Postural responses to low-frequency vibration possibly occur to equalize the positional information that is received from the triceps surae and the forefoot sole. Both postural responses are likely to involve the sensory reference system, which is located in the supraspinal nervous system.
MHz gravitational waves from short-term anisotropic inflation
Energy Technology Data Exchange (ETDEWEB)
Ito, Asuka; Soda, Jiro [Department of Physics, Kobe University,Kobe 657-8501 (Japan)
2016-04-18
We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10{sup −26}∼10{sup −27} are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.
MHz Gravitational Waves from Short-term Anisotropic Inflation
Ito, Asuka
2016-01-01
We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around $10^{-26}$ ~ $10^{-27}$ are copiously produced in high-frequency bands 10MHz~100MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.
Electric double layer of anisotropic dielectric colloids under electric fields
Han, M.; Wu, H.; Luijten, E.
2016-07-01
Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.
Timoshenko beam element with anisotropic cross-sectional properties
DEFF Research Database (Denmark)
Stäblein, Alexander; Hansen, Morten Hartvig
2016-01-01
Beam models are used for the aeroelastic time and frequency domain analysis of wind turbines due to their computational efficiency. Many current aeroelastic tools for the analysis of wind turbines rely on Timoshenko beam elements with classical crosssectional properties (EA, EI, etc.). Those cross......-sectional properties do not reflect the various couplings arising from the anisotropic behaviour of the blade material. A twonoded, three-dimensional Timoshenko beam element was therefore extended to allow for anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape functions are identical...
Xia, Baizhan; Yin, Hui; Yu, Dejie
2017-02-01
The response of the acoustic field, especially for the mid-frequency response, is very sensitive to uncertainties rising from manufacturing/construction tolerances, aggressive environmental factors and unpredictable excitations. To quantify these uncertainties with limited information effectively, two nondeterministic models (the interval model and the hybrid probability-interval model) are introduced. And then, two corresponding nondeterministic numerical methods are developed for the low- and mid-frequency response analysis of the acoustic field under these two nondeterministic models. The first one is the interval perturbation wave-based method (IPWBM) which is proposed to predict the maximal values of the low- and mid-frequency responses of the acoustic field under the interval model. The second one is the hybrid perturbation wave-based method (HPWBM) which is proposed to predict the maximal values of expectations and standard variances of the low- and mid-frequency responses of the acoustic field under the hybrid probability-interval model. The effectiveness and efficiency of the proposed nondeterministic numerical methods for the low- and mid-frequency response analysis of the acoustic field under the interval model and the hybrid probability-interval model are investigated by a numerical example.
Directory of Open Access Journals (Sweden)
Hyeon Seo
Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.
Radial stability of anisotropic strange quark stars
Arbañil, José D. V.; Malheiro, M.
2016-11-01
The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = pt-pr are considered, where pt and pr are respectively the tangential and the radial pressure: one that is null at the star's surface defined by pr(R) = 0, and one that is nonnull at the surface, namely, σs = 0 and σs ≠ 0. In the case σs = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σs ≠ 0, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σs. Thus, the stability star regions are determined always by the condition dM/dρc > 0 only when the tangential pressure is maintained fixed at the star surface's pt(R). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.
Anisotropic assembly and pattern formation
von Brecht, James H.; Uminsky, David T.
2017-01-01
We investigate the role of anisotropy in two classes of individual-based models for self-organization, collective behavior and self-assembly. We accomplish this via first-order dynamical systems of pairwise interacting particles that incorporate anisotropic interactions. At a continuum level, these models represent the natural anisotropic variants of the well-known aggregation equation. We leverage this framework to analyze the impact of anisotropic effects upon the self-assembly of co-dimension one equilibrium structures, such as micelles and vesicles. Our analytical results reveal the regularizing effect of anisotropy, and isolate the contexts in which anisotropic effects are necessary to achieve dynamical stability of co-dimension one structures. Our results therefore place theoretical limits on when anisotropic effects can be safely neglected. We also explore whether anisotropic effects suffice to induce pattern formation in such particle systems. We conclude with brief numerical studies that highlight various aspects of the models we introduce, elucidate their phase structure and partially validate the analysis we provide.
Indian Academy of Sciences (India)
Kallol Khan; Badri Prasad Patel; Yogendra Nath
2010-12-01
The forced vibration analysis of bimodulus material laminated structures is a challenging problem due to non-smooth nonlinear nature of governing equations. The most commonly used direct time integration schemes show numerical instability and do not predict steady state response except for limited number of cases without considering in-plane inertia. This is due to the sudden change of restoring force from positive/negative half cycle to negative/positive half cycle exciting higher modes/harmonics at every instant of a cycle change leading to numerical instability in the time marching scheme. In the present work, Galerkin time domain approach is successfully used for the forced vibration analysis of bimodular cylindrical panels. The effect of bimodularity ratio on the frequency response of cylindrical panels for few typical geometrical and lamination parameters is studied for the ﬁrst time. It is found that the positive half cycle amplitude is greater than the negative half cycle amplitude for $E_{2t}/E_{2c} < 1$ and is smaller for $E_{2t}/E_{2c} > 1$. Further, the percentage difference of positive and negative half cycle amplitudes decreases with the increase in $E_{2t}/E_{2c}$. The stresses under dynamic loading are different for positive and negative half of a vibration cycle.
Anisotropic metamaterials with simultaneous attenuation and amplification
Mackay, Tom G
2015-01-01
Anisotropic metamaterials that are neither wholly dissipative nor wholly active at a specific frequency are permitted by classical electromagnetic theory. Well-established formalisms for the homogenization of particulate composite materials indicate that such a metamaterial may be conceptualized quite simply as a random mixture of electrically small spheroidal particles of at least two different isotropic dielectric materials, one of which must be dissipative but the other active. The realization of this metametarial is influenced by the volume fraction, spatial distribution, particle shape and size, and the relative permittivities of the component materials. Metamaterials displaying both dissipation and amplification at the same frequency with more complicated linear as well as nonlinear constitutive properties are possible.
Geodesic acoustic mode in anisotropic plasma with heat flux
Energy Technology Data Exchange (ETDEWEB)
Ren, Haijun, E-mail: hjren@ustc.edu.cn [CAS Key Laboratory of Geospace Environment and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)
2015-10-15
Geodesic acoustic mode (GAM) in an anisotropic tokamak plasma is investigated in fluid approximation. The collisionless anisotropic plasma is described within the 16-momentum magnetohydrodynamic (MHD) fluid closure model, which takes into account not only the pressure anisotropy but also the anisotropic heat flux. It is shown that the GAM frequency agrees better with the kinetic result than the standard Chew-Goldberger-Low (CGL) MHD model. When zeroing the anisotropy, the 16-momentum result is identical with the kinetic one to the order of 1/q{sup 2}, while the CGL result agrees with the kinetic result only on the leading order. The discrepancies between the results of the CGL fluid model and the kinetic theory are well removed by considering the heat flux effect in the fluid approximation.
Ryan, Eric D; Beck, Travis W; Herda, Trent J; Hartman, Michael J; Stout, Jeffrey R; Housh, Terry J; Cramer, Joel T
2008-03-15
The purpose of the present study was to compare the mechanomyographic amplitude (MMG(RMS)) and mean power frequency (MMG(MPF)) vs. torque relationships during isometric ramp and step muscle actions for the vastus lateralis (VL) and rectus femoris (RF) muscles. Nineteen subjects (mean+/-S.D. age=24+/-4 years) performed 2 isometric maximal voluntary contractions (MVCs) before and after 2 or 3 isometric ramp muscle actions from (5-95% MVC) to 9 submaximal step muscle actions (15, 25, 35, 45, 55, 65, 75, 85, and 95% MVC). MMG signals were recorded from the VL and RF muscles, and MMG(RMS) and MMG(MPF) values were computed for each corresponding percentage of the MVC. Absolute and normalized MMG(RMS) and MMG(MPF) vs. torque relationships were analyzed and interpreted on a subject-by-subject and composite pattern basis using polynomial regression and repeated measures ANOVAs. For MMG(RMS) and MMG(MPF), only 16-53% and 11-26% of the individual responses were consistent with the composite polynomial models, respectively. In addition, the normalized composite MMG(RMS) values were greater for the RF than the VL from 35 to 85% MVC. Only 47% of the MMG(RMS) and 5% of the MMG(MPF) individual patterns of responses were the same for the ramp and step muscle actions, and differences were also observed for the composite MMG(RMS) and MMG(MPF) patterns between the ramp and step muscle actions. Overall, these findings indicated that the torque-related patterns of responses for MMG(RMS) and MMG(MPF) were different among subjects (i.e., inter-individual variability) and were muscle- (VL vs. RF) and mode-specific (ramp vs. step).
Helfield, Brandon L; Cherin, Emmanuel; Foster, F Stuart; Goertz, David E
2012-05-01
There are a range of contrast ultrasound applications above 10 MHz, a frequency regime in which nonlinear microbubble behavior is poorly understood. Lipid-encapsulated microbubbles have considerable potential for use at higher frequencies because they have been shown to exhibit pronounced nonlinear activity at frequencies up to 40 MHz. The objective of this work was to investigate the influence of agent formulation on the subharmonic response of lipid-encapsulated microbubbles at high frequencies with a view to providing information relevant to improving contrast agent design and imaging performance. An optical-acoustical setup was used to measure the subharmonic emissions from small (d subharmonic behavior, both in terms of amplitude and active sizes. MicroMarker™ exhibited the strongest, broadest and most consistent subharmonic response, 22% greater in power than that of Definity™ and as much as 50% greater than the in-house formulations. No clear relation between in-house agents' shell microstructure and nonlinear response was found, other than the variability in the nonlinear response itself. An analysis of the response of MicroMarker™ bubbles suggests that these bubbles exhibit "expansion-dominated" oscillations, in contrast to "compression-only" oscillations observed for similar bubbles at lower frequencies (f < 11 MHz).
DEFF Research Database (Denmark)
Lakshmanan, Venkatachalam; Marinelli, Mattia; Hu, Junjie;
2016-01-01
of household fridge performance in terms of response time and ramp-up rate, as well as the impact on fridge temperature and behaviour after the control period. The experimental results show that TCLs are fast responsive loads for DR activation, with the average control signal response time of 24 s......This paper studies the provision of secondary frequency control in electric power systems based on demand response (DR) activation on thermostatically controlled loads (TCLs) and quantifies the computation resource constraints for the control of large TCL population. Since TCLs are fast responsive...
Energy Technology Data Exchange (ETDEWEB)
Basanta Singh, N., E-mail: basanta_n@rediffmail.co [Department of Electronics and Communication Engineering, Manipur Institute of Technology, Imphal 795 004 (India); Deb, Sanjoy, E-mail: deb_sanjoy@yahoo.co [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700 032 (India); Sarkar, Subir Kumar, E-mail: su_sircir@yahoo.co.i [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700 032 (India)
2009-11-01
The effect of electronic-state modulation on the high frequency response of GaAs quantum well with thin inserted barrier layer is studied. The carrier scattering by polar optic phonons, acoustic deformation potential and background ionized impurities are incorporated in the present calculations considering the carrier distribution to be heated drifted Fermi-Dirac distribution. Modified phonon spectra and modulated electron wave function give different values of form factor compared to bulk mode phonon. Mobility is found to be enhanced on insertion of thin layer inside the quantum well. The ac mobility and the phase lag increases with the increase in both the channel width and the 2D carrier concentration. Cutoff frequency, where ac mobility drops down to 0.707 of its low frequency value, is observed to be enhanced reflecting better high frequency response.
Tailoring Effective Media by Mie Resonances of Radially-Anisotropic Cylinders
Directory of Open Access Journals (Sweden)
Henrik Kettunen
2015-05-01
Full Text Available This paper studies constructing advanced effective materials using arrays of circular radially-anisotropic (RA cylinders. Homogenization of such cylinders is considered in an electrodynamic case based on Mie scattering theory. The homogenization procedure consists of two steps. First, we present an effectively isotropic model for individual cylinders, and second, we discuss the modeling of a lattice of RA cylinders. Radial anisotropy brings us extra parameters, which makes it possible to adjust the desired effective response for a fixed frequency. The analysis still remains simple enough, enabling a derivation of analytical design equations. The considered applications include generating artificial magnetism using all-dielectric cylinders, which is currently a very sought-after phenomenon in optical frequencies. We also study how negative refraction is achieved using magnetodielectric RA cylinders.
Directory of Open Access Journals (Sweden)
Marcella Reale
Full Text Available Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD, have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-, which were countered by compensatory changes in antioxidant catylase (CAT activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a
Nonlinear analysis of traffic jams in an anisotropic continuum model
Institute of Scientific and Technical Information of China (English)
Arvind Kumar Gupta; Sapna Sharma
2010-01-01
This paper presents our study of the nonlinear stability of a new anisotropic continuum traffic flow model in which the dimensionless parameter or anisotropic factor controls the non-isotropic character and diffusive influence. In order to establish traffic flow stability criterion or to know the critical parameters that lead, on one hand, to a stable response to perturbations or disturbances or, on the other hand, to an unstable response and therefore to a possible congestion, a nonlinear stability criterion is derived by using a wavefront expansion technique. The stability criterion is illustrated by numerical results using the finite difference method for two different values of anisotropic parameter. It is also been observed that the newly derived stability results are consistent with previously reported results obtained using approximate linearisation methods. Moreover, the stability criterion derived in this paper can provide more refined information from the perspective of the capability to reproduce nonlinear traffic flow behaviors observed in real traffic than previously established methodologies.
Tsai, David; Morley, John W.; Suaning, Gregg J.; Lovell, Nigel H.
2011-10-01
The ability to elicit visual percepts through electrical stimulation of the retina has prompted numerous investigations examining the feasibility of restoring sight to the blind with retinal implants. The therapeutic efficacy of these devices will be strongly influenced by their ability to elicit neural responses that approximate those of normal vision. Retinal ganglion cells (RGCs) can fire spikes at frequencies greater than 200 Hz when driven by light. However, several studies using isolated retinas have found a decline in RGC spiking response rate when these cells were stimulated at greater than 50 Hz. It is possible that the mechanism responsible for this decline also contributes to the frequency-dependent 'fading' of electrically evoked percepts recently reported in human patients. Using whole-cell patch clamp recordings of rabbit RGCs, we investigated the causes for the spiking response depression during direct subretinal stimulation of these cells at 50-200 Hz. The response depression was not caused by inhibition arising from the retinal network but, instead, by a stimulus-frequency-dependent decline of RGC voltage-gated sodium current. Under identical experimental conditions, however, RGCs were able to spike at high frequency when driven by light stimuli and intracellular depolarization. Based on these observations, we demonstrated a technique to prevent the spiking response depression.
Strand, L. D.; Mcnamara, R. P.
1976-01-01
The feasibility of a system capable of rapidly and directly measuring the low-frequency (motor characteristics length bulk mode) combustion response characteristics of solid propellants has been investigated. The system consists of a variable frequency oscillatory driver device coupled with an improved version of the JPL microwave propellant regression rate measurement system. The ratio of the normalized regression rate and pressure amplitudes and their relative phase are measured as a function of varying pressure level and frequency. Test results with a well-characterized PBAN-AP propellant formulation were found to compare favorably with the results of more conventional stability measurement techniques.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper presents the effects of surface finish and treatment on the high cycle fatigue behaviour of vibrating cylinder block of a new two-stroke free piston engine at complex variable amplitude loading conditions using frequency response approach,Finite element modelling and frequency response analysis was conducted using finite element analysis software Package MSC.PATRAN/MSC.NASTRAN and fatigue life prediction was carried out using MSC.FATIGUE software. Based on the finite element results, different frequency response approach was applied to predict the cylinder block fatigue life. Results for different load histories and material combinations are also discussed. Results indicated great effects for all surface finish and treatment. It is concluded that polished and cast surface finish conditions give the highest and lowest cylinder block lives, respectively; and that Nitrided treatment leads to longest cylinder block life. The results were used to draw contour plots of fatigue life and damage in the worst or most damaging case.
Sai, Toru; Sugimoto, Shoko; Sugimoto, Yasuhiro
We propose a fast and precise transient response and frequency characteristics simulation method for switching converters. This method uses a behavioral simulation tool without using a SPICE-like analog simulator. The nonlinear operation of the circuit is considered, and the nonlinear function is realized by defining the nonlinear formula based on the circuit operation and by applying feedback. To assess the accuracy and simulation time of the proposed simulation method, we designed current-mode buck and boost converters and fabricated them using a 0.18-µm high-voltage CMOS process. The comparison in the transient response and frequency characteristics among SPICE, the proposed program on a behavioral simulation tool which we named NSTVR (New Simulation Tool for Voltage Regulators) and experiments of fabricated IC chips showed good agreement, while NSTVR was more than 22 times faster in transient response and 85 times faster in frequency characteristics than SPICE in CPU time in a boost converter simulation.
Light propagation through anisotropic turbulence.
Toselli, Italo; Agrawal, Brij; Restaino, Sergio
2011-03-01
A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quantitative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coefficient. The spectrum we use does not include the inner and outer scales, it is valid only inside the inertial subrange, and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direction. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation index by the factor ς(2-α).
Dielectric response of wurtzite gallium nitride in the terahertz frequency range
Hibberd, M. T.; Frey, V.; Spencer, B. F.; Mitchell, P. W.; Dawson, P.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J.; Graham, D. M.
2016-12-01
We report on the characterization of the intrinsic, anisotropic, dielectric properties of wurtzite gallium nitride in the spectral range of 0.5-11 THz, using terahertz time-domain spectroscopy. The ordinary (ε˜⊥) and extraordinary (ε˜∥) components of the complex dielectric function were determined experimentally for a semi-insulating, m-plane gallium nitride single crystal, providing measurements of the refractive indices (n⊥,∥) and absorption coefficients (α⊥,∥) . These material parameters were successfully modeled by considering the contribution of the optical phonon modes, measured using Raman spectroscopy, to the dielectric function, giving values for the relative static dielectric constants of ε0⊥ = 9.22 ± 0.02 and ε0∥ = 10.32 ± 0.03 for wurtzite gallium nitride.
Determining the dispersion characteristics of rivers from the frequency response of the system
Lambertz, Peter; Palancar, MaríA. C.; Aragón, José M.; Gil, Roberto
2006-09-01
A new method of determining the parameters of an aggregated dead zone model (ADZ) to predict longitudinal dispersion in rivers is presented. The method is based on the frequency response analysis (FRA) of observed field tests, which consist of tracer injections (input) and measurement of tracer in downstream sampling points (output) located downstream from the injection point. The ADZ is a combination of plug and completely mixed flow compartments. The ADZ parameters (number of compartments, mean residence time, and delay time) are evaluated by means of Bode plots that give the system order (number of compartments), gain, time constant (mean residence time of each compartment) and delay time. The FRA-ADZ method was checked with tracer data runs in two Spanish rivers, the Tagus and the Ebro rivers. The experimental tracer concentration versus time distributions were compared with the ADZ predicted curves, which were calculated using parameters obtained from the FRA method, and with curves predicted by several classical models. The residence time of several reaches within the two studied rivers was predicted by the FRA-ADZ method with a relative error lower than 10%. The method is generally applicable to ideal and nonideal inputs and is particularly well suited to arbitrary-shaped initial source concentration distributions.
