Timescales of isotropic and anisotropic cluster collapse
Bartelmann, M.; Ehlers, J.; Schneider, P.
1993-12-01
From a simple estimate for the formation time of galaxy clusters, Richstone et al. have recently concluded that the evidence for non-virialized structures in a large fraction of observed clusters points towards a high value for the cosmological density parameter Omega0. This conclusion was based on a study of the spherical collapse of density perturbations, assumed to follow a Gaussian probability distribution. In this paper, we extend their treatment in several respects: first, we argue that the collapse does not start from a comoving motion of the perturbation, but that the continuity equation requires an initial velocity perturbation directly related to the density perturbation. This requirement modifies the initial condition for the evolution equation and has the effect that the collapse proceeds faster than in the case where the initial velocity perturbation is set to zero; the timescale is reduced by a factor of up to approximately equal 0.5. Our results thus strengthens the conclusion of Richstone et al. for a high Omega0. In addition, we study the collapse of density fluctuations in the frame of the Zel'dovich approximation, using as starting condition the analytically known probability distribution of the eigenvalues of the deformation tensor, which depends only on the (Gaussian) width of the perturbation spectrum. Finally, we consider the anisotropic collapse of density perturbations dynamically, again with initial conditions drawn from the probability distribution of the deformation tensor. We find that in both cases of anisotropic collapse, in the Zel'dovich approximation and in the dynamical calculations, the resulting distribution of collapse times agrees remarkably well with the results from spherical collapse. We discuss this agreement and conclude that it is mainly due to the properties of the probability distribution for the eigenvalues of the Zel'dovich deformation tensor. Hence, the conclusions of Richstone et al. on the value of Omega0 can be
Neirotti, Juan
2016-07-01
We consider the process of opinion formation in a society of interacting agents, where there is a set B of socially accepted rules. In this scenario, we observed that agents, represented by simple feed-forward, adaptive neural networks, may have a conservative attitude (mostly in agreement with B ) or liberal attitude (mostly in agreement with neighboring agents) depending on how much their opinions are influenced by their peers. The topology of the network representing the interaction of the society's members is determined by a graph, where the agents' properties are defined over the vertexes and the interagent interactions are defined over the bonds. The adaptability of the agents allows us to model the formation of opinions as an online learning process, where agents learn continuously as new information becomes available to the whole society (online learning). Through the application of statistical mechanics techniques we deduced a set of differential equations describing the dynamics of the system. We observed that by slowly varying the average peer influence in such a way that the agents attitude changes from conservative to liberal and back, the average social opinion develops a hysteresis cycle. Such hysteretic behavior disappears when the variance of the social influence distribution is large enough. In all the cases studied, the change from conservative to liberal behavior is characterized by the emergence of conservative clusters, i.e., a closed knitted set of society members that follow a leader who agrees with the social status quo when the rule B is challenged.
Anisotropic dynamic mass density for fluidsolid composites
Wu, Ying; Mei, Jun; Sheng, Ping
2012-01-01
By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle
Dynamics of anisotropic tissue growth
Energy Technology Data Exchange (ETDEWEB)
Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de
2008-06-15
We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.
Anisotropic dynamic mass density for fluidsolid composites
Wu, Ying
2012-10-01
By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.
Introduction to cluster dynamics
Reinhard, Paul-Gerhard
2008-01-01
Clusters as mesoscopic particles represent an intermediate state of matter between single atoms and solid material. The tendency to miniaturise technical objects requires knowledge about systems which contain a ""small"" number of atoms or molecules only. This is all the more true for dynamical aspects, particularly in relation to the qick development of laser technology and femtosecond spectroscopy. Here, for the first time is a highly qualitative introduction to cluster physics. With its emphasis on cluster dynamics, this will be vital to everyone involved in this interdisciplinary subje
Small clusters with anisotropic antiferromagnetic exchange in a magnetic field
International Nuclear Information System (INIS)
Parkinson, J B; Elliott, R J; Timonen, J
2004-01-01
We consider small symmetric clusters of magnetic atoms (spins) with anisotropic exchange interaction between the atoms in a magnetic field at zero temperature. The inclusion of the anisotropy leads to a wealth of different phases as a function of the applied magnetic field. These are not phases in the thermodynamic sense with critical properties but rather physical structures with different arrangements of the spins and hence different symmetries. We study the spatial symmetry of these phases, for the classical and quantum cases. Results are presented mainly for three frustrated systems, the triangle, the tetrahedron and the five-atom ring, which have many interesting features. In the classical limit we obtain phase diagrams in which some of the phase changes occur because of energy crossings and others due to energy bifurcations, corresponding to 'first-' and 'second-order' changes. In the quantum case we show how the symmetries of the states are related to the corresponding classical symmetries
Polarization dynamics in nonlinear anisotropic fibers
International Nuclear Information System (INIS)
Komarov, Andrey; Komarov, Konstantin; Meshcheriakov, Dmitry; Amrani, Foued; Sanchez, Francois
2010-01-01
We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincare sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of the polarization in the Poincare sphere and the motion of a particle in a potential well. Two distinct potentials are found, leading to the existence of two families of solutions, according to the sign of the total energy of the equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to determine analytically the associated beat lengths. General analytical solutions are given for the two families in terms of Jacobi's functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two polarization controllers is also considered.
Measuring neutrino mass imprinted on the anisotropic galaxy clustering
Energy Technology Data Exchange (ETDEWEB)
Oh, Minji; Song, Yong-Seon, E-mail: minjioh@kasi.re.kr, E-mail: ysong@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)
2017-04-01
The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small m {sub ν} ∼< 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of m {sub ν}. The signature of m {sub ν} is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial m {sub ν} through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe m {sub ν} simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, m {sub ν} is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standard model of cosmic acceleration is assumed to be the cosmological constant, the constraint on m {sub ν} is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and m {sub ν}, and the m {sub ν} is observed to be m {sub ν} = 0.19{sup +0.28}{sub −0.17} eV which is different from massless neutrino at 68% confidence.
International Nuclear Information System (INIS)
Goodman, J.; Hut, P.
1985-01-01
The enigma of core collapse receives much attention in this volume. In addition, several observational papers summarize recent techniques and results and discuss the stellar dynamical implications of the enormous progress in the quality of surface photometry, proper motion studies, radial velocity determinations, as well as space-based measurements in a variety of wavelengths. The value of these Proceedings as a standard reference work is enhanced by the inclusion of two appendices, featuring English translations of two seminal papers on stellar dynamics published in Russian and not previously available in a Western language. A third appendix contains an up-to-date catalogue of observationally determined parameters of galactic globular clusters, as well as theoretically inferred parameters. This catalogue will prove to be an essential reference for phenomenonological studies and an ideal testing ground for new theoretical developments. (orig.)
Anisotropic Born-Mayer potential in lattice dynamics of Vanadium
International Nuclear Information System (INIS)
Onwuagba, B.N.
1988-01-01
A microscopic theory of the lattice dynamics of the transition metal vanadium is developed based on the Animalu's transition metal model potential (TMMP). The Born-Mayer potential associated with the distribution of the transition metal d-electrons is treated as anisotropic. Good agreement with experimental phonon dispersion curves longitudinal branches in the [111] direction
Dynamical anisotropic response of black phosphorus under magnetic field
Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong
2018-04-01
Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.
Statistical ensembles and molecular dynamics studies of anisotropic solids. II
International Nuclear Information System (INIS)
Ray, J.R.; Rahman, A.
1985-01-01
We have recently discussed how the Parrinello--Rahman theory can be brought into accord with the theory of the elastic and thermodynamic behavior of anisotropic media. This involves the isoenthalpic--isotension ensemble of statistical mechanics. Nose has developed a canonical ensemble form of molecular dynamics. We combine Nose's ideas with the Parrinello--Rahman theory to obtain a canonical form of molecular dynamics appropriate to the study of anisotropic media subjected to arbitrary external stress. We employ this isothermal--isotension ensemble in a study of a fcc→ close-packed structural phase transformation in a Lennard-Jones solid subjected to uniaxial compression. Our interpretation of the Nose theory does not involve a scaling of the time variable. This latter fact leads to simplifications when studying the time dependence of quantities
Anisotropic Josephson-vortex dynamics in layered organic superconductors
International Nuclear Information System (INIS)
Yasuzuka, S.; Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T.; Koga, H.; Yamamura, Y.; Saito, K.; Akutsu, H.; Yamada, J.
2010-01-01
To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors κ-(ET) 2 Cu(NCS) 2 and β-(BDA-TTP) 2 SbF 6 under magnetic fields precisely parallel to the conducting planes. For κ-(ET) 2 Cu(NCS) 2 , in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for β-(BDA-TTP) 2 SbF 6 . The different anisotropic behavior is discussed in terms of the interlayer coupling strength.
Anisotropic Josephson-vortex dynamics in layered organic superconductors
Energy Technology Data Exchange (ETDEWEB)
Yasuzuka, S., E-mail: yasuzuka@chem.tsukuba.ac.j [Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T. [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0003 (Japan); Koga, H.; Yamamura, Y.; Saito, K. [Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Akutsu, H.; Yamada, J. [Department of Material Science, Graduate School of Material Science, University of Hyogo, Ako-gun, Hyogo 678-1297 (Japan)
2010-06-01
To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and {beta}-(BDA-TTP){sub 2}SbF{sub 6} under magnetic fields precisely parallel to the conducting planes. For {kappa}-(ET){sub 2}Cu(NCS){sub 2}, in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for {beta}-(BDA-TTP){sub 2}SbF{sub 6}. The different anisotropic behavior is discussed in terms of the interlayer coupling strength.
Complex emergent dynamics of anisotropic swarms: Convergence vs oscillation
International Nuclear Information System (INIS)
Chu Tianguang; Wang Long; Chen Tongwen; Mu Shumei
2006-01-01
This paper considers an anisotropic swarm model with a simple attraction and repulsion function. It is shown that the members of a reciprocal swarm will aggregate and eventually form a cohesive cluster of finite size around the swarm center. Moreover, the swarm system is also completely stable, i.e., every solution converges to the set of equilibrium points of the system. These results are also valid for a class of non-reciprocal swarms under the detailed balance condition on coupling weights. For general non-reciprocal swarms, numerical simulations are worked out to demonstrate more complex oscillatory motions in the systems. The study provides further insight into the effect of the interaction pattern on the collective behavior of a swarm system
Epistemic communities and cluster dynamics
DEFF Research Database (Denmark)
Håkanson, Lars
2003-01-01
This paper questions the prevailing notions that firms within industrial clusters have privi-leged access to `tacit knowledge' that is unavailable - or available only at high cost - to firms located elsewhere, and that such access provides competitive advantages that help to explain the growth...... and development of both firms and regions. It outlines a model of cluster dynam-ics emphasizing two mutually interdependent processes: the concentration of specialized and complementary epistemic communities, on the one hand, and entrepreneurship and a high rate of new firm formation on the other....
Innovation, learning and cluster dynamics
B. Nooteboom (Bart)
2004-01-01
textabstractThis chapter offers a theory and method for the analysis of the dynamics, i.e. the development, of clusters for innovation. It employs an analysis of three types of embedding: institutional embedding, which is often localized, structural embedding (network structure), and relational
Aeroelastic modal dynamics of wind turbines including anisotropic effects
Energy Technology Data Exchange (ETDEWEB)
Fisker Skjoldan, P.
2011-03-15
Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies, damping, and periodic mode shapes of a rotating wind turbine by describing the rotor degrees of freedom in the inertial frame. This approach is valid only for an isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating in wind shear, are treated with the general approaches of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases are small, but indicate that the controller creates nonlinear damping. In isotropic conditions the periodic mode shape contains up to three harmonic components, but in anisotropic conditions it can contain an infinite number of harmonic components with frequencies that are multiples of the rotor speed. These harmonics appear in calculated frequency responses of the turbine. Extreme wind shear changes the modal damping when the flow is separated due to an interaction between
Aeroelastic modal dynamics of wind turbines including anisotropic effects
DEFF Research Database (Denmark)
Skjoldan, Peter Fisker
frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions......Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies...... of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal...
ANISOTROPIC THERMAL CONDUCTION AND THE COOLING FLOW PROBLEM IN GALAXY CLUSTERS
International Nuclear Information System (INIS)
Parrish, Ian J.; Sharma, Prateek; Quataert, Eliot
2009-01-01
We examine the long-standing cooling flow problem in galaxy clusters with three-dimensional magnetohydrodynamics simulations of isolated clusters including radiative cooling and anisotropic thermal conduction along magnetic field lines. The central regions of the intracluster medium (ICM) can have cooling timescales of ∼200 Myr or shorter-in order to prevent a cooling catastrophe the ICM must be heated by some mechanism such as active galactic nucleus feedback or thermal conduction from the thermal reservoir at large radii. The cores of galaxy clusters are linearly unstable to the heat-flux-driven buoyancy instability (HBI), which significantly changes the thermodynamics of the cluster core. The HBI is a convective, buoyancy-driven instability that rearranges the magnetic field to be preferentially perpendicular to the temperature gradient. For a wide range of parameters, our simulations demonstrate that in the presence of the HBI, the effective radial thermal conductivity is reduced to ∼<10% of the full Spitzer conductivity. With this suppression of conductive heating, the cooling catastrophe occurs on a timescale comparable to the central cooling time of the cluster. Thermal conduction alone is thus unlikely to stabilize clusters with low central entropies and short central cooling timescales. High central entropy clusters have sufficiently long cooling times that conduction can help stave off the cooling catastrophe for cosmologically interesting timescales.
Cluster dynamics at different cluster size and incident laser wavelengths
International Nuclear Information System (INIS)
Desai, Tara; Bernardinello, Andrea
2002-01-01
X-ray emission spectra from aluminum clusters of diameter -0.4 μm and gold clusters of dia. ∼1.25 μm are experimentally studied by irradiating the cluster foil targets with 1.06 μm laser, 10 ns (FWHM) at an intensity ∼10 12 W/cm 2 . Aluminum clusters show a different spectra compared to bulk material whereas gold cluster evolve towards bulk gold. Experimental data are analyzed on the basis of cluster dimension, laser wavelength and pulse duration. PIC simulations are performed to study the behavior of clusters at higher intensity I≥10 17 W/cm 2 for different size of the clusters irradiated at different laser wavelengths. Results indicate the dependence of cluster dynamics on cluster size and incident laser wavelength
Vortex dynamics in supraconductors in the presence of anisotropic pinning
International Nuclear Information System (INIS)
Soroka, O.K.
2004-01-01
Vortex dynamics in two different classes of superconductors with anisotropic unidirected pinning sites was experimentally investigated by magnetoresistivity measurements: YBCO-films with unidirected twins and Nb-films deposited on faceted Al 2 O 3 substrate surfaces. For the interpretation of the experimental results a theoretical model based on the Fokker-Planck equation was used. It was proved by X-ray measurements that YBCO films prepared on (001) NdGaO 3 substrates exhibit only one twin orientation in contrast to YBCO films grown on (100) SrTiO 3 substrates. The magnetoresistivity measurements of the YBCO films with unidirected twin boundaries revealed the existence of two new magnetoresistivity components, which is a characteristic feature of a guided vortex motion: an odd longitudinal component with respect to the magnetic field sign reversal and an even transversal component. However, due to the small coherence length in YBCO and the higher density of point-like defects comparing to high-quality YBCO single crystals, the strength of the isotropic point pinning was comparable with the strength of the pinning produced by twins. This smeared out all e ects caused by the pinning anisotropy. The behaviour of the odd longitudinal component was found to be independent of the transport current direction with respect to the twin planes. The magnetoresistivity measurements of faceted Nb films demonstrated the appearance of an odd longitudinal and even transversal component of the magnetoresistivity. The temperature and magnetic field dependences of all relevant magnetoresistivity components were measured. The angles between the average vortex velocity vector and the transport current direction calculated from the experimental data for the different transport current orientations with respect to the facet ridges showed that the vortices moved indeed along the facet ridges. An anomalous Hall effect, i.e. a sign change of the odd transversal magnetoresistivity, has been
The Dynamics of Overlapping Clusters
DEFF Research Database (Denmark)
Reckendrees, Alfred
The economic transition characterizing the process of European industrialization in the 19th century was concentrated on regions rather than on states. In the first half of the 19th century, the region of Aachen (in the west of Prussia) pioneered on the territory of the German states and developed...... to a powerful industrial region. The implementation and diffusion of the factory system and the economic impact of adapted and new institutions make the core of this paper. Reciprocal interconnections between firms of different clusters shaped the region and created economic dynamics. Investments transgressed...... the boundaries of single industries and new industries emerged. One important feature of the regional production system was cross-sectional knowledge transfer; a second was institutions supportive to this process....
Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.
2017-03-01
The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.
Dynamical aspects of galaxy clustering
International Nuclear Information System (INIS)
Fall, S.M.
1980-01-01
Some recent work on the origin and evolution of galaxy clustering is reviewed, particularly within the context of the gravitational instability theory and the hot big-bang cosmological model. Statistical measures of clustering, including correlation functions and multiplicity functions, are explained and discussed. The close connection between galaxy formation and clustering is emphasized. Additional topics include the dependence of galaxy clustering on the spectrum of primordial density fluctuations and the mean mass density of the Universe. (author)
Dynamics of anisotropic power-law f(R) cosmology
International Nuclear Information System (INIS)
Shamir, M. F.
2016-01-01
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.
Dynamics of anisotropic power-law f(R) cosmology
Energy Technology Data Exchange (ETDEWEB)
Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Lahore Campus, Department of Sciences and Humanities (Pakistan)
2016-12-15
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.
Anisotropic mechanical properties of graphene sheets from molecular dynamics
International Nuclear Information System (INIS)
Ni Zhonghua; Bu Hao; Zou Min; Yi Hong; Bi Kedong; Chen Yunfei
2010-01-01
Anisotropic mechanical properties are observed for a sheet of graphene along different load directions. The anisotropic mechanical properties are attributed to the hexagonal structure of the unit cells of the graphene. Under the same tensile loads, the edge bonds bear larger load in the longitudinal mode (LM) than in the transverse mode (TM), which causes fracture sooner in LM than in TM. The Young's modulus and the third order elastic modulus for the LM are slightly larger than that for the TM. Simulation also demonstrates that, for both LM and TM, the loading and unloading stress-strain response curves overlap as long as the graphene is unloaded before the fracture point. This confirms that graphene sustains complete elastic and reversible deformation in the elongation process.
Exploring the Internal Dynamics of Globular Clusters
Watkins, Laura L.; van der Marel, Roeland; Bellini, Andrea; Luetzgendorf, Nora; HSTPROMO Collaboration
2018-01-01
Exploring the Internal Dynamics of Globular ClustersThe formation histories and structural properties of globular clusters are imprinted on their internal dynamics. Energy equipartition results in velocity differences for stars of different mass, and leads to mass segregation, which results in different spatial distributions for stars of different mass. Intermediate-mass black holes significantly increase the velocity dispersions at the centres of clusters. By combining accurate measurements of their internal kinematics with state-of-the-art dynamical models, we can characterise both the velocity dispersion and mass profiles of clusters, tease apart the different effects, and understand how clusters may have formed and evolved.Using proper motions from the Hubble Space Telescope Proper Motion (HSTPROMO) Collaboration for a set of 22 Milky Way globular clusters, and our discrete dynamical modelling techniques designed to work with large, high-quality datasets, we are studying a variety of internal cluster properties. We will present the results of theoretical work on simulated clusters that demonstrates the efficacy of our approach, and preliminary results from application to real clusters.
Dynamical evolution of galaxies in clusters
International Nuclear Information System (INIS)
Ostriker, J.P.
1977-01-01
In addition to the processes involved in the evolution of star clusters, there are three kinds of processes that are peculiar to, or far more important in, galaxy clusters than in star clusters: galaxy interactions with gas, high-velocity tidal interactions, and accretion and cannibalism. The latter is discussed at some length; analytical calculations for the apparent luminosity evolution of the first brightest galaxy and the apparent luminosity evolution of M 12 are described, along with the numerical simulation of cluster evolution. It appears that many of the notable features of centrally condensed clusters of galaxies, particularly the presence of very luminous but low-surface-brightness central cD systems, can be understood in terms of a straightforward dynamical theory of galactic cannibalism. It is possible to maintain the hypothesis that dynamical evolution gradually transforms Bautz--Morgan III clusters to type II systems or type I systems. 36 references, 5 figures
Equation of states for the infinite cluster and backbone in anisotropic square lattice
International Nuclear Information System (INIS)
Silva, L.R. da; Almeida, N.S.; Tsallis, C.
1985-01-01
A real space renormalization group procedure recently developed for calculating equations of states for geometrical problems is used, to treat bond percolation in the anisotropic square lattice. By choosing a convenient self-dual cluster, for all values of the occupancy probabilities P sub(x) and P sub(y) (along the x and y axes respectively), the order parameters P infinity (P sub(x),P sub(y)) and P sup(B) infinity (P sub(x),P sub(y)) respectively associated with the complete percolating infinite cluster and with its backbone are calculated. An interesting difference appears between these two quantities whenever one of the occupancy probabilities, say P sub(y), equals unity: lim sub(P sub(y) → l) P infinity (P sub(x),P sub(y) is discontinuous at P sub(x)=0 (where P sub(infinity) jumps from 0 to 1), whereas lim sub(P sub(y) → 1) P sup(B) sub(infinity) (P sub(x),P sub(y)) continuously increases from 0 to 1 when P sub(x) increases from 0 to 1. Through a convenient extrapolation procedure which includes the use of the best available values for the critical exponents β and β sup(B), values for P sub(infinity) and P sup(B) sub(infinity) which are believed to be numerically quite reliable are obtained. In particular, P sub(infinity) (p,p) approx. A (p-1/2) sup(β) (β=5/36 and A approx. 1.25) and P sup(B) sub(infinity) (p,p) approx. A sup(B) (p-1/2) sup(β) sup(B) (β sup(B) approx. 0.53 and A sup(B) approx. 1.92). (Author) [pt
Modified Newtonian dynamics and the Coma cluster
International Nuclear Information System (INIS)
The, L.S.; White, S.D.M.
1988-01-01
The consistency of Milgrom's theory of modified Newtonian dynamics is checked against optical and X-ray data for the Coma cluster of galaxies. It is found that viable models for the cluster containing no dark matter can be constructed. They require an extensive gaseous atmosphere through which galaxies move on near-radial orbits. The gas temperature is predicted to have a shallow minimum near the cluster center; this structure may conflict with the best X-ray spectra of the cluster. 18 references
Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.
Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J
2018-05-01
There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to
CLUSTER DYNAMICS LARGELY SHAPES PROTOPLANETARY DISK SIZES
Energy Technology Data Exchange (ETDEWEB)
Vincke, Kirsten; Pfalzner, Susanne, E-mail: kvincke@mpifr-bonn.mpg.de [Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)
2016-09-01
To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected; this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the disk size. We concentrate on massive clusters (M {sub cl} ≥ 10{sup 3}–6 ∗ 10{sup 4} M {sub Sun}), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.
Small clusters: Between dynamics and thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Berry, R S
1989-06-01
The relation between equilibrium properties and dynamical properties, and between the two kinds of descriptions, is explored by examining the dynamics of isomerization of argon clusters. The same general subject, from the viewpoint of ergodicity and chaos is examined through the fractal dimension of the trajectory in phase space and the Kolmogorov entropy.
Yoshida, Satoru; Takinoue, Masahiro; Iwase, Eiji; Onoe, Hiroaki
2016-08-01
This paper describes a system through which the self-assembly of anisotropic hydrogel microparticles is achieved, which also enables dynamic transformation of the assembled structures. Using a centrifuge-based microfluidic device, anisotropic hydrogel microparticles encapsulating superparamagnetic materials on one side are fabricated, which respond to a magnetic field. We successfully achieve dynamic assembly using these hydrogel microparticles and realize three different self-assembled structures (single and double pearl chain structures, and close-packed structures), which can be transformed to other structures dynamically via tuning of the precessional magnetic field. We believe that the developed system has potential application as an effective platform for a dynamic cell manipulation and cultivation system, in biomimetic autonomous microrobot organization, and that it can facilitate further understanding of the self-organization and complex systems observed in nature.
Hydration dynamics in water clusters via quantum molecular dynamics simulations
Energy Technology Data Exchange (ETDEWEB)
Turi, László, E-mail: turi@chem.elte.hu [Department of Physical Chemistry, Eötvös Loránd University, Budapest 112, P. O. Box 32, H-1518 (Hungary)
2014-05-28
We have investigated the hydration dynamics in size selected water clusters with n = 66, 104, 200, 500, and 1000 water molecules using molecular dynamics simulations. To study the most fundamental aspects of relaxation phenomena in clusters, we choose one of the simplest, still realistic, quantum mechanically treated test solute, an excess electron. The project focuses on the time evolution of the clusters following two processes, electron attachment to neutral equilibrated water clusters and electron detachment from an equilibrated water cluster anion. The relaxation dynamics is significantly different in the two processes, most notably restoring the equilibrium final state is less effective after electron attachment. Nevertheless, in both scenarios only minor cluster size dependence is observed. Significantly different relaxation patterns characterize electron detachment for interior and surface state clusters, interior state clusters relaxing significantly faster. This observation may indicate a potential way to distinguish surface state and interior state water cluster anion isomers experimentally. A comparison of equilibrium and non-equilibrium trajectories suggests that linear response theory breaks down for electron attachment at 200 K, but the results converge to reasonable agreement at higher temperatures. Relaxation following electron detachment clearly belongs to the linear regime. Cluster relaxation was also investigated using two different computational models, one preferring cavity type interior states for the excess electron in bulk water, while the other simulating non-cavity structure. While the cavity model predicts appearance of several different hydrated electron isomers in agreement with experiment, the non-cavity model locates only cluster anions with interior excess electron distribution. The present simulations show that surface isomers computed with the cavity predicting potential show similar dynamical behavior to the interior clusters of
Critical properties of Sudden Quench Dynamics in the anisotropic XY Model
Guo, Hongli; Liu, Zhao; Fan, Heng; Chen, Shu
2010-01-01
We study the zero temperature quantum dynamical critical behavior of the anisotropic XY chain under a sudden quench in a transverse field. We demonstrate theoretically that both quench magnetic susceptibility and two-particle quench correlation can be used to describe the dynamical quantum phase transition (QPT) properties. Either the quench magnetic susceptibility or the derivative of correlation functions as a function of initial magnetic field $a$ exhibits a divergence at the critical poin...
Dynamics of rich clusters of galaxies. I. The Coma cluster
International Nuclear Information System (INIS)
Kent, S.M.; Gunn, J.E.
1982-01-01
The structure and dynamics of the Coma cluster are analyzed using self-consistent equilibrium dynamical models. Observational material for Coma is culled from a variety of sources. Projected surface, density, and velocity-dispersion profiles are derived extending out to a radius of 3 0 from the cluster center, which are essentially free from field contamination. Segregation of galaxies by luminosity and morphology are discussed and a quantitative estimate of the latter is made. The method of constructing self-consistent dynamical models is discussed. Four different forms of the distribution function are analyzed allowing for different possible dependences of f on energy and angular momentum. Properties of typical models that might resemble actual clusters are presented, and the importance of having velocity-dispersion information is empha sized. The effect of a central massive object such as a cD galaxy on the core structure is illustrated. A comparison of these models with Coma reveals that only models with a distribution function in which the ratio of tangential to radial velocity dispersions is everywhere constant give acceptable fits. In particular, it is possible to rule out models that have isotropic motions in the core and predominantly radial motions in the halo. For H 0 = 50, the best-fitting models give a total projected mass inside 3 0 of 2.9 x 10 15 M/sub sun/ , a core radius of 340--400 kpc (8.5'--10'), an upper limit to any central massive object of approx.10 13 M/sub sun/ , and a mass-to-blue-light ratio of M/L = 181. From cosmological considerations the cluster ''edge'' is determined to lie at rapprox.5 0 --6 0 . The possible distribution of ''dark matter'' in Coma is discussed and it is argued that this distribution cannot be significantly different from that of the galaxies. The dynamics of morphological segregation are examined quantitatively, and are explained at least qualitatively
Dynamics of an inhomogeneous anisotropic antiferromagnetic spin chain
International Nuclear Information System (INIS)
Daniel, M.; Amuda, R.
1994-11-01
We investigate the nonlinear spin excitations in the two sublattice model of a one dimensional classical continuum Heisenberg inhomogeneous antiferromagnetic spin chain. The dynamics of the inhomogeneous chain reduces to that of its homogeneous counterpart when the inhomogeneity assumes a particular form. Apart from the usual twists and pulses, we obtain some planar configurations representing the nonlinear dynamics of spins. (author). 12 refs
Cluster dynamics transcending chemical dynamics toward nuclear fusion.
Heidenreich, Andreas; Jortner, Joshua; Last, Isidore
2006-07-11
Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.
Dynamically allocated virtual clustering management system
Marcus, Kelvin; Cannata, Jess
2013-05-01
The U.S Army Research Laboratory (ARL) has built a "Wireless Emulation Lab" to support research in wireless mobile networks. In our current experimentation environment, our researchers need the capability to run clusters of heterogeneous nodes to model emulated wireless tactical networks where each node could contain a different operating system, application set, and physical hardware. To complicate matters, most experiments require the researcher to have root privileges. Our previous solution of using a single shared cluster of statically deployed virtual machines did not sufficiently separate each user's experiment due to undesirable network crosstalk, thus only one experiment could be run at a time. In addition, the cluster did not make efficient use of our servers and physical networks. To address these concerns, we created the Dynamically Allocated Virtual Clustering management system (DAVC). This system leverages existing open-source software to create private clusters of nodes that are either virtual or physical machines. These clusters can be utilized for software development, experimentation, and integration with existing hardware and software. The system uses the Grid Engine job scheduler to efficiently allocate virtual machines to idle systems and networks. The system deploys stateless nodes via network booting. The system uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex, private networks eliminating the need to map each virtual machine to a specific switch port. The system monitors the health of the clusters and the underlying physical servers and it maintains cluster usage statistics for historical trends. Users can start private clusters of heterogeneous nodes with root privileges for the duration of the experiment. Users also control when to shutdown their clusters.
An FDTD algorithm for simulating light propagation in anisotropic dynamic gain media
Al-Jabr, A. A.
2014-05-02
Simulating light propagation in anisotropic dynamic gain media such as semiconductors and solid-state lasers using the finite difference time-domain FDTD technique is a tedious process, as many variables need to be evaluated in the same instant of time. The algorithm has to take care of the laser dynamic gain, rate equations, anisotropy and dispersion. In this paper, to the best of our knowledge, we present the first algorithm that solves this problem. The algorithm is based on separating calculations into independent layers and hence solving each problem in a layer of calculations. The anisotropic gain medium is presented and tested using a one-dimensional set-up. The algorithm is then used for the analysis of a two-dimensional problem.
An FDTD algorithm for simulating light propagation in anisotropic dynamic gain media
Al-Jabr, A. A.; San Roman Alerigi, Damian; Ooi, Boon S.; Alsunaidi, M. A.
2014-01-01
Simulating light propagation in anisotropic dynamic gain media such as semiconductors and solid-state lasers using the finite difference time-domain FDTD technique is a tedious process, as many variables need to be evaluated in the same instant of time. The algorithm has to take care of the laser dynamic gain, rate equations, anisotropy and dispersion. In this paper, to the best of our knowledge, we present the first algorithm that solves this problem. The algorithm is based on separating calculations into independent layers and hence solving each problem in a layer of calculations. The anisotropic gain medium is presented and tested using a one-dimensional set-up. The algorithm is then used for the analysis of a two-dimensional problem.
Dynamical processes in space: Cluster results
Directory of Open Access Journals (Sweden)
C. P. Escoubet
2013-06-01
Full Text Available After 12 years of operations, the Cluster mission continues to successfully fulfil its scientific objectives. The main goal of the Cluster mission, comprised of four identical spacecraft, is to study in three dimensions small-scale plasma structures in key plasma regions of the Earth's environment: solar wind and bow shock, magnetopause, polar cusps, magnetotail, plasmasphere and auroral zone. During the course of the mission, the relative distance between the four spacecraft has been varied from 20 km to 36 000 km to study the scientific regions of interest at different scales. Since summer 2005, new multi-scale constellations have been implemented, wherein three spacecraft (C1, C2, C3 are separated by 10 000 km, while the fourth one (C4 is at a variable distance ranging between 20 km and 10 000 km from C3. Recent observations were conducted in the auroral acceleration region with the spacecraft separated by 1000s km. We present highlights of the results obtained during the last 12 years on collisionless shocks, magnetopause waves, magnetotail dynamics, plasmaspheric structures, and the auroral acceleration region. In addition, we highlight Cluster results on understanding the impact of Coronal Mass Ejections (CME on the Earth environment. We will also present Cluster data accessibility through the Cluster Science Data System (CSDS, and the Cluster Active Archive (CAA, which was implemented to provide a permanent and public archive of high resolution Cluster data from all instruments.
Open Cluster Dynamics via Fundamental Plane
Lin, Chien-Cheng; Pang, Xiao-Ying
2018-04-01
Open clusters (OCs) are important objects for stellar dynamics studies. The short survival timescale of OCs makes them closely related to the formation of Galactic field stars. We motivate to investigate the dynamical evolution of OCs on the aspect of internal effect and the external influence. Firstly, we make use of the known OC catalog to obtain OCs masses, effective radii. Additionally, we estimate OCs kinematics properties by OC members cross-matched with radial velocity and metallicity from SDSSIV/APOGEE2. We then establish the fundamental plane of OCs based on the radial velocity dispersion, the effective radius, and average surface brightness. The deviation of the fundamental plane from the Virial Plane, so called the tilt, and the r.m.s. dispersion of OCs around the average plane are used to indicate the dynamical status of OCs. Parameters of the fitted plane will vary with cluster age and distance.
Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.
Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C
2014-01-01
Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.
Dynamics of an Anisotropic Universe in f(R,T) Theory
International Nuclear Information System (INIS)
Mishra, B.; Tarai, Sankarsan; Tripathy, S. K.
2016-01-01
Dynamics of an anisotropic universe is studied in f(R,T) gravity using a rescaled functional f(R,T), where R is the Ricci Scalar and T is the trace of energy-momentum tensor. Three models have been constructed assuming a power law expansion of the universe. Physical features of the models are discussed. The model parameters are constrained from a dimensional analysis. It is found from the work that the anisotropic Bianchi type VI_h (BVI_h) model in the modified gravity generally favours a quintessence phase when the parameter h is either -1 or 0. We may not get viable models in conformity with the present day observation for h=1.
Spatial cluster detection using dynamic programming
Directory of Open Access Journals (Sweden)
Sverchkov Yuriy
2012-03-01
Full Text Available Abstract Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic
Dynamics of interface in three-dimensional anisotropic bistable reaction-diffusion system
International Nuclear Information System (INIS)
He Zhizhu; Liu, Jing
2010-01-01
This paper presents a theoretical investigation of dynamics of interface (wave front) in three-dimensional (3D) reaction-diffusion (RD) system for bistable media with anisotropy constructed by means of anisotropic surface tension. An equation of motion for the wave front is derived to carry out stability analysis of transverse perturbations, which discloses mechanism of pattern formation such as labyrinthine in 3D bistable media. Particularly, the effects of anisotropy on wave propagation are studied. It was found that, sufficiently strong anisotropy can induce dynamical instabilities and lead to breakup of the wave front. With the fast-inhibitor limit, the bistable system can further be described by a variational dynamics so that the boundary integral method is adopted to study the dynamics of wave fronts.
Cluster Dynamics: Laying the Foundation for Tailoring the Design of Cluster ASSE
2016-02-25
AFRL-AFOSR-VA-TR-2016-0081 CLUSTER DYNAMICS: LAYING THE FOUNDATION FOR TAILORING THE DESIGN OF CLUSTER ASSE Albert Castleman PENNSYLVANIA STATE...15-10-2015 4. TITLE AND SUBTITLE CLUSTER DYNAMICS: LAYING THE FOUNDATION FOR TAILORING THE DESIGN OF CLUSTER ASSEMBLED NANOSCALE MATERIALS 5a... clusters as the building blocks of new materials with tailored properties that are beneficial to the AFOSR. Our continuing program is composed of two
Cluster analysis of word frequency dynamics
Maslennikova, Yu S.; Bochkarev, V. V.; Belashova, I. A.
2015-01-01
This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations.
Cluster analysis of word frequency dynamics
International Nuclear Information System (INIS)
Maslennikova, Yu S; Bochkarev, V V; Belashova, I A
2015-01-01
This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations
Fluctuations, dynamical instabilities and clusterization processes
International Nuclear Information System (INIS)
Burgio, G.F.; Chomaz, Ph.; Randrup, J.
1992-01-01
Recent progress with regard to the numerical simulation of fluctuations in nuclear dynamics is reported. Cluster formation in unstable nuclear matter is studied within the framework of a Boltzmann-Langevin equation developed to describe large amplitude fluctuations. Through the Fourier analysis of the fluctuating nuclear density in coordinate space, the onset of the clusterization is related to the dispersion relation of harmonic density oscillations. This detailed study on the simple two-dimensional case demonstrates the validity of the general approach. It is also shown, how the inclusion of fluctuations implies a description in terms of ensemble of trajectories and it is discussed why the presence of a stochastic term may cure the intrinsic unpredictability of deterministic theories (such as mean-field approximation) in presence of instabilities and/or chaos. (author) 8 refs., 3 figs
Single-cluster dynamics for the random-cluster model
Deng, Y.; Qian, X.; Blöte, H.W.J.
2009-01-01
We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those
Dynamically Allocated Virtual Clustering Management System Users Guide
2016-11-01
ARL-SR-0366 ● NOV 2016 US Army Research Laboratory Dynamically Allocated Virtual Clustering Management System User’s Guide by... Clustering Management System User’s Guide by Kelvin M Marcus Computational and Information Sciences Directorate, ARL...
Dynamical analysis of cylindrically symmetric anisotropic sources in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Zubair, M.; Azmat, Hina [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Noureen, Ifra [University of Management and Technology, Department of Mathematics, Lahore (Pakistan)
2017-03-15
In this paper, we have analyzed the stability of cylindrically symmetric collapsing object filled with locally anisotropic fluid in f(R, T) theory, where R is the scalar curvature and T is the trace of stress-energy tensor of matter. Modified field equations and dynamical equations are constructed in f(R, T) gravity. The evolution or collapse equation is derived from dynamical equations by performing a linear perturbation on them. The instability range is explored in both the Newtonian and the post-Newtonian regimes with the help of an adiabatic index, which defines the impact of the physical parameters on the instability range. Some conditions are imposed on the physical quantities to secure the stability of the gravitating sources. (orig.)
Quantum phase transition and quench dynamics in the anisotropic Rabi model
Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao
2017-01-01
We investigate the quantum phase transition (QPT) and quench dynamics in the anisotropic Rabi model when the ratio of the qubit transition frequency to the oscillator frequency approaches infinity. Based on the Schrieffer-Wolff transformation, we find an anti-Hermitian operator that maps the original Hamiltonian into a one-dimensional oscillator Hamiltonian within the spin-down subspace. We analytically derive the eigenenergy and eigenstate of the normal and superradiant phases and demonstrate that the system undergoes a second-order quantum phase transition at a critical border. The critical border is a straight line in a two-dimensional parameter space which essentially extends the dimensionality of QPT in the Rabi model. By combining the Kibble-Zurek mechanism and the adiabatic dynamics method, we find that the residual energy vanishes as the quench time tends to zero, which is a sharp contrast to the universal scaling where the residual energy diverges in the same limit.
High-order dynamic lattice method for seismic simulation in anisotropic media
Hu, Xiaolin; Jia, Xiaofeng
2018-03-01
The discrete particle-based dynamic lattice method (DLM) offers an approach to simulate elastic wave propagation in anisotropic media by calculating the anisotropic micromechanical interactions between these particles based on the directions of the bonds that connect them in the lattice. To build such a lattice, the media are discretized into particles. This discretization inevitably leads to numerical dispersion. The basic lattice unit used in the original DLM only includes interactions between the central particle and its nearest neighbours; therefore, it represents the first-order form of a particle lattice. The first-order lattice suffers from numerical dispersion compared with other numerical methods, such as high-order finite-difference methods, in terms of seismic wave simulation. Due to its unique way of discretizing the media, the particle-based DLM no longer solves elastic wave equations; this means that one cannot build a high-order DLM by simply creating a high-order discrete operator to better approximate a partial derivative operator. To build a high-order DLM, we carry out a thorough dispersion analysis of the method and discover that by adding more neighbouring particles into the lattice unit, the DLM will yield different spatial accuracy. According to the dispersion analysis, the high-order DLM presented here can adapt the requirement of spatial accuracy for seismic wave simulations. For any given spatial accuracy, we can design a corresponding high-order lattice unit to satisfy the accuracy requirement. Numerical tests show that the high-order DLM improves the accuracy of elastic wave simulation in anisotropic media.
Directory of Open Access Journals (Sweden)
Lynne Cameron
2010-05-01
Full Text Available
Metaphor is examined in the very different iscourse contexts of the classroom and of reconciliation talk to highlight the neglected affective dimension. The distribution of metaphors across discourse shows clustering at certain points, often where speakers are engaged in critical interpersonal discourse activity. Clusters in classroom talk co-occur with sequences of agenda management where teachers prepare students for upcoming lessons and with giving feedback to students, both of which require careful management of interpersonal and affective issues. Clusters in reconciliation talk co-occur with discourse management and with two situations with significant affective dynamics: appropriation of metaphor and exploration of alternative scenarios.
Metaphor is examined in the very different iscourse contexts of the classroom and of reconciliation talk to highlight the neglected affective dimension. The distribution of metaphors across discourse shows clustering at certain points, often where speakers are engaged in critical interpersonal discourse activity. Clusters in classroom talk co-occur with sequences of agenda management where teachers prepare students for upcoming lessons and with giving feedback to students, both of which require careful management of interpersonal and affective issues. Clusters in reconciliation talk co-occur with discourse management and with two situations with significant affective dynamics: appropriation of metaphor and exploration of alternative scenarios.
Dynamics of wave packets in two-dimensional random systems with anisotropic disorder.
Samelsohn, Gregory; Gruzdev, Eugene
2008-09-01
A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain "lucky shots" associated with the long-living resonant modes localized inside the sample.
Fuson, Michael M.
2017-01-01
Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…
Molecular dynamics simulations of cluster fission and fusion processes
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia
2004-01-01
Results of molecular dynamics simulations of fission reactions Na_10^2+ --> Na_7^+ +Na_3^+ and Na_18^2+ --> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analyzed. It is demonstrated that the energy necessary for removing homothetic...... separation of the daughter fragments begins and/or forming a "neck" between the separating fragments. A novel algorithm for modeling the cluster growth process is described. This approach is based on dynamic search for the most stable cluster isomers and allows one to find the optimized cluster geometries...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...
arXiv (3+1)-dimensional anisotropic fluid dynamics with a lattice QCD equation of state
McNelis, M.; Heinz, U.
2018-06-01
Anisotropic hydrodynamics improves upon standard dissipative fluid dynamics by treating certain large dissipative corrections non-perturbatively. Relativistic heavy-ion collisions feature two such large dissipative effects: (i) Strongly anisotropic expansion generates a large shear stress component which manifests itself in very different longitudinal and transverse pressures, especially at early times. (ii) Critical fluctuations near the quark-hadron phase transition lead to a large bulk viscous pressure on the conversion surface between hydrodynamics and a microscopic hadronic cascade description of the final collision stage. We present a new dissipative hydrodynamic formulation for non-conformal fluids where both of these effects are treated nonperturbatively. The evolution equations are derived from the Boltzmann equation in the 14-moment approximation, using an expansion around an anisotropic leading-order distribution function with two momentum-space deformation parameters, accounting for the longitudin...
Dynamic Trajectory Extraction from Stereo Vision Using Fuzzy Clustering
Onishi, Masaki; Yoda, Ikushi
In recent years, many human tracking researches have been proposed in order to analyze human dynamic trajectory. These researches are general technology applicable to various fields, such as customer purchase analysis in a shopping environment and safety control in a (railroad) crossing. In this paper, we present a new approach for tracking human positions by stereo image. We use the framework of two-stepped clustering with k-means method and fuzzy clustering to detect human regions. In the initial clustering, k-means method makes middle clusters from objective features extracted by stereo vision at high speed. In the last clustering, c-means fuzzy method cluster middle clusters based on attributes into human regions. Our proposed method can be correctly clustered by expressing ambiguity using fuzzy clustering, even when many people are close to each other. The validity of our technique was evaluated with the experiment of trajectories extraction of doctors and nurses in an emergency room of a hospital.
Static and Dynamic Anisotropic Muduli of a Shale Sample from Southern Alberta, Canada
Melendez Martinez, J.; Schmitt, D. R.; Kofman, R. S.
2012-12-01
Recent interest in unconventional reservoirs broadly motivates our work in laboratory measurements of seismic anisotropy. Seismic anisotropy is the variation in speed of a wave as a function of its direction of propagation and particle polarization. When assuming an isotropic model of Earth during conventional seismic processing in areas with evidence of anisotropy a poor resolution images or erroneous localization of geological structures with strong dipping is produced. Ignoring anisotropy in unconventional reservoirs leads, for example, leads to erroneous estimation of horizontal stresses, wellbore stress as well as wellbore stability during hydraulic fracturing In this sense, laboratory measurements are an important tool to study seismic anisotropy since they provide information on the anisotropy intrinsic to the rock material itself. This is important to know as this contributes to the observed seismic anisotropy that is influenced by stress states and fractures. In this work, assuming a transversally isotropic medium (VTI), elastic anisotropic moduli of a dry shale from Southern Alberta are estimated as a function of confining pressure. Estimation of elastic constants and dynamic bulk moduli in a VTI medium involves recording P and S travel times by using pulse transmission method in a minimum of three different directions. These are often taken for the sake of convenience to be perpendicular (P0o and S0o), parallel (P90o and SH90o), and oblique (P45o and SH45o) to the layering of the material with the assumption that the perpendicular and parallel directions align with the principal anisotropic axes. The pulse transmission method involves generating and recording P and S ultrasonic waves traveling through a sample. Static Bulk moduli is estimated by measuring the volumetric deformation (strain) for a given confining pressure (stress) by using strain gauges directly bonded on the sample in two different directions: perpendicular to bedding and parallel to
Dynamics of Galaxy Clusters and their Outskirts
DEFF Research Database (Denmark)
Falco, Martina
Galaxy clusters have demonstrated to be powerful probes of cosmology, since their mass and abundance depend on the cosmological model that describes the Universe and on the gravitational formation process of cosmological structures. The main challenge in using clusters to constrain cosmology...... is that their masses cannot be measured directly, but need to be inferred indirectly through their observable properties. The most common methods extract the cluster mass from their strong X-ray emission or from the measured redshifts of the galaxy members. The gravitational lensing effect caused by clusters...... on the background galaxies is also an important trace of their total mass distribution.In the work presented within this thesis, we exploit the connection between the gravitational potential of galaxy clusters and the kinematical properties of their surroundings, in order to determine the total cluster mass...
Anisotropic damage and dynamic behavior of reinforced concrete structures until failure
International Nuclear Information System (INIS)
Chambart, M.
2009-09-01
Dynamic loadings such as impact on reinforced concrete structures lead to degradations and structural failures significantly different to the ones observed for quasi-static loadings. Local effects (spalling, compaction...) and global mechanisms (bending, shear, perforation...) are experimentally observed. Wave propagation due to dynamics loadings can lead to failure in tension in a part of a structure or a component previously in compression. Induced damage anisotropy in concrete is partly responsible for the dissymmetry of behavior between tension and compression. Concrete anisotropy can be modelled by means of a second order damage tensor. In the damage model considered, damage growth is governed by the positive extensions. The model, written in the thermodynamics framework, is robust and is able to compute efficiently Reinforced Concrete (RC) structures. The initial anisotropic model is here extended to dynamics by introducing a viscosity law to govern dynamic damage evolution. The strain rate effect observed experimentally in tension (strength increases with strain rate) is reproduced. In compression no strain rate is introduced since inertial forces seem sufficient to reproduce the strength enhancement in dynamics. One also focuses on regularization issues. For high strain rates the solution is regularized since the characteristic time introduced indirectly defines an internal length and since the damage rate is bounded by a maximum damage rate parameter (visco/delay damage law). This visco/delay regularization is efficient at large strain rates, otherwise, the delay in damage evolution is too small to let damage grow in a wide enough zone. For quasi-static or low speed dynamic cases, the regularization is gained by means of classical non-local damage. For intermediary loading rates where both the strain rate effect and the non-local regularization are needed, a non-local delay-damage model is written (and used in 3D computations). The example of a dynamic
Dynamic multifactor clustering of financial networks
Ross, Gordon J.
2014-02-01
We investigate the tendency for financial instruments to form clusters when there are multiple factors influencing the correlation structure. Specifically, we consider a stock portfolio which contains companies from different industrial sectors, located in several different countries. Both sector membership and geography combine to create a complex clustering structure where companies seem to first be divided based on sector, with geographical subclusters emerging within each industrial sector. We argue that standard techniques for detecting overlapping clusters and communities are not able to capture this type of structure and show how robust regression techniques can instead be used to remove the influence of both sector and geography from the correlation matrix separately. Our analysis reveals that prior to the 2008 financial crisis, companies did not tend to form clusters based on geography. This changed immediately following the crisis, with geography becoming a more important determinant of clustering structure.
Advances in molecular vibrations and collision dynamics molecular clusters
Bacic, Zatko
1998-01-01
This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...
Validating clustering of molecular dynamics simulations using polymer models
Directory of Open Access Journals (Sweden)
Phillips Joshua L
2011-11-01
Full Text Available Abstract Background Molecular dynamics (MD simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our
Analysis of the dynamical cluster approximation for the Hubbard model
Aryanpour, K.; Hettler, M. H.; Jarrell, M.
2002-01-01
We examine a central approximation of the recently introduced Dynamical Cluster Approximation (DCA) by example of the Hubbard model. By both analytical and numerical means we study non-compact and compact contributions to the thermodynamic potential. We show that approximating non-compact diagrams by their cluster analogs results in a larger systematic error as compared to the compact diagrams. Consequently, only the compact contributions should be taken from the cluster, whereas non-compact ...
Anisotropic deformation behavior of as-extruded 6063-T4 alloy under dynamic impact loading
Energy Technology Data Exchange (ETDEWEB)
Ye, Tuo [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China); Li, Luoxing, E-mail: luoxing_li@yahoo.com [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China); Joint Center for Intelligent New Energy Vehicle, Tongji University, Shanghai 200092 (China); Liu, Xiao; Liu, Wenhui [Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201 (China); Guo, Pengcheng; Tang, Xu [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China)
2016-06-01
The deformation behavior of 6063-T4 aluminum alloy bar was investigated by compression tests conducted at a wide strain rate range of 10{sup −4} to 9×10{sup 3} s{sup −1} with loading directions at 0°, 45° and 90° to the axis of the extruded bar. It is found that the flow stresses of 0° specimens are always the highest and those of the 45° specimens are the lowest at the same conditions. The flow stress exhibits obvious strain rate sensitivity (SRS), which differs from static to dynamic deformation. The Schmid factors (SFs) for each type of texture components were calculated. For the {112}<111> texture component, the max Schmid factors are 0.27, 0.49 and 0.41 for 0°, 45° and 90° specimens. For the {110}<111> texture component, they are 0.27, 0.43 and 0.41 for the three directions. The initial texture changes significantly with increasing strain, the strain rate has slight influence on the texture evolution. The transmission electron microscope (TEM) observations indicate that as the strain rate increases, the density of the dislocation increases and its distribution becomes more homogeneous. It is necessary to consider the anisotropic deformation behavior and microstructure evolution in material selection and structure design for the impact components.
Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min
2017-08-28
The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.
Clustering promotes switching dynamics in networks of noisy neurons
Franović, Igor; Klinshov, Vladimir
2018-02-01
Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.
Vijaykumar, A.; Ouldridge, T.E.; ten Wolde, P.R.; Bolhuis, P.G.
2017-01-01
The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic
THE DYNAMICAL STATE OF BRIGHTEST CLUSTER GALAXIES AND THE FORMATION OF CLUSTERS
International Nuclear Information System (INIS)
Coziol, R.; Andernach, H.; Caretta, C. A.; Alamo-MartInez, K. A.; Tago, E.
2009-01-01
A large sample of Abell clusters of galaxies, selected for the likely presence of a dominant galaxy, is used to study the dynamical properties of the brightest cluster members (BCMs). From visual inspection of Digitized Sky Survey images combined with redshift information we identify 1426 candidate BCMs located in 1221 different redshift components associated with 1169 different Abell clusters. This is the largest sample published so far of such galaxies. From our own morphological classification we find that ∼92% of the BCMs in our sample are early-type galaxies and 48% are of cD type. We confirm what was previously observed based on much smaller samples, namely, that a large fraction of BCMs have significant peculiar velocities. From a subsample of 452 clusters having at least 10 measured radial velocities, we estimate a median BCM peculiar velocity of 32% of their host clusters' radial velocity dispersion. This suggests that most BCMs are not at rest in the potential well of their clusters. This phenomenon is common to galaxy clusters in our sample, and not a special trait of clusters hosting cD galaxies. We show that the peculiar velocity of the BCM is independent of cluster richness and only slightly dependent on the Bautz-Morgan type. We also find a weak trend for the peculiar velocity to rise with the cluster velocity dispersion. The strongest dependence is with the morphological type of the BCM: cD galaxies tend to have lower relative peculiar velocities than elliptical galaxies. This result points to a connection between the formation of the BCMs and that of their clusters. Our data are qualitatively consistent with the merging-groups scenario, where BCMs in clusters formed first in smaller subsystems comparable to compact groups of galaxies. In this scenario, clusters would have formed recently from the mergers of many such groups and would still be in a dynamically unrelaxed state.
Dynamical evolution of clusters with two stellar groups
Energy Technology Data Exchange (ETDEWEB)
Angeletti, L; Giannone, P. (Rome Univ. (Italy))
1977-08-01
The generalization of the fluid-dynamical approach from one-component star clusters to clusters with several stellar groups (as far as the star masses are concerned) has been applied to the study of two-component clusters. Rather extreme values of stellar masses and masses of groups were chosen in order to emphasize the different dynamical evolutions and asymptotic behaviors. Escape of stars from clusters and the problem of equipartition of kinetic energy among the two star groups are discussed. Comparisons of the main features of the results with those obtained by other authors have shown a good agreement. Some characteristic properties of the last computed models with an age of 18x10/sup 9/ yr have been pointed out and discussed in relation with some observed features of galactic globular clusters.