Lock, Andrew; Amon, Francine
2008-04-01
Police, firefighters, and emergency medical personnel are examples of first responders that are utilizing thermal imaging cameras in a very practical way every day. However, few performance metrics have been developed to assist first responders in evaluating the performance of thermal imaging technology. This paper describes one possible metric for evaluating spatial resolution using an application of Spatial Frequency Response (SFR) calculations for thermal imaging. According to ISO 12233, the SFR is defined as the integrated area below the Modulation Transfer Function (MTF) curve derived from the discrete Fourier transform of a camera image representing a knife-edge target. This concept is modified slightly for use as a quantitative analysis of the camera's performance by integrating the area between the MTF curve and the camera's characteristic nonuniformity, or noise floor, determined at room temperature. The resulting value, which is termed the Effective SFR, can then be compared with a spatial resolution value obtained from human perception testing of task specific situations to determine the acceptability of the performance of thermal imaging cameras. The testing procedures described herein are being developed as part of a suite of tests for possible inclusion into a performance standard on thermal imaging cameras for first responders.
Directory of Open Access Journals (Sweden)
Kihong Shin
2015-01-01
Full Text Available Most existing techniques for machinery health monitoring that utilize measured vibration signals usually require measurement points to be as close as possible to the expected fault components of interest. This is particularly important for implementing condition-based maintenance since the incipient fault signal power may be too small to be detected if a sensor is located further away from the fault source. However, a measurement sensor is often not attached to the ideal point due to geometric or environmental restrictions. In such a case, many of the conventional diagnostic techniques may not be successfully applicable. In this paper, a two-channel analysis method is proposed to overcome such difficulty. It uses two vibration signals simultaneously measured at arbitrary points in a machine. The proposed method is described theoretically by introducing a fictitious system frequency response function. It is then verified experimentally for bearing fault detection. The results show that the suggested method may be a good alternative when ideal points for measurement sensors are not readily available.
Wang, Zu-Yong; Lim, Jing; Ho, Yeow Siong; Zhang, Qin-Yuan; Chong, Mark S K; Tang, Min; Hong, Ming-Hui; Chan, Jerry K Y; Teoh, Swee Hin; Thian, Eng San
2014-07-01
Geometric cues have been used for a variety of cell regulation and tissue regenerative applications. While the function of geometric cues is being recognized, their stability and degradation behaviors are not well known. Here, we studied the influence of degradation on uniaxial-stretch-induced poly(ε-caprolactone) (UX-PCL) ridge/groove arrays and further cellular responses. Results from accelerated hydrolysis in vitro showed that UX-PCL ridge/groove arrays followed a surface-controlled erosion, with an overall geometry remained even at ∼45% film weight loss. Compared to unstretched PCL flat surfaces and/or ridge/groove arrays, UX-PCL ridge/groove arrays achieved an enhanced morphological stability against degradation. Over the degradation period, UX-PCL ridge/groove arrays exhibited an "S-shape" behavior of film weight loss, and retained more stable surface hydrophilicity and higher film mechanical properties than those of unstretched PCL surfaces. Human mesenchymal stem cells (MSCs) aligned better toward UX-PCL ridge/groove arrays when the geometries were remained intact, and became sensitive with gradually declined nucleus alignment and elongation to the geometric degradation of ridges. We speculate that uniaxial stretching confers UX-PCL ridge/groove arrays with enhanced stability against degradation in erosive environment. This study provides insights of how degradation influences geometric cues and further cell responses, and has implications for the design of biomaterials with stability-enhanced geometric cues for long-term tissue regeneration.
Hyperspherical theory of anisotropic exciton
Muljarov, E A; Tikhodeev, S G; Bulatov, A E; Birman, Joseph L; 10.1063/1.1286772
2012-01-01
A new approach to the theory of anisotropic exciton based on Fock transformation, i.e., on a stereographic projection of the momentum to the unit 4-dimensional (4D) sphere, is developed. Hyperspherical functions are used as a basis of the perturbation theory. The binding energies, wave functions and oscillator strengths of elongated as well as flattened excitons are obtained numerically. It is shown that with an increase of the anisotropy degree the oscillator strengths are markedly redistributed between optically active and formerly inactive states, making the latter optically active. An approximate analytical solution of the anisotropic exciton problem taking into account the angular momentum conserving terms is obtained. This solution gives the binding energies of moderately anisotropic exciton with a good accuracy and provides a useful qualitative description of the energy level evolution.
Anisotropic inflation in Finsler spacetime
Li, Xin; Chang, Zhe
2015-01-01
We suggest the universe is Finslerian in the stage of inflation. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. The primordial power spectrum is given for quantum fluctuation of the inflation field. It depends not only on the magnitude of wavenumber but also on the preferred direction. We derive the gravitational field equations in the perturbed Finslerian background spacetime, and obtain a conserved quantity outside the Hubble horizon. The angular correlation coefficients are presented in our anisotropic inflation model. The parity violation feature of Finslerian background spacetime requires that the anisotropic effect only appears in angular correlation coefficients if $l'=l+1$. The numerical results of the angular correlation coefficients are given to describe the anisotropic effect.
Anisotropically structured magnetic aerogel monoliths
Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus
2014-10-01
Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and
The Tracking Resonance Frequency Method for Photoacoustic Measurements Based on the Phase Response
Suchenek, Mariusz
2017-04-01
One of the major issues in the use of the resonant photoacoustic cell is the resonance frequency of the cell. The frequency is not stable, and its changes depend mostly on temperature and gas mixture. This paper presents a new method for tracking resonance frequency, where both the amplitude and phase are calculated from the input samples. The stimulating frequency can be adjusted to the resonance frequency of the cell based on the phase. This method was implemented using a digital measurement system with an analog to digital converter, field programmable gate array (FPGA) and a microcontroller. The resonance frequency was changed by the injection of carbon dioxide into the cell. A theoretical description and experimental results are also presented.
Anisotropic hydrodynamics: Motivation and methodology
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael
2014-06-15
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.
Castro Arenas, C.; Ghersi, I.; Miralles, M. T.
2016-04-01
The purpose of this work is to study the frequency response of 3D tensegrity structures. These are structures that have been used, since the 80’s, to model biological systems of different scales. This fact led to the origin of the field of biotensegrity, which includes biomechanics as a natural field of application. In this work: a) A simple method for the analysis of frequency response of different nodes in 3D tensegrity structures was set up and tuned. This method is based on a video-analysis algorithm, which was applied to the structures, as they were vibrated along their axis of symmetry, at frequencies from 1 Hz to 60 Hz. b) Frequency-response analyses were performed, for the simplest 3D structure, the Simplex module, as well as for two towers, formed by stacking two and three Simplex modules, respectively. Resonant frequencies were detected for the Simplex module at (19.2±0.1) Hz and (50.2±0.1) Hz (the latter being an average of frequencies between homologous nodes). For the towers with two and three modules, each selected node presented a characteristic frequency response, modulated by their spatial placement in each model. Resonances for the two-stage tower were found at: (12±0.1) Hz; (16.2±0.1) Hz; (29.4±0.1) Hz and (37.2±0.1) Hz. For the tower with three Simplex modules, the main resonant frequencies were found at (12.0±0.1) Hz and (21.0±0.1) Hz. Results show that the proposed method is adequate for the study (2D) of any 3D tensegrity structure, with the potential of being generalized to the study of oscillations in three dimensions. A growing complexity and variability in the frequency response of the nodes was observed, as modules were added to the structures. These findings were compared to those found in the available literature.
Anisotropic Paramagnetic Meissner Effect by Spin-Orbit Coupling
Espedal, Camilla; Yokoyama, Takehito; Linder, Jacob
2016-03-01
Conventional s -wave superconductors repel an external magnetic field. However, a recent experiment [A. Di Bernardo et al., Phys. Rev. X 5, 041021 (2015)] has tailored the electromagnetic response of superconducting correlations via adjacent magnetic materials. We consider another route of altering the Meissner effect where spin-orbit interactions induce an anisotropic Meissner response that changes sign depending on the field orientation. The tunable electromagnetic response opens new paths in the utilization of hybrid systems comprising magnets and superconductors.
Energy Technology Data Exchange (ETDEWEB)
Miller, N. W.; Shao, M.; Pajic, S.; D' Aquila, R.
2014-12-01
The primary objectives of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) were to examine the large-scale transient stability and frequency response of the Western Interconnection with high wind and solar penetration, and to identify means to mitigate any adverse performance impacts via transmission reinforcements, storage, advanced control capabilities, or other alternatives.
Whistler Solitons in Plasma with Anisotropic Hot Electron Admixture
Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.
1999-01-01
The longitudinal and transverse modulation instability of whistler waves in plasma, with a small admixture of hot anisotropic electrons, is discussed. If the hot particles temperature anisotropy is positive, it is found that, in such plasma, longitudinal perturbations can lead to soliton formation for frequencies forbidden in cold plasma. The soliton is enriched by hot particles. The frequency region unstable to transverse modulation in cold plasma in the presence of hot electrons is divided by stable domains. For both cases the role of hot electrons is more significant for whistlers with smaller frequencies.
Anisotropic metamaterials for microwave antennas and infrared nanostructured thin films
Jian, Zhihao
Wave-matter interactions have long been investigated to discover unknown physical phenomena and exploited to achieve improved device performance throughout the electromagnetic spectrum ranging from quasi-static limit to microwave frequencies, and even at infrared and optical wavelengths. As a nascent but fast growing field, metamaterial technology, which relies on clusters of artificially engineered subwavelength structures, has been demonstrated to provide a wide variety of exotic electromagnetic properties unattainable in natural materials. This dissertation presents the research on novel anisotropic metamaterials for tailoring microwave radiation and infrared scattering of nanostructured thin films. First, a new inversion algorithm is proposed for retrieving the anisotropic effective medium parameters of a slab of metamaterial. Secondly, low-loss anisotropic metamaterial lenses and coatings are introduced for improving the gain and/or bandwidth for a variety of antennas. In particular, a quad-beam high-gain lens for a quarter-wave monopole, a low-profile grounded leaky metamaterial coating for slot antenna, and an ultra-thin anisotropic metamaterial bandwidth-enhancing coating for a quarter-wave monopole are experimentally demonstrated. In the infrared regime, novel nanostructured metamaterial free-standing thin-films, which are inherently anisotropic, are introduced for achieving exotic index properties and further for practical photonic devices. In particular, a low-loss near-infrared fishnet zero-index metamaterial, a dispersionengineered optically-thin, low-loss broadband metamaterial filter with a suppressed group delay fluctuation in the mid-infrared, and a conformal dual-band near-perfectly absorbing coating in the mid-infrared are experimentally demonstrated. These explorations show the great promise anisotropic metamaterials hold for the flexible manipulation of electromagnetic waves and their broad applicability in a wide spectrum range.
Debonding Analyses in Anisotropic Materials with Strain-Gradient Effects
DEFF Research Database (Denmark)
Legarth, Brian Nyvang
2012-01-01
A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a microreinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted....... A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...
Directory of Open Access Journals (Sweden)
U. C. Hasar
2015-01-01
Full Text Available We propose a retrieval method for reference-plane-invariant electromagnetic parameter measurements of bi-anisotropic metamaterial slabs without resorting to accurate information of the slab thickness and the branch index. To extract reference-plane distances, the slab thickness, and the branch index, we first approximate wave impedances and refractive index away from the slab resonance frequency and then use scattering parameters to calculate the refractive index and the branch index. Once these quantities are determined, they are used as inputs for the retrieval of electromagnetic properties of slabs over the whole band. Different approximations for refractive index and wave impedances are applied to demonstrate the applicability and accuracy of our proposed method. We tested our method for electromagnetic parameter extraction of bi-anisotropic split-ring-resonator and Omega-shaped MM slabs with different number of unit cells. From our analysis, we note that inaccurate information of reference-plane distances, the slab length, and the branch index not only changes the amplitude but also shifts the response of the electromagnetic properties. We show that the presented method can be applied for accurate electromagnetic parameter extraction of bi-anisotropic MM slabs.
Anisotropic dynamic mass density for fluidsolid composites
Wu, Ying
2012-10-01
By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.
Spectral functions from anisotropic lattice QCD
Aarts, G.; Allton, C.; Amato, A.; Evans, W.; Giudice, P.; Harris, T.; Kelly, A.; Kim, S. Y.; Lombardo, M. P.; Praki, K.; Ryan, S. M.; Skullerud, J.-I.
2016-12-01
The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.
Anisotropic Poisson Processes of Cylinders
Spiess, Malte
2010-01-01
Main characteristics of stationary anisotropic Poisson processes of cylinders (dilated k-dimensional flats) in d-dimensional Euclidean space are studied. Explicit formulae for the capacity functional, the covariance function, the contact distribution function, the volume fraction, and the intensity of the surface area measure are given which can be used directly in applications.
Magnetic relaxation in anisotropic magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1971-01-01
The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse or...
Failure in imperfect anisotropic materials
DEFF Research Database (Denmark)
Legarth, Brian Nyvang
2005-01-01
The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...
A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response
Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping
2017-01-01
A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.
Institute of Scientific and Technical Information of China (English)
Widyawardana Adiprawita; Adang Suwandi Ahmad; Jaka Sembiring
2007-01-01
This paper proposes an autopilot system that can be used to control the small scale rotorcraft during the flight test for linear-frequency-domain system identification. The input frequency-sweep is generated automatically as part of the autopilot control command. Therefore the bandwidth coverage and consistency of the frequency-sweep are guaranteed to produce high quality data for system identification. Beside that, we can set the safety parameters during the flight test (maximum roll/pitch value, minimum altitude, etc.) so the safety of the whole flight test is guaranteed. This autopilot system is validated using hardware in the loop simulator for hover flight condition.
Adiprawita, Widyawardana; Semibiring, Jaka
2008-01-01
This paper proposes an autopilot system that can be used to control the small scale rotorcraft during the flight test for linear-frequency-domain system identification. The input frequency swept is generated automatically as part of the autopilot control command. Therefore the bandwidth coverage and consistency of the frequency swept is guaranteed to produce high quality data for system identification. Beside that we can set the safety parameter during the flight test (maximum roll or pitch value, minimum altitude, etc) so the safety of the whole flight test is guaranteed. This autopilot for automated flight test will be tested using hardware in the loop simulator for hover flight condition.
Sellers, Kristin K; Bennett, Davis V; Fröhlich, Flavio
2015-02-19
Neuronal firing responses in visual cortex reflect the statistics of visual input and emerge from the interaction with endogenous network dynamics. Artificial visual stimuli presented to animals in which the network dynamics were constrained by anesthetic agents or trained behavioral tasks have provided fundamental understanding of how individual neurons in primary visual cortex respond to input. In contrast, very little is known about the mesoscale network dynamics and their relationship to microscopic spiking activity in the awake animal during free viewing of naturalistic visual input. To address this gap in knowledge, we recorded local field potential (LFP) and multiunit activity (MUA) simultaneously in all layers of primary visual cortex (V1) of awake, freely viewing ferrets presented with naturalistic visual input (nature movie clips). We found that naturalistic visual stimuli modulated the entire oscillation spectrum; low frequency oscillations were mostly suppressed whereas higher frequency oscillations were enhanced. In average across all cortical layers, stimulus-induced change in delta and alpha power negatively correlated with the MUA responses, whereas sensory-evoked increases in gamma power positively correlated with MUA responses. The time-course of the band-limited power in these frequency bands provided evidence for a model in which naturalistic visual input switched V1 between two distinct, endogenously present activity states defined by the power of low (delta, alpha) and high (gamma) frequency oscillatory activity. Therefore, the two mesoscale activity states delineated in this study may define the degree of engagement of the circuit with the processing of sensory input.
Shaoming, Bao; Yabing, Ke; Yanqing, Zheng; Lina, Cheng; Honglang, Li
2016-02-01
To achieve the monotonic frequency-temperature response for a high-temperature langasite (LGS) surface-acoustic-wave (SAW) sensor in a wide temperature range, a method utilizing two substrate cuts with different propagation angles on the same substrate plane was proposed. In this method, the theory of effective permittivity is adopted to calculate the temperature coefficients of frequency (TCF), electromechanical coupling coefficients (k2), and power flow angle (PFA) for different propagation angles on the same substrate plane, and then the two substrate cuts were chosen to have large k2 and small PFA, as well as the difference in their TCFs (ΔTCF) to always have the same sign of their values. The Z-cut LGS substrate plane was taken as an example, and the two suitable substrate cuts with propagation angles of 74 and 80° were chosen to derive a monotonic frequency-temperature response for LGS SAW sensors at -50 to 540 °C. Experiments on a LGS SAW sensor using the above two substrate cuts were designed, and its measured frequency-temperature response at -50 to 540 °C agreed well with the theory, demonstrating the high accuracy of the proposed method.
Wilson, Jeffrey D.; Zimmerli, Gregory A.
2012-01-01
Good antenna-mode coupling is needed for determining the amount of propellant in a tank through the method of radio frequency mass gauging (RFMG). The antenna configuration and position in a tank are important factors in coupling the antenna to the natural electromagnetic modes. In this study, different monopole and dipole antenna mounting configurations and positions were modeled and responses simulated in a full-scale tank model with the transient solver of CST Microwave Studio (CST Computer Simulation Technology of America, Inc.). The study was undertaken to qualitatively understand the effect of antenna design and placement within a tank on the resulting radio frequency (RF) tank spectrum.
Frequency Response of an Aircraft Wing with Discrete Source Damage Using Equivalent Plate Analysis
Krishnamurthy, T.; Eldred, Lloyd B.
2007-01-01
An equivalent plate procedure is developed to provide a computationally efficient means of matching the stiffness and frequencies of flight vehicle wing structures for prescribed loading conditions. Several new approaches are proposed and studied to match the stiffness and first five natural frequencies of the two reference models with and without damage. One approach divides the candidate reference plate into multiple zones in which stiffness and mass can be varied using a variety of materials including aluminum, graphite-epoxy, and foam-core graphite-epoxy sandwiches. Another approach places point masses along the edge of the stiffness-matched plate to tune the natural frequencies. Both approaches are successful at matching the stiffness and natural frequencies of the reference plates and provide useful insight into determination of crucial features in equivalent plate models of aircraft wing structures.
A piezoresistive micro-accelerometer with high frequency response and low transverse effect
Wang, Peng; Zhao, Yulong; Tian, Bian; Liu, Yan; Wang, Zixi; Li, Cun; Zhao, You
2017-01-01
With the purpose of measuring vibration signals in high-speed machinery, this paper developed a piezoresistive micro-accelerometer with multi-beam structure by combining four tiny sensing beams with four suspension beams. The eight-beam (EB) structure was designed to improve the trade-off between the sensitivity and the natural frequency of piezoresistive accelerometer. Besides, the piezoresistor configuration in the sensing beams reduces the cross interference from the undesirable direction significantly. The natural frequency of the structure and the stress on the sensing beams are theoretically calculated, and then verified through finite element method (FEM). The proposed sensor is fabricated on the n-type single crystal silicon wafer and packaged for experiment. The results demonstrate that the developed device possesses a suitable characteristic in sensitivity, natural frequency and transverse effect, which allows its usage in the measuring high frequency vibration signals.
Transient motion of thick anisotropic plates
Nayfeh, Adnan H.; Taylor, Timothy W.
1991-01-01
Analyses are developed for the response of anisotropic plate strips to a transient load. The load is taken in the form of a line load of normal stress on the surface or within the body of the strip. The characteristic free vibrational modes of the strip are derived and used to derive the secular equation for this case in closed form and to isolate the mathematical conditions for symmetric and antisymmetric wave mode propagation in completely separate terms. The applied loads are expanded in terms of these normal modes and the response of the plate is obtained by superposition of the appropriate components. Material systems of higher symmetry are contained implicitly in the analysis.
Electrically Anisotropic Layered Perovskite Single Crystal
Li, Ting-You
2016-04-01
Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.