Ananke: temporal clustering reveals ecological dynamics of microbial communities
Directory of Open Access Journals (Sweden)
Michael W. Hall
2017-09-01
Full Text Available Taxonomic markers such as the 16S ribosomal RNA gene are widely used in microbial community analysis. A common first step in marker-gene analysis is grouping genes into clusters to reduce data sets to a more manageable size and potentially mitigate the effects of sequencing error. Instead of clustering based on sequence identity, marker-gene data sets collected over time can be clustered based on temporal correlation to reveal ecologically meaningful associations. We present Ananke, a free and open-source algorithm and software package that complements existing sequence-identity-based clustering approaches by clustering marker-gene data based on time-series profiles and provides interactive visualization of clusters, including highlighting of internal OTU inconsistencies. Ananke is able to cluster distinct temporal patterns from simulations of multiple ecological patterns, such as periodic seasonal dynamics and organism appearances/disappearances. We apply our algorithm to two longitudinal marker gene data sets: faecal communities from the human gut of an individual sampled over one year, and communities from a freshwater lake sampled over eleven years. Within the gut, the segregation of the bacterial community around a food-poisoning event was immediately clear. In the freshwater lake, we found that high sequence identity between marker genes does not guarantee similar temporal dynamics, and Ananke time-series clusters revealed patterns obscured by clustering based on sequence identity or taxonomy. Ananke is free and open-source software available at https://github.com/beiko-lab/ananke.
A novel approach to dynamic livelihood clustering
DEFF Research Database (Denmark)
Walelign, Solomon Zena; Pouliot, Mariéve; Larsen, Helle Overgaard
-wave panel dataset from 427 households in three locations of Nepal, we proposed an approach that combines households’ income and assets to identify different livelihood strategy clusters. Based on a Latent Markov Model we identify seven distinct livelihood strategies and analyse households’ movements between...
International Nuclear Information System (INIS)
Christien, F.; Barbu, A.
2005-01-01
A model based on the cluster dynamics approach was proposed in [A. Hardouin Duparc, C. Moingeon, N. Smetniansky-de-Grande, A. Barbu, J. Nucl. Mater. 302 (2002) 143] to describe point defect agglomeration in metals under irradiation. This model is restricted to materials where point defect diffusion is isotropic and is thus not applicable to anisotropic metals such as zirconium. Following the approach proposed by Woo [C.H. Woo, J. Nucl. Mater. 159 (1988) 237], we extended in this work the model to the case where self-interstitial atoms (SIA) diffusion is anisotropic. The model was then applied to the loop microstructure evolution of a zirconium thin foil irradiated with electrons in a high-voltage microscope. First, the inputs were validated by comparing the numerical results with Hellio et al. experimental results [C. Hellio, C.H. de Novion, L. Boulanger, J. Nucl. Mater. 159 (1988) 368]. Further calculations were made to evidence the effect of the thin foil orientation on the dislocation loop microstructure under irradiation. The result is that it is possible to reproduce for certain orientations the 'unexpected' vacancy loop growth experimentally observed in electron-irradiated zirconium [M. Griffiths, M.H. Loretto, R.E. Sallmann, J. Nucl. Mater. 115 (1983) 313; J. Nucl. Mater. 115 (1983) 323; Philos. Mag. A 49 (1984) 613]. This effect is directly linked to SIA diffusion anisotropy
Sensitivity evaluation of dynamic speckle activity measurements using clustering methods
International Nuclear Information System (INIS)
Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H.
2010-01-01
We evaluate and compare the use of competitive neural networks, self-organizing maps, the expectation-maximization algorithm, K-means, and fuzzy C-means techniques as partitional clustering methods, when the sensitivity of the activity measurement of dynamic speckle images needs to be improved. The temporal history of the acquired intensity generated by each pixel is analyzed in a wavelet decomposition framework, and it is shown that the mean energy of its corresponding wavelet coefficients provides a suited feature space for clustering purposes. The sensitivity obtained by using the evaluated clustering techniques is also compared with the well-known methods of Konishi-Fujii, weighted generalized differences, and wavelet entropy. The performance of the partitional clustering approach is evaluated using simulated dynamic speckle patterns and also experimental data.
International Nuclear Information System (INIS)
Desmorat, R.; Chambart, M.; Gatuingt, F.; Guilbaud, D.
2010-01-01
Anisotropic damage thermodynamics framework allows to model the concrete-like materials behavior and in particular their dissymmetric tension/compression response. To deal with dynamics applications such as impact, it is furthermore necessary to take into account the strain rate effect observed experimentally. This is done in the present work by means of anisotropic visco-damage, by introducing a material strain rate effect in the cases of positive hydrostatic stresses only. The proposed delay-damage law assumes no viscous effect in compression as the consideration of inertia effects proves sufficient to model the apparent material strength increase. High-rate dynamics applications imply to deal with wave propagation and reflection which can generate alternated loading in the impacted structure. In order to do so, the key concept of active damage is defined and introduced within both the damage criterion and the delay-damage evolution law. At the structural level, strain localization often leads to spurious mesh dependency. Three-dimensional Finite Element computations of dynamic tensile tests by spalling are presented, with visco-damage and either without or with non-local enhancement. Delay-damage, as introduced, regularizes the solution in fast dynamics. The location of the macro-crack initiated is found influenced by non-local regularization. The strain rate range in which each enhancement, delay-damage or non-local enhancement, has a regularizing effect is studied. (authors)
From clusters to biomolecules: electric dipole, structure and dynamics
International Nuclear Information System (INIS)
Broyer, M; Antoine, R; Compagnon, I; Rayane, D; Dugourd, P
2007-01-01
In this paper, it is demonstrated that the electric dipole of complex molecules or clusters can be measured by beam deviation in an inhomogeneous electric field. This measurement, associated to appropriate theoretical calculations and simulations, allows us to determine the geometry of these systems and their dynamical behaviour as a function of temperature. Selected examples for mixed clusters (metal-fullerene, metal-benzene, salt) and biomolecules (hydrogen bound amino acids and glycine based polypeptides) are discussed
Clustering properties of dynamical dark energy models
International Nuclear Information System (INIS)
Avelino, P. P.; Beca, L. M. G.; Martins, C. J. A. P.
2008-01-01
We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter
Neutron rich clusters and the dynamics of fission and fusion
International Nuclear Information System (INIS)
Armbruster, P.
1988-07-01
In this lecture I want to discuss experimental evidence for the appearance of cluster aspects in the dynamics of large rearrangement processes, as fusion and fission. Clusters in the sense as used in my lecture are the strongly bound doubly magic nuclei as 20 Ca 28 48 , 28 Ni 50 78 , 132 50 Sn 82 , and 208 82 Pb 126 and the superheavy nucleus 298 114 184 . Two of these nuclei, 78 Ni and 298 114 have not yet been identified. I discuss first the experimental findings from heavy element production. Then I cover the stability of cluster aspects to intrinsic excitation energy in fusion and fission. (orig./HSI)
Thermodynamics of small clusters of atoms: A molecular dynamics simulation
DEFF Research Database (Denmark)
Damgaard Kristensen, W.; Jensen, E. J.; Cotterill, Rodney M J
1974-01-01
The thermodynamic properties of clusters containing 55, 135, and 429 atoms have been calculated using the molecular dynamics method. Structural and vibrational properties of the clusters were examined at different temperatures in both the solid and the liquid phase. The nature of the melting...... transition was investigated, and a number of properties, such as melting temperature, latent heat of melting, and premelting phenomena, were found to vary with cluster size. These properties were also found to depend on the structure of the solid phase. In this phase the configuration of lowest free energy...
Dynamic Extension of a Virtualized Cluster by using Cloud Resources
International Nuclear Information System (INIS)
Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter
2012-01-01
The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.
Simulation of the dynamics of laser-cluster interaction
International Nuclear Information System (INIS)
Deiss, C.
2009-01-01
Ranging in size from a few atoms to several million atoms, clusters form a link between gases and solids. When irradiating clusters with intense femtosecond laser pulses, the production of energetic and highly charged ions, hot electrons, and extreme UV and X-ray photons, gives evidence of a very efficient energy conversion. The size of the system and the multitude of mechanisms at play provide a considerable challenge for the theoretical treatment of the interaction. In this thesis, we have developed a Classical Trajectory Monte Carlo simulation that gives insight into the particle dynamics during the interaction of laser pulses with large argon clusters (with more than 10000 atoms per cluster). Elastic electron-ion scattering, electron-electron scattering, electron-impact ionization and excitation, as well as three-body recombination and Auger decay are included via stochastic events. In a strongly simplified picture, the dynamics of the laser-cluster interaction can be summarized as follows: the intense laser field ionizes the cluster atoms and drives the population of quasi-free electrons. In collision events, further free electrons and high ionic charge states are created. As some electrons leave the cluster, the ions feel a net positive charge, and the cluster ultimately disintegrates in a Coulomb explosion. Even at moderate laser intensities (approx. 10 15 W/cm 2 ), impact ionization produces inner-shell vacancies in the cluster ions that decay by emitting characteristic X-ray radiation. The small population of fast electrons responsible for these ionization events is produced near the cluster poles, where the combination of polarization and charging of the cluster leads to strongly enhanced field strengths. We achieve a good agreement over large parameter ranges between the simulation and X-ray spectroscopy experiments. We also investigate the dependence of X-ray emission on laser intensity, pulse duration and cluster size. We find that in order to
Method for discovering relationships in data by dynamic quantum clustering
Weinstein, Marvin; Horn, David
2014-10-28
Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.
Test computations on the dynamical evolution of star clusters
International Nuclear Information System (INIS)
Angeletti, L.; Giannone, P.
1977-01-01
Test calculations have been carried out on the evolution of star clusters using the fluid-dynamical method devised by Larson (1970). Large systems of stars have been considered with specific concern with globular clusters. With reference to the analogous 'standard' model by Larson, the influence of varying in turn the various free parameters (cluster mass, star mass, tidal radius, mass concentration of the initial model) has been studied for the results. Furthermore, the partial release of some simplifying assumptions with regard to the relaxation time and distribution of the 'target' stars has been considered. The change of the structural properties is discussed, and the variation of the evolutionary time scale is outlined. An indicative agreement of the results obtained here with structural properties of globular clusters as deduced from previous theoretical models is pointed out. (Auth.)
Role of anisotropic thermal conductivity in the reversed-field pinch dynamics
International Nuclear Information System (INIS)
Onofri, M.; Malara, F.; Veltri, P.
2011-01-01
Two compressible magnetohydrodynamics simulations of the reversed-field pinch are performed, with isotropic and anisotropic thermal conductivity. We describe in detail the numerical method we use to reproduce the effect of a large parallel thermal conductivity, which makes magnetic field lines almost isothermal. We compare the results of the two simulations, showing that the anisotropic thermal conductivity causes the formation of a hot island when closed magnetic surfaces exist, while temperature becomes almost uniform when the magnetic field is chaotic. After a transient single-helicity state that is formed in the initial phase, a stationary state is reached where the RFP configuration exists in a multiple helicity state, even though the Hartmann number is below the threshold found in previous simulations for the formation of multiple helicity states.
Metal cluster fission: jellium model and Molecular dynamics simulations
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia
2004-01-01
Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18...
Dynamics, Chemical Abundances, and ages of Globular Clusters in the Virgo Cluster of Galaxies
Guhathakurta, Puragra; NGVS Collaboration
2018-01-01
We present a study of the dynamics, metallicities, and ages of globular clusters (GCs) in the Next Generation Virgo cluster Survey (NGVS), a deep, multi-band (u, g, r, i, z, and Ks), wide-field (104 deg2) imaging survey carried out using the 3.6-m Canada-France-Hawaii Telescope and MegaCam imager. GC candidates were selected from the NGVS survey using photometric and image morphology criteria and these were followed up with deep, medium-resolution, multi-object spectroscopy using the Keck II 10-m telescope and DEIMOS spectrograph. The primary spectroscopic targets were candidate GC satellites of dwarf elliptical (dE) and ultra-diffuse galaxies (UDGs) in the Virgo cluster. While many objects were confirmed as GC satellites of Virgo dEs and UDGs, many turned out to be non-satellites based on their radial velocity and/or positional mismatch any identifiable Virgo cluster galaxy. We have used a combination of spectral characteristics (e.g., presence of absorption vs. emission lines), new Gaussian mixture modeling of radial velocity and sky position data, and a new extreme deconvolution analysis of ugrizKs photometry and image morphology, to classify all the objects in our sample into: (1) GC satellites of dE galaxies, (2) GC satellites of UDGs, (3) intra-cluster GCs (ICGCs) in the Virgo cluster, (4) GCs in the outer halo of the central cluster galaxy M87, (5) foreground Milky Way stars, and (6) distant background galaxies. We use these data to study the dynamics and dark matter content of dE and UDGs in the Virgo cluster, place important constraints on the nature of dE nuclei, and study the origin of ICGCs versus GCs in the remote M87 halo.We are grateful for financial support from the NSF and NASA/STScI.
Lattice dynamics of impurity clusters : application to pairs
International Nuclear Information System (INIS)
Chandralekha Devi, N.; Behera, S.N.
1979-01-01
A general solution is obtained for the lattice dynamics of a cluster of n-impurity atoms using the double-time Green's function formalism. The cluster is characterized by n-mass defect and m-force constant change parameters. It is shown that this general solution for the Green's function for the n-impurity cluster can also be expressed in terms of the Green's function for the (n-1)-impurity cluster. As an application, the cluster impurity modes for a pair are calculated using the Debye model for the host lattice dynamics. The splitting of the high frequency local modes and nearly zero frequency resonant modes due to pairs show an oscillatory behaviour on varying the distance of separation between the two impurity atoms. These oscillations are most prominent for two similar impurities and get damped for two dissimilar impurities or if one of the impurities produces a force constant change. The predictions of the calculation provide qualitative explanation of the data obtained from the infrared measurements of the resonant modes in mixed crystal system of KBrsub(1-c)Clsub(c):Lisup(+) and KBrsub(1-c)Isub(c):Lisup(+). (author)
Cluster Optimization and Parallelization of Simulations with Dynamically Adaptive Grids
Schreiber, Martin; Weinzierl, Tobias; Bungartz, Hans-Joachim
2013-01-01
The present paper studies solvers for partial differential equations that work on dynamically adaptive grids stemming from spacetrees. Due to the underlying tree formalism, such grids efficiently can be decomposed into connected grid regions (clusters) on-the-fly. A graph on those clusters classified according to their grid invariancy, workload, multi-core affinity, and further meta data represents the inter-cluster communication. While stationary clusters already can be handled more efficiently than their dynamic counterparts, we propose to treat them as atomic grid entities and introduce a skip mechanism that allows the grid traversal to omit those regions completely. The communication graph ensures that the cluster data nevertheless are kept consistent, and several shared memory parallelization strategies are feasible. A hyperbolic benchmark that has to remesh selected mesh regions iteratively to preserve conforming tessellations acts as benchmark for the present work. We discuss runtime improvements resulting from the skip mechanism and the implications on shared memory performance and load balancing. © 2013 Springer-Verlag.
Cluster Dynamics Modeling with Bubble Nucleation, Growth and Coalescence
Energy Technology Data Exchange (ETDEWEB)
de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blondel, Sophie [Univ. of Tennessee, Knoxville, TN (United States); Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States)
2017-06-01
The topic of this communication pertains to defect formation in irradiated solids such as plasma-facing tungsten submitted to helium implantation in fusion reactor com- ponents, and nuclear fuel (metal and oxides) submitted to volatile ssion product generation in nuclear reactors. The purpose of this progress report is to describe ef- forts towards addressing the prediction of long-time evolution of defects via continuum cluster dynamics simulation. The di culties are twofold. First, realistic, long-time dynamics in reactor conditions leads to a non-dilute di usion regime which is not accommodated by the prevailing dilute, stressless cluster dynamics theory. Second, long-time dynamics calls for a large set of species (ideally an in nite set) to capture all possible emerging defects, and this represents a computational bottleneck. Extensions beyond the dilute limit is a signi cant undertaking since no model has been advanced to extend cluster dynamics to non-dilute, deformable conditions. Here our proposed approach to model the non-dilute limit is to monitor the appearance of a spatially localized void volume fraction in the solid matrix with a bell shape pro le and insert an explicit geometrical bubble onto the support of the bell function. The newly cre- ated internal moving boundary provides the means to account for the interfacial ux of mobile species into the bubble, and the growth of bubbles allows for coalescence phenomena which captures highly non-dilute interactions. We present a preliminary interfacial kinematic model with associated interfacial di usion transport to follow the evolution of the bubble in any number of spatial dimensions and any number of bubbles, which can be further extended to include a deformation theory. Finally we comment on a computational front-tracking method to be used in conjunction with conventional cluster dynamics simulations in the non-dilute model proposed.
Dynamic Portfolio Strategy Using Clustering Approach.
Ren, Fei; Lu, Ya-Nan; Li, Sai-Ping; Jiang, Xiong-Fei; Zhong, Li-Xin; Qiu, Tian
2017-01-01
The problem of portfolio optimization is one of the most important issues in asset management. We here propose a new dynamic portfolio strategy based on the time-varying structures of MST networks in Chinese stock markets, where the market condition is further considered when using the optimal portfolios for investment. A portfolio strategy comprises two stages: First, select the portfolios by choosing central and peripheral stocks in the selection horizon using five topological parameters, namely degree, betweenness centrality, distance on degree criterion, distance on correlation criterion and distance on distance criterion. Second, use the portfolios for investment in the investment horizon. The optimal portfolio is chosen by comparing central and peripheral portfolios under different combinations of market conditions in the selection and investment horizons. Market conditions in our paper are identified by the ratios of the number of trading days with rising index to the total number of trading days, or the sum of the amplitudes of the trading days with rising index to the sum of the amplitudes of the total trading days. We find that central portfolios outperform peripheral portfolios when the market is under a drawup condition, or when the market is stable or drawup in the selection horizon and is under a stable condition in the investment horizon. We also find that peripheral portfolios gain more than central portfolios when the market is stable in the selection horizon and is drawdown in the investment horizon. Empirical tests are carried out based on the optimal portfolio strategy. Among all possible optimal portfolio strategies based on different parameters to select portfolios and different criteria to identify market conditions, 65% of our optimal portfolio strategies outperform the random strategy for the Shanghai A-Share market while the proportion is 70% for the Shenzhen A-Share market.
Dynamic Portfolio Strategy Using Clustering Approach.
Directory of Open Access Journals (Sweden)
Fei Ren
Full Text Available The problem of portfolio optimization is one of the most important issues in asset management. We here propose a new dynamic portfolio strategy based on the time-varying structures of MST networks in Chinese stock markets, where the market condition is further considered when using the optimal portfolios for investment. A portfolio strategy comprises two stages: First, select the portfolios by choosing central and peripheral stocks in the selection horizon using five topological parameters, namely degree, betweenness centrality, distance on degree criterion, distance on correlation criterion and distance on distance criterion. Second, use the portfolios for investment in the investment horizon. The optimal portfolio is chosen by comparing central and peripheral portfolios under different combinations of market conditions in the selection and investment horizons. Market conditions in our paper are identified by the ratios of the number of trading days with rising index to the total number of trading days, or the sum of the amplitudes of the trading days with rising index to the sum of the amplitudes of the total trading days. We find that central portfolios outperform peripheral portfolios when the market is under a drawup condition, or when the market is stable or drawup in the selection horizon and is under a stable condition in the investment horizon. We also find that peripheral portfolios gain more than central portfolios when the market is stable in the selection horizon and is drawdown in the investment horizon. Empirical tests are carried out based on the optimal portfolio strategy. Among all possible optimal portfolio strategies based on different parameters to select portfolios and different criteria to identify market conditions, 65% of our optimal portfolio strategies outperform the random strategy for the Shanghai A-Share market while the proportion is 70% for the Shenzhen A-Share market.
Dynamic analysis of clustered building structures using substructures methods
International Nuclear Information System (INIS)
Leimbach, K.R.; Krutzik, N.J.
1989-01-01
The dynamic substructure approach to the building cluster on a common base mat starts with the generation of Ritz-vectors for each building on a rigid foundation. The base mat plus the foundation soil is subjected to kinematic constraint modes, for example constant, linear, quadratic or cubic constraints. These constraint modes are also imposed on the buildings. By enforcing kinematic compatibility of the complete structural system on the basis of the constraint modes a reduced Ritz model of the complete cluster is obtained. This reduced model can now be analyzed by modal time history or response spectrum methods
Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments
Directory of Open Access Journals (Sweden)
Renata De Paris
2015-01-01
Full Text Available Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.
Energy Technology Data Exchange (ETDEWEB)
Park, Miok [Korea Institute for Advanced Study, Seoul (Korea, Republic of); Park, Jiwon; Oh, Jae-Hyuk [Hanyang University, Department of Physics, Seoul (Korea, Republic of)
2017-11-15
Einstein-scalar-U(2) gauge field theory is considered in a spacetime characterized by α and z, which are the hyperscaling violation factor and the dynamical critical exponent, respectively. We consider a dual fluid system of such a gravity theory characterized by temperature T and chemical potential μ. It turns out that there is a superfluid phase transition where a vector order parameter appears which breaks SO(3) global rotation symmetry of the dual fluid system when the chemical potential becomes a certain critical value. To study this system for arbitrary z and α, we first apply Sturm-Liouville theory and estimate the upper bounds of the critical values of the chemical potential. We also employ a numerical method in the ranges of 1 ≤ z ≤ 4 and 0 ≤ α ≤ 4 to check if the Sturm-Liouville method correctly estimates the critical values of the chemical potential. It turns out that the two methods are agreed within 10 percent error ranges. Finally, we compute free energy density of the dual fluid by using its gravity dual and check if the system shows phase transition at the critical values of the chemical potential μ{sub c} for the given parameter region of α and z. Interestingly, it is observed that the anisotropic phase is more favored than the isotropic phase for relatively small values of z and α. However, for large values of z and α, the anisotropic phase is not favored. (orig.)
High-performance dynamic quantum clustering on graphics processors
Energy Technology Data Exchange (ETDEWEB)
Wittek, Peter, E-mail: peterwittek@acm.org [Swedish School of Library and Information Science, University of Boras, Boras (Sweden)
2013-01-15
Clustering methods in machine learning may benefit from borrowing metaphors from physics. Dynamic quantum clustering associates a Gaussian wave packet with the multidimensional data points and regards them as eigenfunctions of the Schroedinger equation. The clustering structure emerges by letting the system evolve and the visual nature of the algorithm has been shown to be useful in a range of applications. Furthermore, the method only uses matrix operations, which readily lend themselves to parallelization. In this paper, we develop an implementation on graphics hardware and investigate how this approach can accelerate the computations. We achieve a speedup of up to two magnitudes over a multicore CPU implementation, which proves that quantum-like methods and acceleration by graphics processing units have a great relevance to machine learning.
High-performance dynamic quantum clustering on graphics processors
International Nuclear Information System (INIS)
Wittek, Peter
2013-01-01
Clustering methods in machine learning may benefit from borrowing metaphors from physics. Dynamic quantum clustering associates a Gaussian wave packet with the multidimensional data points and regards them as eigenfunctions of the Schrödinger equation. The clustering structure emerges by letting the system evolve and the visual nature of the algorithm has been shown to be useful in a range of applications. Furthermore, the method only uses matrix operations, which readily lend themselves to parallelization. In this paper, we develop an implementation on graphics hardware and investigate how this approach can accelerate the computations. We achieve a speedup of up to two magnitudes over a multicore CPU implementation, which proves that quantum-like methods and acceleration by graphics processing units have a great relevance to machine learning.
Wetzel, David J; Malone, Marvin A; Haasch, Richard T; Meng, Yifei; Vieker, Henning; Hahn, Nathan T; Gölzhäuser, Armin; Zuo, Jian-Min; Zavadil, Kevin R; Gewirth, Andrew A; Nuzzo, Ralph G
2015-08-26
Although rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. The passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.
Dynamical Friction in Multi-component Evolving Globular Clusters
Alessandrini, Emiliano; Lanzoni, Barbara; Miocchi, Paolo; Ciotti, Luca; Ferraro, Francesco R.
2014-11-01
We use the Chandrasekhar formalism and direct N-body simulations to study the effect of dynamical friction on a test object only slightly more massive than the field stars, orbiting a spherically symmetric background of particles with a mass spectrum. The main goal is to verify whether the dynamical friction time (t DF) develops a non-monotonic radial dependence that could explain the bimodality of the blue straggler radial distributions observed in globular clusters. In these systems, in fact, relaxation effects lead to a mass and velocity radial segregation of the different mass components, so that mass-spectrum effects on t DF are expected to be dependent on radius. We find that in spite of the presence of different masses, t DF is always a monotonic function of radius, at all evolutionary times and independently of the initial concentration of the simulated cluster. This is because the radial dependence of t DF is largely dominated by the total mass density profile of the background stars (which is monotonically decreasing with radius). Hence, a progressive temporal erosion of the blue straggler star (BSS) population at larger and larger distances from the cluster center remains the simplest and the most likely explanation of the shape of the observed BSS radial distributions, as suggested in previous works. We also confirm the theoretical expectation that approximating a multi-mass globular cluster as made of (averaged) equal-mass stars can lead to significant overestimations of t DF within the half-mass radius.
Dynamic parallel ROOT facility clusters on the Alice Environment
International Nuclear Information System (INIS)
Luzzi, C; Betev, L; Carminati, F; Grigoras, C; Saiz, P; Manafov, A
2012-01-01
The ALICE collaboration has developed a production environment (AliEn) that implements the full set of the Grid tools enabling the full offline computational work-flow of the experiment, simulation, reconstruction and data analysis, in a distributed and heterogeneous computing environment. In addition to the analysis on the Grid, ALICE uses a set of local interactive analysis facilities installed with the Parallel ROOT Facility (PROOF). PROOF enables physicists to analyze medium-sized (order of 200-300 TB) data sets on a short time scale. The default installation of PROOF is on a static dedicated cluster, typically 200-300 cores. This well-proven approach, has its limitations, more specifically for analysis of larger datasets or when the installation of a dedicated cluster is not possible. Using a new framework called PoD (Proof on Demand), PROOF can be used directly on Grid-enabled clusters, by dynamically assigning interactive nodes on user request. The integration of Proof on Demand in the AliEn framework provides private dynamic PROOF clusters as a Grid service. This functionality is transparent to the user who will submit interactive jobs to the AliEn system.
Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.
Abe, S
1998-01-01
In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.
Dynamical evolution of star clusters with a changing gravitational constant
International Nuclear Information System (INIS)
Angeletti, L.; Giannone, P.
1978-01-01
The dynamical evolution of massive star clusters was studied, taking into account variations with time of the gravitional constant. The rates of change of G were adopted according to theoretical and observational indications. Various conditions concerning the number of star groups, star masses, mass loss from stars, and initial star concentration were tested for the clusters. The comparison with analogous evolutionary sequences computed with a constant value of G showed that the effects of changes of G may be conspicuous. The analytical dependence of basic structural functions on the law of variation of G with time was determined from the numerical results. They allow an estimate of the consequences of G in a large range of cases. The effects of a decrease of G tended to prevent the formation of dense cores, which is a specific feature of the evolution of 'standard' models of star clusters. The expansion of the whole cluster structure was noteworthy. However, there was not a significant increase of escape of stars from cluster compared with the cases computed with constant G. Although detailed comparison with observations was beyond our present aims, it appears that a varaition of G according to the Brans-Dicke theory is not in conflict with observational data, as is the case for an exponential decrease of G consistent with Van Flandern's result. (orig.) [de
Binary cluster collision dynamics and minimum energy conformations
Energy Technology Data Exchange (ETDEWEB)
Muñoz, Francisco [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Rogan, José; Valdivia, J.A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Varas, A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Nano-Bio Spectroscopy Group, ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián (Spain); Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile)
2013-10-15
The collision dynamics of one Ag or Cu atom impinging on a Au{sub 12} cluster is investigated by means of DFT molecular dynamics. Our results show that the experimentally confirmed 2D to 3D transition of Au{sub 12}→Au{sub 13} is mostly preserved by the resulting planar Au{sub 12}Ag and Au{sub 12}Cu minimum energy clusters, which is quite remarkable in view of the excess energy, well larger than the 2D–3D potential barrier height. The process is accompanied by a large s−d hybridization and charge transfer from Au to Ag or Cu. The dynamics of the collision process mainly yields fusion of projectile and target, however scattering and cluster fragmentation also occur for large energies and large impact parameters. While Ag projectiles favor fragmentation, Cu favors scattering due to its smaller mass. The projectile size does not play a major role in favoring the fragmentation or scattering channels. By comparing our collision results with those obtained by an unbiased minimum energy search of 4483 Au{sub 12}Ag and 4483 Au{sub 12}Cu configurations obtained phenomenologically, we find that there is an extra bonus: without increase of computer time collisions yield the planar lower energy structures that are not feasible to obtain using semi-classical potentials. In fact, we conclude that phenomenological potentials do not even provide adequate seeds for the search of global energy minima for planar structures. Since the fabrication of nanoclusters is mainly achieved by synthesis or laser ablation, the set of local minima configurations we provide here, and their distribution as a function of energy, are more relevant than the global minimum to analyze experimental results obtained at finite temperatures, and is consistent with the dynamical coexistence of 2D and 3D liquid Au clusters conformations obtained previously.
Can cluster environment modify the dynamical evolution of spiral galaxies?
Amram, P.; Balkowski, C.; Cayatte, V.; Marcelin, M.; Sullivan, W. T., III
1993-01-01
Over the past decade many effects of the cluster environment on member galaxies have been established. These effects are manifest in the amount and distribution of gas in cluster spirals, the luminosity and light distributions within galaxies, and the segregation of morphological types. All these effects could indicate a specific dynamical evolution for galaxies in clusters. Nevertheless, a more direct evidence, such as a different mass distribution for spiral galaxies in clusters and in the field, is not yet clearly established. Indeed, Rubin, Whitmore, and Ford (1988) and Whitmore, Forbes, and Rubin (1988) (referred to as RWF) presented evidence that inner cluster spirals have falling rotation curves, unlike those of outer cluster spirals or the great majority of field spirals. If falling rotation curves exist in centers of clusters, as argued by RWF, it would suggest that dark matter halos were absent from cluster spirals, either because the halos had become stripped by interactions with other galaxies or with an intracluster medium, or because the halos had never formed in the first place. Even if they didn't disagree with RWF, other researchers pointed out that the behaviour of the slope of the rotation curves of spiral galaxies (in Virgo) is not so clear. Amram, using a different sample of spiral galaxies in clusters, found only 10% of declining rotation curves (2 declining vs 17 flat or rising) in opposition to RWF who find about 40% of declining rotation curves in their sample (6 declining vs 10 flat or rising), we will hereafter briefly discuss the Amram data paper and compare it to the results of RWF. We have measured the rotation curves for a sample of 21 spiral galaxies in 5 nearby clusters. These rotation curves have been constructed from detailed two-dimensional maps of each galaxy's velocity field as traced by emission from the Ha line. This complete mapping, combined with the sensitivity of our CFHT 3.60 m. + Perot-Fabry + CCD observations, allows
International Nuclear Information System (INIS)
Gorelikov, G. A.; Fridman, Yu. A.
2013-01-01
The spectra of coupled magnetoelastic waves in a semi-infinite strongly anisotropic easy-plane ferromagnet with a rigidly fixed face are analyzed for two variants of fixation (in the basal plane and perpendicularly to it). The phase states of the system are determined. Differences in the phase diagrams and elementary excitation spectra depending on the choice of the sample fixation plane are considered. When rotational invariance is taken into account, the nonreciprocity effect for the velocities of sound in a crystal appears. It is shown that the velocity of sound in the sample considerably depends on the symmetry of the imposed mechanical boundary conditions. The phase diagrams of the system under investigation are presented
Directory of Open Access Journals (Sweden)
Dineva Petia
2008-01-01
Full Text Available A non-hypersingular traction boundary integral equation method (BIEM is proposed for the treatment of crack systems in piezoelectric or anisotropic plane domains loaded by time-harmonic waves. The solution is based on the frequency dependent fundamental solution obtained by Radon transform. The proposed method is flexible, numerically efficient and has virtually no limitations regarding the material type, crack geometry and type of wave loading. The accuracy and convergence of the BIEM solution for stress intensity factors is validated by comparison with existing results from the literature. Simulations for different crack configurations such as coplanar collinear or cracks in arbitrary position to each other are presented and discussed. They demonstrate among others the strong effect of electromechanical coupling, show the frequency dependent shielding and amplification resulting from crack interaction and reveal the sensitivity of the K-factors on the complex influence of both wave-crack and crack-crack interaction.
THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS
Energy Technology Data Exchange (ETDEWEB)
Morscher, Meagan; Pattabiraman, Bharath; Rodriguez, Carl; Rasio, Frederic A.; Umbreit, Stefan, E-mail: m.morscher@u.northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL (United States)
2015-02-10
Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M {sub ☉}. Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 10{sup 6} stars. In almost all models we find that significant numbers of BHs (up to ∼10{sup 3}) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer {sup m}ass segregation instability{sup )} is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.
Structure and dynamics of molecular clusters. 2. Melting and freezing of CCl4 clusters
International Nuclear Information System (INIS)
Bartell, L.S.; Chen, Jian
1992-01-01
Phase transitions of a 225-molecule cluster of carbon tetrachloride have been studied by a molecular dynamics simulation. A five-site model potential function was developed to reproduce the density and heat of vaporization of the bulk liquid. Computations began with orientationally disordered molecules distributed in fcc lattice sites of a nearly spherical cluster. The cluster was heated from a low temperature to 200 K in 10-deg steps of 50 ps each and then cooled to 10 K. Translational and rotational transitions were monitored by following several indicators including the translational and rotational diffusion and rotational entropies of individual molecules. Melting began at the surface and propagated inward as the temperature increased. Solidification of the molten cluster proceeded from the center to the surface. At the high cooling rate of the simulation, however, molecules were unable to organize into a crystalline array and solidified into a glassy structure instead. Except for spatial order, the indicators of degree of liquefaction exhibited almost the same temperature dependence in the crystsl → liquid as in the liquid → glass transition, a behavior that could be rationalized on the basis of Lindemann's theory of melting. Results were compared with predictions of an illustrative model due to Reiss, Mirabel, and Whetten. Qualitatively, the model included all of the features of the simulation. Quantitatively, the model grossly underestimated the range over which the melting transition took place. 40 refs., 10 figs., 1 tab
IoT Service Clustering for Dynamic Service Matchmaking.
Zhao, Shuai; Yu, Le; Cheng, Bo; Chen, Junliang
2017-07-27
As the adoption of service-oriented paradigms in the IoT (Internet of Things) environment, real-world devices will open their capabilities through service interfaces, which enable other functional entities to interact with them. In an IoT application, it is indispensable to find suitable services for satisfying users' requirements or replacing the unavailable services. However, from the perspective of performance, it is inappropriate to find desired services from the service repository online directly. Instead, clustering services offline according to their similarity and matchmaking or discovering service online in limited clusters is necessary. This paper proposes a multidimensional model-based approach to measure the similarity between IoT services. Then, density-peaks-based clustering is employed to gather similar services together according to the result of similarity measurement. Based on the service clustering, the algorithms of dynamic service matchmaking, discovery, and replacement will be performed efficiently. Evaluating experiments are conducted to validate the performance of proposed approaches, and the results are promising.
A mathematical programming approach for sequential clustering of dynamic networks
Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia
2016-02-01
A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.
International Nuclear Information System (INIS)
Piatek, A; Dawid, A; Gburski, Z
2006-01-01
We have simulated (by the molecular dymanics (MD) method) the dynamics of fullerenes (C 60 ) in an extremely small cluster composed of only as many as seven C 60 molecules. The interaction is taken to be the full 60-site pairwise additive Lennard-Jones (LJ) potential which generates both translational and anisotropic rotational motions of each molecule. Our atomically detailed MD simulations discover the plastic phase (no translations but active reorientations of fullerenes) at low energies (temperatures) of the (C 60 ) 7 cluster. We provide the in-depth evidence of the dynamical solid-liquid bistability region in the investigated cluster. Moreover, we confirm the existence of the liquid phase in (C 60 ) 7 , the finding of Gallego et al (1999 Phys. Rev. Lett. 83 5258) obtained earlier on the basis of Girifalco's model, which assumes single-site only and spherically symmetrical interaction between C 60 molecules. We have calculated the translational and angular velocity autocorrelation functions and estimated the diffusion coefficient of fullerene in the liquid phase
Energy Technology Data Exchange (ETDEWEB)
Kohnert, Aaron A.; Wirth, Brian D. [University of Tennessee, Knoxville, Tennessee 37996-2300 (United States)
2015-04-21
The microstructure that develops under low temperature irradiation in ferritic alloys is dominated by a high density of small (2–5 nm) defects. These defects have been widely observed to move via occasional discrete hops during in situ thin film irradiation experiments. Cluster dynamics models are used to describe the formation of these defects as an aggregation process of smaller clusters created as primary damage. Multiple assumptions regarding the mobility of these damage features are tested in the models, both with and without explicit consideration of such irradiation induced hops. Comparison with experimental data regarding the density of these defects demonstrates the importance of including such motions in a valid model. In particular, discrete hops inform the limited dependence of defect density on irradiation temperature observed in experiments, which the model was otherwise incapable of producing.
A cluster dynamics study of fission gases in uranium dioxide
International Nuclear Information System (INIS)
Skorek, Richard
2013-01-01
During in-pile irradiation of nuclear fuels a lot of rare gases are produced, mainly xenon and krypton. The behaviour of these highly insoluble fission gases may lead to an additional load of the cladding, which may have detrimental safety consequences. For these reasons, fission gas behaviour (diffusion and clustering) has been extensively studied for years.In this work, we present an application of Cluster Dynamics to address the behaviour of fission gases in UO_2 which simultaneously describes changes in rare gas atom and point defect concentrations in addition to the bubble size distribution. This technique, applied to Kr implanted and annealed samples, yields a precise interpretation of the release curves and helps justifying the estimation of the Kr diffusion coefficient, which is a data very difficult to obtain due to the insolubility of the gas. (author) [fr
Molecular dynamics simulation of gold cluster growth during sputter deposition
Energy Technology Data Exchange (ETDEWEB)
Abraham, J. W., E-mail: abraham@theo-physik.uni-kiel.de; Bonitz, M., E-mail: bonitz@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel (Germany); Strunskus, T.; Faupel, F. [Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)
2016-05-14
We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.
Structure and Dynamics of the Globular Cluster Palomar 13
Bradford, J. D.; Geha, M.; Muñoz, R. R.; Santana, F. A.; Simon, J. D.; Côté, P.; Stetson, P. B.; Kirby, E.; Djorgovski, S. G.
2011-12-01
We present Keck/DEIMOS spectroscopy and Canada-France-Hawaii Telescope/MegaCam photometry for the Milky Way globular cluster Palomar 13. We triple the number of spectroscopically confirmed members, including many repeat velocity measurements. Palomar 13 is the only known globular cluster with possible evidence for dark matter, based on a Keck/High Resolution Echelle Spectrometer 21 star velocity dispersion of σ = 2.2 ± 0.4 km s-1. We reproduce this measurement, but demonstrate that it is inflated by unresolved binary stars. For our sample of 61 stars, the velocity dispersion is σ = 0.7+0.6 -0.5 km s-1. Combining our DEIMOS data with literature values, our final velocity dispersion is σ = 0.4+0.4 -0.3 km s-1. We determine a spectroscopic metallicity of [Fe/H] = -1.6 ± 0.1 dex, placing a 1σ upper limit of σ[Fe/H] ~ 0.2 dex on any internal metallicity spread. We determine Palomar 13's total luminosity to be MV = -2.8 ± 0.4, making it among the least luminous known globular clusters. The photometric isophotes are regular out to the half-light radius and mildly irregular outside this radius. The outer surface brightness profile slope is shallower than typical globular clusters (Σvpropr η, η = -2.8 ± 0.3). Thus at large radius, tidal debris is likely affecting the appearance of Palomar 13. Combining our luminosity with the intrinsic velocity dispersion, we find a dynamical mass of M 1/2 = 1.3+2: 7 -1.3 × 103 M ⊙ and a mass-to-light ratio of M/LV = 2.4+5.0 -2.4 M ⊙/L ⊙. Within our measurement errors, the mass-to-light ratio agrees with the theoretical predictions for a single stellar population. We conclude that, while there is some evidence for tidal stripping at large radius, the dynamical mass of Palomar 13 is consistent with its stellar mass and neither significant dark matter, nor extreme tidal heating, is required to explain the cluster dynamics. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a
Cerbino, Roberto; Piotti, Davide; Buscaglia, Marco; Giavazzi, Fabio
2018-01-01
Micro- and nanoscale objects with anisotropic shape are key components of a variety of biological systems and inert complex materials, and represent fundamental building blocks of novel self-assembly strategies. The time scale of their thermal motion is set by their translational and rotational diffusion coefficients, whose measurement may become difficult for relatively large particles with small optical contrast. Here we show that dark field differential dynamic microscopy is the ideal tool for probing the roto-translational Brownian motion of anisotropic shaped particles. We demonstrate our approach by successful application to aqueous dispersions of non-motile bacteria and of colloidal aggregates of spherical particles.
Nonuniform Sparse Data Clustering Cascade Algorithm Based on Dynamic Cumulative Entropy
Directory of Open Access Journals (Sweden)
Ning Li
2016-01-01
Full Text Available A small amount of prior knowledge and randomly chosen initial cluster centers have a direct impact on the accuracy of the performance of iterative clustering algorithm. In this paper we propose a new algorithm to compute initial cluster centers for k-means clustering and the best number of the clusters with little prior knowledge and optimize clustering result. It constructs the Euclidean distance control factor based on aggregation density sparse degree to select the initial cluster center of nonuniform sparse data and obtains initial data clusters by multidimensional diffusion density distribution. Multiobjective clustering approach based on dynamic cumulative entropy is adopted to optimize the initial data clusters and the best number of the clusters. The experimental results show that the newly proposed algorithm has good performance to obtain the initial cluster centers for the k-means algorithm and it effectively improves the clustering accuracy of nonuniform sparse data by about 5%.
Shear-driven dynamic clusters in a colloidal glass
Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David
2007-03-01
We investigate the effect of shear applied to a colloidal glass on a microscopic level using a shear device that can be mounted on top of a confocal microscope. We find that the glass yields at a critical strain of about 10%, independently of the shear rate. Surprisingly, the yielding is accompanied by an increase of cooperative particle movements and a formation of dynamic clusters which is in contrast to the normal glass transition where one typically finds heterogeneity increasing whilst moving towards the glass transition.
Test computations on the dynamical evolution of star clusters. [Fluid dynamic method
Energy Technology Data Exchange (ETDEWEB)
Angeletti, L; Giannone, P. (Rome Univ. (Italy))
1977-01-01
Test calculations have been carried out on the evolution of star clusters using the fluid-dynamical method devised by Larson (1970). Large systems of stars have been considered with specific concern with globular clusters. With reference to the analogous 'standard' model by Larson, the influence of varying in turn the various free parameters (cluster mass, star mass, tidal radius, mass concentration of the initial model) has been studied for the results. Furthermore, the partial release of some simplifying assumptions with regard to the relaxation time and distribution of the 'target' stars has been considered. The change of the structural properties is discussed, and the variation of the evolutionary time scale is outlined. An indicative agreement of the results obtained here with structural properties of globular clusters as deduced from previous theoretical models is pointed out.
Dynamic integration of remote cloud resources into local computing clusters
Energy Technology Data Exchange (ETDEWEB)
Fleig, Georg; Erli, Guenther; Giffels, Manuel; Hauth, Thomas; Quast, Guenter; Schnepf, Matthias [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (Germany)
2016-07-01
In modern high-energy physics (HEP) experiments enormous amounts of data are analyzed and simulated. Traditionally dedicated HEP computing centers are built or extended to meet this steadily increasing demand for computing resources. Nowadays it is more reasonable and more flexible to utilize computing power at remote data centers providing regular cloud services to users as they can be operated in a more efficient manner. This approach uses virtualization and allows the HEP community to run virtual machines containing a dedicated operating system and transparent access to the required software stack on almost any cloud site. The dynamic management of virtual machines depending on the demand for computing power is essential for cost efficient operation and sharing of resources with other communities. For this purpose the EKP developed the on-demand cloud manager ROCED for dynamic instantiation and integration of virtualized worker nodes into the institute's computing cluster. This contribution will report on the concept of our cloud manager and the implementation utilizing a remote OpenStack cloud site and a shared HPC center (bwForCluster located in Freiburg).
Dynamical history of a binary cluster: Abell 3653
Caglar, Turgay; Hudaverdi, Murat
2017-12-01
We study the dynamical structure of a bimodal galaxy cluster Abell 3653 at z = 0.1089 using optical and X-ray data. Observations include archival data from the Anglo-Australian Telescope, X-ray observatories XMM-Newton and Chandra. We draw a global picture for A3653 using galaxy density, X-ray luminosity and temperature maps. The galaxy distribution has a regular morphological shape at the 3 Mpc size. The galaxy density map shows an elongation in the east-west direction, which perfectly aligns with the extended diffuse X-ray emission. We detect two dominant groups around the two brightest cluster galaxies (BCGs). BCG1 (z = 0.1099) can be associated with the main cluster A3653E, and a foreground subcluster A3653W is concentrated at BCG2 (z = 0.1075). Both X-ray peaks are dislocated from the BCGs by ∼35 kpc, which suggest an ongoing merger process. We measure the subcluster gas temperatures of 4.67 and 3.66 keV, respectively. Two-body dynamical analysis shows that A3653E and A3653W are very likely gravitationally bound (93.5 per cent probability). The highly favoured scenario suggests that the two subclusters have a mass ratio of 1.4 and are colliding close to the plane of sky (α = 17.61°) at 2400 km s-1, and will undergo core passage in 380 Myr. The temperature map also significantly shows a shock-heated gas (6.16 keV) between the subclusters, which confirms the supersonic infalling scenario.
Catching Galactic open clusters in advanced stages of dynamical evolution
Angelo, M. S.; Piatti, A. E.; Dias, W. S.; Maia, F. F. S.
2018-04-01
During their dynamical evolution, Galactic open clusters (OCs) gradually lose their stellar content mainly because of internal relaxation and tidal forces. In this context, the study of dynamically evolved OCs is necessary to properly understand such processes. We present a comprehensive Washington CT1 photometric analysis of six sparse OCs, namely: ESO 518-3, Ruprecht 121, ESO 134-12, NGC 6573, ESO 260-7 and ESO 065-7. We employed Markov chain Monte-Carlo simulations to robustly determine the central coordinates and the structural parameters and T1 × (C - T1) colour-magnitude diagrams (CMDs) cleaned from field contamination were used to derive the fundamental parameters. ESO 518-03, Ruprecht 121, ESO 134-12 and NGC 6573 resulted to be of nearly the same young age (8.2 ≤log(t yr-1) ≤ 8.3); ESO 260-7 and ESO065-7 are of intermediate age (9.2 ≤log(t yr-1) ≤ 9.4). All studied OCs are located at similar Galactocentric distances (RG ˜ 6 - 6.9 kpc), considering uncertainties, except for ESO 260-7 (RG = 8.9 kpc). These OCs are in a tidally filled regime and are dynamically evolved, since they are much older than their half-mass relaxation times (t/trh ≳ 30) and present signals of low-mass star depletion. We distinguished two groups: those dynamically evolving towards final disruptions and those in an advanced dynamical evolutionary stage. Although we do not rule out that the Milky Way potential could have made differentially faster their dynamical evolutions, we speculate here with the possibility that they have been mainly driven by initial formation conditions.
Anisotropic relaxation dynamics in a dipolar Fermi gas driven out of equilibrium
DEFF Research Database (Denmark)
Aikawa, K.; Frisch, A.; Mark, M.
2014-01-01
We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic $^{167}$Er fermions, spin-polarized in the lowest Zeeman sublevel. In this system, elastic...
Structures and dynamical properties of Cn, Sin, Gen, and Snn clusters with n up to 13
International Nuclear Information System (INIS)
Lu, Zhong-Yi; Wang, Cai-Zhuang; Ho, Kai-Ming
2000-01-01
Car-Parrinello molecular dynamics simulated annealings were carried out for clusters Si n , Ge n , and Sn n (n≤13). We investigate the temperature regions in which these clusters transform from a ''liquidlike'' phase to a ''solidlike'' phase, and then from the ''solidlike'' phase to the ground-state structures. Additional simulated annealing was also performed for the cluster C 13 which is selected as a prototype of small carbon clusters. In addition to the discovery of structures for Sn and Ge clusters, our simulation results also provide insights into the dynamics of cluster formation. (c) 2000 The American Physical Society
Yesudasan, Sumith; Wang, Xianqiao; Averett, Rodney D
2018-05-01
We developed a new mechanical model for determining the compression and shear mechanical behavior of four different hemoglobin structures. Previous studies on hemoglobin structures have focused primarily on overall mechanical behavior; however, this study investigates the mechanical behavior of hemoglobin, a major constituent of red blood cells, using steered molecular dynamics (SMD) simulations to obtain anisotropic mechanical behavior under compression and shear loading conditions. Four different configurations of hemoglobin molecules were considered: deoxyhemoglobin (deoxyHb), oxyhemoglobin (HbO 2 ), carboxyhemoglobin (HbCO), and glycated hemoglobin (HbA 1C ). The SMD simulations were performed on the hemoglobin variants to estimate their unidirectional stiffness and shear stiffness. Although hemoglobin is structurally denoted as a globular protein due to its spherical shape and secondary structure, our simulation results show a significant variation in the mechanical strength in different directions (anisotropy) and also a strength variation among the four different hemoglobin configurations studied. The glycated hemoglobin molecule possesses an overall higher compressive mechanical stiffness and shear stiffness when compared to deoxyhemoglobin, oxyhemoglobin, and carboxyhemoglobin molecules. Further results from the models indicate that the hemoglobin structures studied possess a soft outer shell and a stiff core based on stiffness.
The merging cluster Abell 1758: an optical and dynamical view
Monteiro-Oliveira, Rogerio; Serra Cypriano, Eduardo; Machado, Rubens; Lima Neto, Gastao B.
2015-08-01
The galaxy cluster Abell 1758-North (z=0.28) is a binary system composed by the sub-structures NW and NE. This is supposed to be a post-merging cluster due to observed detachment between the NE BCG and the respective X-ray emitting hot gas clump in a scenario very close to the famous Bullet Cluster. On the other hand, the projected position of the NW BCG coincides with the local hot gas peak. This system was been targeted previously by several studies, using multiple wavelengths and techniques, but there is still no clear picture of the scenario that could have caused this unusual configuration. To help solving this complex puzzle we added some pieces: firstly, we have used deep B, RC and z' Subaru images to perform both weak lensing shear and magnification analysis of A1758 (including here the South component that is not in interaction with A1758-North) modeling each sub-clump as an NFW profile in order to constrain masses and its center positions through MCMC methods; the second piece is the dynamical analysis using radial velocities available in the literature (143) plus new Gemini-GMOS/N measurements (68 new redshifts).From weak lensing we found that independent shear and magnification mass determinations are in excellent agreement between them and combining both we could reduce mass error bar by ~30% compared to shear alone. By combining this two weak-lensing probes we found that the position of both Northern BCGs are consistent with the masses centers within 2σ and and the NE hot gas peak to be offseted of the respective mass peak (M200=5.5 X 1014 M⊙) with very high significance. The most massive structure is NW (M200=7.95 X 1014 M⊙ ) where we observed no detachment between gas, DM and BCG.We have calculated a low line-of-sight velocity difference (plane of collision and the sky (<40 degrees). Dynamic modeling shows that the point of maximum approximation taken place 0.55 Gyr ago, pointing Abell 1758-North as a young merger cluster.
Röttmer, Nicole
2009-01-01
This research provides a novel, empirically tested, actionable theory of cluster innovativeness. Cluster innovativeness has for long been subject of research and resulting policy efforts. The cluster's endowment with assets, such as specialized labor, firms, research institutes, existing regional
Thermal dynamics of silver clusters grown on rippled silica surfaces
Energy Technology Data Exchange (ETDEWEB)
Bhatnagar, Mukul, E-mail: mkbh10@gmail.com [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India); Ranjan, Mukesh [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India); Jolley, Kenny; Lloyd, Adam; Smith, Roger [Dept. of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Mukherjee, Subroto [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India)
2017-02-15
Highlights: • Low energy oblique angle ion bombardment forms ripple pattern on silicon surface. • The ripple patterns have wavelengths between 20 and 45 nm and correspondingly low height. • Silver nanoparticles have been deposited at an angle of 70° on patterned silicon templates. • The as-deposited np are annealed in vacuo at temperature of 573 K for a time duration of 1 h. • MD simulation is used to model the process and compare the results to the experiment. • Results show that silver clusters grow preferentially along parallel to the rippled surface. • Mobility of silver atoms depends on the site to which they are bonded on this amorphous surface. • MD simulations show contour ordered coalescence which is dependent on ripple periodicity. - Abstract: Silver nanoparticles have been deposited on silicon rippled patterned templates at an angle of incidence of 70° to the surface normal. The templates are produced by oblique incidence argon ion bombardment and as the fluence increases, the periods and heights of the structures increase. Structures with periods of 20 nm, 35 nm and 45 nm have been produced. Moderate temperature vacuum annealing shows the phenomenon of cluster coalescence following the contour of the more exposed faces of the ripple for the case of 35 nm and 45 nm but not at 20 nm where the silver aggregates into larger randomly distributed clusters. In order to understand this effect, the morphological changes of silver nanoparticles deposited on an asymmetric rippled silica surface are investigated through the use of molecular dynamics simulations for different deposition angles of incidence between 0° and 70° and annealing temperatures between 500 K and 900 K. Near to normal incidence, clusters are observed to migrate over the entire surface but for deposition at 70°, a similar patterning is observed as in the experiment. The random distribution of clusters for the periodicity ≈ of 20 nm is linked to the geometry of the silica
A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model
Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.
2006-01-01
The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.
Lattice dynamical appraisal of the anisotropic Debye-Waller factors in graphite lattice
International Nuclear Information System (INIS)
Haridasan, T.M.; Sathyamurthy, G.
1989-12-01
The Debye-Waller factors in graphite for the atomic motions within the basal plane and also across the basal planes have been calculated using the various lattice dynamical models available to date and a critical comparison is made with the existing experimental data from X ray and neutron scattering studies. The present study reveals the need for further investigation on the nature of atomic motion across the basal planes. (author). 15 refs, 1 tab
Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence
González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.
2017-11-01
In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on test particle acceleration and compare how this evolving system affects particle energization by current sheet interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the strong electric field gradients that take place between structures and generate (among other effects) an efficient particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of the particles and a reduction in particle energization.
Functional clustering in hippocampal cultures: relating network structure and dynamics
International Nuclear Information System (INIS)
Feldt, S; Dzakpasu, R; Olariu, E; Żochowski, M; Wang, J X; Shtrahman, E
2010-01-01
In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures
Dissipation and energy balance in electronic dynamics of Na clusters
Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard
2017-06-01
We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.
Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A
2011-01-01
The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.
The Dynamical Properties of Virgo Cluster Disk Galaxies
Ouellette, N. N. Q.; Courteau, S.; Holtzman, J. A.; Dalcanton, J. J.; McDonald, M.; Zhu, Y.