2016-06-21
of points is then said into a cell generation algorithm based on the Voronoi approach. Figure 7. The cell generation technique involves...surface can be compared to the intended performance. The impedance extraction technique is based on the moment of inertia method, described below...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun
2016-10-01
A high-speed camera-based two-dimensional optical coherence vibration tomography (2DOCVT) system with a subnanometre displacement resolution was developed and employed for low-frequency vibration measurement and modal analysis. Experimental results demonstrated the ability of low-frequency absolute displacement measurement of structural line vibrations without scanning. Three-dimensional (3D) surface displacement of a vibrating structure could also be obtained using the developed 2DOCVT by scanning the structure. The scanning 2DOCVT system acted like a 3D optical coherence vibration tomography system. The developed 2DOCVT system could capture structural modal parameters without vibration excitation input information, and therefore, it is a response-only method. The 2DOCVT could be recommended in the application of low-frequency vibration measurement and modal analysis of beam and plate structures, especially when the vibration amplitude is at nanometre or micrometre scale.
Zhang, Hao; Lu, Caijiang; Sun, Zhixue
2015-01-01
This paper develops a self-biased magnetoelectric (ME) heterostructure FeCuNbSiB/Terfenol-D/Be-bronze/Pb(Zr,Ti)O3 (PZT) by sandwiching a nonmagnetic elastic Be-bronze plate between an piezoelectric PZT plate and a magnetization-graded FeCuNbSiB/Terfenol-D layer. The Be-bronze plate severs as the resonance frequency determining element of the ME heterostructure. By using the magnetization-graded magnetostrictive layer and the elastic Be-bronze plate, seven large peaks of ME response with magnitudes of 0.3-10 (V/cm Oe) in 1-70 kHz range are observed at zero-biased magnetic field. This demonstrates that the proposed multi-peak self-biased heterostructure may be useful for multifunctional devices such as multi-frequency energy harvesters or low-frequency ac magnetic field sensors.
Directory of Open Access Journals (Sweden)
Viyachai Taweesak
2014-01-01
Full Text Available Influences of irrigation frequency on the growth and flowering of chrysanthemum grown under restricted root volume were tested. Chrysanthemum cuttings (Chrysanthemum morifolium “Reagan White” were grown in seedling tray which contained coconut peat in volumes of 73 and 140 cm3. Plants were irrigated with drip irrigation at irrigation frequencies of 4 (266 mL, 6 (400 mL, and 8 (533 mL times/day to observe their growth and flowering performances. There was interaction between irrigation frequency and substrate volume on plant height of chrysanthemum. Plants grown in 140 cm3 substrates and irrigated 6 times/day produced the tallest plant of 109.25 cm. Plants irrigated 6 and 8 times/day had significantly higher level of phosphorus content in their leaves than those plants irrigated 4 times/day. The total leaf area, number of internodes, leaf length, and leaf width of chrysanthemums grown in 140 cm3 substrate were significantly higher than those grown in 73 cm3 substrate. The numbers of flowers were affected by both irrigation frequencies and substrate volumes. Chrysanthemums irrigated 8 times/day had an average of 19.56 flowers while those irrigated 4 times/day had an average of 16.63 flowers. Increasing irrigation frequency can improve the growth and flowering of chrysanthemums in small substrate volumes.
Decorrelation of anisotropic flow along the longitudinal direction
Energy Technology Data Exchange (ETDEWEB)
Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Qin, Guang-You [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Roy, Victor [Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Wang, Xin-Nian [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Lawrence Berkeley National Laboratory, Nuclear Science Division MS70R0319, Berkeley, CA (United States)
2016-04-15
The initial energy density distribution and fluctuations in the transverse direction lead to anisotropic flow of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flow in different regions of pseudorapidity (η). Decorrelation of the 2nd- and 3rd-order anisotropic flow with different η gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event plane angles. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation, indicating larger longitudinal fluctuations at lower beam energies. Our study also calls into question some of the current experimental methods for measuring anisotropic flow and the quantitative extraction of transport coefficients through comparisons to hydrodynamic simulations that do not include longitudinal fluctuations. (orig.)
Decorrelation of anisotropic flow along the longitudinal direction
Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian
2016-04-01
The initial energy density distribution and fluctuations in the transverse direction lead to anisotropic flow of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flow in different regions of pseudorapidity ( η . Decorrelation of the 2nd- and 3rd-order anisotropic flow with different η gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event plane angles. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation, indicating larger longitudinal fluctuations at lower beam energies. Our study also calls into question some of the current experimental methods for measuring anisotropic flow and the quantitative extraction of transport coefficients through comparisons to hydrodynamic simulations that do not include longitudinal fluctuations.
3D time-domain airborne EM modeling for an arbitrarily anisotropic earth
Yin, Changchun; Qi, Yanfu; Liu, Yunhe
2016-08-01
Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.
Directory of Open Access Journals (Sweden)
Jorge Villena
2015-11-01
Full Text Available In power systems with high wind energy penetration, the conjunction of wind power fluctuations and power system inertia reduction can lead to large frequency excursions, where the operating reserves of conventional power generation may be insufficient to restore the power balance. With the aim of evaluating the demand-side contribution to frequency control, a complete process to determine critical wind oscillations in power systems with high wind penetration is discussed and described in this paper. This process implies thousands of wind power series simulations, which have been carried out through a validated offshore wind farm model. A large number of different conditions have been taken into account, such as frequency dead bands, the percentages of controllable demand and seasonal factor influence on controllable loads. Relevant results and statistics are also included in the paper.
Directory of Open Access Journals (Sweden)
E. Gomez Luna
2015-04-01
Full Text Available The following article presents the results obtained in experiences that use the Impulse Frequency Response Analysis (IFRA method with a transformer in service. The IFRA method has been implemented in order to transform the transient signals to the frequency domain using Discrete Fourier Transform (DFT. However, it can be considered that the DFT is not the most suitable tool for this type of analysis, since, by definition, this tool is useful for processing stationary signals. Taking that into consideration, the analysis of transient signals could be hypothetically improved by using continuous wavelet transform (CWT, given their variable time/frequency resolution. The analysis of transient signals in Wavelet domain has improved the repeatability of the frequency response curves, as it has been observed in experimental results. The proposed on-line IFRA method, based on Wavelet transform, was validated under load and no-load conditions on a 150 kVA three-phase transformer 13200/225 Volts, in the Campus of the Universidad del Valle, Cali, Colombia.
Li, Jin; Xiong, Bing; Sun, Changzheng; Miao, Di; Luo, Yi
2015-08-24
A back-illuminated mesa-structure InGaAs/InP modified uni-traveling-carrier photodiode (MUTC-PD) is fabricated and its frequency response is investigated. A bandwidth of 40 GHz and a saturation photocurrent up to 33 mA are demonstrated. A photocurrent-dependent equivalent circuit model is proposed to analyze the frequency response of the high power MUTC-PDs. The influences of the space-charge screening, self-induced electric field and over-shoot effects are discussed in detail based on the model. Fitted curves obtained from the simple equivalent circuit model are found to be in good agreement with the data measured under different bias voltages and photocurrents.
Directory of Open Access Journals (Sweden)
Emmanuel eBiau
2015-09-01
Full Text Available During social interactions, speakers often produce spontaneous gestures to accompany their speech. These coordinated body movements convey communicative intentions, and modulate how listeners perceive the message in a subtle, but important way. In the present perspective, we put the focus on the role that congruent non-verbal information from beat gestures may play in the neural responses to speech. Whilst delta-theta oscillatory brain responses reflect the time-frequency structure of the speech signal, we argue that beat gestures promote phase resetting at relevant word onsets. This mechanism may facilitate the anticipation of associated acoustic cues relevant for prosodic/syllabic-based segmentation in speech perception. We report recently published data supporting this hypothesis, and discuss the potential of beats (and gestures in general for further studies investigating continuous AV speech processing through low-frequency oscillations.
Methods for interpretation of tensor induction well logging in layered anisotropic formations
Peksen, Ertan
One of the most challenging problems in the field of electromagnetic well logging is the development of interpretation methods for the characterization of conductivity anisotropy in an earth formation. Response of a triaxial electromagnetic induction well logging instrument is examined. This instrument detects three components of the magnetic field due to each of three transmitters for a total of nine signals. The conductivity anisotropy of the medium can be resolved from the instrument response. This information includes not only the vertical and horizontal conductivities, but also the orientation of the logging instrument axis with respect to the principal tensor axes. Formulas for the apparent horizontal and vertical conductivities, the apparent anisotropy coefficient, and the apparent relative deviation angle are introduced. A new method of induction logging based on electrical measurements is investigated. Electrical tensor components are studied in an unbounded, homogeneous, transversely isotropic, conductive medium. Low frequency asymptotic approximations of the analytical solution are derived. The important result is that by measuring the in-phase components of the electrical tensor, the principal values of the conductivity tensor can be obtained. The basic principles of tensor induction logging two-, three-, and multilayer anisotropic formations in vertical and deviated wells are examined by using numerical simulation of the tensor logs. A technique for correct reconstruction of the apparent conductivities of the anisotropic formations is introduced, based on application of a regularized Newton method. The method is fast and provides real time interpretation. The practical effectiveness of this technique for tensor induction log interpretation is illustrated using results of numerical experiments. The theoretical formulas for the tensor apparent conductivities of the transversely isotropic medium are studied and developed for an ideal tensor induction
Directory of Open Access Journals (Sweden)
Jukka-Pekka Kauppi
2010-03-01
Full Text Available Cinema is a promising naturalistic stimulus that enables, for instance, elicitation of robust emotions during functional magnetic resonance imaging (fMRI. Inter-subject correlation (ISC has been used as a model-free analysis method to map the highly complex hemodynamic responses that are evoked during watching a movie. Here, we extended the ISC analysis to frequency domain using wavelet analysis combined with non-parametric permutation methods for making voxel-wise statistical inferences about frequency-band specific ISC. We applied these novel analysis methods to a dataset collected in our previous study where 12 subjects watched an emotionally engaging movie “Crash” during fMRI scanning. Our results suggest that several regions within the frontal and temporal lobes show ISC predominantly at low frequency bands, whereas visual cortical areas exhibit ISC also at higher frequencies. It is possible that these findings relate to recent observations of a cortical hierarchy of temporal receptive windows, or that the types of events processed in temporal and prefrontal cortical areas (e.g., social interactions occur over longer time periods than the stimulus features processed in the visual areas. Software tools to perform frequency-specific ISC analysis, together with a visualization application, are available as open source Matlab code.
Recent progress in anisotropic hydrodynamics
Strickland, Michael
2016-01-01
The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, . In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.
Anisotropic Inflation and Cosmological Observations
Emami, Razieh
2015-01-01
Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation the...
Directory of Open Access Journals (Sweden)
Burke Martin J.
2016-01-01
Full Text Available This paper reports the optimisation of the low-frequency response of a multi-stage bioelectric amplifier intended for use in the measurement of the human electrocardiogram (ECG using high-impedance un-gelled electrodes. The frequency response was optimised to meet international performance requirements for electrocardiographic recorders, in particular the International Electrotechnical Commission 60601 standards [1,2]. The pole and zero locations of a multi-stage amplifier configuration were optimised to meet both time and frequency domain specifications. The optimum assignment for a three stage amplifier, having two differential stages and a differential-to-single-ended conversion stage was established by evaluating the performance of a number of circuit configurations. The optimum configuration was found to be two differential stages with a gain of 20dB each and a differential-to single-ended output stage with unity gain. The -3dB pole is placed at 0.028Hz and a zero at 0.0028Hz in the first and second stages to give an overall -3dB bandwidth of 0.043Hz. In addition, the pole of the input ac coupling network was placed at 0.0028Hz in order to meet the undershoot and recovery slope requirements in the narrow pulse response.
Directory of Open Access Journals (Sweden)
E. Tlelo-Cuautle
2014-01-01
Full Text Available A new graph-based symbolic technique (GBST for deriving exact analytical expressions like the transfer function H(s of an analog integrated circuit (IC, is introduced herein. The derived H(s of a given analog IC is used to compute the frequency response bounds (maximum and minimum associated to the magnitude and phase of H(s, subject to some ranges of process variational parameters, and by performing nonlinear constrained optimization. Our simulations demonstrate the usefulness of the new GBST for deriving the exact symbolic expression for H(s, and the last section highlights the good agreement between the frequency response bounds computed by our variational analysis approach versus traditional Monte Carlo simulations. As a conclusion, performing variational analysis using our proposed GBST for computing the frequency response bounds of analog ICs, shows a gain in computing time of 100x for a differential circuit topology and 50x for a 3-stage amplifier, compared to traditional Monte Carlo simulations.
Golbach, L.A.
2015-01-01
In this thesis we investigated possible modulatory roles of low frequency electromagnetic fields (LF EMFs) exposure on the innate immune system. Recent decades have seen a huge increase in the use of electronic devices that nowadays enable us to communicate with distant family, enjoy music ev
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2012-01-01
Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…
P.A. Starreveld; W. La Heij; R. Verdonschot
2013-01-01
The response exclusion account (REA), advanced by Mahon and colleagues, localises the distractor frequency effect and the semantic interference effect in picture naming at the level of the response output buffer. We derive four predictions from the REA: (1) the size of the distractor frequency effec
Behavioral Response of Dolphins to Signals Simulating Mid-Frequency Sonar
2011-09-30
trial were analyzed with an assymetrical dose function; overall scores were utilized for one analysis, and another was conducted in which only the...response severity scores difficult and all fits produced large error estimates. However, an assymetric function was fit to the data utilizing only task...distribution of data well. Assymetric dose response functions for several trials are presented in Figure 1. The r2 for dose response function fits ranged
Anisotropic phenomena in gauge/gravity duality
Energy Technology Data Exchange (ETDEWEB)
Zeller, Hansjoerg
2014-05-26
In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the
Love wave dispersion in anisotropic visco-elastic medium
Directory of Open Access Journals (Sweden)
G. GIR SUBHASH
1978-06-01
Full Text Available The paper presents a study on Love wave propagation in a anisotropic
visco-elastic layer overlying a rigid half space. The characteristic frequency
equation is obtained and the variation of the wave number with frequency
under the combined effect of visco-elasticity and anisotropy is analysed
in detail. The results show that the effect of visco-elasticity on the
wave is similar to that of anisotropy as long as the coefficient of anisotropy
is less than unity.
Institute of Scientific and Technical Information of China (English)
CUI Xinmei; FANG Guohong; TENG Fei; WU Di
2015-01-01
A numerical method is designed to examine the response properties of real sea areas to open ocean forcing. The application of this method to modeling the China's adjacent seas shows that the Bohai Sea has a highest peak response frequency (PRF) of 1.52 d−1; the northern Yellow Sea has a PRF of 1.69 d−1; the Gyeonggi Bay has a high amplitude gain plateau in the frequency band roughly from 1.7 to 2.7 d−1; the Yellow Sea (includ-ing the Gyeonggi Bay), the East China Sea shelf and the Taiwan Strait have a common high amplitude gain band with frequencies around 1.76 to 1.78 d−1 and are shown to be a system that responds to the open ocean forcing in favor of amplifying the waves with frequencies in this band; the Beibu Gulf, the Gulf of Thailand and the South China Sea deep basin have PRFs of 0.91, 1.01 and 0.98 d−1 respectively. In addition, the East China Sea has a Poincare mode PRF of 3.91 d−1. The PRFs of the Bohai Sea, the northern Yellow Sea, the Bei-bu Gulf and the South China Sea can be explained by a classical quarter (half for the Bohai Sea) wavelength resonance theory. The results show that further investigations are needed for the response dynamics of the Yellow Sea-East China Sea-Taiwan Strait system, the East China Sea Poincare mode, the Taiwan Strait, and the Gulf of Thailand.
Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media
Waheed, Umair bin
2014-05-01
Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.
Pipeline's natural frequency response due to internal pressure effect
Energy Technology Data Exchange (ETDEWEB)
Massa, Andre L.L.; Guevara Junior, Nestor O. [Suporte - Consultoria e Projetos Ltda., Rio de Janeiro, RJ (Brazil); Galgoul, Nelson S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Fernandes, Antonio C.; Coelho, Fabio M. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao de Programas de Pos-graduacao de Engenharia
2009-12-19
A few years ago, a discussion about how internal pressure is treated in submarine pipelines has taken place. Galgoul et al (2004) have pointed out the conservatism of the latest recommendations for pipeline free-span evaluations associated to the way the axial force is considered in the determination of the pipeline natural frequency. Fyrileiv and Collberg (2005) have also discussed this point in defense of the effective axial force concept and its use in the natural frequency determination. In order to contribute to this aspect, an experimental test has been performed with a fully embedded pipeline which was pressurized. The main object consists in showing that the pipe is under tension (and not under compression) and, as a consequence, it is the authors' intention to prove that the natural frequency increases instead of reducing when the internal pressure is incremented. In addition to the test, a finite element model has been presented where this internal pressure effect is taken into account as it actually is (and not as an axial force) in order to show the real behavior of the wall stresses. Static analyses, as well as modal and transient analysis have been performed in order to compare theoretical results with the experimental test conducted. (author)
Biferale, Luca; Toschi, Federico
2001-01-01
We present the first measurements of anisotropic statistical fluctuations in perfectly homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors and hierarchical ordering of anisotropies on a direct numerical simulation of a three dimensional random Kolmogorov flo
Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.
2015-01-01
The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination
Rastkhah, E; Zakeri, F; Ghoranneviss, M; Rajabpour, M R; Farshidpour, M R; Mianji, F; Bayat, M
2016-03-01
An in vitro study of the dose responses of human peripheral blood lymphocytes was conducted with the aim of creating calibrated dose-response curves for biodosimetry measuring up to 4 Gy (0.25-4 Gy) of gamma radiation. The cytokinesis-blocked micronucleus (CBMN) assay was employed to obtain the frequencies of micronuclei (MN) per binucleated cell in blood samples from 16 healthy donors (eight males and eight females) in two age ranges of 20-34 and 35-50 years. The data were used to construct the calibration curves for men and women in two age groups, separately. An increase in micronuclei yield with the dose in a linear-quadratic way was observed in all groups. To verify the applicability of the constructed calibration curve, MN yields were measured in peripheral blood lymphocytes of two real overexposed subjects and three irradiated samples with unknown dose, and the results were compared with dose values obtained from measuring dicentric chromosomes. The comparison of the results obtained by the two techniques indicated a good agreement between dose estimates. The average baseline frequency of MN for the 130 healthy non-exposed donors (77 men and 55 women, 20-60 years old divided into four age groups) ranged from 6 to 21 micronuclei per 1000 binucleated cells. Baseline MN frequencies were higher for women and for the older age group. The results presented in this study point out that the CBMN assay is a reliable, easier and valuable alternative method for biological dosimetry.
Directory of Open Access Journals (Sweden)
Umberto Melia
Full Text Available The level of sedation in patients undergoing medical procedures evolves continuously, affected by the interaction between the effect of the anesthetic and analgesic agents and the pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG, have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work is to improve the prediction of nociceptive responses with linear and non-linear measures calculated from EEG signal filtered in frequency bands higher than the traditional bands. Power spectral density and auto-mutual information function was applied in order to predict the presence or absence of the nociceptive responses to different stimuli during sedation in endoscopy procedure. The proposed measures exhibit better performances than the bispectral index (BIS. Values of prediction probability of Pk above 0.75 and percentages of sensitivity and specificity above 70% were achieved combining EEG measures from the traditional frequency bands and higher frequency bands.
Rambo, Marcos V H; Gamba, Humberto R; Ratzke, Alexandre S; Schneider, Fabio K; Maia, Joaquim M; Ramos, Carlos A S
2007-01-01
Working length (WL) determination is a key factor to the endodontic therapy or root canal treatment success. Almost all therapy procedures depend on this measure and the wrong WL determination may produce severe consequences, like post-therapeutic pain and the need of a new root canal treatment. Electronic foramen locators (EFL) have been replacing the traditional radiographic imaging as they are faster, easier to use and have a higher success rate when measuring WL. EFLs are based on the root canal impedance assessment between two electrodes: one fixed on the endodontic file that is inserted into the root canal, and the other positioned at oral mucosa membrane. There are only few reported studies that qualify or quantify the root canal impedance characteristics. The present work aims to determine the module of tooth root canal frequency response. The preliminary results show the frequency response module variation as a function of endodontic file position inside the root canal and reinforce the methods based on relative impedance over frequency analysis used in modern EFLs.