2014-03-01
By virtue of its proximity, the Virgo Cluster is an ideal laboratory for testing our understanding of structure formation in the Universe. In this spirit, we present a dynamical study of Virgo galaxies as part of the Spectroscopic and H-band Imaging of Virgo (SHIVir) survey. Hα rotation curves (RC) for our gas-rich galaxies were modeled with a multi-parameter fit function from which various velocity measurements were inferred. Our study takes advantage of archival and our own new data as we aim to compile the largest Tully-Fisher relation (TFR) for a cluster to date. Extended velocity dispersion profiles (VDP) are integrated over varying aperture sizes to extract representative velocity dispersions (VDs) for gas-poor galaxies. Considering the lack of a common standard for the measurement of a fiducial galaxy VD in the literature, we rectify this situation by determining the radius at which the measured VD yields the tightest Fundamental Plane (FP). We found that radius to be at least 1 Re, which exceeds the extent of most dispersion profiles in other works.
Dynamic configuration of the CMS Data Acquisition cluster
Bauer, Gerry; Biery, Kurt; Boyer, Vincent; Branson, James; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa, Jose Antonio; Deldicque, Christian; Dusinberre, Elizabeth; Erhan, Samim; Fortes Rodrigues, Fabiana; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gutleber, Johannes; Hatton, Derek; Laurens, Jean-Francois; Lopez Perez, Juan Antonio; Meijers, Frans; Meschi, Emilio; Meyer, Andreas; Mommsen, Remigius K; Moser, Roland; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Patras, Vaios; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Shpakov, Dennis; Simon, Sean; Sumorok, Konstanty; Zanetti, Marco
2010-01-01
The CMS Data Acquisition cluster, which runs around 10000 applications, is configured dynamically at run time. XML configuration documents determine what applications are executed on each node and over what networks these applications communicate. Through this mechanism the DAQ System may be adapted to the required performance, partitioned in order to perform (test-) runs in parallel, or re-structured in case of hardware faults. This paper presents the CMS DAQ Configurator tool, which is used to generate comprehensive configurations of the CMS DAQ system based on a high-level description given by the user. Using a database of configuration templates and a database containing a detailed model of hardware modules, data and control links, nodes and the network topology, the tool automatically determines which applications are needed, on which nodes they should run, and over which networks the event traffic will flow. The tool computes application parameters and generates the XML configuration documents as well a...
NMR study of spin dynamics in mesoscopic molecular clusters
Borsa, Ferdinando
1998-03-01
Recent published and umpublished work regarding the magnetic properties and the spin dynamics of molecules containing rings of 6,8 and 10 spins and of molecules containing clusters of 8 and 12 spins are reviewed. The 1H nuclear spin-lattice relaxation rate (NSLR) and the Muon Spin Resonance relaxation in Mn12 (A.Lascialfari, D.Gatteschi, F.Borsa, A.Shastri, Z.H.Jang and P.Carretta, Phys.Rev. B 1 January 1998) and Fe8 clusters are presented and discussed with regards to the high temperature spin dynamics of the Mn (Fe) magnetic moments and with regards to the low temperature superparamagnetic behavior. 1H and 63Cu NMR results are presented for two "quantum" spin rings : Cu6 and Cu8. The Cu6 is a weakly coupled (J/k=60K) ferromagnetic S=1/2 spin ring while Cu8 is a strongly coupled (J/k greater than 400K) antiferromagnetic S=1/2 spin ring.The dependence of the NSRL from temperature and from applied magnetic field are analyzed in terms of the calculated magnetic energy levels of the magnetic ring. The values of the energy gap between the ground state and the first excited state are extracted from the exponential decrease of the NSLR as the temperature is lowered. The results in the Cu ( S=1/2) "quantum" rings are compared with the results in "quantum" chains and ladders and with the results in "classical" Fe (S=5/2) antiferromagnetic rings : Fe6 and Fe10 (A.Lascialfari, D.Gatteschi, F.Borsa and A.Cornia , Phys.Rev. 55B,14341,1997) ).
Patti, Alessandro; Cuetos, Alejandro
2012-07-01
We report on the diffusion of purely repulsive and freely rotating colloidal rods in the isotropic, nematic, and smectic liquid crystal phases to probe the agreement between Brownian and Monte Carlo dynamics under the most general conditions. By properly rescaling the Monte Carlo time step, being related to any elementary move via the corresponding self-diffusion coefficient, with the acceptance rate of simultaneous trial displacements and rotations, we demonstrate the existence of a unique Monte Carlo time scale that allows for a direct comparison between Monte Carlo and Brownian dynamics simulations. To estimate the validity of our theoretical approach, we compare the mean square displacement of rods, their orientational autocorrelation function, and the self-intermediate scattering function, as obtained from Brownian dynamics and Monte Carlo simulations. The agreement between the results of these two approaches, even under the condition of heterogeneous dynamics generally observed in liquid crystalline phases, is excellent.
Energy Technology Data Exchange (ETDEWEB)
Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)
1994-12-01
To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.
Anisotropic stokes drag and dynamic lift on cylindrical colloids in a nematic liquid crystal.
Rovner, Joel B; Lapointe, Clayton P; Reich, Daniel H; Leheny, Robert L
2010-11-26
We have measured the Stokes drag on magnetic nanowires suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB). The effective drag viscosity for wires moving perpendicular to the nematic director differs from that for motion parallel to the director by factors of 0.88 to 2.4, depending on the orientation of the wires and their surface anchoring. When the force on the wires is applied at an oblique angle to the director, the wires move at an angle to the force, demonstrating the existence of a lift force on particles moving in a nematic. This dynamic lift is significantly larger for wires with homeotropic anchoring than with longitudinal anchoring in the experiments, suggesting the lift force as a mechanism for sorting particles according to their surface properties.
Properties of liquid clusters in large-scale molecular dynamics nucleation simulations
International Nuclear Information System (INIS)
Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K.; Tanaka, Hidekazu
2014-01-01
We have performed large-scale Lennard-Jones molecular dynamics simulations of homogeneous vapor-to-liquid nucleation, with 10 9 atoms. This large number allows us to resolve extremely low nucleation rates, and also provides excellent statistics for cluster properties over a wide range of cluster sizes. The nucleation rates, cluster growth rates, and size distributions are presented in Diemand et al. [J. Chem. Phys. 139, 74309 (2013)], while this paper analyses the properties of the clusters. We explore the cluster temperatures, density profiles, potential energies, and shapes. A thorough understanding of the properties of the clusters is crucial to the formulation of nucleation models. Significant latent heat is retained by stable clusters, by as much as ΔkT = 0.1ε for clusters with size i = 100. We find that the clusters deviate remarkably from spherical—with ellipsoidal axis ratios for critical cluster sizes typically within b/c = 0.7 ± 0.05 and a/c = 0.5 ± 0.05. We examine cluster spin angular momentum, and find that it plays a negligible role in the cluster dynamics. The interfaces of large, stable clusters are thinner than planar equilibrium interfaces by 10%−30%. At the critical cluster size, the cluster central densities are between 5% and 30% lower than the bulk liquid expectations. These lower densities imply larger-than-expected surface areas, which increase the energy cost to form a surface, which lowers nucleation rates
Ultrafast dynamics of electronically excited molecules and clusters
International Nuclear Information System (INIS)
Lietard, Aude
2014-01-01
This PhD thesis investigated the ultrafast dynamics of photo-chromic molecules and argon clusters in the gas phase at the femtosecond timescale. Pump-probe experiments are performed in a set-up which associates a versatile pulsed molecular beam coupled to a photoelectron/photoion velocity map imager (VMI) and a time-of-flight mass spectrometer (TOF-MS). Theses pump-probe experiments provides the temporal evolution of the electronic distribution for each system of interest. Besides, a modelization has been performed in order to characterize the density and the velocity distribution in the pulsed beam. Regarding the photo-chromic di-thienyl-ethene molecules, parallel electronic relaxation pathways were observed. This contrasts with the observation of sequential relaxation processes in most molecules studied so far. In the present case, the initial wave packet splits in two parts. One part is driven to the ground state at the femtosecond time scale through a conical intersection, and the second part remains for ps in the excited state and experiences oscillations in a suspended well. This study has shed light into the intrinsic dynamics of the molecules under study and a general relaxation mechanism has been proposed, which applies to the whole family of di-thienyl-ethene molecules whatever the state of matter (gas phase or solution) in which they have been investigated. Concerning argon clusters excited at about 14 eV, two behaviors of different time scale have been observed at different time scales. The first one occurs in the first picoseconds of the dynamics. It corresponds to the electronic relaxation of an excitonic state at a rate of 1 eV.ps -1 . The second phenomenon corresponds to the localization of the exciton on the excimer Ar 2 *. This phenomenon is observed 4-5 ps after the excitation. In this study, we also observed the ejection of excited argon atoms, addressing the lifetime of the delocalized excitonic state. This work provide additional informations
Cluster galaxy dynamics and the effects of large-scale environment
White, Martin; Cohn, J. D.; Smit, Renske
2010-11-01
Advances in observational capabilities have ushered in a new era of multi-wavelength, multi-physics probes of galaxy clusters and ambitious surveys are compiling large samples of cluster candidates selected in different ways. We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters (e.g. richness, lensing, Compton distortion and velocity dispersion). We pay particular attention to velocity dispersions, matching galaxies to subhaloes which are explicitly tracked in the simulation. We find that not only do haloes persist as subhaloes when they fall into a larger host, but groups of subhaloes retain their identity for long periods within larger host haloes. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and give illustrative examples. Such a large variance suggests that velocity dispersion estimators will work better in an ensemble sense than for any individual cluster, which may inform strategies for obtaining redshifts of cluster members. We similarly find that the ability of substructure indicators to find kinematic substructures is highly viewing angle dependent. While groups of subhaloes which merge with a larger host halo can retain their identity for many Gyr, they are only sporadically picked up by substructure indicators. We discuss the effects of correlated scatter on scaling relations estimated through stacking, both analytically and in the simulations
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2
Maryasov, Alexander G.; Bowman, Michael K.
2012-08-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.
Breakdown of Spin-Waves in Anisotropic Magnets: Spin Dynamics in α-RuCl3
Winter, Stephen; Riedl, Kira; Honecker, Andreas; Valenti, Roser
α -RuCl3 has recently emerged as a promising candidate for realizing the hexagonal Kitaev model in a real material. Similar to the related iridates (e.g. Na2IrO3), complex magnetic interactions arise from a competition between various similar energy scales, including spin-orbit coupling (SOC), Hund's coupling, and crystal-field splitting. Due to this complexity, the correct spin Hamiltonians for such systems remain hotly debated. For α-RuCl3, a combination of ab-initio calculations, microscopic considerations, and analysis of the static magnetic response have suggested off-diagonal couplings (Γ ,Γ') and long-range interactions in addition to the expected Kitaev exchange. However, the effect of such additional terms on the dynamic response remains unclear. In this contribution, we discuss the recently measured inelastic neutron scattering response in the context of realistic proposals for the microscopic spin Hamiltonian. We conclude that the observed scattering continuum, which has been taken as a signature of Kitaev spin liquid physics, likely persists over a broad range of parameters.
Molecular dynamics calculation of half-lives for thermal decay of Lennard-Jones clusters
International Nuclear Information System (INIS)
Smith, R.W.
1991-01-01
Molecular dynamics has been used with a Lenard-Jones (6-12) potential in order to study the decay behavior of neutral Argon clusters containing between 12 and 14 atoms. The clusters were heated to temperatures well above their melting points and then tracked in time via molecular dynamics until evaporation of one or more atoms was observed. In each simulation, the mode of evaporation, energy released during evaporation, and cluster lifetime were recorded. Results from roughly 2000 simulation histories were combined in order to compute statistically significant values of cluster half-lives and decay energies. It was found that cluster half-life decreases with increasing energy and that for a given value of excess energy (defined as E=(E tot -E gnd )/n), the 13 atom cluster is more stable against decay than clusters containing either 12 or 14 atoms. The dominant decay mechanism for all clusters was determined to be single atom emission. (orig.)
Comparison of various clustered interaction regions with regard to chromatic and dynamic behavior
International Nuclear Information System (INIS)
Leemann, B.; Wrulich, A.
1986-05-01
Clustered interaction regions for the SSC may be preferable from the viewpoint of costs and operation. In going from distributed to clustered IR's the superperiodicity of the machine is reduced and therefore the number of resonances induced by chromaticity correcting sextupoles is increased. This break in symmetry may cause a reduction in dynamic stability. The chromatic and dynamic behavior of the bare lattice is investigated for various cluster configurations. That means only chromaticity correcting sextupoles have been included and no magnetic imperfection errors have been considered. Then, the dynamic apertures of lattices with various IR clustering schemes are compared when random magnetic imperfections are included
Eric J. Gustafson
1998-01-01
To integrate multiple uses (mature forest and commodity production) better on forested lands, timber management strategies that cluster harvests have been proposed. One such approach clusters harvest activity in space and time, and rotates timber production zones across the landscape with a long temporal period (dynamic zoning). Dynamic zoning has...
Röttmer, Nicole
2009-01-01
This research provides a novel, empirically tested, actionable theory of cluster innovativeness. Cluster innovativeness has for long been subject of research and resulting policy efforts. The cluster's endowment with assets, such as specialized labor, firms, research institutes, existing regional networks and a specific culture are, among others, recognized as sources of innovativeness. While the asset structure of clusters as been subject to a variety of research efforts, the evidence on the...
Mutoru, J W; Smith, W; O'Hern, C S; Firoozabadi, A
2013-01-14
Understanding the transport properties of molecular fluids in the critical region is important for a number of industrial and natural systems. In the literature, there are conflicting reports on the behavior of the self diffusion coefficient D(s) in the critical region of single-component molecular systems. For example, D(s) could decrease to zero, reach a maximum, or remain unchanged and finite at the critical point. Moreover, there is no molecular-scale understanding of the behavior of diffusion coefficients in molecular fluids in the critical regime. We perform extensive molecular dynamics simulations in the critical region of single-component fluids composed of medium-chain n-alkanes-n-pentane, n-decane, and n-dodecane-that interact via anisotropic united-atom potentials. For each system, we calculate D(s), and average molecular cluster sizes κ(cl) and numbers N(cl) at various cluster lifetimes τ, as a function of density ρ in the range 0.2ρ(c) ≤ ρ ≤ 2.0ρ(c) at the critical temperature T(c). We find that D(s) decreases with increasing ρ but remains finite at the critical point. Moreover, for any given τ critical point.
Cluster fusion-fission dynamics in the Singapore stock exchange
Teh, Boon Kin; Cheong, Siew Ann
2015-10-01
In this paper, we investigate how the cross-correlations between stocks in the Singapore stock exchange (SGX) evolve over 2008 and 2009 within overlapping one-month time windows. In particular, we examine how these cross-correlations change before, during, and after the Sep-Oct 2008 Lehman Brothers Crisis. To do this, we extend the complete-linkage hierarchical clustering algorithm, to obtain robust clusters of stocks with stronger intracluster correlations, and weaker intercluster correlations. After we identify the robust clusters in all time windows, we visualize how these change in the form of a fusion-fission diagram. Such a diagram depicts graphically how the cluster sizes evolve, the exchange of stocks between clusters, as well as how strongly the clusters mix. From the fusion-fission diagram, we see a giant cluster growing and disintegrating in the SGX, up till the Lehman Brothers Crisis in September 2008 and the market crashes of October 2008. After the Lehman Brothers Crisis, clusters in the SGX remain small for few months before giant clusters emerge once again. In the aftermath of the crisis, we also find strong mixing of component stocks between clusters. As a result, the correlation between initially strongly-correlated pairs of stocks decay exponentially with average life time of about a month. These observations impact strongly how portfolios and trading strategies should be formulated.
A Dynamic Fuzzy Cluster Algorithm for Time Series
Directory of Open Access Journals (Sweden)
Min Ji
2013-01-01
clustering time series by introducing the definition of key point and improving FCM algorithm. The proposed algorithm works by determining those time series whose class labels are vague and further partitions them into different clusters over time. The main advantage of this approach compared with other existing algorithms is that the property of some time series belonging to different clusters over time can be partially revealed. Results from simulation-based experiments on geographical data demonstrate the excellent performance and the desired results have been obtained. The proposed algorithm can be applied to solve other clustering problems in data mining.
Deformation of Ag clusters deposited on Au(111) - Experiment and molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Miroslawski, Natalie; Groenhagen, Niklas; Hoevel, Heinz [TU Dortmund, Experimentelle Physik I (Germany); Issendorff, Bernd von [Universitaet Freiburg, Fakultaet Physik (Germany); Jaervi, Tommi [Fraunhofer Institut fuer Werkstoffmechanik, Freiburg (Germany); Moseler, Michael [Universitaet Freiburg, Fakultaet Physik (Germany); Fraunhofer Institut fuer Werkstoffmechanik, Freiburg (Germany); Freiburger Materialforschungszentrum (Germany)
2011-07-01
Mass selected clusters from Ag{sup +}{sub 55} to Ag{sup +}{sub 147{+-}}{sub 2} were deposited with different deposition energies at 77 K on Au(111) and imaged with STM at 77 K. We observed a deformation of the cluster shape due to the strong metallic interaction between the cluster and the substrate. The clusters became epitaxial and developed a structure composed of several Ag monolayers. The number of these monolayers depends on the number of atoms in the cluster and the deposition energy. The larger the cluster mass the more monolayers the cluster develops on Au(111) and the larger the deposition energy the fewer monolayers occur. These results were verified by molecular dynamic simulations. Additionally the behaviour of Ag{sub N} clusters on Au(111) after different annealing steps was investigated.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shixu [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gong, Hengfeng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Division of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Xuanzhi [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Gongping, E-mail: ligp@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Zhiguang, E-mail: zhgwang@impcas.ac.cn [Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
2014-09-30
Highlights: • We study the deposition of low energy Cu clusters on Fe (001) surface by molecular dynamics. • The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. • The phenomenon of contact epitaxy of cluster occurred. • The thermal diffusion of cluster atoms was analyzed. - Abstract: The slow deposition of low energy Cu clusters on a Fe (001) surface was investigated by molecular dynamics simulation. A many-body potential based on Finnis–Sinclair model was used to describe the interactions among atoms. Three clusters comprising of 13, 55 and 147 atoms, respectively, were deposited with incident energies ranging from 0.0 to 1.0 eV/atom at various substrate temperatures (0, 300 and 800 K). The rearrangement and the diffusion of cluster can occur, only when the cluster atoms are activated and obtained enough migration energy. The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. In the former, the migration energy originates from the latent heat of binding energy for the soft deposition regime and primarily comes from the incident energy of cluster for the energetic cluster deposition regime. In the latter, the thermal vibration would result in some cluster atoms activated again at medium and high substrate temperatures. Also, the effects of incident energy, cluster size and substrate temperature on the interaction potential energy between cluster and substrate, the final deposition morphology of cluster, the spreading index and the structure parameter of cluster are analyzed.
Directory of Open Access Journals (Sweden)
K. Mohaideen Pitchai
2017-07-01
Full Text Available Wireless Sensor Network (WSN consists of a large number of small sensors with restricted energy. Prolonged network lifespan, scalability, node mobility and load balancing are important needs for several WSN applications. Clustering the sensor nodes is an efficient technique to reach these goals. WSN have the characteristics of topology dynamics because of factors like energy conservation and node movement that leads to Dynamic Load Balanced Clustering Problem (DLBCP. In this paper, Elitism based Random Immigrant Genetic Approach (ERIGA is proposed to solve DLBCP which adapts to topology dynamics. ERIGA uses the dynamic Genetic Algorithm (GA components for solving the DLBCP. The performance of load balanced clustering process is enhanced with the help of this dynamic GA. As a result, the ERIGA achieves to elect suitable cluster heads which balances the network load and increases the lifespan of the network.
State selective dynamics of molecules, clusters, and nanostructures
International Nuclear Information System (INIS)
John W. Keto
2005-01-01
Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transfer between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demonstrated that CdSe nanoparticles produced by LAM were efficient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtained efficient fluorescence from Er doped phosphate glass nanoparticles which have application to gain waveguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO2
State selective dynamics of molecules, clusters, and nanostructures
Energy Technology Data Exchange (ETDEWEB)
Keto, John W. [Univ. of Texas, Austin, TX (United States)
2005-06-01
Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transver between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demostrated that CdSe nanoparticles produced by LAM were efficiient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtiained efficient fluorescence from Er doped phosphate glass nanopartiicles which have application to gain wafeguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO _{2}.
Orbital magnetism and dynamics in alkali metal clusters
International Nuclear Information System (INIS)
Nesterenko, V.O.; Kleinig, W.; Souza Cruz, FF. de; Marinelli, J.R.
2000-01-01
Two remarkable orbital magnetic resonances, M1 scissor mode and M2 twist mode, are predicted in deformed and spherical metal clusters, respectively. We show that these resonances provide a valuable information about many cluster properties (quadrupole deformation, magnetic susceptibility, single-particle spectrum, etc.)
Atomistic interactions of clusters on surfaces using molecular dynamics and hyper molecular dynamics
International Nuclear Information System (INIS)
Sanz-Navarro, Carlos F.
2002-01-01
The work presented in this thesis describes the results of Molecular Dynamics (MD) simulations applied to the interaction of silver clusters with graphite surfaces and some numerical and theoretical methods concerning the extension of MD simulations to longer time scales (hyper-MD). The first part of this thesis studies the implantation of clusters at normal incidence onto a graphite surface in order to determine the scaling of the penetration depth (PD) against the impact energy. A comparison with experimental results is made with good agreement. The main physical observations of the impact process are described and analysed. It is shown that there is a threshold impact velocity above which the linear dependence on PD on impact energy changes to a linear dependence on velocity. Implantation of silver clusters at oblique incidence is also considered. The second part of this work analyses the validity and feasibility of the three minimisation methods for the hyper-MD simulation method whereby time scales of an MD simulation can be extended. A correct mathematical basis for the iterative method is derived. It is found that one of the iterative methods, upon which hyper-lD is based, is very likely to fail in high-dimensional situations because it requires a too expensive convergence. Two new approximations to the hyper-MD approach are proposed, which reduce the computational effort considerably. Both approaches, although not exact, can help to search for some of the most likely transitions in the system. Some examples are given to illustrate this. (author)
Ab Initio Molecular Dynamics Studies of Pb m Sb n ( m + n ≤ 9) Alloy Clusters
Song, Bingyi; Xu, Baoqiang; Yang, Bin; Jiang, Wenlong; Chen, Xiumin; Xu, Na; Liu, Dachun; Dai, Yongnian
2017-10-01
Structure, stability, and dynamics of Pb m Sb n ( m + n ≤ 9) clusters were investigated using ab initio molecular dynamics. Size dependence of binding energies, the second-order energy difference of clusters, dissociation energy, HOMO-LUMO gaps, Mayer bond order, and the diffusion coefficient of Pb m Sb n clusters were discussed. Results suggest that Pb3Sb2, Pb4Sb2, and Pb5Sb4 ( n = 2 or 4) clusters have higher stability than other clusters, which is consistent with previous findings. In case of Pb-Sb alloy, the dynamics results show that Pb4Sb2 (Pb-22.71 wt pct Sb) can exist in gas phase at 1073 K (800 °C), which reasonably explains the azeotropic phenomenon, and the calculated values are in agreement with the experimental results (Pb-22 wt pct Sb).
One- and two-cluster synchronized dynamics of non-diffusively coupled Tchebycheff map networks
International Nuclear Information System (INIS)
Schäfer, Mirko; Greiner, Martin
2012-01-01
We use the master stability formalism to discuss one- and two-cluster synchronization of coupled Tchebycheff map networks. For diffusively coupled map systems, the one-cluster synchronized dynamics is given by the behaviour of the individual maps, and the coupling only determines the stability of the coherent state. For the case of non-diffusive coupling and for two-cluster synchronization, the synchronized dynamics on networks is different from the behaviour of the single individual map. Depending on the coupling, we study numerically the characteristics of various forms of the resulting synchronized dynamics. The stability properties of the respective one-cluster synchronized states are discussed for arbitrary network structures. For the case of two-cluster synchronization on bipartite networks we also present analytical expressions for fixed points and zig-zag patterns, and explicitly determine the linear stability of these orbits for the special case of ring-networks.
Classical plasma dynamics of Mie-oscillations in atomic clusters
Kull, H.-J.; El-Khawaldeh, A.
2018-04-01
Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].
International Nuclear Information System (INIS)
Nordio, P.L.; Segre, U.
1981-01-01
Dielectric and far-infra-red spectra of uniaxial liquid-crystal phase are analysed in terms of correlation functions calculated by a memory function formalism. SAIL (strong anisotropic interaction limit) conditions are always found to apply, resulting in diffusional regime at low working frequencies. Dipole friction has been also included in the calculations to consider many-particle interactions, its effect being analogous to the introduction of slowly relaxing local structures. (author)
Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming.
Wang, Haizhou; Song, Mingzhou
2011-12-01
The heuristic k -means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called Ckmeans.1d.dp . We demonstrate its advantage in optimality and runtime over the standard iterative k -means algorithm.
International Nuclear Information System (INIS)
Wu, Xia; Wu, Genhua
2014-01-01
Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag 61 cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag 61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron
International Nuclear Information System (INIS)
Elmegreen, Bruce G.; Galliano, Emmanuel; Alloin, Danielle
2009-01-01
Cluster formation and gas dynamics in the central regions of barred galaxies are not well understood. This paper reviews the environment of three 10 7 M sun clusters near the inner Lindblad resonance (ILR) of the barred spiral NGC 1365. The morphology, mass, and flow of H I and CO gas in the spiral and barred regions are examined for evidence of the location and mechanism of cluster formation. The accretion rate is compared with the star formation rate to infer the lifetime of the starburst. The gas appears to move from inside corotation in the spiral region to looping filaments in the interbar region at a rate of ∼6 M sun yr -1 before impacting the bar dustlane somewhere along its length. The gas in this dustlane moves inward, growing in flux as a result of the accretion to ∼40 M sun yr -1 near the ILR. This inner rate exceeds the current nuclear star formation rate by a factor of 4, suggesting continued buildup of nuclear mass for another ∼0.5 Gyr. The bar may be only 1-2 Gyr old. Extrapolating the bar flow back in time, we infer that the clusters formed in the bar dustlane outside the central dust ring at a position where an interbar filament currently impacts the lane. The ram pressure from this impact is comparable to the pressure in the bar dustlane, and both are comparable to the pressure in the massive clusters. Impact triggering is suggested. The isothermal assumption in numerical simulations seems inappropriate for the rarefaction parts of spiral and bar gas flows. The clusters have enough lower-mass counterparts to suggest they are part of a normal power-law mass distribution. Gas trapping in the most massive clusters could explain their [Ne II] emission, which is not evident from the lower-mass clusters nearby.
Dynamics diffusion behaviors of Pd small clusters on a Pd(1 1 1) surface
International Nuclear Information System (INIS)
Liu, Fusheng; Hu, Wangyu; Deng, Huiqiu; He, Rensheng; Yang, Xiyuan; Lu, Kuilin; Deng, Lei; Luo, Wenhua
2010-01-01
Using molecular dynamics, nudged elastic band and modified analytic embedded atom methods, the self-diffusion dynamics properties of palladium atomic clusters up to seven atoms on the Pd (1 1 1) surface have been studied at temperatures ranging from 300 to 1000 K. The simulation time varies from 20 to 75 ns according to the cluster sizes and the temperature ranges. The heptamer and trimer are more stable than the other neighboring clusters. The diffusion coefficients of the clusters are derived from the mean square displacement of the cluster's mass-center, and the diffusion prefactors D 0 and activation energies E a are derived from the Arrhenius relation. The activation energy of the clusters increases with the increasing atom number in the clusters, especially for Pd 6 to Pd 7 . The analysis of trajectories shows the noncompact clusters diffuse by the local diffusion mechanism but the compact clusters diffuse mainly by the whole gliding mechanism, and some static energy barriers of the diffusion modes are calculated. From Pd 2 to Pd 6 , the prefactors are in the range of the standard value 10 −3 cm 2 s −1 , and the prefactor of Pd 7 cluster is 2 orders of magnitude greater than that of the single Pd adatom because of a large number of nonequivalent diffusion processes. The heptamer can be the nucleus in the room temperature range according to nucleation theory
Dynamics of cluster structures in a financial market network
Kocheturov, Anton; Batsyn, Mikhail; Pardalos, Panos M.
2014-11-01
In the course of recent fifteen years the network analysis has become a powerful tool for studying financial markets. In this work we analyze stock markets of the USA and Sweden. We study cluster structures of a market network constructed from a correlation matrix of returns of the stocks traded in each of these markets. Such cluster structures are obtained by means of the P-Median Problem (PMP) whose objective is to maximize the total correlation between a set of stocks called medians of size p and other stocks. Every cluster structure is an undirected disconnected weighted graph in which every connected component (cluster) is a star, or a tree with one central node (called a median) and several leaf nodes connected with the median by weighted edges. Our main observation is that in non-crisis periods of time cluster structures change more chaotically, while during crises they show more stable behavior and fewer changes. Thus an increasing stability of a market graph cluster structure obtained via the PMP could be used as an indicator of a coming crisis.
Generation of clusters in complex dynamical networks via pinning control
International Nuclear Information System (INIS)
Li Kezan; Fu Xinchu; Small, Michael
2008-01-01
Many real-world networks show community structure, i.e., groups (or clusters) of nodes that have a high density of links within them but with a lower density of links between them. In this paper, by applying feedback injections to a fraction of network nodes, various clusters are synchronized independently according to the community structure generated by the group partition of the network (cluster synchronization). This control is achieved by pinning (i.e. applying linear feedback control) to a subset of the network nodes. Those pinned nodes are selected not randomly but according to the topological structure of communities of a given network. Specifically, for a given group partition of a network, those nodes with direct connections between groups must be pinned in order to achieve cluster synchronization. Both the local stability and global stability of cluster synchronization are investigated. Taking the tree-shaped network and the most modular network as two particular examples, we illustrate in detail how the pinning strategy influences the generation of clusters. The simulations verify the efficiency of the pinning schemes used in this paper
Dynamics and stability of charged clusters and droplets
International Nuclear Information System (INIS)
Manil, B.; Lebius, H.; Chandezon, F.; Huber, B.A.; Duft, D.; Leisner, T.; Guet, C.
2002-01-01
Lord Raleigh predicted (Phil. Mag. 14, 184(1982) ) that a charged, incompressible liquid droplet becomes unstable as soon as the cohesive forces, which create the surface tension and which try to keep the droplet in its spherical form, are equal to the Coulomb forces, which try to destabilise it. This means that that the Coulomb energy E c corresponds to twice the surface energy E s . The ratio X = E c / 2 E s (feasibility), thus characterising the Raleigh limit by X = 1. In order to test its validity, metal clusters were ionized in collisions with highly charged ions, allowing for the first time to prepare charged systems with a feasibility greater than 1. Multiply charged sodium clusters were produced through collisions of Ar 11+ or Xe 28+ with neutral sodium clusters. It was observed, with increasing cluster charge and consequently cluster size the detected system indeed approach the Raleigh limit (for q = 10 X = 0.85). However, it was not reached due to the initial cluster temperature and the energy transfer in the collision. Subsequent, the stability and the explosion of highly charge microdroplets which were injected into a Paul trap levitator were studied, specifically, glycol was irradiated with a HeNe laser. It was observed that a resonance phenomena appeared just before each explosion. As the resonance is linked to X ∼ 1, this is the first proof that the Coulomb instability of charge glycol microdroplets occurs at X ∼ 1, as predicted by Lord Raleigh. (nevyjel)
Anisotropic hydrodynamics: Motivation and methodology
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael
2014-06-15
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.
International Nuclear Information System (INIS)
Yurtsever, E.; Onal, E. D.; Calvo, F.
2011-01-01
The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.
Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation
Energy Technology Data Exchange (ETDEWEB)
Knez, Daniel, E-mail: daniel.knez@felmi-zfe.at [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Thaler, Philipp; Volk, Alexander [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Kothleitner, Gerald [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Ernst, Wolfgang E. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Hofer, Ferdinand [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria)
2017-05-15
We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures. - Highlights: • Beam induced conversion of Ni clusters into crystalline NiO rings has been observed. • Ni clusters were grown with the superfluid He-droplet technique. • oxidizeSTEM was utilized to investigate and simultaneously oxidize these clusters. • Oxidation dynamics was captured in real-time. • Cluster sizes and the oxidation rate were estimated via EELS and molecular dynamics.
Running and rotating: modelling the dynamics of migrating cell clusters
Copenhagen, Katherine; Gov, Nir; Gopinathan, Ajay
Collective motion of cells is a common occurrence in many biological systems, including tissue development and repair, and tumor formation. Recent experiments have shown cells form clusters in a chemical gradient, which display three different phases of motion: translational, rotational, and random. We present a model for cell clusters based loosely on other models seen in the literature that involves a Vicsek-like alignment as well as physical collisions and adhesions between cells. With this model we show that a mechanism for driving rotational motion in this kind of system is an increased motility of rim cells. Further, we examine the details of the relationship between rim and core cells, and find that the phases of the cluster as a whole are correlated with the creation and annihilation of topological defects in the tangential component of the velocity field.
Molecular dynamics modelling of EGCG clusters on ceramide bilayers
Energy Technology Data Exchange (ETDEWEB)
Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, 138632 (Singapore)
2015-12-31
A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.
Stochastic dynamics of spatial effects in fragmentation of clusters
International Nuclear Information System (INIS)
Salinas-Rodriguez, E.; Rodriguez, R.F.; Zamora, J.M.
1991-01-01
We use a stochastic approach to study the effects of spatial in homogeneities in the kinetics of a fragmentation model which occurs in cluster breakup and polymer degradation. The analytical form of the cluster size distribution function is obtained for both the discrete and continuous limits. From it we calculate numerically the average size and volume of the clusters, their total concentration and the total scattering of the dispersion in both limits. The influence of spatial effects is explicitly shown in the last two quantities. From our description the equations for the equal-time and the two times density correlation functions are also derived in the continuous limit. Finally, the perspectives and limitations of our approach are discussed (Author)
Exploring the Dynamics of Exoplanetary Systems in a Young Stellar Cluster
Thornton, Jonathan Daniel; Glaser, Joseph Paul; Wall, Joshua Edward
2018-01-01
I describe a dynamical simulation of planetary systems in a young star cluster. One rather arbitrary aspect of cluster simulations is the choice of initial conditions. These are typically chosen from some standard model, such as Plummer or King, or from a “fractal” distribution to try to model young clumpy systems. Here I adopt the approach of realizing an initial cluster model directly from a detailed magnetohydrodynamical model of cluster formation from a 1000-solar-mass interstellar gas cloud, with magnetic fields and radiative and wind feedback from massive stars included self-consistently. The N-body simulation of the stars and planets starts once star formation is largely over and feedback has cleared much of the gas from the region where the newborn stars reside. It continues until the cluster dissolves in the galactic field. Of particular interest is what would happen to the free-floating planets created in the gas cloud simulation. Are they captured by a star or are they ejected from the cluster? This method of building a dynamical cluster simulation directly from the results of a cluster formation model allows us to better understand the evolution of young star clusters and enriches our understanding of extrasolar planet development in them. These simulations were performed within the AMUSE simulation framework, and combine N-body, multiples and background potential code.
Ultrafast relaxation dynamics of electrons in Au clusters capped with dodecanethiol molecules
International Nuclear Information System (INIS)
Hamanaka, Y.; Fukagawa, K.; Tai, Y.; Murakami, J.; Nakamura, A.
2006-01-01
We have investigated electron relaxation dynamics of size-selected Au clusters capped by dodecanethiol molecules in the cluster sizes of 28-142 atoms using femtosecond pump-probe spectroscopy. Absorption spectra of 28-71-atom clusters show discrete peaks due to the optical transitions between quantized states, while an absorption band due to the surface plasmon is observed in 142-atom clusters. In the differential absorption spectra measured by the pump-probe experiments, a large redshift of 140 meV lasting over 10 ps and absorption bleaching decaying within 2 ps are observed at the absorption peaks of 28-atom clusters. The redshift is ascribed to a charge transfer between Au clusters and dodecanethiol molecules adsorbed on the cluster surface, and the bleaching is due to blocking of the optical transitions between the ground state and the occupied electronic states due to the Pauli's-exclusion principle. Such behavior is in contrast to the 142-atom clusters, where the cooling of hot electrons generated by photo-excitation determines the relaxation dynamics. These results indicate molecular properties of the 28-atom Au cluster-dodecanethiol system
Dynamic Characteristics Analysis and Stabilization of PV-Based Multiple Microgrid Clusters
DEFF Research Database (Denmark)
Zhao, Zhuoli; Yang, Ping; Wang, Yuewu
2018-01-01
-based multiple microgrid clusters. A detailed small-signal model for PV-based microgrid clusters considering local adaptive dynamic droop control mechanism of the voltage-source PV system is developed. The complete dynamic model is then used to access and compare the dynamic characteristics of the single...... microgrid and interconnected microgrids. In order to enhance system stability of the PV microgrid clusters, a tie-line flow and stabilization strategy is proposed to suppress the introduced interarea and local oscillations. Robustly selecting of the key control parameters is transformed to a multiobjective......As the penetration of PV generation increases, there is a growing operational demand on PV systems to participate in microgrid frequency regulation. It is expected that future distribution systems will consist of multiple microgrid clusters. However, interconnecting PV microgrids may lead to system...
A dynamic lattice searching method with rotation operation for optimization of large clusters
International Nuclear Information System (INIS)
Wu Xia; Cai Wensheng; Shao Xueguang
2009-01-01
Global optimization of large clusters has been a difficult task, though much effort has been paid and many efficient methods have been proposed. During our works, a rotation operation (RO) is designed to realize the structural transformation from decahedra to icosahedra for the optimization of large clusters, by rotating the atoms below the center atom with a definite degree around the fivefold axis. Based on the RO, a development of the previous dynamic lattice searching with constructed core (DLSc), named as DLSc-RO, is presented. With an investigation of the method for the optimization of Lennard-Jones (LJ) clusters, i.e., LJ 500 , LJ 561 , LJ 600 , LJ 665-667 , LJ 670 , LJ 685 , and LJ 923 , Morse clusters, silver clusters by Gupta potential, and aluminum clusters by NP-B potential, it was found that both the global minima with icosahedral and decahedral motifs can be obtained, and the method is proved to be efficient and universal.
Molecular dynamic simulation on boron cluster implantation for shallow junction formation
International Nuclear Information System (INIS)
Yuan Li; Yu Min; Li Wei; Ji Huihui; Ren Liming; Zhan Kai; Huang Ru; Zhang Xing; Wang Yangyuan; Zhang Jinyu; Oka, Hideki
2006-01-01
Boron cluster ion implantation is a potential technology for shallow junction formation in integrated circuits manufacture. A molecular dynamic method for cluster implantation simulation, aiming at microelectronics application, is presented in this paper. Accurate geometric structures of boron clusters are described by the model, and the H atoms in clusters are included. A potential function taking the form of combining the ZBL and the SW potentials is presented here to model interaction among the atoms in the boron cluster. The impact of these models on cluster implantation simulation is investigated. There are notable impact on dopant distribution and amount of implantation defects with consideration of these models. The simulation on the distributions of B and H are verified by SIMS data
Effect of Policy Analysis on Indonesia’s Maritime Cluster Development Using System Dynamics Modeling
Nursyamsi, A.; Moeis, A. O.; Komarudin
2018-03-01
As an archipelago with two third of its territory consist of water, Indonesia should address more attention to its maritime industry development. One of the catalyst to fasten the maritime industry growth is by developing a maritime cluster. The purpose of this research is to gain understanding of the effect if Indonesia implement maritime cluster policy to the growth of maritime economic and its role to enhance the maritime cluster performance, hence enhancing Indonesia’s maritime industry as well. The result of the constructed system dynamic model simulation shows that with the effect of maritime cluster, the growth of employment rate and maritime economic is much bigger that the business as usual case exponentially. The result implies that the government should act fast to form a legitimate cluster maritime organizer institution so that there will be a synergize, sustainable, and positive maritime cluster environment that will benefit the performance of Indonesia’s maritime industry.
Directory of Open Access Journals (Sweden)
Shigeharu Sugawara and Masafumi Tamura
2013-01-01
Full Text Available A new method to estimate an in-plane conduction anisotropy in a quasi-two-dimensional (q2D layered conductor by measuring the inter-layer transverse magnetoresistance is proposed. We applied this method to layered organic conductors β-(BEDT-TTF2X (BEDT-TTF = bis(ethylenedithiotetrathiafulvalene, C10H8S8; X = IBr2, I2Br by applying magnetic field rotating within the basal plane at 4.2 K. We found the anisotropic behaviour of carrier mobility μ. From this, anomalous distribution of carrier lifetime τ on the Fermi surface is derived, by the use of Fermi surface data reported for the materials. Calculations of the non-uniform susceptibility χ0(q suggest that carrier scattering is enhanced at specific k-points related to partial nesting of the Fermi surface. The present method is thus demonstrated to be an efficient experimental tool to elucidate anisotropic carrier dynamics in q2D conductors.
Energy Technology Data Exchange (ETDEWEB)
Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303 (United States); Hammond, Karl D. [Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)
2015-10-28
We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.
Balland, Pierre-Alexandre; Belso-Martinez, Jose-Antonio; Morrison, Andrea
2016-01-01
Although informal knowledge networks have often been regarded as a key ingredient behind the success of industrial clusters, the forces that shape their structure and dynamics remain largely unknown. Drawing on recent network dynamic models, we analyze the evolution of business and technical
Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters
Safari, Mohammad S.; Vorontsova, Maria A.; Poling-Skutvik, Ryan; Vekilov, Peter G.; Conrad, Jacinta C.
2015-10-01
Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10-5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90∘. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.
Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Support Distribution Machines
Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff
2018-01-01
We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership infor- mation and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width E=0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (E=2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (E=0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncon- taminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.
Dynamical entropy, quantum K-systems and clustering
International Nuclear Information System (INIS)
Narnhofer, H.
1989-01-01
The two possibilities to define a quantum K-system, either using algebraic relations or using properties of the dynamical entropy, are compared. It is shown that under the additional assumption of strong asymptotic abelianess the algebraic relations imply the properties of the dynamical entropy. 14 refs. (Author)
Photoelectron imaging, probe of the dynamics: from atoms... to clusters
International Nuclear Information System (INIS)
Lepine, F.
2003-06-01
This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W n - , C n - , C 60 ). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)
Multi-cluster dynamics in CΛ13 and analogy to clustering in 12C
Directory of Open Access Journals (Sweden)
Y. Funaki
2017-10-01
Full Text Available We investigate structure of CΛ13 and discuss the difference and similarity between the structures of C12 and CΛ13 by answering the questions if the linear-chain and gaslike cluster states, which are proposed to appear in C12, survives, or new structure states appear or not. We introduce a microscopic cluster model called, Hyper-Tohsaki–Horiuchi–Schuck–Röpke (H-THSR wave function, which is an extended version of the THSR wave function so as to describe Λ hypernuclei. We obtained two bound states and two resonance (quasi-bound states for Jπ=0+ in CΛ13, corresponding to the four 0+ states in C12. However, the inversion of level ordering between the spectra of C12 and CΛ13, i.e. that the 03+ and 04+ states in CΛ13 correspond to the 04+ and 03+ states in C12, respectively, is shown to occur. The additional Λ particle reduces sizes of the 02+ and 03+ states in CΛ13 very much, but the shrinkage of the 04+ state is only a half of the other states, in spite of the fact that attractive Λ-N interaction makes nucleus contracted so much when the Λ particle occupies an S-orbit. In conclusion, the Hoyle state becomes quite a compact object with BeΛ9+α configuration in CΛ13 and is no more gaslike state composed of the 3α clusters. Instead, the 04+ state in CΛ13, coming from the C12(03+ state, appears as a gaslike state composed of α+α+Λ5He configuration, i.e. the Hoyle analog state. A linear-chain state in a Λ hypernucleus is for the first time predicted to exist as the 03+ state in CΛ13 with more shrunk arrangement of the 3α clusters along z-axis than the 3α linear-chain configuration realized in the C12(04+ state. All the excited states are shown to appear around the corresponding cluster-decay threshold, reflecting the threshold rule.
International Nuclear Information System (INIS)
Xu Hao; Li Hui; Collins, David C.; Li, Shengtai; Norman, Michael L.
2011-01-01
Theory and simulations suggest that magnetic fields from radio jets and lobes powered by their central super massive black holes can be an important source of magnetic fields in the galaxy clusters. This is Paper II in a series of studies where we present self-consistent high-resolution adaptive mesh refinement cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus. We studied 12 different galaxy clusters with virial masses ranging from 1 x 10 14 to 2 x 10 15 M sun . In this work, we examine the effects of the mass and merger history on the final magnetic properties. We find that the evolution of magnetic fields is qualitatively similar to those of previous studies. In most clusters, the injected magnetic fields can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process with hierarchical mergers, while the amplification history and the magnetic field distribution depend on the cluster formation and magnetism history. This can be very different for different clusters. The total magnetic energies in these clusters are between 4 x 10 57 and 10 61 erg, which is mainly decided by the cluster mass, scaling approximately with the square of the total mass. Dynamically older relaxed clusters usually have more magnetic fields in their ICM. The dynamically very young clusters may be magnetized weakly since there is not enough time for magnetic fields to be amplified.
Chen, Meng-Huo; Salama, Amgad; Ei-Amin, Mohamed
2016-01-01
Nanoparticles are particles that are between 1 and 100 nanometers in size. They present possible dangers to the environment due to the high surface to volume ratio, which can make the particles very reactive or catalytic. Furthermore, rapid increase in the implementation of nanotechnologies has released large amount of the nanowaste into the environment. In the last two decades, transport of nanoparticles in the subsurface and the potential hazard they impose to the environment have attracted the attention of researchers. In this work, we use numerical simulation to investigate the problem regarding the transport phenomena of nanoparticles in anisotropic porous media. We consider the case in which the permeability in the principal direction components will vary with respect to time. The interesting thing in this case is the fact that the anisotropy could disappear with time. We investigate the effect of the degenerating anisotropy on various fields such as pressure, porosity, concentration and velocities.
Chen, Meng-Huo
2016-06-01
Nanoparticles are particles that are between 1 and 100 nanometers in size. They present possible dangers to the environment due to the high surface to volume ratio, which can make the particles very reactive or catalytic. Furthermore, rapid increase in the implementation of nanotechnologies has released large amount of the nanowaste into the environment. In the last two decades, transport of nanoparticles in the subsurface and the potential hazard they impose to the environment have attracted the attention of researchers. In this work, we use numerical simulation to investigate the problem regarding the transport phenomena of nanoparticles in anisotropic porous media. We consider the case in which the permeability in the principal direction components will vary with respect to time. The interesting thing in this case is the fact that the anisotropy could disappear with time. We investigate the effect of the degenerating anisotropy on various fields such as pressure, porosity, concentration and velocities.
Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters
International Nuclear Information System (INIS)
Imran, Muhammad; Hussain, Fayyaz; Ullah, Hafeez; Ahmad, Ejaz; Rashid, Muhammad; Ismail, Muhammad; Cai, Yongqing; Javid, M Arshad; Ahmad, S A
2016-01-01
Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results. (paper)
Energy Technology Data Exchange (ETDEWEB)
Song, Y. L.; Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); He, Y. F.; Wu, L. [College of Information and Electrical Engineering, China Agricultural University, Beijing 100083 (China); Liu, Y. H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Chen, Z. Y. [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); Yu, M. Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)
2015-06-15
Influence of the system temperature on the micro-structures and dynamics of dust clusters in dusty plasmas is investigated through laboratory experiment and molecular dynamics simulation. The micro-structures, defect numbers, and pair correlation function of the dust clusters are studied for different system temperatures. The dust grains' trajectories, the mean square displacement, and the corresponding self-diffusion coefficient of the clusters are calculated for different temperatures for illustrating the phase properties of the dust clusters. The simulation results confirm that with the increase in system temperature, the micro-structures and dynamics of dust clusters are gradually changed, which qualitatively agree with experimental results.
On dynamical evolution of the bright star subsystem in the Orion Sword cluster
International Nuclear Information System (INIS)
Dolgachev, V.P.; Kalinina, E.P.; Kholopov, P.N.
1989-01-01
With the help of numerical integration of the system of ordinary differential equations of the 102nd order, a possible dynamical evolution of the subsystem of 17 brightest stars in the Orion Sword open cluster has been examined in the interval of 20,1x10 6 years. In the process of transition through the region occupied by the cluster core taking place with a ''cycle'' of about 7 million years, the brightest stars of the cluster begin to concentrate mostly in the core region. Some of them acquire motions along elongated orbits, remaining during a long time in the limits of the cluster's corona, while one of stars is thrown away from the cluster with the hyperbolic velocity. Moreover, two wide pairs of stars are originating, which are analogous to those observed in the galactic field
Kroupa, Pavel; Jeřábková, Tereza; Dinnbier, František; Beccari, Giacomo; Yan, Zhiqiang
2018-04-01
A scenario for the formation of multiple co-eval populations separated in age by about 1 Myr in very young clusters (VYCs, ages less than 10 Myr) and with masses in the range 600-20 000 M⊙ is outlined. It rests upon a converging inflow of molecular gas building up a first population of pre-main sequence stars. The associated just-formed O stars ionise the inflow and suppress star formation in the embedded cluster. However, they typically eject each other out of the embedded cluster within 106 yr, that is before the molecular cloud filament can be ionised entirely. The inflow of molecular gas can then resume forming a second population. This sequence of events can be repeated maximally over the life-time of the molecular cloud (about 10 Myr), but is not likely to be possible in VYCs with mass <300 M⊙, because such populations are not likely to contain an O star. Stellar populations heavier than about 2000 M⊙ are likely to have too many O stars for all of these to eject each other from the embedded cluster before they disperse their natal cloud. VYCs with masses in the range 600-2000 M⊙ are likely to have such multi-age populations, while VYCs with masses in the range 2000-20 000 M⊙ can also be composed solely of co-eval, mono-age populations. More massive VYCs are not likely to host sub-populations with age differences of about 1 Myr. This model is applied to the Orion Nebula Cluster (ONC), in which three well-separated pre-main sequences in the colour-magnitude diagram of the cluster have recently been discovered. The mass-inflow history is constrained using this model and the number of OB stars ejected from each population are estimated for verification using Gaia data. As a further consequence of the proposed model, the three runaway O star systems, AE Aur, μ Col and ι Ori, are considered as significant observational evidence for stellar-dynamical ejections of massive stars from the oldest population in the ONC. Evidence for stellar-dynamical
Radiation-Induced Chemical Dynamics in Ar Clusters Exposed to Strong X-Ray Pulses
Kumagai, Yoshiaki; Jurek, Zoltan; Xu, Weiqing; Fukuzawa, Hironobu; Motomura, Koji; Iablonskyi, Denys; Nagaya, Kiyonobu; Wada, Shin-ichi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Sakai, Tsukasa; Matsunami, Kenji; Nishiyama, Toshiyuki; Umemoto, Takayuki; Nicolas, Christophe; Miron, Catalin; Togashi, Tadashi; Ogawa, Kanade; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Son, Sang-Kil; Ziaja, Beata; Santra, Robin; Ueda, Kiyoshi
2018-06-01
We show that electron and ion spectroscopy reveals the details of the oligomer formation in Ar clusters exposed to an x-ray free electron laser (XFEL) pulse, i.e., chemical dynamics triggered by x rays. With guidance from a dedicated molecular dynamics simulation tool, we find that van der Waals bonding, the oligomer formation mechanism, and charge transfer among the cluster constituents significantly affect ionization dynamics induced by an XFEL pulse of moderate fluence. Our results clearly demonstrate that XFEL pulses can be used not only to "damage and destroy" molecular assemblies but also to modify and transform their molecular structure. The accuracy of the predictions obtained makes it possible to apply the cluster spectroscopy, in connection with the respective simulations, for estimation of the XFEL pulse fluence in the fluence regime below single-atom multiple-photon absorption, which is hardly accessible with other diagnostic tools.
Self-diffusion dynamic behavior of atomic clusters on Re(0 0 0 1) surface
Energy Technology Data Exchange (ETDEWEB)
Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu, E-mail: wangyuhu2001cn@yahoo.com.cn [Department of Applied Physics, Hunan University, Changsha 410082 (China); Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)
2009-08-15
Using molecular dynamics simulations and a modified analytic embedded atom potential, the self-diffusion dynamics of rhenium atomic clusters up to seven atoms on Re(0 0 0 1) surface have been studied in the temperature ranges from 600 K to 1900 K. The simulation time varies from 20 ns to 200 ns according to the cluster sizes and the temperature. The heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center, and diffusion prefactors D{sub 0} and activation energies E{sub a} are derived from the Arrhenius relation. It is found that the Arrhenius relation of the adatom can be divided into two parts at different temperature range. The activation energy of clusters increases with the increasing of the atom number in clusters. The prefactor of the heptamer is 2-3 orders of magnitude higher than a usual prefactor because of a large number of nonequivalent diffusion processes. The trimer and heptamer are the nuclei at different temperature range according to the nucleation theory.
Amianto, Federico; Daga, Giovanni Abbate; Bertorello, Antonella; Fassino, Secondo
2013-10-01
prototypical mothers and fathers of EDs. Parents not disturbed as regards personality traits are not exceptions. Since EDs are multifactor disorders family dynamics related to parents' personality may be very relevant or even marginal in their pathogenesis. Conversely, parenting may be negatively influenced by relatively marginal personality malfunctions of parents. The clustering approach to the complexity of personality-related dynamics of ED families improves the picture of ED parents. Psychoeducational, counseling and psychotherapeutic family interventions should consider the specific underlying personality of parents. Copyright © 2013 Elsevier Inc. All rights reserved.
Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering
DEFF Research Database (Denmark)
Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng
2007-01-01
Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models...
Cavitation cluster dynamics in shock-wave lithotripsy: Part I
Arora, M.; Junge, L.; Junge, L.; Ohl, C.D.
2005-01-01
The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30
Castro-Mondragon, Jaime Abraham; Jaeger, Sébastien; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques
2017-07-27
Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Directory of Open Access Journals (Sweden)
Muthukkumar R.
2017-04-01
Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.
Directory of Open Access Journals (Sweden)
Muthukkumar R.
2016-07-01
Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-01
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Kimura, M. [Hokkaido University, Department of Physics, Sapporo (Japan); Hokkaido University, Nuclear Reaction Data Centre, Faculty of Science, Sapporo (Japan); Suhara, T. [Matsue College of Technology, Matsue (Japan); Kanada-En' yo, Y. [Kyoto University, Department of Physics, Kyoto (Japan)
2016-12-15
We present a review of recent works on clustering phenomena in unstable nuclei studied by antisymmetrized molecular dynamics (AMD). The AMD studies in these decades have uncovered novel types of clustering phenomena brought about by the excess neutrons. Among them, this review focuses on the molecule-like structure of unstable nuclei. One of the earliest discussions on the clustering in unstable nuclei was made for neutron-rich Be and B isotopes. AMD calculations predicted that the ground state clustering is enhanced or reduced depending on the number of excess neutrons. Today, the experiments are confirming this prediction as the change of the proton radii. Behind this enhancement and reduction of the clustering, there are underlying shell effects called molecular and atomic orbits. These orbits form covalent and ionic bonding of the clusters analogous to the atomic molecules. It was found that this ''molecular-orbit picture'' reasonably explains the low-lying spectra of Be isotopes. The molecular-orbit picture is extended to other systems having parity asymmetric cluster cores and to the three cluster systems. O and Ne isotopes are the candidates of the former, while the 3α linear chains in C isotopes are the latter. For both subjects, many intensive studies are now in progress. We also pay a special attention to the observables which are the fingerprint of the clustering. In particular, we focus on the monopole and dipole transitions which are recently regarded as good probe for the clustering. We discuss how they have and will reveal the exotic clustering. (orig.)