Correlation theory of crystal field and anisotropic exchange effects
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1985-01-01
A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds. The the......A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...... on the susceptibility, the first and second moment frequencies and the line shape are calculated self-consistently....
Modeling of CMUTs with Multiple Anisotropic Layers and Residual Stress
DEFF Research Database (Denmark)
Engholm, Mathias; Thomsen, Erik Vilain
2014-01-01
Usually the analytical approach for modeling CMUTs uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. A highly accurate model is developed for analytical characterization of CMUTs taking an arbitrary number of layers...... and residual stress into account. Based on the stress-strain relation of each layer and balancing stress resultants and bending moments, a general multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular...... clamped plate of anisotropic materials with residual bi-axial stress. From the deflection shape the critical stress for buckling is calculated and by using the Rayleigh-Ritz method the natural frequency is estimated....
Strong anisotropic thermal conductivity of monolayer WTe2
Ma, Jinlong; Chen, Yani; Han, Zheng; Li, Wu
2016-12-01
Tungsten ditelluride (WTe2) has attracted increasing attention due to its large magnetoresistance and pressure-induced superconductivity. In this work, we investigate the thermal conductivity (κ) of monolayer WTe2 by performing first-principles calculations, and find strong anisotropic κ with predicted room-temperature values of 9 and 20 W m-1 K-1 along two principal lattice directions, respectively. Such strong anisotropy suggests the importance of orientation when engineering thermal-related applications based on WTe2. The anisotropy of κ is attributed to the in-plane linear acoustic phonon branches, while the out-of-plane quadratic acoustic phonon branch is almost isotropic. The size dependence of κ shows that the size effect can persists up to 10 μm, and the anisotropy decreases with decreasing sample size due to the suppression of low-frequency anisotropic phonons by boundary scattering.
Characteristics of surface waves in anisotropic left-handed materials
Institute of Scientific and Technical Information of China (English)
Jiang Yong-Yuan; Shi Hong-Yan; Zhang Yong-Qiang; Hou Chun-Feng; Sun Xiu-Dong
2007-01-01
We report the coexistence of TE and TM surface modes in certain same frequency domain at the interface between one isotropic regular medium and another biaxially anistotropic left-handed medium. The conditions for the existence of TE and TM polarized surface waves in biaxially anisotropic left-handed materials are identified, respectively.The Poynting vector and the energy density associated with surface modes are calculated. Depending on the system parameters, either TE or TM surface modes can have the time averaged Poynting vector directed to or opposite to the mode phase velocity. It is seen that the characteristics of surface waves in biaxially anisotropic left-handed media are significantly different from that in isotropic left-handed media.
FREE VIBRATION OF ANISOTROPIC RECTANGULAR PLATES BY GENERAL ANALYTICAL METHOD
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
According to the differential equation for transverse displacement function of anisotropic rectangular thin plates in free vibration, a general analytical solution is established. This general solution, composed of the composite solutions of trigonometric function and hyperbolic function, can satisfy the problem of arbitrary boundary conditions along four edges. The algebraic polynomial with double sine series solutions can also satisfy the problem of boundary conditions at four corners. Consequently, this general solution can be used to solve the vibration problem of anisotropic rectangular plates with arbitrary boundaries accurately. The integral constants can be determined by boundary conditions of four edges and four corners. Each natural frequency and vibration mode can be solved by the determinate of coefficient matrix from the homogeneous linear algebraic equations equal to zero. For example, a composite symmetric angle ply laminated plate with four edges clamped has been calculated and discussed.
Gamma-beam propagation in the anisotropic medium
Maisheev, V A
2000-01-01
Propagation of gamma-beam in the anisotropic medium is considered. The simpliest example of such a medium of the general type is a combination of the two linearly polarized monochromatic laser waves with different frequencies (dichromatic wave). The optical properties of this combination are described with the use of the permittivity tensor. The refractive indices and polarization characteristics of normal electromagnetic waves propagating in the anisotropic medium are found. The relations, describing variations of gamma-beam intensity and Stokes parameters as functions of propagation length are obtained. The influence of laser wave intensity on the propagation process are calculated. The gamma-beam intensity losses in the dichromatic wave depend on the initial circular polarization of gamma-quanta. This effect is also applied to the single crystals, which are oriented in some regions of coherent pair production. In principle, the single crystal sensitivity to a circular polarization can be used for determina...
Anisotropic hypersonic phonon propagation in films of aligned ellipsoids.
Beltramo, Peter J; Schneider, Dirk; Fytas, George; Furst, Eric M
2014-11-14
A material with anisotropic elastic mechanical properties and a direction-dependent hypersonic band gap is fabricated using ac electric field-directed convective self-assembly of colloidal ellipsoids. The frequency of the gap, which is detected in the direction perpendicular to particle alignment and entirely absent parallel to alignment, and the effective sound velocities can be tuned by the particle aspect ratio. We hypothesize that the band gap originates from the primary eigenmode peak, the m-splitted (s,1,2) mode, of the particle resonating with the effective medium. These results reveal the potential for powerful control of the hypersonic phononic band diagram by combining anisotropic particles and self-assembly.
Augustine, Sruthy Maria; Cherian, Anoop V; Syamaladevi, Divya P; Subramonian, N
2015-12-01
Plant growth during abiotic stress is a long sought-after trait especially in crop plants in the context of global warming and climate change. Previous studies on leaf epidermal cells have revealed that during normal growth and development, adjacent cells interdigitate anisotropically to form cell morphological patterns known as interlocking marginal lobes (IMLs), involving the cell wall-cell membrane-cortical actin continuum. IMLs are growth-associated cell morphological changes in which auxin-binding protein (ABP), Rho GTPases and actin are known to play important roles. In the present study, we investigated the formation of IMLs under drought stress and found that Erianthus arundinaceus, a drought-tolerant wild relative of sugarcane, develops such growth-related cell morphological patterns under drought stress. Using confocal microscopy, we showed an increasing trend in cortical F-actin intensity in drought-tolerant plants with increasing soil moisture stress. In order to check the role of drought tolerance-related genes in IML formation under soil moisture stress, we adopted a structural data mining strategy and identified indirect connections between the ABPs and heat shock proteins (HSPs). Initial experimental evidence for this connection comes from the high transcript levels of HSP70 observed in drought-stressed Erianthus, which developed anisotropic interdigitation, i.e. IMLs. Subsequently, by overexpressing the E. arundinaceus HSP70 gene (EaHSP70) in sugarcane (Saccharum spp. hybrid), we confirm the role of HSP70 in the formation of anisotropic interdigitation under drought stress. Taken together, our results suggest that EaHSP70 acts as a key regulator in the formation of anisotropic interdigitation in drought-tolerant plants (Erianthus and HSP70 transgenic sugarcane) under moisture stress in an actin-mediated pathway. The possible biological significance of the formation of drought-associated interlocking marginal lobes (DaIMLs) in sugarcane plants upon
PHENOMENOLOGICAL DAMAGE MODELS OF ANISOTROPIC STRUCTURAL MATERIALS
Bobyr, M.; Khalimon, O.; Bondarets, O.
2015-01-01
Damage in metals is mainly the process of the initiation and growth of voids. A formulation for anisotropic damage is established in the framework of the principle of strain equivalence, principle of increment complementary energy equivalence and principle of elastic energy equivalence. This paper presents the development of an anisotropic damage theory. This work is focused on the development of evolution anisotropic damage models which is based on a Young’s modulus/Poisson’s ratio change of...
Activation of the SOS response increases the frequency of small colony variants
DEFF Research Database (Denmark)
Vestergaard, Martin; Paulander, Wilhelm Erik Axel; Ingmer, Hanne
2015-01-01
failed to do so. The higher proportion of SCVs in cultures exposed to fluoroquinolones and mitomycin C compared to un-exposed cultures correlate with an increased mutation rate monitored by rifampicin resistance and followed induction of the SOS DNA damage response. CONCLUSION: Our observations suggest...... that environmental stimuli, including antimicrobials that reduce replication fidelity, increase the formation of SCVs through activation of the SOS response and thereby potentially promote persistent infections that are difficult to treat....
Benefits of using virtual energy storage system for power system frequency response
Cheng, Meng; Sami, Saif Sabah; Wu, Jianzhong
2016-01-01
This paper forms a Virtual Energy Storage System (VESS) and validates that VESS is an innovative and cost-effective way to provide the function of conventional Energy Storage Systems (ESSs) through the utilization of the present network assets represented by the flexible demand. The VESS is a solution to convert to a low carbon power system and in this paper, is modelled to store and release energy in response to regulation signals by coordinating the Demand Response (DR) from domestic refrig...
Jin, L.; Borgeson, S.; Fredman, D.; Hans, L.; Spurlock, A.; Todd, A.
2015-12-01
California's renewable portfolio standard (2012) requires the state to get 33% of its electricity from renewable sources by 2020. Increased share of variable renewable sources such as solar and wind in the California electricity system may require more grid flexibility to insure reliable power services. Such grid flexibility can be potentially provided by changes in end use electricity consumptions in response to grid conditions (demand-response). In the solar case, residential consumption in the late afternoon can be used as reserve capacity to balance the drop in solar generation. This study presents our initial attempt to identify, from a behavior perspective, residential demand response potentials in relation to solar ramp events using a data-driven approach. Based on hourly residential energy consumption data, we derive representative daily load shapes focusing on discretionary consumption with an innovative clustering analysis technique. We aggregate the representative load shapes into behavior groups in terms of the timing and rhythm of energy use in the context of solar ramp events. Households of different behavior groups that are active during hours with high solar ramp rates are identified for capturing demand response potential. Insights into the nature and predictability of response to demand-response programs are provided.
Wang, Hui
2014-05-01
This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my
Sandrini-Neto, Leonardo; Pereira, Letícia; Martins, César C; Silva de Assis, Helena C; Camus, Lionel; Lana, Paulo C
2016-08-01
We have experimentally investigated the effects of repeated diesel spills on the bivalve Anomalocardia brasiliana, the gastropod Neritina virginea and the polychaete Laeonereis culveri, by monitoring the responses of oxidative stress biomarkers in a subtropical estuary. Three frequencies of exposure events were compared against two dosages of oil in a factorial experiment with asymmetrical controls. Hypotheses were tested to distinguish between (i) the overall effect of oil spills, (ii) the effect of diesel dosage via different exposure regimes, and (iii) the effect of time since last spill. Antioxidant defense responses and oxidative damage in the bivalve A. brasiliana and the polychaete L. culveri were overall significantly affected by frequent oil spills compared to undisturbed controls. The main effects of diesel spills on both species were the induction of SOD and GST activities, a significant increase in LPO levels and a decrease in GSH concentration. N. virginea was particularly tolerant to oil exposure, with the exception of a significant GSH depletion. Overall, enzymatic activities and oxidative damage in A. brasiliana and L. culveri were induced by frequent low-dosage spills compared to infrequent high-dosage spills, although the opposite pattern was observed for N. virginea antioxidant responses. Antioxidant responses in A. brasiliana and L. culveri were not affected by timing of exposure events. However, our results revealed that N. virginea might have a delayed response to acute high-dosage exposure. Experimental in situ simulations of oil exposure events with varying frequencies and intensities provide a useful tool for detecting and quantifying environmental impacts. In general, antioxidant biomarkers were induced by frequent low-dosage exposures compared to infrequent high-dosage ones. The bivalve A. brasiliana and the polychaete L. culveri are more suitable sentinels due to their greater responsiveness to oil and also to their wider geographical
Directory of Open Access Journals (Sweden)
Yamaguchi David K
2006-03-01
Full Text Available Abstract Background Xylitol is a naturally occurring sugar substitute that has been shown to reduce the level of mutans streptococci in plaque and saliva and to reduce tooth decay. It has been suggested that the degree of reduction is dependent on both the amount and the frequency of xylitol consumption. For xylitol to be successfully and cost-effectively used in public health prevention strategies dosing and frequency guidelines should be established. This study determined the reduction in mutans streptococci levels in plaque and unstimulated saliva to increasing frequency of xylitol gum use at a fixed total daily dose of 10.32 g over five weeks. Methods Participants (n = 132 were randomized to either active groups (10.32 g xylitol/day or a placebo control (9.828 g sorbitol and 0.7 g maltitol/day. All groups chewed 12 pieces of gum per day. The control group chewed 4 times/day and active groups chewed xylitol gum at a frequency of 2 times/day, 3 times/day, or 4 times/day. The 12 gum pieces were evenly divided into the frequency assigned to each group. Plaque and unstimulated saliva samples were taken at baseline and five-weeks and were cultured on modified Mitis Salivarius agar for mutans streptococci enumeration. Results There were no significant differences in mutans streptococci level among the groups at baseline. At five-weeks, mutans streptococci levels in plaque and unstimulated saliva showed a linear reduction with increasing frequency of xylitol chewing gum use at the constant daily dose. Although the difference observed for the group that chewed xylitol 2 times/day was consistent with the linear model, the difference was not significant. Conclusion There was a linear reduction in mutans streptococci levels in plaque and saliva with increasing frequency of xylitol gum use at a constant daily dose. Reduction at a consumption frequency of 2 times per day was small and consistent with the linear-response line but was not statistically
DEFF Research Database (Denmark)
Buse, John B; Garber, Alan; Rosenstock, Julio
2011-01-01
included the proportion of patients positive for anti-liraglutide or anti-exenatide antibodies, a glucagon-like peptide-1 cross-reacting effect, and an in vitro liraglutide- or exenatide-neutralizing effect. Change in glycosylated hemoglobin A1c (HbA1c) by antibody status and magnitude [negative, positive...... reductions 1.1–1.3% in antibody-positive vs. 1.2% in antibody-negative patients). In LEAD-6, 113 of 185 extension patients (61%) had anti-exenatide antibodies at wk 26 (range 2.4–60.2%B/T). High levels of anti-exenatide antibodies were correlated with significantly smaller HbA1c reductions (P = 0.......0022). After switching from exenatide to liraglutide, anti-exenatide antibodies did not compromise a further glycemic response to liraglutide (additional 0.4% HbA1c reduction). Conclusions: Liraglutide was less immunogenic than exenatide; the frequency and levels of anti-liraglutide antibodies were low and did...
Resistance to change and frequency of response-dependent stimuli uncorrelated with reinforcement.
Podlesnik, Christopher A; Jimenez-Gomez, Corina; Ward, Ryan D; Shahan, Timothy A
2009-09-01
Stimuli uncorrelated with reinforcement have been shown to enhance response rates and resistance to disruption; however, the effects of different rates of stimulus presentations have not been assessed. In two experiments, we assessed the effects of adding different rates of response-dependent brief stimuli uncorrelated with primary reinforcement on relative response rates and resistance to change. In both experiments, pigeons responded on variable-interval 60-s schedules of food reinforcement in two components of a multiple schedule, and brief response-dependent keylight-color changes were added to one or both components. Although relative response rates were not systematically affected in either experiment, relative resistance to presession feeding and extinction were. In Experiment 1, adding stimuli on a variable-interval schedule to one component of a multiple schedule either at a low rate (1 per min) for one group or at a high rate (4 per min) for another group similarly increased resistance to disruption in the components with added stimuli. When high and low rates of stimuli were presented across components (i.e., within subjects) in Experiment 2, however, relative resistance to disruption was greater in the component presenting stimuli at a lower rate. These results suggest that stimuli uncorrelated with food reinforcement do not strengthen responding in the same way as primary reinforcers.
McCarthy, C.; Takei, Y.; Cooper, R. F.; Savage, H. M.
2014-12-01
Seismology provides powerful methods for imaging the interior of the Earth, not only through differences in seismic velocities, but also through attenuation contrasts. As seismic waves travel through the Earth they are attenuated in accordance with the viscoelastic properties of the material through which they pass. With proper constraints, we will someday be able to use seismic attenuation data as a prospecting tool to determine the grain size, temperature, pressure, melt content, and water content of the material along the ray path. Furthermore, it should be possible to determine active deformation structure, such as crystallographic preferred orientations that form in response to far-field natural tectonic loading. Laboratory studies are striving to provide these needed constraints. Using analogues to mantle rock, we isolate and scrutinize the physics of how microstructural elements affect macroscopic properties of attenuation and steady-state viscosity. An organic analogue, borneol, was used to measure the effects of grain size, temperature, and melt content over a broad frequency range. In these experiments, grain boundary processes were found to play a major role. Polycrystalline ice, which can be considered a rock analogue, has been used to explore the effect of accumulated strain on attenuation, particularly in material that is actively deforming via dislocation creep. Here, defect concentration and substructure are important. I will discuss the use of cyclic loading experiments on borneol and on polycrystalline ice to probe material response from seismic to tidal frequencies, from 10 Hz to 10-4 Hz respectively. These experiments, then, inform our knowledge of viscoelastic behavior of geologic materials at not only seismic frequencies, but also the tidal forcing frequencies experienced by tidewater glaciers and icy satellites.
In vitro testing of cellular response to ultra high frequency electromagnetic field radiation.
Pavicic, Ivan; Trosic, Ivancica
2008-08-01
The aim of this study was to evaluate whether low-level, ultra high frequency (UHF) irradiation of 935 MHz influences the cell structure and growth of V79 cells. UHF field was generated inside a Gigahertz Transversal Electromagnetic Mode cell (GTEM-cell) with a Hewlett-Packard signal generator. The electric field strength was 8.2+/-0.3 V/cm and the average specific absorption rate (SAR) was calculated to be 0.12 W/kg. Cell samples were cultivated in a humidified atmosphere at 37 degrees C with 5% CO2. Prepared cell samples were exposed to a 935 MHz continuous wave frequency field for 1, 2, and 3 h. The structure of microtubule proteins has been determined using the immunocytochemical method. Cell growth was determined by cell counts for each hour of exposure during five post-exposure days. Negative- and positive-cell controls were included into the experimental procedure. In comparison with control cells, the microtubule structure clearly altered after 3h of irradiation (pgrowth was noted in cells exposed for 3h three days after irradiation (pcell growth.
Anisotropic and omnidirectional focusing in Luneburg lens structure with gradient photonic crystals
Zhao, Yuan-Yuan; Zhang, Yong-Liang; Zheng, Mei-Ling; Dong, Xian-Zi; Duan, Xuan-Ming; Zhao, Zhen-Sheng
2017-01-01
We propose a flexible design for implementation of the Luneburg lens with gradient photonic crystals. The full-wave simulation results demonstrate the excellent performance of omnidirectional focusing of the designed Luneburg lens over a broad frequency band, and firstly exhibit anisotropic focusing in the designed Luneburg lens with a specific frequency band. In this study, our effort is focused on figuring out the operating wavelength range where the effective medium approximation theory is applicable, and the mechanism for generating anisotropic and omnidirectional focusing in Luneburg lens structure.
Faulkes, Z; Pollack, G S
2001-04-01
In crickets (Teleogryllus oceanicus), the auditory interneuron omega neuron 1 (ON1) responds to sounds over a wide range of frequencies but is most sensitive to the frequency of conspecific songs (4.5 kHz). Response latency is longest for this same frequency. We investigate the mechanisms that might account for the longer latency of ON1 to cricket-like sounds. Intracellular recordings revealed no evidence for appropriately timed postsynaptic inhibition of ON1 that might increase its latency, nor was latency affected by picrotoxin. The onset of excitatory postsynaptic potentials (EPSPs) was delayed for 4.5 kHz stimuli compared with ultrasound stimuli, pointing to a presynaptic locus for the latency difference. When ON1 is stimulated with high frequencies, discrete, apparently unitary EPSPs can be recorded in its dendrite, and these are latency-locked to spikes recorded simultaneously in the auditory nerve. This suggests that input to ON1 from high-frequency-tuned auditory receptor neurons is monosynaptic. In agreement with this, brief ultrasound stimuli evoke a single, short-latency EPSP in ON1. In contrast, the EPSP evoked by a brief 4.5 kHz stimulus consists of an early component, similar in latency to that evoked by ultrasound and possibly evoked by ultrasound-tuned receptors, and a later, dominant component. We interpret the early peak as arising from a monosynaptic afferent pathway and the late peak from a polysynaptic afferent pathway. Multiple-peak EPSPs, with timing similar to those evoked by sound stimuli, were also evoked by electrical stimulation of the auditory nerve.