Zhang, Juping; Yang, Chan; Jin, Zhen; Li, Jia
2018-07-14
In this paper, the correlation coefficients between nodes in states are used as dynamic variables, and we construct SIR epidemic dynamic models with correlation coefficients by using the pair approximation method in static networks and dynamic networks, respectively. Considering the clustering coefficient of the network, we analytically investigate the existence and the local asymptotic stability of each equilibrium of these models and derive threshold values for the prevalence of diseases. Additionally, we obtain two equivalent epidemic thresholds in dynamic networks, which are compared with the results of the mean field equations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Static and dynamic properties of two-dimensional Coulomb clusters.
Ash, Biswarup; Chakrabarti, J; Ghosal, Amit
2017-10-01
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
Photodissociation spectroscopy and dynamics of free radicals, clusters, and ions
Energy Technology Data Exchange (ETDEWEB)
Choi, Hyeon [Univ. of California, Berkeley, CA (United States)
1999-12-01
The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C_{2}H_{5}O, and linear C_{n} (n = 4--6).
The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters
Morscher, Maggie
Globular clusters are gravitationally bound systems containing up to millions of stars, and are found ubiquitously in massive galaxies, including the Milky Way. With densities as high as a million stars per cubic parsec, they are one of the few places in the Universe where stars interact with one another. They therefore provide us with a unique laboratory for studying how gravitational interactions can facilitate the formation of exotic systems, such as X-ray binaries containing black holes, and merging double black hole binaries, which are produced much less efficiently in isolation. While telescopes can provide us with a snapshot of what these dense clusters look like at present, we must rely on detailed numerical simulations to learn about their evolution. These simulations are quite challenging, however, since dense star clusters are described by a complicated set of physical processes occurring on many different length and time scales, including stellar and binary evolution, weak gravitational scattering encounters, strong resonant binary interactions, and tidal stripping by the host galaxy. Until very recently, it was not possible to model the evolution of systems with millions of stars, the actual number contained in the largest clusters, including all the relevant physics required describe these systems accurately. The Northwestern Group's Henon Monte Carlo code, CMC, which has been in development for over a decade, is a powerful tool that can be used to construct detailed evolutionary models of large star clusters. With its recent parallelization, CMC is now capable of addressing a particularly interesting unsolved problem in astrophysics: the dynamical evolution of stellar black holes in dense star clusters. Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from 20 - 100
Indian Academy of Sciences (India)
2017-09-27
Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...
Indian Academy of Sciences (India)
environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.
Fast optimization of binary clusters using a novel dynamic lattice searching method
International Nuclear Information System (INIS)
Wu, Xia; Cheng, Wen
2014-01-01
Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd) 79 clusters with DFT-fit parameters of Gupta potential
Mobility of hydrogen-helium clusters in tungsten studied by molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Grigorev, Petr, E-mail: grigorievpit@gmail.com [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Ghent University, Applied Physics EA17 FUSION-DC, St.Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnologies, and Telecommunications, Peter the Great St.Petersburg Polytechnic University, St. Petersburg (Russian Federation); Terentyev, Dmitry; Bonny, Giovanni [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnologies, and Telecommunications, Peter the Great St.Petersburg Polytechnic University, St. Petersburg (Russian Federation); Oost, Guido van [Ghent University, Applied Physics EA17 FUSION-DC, St.Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Noterdaeme, Jean-Marie [Ghent University, Applied Physics EA17 FUSION-DC, St.Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Max-Planck-Institut für Plasmaphysik, Garching (Germany)
2016-06-15
Tungsten is a primary candidate material for plasma facing components in fusion reactors. Interaction of plasma components with the material is unavoidable and will lead to degradation of the performance and the lifetime of the in-vessel components. In order to gain better understanding the mechanisms driving the material degradation at atomic level, atomistic simulations are employed. In this work we study migration, stability and self-trapping properties of pure helium and mixed helium-hydrogen clusters in tungsten by means of molecular dynamics simulations. We test two versions of an embedded atom model interatomic potential by comparing it with ab initio data regarding the binding properties of He clusters. By analysing the trajectories of the clusters during molecular dynamics simulations at finite temperatures we obtain the diffusion parameters. The results show that the diffusivity of mixed clusters is significantly lower, than that of pure helium clusters. The latter suggest that the formation of mixed clusters during mixed hydrogen helium plasma exposure will affect the helium diffusivity in the material.
Directory of Open Access Journals (Sweden)
Dao-Wei Bi
2007-07-01
Full Text Available A primary criterion of wireless sensor network is energy efficiency. Focused onthe energy problem of target tracking in wireless sensor networks, this paper proposes acluster-based dynamic energy management mechanism. Target tracking problem isformulated by the multi-sensor detection model as well as energy consumption model. Adistributed adaptive clustering approach is investigated to form a reasonable routingframework which has uniform cluster head distribution. DijkstraÃ¢Â€Â™s algorithm is utilized toobtain optimal intra-cluster routing. Target position is predicted by particle filter. Thepredicted target position is adopted to estimate the idle interval of sensor nodes. Hence,dynamic awakening approach is exploited to prolong sleep time of sensor nodes so that theoperation energy consumption of wireless sensor network can be reduced. The sensornodes around the target wake up on time and act as sensing candidates. With the candidatesensor nodes and predicted target position, the optimal sensor node selection is considered.Binary particle swarm optimization is proposed to minimize the total energy consumptionduring collaborative sensing and data reporting. Experimental results verify that theproposed clustering approach establishes a low-energy communication structure while theenergy efficiency of wireless sensor networks is enhanced by cluster-based dynamic energymanagement.
Dynamics of the baryonic component in hierarchical clustering universes
Navarro, Julio
1993-01-01
I present self-consistent 3-D simulations of the formation of virialized systems containing both gas and dark matter in a flat universe. A fully Lagrangian code based on the Smoothed Particle Hydrodynamics technique and a tree data structure has been used to evolve regions of comoving radius 2-3 Mpc. Tidal effects are included by coarse-sampling the density of the outer regions up to a radius approx. 20 Mpc. Initial conditions are set at high redshift (z greater than 7) using a standard Cold Dark Matter perturbation spectrum and a baryon mass fraction of 10 percent (omega(sub b) = 0.1). Simulations in which the gas evolves either adiabatically or radiates energy at a rate determined locally by its cooling function were performed. This allows us to investigate with the same set of simulations the importance of radiative losses in the formation of galaxies and the equilibrium structure of virialized systems where cooling is very inefficient. In the absence of radiative losses, the simulations can be rescaled to the density and radius typical of galaxy clusters. A summary of the main results is presented.
Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters
International Nuclear Information System (INIS)
Appignanesi, G A; Rodriguez Fris, J A
2009-01-01
In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or α relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the α relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints. (topical review)
Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics
Lau, Gabriel V.; Hunt, Patricia A.; Müller, Erich A.; Jackson, George; Ford, Ian J.
2015-12-01
Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.
Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Lau, Gabriel V.; Müller, Erich A.; Jackson, George [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hunt, Patricia A. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Ford, Ian J. [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2015-12-28
Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the “mitosis” or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.
Dynamics and molecular determinants of cytoplasmic lipid droplet clustering and dispersion.
Directory of Open Access Journals (Sweden)
David J Orlicky
Full Text Available Perilipin-1 (Plin1, a prominent cytoplasmic lipid droplet (CLD binding phosphoprotein and key physiological regulator of triglyceride storage and lipolysis in adipocytes, is thought to regulate the fragmentation and dispersion of CLD that occurs in response to β-adrenergic activation of adenylate cyclase. Here we investigate the dynamics and molecular determinants of these processes using cell lines stably expressing recombinant forms of Plin1 and/or other members of the perilipin family. Plin1 and a C-terminal CLD-binding fragment of Plin1 (Plin1CT induced formation of single dense CLD clusters near the microtubule organizing center, whereas neither an N-terminal CLD-binding fragment of Plin1, nor Plin2 or Plin3 induced clustering. Clustered CLD coated by Plin1, or Plin1CT, dispersed in response to isoproterenol, or other agents that activate adenylate cyclase, in a process inhibited by the protein kinase A inhibitor, H89, and blocked by microtubule disruption. Isoproterenol-stimulated phosphorylation of CLD-associated Plin1 on serine 492 preceded their dispersion, and live cell imaging showed that cluster dispersion involved initial fragmentation of tight clusters into multiple smaller clusters, which then fragmented into well-dispersed individual CLD. siRNA knockdown of the cortical actin binding protein, moesin, induced disaggregation of tight clusters into multiple smaller clusters, and inhibited the reaggregation of dispersed CLD into tight clusters. Together these data suggest that the clustering and dispersion processes involve a complex orchestration of phosphorylation-dependent, microtubule-dependent and independent, and microfilament dependent steps.
Dynamics and molecular determinants of cytoplasmic lipid droplet clustering and dispersion.
Orlicky, David J; Monks, Jenifer; Stefanski, Adrianne L; McManaman, James L
2013-01-01
Perilipin-1 (Plin1), a prominent cytoplasmic lipid droplet (CLD) binding phosphoprotein and key physiological regulator of triglyceride storage and lipolysis in adipocytes, is thought to regulate the fragmentation and dispersion of CLD that occurs in response to β-adrenergic activation of adenylate cyclase. Here we investigate the dynamics and molecular determinants of these processes using cell lines stably expressing recombinant forms of Plin1 and/or other members of the perilipin family. Plin1 and a C-terminal CLD-binding fragment of Plin1 (Plin1CT) induced formation of single dense CLD clusters near the microtubule organizing center, whereas neither an N-terminal CLD-binding fragment of Plin1, nor Plin2 or Plin3 induced clustering. Clustered CLD coated by Plin1, or Plin1CT, dispersed in response to isoproterenol, or other agents that activate adenylate cyclase, in a process inhibited by the protein kinase A inhibitor, H89, and blocked by microtubule disruption. Isoproterenol-stimulated phosphorylation of CLD-associated Plin1 on serine 492 preceded their dispersion, and live cell imaging showed that cluster dispersion involved initial fragmentation of tight clusters into multiple smaller clusters, which then fragmented into well-dispersed individual CLD. siRNA knockdown of the cortical actin binding protein, moesin, induced disaggregation of tight clusters into multiple smaller clusters, and inhibited the reaggregation of dispersed CLD into tight clusters. Together these data suggest that the clustering and dispersion processes involve a complex orchestration of phosphorylation-dependent, microtubule-dependent and independent, and microfilament dependent steps.
Melting behaviour of gold-platinum nanoalloy clusters by molecular dynamics simulations
Energy Technology Data Exchange (ETDEWEB)
Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)
2015-04-24
The melting behavior of bimetallic gold-platinum nanoclusters is studied by applying Brownian-type isothermal molecular dynamics (MD) simulation, a program modified from the cubic coupling scheme (CCS). The process begins with the ground-state structures obtained from global minimum search algorithm and proceeds with the investigation of the effect of temperature on the thermal properties of gold-platinum nanoalloy clusters. N-body Gupta potential has been employed in order to account for the interactions between gold and platinum atoms. The ground states of the nanoalloy clusters, which are core-shell segregated, are heated until they become thermally segregated. The detailed melting mechanism of the nanoalloy clusters is studied via this approach to provide insight into the thermal stability of the nanoalloy clusters.
Directory of Open Access Journals (Sweden)
Zheng Li
2016-07-01
Full Text Available The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2On after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects.
Li, Zheng; Vendrell, Oriol
2016-01-01
The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2O)n after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects. PMID:26798842
Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals
Energy Technology Data Exchange (ETDEWEB)
Liang, Xiaogang; Hamid, Ilyar; Duan, Haiming, E-mail: dhm@xju.edu.cn [College of Physics Science and Technology. Xinjiang University, Urumqi 830046 (China)
2016-06-15
The dynamic stabilities of the icosahedral-like clusters containing up to 2200 atoms are investigated for 15 metal elements. The clusters originate from five different initial structures (icosahedron, truncated decahedron, octahedron, closed-shell fragment of an HCP structure, and non-closed-shell fragment of an HCP structure). The obtained order of the dynamic stabilities of the icosahedral-like clusters can be assigned to three groups, from stronger to weaker, according to the size ranges involved: (Zr, Al, Ti) > (Cu, Fe, Co, Ni, Mg, Ag) > (Pb, Au, Pd, Pt, Rh, Ir), which correspond to the predicted formation ability of the quasicrystals. The differences of the sequences can be explained by analyzing the parameters of the Gupta-type many-body inter-atomic potentials.
Energy Technology Data Exchange (ETDEWEB)
Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael; Müller, Jens [Institute of Physics, Goethe-University Frankfurt, Frankfurt/Main (Germany); Stockem, Irina; Schröder, Christian [Bielefeld Institute for Applied Materials Research, FH Bielefeld-University of Applied Sciences, Bielefeld (Germany)
2016-10-14
We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.
Stopping dynamics of ions passing through correlated honeycomb clusters
Balzer, Karsten; Schlünzen, Niclas; Bonitz, Michael
2016-12-01
A combined nonequilibrium Green functions-Ehrenfest dynamics approach is developed that allows for a time-dependent study of the energy loss of a charged particle penetrating a strongly correlated system at zero and finite temperatures. Numerical results are presented for finite inhomogeneous two-dimensional Fermi-Hubbard models, where the many-electron dynamics in the target are treated fully quantum mechanically and the motion of the projectile is treated classically. The simulations are based on the solution of the two-time Dyson (Keldysh-Kadanoff-Baym) equations using the second-order Born, third-order, and T -matrix approximations of the self-energy. As application, we consider protons and helium nuclei with a kinetic energy between 1 and 500 keV/u passing through planar fragments of the two-dimensional honeycomb lattice and, in particular, examine the influence of electron-electron correlations on the energy exchange between projectile and electron system. We investigate the time dependence of the projectile's kinetic energy (stopping power), the electron density, the double occupancy, and the photoemission spectrum. Finally, we show that, for a suitable choice of the Hubbard model parameters, the results for the stopping power are in fair agreement with ab initio simulations for particle irradiation of single-layer graphene.
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance
Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.
Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.
Analyzing Dynamic Probabilistic Risk Assessment Data through Topology-Based Clustering
Energy Technology Data Exchange (ETDEWEB)
Diego Mandelli; Dan Maljovec; BeiWang; Valerio Pascucci; Peer-Timo Bremer
2013-09-01
We investigate the use of a topology-based clustering technique on the data generated by dynamic event tree methodologies. The clustering technique we utilizes focuses on a domain-partitioning algorithm based on topological structures known as the Morse-Smale complex, which partitions the data points into clusters based on their uniform gradient flow behavior. We perform both end state analysis and transient analysis to classify the set of nuclear scenarios. We demonstrate our methodology on a dataset generated for a sodium-cooled fast reactor during an aircraft crash scenario. The simulation tracks the temperature of the reactor as well as the time for a recovery team to fix the passive cooling system. Combined with clustering results obtained previously through mean shift methodology, we present the user with complementary views of the data that help illuminate key features that may be otherwise hidden using a single methodology. By clustering the data, the number of relevant test cases to be selected for further analysis can be drastically reduced by selecting a representative from each cluster. Identifying the similarities of simulations within a cluster can also aid in the drawing of important conclusions with respect to safety analysis.
Oxidation of ligand-protected aluminum clusters: An ab initio molecular dynamics study
International Nuclear Information System (INIS)
Alnemrat, Sufian; Hooper, Joseph P.
2014-01-01
We report Car-Parrinello molecular dynamics simulations of the oxidation of ligand-protected aluminum clusters that form a prototypical cluster-assembled material. These clusters contain a small aluminum core surrounded by a monolayer of organic ligand. The aromatic cyclopentadienyl ligands form a strong bond with surface Al atoms, giving rise to an organometallic cluster that crystallizes into a low-symmetry solid and is briefly stable in air before oxidizing. Our calculations of isolated aluminum/cyclopentadienyl clusters reacting with oxygen show minimal reaction between the ligand and O 2 molecules at simulation temperatures of 500 and 1000 K. In all cases, the reaction pathway involves O 2 diffusing through the ligand barrier, splitting into atomic oxygen upon contact with the aluminum, and forming an oxide cluster with aluminum/ligand bonds still largely intact. Loss of individual aluminum-ligand units, as expected from unimolecular decomposition calculations, is not observed except following significant oxidation. These calculations highlight the role of the ligand in providing a steric barrier against oxidizers and in maintaining the large aluminum surface area of the solid-state cluster material
PoD: dynamically create and use remote PROOF clusters. A thin client concept.
CERN. Geneva
2012-01-01
PoD’s newly developed “pod-remote” command made it possible for users to utilize a thin client concept. In order to create dynamic PROOF clusters, users are now able to select a remote computer, even behind a firewall, to control a PoD server on...
Czech Academy of Sciences Publication Activity Database
Buchholz, M.; Goletz, Ch. M.; Grossman, F.; Schmidt, B.; Heyda, J.; Jungwirth, Pavel
2012-01-01
Roč. 116, č. 46 (2012), s. 11199-11210 ISSN 1089-5639 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : semiclassical molecular dynamics * cluster * wavepacket * coherence * spectra Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012
Dynamical resonance shift and unification of resonances in short-pulse laser-cluster interaction
Mahalik, S. S.; Kundu, M.
2018-06-01
Pronounced maximum absorption of laser light irradiating a rare-gas or metal cluster is widely expected during the linear resonance (LR) when Mie-plasma wavelength λM of electrons equals the laser wavelength λ . On the contrary, by performing molecular dynamics (MD) simulations of an argon cluster irradiated by short 5-fs (FWHM) laser pulses it is revealed that, for a given laser pulse energy and a cluster, at each peak intensity there exists a λ —shifted from the expected λM—that corresponds to a unified dynamical LR at which evolution of the cluster happens through very efficient unification of possible resonances in various stages, including (i) the LR in the initial time of plasma creation, (ii) the LR in the Coulomb expanding phase in the later time, and (iii) anharmonic resonance in the marginally overdense regime for a relatively longer pulse duration, leading to maximum laser absorption accompanied by maximum removal of electrons from cluster and also maximum allowed average charge states for the argon cluster. Increasing the laser intensity, the absorption maxima is found to shift to a higher wavelength in the band of λ ≈(1 -1.5 ) λM than permanently staying at the expected λM. A naive rigid sphere model also corroborates the wavelength shift of the absorption peak as found in MD and unequivocally proves that maximum laser absorption in a cluster happens at a shifted λ in the marginally overdense regime of λ ≈(1 -1.5 ) λM instead of λM of LR. The present study is important for guiding an optimal condition laser-cluster interaction experiment in the short-pulse regime.
The dynamics of cyclone clustering in re-analysis and a high-resolution climate model
Priestley, Matthew; Pinto, Joaquim; Dacre, Helen; Shaffrey, Len
2017-04-01
Extratropical cyclones have a tendency to occur in groups (clusters) in the exit of the North Atlantic storm track during wintertime, potentially leading to widespread socioeconomic impacts. The Winter of 2013/14 was the stormiest on record for the UK and was characterised by the recurrent clustering of intense extratropical cyclones. This clustering was associated with a strong, straight and persistent North Atlantic 250 hPa jet with Rossby wave-breaking (RWB) on both flanks, pinning the jet in place. Here, we provide for the first time an analysis of all clustered events in 36 years of the ERA-Interim Re-analysis at three latitudes (45˚ N, 55˚ N, 65˚ N) encompassing various regions of Western Europe. The relationship between the occurrence of RWB and cyclone clustering is studied in detail. Clustering at 55˚ N is associated with an extended and anomalously strong jet flanked on both sides by RWB. However, clustering at 65(45)˚ N is associated with RWB to the south (north) of the jet, deflecting the jet northwards (southwards). A positive correlation was found between the intensity of the clustering and RWB occurrence to the north and south of the jet. However, there is considerable spread in these relationships. Finally, analysis has shown that the relationships identified in the re-analysis are also present in a high-resolution coupled global climate model (HiGEM). In particular, clustering is associated with the same dynamical conditions at each of our three latitudes in spite of the identified biases in frequency and intensity of RWB.
Mass profile and dynamical status of the z ~ 0.8 galaxy cluster LCDCS 0504
Guennou, L.; Biviano, A.; Adami, C.; Limousin, M.; Lima Neto, G. B.; Mamon, G. A.; Ulmer, M. P.; Gavazzi, R.; Cypriano, E. S.; Durret, F.; Clowe, D.; LeBrun, V.; Allam, S.; Basa, S.; Benoist, C.; Cappi, A.; Halliday, C.; Ilbert, O.; Johnston, D.; Jullo, E.; Just, D.; Kubo, J. M.; Márquez, I.; Marshall, P.; Martinet, N.; Maurogordato, S.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.
2014-06-01
Context. Constraints on the mass distribution in high-redshift clusters of galaxies are currently not very strong. Aims: We aim to constrain the mass profile, M(r), and dynamical status of the z ~ 0.8 LCDCS 0504 cluster of galaxies that is characterized by prominent giant gravitational arcs near its center. Methods: Our analysis is based on deep X-ray, optical, and infrared imaging as well as optical spectroscopy, collected with various instruments, which we complemented with archival data. We modeled the mass distribution of the cluster with three different mass density profiles, whose parameters were constrained by the strong lensing features of the inner cluster region, by the X-ray emission from the intracluster medium, and by the kinematics of 71 cluster members. Results: We obtain consistent M(r) determinations from three methods based on kinematics (dispersion-kurtosis, caustics, and MAMPOSSt), out to the cluster virial radius, ≃1.3 Mpc and beyond. The mass profile inferred by the strong lensing analysis in the central cluster region is slightly higher than, but still consistent with, the kinematics estimate. On the other hand, the X-ray based M(r) is significantly lower than the kinematics and strong lensing estimates. Theoretical predictions from ΛCDM cosmology for the concentration-mass relation agree with our observational results, when taking into account the uncertainties in the observational and theoretical estimates. There appears to be a central deficit in the intracluster gas mass fraction compared with nearby clusters. Conclusions: Despite the relaxed appearance of this cluster, the determinations of its mass profile by different probes show substantial discrepancies, the origin of which remains to be determined. The extension of a dynamical analysis similar to that of other clusters of the DAFT/FADA survey with multiwavelength data of sufficient quality will allow shedding light on the possible systematics that affect the determination of mass
Clustering Effect on the Dynamics in a Spatial Rock-Paper-Scissors System
Hashimoto, Tsuyoshi; Sato, Kazunori; Ichinose, Genki; Miyazaki, Rinko; Tainaka, Kei-ichi
2018-01-01
The lattice dynamics for rock-paper-scissors games is related to population theories in ecology. In most cases, simulations are performed by local and global interactions. It is known in the former case that the dynamics is usually stable. We find two types of non-random distributions in the stationary state. One is a cluster formation of endangered species: when the density of a species approaches zero, its clumping degree diverges to infinity. The other is the strong aggregations of high-density species. Such spatial pattern formations play important roles in population dynamics.
Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression
Directory of Open Access Journals (Sweden)
Li Guo
2014-01-01
Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.
Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.
2017-07-01
We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.
Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dehez, François; Georgakilas, Alexandros G.; Monari, Antonio; Dumont, Elise
2016-01-01
Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions. PMID:27587587
Photoionization dynamics of glycine adsorbed on a silicon cluster: ''On-the-fly'' simulations
International Nuclear Information System (INIS)
Shemesh, Dorit; Baer, Roi; Seideman, Tamar; Gerber, R. Benny
2005-01-01
Dynamics of glycine chemisorbed on the surface of a silicon cluster is studied for a process that involves single-photon ionization, followed by recombination with the electron after a selected time delay. The process is studied by ''on-the-fly'' molecular dynamics simulations, using the semiempirical parametric method number 3 (PM3) potential energy surface. The system is taken to be in the ground state prior to photoionization, and time delays from 5 to 50 fs before the recombination are considered. The time evolution is computed over 10 ps. The main findings are (1) the positive charge after ionization is initially mostly distributed on the silicon cluster. (2) After ionization the major structural changes are on the silicon cluster. These include Si-Si bond breaking and formation and hydrogen transfer between different silicon atoms. (3) The transient ionization event gives rise to dynamical behavior that depends sensitively on the ion state lifetime. Subsequent to 45 fs evolution in the charged state, the glycine molecule starts to rotate on the silicon cluster. Implications of the results to various processes that are induced by transient transition to a charged state are discussed. These include inelastic tunneling in molecular devices, photochemistry on conducting surfaces, and electron-molecule scattering
Lovas, R. G.; Dombrádi, Zs; Kiss, G. G.; Kruppa, A. T.; Lévai, G.
2013-04-01
, but we had some invited talks even in the parallel sessions. Written versions of 86 talks have been submitted. Quite a number of the speakers have modified the title of their talk in the written version. To keep the correspondence between the Programme list and the written papers, we have accordingly changed the titles in the Programme list as well. The papers are arranged according to their subjects, without regard to whether they were delivered in a plenary or in a parallel session. There was a talk classified wrongly; this is now classified correctly. In the Programme list and in the list of the papers submitted the names are those of the speakers. You can read in the Opening Address that, by ruling of the organizing institution, no members of the Debrecen Institute of Nuclear Research were selected as invited speakers and no contributions were accepted from them. We doubted the wisdom of this rigour ourselves, and I think the criticism we received for it is justifiable. The success of a conference depends primarily on the speakers. In retrospect, we can say that this conference was extremely successful, and that is owing to the great many wonderful talks delivered. This reflects very well on the present status of the field as well as on the work of the International Advisory Board, which proposed the list of excellent speakers. The Japanese dominance characteristic of all cluster conferences has only been complained about by some of the Japanese who came to Europe primarily to learn things that they could not learn at home. We would like to express our gratitude to our sponsors: the Hungarian Academy of Sciences the Paks Nuclear Power Ltd HMP Logic Ltd International Workshop for Theoretical Physics(Budapest) We were also supported indirectly by a JSPS-MTA bilateral cooperation project, which made it possible for five Japanese colleagues to participate. It just remains to be announced that the next, number 11 in this series of conferences, will be held in Naples in
Dynamic Change in p63 Protein Expression during Implantation of Urothelial Cancer Clusters
Directory of Open Access Journals (Sweden)
Takahiro Yoshida
2015-07-01
Full Text Available Although the dissemination of urothelial cancer cells is supposed to be a major cause of the multicentricity of urothelial tumors, the mechanism of implantation has not been well investigated. Here, we found that cancer cell clusters from the urine of patients with urothelial cancer retain the ability to survive, grow, and adhere. By using cell lines and primary cells collected from multiple patients, we demonstrate that △Np63α protein in cancer cell clusters was rapidly decreased through proteasomal degradation when clusters were attached to the matrix, leading to downregulation of E-cadherin and upregulation of N-cadherin. Decreased △Np63α protein level in urothelial cancer cell clusters was involved in the clearance of the urothelium. Our data provide the first evidence that clusters of urothelial cancer cells exhibit dynamic changes in △Np63α expression during attachment to the matrix, and decreased △Np63α protein plays a critical role in the interaction between cancer cell clusters and the urothelium. Thus, because △Np63α might be involved in the process of intraluminal dissemination of urothelial cancer cells, blocking the degradation of △Np63α could be a target of therapy to prevent the dissemination of urothelial cancer.