Maetzler, Walter; Karam, Marie; Berger, Monika Fruhmann; Heger, Tanja; Maetzler, Corina; Ruediger, Heinz; Bronzova, Juliana; Lobo, Patricia Pita; Ferreira, Joaquim J; Ziemssen, Tjalf; Berg, Daniela
2015-03-01
The autonomic nervous system (ANS) is regularly affected in Parkinson's disease (PD). Information on autonomic dysfunction can be derived from e.g. altered heart rate variability (HRV) and sympathetic skin response (SSR). Such parameters can be quantified easily and measured repeatedly which might be helpful for evaluating disease progression and therapeutic outcome. In this 2-center study, HRV and SSR of 45 PD patients and 26 controls were recorded. HRV was measured during supine metronomic breathing and analyzed in time- and frequency-domains. SSR was evoked by repetitive auditory stimulation. Various ANS parameters were compared (1) between patients and healthy controls, (2) to clinical scales (Unified Parkinson's disease rating scale, Mini-Mental State Examination, Becks Depression Inventory), and (3) to disease duration. Root mean square of successive differences (RMSSD) and low frequency/high frequency (LF/HF) ratio differed significantly between PD and controls. Both, HRV and SSR parameters showed low or no association with clinical scores. Time-domain parameters tended to be affected already at early PD stages but did not consistently change with longer disease duration. In contrast, frequency-domain parameters were not altered in early PD phases but tended to be lower (LF, LF/HF ratio), respectively higher (HF) with increasing disease duration. This report confirms previous results of altered ANS parameters in PD. In addition, it suggests that (1) these ANS parameters are not relevantly associated with motor, behavioral, and cognitive changes in PD, (2) time-domain parameters are useful for the assessment of early PD, and (3) frequency-domain parameters are more closely associated with disease duration.
Remarks on inhomogeneous anisotropic cosmology
Kaya, Ali
2016-08-01
Recently a new no-global-recollapse argument was given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this paper we discuss important properties of the mean curvature flow of spacelike surfaces in Lorentzian manifolds. We show that singularities may form during cosmic evolution, and the theorems forbidding the global recollapse lose their validity. The time evolution of the spatial scalar curvature that may kinematically prevent the recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis indicates a caveat in numerical solutions that give rise to inflation.
Spin precession in anisotropic cosmologies
Energy Technology Data Exchange (ETDEWEB)
Kamenshchik, A.Yu. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); INFN, Bologna (Italy); Teryaev, O.V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Lomonosov Moscow State University, Moscow (Russian Federation)
2016-05-15
We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter. (orig.)
Anisotropic and nonlinear optical waveguides
Someda, CG
1992-01-01
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an
Comments on inhomogeneous anisotropic cosmology
Kaya, Ali
2016-01-01
Recently a new no-global-recollapse argument is given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this note we point out a few important issues about the proposed deformations and in particular indicate that in the presence of large spatial variations the mean curvature flow may deform an initially spacelike surface to a surface with null or timelike portions. The time evolution of the spatial scalar curvature that prevents recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis also indicates a possible caveat in numerical solutions that give rise to inflation.
Behavioral responses of California sea lions to mid-frequency (3250-3450 Hz) sonar signals.
Houser, Dorian S; Martin, Stephen W; Finneran, James J
2013-12-01
Military sonar has the potential to negatively impact marine mammals. To investigate factors affecting behavioral disruption in California sea lions (Zalophus californianus), fifteen sea lions participated in a controlled exposure study using a simulated tactical sonar signal (1 s duration, 3250-3450 Hz) as a stimulus. Subjects were placed into groups of three and each group received a stimulus exposure of 125, 140, 155, 170, or 185 dB re: 1 μPa (rms). Each subject was trained to swim across an enclosure, touch a paddle, and return to the start location. Sound exposures occurred at the mid-point of the enclosure. Control and exposure sessions were run consecutively and each consisted of ten, 30-s trials. The occurrence and severity of behavioral responses were used to create acoustic dose-response and dose-severity functions. Age of the subject significantly affected the dose-response relationship, but not the dose-severity relationship. Repetitive exposures did not affect the dose-response relationship.
Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.
A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.
Fabrication and Frequency Response Characteristics of AlN-Based Solidly Mounted Resonator
Institute of Scientific and Technical Information of China (English)
XIONG Juan; GU Hao-Shuang; HU Kuan; HU Ming-Zhe
2009-01-01
@@ Film bulk acoustic resonator (FBAR) with solidly mounted resonator (SMR)-type is carried out by rf magnetic sputtering. To fabricate SMR-type FBAR, alternative high and low acoustic impedance layers, Mo/Ti multilayer, are adopted as Bragg reflector deposited by dc magnetron sputtering. The influences of sputtering pressure, substrate temperature and sputtering power on the surface roughness of Bragg reflector layer are discussed. From the atom force microscopy (AFM) analysis, the surface roughness of the Bragg reflector is improved remarkably by controlling deposition conditions. Under the appropriate sputtering condition, AIN thin films with highly c-axis-preferred orientation are deposited by rf magnetron sputtering. The performance of fabricated Mo/Ti SMR shows that the electromechanical coupling coefficient is 3.89%, the series and parallel resonant frequencies appear at 2.49 and 2.53 GHz, with their quality factors 134.2 and 97.6, respectively.
Arcasoy, C. C.
1992-11-01
The problem of multi-output, infinite-time, linear time-invariant optimal Kalman-Bucy filter both in continuous and discrete-time cases in frequency domain is addressed. A simple new algorithm is given for the analytical solution to the steady-state gain of the optimum filter based on a transfer function approach. The algorithm is based on spectral factorization of observed spectral density matrix of the filter which generates directly the return-difference matrix of the optimal filter. The method is more direct than by algebraic Riccati equation solution and can easily be implemented on digital computer. The design procedure is illustrated by examples and closed-form solution of ECV and ECA radar tracking filters are considered as an application of the method.
Beraha, N.; Soba, A.; Carusela, M. F.
2016-12-01
Following the nonequilibrium Green's function formalism we study the thermal transport in a composite chain subject to a time-dependent perturbation. The system is formed by two finite linear asymmetric harmonic chains subject to an on-site potential connected together by a time-modulated coupling. The ends of the chains are coupled to two phononic reservoirs at different temperatures. We present the relevant equations used to calculate the heat current along each segment. We find that the system presents different transport regimes according the driving frequency and temperature gradients. One of the regimes corresponds to a heat pump against thermal gradient, thus a characterization of the cooling performance of the device is presented.
Witte, A.; Cabrera, A.; Polifke, W.
2016-09-01
The steady-state heat transfer from a cylinder in cross-flow is a prototype problem in thermo-fluiddynamics. However, in many applications such as the Rijke tube, the flow may fluctuate. This work analyses the phenomenon combining numerical simulation with system identification. Direct numerical simulation of laminar flow and Large Eddy Simulation at subcritical flow at Reynolds number equal to 3900 are used, respectively. Fluctuations of the inlet velocity in the simulation are excited over a wide range of frequencies. Time series of unsteady heat release and velocity are post-processed to identify dynamic models, which may be represented as transfer functions. They accurately describe the dynamic behavior and can be used for further modeling.
Time-Frequency Analysis of Electromagnetic Pulse Response from a Spherical Target
Institute of Scientific and Technical Information of China (English)
陈东; 金亚秋
2003-01-01
Transient backscattering from a spherical target under incidence of an electromagnetic short pulse is studied. The target can be a perfectly conducting sphere, a dielectric sphere or a dielectric spherical shell. To understand the scattering mechanism from transient impulse echoes for target detection, both the short-time Fourier transform(STFT) and the wavelet transform (WT) are applied to retrieval of scattering information from the backscattering data. Analysis in both the time and frequency domains demonstrates that the WT is more feasible than the STFT to clarifying scattering process of the scatterer because of its excellent multi-resolution characteristic. This technique shall be helpful for scattering analysis and detection of more complex single or multi-targets.
Electromagnetic Response of High-Frequency Gravitational Waves by Coupling Open Resonant Cavity
Institute of Scientific and Technical Information of China (English)
LI Fang-Yu; CHEN Ying; WANG Ping
2007-01-01
We present a new detecting scheme of high-frequency gravitational waves(HFGWs) in the GHz band,the scheme consists of a high-quality-factor open microwave cavity,a static magnetic field passing through the cavity and an electromagnetic (EM)normal mode stored in the cavity.It is found that under the resonant condition firstand second-order perturbation EM effects have almost the same detecting sensitivity to the HFGWs in the GHz band (h～10-26,v～5GHz),but the former contains more information from the HFGWs.We akso provide a very brief review for possible improving way of the sensitivity.This scheme would be Highly complementary to other schemes of detecting the HFGWs.
Anisotropic thermal conduction with magnetic fields in galaxy clusters
Arth, Alexander; Dolag, Klaus; Beck, Alexander; Petkova, Margarita; Lesch, Harald
2015-08-01
Magnetic fields play an important role for the propagation and diffusion of charged particles, which are responsible for thermal conduction. In this poster, we present an implementation of thermal conduction including the anisotropic effects of magnetic fields for smoothed particle hydrodynamics (SPH). The anisotropic thermal conduction is mainly proceeding parallel to magnetic fields and suppressed perpendicular to the fields. We derive the SPH formalism for the anisotropic heat transport and solve the corresponding equation with an implicit conjugate gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme ansiotropies or unmagnetized regions and present possible numerical workarounds. We implement our algorithm into the cosmological simulation code GADGET and study its behaviour in several test cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters, the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduction model with low efficiency. In contrast to isotropic conduction our new formalism allows small-scale structure in the temperature distribution to remain stable, because of their decoupling caused by magnetic field lines. Compared to observations, strong isotropic conduction leads to an oversmoothed temperature distribution within clusters, while the results obtained with anisotropic thermal conduction reproduce the observed temperature fluctuations well. A proper treatment of heat transport is crucial especially in the outskirts of clusters and also in high density regions. It's connection to the local dynamical state of the cluster also might contribute to the observed bimodal distribution of cool core and non cool core clusters. Our new scheme significantly advances the modelling of thermal conduction in numerical simulations and overall gives
Recent progress in anisotropic hydrodynamics
Directory of Open Access Journals (Sweden)
Strickland Michael
2017-01-01
Full Text Available The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, 〈 pL2〉 ≪ 〈 pT2〉. In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.
Sur, Shouvik; Lee, Sung-Sik
2016-11-01
We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.
Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J
1994-03-01
Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the
Directory of Open Access Journals (Sweden)
Stavros I Dimitriadis
2015-10-01
Full Text Available The detection of mild cognitive impairment (MCI, the transitional stage between normal cognitive changes of aging and the cognitive decline caused by AD, is of paramount clinical importance, since MCI patients are at increased risk of progressing into AD. Electroencephalographic (EEG alterations in the spectral content of brainwaves and connectivity at resting state have been associated with early-stage AD. Recently, cognitive event-related potentials (ERPs have entered into the picture as an easy to perform screening test. Motivated by the recent findings about the role of cross-frequency coupling (CFC in cognition, we introduce a relevant methodological approach for detecting MCI based on cognitive responses from a standard auditory oddball paradigm. By using the single trial signals recorded at Pz sensor and comparing the responses to target and non-target stimuli, we first demonstrate that increased CFC is associated with the cognitive task. Then, considering the dynamic character of CFC, we identify instances during which the coupling between particular pairs of brainwave frequencies carries sufficient information for discriminating between normal subjects and patients with MCI. In this way, we form a multiparametric signature of impaired cognition. The new composite biomarker was tested using data from a cohort that consists of 25 amnestic MCI patients and 15 age-matched controls. Standard machine-learning algorithms were employed so as to implement the binary classification task. Based on leave-one-out cross-validation, the measured classification rate was found reaching very high levels (95%. Our approach compares favorably with the traditional alternative of using the morphology of averaged ERP response to make the diagnosis and the usage of features from spectro-temporal analysis of single-trial response. This further indicates that task-related CFC measurements can provide invaluable analytics in AD diagnosis and prognosis.
Modelling of CMUTs with Anisotropic Plates
DEFF Research Database (Denmark)
la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt;
2012-01-01
Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...
ANISOTROPIC BIQUADRATIC ELEMENT WITH SUPERCLOSE RESULT
Institute of Scientific and Technical Information of China (English)
Dongyang SHI; Shipeng MAO; Hui LIANG
2006-01-01
The main aim of this paper is to study the convergence of biquadratic finite element for the second order problem on anisotropic meshes. By using some novel approaches and techniques, the optimal error estimates are obtained. At the same time, the anisotropic superclose results are also achieved. Furthermore, the numerical results are given to demonstrate our theoretical analysis.
Directory of Open Access Journals (Sweden)
Berg Patrick
2004-03-01
Full Text Available Abstract Background Tinnitus is an auditory sensation frequently following hearing loss. After cochlear injury, deafferented neurons become sensitive to neighbouring intact edge-frequencies, guiding an enhanced central representation of these frequencies. As psychoacoustical data 123 indicate enhanced frequency discrimination ability for edge-frequencies that may be related to a reorganization within the auditory cortex, the aim of the present study was twofold: 1 to search for abnormal auditory mismatch responses in tinnitus sufferers and 2 relate these to subjective indicators of tinnitus. Results Using EEG-mismatch negativity, we demonstrate abnormalities (N = 15 in tinnitus sufferers that are specific to frequencies located at the audiometrically normal lesion-edge as compared to normal hearing controls (N = 15. Groups also differed with respect to the cortical locations of mismatch responsiveness. Sources in the 90–135 ms latency window were generated in more anterior brain regions in the tinnitus group. Both measures of abnormality correlated with emotional-cognitive distress related to tinnitus (r ~ .76. While these two physiological variables were uncorrelated in the control group, they were correlated in the tinnitus group (r = .72. Concerning relationships with parameters of hearing loss (depth and slope, slope turned out to be an important variable. Generally, the steeper the hearing loss is the less distress related to tinnitus was reported. The associations between slope and the relevant neurophysiological variables are in agreement with this finding. Conclusions The present study is the first to show near-to-complete separation of tinnitus sufferers from a normal hearing control group based on neurophysiological variables. The finding of lesion-edge specific effects and associations with slope of hearing loss corroborates the assumption that hearing loss is the basis for tinnitus development. It is likely that some central
Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi
2015-04-01
Considering only isotropic wave propagation and neglecting anisotropy in teleseismic tomography studies is a simplification obviously incongruous with current understanding of the mantle-lithosphere plate dynamics. Furthermore, in solely isotropic high-resolution tomography results, potentially significant artefacts (i.e., amplitude and/or geometry distortions of 3D velocity heterogeneities) may result from such neglect. Therefore, we have undertaken to develop a code for anisotropic teleseismic tomography (AniTomo), which will allow us to invert the relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. To accomplish that, we have modified frequently-used isotropic teleseismic tomography code Telinv (e.g., Weiland et al., JGR, 1995; Lippitsch, JGR, 2003; Karousova et al., GJI, 2013). Apart from isotropic velocity heterogeneities, a weak hexagonal anisotropy is assumed as well to be responsible for the observed P-wave travel-time residuals. Moreover, no limitations to orientation of the symmetry axis are prescribed in the code. We allow a search for anisotropy oriented generally in 3D, which represents a unique approach among recent trials that otherwise incorporate only azimuthal anisotopy into the body-wave tomography. The presented code for retrieving anisotropy in 3D thus enables its direct applications to datasets from tectonically diverse regions. In this contribution, we outline the theoretical background of the AniTomo anisotropic tomography code. We parameterize the mantle lithosphere and asthenosphere with an orthogonal grid of nodes with various values of isotropic velocities, as well as of strength and orientation of anisotropy in 3D, which is defined by azimuth and inclination of either fast or slow symmetry axis of the hexagonal approximation of the media. Careful testing of the new code on synthetics, concentrating on code functionality, strength and weaknesses, is a
Directory of Open Access Journals (Sweden)
Xukai Ding
2015-01-01
Full Text Available This paper presents a study of the frequency response and the scale-factor of a tuning fork micro-gyroscope operating at atmospheric pressure in the presence of an interference sense mode by utilizing the approximate transfer function. The optimal demodulation phase (ODP, which is always ignored in vacuum packaged micro-gyroscopes but quite important in gyroscopes operating at atmospheric pressure, is obtained through the transfer function of the sense mode, including the primary mode and the interference mode. The approximate transfer function of the micro-gyroscope is deduced in consideration of the interference mode and the ODP. Then, the equation describing the scale-factor of the gyroscope is also obtained. The impacts of the interference mode and Q-factor on the frequency response and the scale-factor of the gyroscope are analyzed through numerical simulations. The relationship between the scale-factor and the demodulation phase is also illustrated and gives an effective way to find out the ODP in practice. The simulation results predicted by the transfer functions are in close agreement with the results of the experiments. The analyses and simulations can provide constructive guidance on bandwidth and sensitivity designs of the micro-gyroscopes operating at atmospheric pressure.
Banerjee, Amit; Panigrahi, Brajesh; Pohit, G.
2016-04-01
In the present work, dynamic response of cracked Timoshenko beam with functionally graded material properties are obtained by a numerical technique using Ritz approximation. In order to verify the applicability and performance of the formulation, comparisons of the present numerical method with three-dimensional FEM models are made. Crack is assumed to be transverse and open throughout the vibration cycle. Two different crack detection techniques have been proposed. Results obtained by the numerical technique are used in both of the crack detection techniques. In the first technique, the frequency contours with respect to crack location and size are plotted and the intersection of contours of different modes helps in the prediction of crack location and size. In the second technique, crack is modelled using response surface methodology (RSM). The sum of the squared errors between the numerical and RSM regression model natural frequencies is used as the objective function. This objective function is minimised using genetic algorithm optimisation technique. Both the crack detection techniques and the numerical analysis have shown good agreement with each other.
Field Coil Constant Frequency Response Measurement%磁场线圈常数的频率响应测量
Institute of Scientific and Technical Information of China (English)
张伟; 汤元会
2016-01-01
线圈常数是磁场线圈的重要技术指标。分析了线圈常数的频率响应产生原因，提出基于感应线圈法的测量方法，并运用测量相对比值以消除测量误差。通过对三段巴凯尔圆环磁场线圈的频率响应测量结果表明，该方法的理论分析结果与实际测量结果基本一致。%The coil constant is an important parameter of field coil. Analysis of the causes of coil constant frequency response,puts forward measurement method based on the induction coil,and uses the measurement of relative ratio to eliminate the measurement error. The three section of the Bakel ring magnetic field frequency response measurement results show that,the results of theoretical analysis of the method is consistent with the actual measured results.
Ding, Xukai; Li, Hongsheng; Ni, Yunfang; Sang, Pengcheng
2015-01-01
This paper presents a study of the frequency response and the scale-factor of a tuning fork micro-gyroscope operating at atmospheric pressure in the presence of an interference sense mode by utilizing the approximate transfer function. The optimal demodulation phase (ODP), which is always ignored in vacuum packaged micro-gyroscopes but quite important in gyroscopes operating at atmospheric pressure, is obtained through the transfer function of the sense mode, including the primary mode and the interference mode. The approximate transfer function of the micro-gyroscope is deduced in consideration of the interference mode and the ODP. Then, the equation describing the scale-factor of the gyroscope is also obtained. The impacts of the interference mode and Q-factor on the frequency response and the scale-factor of the gyroscope are analyzed through numerical simulations. The relationship between the scale-factor and the demodulation phase is also illustrated and gives an effective way to find out the ODP in practice. The simulation results predicted by the transfer functions are in close agreement with the results of the experiments. The analyses and simulations can provide constructive guidance on bandwidth and sensitivity designs of the micro-gyroscopes operating at atmospheric pressure.
Magnetotelluric inversion for anisotropic conductivities in layered media
Pek, Josef; Santos, Fernando A. M.
2006-10-01
data from the Variscan structures in southern Portugal bear indications, both geological and geophysical, on possible crustal anisotropy due to shearing and graphitization. We present results of a 1-D anisotropic imaging, and a preliminary 2-D modelling, for a short section of five sites over an old suture between the South Portuguese Zone and Ossa Morena Zone, aimed at explaining some essentially non-2-D effects in the data, as, e.g., systematic frequency variations of the regional strike or phases rolling out of their natural quadrants.
Efficient Wavefield Extrapolation In Anisotropic Media
Alkhalifah, Tariq
2014-07-03
Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.
Designing Anisotropic Inflation with Form Fields
Ito, Asuka
2015-01-01
We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.
Kemmler, W; von Stengel, S
2014-06-01
The purpose of this study was to determine the long-term dose-response relationship of exercise frequency on areal bone mineral density (aBMD) in early post-menopausal women with osteopenia. Based on the 12-year results of the consequently supervised exercise group (EG) of the Erlangen Fitness and Osteoporosis Prevention Study, we retrospectively structured two exercise groups according to the overall exercise frequency. Changes in aBMD at lumbar spine and proximal femur as assessed by dual-energy x-ray absorptiometry technique were compared between a low-frequency exercise group (LEF-EG, n = 16) with 1.5-exercise group (HEF-EG, n = 25) with ≥ 2-3.5 sessions/week. Changes in aBMD at the lumbar spine and proximal femur were significantly more favorable in the HEF-EG compared with the LEF-EG; lumbar spine: (mean value ± standard deviation) 1.1 ± 4.7% vs -4.1 ± 3.0%; P = 0.001, ES: d' = 1.26; total hip: -4.4 ± 3.9% vs -6.7 ± 3.5%, P = 0.045, ES: d' = 0.70). BMD results of the LEF-EG did not significantly differ from the data of the non-training control group (lumbar spine: -4.4 ± 5.2%, total hip: -6.9 ± 5.0%). Although this result might not be generalizable across all exercise types and cohorts, it indicates that to impact bone, an overall exercise frequency of at least 2 sessions/week may be crucial, even if exercise is applied with high intensity/impact.
Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru
2016-10-01
TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.
Blue Spectra of Kalb-Ramond Axions and Fully Anisotropic String Cosmologies
Giovannini, Massimo
1999-01-01
The inhomogeneities associated with massless Kalb-Ramond axions can be amplified not only in isotropic (four-dimensional) string cosmological models but also in the fully anisotropic case. If the background geometry is isotropic, the axions (which are not part of the homogeneous background) develop, outside the horizon, growing modes leading, ultimately, to logarithmic energy spectra which are "red" in frequency and increase at large distance scales. We show that this conclusion can be evaded not only in the case of higher dimensional backgrounds with contracting internal dimensions but also in the case of string cosmological scenarios which are completely anisotropic in four dimensions. In this case the logarithmic energy spectra turn out to be "blue" in frequency and, consequently, decreasing at large distance scales. We elaborate on anisotropic dilaton-driven models and we argue that, incidentally, the background models leading to (or flat) logarithmic energy spectra for axionic fluctuations are likely to ...
Efficient anisotropic wavefield extrapolation using effective isotropic models
Alkhalifah, Tariq Ali
2013-06-10
Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.
Puzzle task ERP response: time-frequency and source localization analysis
Almurshedi, Ahmed; Ismail, Abd Khamim
2015-01-01
Perceptual decision making depends on the choices available for the presented task. Most event-related potential (ERP) experiments are designed with two options, such as YES or NO. In some cases, however, subjects may become confused about the presented task in such a way that they cannot provide a behavioral response. This study aims to put subjects into such a puzzled state in order to address the following questions: How does the brain respond during puzzling moments? And what is the brain’s response to a non-answerable task? To address these questions, ERP were acquired from the brain during a scintillation grid illusion task. The subjects were required to count the number of illusory dots, a task that was impossible to perform. The results showed the presence of N130 over the parietal area during the puzzling task. Coherency among the brain hemispheres was enhanced with the complexity of the task. The neural generators’ source localizations were projected to a multimodal complex covering the left postcentral gyrus, supramarginal gyrus, and angular gyrus. This study concludes that the brain component N130 is strongly related to perception in a puzzling task network but not the visual processing network. PMID:28123804
Directory of Open Access Journals (Sweden)
Stefano Caruson
2015-12-01
Full Text Available Abstract The remarkable importance of a calibration of a test lies in the formalization of useful statistical norms. In particular, the determination of these norms is of key importance for the Rorschach Test because of it allows objectifying the estimates of the interpretations’ formal qualities, and help to characterize responses consistent with the common perception. The aim of this work is to communicate the new results provided by a study conducted on Rorschach protocols related to a sample of “non-clinical” subjects. The expert team in Psychodiagnostic of CIFRIC (Italian Center for training, research and clinic in medicine and psychology has carried out the following work identifying the rate at which the details of each card are interpreted by normative sample. The data obtained are systematized in new Location sheets, which refers to the next edition of the "Updated Manual of Locations and Coding of Responses to Rorschach Test". Considering the Rorschach Test one of the more effective means for the acquaintance of the personality, it appears therefore fundamental to provide the professional, who uses it, with the possibility of accessing updated statistical data that reflect the population of reference, in order to deduce from them reliable and objectively valid indications.
Rodríguez-Zuluaga, J.; Radicella, S. M.; Nava, B.; Amory-Mazaudier, C.; Mora-Páez, H.; Alazo-Cuartas, K.
2016-11-01
In this work an attempt to identify the role of the interplanetary magnetic field (IMF) in the response of the ionosphere to different solar phenomena is presented. For this purpose, the day-to-day variability of the equatorial ionospheric anomaly (EIA) and the main ionospheric disturbances are analyzed during one coronal mass ejection (CME) and two high-speed solar wind streams (HSSWSs). The EIA parameters considered are the zonal electric field and both the strength and position of its northern crest. The disturbances being the prompt penetration of magnetospheric electric field (PPMEF) and disturbance dynamo electric field (DDEF) are studied using the magnetic response of their equivalent current systems. In accordance, ground-based Global Navigation Satellite Systems receivers and magnetometers at geomagnetic low latitudes in the American sector are used. During both phenomena, patterns of PPMEF related to fluctuations of the IMF are observed. Diurnal and semidiurnal magnetic oscillations are found to be likely related to DDEF. Comparisons among the EIA parameters and the DDEF magnetic response exhibit poor relation during the CME in contrast to good relation during the HSSWSs. It is concluded that the response of the low-latitude ionosphere to solar phenomena is largely determined through the oscillation frequency of the IMF Bz by affecting the generation of the PPMEF and DDEF differently. This is seen as an effect of how the energy from the solar wind is transferred into the magnetosphere-ionosphere system.
Dressel, M; Gompf, B; Faltermeier, D; Tripathi, A K; Pflaum, J; Schubert, M
2008-11-24
The Kramers-Kronig relations between the real and imaginary parts of a response function are widely used in solid-state physics to evaluate the corresponding quantity if only one component is measured. They are among the most fundamental statements since only based on the analytical behavior and causal nature of the material response [Phys. Rev. 104, 1760-1770 (1956)]. Optical losses, for instance, can be obtained from the dispersion of the dielectric constant at all wavelengths, and vice versa [Handbook of optical constants of solids, Vol. 1, p. 35]. Although the general validity was never casted into doubt, it is a longstanding problem that Kramers-Kronig relations cannot simply be applied to anisotropic crystalline materials because contributions from different directions mix in a frequency-dependent way. Here we present a general method to identify frequency-independent principal polarizability directions for which the Kramers-Kronig relations are obeyed even in materials with lowest symmetry. Using generalized spectroscopic ellipsometry on a single crystal surface of triclinic pentacene, as an example, enables us to evaluate the complex dielectric constant and to compare it with band-structure calculations along the crystallographic directions. A general recipe is provided how to proceed from a macroscopic measurement on a low symmetry crystal plane to the microscopic dielectric properties of the unit cell, along whose axes the Kramers-Kronig relations hold.
DEFF Research Database (Denmark)
Rahbek, Ulrik L.; Tritsaris, Katerina; Dissing, Steen
2005-01-01
In recent years many studies have demonstrated stimulatory effects of pulsed electromagnetic fields (PEMF) on biological tissue. However, controversies have also surrounded the research often due to the lack of knowledge of the different physical consequences of static versus pulsed electromagnetic...... fields. PEMF is widely used for treating fractures and non-unions as well as for treating diseases of the joints. Furthermore, new research has suggested that the technology can be used for nerve regeneration and wound healing although conclusive clinical trials, besides those for fracture healing......, are still lacking. Despite the apparent success of the PEMF technology very little is known regarding the coupling between pulsed electrical fields and biochemical events leading to cellular responses. Insight into this research area is therefore of great importance. In this review we describe the physical...
Davidson, D J; Indefrey, P
2007-07-16
The relationship between semantic and grammatical processing in sentence comprehension was investigated by examining event-related potential (ERP) and event-related power changes in response to semantic and grammatical violations. Sentences with semantic, phrase structure, or number violations and matched controls were presented serially (1.25 words/s) to 20 participants while EEG was recorded. Semantic violations were associated with an N400 effect and a theta band increase in power, while grammatical violations were associated with a P600 effect and an alpha/beta band decrease in power. A quartile analysis showed that for both types of violations, larger average violation effects were associated with lower relative amplitudes of oscillatory activity, implying an inverse relation between ERP amplitude and event-related power magnitude change in sentence processing.
Focussing light in a bi-anisotropic slab with negatively refracting materials
Liu, Yan; Gralak, Boris; Ramakrishna, S Anantha
2013-01-01
We investigate the electromagnetic response of a pair of complementary bi-anisotropic media, which consist of a medium with positive refractive index ($+\\ep$, $+\\mu$, $+\\xi$) and a medium with negative refractive index($-\\ep$, $-\\mu$, $-\\xi$). We show that this idealized system has peculiar imaging properties in that it reproduces images of a source, in principle, with unlimited resolution. We then consider an infinite array of line sources regularly spaced in a one-dimensional photonic crystal (PC) consisting of 2n-layers of bi-anisotropic complementary media. Using coordinate transformation, we map this system into 2D corner chiral lenses of 2n heterogeneous anisotropic complementary media sharing a vertex, within which light circles around closed trajectories. Alternatively, one can consider corner lenses with homogeneous isotropic media and map them onto one dimensional PCs with heterogeneous bi-anisotropic layers. Interestingly, such complementary media are described by scalar, or matrix valued, sign-shi...
SNe Ia Tests of Quintessence Tracker Cosmology in an Anisotropic Background
Miranda, W; Pigozzo, C
2014-01-01
We investigate the observational effects of a quintessence model in an anisotropic spacetime. The anisotropic metric is a non-rotating particular case of a generalized Godel's metric and is classified as Bianchi III. This metric is an exact solution of the Einstein-Klein-Gordon field equations with an anisotropic scalar field, which is responsible for the anisotropy of the spacetime geometry. We test the model against observations of type Ia supernovae, analyzing the SDSS dataset calibrated with the MLCS2k2 fitter, and the results are compared to standard quintessence models with Ratra-Peebles potentials. We obtain a good agreement with observations, with best values for the matter and curvature density parameters $\\Omega_M = 0.29$ and $\\Omega_k= 0.01$ respectively. We conclude that present SNe Ia observations cannot, alone, distinguish a possible anisotropic axis in the cosmos.
SNe Ia tests of quintessence tracker cosmology in an anisotropic background
Miranda, W.; Carneiro, S.; Pigozzo, C.
2014-07-01
We investigate the observational effects of a quintessence model in an anisotropic spacetime. The anisotropic metric is a non-rotating particular case of a generalized Gödel's metric and is classified as Bianchi III. This metric is an exact solution of the Einstein-Klein-Gordon field equations with an anisotropic scalar field ψ, which is responsible for the anisotropy of the spacetime geometry. We test the model against observations of type Ia supernovae, analyzing the SDSS dataset calibrated with the MLCS2k2 fitter, and the results are compared to standard quintessence models with Ratra-Peebles potentials. We obtain a good agreement with observations, with best values for the matter and curvature density parameters ΩM = 0.29 and Ωk= 0.01 respectively. We conclude that present SNe Ia observations cannot, alone, distinguish a possible anisotropic axis in the cosmos.
Vortex Dynamics in Anisotropic Superconductors
Steel, David Gordon
Measurements of the ac screening response and resistance of superconducting Bi_2Sr _2CaCu_2O _8 (BSCCO) crystals have been used to probe the dynamics of the magnetic flux lines within the mixed state as a function of frequency, temperature, and applied dc field. For the particular range of temperature and magnetic field in which measurements were made, the systematic behavior of the observed dissipation peak in the screening response is consistent with electromagnetic skin size effects rather than a phase transition. According to microscopic theories of the interaction between the flux lines and a driving ac field, such a skin size effect is expected for the case when the vortex motion is diffusive in nature. However, diffusive motion is inconsistent with simple activation models that use a single value for the pinning energy (derived from direct measurement of the dc resistance). This contradiction suggests a distribution of pinning energies within the sample. Interlayer vortex decoupling has been directly observed as a function of temperature and applied magnetic field using electronic transport perpendicular to the layers in synthetic amorphous MoGe/Ge multilayer samples. Perpendicular transport has been shown to be a far more sensitive measure of the phase coupling between layers than in-plane properties. Below the decoupling temperature T_{D} the resistivity anisotropy collapses and striking nonlinearities appear in the perpendicular current-voltage behavior, which are not observed in parallel transport. A crossover in behavior is also observed at a field H _{x}, in accordance with theory. The data suggest the presence of a phase transition into a state with finite in-plane resistivity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Characterization of highly anisotropic three-dimensionally nanostructured surfaces
Schmidt, Daniel
2013-01-01
Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example ...
Warm anisotropic inflationary universe model
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2014-02-15
This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)
Warm Anisotropic Inflationary Universe Model
Sharif, M
2014-01-01
This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.
Gravitational Baryogenesis after Anisotropic Inflation
Fukushima, Mitsuhiro; Maeda, Kei-ichi
2016-01-01
The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.
Anisotropic inflation from extra dimensions
Litterio, M; Amendola, L; Dyrek, A; Litterio, Marco; Amendola, Luca; Dyrek, Andrzej
1995-01-01
Vacuum multidimensional cosmological models with internal spaces being compact n-dimensional Lie group manifolds are considered. Products of 3-spheres and SU(3) manifold (a novelty in cosmology) are studied. It turns out that the dynamical evolution of the internal space drives an accelerated expansion of the external world (power law inflation). This generic solution (attractor in a phase space) is determined by the Lie group space without any fine tuning or arbitrary inflaton potentials. Matter in the four dimensions appears in the form of a number of scalar fields representing anisotropic scale factors for the internal space. Along the attractor solution the volume of the internal space grows logarithmically in time. This simple and natural model should be completed by mechanisms terminating the inflationary evolution and transforming the geometric scalar fields into ordinary particles.
Spatially anisotropic Heisenberg kagome antiferromagnet
Apel, W.; Yavors'kii, T.; Everts, H.-U.
2007-04-01
In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.
Gravitational baryogenesis after anisotropic inflation
Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi
2016-05-01
The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.
Anisotropic grid adaptation in LES
Toosi, Siavash; Larsson, Johan
2016-11-01
The modeling errors depend directly on the grid (or filter) spacing in turbulence-resolving simulations (LES, DNS, DES, etc), and are typically at least as significant as the numerical errors. This makes adaptive grid-refinement complicated, since it prevents the estimation of the local error sources through numerical analysis. The present work attempts to address this difficulty with a physics-based error-source indicator that accounts for the anisotropy in the smallest resolved scales, which can thus be used to drive an anisotropic grid-adaptation process. The proposed error indicator is assessed on a sequence of problems, including turbulent channel flow and flows in more complex geometries. The formulation is geometrically general and applicable to complex geometries.
Yagi, Kent
2015-01-01
Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum and quadrupole moment) are interrelated in a way that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis for future radio, X-ray and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to phase transitions. We here investigate whether pressure anisotropy affects the approximate universal relations and whether it prevents their use in future observations. We achieve this by numerically constructing slowly-rotating and tidally-deformed, anisotropic, compact stars in General Relativity to third order in spin. We find that anisotropy affects the universal relations only weakly; the relations become less universal by a factor of 1.5-3 relative to the isotropic case, but rem...
An efficient wave extrapolation method for anisotropic media with tilt
Waheed, Umair bin
2015-03-23
Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.
Optical Conductivity of Anisotropic Quantum Dots in Magnetic Fields
Institute of Scientific and Technical Information of China (English)
GUO Kang-Xian; CHEN Chuan-Yu
2005-01-01
@@ Optical conductivity of anisotropic double-parabolic quantum dots is investigated with the memory-function approach, and the analytic expression for the optical conductivity is derived. With characteristic parameterspertaining to GaAs, the numerical results are presented. It is shown that: (1) the larger the optical phonon frequency ωLO, the stronger the peak intensity of the optical conductivity, and the more asymmetric the shape of the optical conductivity; (2) the magnetic field enhances the optical conductivity for levels l = 0 and l = 1, with or without electron-LO-phonon interactions; (3) the larger the quantum dot thickness lz, the smaller the optical conductivity σ(ω).
On Multistep Bose-Einstein Condensation in Anisotropic Traps
Shiokawa, K
2000-01-01
Multistep Bose-Einstein condensation of an ideal Bose gas in anisotropic harmonic atom traps is studied. In the presence of strong anisotropy realized by the different trap frequency in each direction, finite size effect dictates a series of dimensional crossovers into lower-dimensional excitations. Two-step condensation and the dynamical reduction of the effective dimension can appear in three separate steps. When the multistep behavior occurs, the occupation number of atoms excited in each dimension is shown to behave similarly as a function of the temperature.
PURCELL EFFECT IN EXTREMELY ANISOTROPIC ELLIPTIC METAMATERIALS
Directory of Open Access Journals (Sweden)
Alexander V. Chebykin
2014-11-01
Full Text Available The paper deals with theoretical demonstration of Purcell effect in extremely anisotropic metamaterials with elliptical isofrequency surface. This effect is free from association with divergence in density of states unlike the case of hyperbolic metamaterials. It is shown that a large Purcell factor can be observed without excitation of modes with large wave vectors in one direction, and the component of the wave vector normal to the layers is less than k0. For these materials the possibility is given for increasing of the power radiated in the medium, as well as the power radiated from material into free space across the medium border situated transversely to the layers. We have investigated isofrequency contours and the dependence of Purcell factor from the frequency for infinite layered metamaterial structure. In the visible light range strong spatial dispersion gives no possibility to obtain enhancement of spontaneous emission in metamaterial with unit cell which consists of two layers. This effect can be achieved in periodic metal-dielectric layered nanostructures with a unit cell containing two different metallic layers and two dielectric ones. Analysis of the dependences for Purcell factor from the frequency shows that the spontaneous emission is enhanced by a factor of ten or more only for dipole orientation along metamaterial layers, but in the case of the transverse orientation radiation can be enhanced only 2-3 times at most. The results can be used to create a new type of metamaterials with elliptical isofrequency contours, providing a more efficient light emission in the far field.
A cortical locus for anisotropic overlay suppression of stimuli presented at fixation.
Hansen, Bruce C; Richard, Bruno; Andres, Kristin; Johnson, Aaron P; Thompson, Benjamin; Essock, Edward A
2015-01-01
Human contrast sensitivity for narrowband Gabor targets is suppressed when superimposed on narrowband masks of the same spatial frequency and orientation (referred to as overlay suppression), with suppression being broadly tuned to orientation and spatial frequency. Numerous behavioral and neurophysiological experiments have suggested that overlay suppression originates from the initial lateral geniculate nucleus (LGN) inputs to V1, which is consistent with the broad tuning typically reported for overlay suppression. However, recent reports have shown narrowly tuned anisotropic overlay suppression when narrowband targets are masked by broadband noise. Consequently, researchers have argued for an additional form of overlay suppression that involves cortical contrast gain control processes. The current study sought to further explore this notion behaviorally using narrowband and broadband masks, along with a computational neural simulation of the hypothesized underlying gain control processes in cortex. Additionally, we employed transcranial direct current stimulation (tDCS) in order to test whether cortical processes are involved in driving narrowly tuned anisotropic suppression. The behavioral results yielded anisotropic overlay suppression for both broadband and narrowband masks and could be replicated with our computational neural simulation of anisotropic gain control. Further, the anisotropic form of overlay suppression could be directly modulated by tDCS, which would not be expected if the suppression was primarily subcortical in origin. Altogether, the results of the current study provide further evidence in support of an additional overlay suppression process that originates in cortex and show that this form of suppression is also observable with narrowband masks.
Low-Frequency Response Following the Passage of Hurricane Andrew on the Texas-Louisiana Shelf
Pearce, S. M.; Smith, D. C.; Dimarco, S. F.
2009-12-01
During August 24th through 27th in 1992, Hurricane Andrew passed through the Gulf Of Mexico almost directly over several moorings on the easternmost Louisiana shelf portion of the Texas-Louisiana Shelf (LATEX) coastal ocean monitoring program. Examination of the current meter time-series showed the existence of fast moving, long shelf waves over the entire Texas-Louisiana shelf west of the storm passage for up to 12 days after direct forcing ceased. The LATEX program featured 31 moorings each with 3 current meters over the 10, 20, 50, and 200 meter isobaths in 5 cross sectional lines with additional coverage on the 200 meter isobath from the Louisiana-Mississippi River delta, to Corpus Christi, Texas. Additionally, several pressure records from LATEX and several NOAA historical coastal tide gauge data from Sabine Pass to Port Isabella, Texas were incorporated. Raw, 3-hour low pass filtered, and 40-hour low pass filtered versions of the current data were analyzed. The pressure data used were detided using a least squares fit, and the tidal records were detided using the NOAA predicted tides for that location. All data were analyzed using a wavelet analysis to determine the spectra over time. The analyzed data shows that the shelf response was largely dominated in the internal Kelvin wave mode. The wave propagated towards the west on the shelf at approximately 400 km/day. These results are contrasted and compared with wave modes predicted for coastal trapped wave solutions. The output of a coastal ocean model simulation using a forced wind field similar to the storm are also contrasted and compared with the observed data.
Redmayne, Mary
2016-01-01
Radiofrequency electromagnetic field (RF-EMF) exposure regulations/guidelines generally only consider acute effects, and not chronic, low exposures. Concerns for children's exposure are warranted due to the amazingly rapid uptake of many wireless devices by increasingly younger children. This review of policy and advice regarding children's RF-EMF exposure draws material from a wide variety of sources focusing on the current situation. This is not a systematic review, but aims to provide a representative cross-section of policy and advisory responses within set boundaries. There are a wide variety of approaches which I have categorized and tabulated ranging from ICNIRP/IEEE guidelines and "no extra precautions needed" to precautionary or scientific much lower maxima and extensive advice to minimize RF-EMF exposure, ban advertising/sale to children, and add exposure information to packaging. Precautionary standards use what I term an exclusion principle. The wide range of policy approaches can be confusing for parents/carers of children. Some consensus among advisory organizations would be helpful acknowledging that, despite extensive research, the highly complex nature of both RF-EMF and the human body, and frequent technological updates, means simple assurance of long-term safety cannot be guaranteed. Therefore, minimum exposure of children to RF-EMF is recommended. This does not indicate need for alarm, but mirrors routine health-and-safety precautions. Simple steps are suggested. ICNIRP guidelines need to urgently publish how the head, torso, and limbs' exposure limits were calculated and what safety margin was applied since this exposure, especially to the abdomen, is now dominant in many children.
Shaped beam scattering by an anisotropic particle
Chen, Zhenzhen; Zhang, Huayong; Huang, Zhixiang; Wu, Xianliang
2017-03-01
An exact semi-analytical solution to the electromagnetic scattering from an optically anisotropic particle illuminated by an arbitrarily shaped beam is proposed. The scattered fields and fields within the anisotropic particle are expanded in terms of spherical vector wave functions. The unknown expansion coefficients are determined by using the boundary conditions and the method of moments scheme. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a uniaxial, gyrotropic anisotropic spheroid and circular cylinder of finite length. The scattering properties are analyzed concisely.
Research on anisotropic parameters by synthetic seismogram
Institute of Scientific and Technical Information of China (English)
FAN Xiao-ping; LI Qing-he; YANG Cong-jie
2005-01-01
ased on the extensive-dilatancy anisotropy theory, the method of synthetic seismogram is used to estimate the anisotropic parameters. The advantages of the method lie in that it avoids the singularity resolution and saves calculation time of computer by using the eigenvalue and eigenvector analytical expressions of Christoffel equation, at the same time, the result is tested by coherence function. The test result reveals there exists a fine linear relation between original records and synthetic records, indicating the anisotropic parameters estimated by synthetic seismogram can reflect and describe the anisotropic characteristics of the given region medium.
Finite-volume scheme for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)
2016-02-01
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
A new algorithm for anisotropic solutions
Indian Academy of Sciences (India)
M Chaisi; S D Maharaj
2006-02-01
We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.
Anisotropic inflation in Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Lahiri, Sayantani [ZARM, University of Bremen,Am Falltrum, 28359 Bremen (Germany)
2016-09-19
We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.
Imprints of Anisotropic Inflation on the CMB
Watanabe, Masa-aki; Soda, Jiro
2010-01-01
We study the imprints of anisotropic inflation on the CMB temperature fluctuations and polarizations. The statistical anisotropy stems not only from the direction dependence of curvature and tensor perturbations, but also from the cross correlation between curvature and tensor perturbations, and the linear polarization of tensor perturbations. We show that off-diagonal $TB$ and $EB$ spectrum as well as on- and off-diagonal $TT, EE, BB, TE$ spectrum are induced from anisotropic inflation. We emphasize that the off-diagonal spectrum induced by the cross correlation could be a characteristic signature of anisotropic inflation.
Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David
2005-01-01
We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.
Chuang, Ming-Lung; Chou, Yi-Ling; Lee, Chai-Yuan; Huang, Shih-Feng
2017-01-01
Abstract Background: Endotracheal intubation and prolonged immobilization of patients receiving mechanical ventilation may reduce expectoration function. High-frequency chest wall oscillation (HFCWO) may ameliorate airway secretion movement; however, the instantaneous changes in patients’ cardiopulmonary responses are unknown. Moreover, HFCWO may influence ventilator settings by the vigorous oscillation. The aim of this study was to investigate these issues. Methods: Seventy-three patients (52 men) aged 71.5 ± 13.4 years who were intubated with mechanical ventilation for pneumonic respiratory failure were recruited and randomly classified into 2 groups (HFCWO group, n = 36; and control group who received conventional chest physical therapy (CCPT, n = 37). HFCWO was applied with a fixed protocol, whereas CCPT was conducted using standard protocols. Both groups received sputum suction after the procedure. Changes in ventilator settings and the subjects’ responses were measured at preset intervals and compared within groups and between groups. Results: Oscillation did not affect the ventilator settings (all P > 0.05). The mean airway pressure, breathing frequency, and rapid shallow breathing index increased, and the tidal volume and SpO2 decreased (all P < 0.05). After sputum suction, the peak airway pressure (Ppeak) and minute ventilation decreased (all P < 0.05). The HFCWO group had a lower tidal volume and SpO2 at the end of oscillation, and lower Ppeak and tidal volume after sputum suction than the CCPT group. Conclusions: HFCWO affects breathing pattern and SpO2 but not ventilator settings, whereas CCPT maintains a steadier condition. After sputum suction, HFCWO slightly improved Ppeak compared to CCPT, suggesting that the study extends the indications of HFCWO for these patients in intensive care unit. (ClinicalTrials.gov number NCT02758106, retrospectively registered.) PMID:28248854
Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.
2008-01-01
The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.
Directory of Open Access Journals (Sweden)
Anan eMoran
2011-04-01
Full Text Available Deep brain stimulation in the subthalamic nucleus (STN is a well-established therapy for patients with severe Parkinson‟s disease (PD; however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia during high frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, basal ganglia output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial
Institute of Scientific and Technical Information of China (English)
魏宝君; 王成园; 党峰; 常欣莉; 曹景强
2016-01-01
采用递推方法得到柱状成层各向异性介质(横向各向同性)中并矢Green函数的解析表达式。该表达式可用于模拟柱状成层各向异性地层中任意点源(包括电流源和磁流源)的响应，地层数目可以任意，源点和场点的位置可以在任意地层中。利用上述表达式模拟含金属心轴和绝缘保护层多分量感应测井仪器在有井眼和侵入带各向异性地层中的响应。为提高模拟精度，考虑各分量线圈系的具体形状。将金属心轴作为一层介质处理，既可以考虑其电导率有限，也可以考虑其电导率为无穷大的情况。数值模拟结果表明，共面线圈系具有与共轴线圈系完全不同的响应特性。共面线圈系的响应特性更为复杂，对钻井液电导率、侵入带电导率、地层电导率、地层各向异性的变化更为敏感，且在很多情况下其响应会随这些参数的变化出现符号改变。此外，由于共面线圈系的同一响应可对应各向同性地层或各向异性地层的不同电导率，从而使得对测量数据的解释处理变得复杂。%An analytical expression of dyadic Green's functions in cylindrically stratified anisotropic media ( transversely iso-tropic media) was obtained using a recursive method. The expression can be used to simulate the response of an arbitrary point source ( including electric source and magnetic source) in cylindrically stratified anisotropic formations. The expression can be applied to any number of formation layers, and with the source location and field location in any of the layers. Using the method, the responses of multi-component induction logging tools with a metal mandrel and an insulating protection layer were simulated in anisotropic formations with a borehole and an invasion zone. The shape of each component's coils was taken into account in order to increase the simulating precision, and the metal mandrel was taken as a layer whose
Spatial interpolation approach based on IDW with anisotropic spatial structures
Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang
2015-12-01
In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.
Electric field induced relaxor behavior in anisotropically strained SrTiO{sub 3} films
Energy Technology Data Exchange (ETDEWEB)
Dai, Y., E-mail: y.dai@fz-juelich.de; Schubert, J.; Hollmann, E.; Wördenweber, R.
2016-03-15
Electric fields can modify the dielectric response of ferroelectric and especially relaxor ferroelectric material. Since strained ferroelectric fields represent ideal candidates for relaxor ferroelectrics, we analyzed the impact of ac and dc electric fields and field orientation on the dielectric properties of anisotropically strained epitaxial SrTiO{sub 3} films in detail. The tensile strain in the SrTiO{sub 3} films causes an increase of the ferroelectric-dielectric phase transition temperature to 258 K and 288 K for small and large tensile strains, respectively. The resulting films represent relaxor-type ferroelectrics with properties that strongly depend on the applied electric field. While a dc bias field significantly suppresses the permittivity in the paraelectric regime ranging from 180 K to 320 K, an ac field leads to an even more pronounced enhancement of the permittivity in an even larger temperature regime (e.g. reduction of up to 50% versus enhancement of up to 380% for 0.5 V/μm dc bias or ac field, respectively). Furthermore the ac field dependence is nonlinear and cannot be explained by the classical Rayleigh law. Frequency dependent measurements show among others that the electric field dependences are strongly related to the relaxor-type behavior. The different dielectric responses are explained in terms of the mobility and dynamic of regimes of uniform polarization, the polar nanoregions, that are generally assumed to be responsible for the relaxor behavior.
Tungsten based Anisotropic Metamaterial as an Ultra-broadband Absorber
Lin, Yinyue; Ding, Fei; Fung, Kin Hung; Ji, Ting; Li, Dongdong; Hao, Yuying
2016-01-01
The trapped rainbow effect has been mostly found on tapered anisotropic metamaterials (MMs) made of low loss noble metals, such as gold, silver, etc. In this work, we demonstrate that an anisotropic MM waveguide made of high loss metal tungsten can also support the trapped rainbow effect similar to the noble metal based structure. We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 micrometer to 9 micrometer with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow-light resonant modes is responsible for the efficient absorption at wavelengths longer than 2 micrometer, and the anti-reflection effect of tapered lossy material gives rise to the near perfect absorption at shorter wavelengths. The absorption spectrum suffers a small dip at around 4.2 micrometer where the first order and second order slow-light modes get overlapped, but we ca...
Anisotropic flow and flow fluctuations at the large hadron collider
Zhou, You
One of the fundamental questions in the phenomenology of Quantum Chromodynamics (QCD) is what the properties of matter are at the extreme densities and temperatures where quarks and gluons are in a new state of matter, the so-called Quark Gluon Plasma (QGP). Collisions of high-energy heavy-ions at the CERN Large Hadron Collider (LHC), allow us to create and study the properties of such a system in the laboratory. Anisotropic flow (vn) is strong evidence for the existence of QGP, and has been described as one of the most important observations measured in the ultra-relativistic heavy-ion collisions. In this thesis, the anisotropic flow of not only charged particles but also identified particles are presented. In addition, the investigations of correlations and fluctuations of both flow angle (symmetry plane) and magnitude were discussed. The main goal of this thesis is to understand the nature of anisotropic flow and its response to the initial geometry of the created system as well as its fluctuations.
Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young
2016-09-01
In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.
Resistance capacitance coupling frequency-response analysis based on MATLAB%基于MATLAB的阻容耦合频率特性分析
Institute of Scientific and Technical Information of China (English)
赵岩
2012-01-01
This article analyse the resistance capacitance coupling frequency-response with the help of matlab, in virtue of the outstanding graphic plotting and computing function of matlab, describe the resistance capacitance coupling frequency-response＇ phase-frequency characteristic and amplitude-frequency response characteristic at low-frequency stage and high-frequency stage very precise, contrast to the brief graphs of the teaching Materials, analysis the error of the brief graphs ,and though the numerical analysis of the error, get the maximum error of the brief graphs, consequently, reinforces understand of the resistance capacitance coupling frequency-response.%本文借助matlab对阻容耦合的频率进行了分析，通过matlab十分强大的计算和图形绘制功能，将阻容耦合的相频特性和幅频特性在低频段和高频段图像精确的描绘出来，同教材中的简要图对比，分析出简要图的误差，并通过对误差处的数值分析，得到简要图的最大误差，从而加深对阻容耦合频率特性的理解。
Choudhuri, Samir; Bharadwaj, Somnath; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad
2016-06-11
It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase centre. Here, we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum Cℓ of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it to provide an unbiased estimation of Cℓ.
Directory of Open Access Journals (Sweden)
Rosenbaum Linnéa
2007-01-01
Full Text Available The frequency-response masking (FRM technique was introduced as a means of generating linear-phase FIR filters with narrow transition band and low arithmetic complexity. This paper proposes an approach for synthesizing modulated maximally decimated FIR filter banks (FBs utilizing the FRM technique. A new tailored class of FRM filters is introduced and used for synthesizing nonlinear-phase analysis and synthesis filters. Each of the analysis and synthesis FBs is realized with the aid of only three subfilters, one cosine-modulation block, and one sine-modulation block. The overall FB is a near-perfect reconstruction (NPR FB which in this case means that the distortion function has a linear-phase response but small magnitude errors. Small aliasing errors are also introduced by the FB. However, by allowing these small errors (that can be made arbitrarily small, the arithmetic complexity can be reduced. Compared to conventional cosine-modulated FBs, the proposed ones lower significantly the overall arithmetic complexity at the expense of a slightly increased overall FB delay in applications requiring narrow transition bands. Compared to other proposals that also combine cosine-modulated FBs with the FRM technique, the arithmetic complexity can typically be reduced by in specifications with narrow transition bands. Finally, a general design procedure is given for the proposed FBs and examples are included to illustrate their benefits.
Directory of Open Access Journals (Sweden)
Håkan Johansson
2007-01-01
Full Text Available The frequency-response masking (FRM technique was introduced as a means of generating linear-phase FIR filters with narrow transition band and low arithmetic complexity. This paper proposes an approach for synthesizing modulated maximally decimated FIR filter banks (FBs utilizing the FRM technique. A new tailored class of FRM filters is introduced and used for synthesizing nonlinear-phase analysis and synthesis filters. Each of the analysis and synthesis FBs is realized with the aid of only three subfilters, one cosine-modulation block, and one sine-modulation block. The overall FB is a near-perfect reconstruction (NPR FB which in this case means that the distortion function has a linear-phase response but small magnitude errors. Small aliasing errors are also introduced by the FB. However, by allowing these small errors (that can be made arbitrarily small, the arithmetic complexity can be reduced. Compared to conventional cosine-modulated FBs, the proposed ones lower significantly the overall arithmetic complexity at the expense of a slightly increased overall FB delay in applications requiring narrow transition bands. Compared to other proposals that also combine cosine-modulated FBs with the FRM technique, the arithmetic complexity can typically be reduced by 40% in specifications with narrow transition bands. Finally, a general design procedure is given for the proposed FBs and examples are included to illustrate their benefits.
Directory of Open Access Journals (Sweden)
Steffert Beverly
2003-12-01
Full Text Available Abstract Background This study is in response to the question of whether the moon can influence daily levels of stress. Method Four years of telephone-call frequency data were obtained from a single crisis-call centre. We used the method of lunar-day numbers 1 to 29 for analysis. We also tested the concept of 'strong moons' as occurring when the Sun was near to the lunar-node axis. Results An increase in calls was recorded from females and a decrease in calls by males during the new moon period, suggesting a sex difference in response, and there were proportionally more calls by males a fortnight later. A comparable swing in the male/female call-ratio on a weekly basis over Fridays and Saturdays was noted. Limitations of staffing at the call-centre prohibited comment on seasonal correlations. Conclusion Lunar-related studies of stress should endeavour to separate the data by sex or the effect can be lost. Distress-calls by women were more strongly linked to the lunar month than were those by men.
Choudhuri, Samir; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad
2016-01-01
It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase center. Here we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum C_l of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it t...
Rouvaen, J M; Waxin, G; Gazalet, M G; Bridoux, E
1990-03-20
The anisotropic diffraction of light by high frequency longitudinal ultrasonic waves in the tangential phase matching configuration may present some definite advantages over the same interaction using transverse acoustic waves. A systematic search for favorable crystal cuts in lithium niobate was worked out. The main results of this study are reported here; they enable the choice of the best configuration for a given operating center frequency.
Bronsert, Michael; Bingol, Hilary; Atkins, Gordon; Stout, John
2003-03-01
L3, an auditory interneuron in the prothoracic ganglion of female crickets (Acheta domesticus) exhibited two kinds of responses to models of the male's calling song (CS): a previously described, phasically encoded immediate response; a more tonically encoded prolonged response. The onset of the prolonged response required 3-8 sec of stimulation to reach its maximum spiking rate and 6-20 sec to decay once the calling song ceased. It did not encode the syllables of the chirp. The prolonged response was sharply selective for the 4-5 kHz carrier frequency of the male's calling songs and its threshold tuning matched the threshold tuning of phonotaxis, while the immediate response of the same neuron was broadly tuned to a wide range of carrier frequencies. The thresholds for the prolonged response covaried with the changing phonotactic thresholds of 2- and 5-day-old females. Treatment of females with juvenile hormone reduced the thresholds for both phonotaxis and the prolonged response by equivalent amounts. Of the 3 types of responses to CSs provided by the ascending L1 and L3 auditory interneurons, the threshold for L3's prolonged response, on average, best matched the same females phonotactic threshold. The prolonged response was stimulated by inputs from both ears while L3's immediate response was driven only from its axon-ipsilateral ear. The prolonged response was not selective for either the CS's syllable period or chirp rate.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Overview of anisotropic flow measurements from ALICE
Directory of Open Access Journals (Sweden)
Zhou You
2016-01-01
Full Text Available Anisotropic flow is an important observable to study the properties of the hot and dense matter, the Quark Gluon Plasma (QGP, created in heavy-ion collisions. Measurements of anisotropic flow for inclusive and identified charged hadrons are reported in Pb–Pb, p–Pb and pp collisions with the ALICE detector. The comparison of experimental measurements to various theoretical calculations are also presented in these proceedings.
Inflation in anisotropic scalar-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Pimentel, L.O.; Stein-Schabes, J.
1989-01-05
The existence of an inflationary phase in anisotropic scalar-tensor theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a non-trivial potential. We then use the explicit form of the potential and the no hair theorem to conclude that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.
Inflation in anisotropic scalar-tensor theories
Pimentel, Luis O.; Stein-Schabes, Jaime
1988-01-01
The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.
The in-plane anisotropic magnetic damping of ultrathin epitaxial Co{sub 2}FeAl film
Energy Technology Data Exchange (ETDEWEB)
Qiao, Shuang [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Heibei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Yan, Wei; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui, E-mail: xinhuiz@semi.ac.cn [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China)
2015-08-15
The in-plane orientation-dependent effective damping of ultrathin Co{sub 2}FeAl film epitaxially grown on GaAs(001) substrate by molecular beam epitaxy (MBE) has been investigated by employing the time-resolved magneto-optical Kerr effect (TR-MOKE) measurements. It is found that the interface-induced uniaxial anisotropy is favorable for precession response and the anisotropy of precession frequency is mainly determined by this uniaxial anisotropy, while the magnetic relaxation time and damping factor exhibit the fourfold anisotropy at high-field regime. The field-independent anisotropic damping factor obtained at high fields indicates that the effective damping shows an intrinsic fourfold anisotropy for the epitaxial Co{sub 2}FeAl thin films.
Imaging the anisotropic nonlinear meissner effect in nodal YBa2 Cu3 O7-δ thin-film superconductors.
Zhuravel, Alexander P; Ghamsari, B G; Kurter, C; Jung, P; Remillard, S; Abrahams, J; Lukashenko, A V; Ustinov, Alexey V; Anlage, Steven M
2013-02-22
We have directly imaged the anisotropic nonlinear Meissner effect in an unconventional superconductor through the nonlinear electrodynamic response of both (bulk) gap nodes and (surface) Andreev bound states. A superconducting thin film is patterned into a compact self-resonant spiral structure, excited near resonance in the radio-frequency range, and scanned with a focused laser beam perturbation. At low temperatures, direction-dependent nonlinearities in the reactive and resistive properties of the resonator create photoresponse that maps out the directions of nodes, or of bound states associated with these nodes, on the Fermi surface of the superconductor. The method is demonstrated on the nodal superconductor YBa2Cu3O7-δ and the results are consistent with theoretical predictions for the bulk and surface contributions.
Seismic receiver function interpretation: Ps splitting or anisotropic underplating?
Liu, Zhen; Park, Jeffrey
2017-03-01
Crustal anisotropy is crucial to understanding the evolutionary history of Earth's lithosphere. Shear wave splitting of Moho P-to-S converted phases in receiver functions (RFs) have been often used to study crustal anisotropy. Harmonic variation of Moho Ps phases in delay times are used to infer splitting parameters of averaged anisotropy in the crust. However, crustal anisotropy may distribute at various levels within the crust due to complex deformational processes. Layered anisotropy requires careful investigation of the distribution of anisotropy before interpreting Moho Ps splitting. In this study, we show results from stations ARU in Russia, KIP in the Hawaiian Islands and LSA in Tibetan Plateau, where layered anisotropy is constrained well by intracrust Ps conversions at high frequencies using a harmonic-decomposition technique. Anisotropic velocity models are inferred by forward-modeling decomposed RF waveforms. We suggest that the harmonic variation of Moho Ps phases should always be investigated to check for anisotropic layering using RFs with frequency content above 1 Hz, rather than simply reporting averaged anisotropy of the whole crust.
Radar velocity tomography in anisotropic media
Energy Technology Data Exchange (ETDEWEB)
Kim, Jung Ho; Cho, Seong Jun; Yi Myeong Jong; Chung, Seung Hwan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)
1996-12-01
Radar tomography inversion method was developed in the elliptic anisotropic environment with the parametrization of maximum, minimum velocity, and the direction of symmetry axis. Nonlinear least-square method with smoothness constraint was adopted as inversion scheme. Newly developed algorithm was successfully tested with the 2-D numerical cross-borehole data in isotropic environment. Seismic data from physical modelling in partially anisotropic environment was also inverted and compared with the reconstruction technique assuming isotropic media. We could confirm the effectiveness of our algorithm, even though the tested data were generated from isotropic or partially anisotropic media. Cross-hole radar field data in limestone area in Korea was analyzed that the limestone bedrock is systematically anisotropic in the sense of radar application. The data set was inverted with the new anisotropy algorithm. The anisotropic effect in the data was corrected and also inverted for the comparison through the algorithm with isotropic assumption. Applying two different algorithm and comparing the various images, the tomographic image of maximum velocity from anisotropic inversion could give the most excellent way to visualize underground. An addition to the high resolution image, we could grasp some information on the material type from the feature of maximum velocity distribution the degree of anisotropy which can be inferred from the ratio of maximum and minimum velocity. The newly developed algorithm will be expected to provide a good way to image underground, especially in sedimentary or metamorphosed bedrock. (author). 9 refs., 21 figs.
Progress in Anisotropic Plasma Physics
Romatschke, P; Romatschke, Paul; Strickland, Michael
2004-01-01
In 1959 Weibel demonstrated that when a QED plasma has a temperature anisotropy there exist unstable transverse magnetic excitations which grow exponentially fast. In this paper we will review how to determine the growth rates for these unstable modes in the weak-coupling and ultrarelativistic limits in which the collective behavior is describable in terms are so-called "hard-loops". We will show that in this limit QCD is subject to instabilities which are analogous to the Weibel instability in QED. The presence of such instabilities dominates the early time evolution of a highly anisotropic plasma; however, at longer times it is expected that these instabilities will saturate (condense). I will discuss how the presence of non-linear interactions between the gluons complicates the determination of the saturated state. In order to discuss this I present the generalization of the Braaten-Pisarski isotropic hard-thermal-loop effective action to a system with a temperature anisotropy in the parton distribution fu...
Spin precession in anisotropic media
Raes, B.; Cummings, A. W.; Bonell, F.; Costache, M. V.; Sierra, J. F.; Roche, S.; Valenzuela, S. O.
2017-02-01
We generalize the diffusive model for spin injection and detection in nonlocal spin structures to account for spin precession under an applied magnetic field in an anisotropic medium, for which the spin lifetime is not unique and depends on the spin orientation. We demonstrate that the spin precession (Hanle) line shape is strongly dependent on the degree of anisotropy and on the orientation of the magnetic field. In particular, we show that the anisotropy of the spin lifetime can be extracted from the measured spin signal, after dephasing in an oblique magnetic field, by using an analytical formula with a single fitting parameter. Alternatively, after identifying the fingerprints associated with the anisotropy, we propose a simple scaling of the Hanle line shapes at specific magnetic field orientations that results in a universal curve only in the isotropic case. The deviation from the universal curve can be used as a complementary means of quantifying the anisotropy by direct comparison with the solution of our generalized model. Finally, we applied our model to graphene devices and find that the spin relaxation for graphene on silicon oxide is isotropic within our experimental resolution.
Frempong, Kwadwo K.; Walker, Martin; Cheke, Robert A.; Tetevi, Edward Jenner; Gyan, Ernest Tawiah; Owusu, Ebenezer O.; Wilson, Michael D.; Boakye, Daniel A.; Taylor, Mark J.; Biritwum, Nana-Kwadwo; Osei-Atweneboana, Mike; Basáñez, María-Gloria
2016-01-01
Background. Several African countries have adopted a biannual ivermectin distribution strategy in some foci to control and eliminate onchocerciasis. In 2010, the Ghana Health Service started biannual distribution to combat transmission hotspots and suboptimal responses to treatment. We assessed the epidemiological impact of the first 3 years of this strategy and quantified responses to ivermectin over 2 consecutive rounds of treatment in 10 sentinel communities. Methods. We evaluated Onchocerca volvulus community microfilarial intensity and prevalence in persons aged ≥20 years before the first, second, and fifth (or sixth) biannual treatment rounds using skin snip data from 956 participants. We used longitudinal regression modeling to estimate rates of microfilarial repopulation of the skin in a cohort of 217 participants who were followed up over the first 2 rounds of biannual treatment. Results. Biannual treatment has had a positive impact, with substantial reductions in infection intensity after 4 or 5 rounds in most communities. We identified 3 communities—all having been previously recognized as responding suboptimally to ivermectin—with statistically significantly high microfilarial repopulation rates. We did not find any clear association between microfilarial repopulation rate and the number of years of prior intervention, coverage, or the community level of infection. Conclusions. The strategy of biannual ivermectin treatment in Ghana has reduced O. volvulus microfilarial intensity and prevalence, but suboptimal responses to treatment remain evident in a number of previously and consistently implicated communities. Whether increasing the frequency of treatment will be sufficient to meet the World Health Organization's 2020 elimination goals remains uncertain. PMID:27001801
Fracture Interface Waves in an Anisotropic Medium
Pyrak-Nolte, L. J.; Shao, S.; Abell, B.
2011-12-01
The detection of fractures in an anisotropic medium is complicated by discreet modes that are guided or confined by fractures and that travel with velocities close (~92%) to the shear wave velocity. For instance, fractures can mask the presence of textural anisotropy in a rock, and can increase the apparent shear wave velocity anisotropy. In this study, we examine how fracture interface waves affect the interpretation of shear wave velocities for two orthogonal polarizations propagating parallel to the layers. Samples with textural anisotropy measuring 100 x 100 x 100 mm were fabricated from garolite, an epoxy - cloth laminate, with layer thickness on the order of 0.5 mm. Three fracture samples were created with: (1) a fracture oriented parallel to layering, (2) a fracture oriented perpendicular to layering, and (3) two intersecting orthogonal fractures. An intact sample without fractures was used a standard. A seismic array, consisting of source and receiver arrays, was used to perform full waveform measurements. Each array contained two compressional and five shear wave piezoelectric contact transducers with a central frequency of 1 MHz. Shear wave transducers were polarized both perpendicular and parallel to the layering as well as to the fracture. Measurements were made for a range of stresses (0.4 - 4MPa). When the shear wave was polarized parallel to a fracture, the shear wave traveled at the bulk shear velocity respective to the layering. However, when the shear wave was polarized perpendicular to a fracture, the measured velocity ranged between the Rayleigh wave velocity at low stress and the bulk shear wave at high stress. The shear wave velocities perpendicular and parallel to the layering (propagation direction parallel to the layers) were ~1500 m/s and ~1600 m/s, respectively, in the intact sample. However, in the fractured samples, the observed shear wave anisotropy depended on the stress and fracture orientation relative to the layering. When the
E.A.G.J. Conijn
1992-01-01
textabstractBrainstem Electric Response Audiometry (BERA) is a method to visualize some of the electric activity generated in the auditory nerve and the brainstem during the processing of sound. The amplitude of the Auditory Brainstem Response (ABR) is very small (0.05-0.5 flV). The potentials origi
Energy Technology Data Exchange (ETDEWEB)
Top, P. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-02-10
The Energy Commission is currently soliciting ideas and stakeholder input for the 2018 – 2020 EPIC Triennial Investment Plan. For those that would like to submit an idea for consideration in the 2018-2020 EPIC Triennial Plan, we ask that you complete the form below. Submittals are due by 5:00 p.m. on February 10, 2017.
Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.
Şenel Ayaz, H Gözde; Perets, Anat; Ayaz, Hasan; Gilroy, Kyle D; Govindaraj, Muthu; Brookstein, David; Lelkes, Peter I
2014-10-01
For patients with end-stage heart disease, the access to heart transplantation is limited due to the shortage of donor organs and to the potential for rejection of the donated organ. Therefore, current studies focus on bioengineering approaches for creating biomimetic cardiac patches that will assist in restoring cardiac function, by repairing and/or regenerating the intrinsically anisotropic myocardium. In this paper we present a simplified, straightforward approach for creating bioactive anisotropic cardiac patches, based on a combination of bioengineering and textile-manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. Using knitted conventional textiles, made of cotton or polyester yarns as template targets, we successfully electrospun anisotropic three-dimensional scaffolds from poly(lactic-co-glycolic) acid (PLGA), and thermoplastic polycarbonate-urethane (PCU, Bionate(®)). The surface topography and mechanical properties of textile-templated anisotropic scaffolds significantly differed from those of scaffolds electrospun from the same materials onto conventional 2-D flat-target electrospun scaffolds. Anisotropic textile-templated scaffolds electrospun from both PLGA and PCU, supported the adhesion and proliferation of H9C2 cardiac myoblasts cell line, and guided the cardiac tissue-like anisotropic organization of these cells in vitro. All cell-seeded PCU scaffolds exhibited mechanical properties comparable to those of a human heart, but only the cells on the polyester-templated scaffolds exhibited prolonged spontaneous synchronous contractility on the entire engineered construct for 10 days in vitro at a near physiologic frequency of ∼120 bpm. Taken together, the methods described here take advantage of straightforward established textile manufacturing strategies as an efficient and cost-effective approach to engineering 3D anisotropic, elastomeric PCU scaffolds that can serve as a cardiac patch.
Takbiri, Z.; Czuba, J. A.; Foufoula-Georgiou, E.
2014-12-01
Hydrologic change is occurring in many basins throughout the Midwestern U.S. not only in the mean annual streamflow but across a spectrum of magnitudes and frequencies. Disentangling the causative mechanisms responsible for these changes such as anthropogenic factors, e.g., artificial drainage to increase agricultural productivity, and climatic shifts in precipitation patterns is important for planning effective mitigation strategies. We have begun unraveling these changes in a human impacted agricultural landscape in the Midwestern U.S., specifically two subbasins of the Minnesota River Basin in Minnesota: the Redwood and Whetstone River Basins, where there has been a shift in agriculture from small grains to soybeans. This shift occurred at different times for each basin (1976 and 1991, respectively) and when soy covered about 20% of the basin area an apparent shift in the hydrologic regime also occurred as evidence by visual inspection of the hydrographs. Precisely quantifying the nature of this hydrologic regime shift however is a challenge and this work adds in this direction. Using Copulas and the joint probability distribution of daily precipitation and streamflow, we quantified a significantly higher dependence between precipitation and streamflow increments in the mid-quantiles (0.1-0.6; attributed to the artificial drainage to the stream rather than the slower infiltration and subsurface runoff) and no significant change for high quantiles (because for extreme storms the artificially fast drainage does not differ much hydrologically from the naturally fast overland flow). We further performed a multi-scale analysis of streamflow increments via wavelets to quantify the changes in the magnitude and frequency of the rising and falling limbs of hydrographs, confirming the above findings. Since precipitation changes were confirmed not to be significant, it is suggested that streamflow changes are largely driven by a change in land use and not climate in these
Ciancio, P. M.; Rossit, C. A.; Laura, P. A. A.
2007-05-01
This study is concerned with the vibration analysis of a cantilevered rectangular anisotropic plate when a concentrated mass is rigidly attached to its center point. Based on the classical theory of anisotropic plates, the Ritz method is employed to perform the analysis. The deflection of the plate is approximated by a set of beam functions in each principal coordinate direction. The influence of the mass magnitude on the natural frequencies and modal shapes of vibration is studied for a boron-epoxy plate and also in the case of a generic anisotropic material. The classical Ritz method with beam functions as the spatial approximation proved to be a suitable procedure to solve a problem of this analytical complexity.
Effects of the Biot and the squirt-flow coupling interaction on anisotropic elastic waves
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Considering the velocity anisotropy of the solid/fluid relative motion and employment of the BISQ theory[1] based on the one-dimensional porous isotropic case, we establish a two-phase anisotropic elastic wave equation to simultaneously include the Biot and the squirt mechanisms in terms of both the basic principles of the fluid's mass conservation and the elastic-wave dynamical equations in the two-phase anisotropic rock. Numerical results, while the Biot-flow and the squirt-flow effects are simultaneously considered in the transversely isotropic (TI) poroelastic medium, show that the attenuation of the quasi P-wave and the quasi SV-wave strongly depend on the permeability anisotropy, and the attenuation behavior at low and high frequencies is contrary. Meanwhile, the attenuation and dispersion of the quasi P-wave are also affected seriously by the anisotropic solid/fluid coupling additional density.
Energy Technology Data Exchange (ETDEWEB)
Kobus, C.J.; Wedekind, G.L.; Bhatt, B.L.
2000-02-01
An equivalent single-tube model concept was extended to predict the frequency-response characteristics of multitube two-phase condensing flow systems, complete with the ability to predict the influence of compressibility and thermal and flow distribution asymmetry. The predictive capability of the equivalent single-tube model was verified experimentally with extensive data that encompassed a three-order-of-magnitude range of frequencies, and a wide range of operating parameters.
Directory of Open Access Journals (Sweden)
Hemant eBhargav
2014-03-01
Full Text Available Frontal hemodynamic responses to high frequency yoga breathing technique - Kapalabhati (KB was compared between patients of schizophrenia (n =18; 14 males, 4 females and age-gender and education matched healthy subjects (n=18; 14 males, 4 females using functional near-infrared spectroscopy (fNIRS.The diagnosis was confirmed by a psychiatrist using DSM IV. All patients except one received atypical anti-psychotics (one was on typical. They had obtained a stabilized state as evidenced by a steady unchanged medication from their psychiatrist for past 3 months or longer. They learned KB, among other yoga procedures, in the yoga retreat. KB was practiced at the rate of 120 times per minute for 1minute (min. Healthy subjects who were freshly learning yoga too were taught KB. Both the groups had no previous exposure to KB practice and the training was achieved over 2 weeks. A chest pressure transducer was used to monitor the frequency and intensity of the practice objectively. The frontal hemodynamic response in terms of the oxygenated hemoglobin (oxyHb, deoxygenated hemoglobin (deoxyHb and total hemoglobin or blood volume (totalHb concentration was tapped for 5 min before, 1min during and for 5 min after KB.This was obtained in quiet room using a 16 channel functional near-infrared system (FNIR100-ACK-W, BIOPAC Systems, Inc, USA. Average of the eight channels for each side (right and left frontals was obtained for the three sessions. The changes in the levels of oxyHb, deoxyHb and blood volume for the three sessions were compared between the two groups using Independent samples t test.Within group comparison showed that increase in bilateral oxyHb and totalHb from the baseline was highly significant in healthy controls during KB (right oxyHb, p = 0.00; left oxyHb, p= 0.00 and right totalHb, p = 0.01; left totalHb, p = 0.00, whereas schizophrenia patients did not show any significant changes in the same on both the sides. On the other hand