Novel approaches to pin cluster synchronization on complex dynamical networks in Lur'e forms
Tang, Ze; Park, Ju H.; Feng, Jianwen
2018-04-01
This paper investigates the cluster synchronization of complex dynamical networks consisted of identical or nonidentical Lur'e systems. Due to the special topology structure of the complex networks and the existence of stochastic perturbations, a kind of randomly occurring pinning controller is designed which not only synchronizes all Lur'e systems in the same cluster but also decreases the negative influence among different clusters. Firstly, based on an extended integral inequality, the convex combination theorem and S-procedure, the conditions for cluster synchronization of identical Lur'e networks are derived in a convex domain. Secondly, randomly occurring adaptive pinning controllers with two independent Bernoulli stochastic variables are designed and then sufficient conditions are obtained for the cluster synchronization on complex networks consisted of nonidentical Lur'e systems. In addition, suitable control gains for successful cluster synchronization of nonidentical Lur'e networks are acquired by designing some adaptive updating laws. Finally, we present two numerical examples to demonstrate the validity of the control scheme and the theoretical analysis.
Phase diagram and quench dynamics of the cluster-XY spin chain.
Montes, Sebastián; Hamma, Alioscia
2012-08-01
We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.
Sensitivity Sampling Over Dynamic Geometric Data Streams with Applications to $k$-Clustering
Song, Zhao; Yang, Lin F.; Zhong, Peilin
2018-01-01
Sensitivity based sampling is crucial for constructing nearly-optimal coreset for $k$-means / median clustering. In this paper, we provide a novel data structure that enables sensitivity sampling over a dynamic data stream, where points from a high dimensional discrete Euclidean space can be either inserted or deleted. Based on this data structure, we provide a one-pass coreset construction for $k$-means %and M-estimator clustering using space $\\widetilde{O}(k\\mathrm{poly}(d))$ over $d$-dimen...
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
International Nuclear Information System (INIS)
Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang
2015-01-01
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions
Vogelsberg, Cortnie Sue
Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently
Directory of Open Access Journals (Sweden)
Olaf Andersen
2016-05-01
Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.
3.5D dynamic PET image reconstruction incorporating kinetics-based clusters
International Nuclear Information System (INIS)
Lu Lijun; Chen Wufan; Karakatsanis, Nicolas A; Rahmim, Arman; Tang Jing
2012-01-01
Standard 3D dynamic positron emission tomographic (PET) imaging consists of independent image reconstructions of individual frames followed by application of appropriate kinetic model to the time activity curves at the voxel or region-of-interest (ROI). The emerging field of 4D PET reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple frames within the image reconstruction task. Here we propose a novel reconstruction framework aiming to enhance quantitative accuracy of parametric images via introduction of priors based on voxel kinetics, as generated via clustering of preliminary reconstructed dynamic images to define clustered neighborhoods of voxels with similar kinetics. This is then followed by straightforward maximum a posteriori (MAP) 3D PET reconstruction as applied to individual frames; and as such the method is labeled ‘3.5D’ image reconstruction. The use of cluster-based priors has the advantage of further enhancing quantitative performance in dynamic PET imaging, because: (a) there are typically more voxels in clusters than in conventional local neighborhoods, and (b) neighboring voxels with distinct kinetics are less likely to be clustered together. Using realistic simulated 11 C-raclopride dynamic PET data, the quantitative performance of the proposed method was investigated. Parametric distribution-volume (DV) and DV ratio (DVR) images were estimated from dynamic image reconstructions using (a) maximum-likelihood expectation maximization (MLEM), and MAP reconstructions using (b) the quadratic prior (QP-MAP), (c) the Green prior (GP-MAP) and (d, e) two proposed cluster-based priors (CP-U-MAP and CP-W-MAP), followed by graphical modeling, and were qualitatively and quantitatively compared for 11 ROIs. Overall, the proposed dynamic PET reconstruction methodology resulted in substantial visual as well as quantitative accuracy improvements (in terms of noise versus bias performance) for parametric DV
Kim, SungKun; Lee, Hunpyo
2017-06-01
Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.
NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel
2017-08-01
Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.
Blanco, Mario R.; Martin, Joshua S.; Kahlscheuer, Matthew L.; Krishnan, Ramya; Abelson, John; Laederach, Alain; Walter, Nils G.
2016-01-01
The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood, a challenge that persists for many biomolecular machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel framework for interpreting complex single molecule behaviors that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular machines. PMID:26414013
Clustering Effects on Dynamics in Ionomer Solutions: A Neutron Spin Echo Insight
Perahia, Dvora; Wijesinghe, Sidath; Senanayake, Manjula; Wickramasinghe, Anuradhi; Mohottalalage, Supun S.; Ohl, Michael
Ionizable blocks in ionomers associate into aggregates serving as physical cross-links and concurrently form transport pathways. The dynamics of ionomers underline their functionality. Incorporating small numbers of ionic groups into polymers significantly constraint their dynamics. Recent computational studies demonstrated a direct correlation between ionic cluster morphology and polymer dynamics. Here using neutron spin echo, we probe the segmental dynamics of polystyrene sulfonate (PSS) as the degree of sulfonation of the PSS and the solution dielectrics are varied. Specifically, 20Wt% PSS of 11,000 g/mol with polydispersity of 1.02 with 3% and 9% sulfonation were studies in toluene (dielectric constant ɛ = 2.8), a good solvent for polystyrene, and with 5Wt% of ethanol (ɛ = 24.3l) added. The dynamic structure factor S(q,t) was analyzed with a single exponential except for a limited q range where two time constants associated with constraint and mobile segments were detected. S(q,t) exhibits several distinctive time and length scales for the dynamics with a crossover appearing at the length scale of the ionic clusters. NSF DMR 1611136.
Molecular dynamics computer simulation study of Pdn (n=13, 19, 38 and 55) clusters
International Nuclear Information System (INIS)
Karabacak, M.; Oezcelik, S.; Guevenc, Z.B.
2002-01-01
Using constant-energy molecular dynamics and thermal quenching simulations, we have studied minimum-energy structures and energetics, Pd n (n=13, 19, 38, and 55) clusters employing the Voter and Chen's version of parameterisation of the embedded-atom potential surface. Isomer statistics for Pdn ( n = 13 and 19 ) is obtained from 10000 initial independent configurations, which have been generated along high-energy trajectories (chosen energy values are high enough to melt the clusters). The thermal quenching technique is employed to remove the internal kinetic energy of the clusters. The locally stable isomers are separated from metastable ones. Probabilities belonging to sampling the basins of attractions of each isomers are computed, and then, isomers' energy spectra are analyzed
Molecular dynamics simulations of sputtering of organic overlayers by slow, large clusters
International Nuclear Information System (INIS)
Rzeznik, L.; Czerwinski, B.; Garrison, B.J.; Winograd, N.; Postawa, Z.
2008-01-01
The ion-stimulated desorption of organic molecules by impact of large and slow clusters is examined using molecular dynamics (MDs) computer simulations. The investigated system, represented by a monolayer of benzene deposited on Ag{1 1 1}, is irradiated with projectiles composed of thousands of noble gas atoms having a kinetic energy of 0.1-20 eV/atom. The sputtering yield of molecular species and the kinetic energy distributions are analyzed and compared to the results obtain for PS4 overlayer. The simulations demonstrate quite clearly that the physics of ejection by large and slow clusters is distinct from the ejection events stimulated by the popular SIMS clusters, like C 60 , Au 3 and SF 5 at tens of keV energies.
Roosen, David; Wegewijs, Maarten R.; Hofstetter, Walter
2008-02-01
We investigate the time-dependent Kondo effect in a single-molecule magnet (SMM) strongly coupled to metallic electrodes. Describing the SMM by a Kondo model with large spin S>1/2, we analyze the underscreening of the local moment and the effect of anisotropy terms on the relaxation dynamics of the magnetization. Underscreening by single-channel Kondo processes leads to a logarithmically slow relaxation, while finite uniaxial anisotropy causes a saturation of the SMM’s magnetization. Additional transverse anisotropy terms induce quantum spin tunneling and a pseudospin-1/2 Kondo effect sensitive to the spin parity.
International Nuclear Information System (INIS)
Kompanets, V. O.; Lokhman, V. N.; Poydashev, D. G.; Chekalin, S. V.; Ryabov, E. A.
2016-01-01
The dynamics of photoprocesses induced by femtosecond infrared radiation in free Fe(CO) 5 molecules and their clusters owing to the resonant excitation of vibrations of CO bonds in the 5-μm range has been studied. The technique of infrared excitation and photoionization probing (λ = 400 nm) by femtosecond pulses has been used in combination with time-of-flight mass spectrometry. It has been found that an infrared pulse selectively excites vibrations of CO bonds in free molecules, which results in a decrease in the yield of the Fe(CO) 5 + molecular ion. Subsequent relaxation processes have been analyzed and the results have been interpreted. The time of the energy transfer from excited vibrations to other vibrations of the molecule owing to intramolecular relaxation has been measured. The dynamics of dissociation of [Fe(CO) 5 ] n clusters irradiated by femtosecond infrared radiation has been studied. The time dependence of the yield of free molecules has been measured under different infrared laser excitation conditions. We have proposed a model that well describes the results of the experiment and makes it possible, in particular, to calculate the profile of variation of the temperature of clusters within the “evaporation ensemble” concept. The intramolecular and intracluster vibrational relaxation rates in [Fe(CO) 5 ] n clusters have been estimated.
Dynamical evolution of stars and gas of young embedded stellar sub-clusters
Sills, Alison; Rieder, Steven; Scora, Jennifer; McCloskey, Jessica; Jaffa, Sarah
2018-03-01
We present simulations of the dynamical evolution of young embedded star clusters. Our initial conditions are directly derived from X-ray, infrared, and radio observations of local systems, and our models evolve both gas and stars simultaneously. Our regions begin with both clustered and extended distributions of stars, and a gas distribution which can include a filamentary structure in addition to gas surrounding the stellar subclusters. We find that the regions become spherical, monolithic, and smooth quite quickly, and that the dynamical evolution is dominated by the gravitational interactions between the stars. In the absence of stellar feedback, the gas moves gently out of the centre of our regions but does not have a significant impact on the motions of the stars at the earliest stages of cluster formation. Our models at later times are consistent with observations of similar regions in the local neighbourhood. We conclude that the evolution of young proto-star clusters is relatively insensitive to reasonable choices of initial conditions. Models with more realism, such as an initial population of binary and multiple stars and ongoing star formation, are the next step needed to confirm these findings.
Dynamics of Brokerage Positions in Clusters: Evidence from the Spanish Foodstuffs Industry
Directory of Open Access Journals (Sweden)
José Antonio Belso-Martínez
2017-02-01
Full Text Available Shifting away from traditional approaches orientated towards the analysis of the benefits associated with brokerage, this paper provides valuable insights into the dynamics of this network position and the opportunities to innovate that it provides. Using fine grain micro data collected in a foodstuff Spanish cluster, the evolution of different brokerage profiles is analyzed in depth. It was particularly evident how firm-level characteristics (status, former mediating experience and external openness and their interactions may generate changes in the different brokerage roles over a period of time. The findings of this work partially validate expectations based on the network dynamics approaches. Status and previous mediating experience facilitate the creation of partnerships, fostering brokerage. Conversely, interaction effects demote brokerage activity at the intra-cluster level, suggesting the selective nature of brokers’ relational behavior.
Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics
Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.
2018-02-01
Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.
Role of the cluster structure of {sup 7}Li in the dynamics of fragment capture
Energy Technology Data Exchange (ETDEWEB)
Shrivastava, A., E-mail: aradhana@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Navin, A. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Diaz-Torres, A. [ECT, Villa Tambosi, I-38123 Villazzano, Trento (Italy); Nanal, V. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Ramachandran, K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rejmund, M. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Bhattacharyya, S. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, A.; Kailas, S. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Lemasson, A. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Palit, R. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Parkar, V.V. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pillay, R.G. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Rout, P.C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sawant, Y. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India)
2013-01-08
Exclusive measurements of prompt {gamma}-rays from the heavy-residues with various light charged particles in the {sup 7}Li + {sup 198}Pt system, at an energy near the Coulomb barrier (E/V{sub b}{approx}1.6) are reported. Recent dynamic classical trajectory calculations, constrained by the measured fusion, {alpha}- and t-capture cross-sections have been used to explain the excitation energy dependence of the residue cross-sections. These calculations distinctly illustrate a two-step process, breakup followed by fusion, in case of the capture of t and {alpha} clusters; whereas for {sup 6}He+p and {sup 5}He+d configurations, massive transfer is inferred to be the dominant mechanism. The present work clearly demonstrates the role played by the cluster structures of {sup 7}Li in understanding the reaction dynamics at energies around the Coulomb barrier.
DEFF Research Database (Denmark)
Mouritsen, Ole G.; Praestgaard, Eigil
1988-01-01
obeys dynamical scaling and the shape of the dynamical scaling function pertaining to the structure factor is found to depend on P. Specifically, this function is described by a Porod-law behavior, q-ω, where ω increases with the wall softness. The kinetic exponent, which describes how the linear domain...... infinite to zero temperature as well as to nonzero temperatures below the ordering transition. The continuous nature of the spin variables causes the domain walls to be ‘‘soft’’ and characterized by a finite thickness. The steady-state thickness of the walls can be varied by a model parameter, P. At zero...... size varies with time, R(t)∼tn, is for both models at zero temperature determined to be n≃0.25, independent of P. At finite temperatures, the growth kinetics is found to cross over to the Lifshitz-Allen-Cahn law characterized by n≃0.50. The results support the idea of two separate zero...
Spin dynamics study of magnetic molecular clusters by means of Moessbauer spectroscopy
International Nuclear Information System (INIS)
Cianchi, L.; Del Giallo, F.; Spina, G.; Reiff, W.; Caneschi, A.
2002-01-01
Spin dynamics of the two magnetic molecular clusters Fe4 and Fe8, with four and eight Fe(III) ions, respectively, was studied by means of Moessbauer spectroscopy. The transition probabilities W's between the spin states of the ground multiplet were obtained from the fitting of the spectra. For the Fe4 cluster we found that, in the range from 1.38 to 77 K, the trend of W's versus the temperature corresponds to an Orbach's process involving an excited state with energy of about 160 K. For the Fe8, which, due to the presence of a low-energy excited state, could not be studied at temperatures greater than 20 K, the trend of W's in the range from 4 to 18 K seems to correspond to a direct process. The correlation functions of the magnetization were then calculated in terms of the W's. They have an exponential trend for the Fe4 cluster, while a small oscillating component is also present for the Fe8 cluster. For the first of the clusters, τ vs T (τ is the decay time of the magnetization) has a trend which, at low temperatures (T 15 K, τ follows the trend of W -1 . For the Fe8, τ follows an Arrhenius law, but with a prefactor which is smaller than the one obtained susceptibility measurements
Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis
Yen, Chi-Fu; Sivasankar, Sanjeevi
2018-03-01
Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xβ, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.
Czech Academy of Sciences Publication Activity Database
Kessler, Jiří; Dračínský, Martin; Bouř, Petr
2013-01-01
Roč. 34, č. 5 (2013), s. 366-371 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : molecular dynamics * clusters * density functional theory * Raman optical activity * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013
Nonequilibrium dynamics of polariton entanglement in a cluster of coupled traps
Energy Technology Data Exchange (ETDEWEB)
Quiroga, L [Departamento de Fisica, Universidad de Los Andes, A.A.4976, Bogota D.C. (Colombia); Tejedor, C, E-mail: lquiroga@uniandes.edu.c [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, Cantoblanco, E-28049, Madrid (Spain)
2009-05-01
We study in detail the generation and relaxation of quantum coherences (entanglement) in a system of coupled polariton traps. By exploiting a Lie algebraic based super-operator technique we provide an analytical exact solution for the Markovian dissipative dynamics (Master equation) of such system which is valid for arbitrary cluster size, polariton-polariton interaction strength, temperature and initial state. Based on the exact solution of the Master equation at T = OK, we discuss how dissipation affects the quantum entanglement dynamics of coupled polariton systems.
UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring.
Uddin, Mohammad Ammad; Mansour, Ali; Jeune, Denis Le; Ayaz, Mohammad; Aggoune, El-Hadi M
2018-02-11
In this study, a crop health monitoring system is developed by using state of the art technologies including wireless sensors and Unmanned Aerial Vehicles (UAVs). Conventionally data is collected from sensor nodes either by fixed base stations or mobile sinks. Mobile sinks are considered a better choice nowadays due to their improved network coverage and energy utilization. Usually, the mobile sink is used in two ways: either it goes for random walk to find the scattered nodes and collect data, or follows a pre-defined path established by the ground network/clusters. Neither of these options is suitable in our scenario due to the factors like dynamic data collection, the strict targeted area required to be scanned, unavailability of a large number of nodes, dynamic path of the UAV, and most importantly, none of these are known in advance. The contribution of this paper is the formation of dynamic runtime clusters of field sensors by considering the above mentioned factors. Furthermore a mechanism (Bayesian classifier) is defined to select best node as cluster head. The proposed system is validated through simulation results, lab and infield experiments using concept devices. The obtained results are encouraging, especially in terms of deployment time, energy, efficiency, throughput and ease of use.
Anghel, S.; Passmann, F.; Singh, A.; Ruppert, C.; Poshakinskiy, A. V.; Tarasenko, S. A.; Moore, J. N.; Yusa, G.; Mano, T.; Noda, T.; Li, X.; Bristow, A. D.; Betz, M.
2018-03-01
Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin-precession length λSOI is defined as one complete precession in the effective magnetic field. It is observed that application of (i) an out-of-plane electric field changes the spin decay time and λSOI through the Rashba component of the spin-orbit coupling, (ii) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (iii) an in-plane electric field markedly modifies both the λSOI and diffusion coefficient.
Simulating The Dynamical Evolution Of Galaxies In Group And Cluster Environments
Vijayaraghavan, Rukmani
2015-07-01
Galaxy clusters are harsh environments for their constituent galaxies. A variety of physical processes effective in these dense environments transform gas-rich, spiral, star-forming galaxies to elliptical or spheroidal galaxies with very little gas and therefore minimal star formation. The consequences of these processes are well understood observationally. Galaxies in progressively denser environments have systematically declining star formation rates and gas content. However, a theoretical understanding of of where, when, and how these processes act, and the interplay between the various galaxy transformation mechanisms in clusters remains elusive. In this dissertation, I use numerical simulations of cluster mergers as well as galaxies evolving in quiescent environments to develop a theoretical framework to understand some of the physics of galaxy transformation in cluster environments. Galaxies can be transformed in smaller groups before they are accreted by their eventual massive cluster environments, an effect termed `pre-processing'. Galaxy cluster mergers themselves can accelerate many galaxy transformation mechanisms, including tidal and ram pressure stripping of galaxies and galaxy-galaxy collisions and mergers that result in reassemblies of galaxies' stars and gas. Observationally, cluster mergers have distinct velocity and phase-space signatures depending on the observer's line of sight with respect to the merger direction. Using dark matter only as well as hydrodynamic simulations of cluster mergers with random ensembles of particles tagged with galaxy models, I quantify the effects of cluster mergers on galaxy evolution before, during, and after the mergers. Based on my theoretical predictions of the dynamical signatures of these mergers in combination with galaxy transformation signatures, one can observationally identify remnants of mergers and quantify the effect of the environment on galaxies in dense group and cluster environments. The presence of
Electronic relaxation dynamics of a metal atom deposited on argon cluster
International Nuclear Information System (INIS)
Awali, Slim
2014-01-01
This thesis is a study on the interaction between electronically excited atomic states and a non-reactive environment. We have theoretically and experimentally studied situations where a metal atom (Ba or K) is placed in a finite size environment (argon cluster). The presence of the medium affects the electronic levels of the atom. On the other side, the excitation of the atom induces a relaxation dynamics of the electronic energy through the deformation of the cluster. The experimental part of this work focuses on two aspects: the spectroscopy and the dynamics. In both cases a first laser electronically excites the metal atom and the second ionizes the excited system. The observable is the photoelectron spectrum recorded after photoionization and possibly information on the photoion which are also produced. This pump/probe technique, with also two lasers, provide the ultrafast dynamic when the lasers pulses used are of ultrashort (60 fs). The use of nanosecond lasers leads to resonance spectroscopic measurement, unresolved temporally, which give information on the position of the energy levels of the studied system. From a theoretical point-of-view, the excited states of M-Ar n were calculated at the ab initio level, using large core pseudo-potential to limit the active electrons of the metal to valence electrons. The study of alkali metals (potassium) is especially well adapted to this method since only one electron is active. The ab-initio calculation and a Monte-Carlo simulation where coupled to optimize the geometry of the KAr n (n = 1-10) cluster when K is in the ground state of the neutral and the ion, or excited in the 4p or 5s state. Calculations were also conducted in collaboration with B. Gervais (CIMAP, Caen) on KAr n clusters having several tens of argon atoms. Absorption spectra were also calculated. From an experimental point-of-view, we were able to characterize the excited states of potassium and barium perturbed by the clusters. In both cases a
Huang, Rao; Lo, Li-Ta; Wen, Yuhua; Voter, Arthur F.; Perez, Danny
2017-10-01
Modern molecular-dynamics-based techniques are extremely powerful to investigate the dynamical evolution of materials. With the increase in sophistication of the simulation techniques and the ubiquity of massively parallel computing platforms, atomistic simulations now generate very large amounts of data, which have to be carefully analyzed in order to reveal key features of the underlying trajectories, including the nature and characteristics of the relevant reaction pathways. We show that clustering algorithms, such as the Perron Cluster Cluster Analysis, can provide reduced representations that greatly facilitate the interpretation of complex trajectories. To illustrate this point, clustering tools are used to identify the key kinetic steps in complex accelerated molecular dynamics trajectories exhibiting shape fluctuations in Pt nanoclusters. This analysis provides an easily interpretable coarse representation of the reaction pathways in terms of a handful of clusters, in contrast to the raw trajectory that contains thousands of unique states and tens of thousands of transitions.
Anisotropic inflation with derivative couplings
Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne
2018-05-01
We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.
Marcus, Kelvin
2014-06-01
The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.
Energy Technology Data Exchange (ETDEWEB)
Van den Heuvel, E. P. J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Portegies Zwart, S. F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)
2013-12-20
Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.
International Nuclear Information System (INIS)
Ezaoui, A.
2008-06-01
In the first part, based on various works realized in situ, the author discusses the importance of a fine characterization of soils within the field of small and medium deformations. He also presents the rheological background on which the modelling will be based. Then, he presents the experimental device, a tri-axial apparatus, 'StaDy', which allows high precision measurements, possesses force sensors comprising a piezoelectric device to generate compression and shear waves. He also presents the different static and dynamic prompting systems. He reports the experimental campaign performed on a Hostun S28 sand, and the analysis of its results. He describes the procedure of determination of the elastic tensor, and analyses and discusses the evolutions of this tensor in terms of the stress-strain status. Viscous phenomena creep and relaxation stages, and plastic behaviours are quantified and discussed with respect to the loading status, the initial granular arrangement, and the efforts applied to the material. The small deformation modelling is then presented and predictions are compared with experimental results obtained in the literature about a bus station. A general analog formulation is introduced, which associates three components (elastic, plastic and viscous). Models are calibrated with triaxial test results, and simulations of viscous and plastic phenomena allow the proposed approaches to be validated
International Nuclear Information System (INIS)
Xu, S.
1993-01-01
Molecular dynamics simulations of nucleation and phase transitions in TeF 6 and SeF 6 clusters containing 100-350 molecules were carried out. Simulations successfully reproduced the crystalline structures observed in electron diffraction studies of large clusters (containing about 10 4 molecules) of the same materials. When the clusters were cooled, they spontaneously underwent the same bcc the monoclinic phase transition in simulations as in experiment, despite the million-fold difference in the time scales involved. Other transitions observed included melting and freezing. Several new techniques based on molecular translation and orientation were introduced to identify different condensed phases, to study nucleation and phase transitions, and to define characteristic temperatures of transitions. The solid-state transition temperatures decreased with cluster size in the same way as did the melting temperature, in that the depression of transition temperature was inversely proportional to the cluster radius. Rotational melting temperatures, as inferred from the rotational diffusion of molecules, coincided with those of the solid-state transition. Nucleation in liquid-solid and bcc-monoclinic transitions started in the interior of clusters on cooling, and at the surface on heating. Transition temperatures on cooling were always lower than those on heating due to the barriers to nucleation. Linear growth rates of nuclei in freezing were an order of magnitude lower than those in the bcc-monoclinic transition. Revealing evidence about the molecular behavior associated with phase changes was found. Simulations showed the formation of the actual transition complexes along the transition pathway, i.e., the critical nuclei of the new phase. These nuclei, consisting of a few dozen molecules, were distinguishable in the midst of the surrounding matter
VR-Cluster: Dynamic Migration for Resource Fragmentation Problem in Virtual Router Platform
Directory of Open Access Journals (Sweden)
Xianming Gao
2016-01-01
Full Text Available Network virtualization technology is regarded as one of gradual schemes to network architecture evolution. With the development of network functions virtualization, operators make lots of effort to achieve router virtualization by using general servers. In order to ensure high performance, virtual router platform usually adopts a cluster of general servers, which can be also regarded as a special cloud computing environment. However, due to frequent creation and deletion of router instances, it may generate lots of resource fragmentation to prevent platform from establishing new router instances. In order to solve “resource fragmentation problem,” we firstly propose VR-Cluster, which introduces two extra function planes including switching plane and resource management plane. Switching plane is mainly used to support seamless migration of router instances without packet loss; resource management plane can dynamically move router instances from one server to another server by using VR-mapping algorithms. Besides, three VR-mapping algorithms including first-fit mapping algorithm, best-fit mapping algorithm, and worst-fit mapping algorithm are proposed based on VR-Cluster. At last, we establish VR-Cluster protosystem by using general X86 servers, evaluate its migration time, and further analyze advantages and disadvantages of our proposed VR-mapping algorithms to solve resource fragmentation problem.
Real-time dynamics of RNA Polymerase II clustering in live human cells
Cisse, Ibrahim
2014-03-01
Transcription is the first step in the central dogma of molecular biology, when genetic information encoded on DNA is made into messenger RNA. How this fundamental process occurs within living cells (in vivo) is poorly understood,[1] despite extensive biochemical characterizations with isolated biomolecules (in vitro). For high-order organisms, like humans, transcription is reported to be spatially compartmentalized in nuclear foci consisting of clusters of RNA Polymerase II, the enzyme responsible for synthesizing all messenger RNAs. However, little is known of when these foci assemble or their relative stability. We developed an approach based on photo-activation localization microscopy (PALM) combined with a temporal correlation analysis, which we refer to as tcPALM. The tcPALM method enables the real-time characterization of biomolecular spatiotemporal organization, with single-molecule sensitivity, directly in living cells.[2] Using tcPALM, we observed that RNA Polymerase II clusters form transiently, with an average lifetime of 5.1 (+/- 0.4) seconds. Stimuli affecting transcription regulation yielded orders of magnitude changes in the dynamics of the polymerase clusters, implying that clustering is regulated and plays a role in the cells ability to effect rapid response to external signals. Our results suggest that the transient crowding of enzymes may aid in rate-limiting steps of genome regulation.
Energetics and dynamics of the neutralization of clustered ions in ammonia and water vapour
International Nuclear Information System (INIS)
Sennhauser, E.S.; Armstrong, D.A.
1978-01-01
The energetics and dynamics of neutralization reactions of clustered ions in ammonia and water vapour have been analysed. Neutralization rate coefficients were calculated for the ions in ammonia and for H + .(H 2 O)sub(n) combining with various clustered anions in water vapour up to densities of 4 x 10 19 molecule cm -3 at 390 K. In the case of ammonia, calculations were also performed at 298 K. For all systems, fractional contributions of the neutralization coefficients for specific cluster sizes to the overall coefficient αsub(eff) were evaluated. The computed value of αsub(eff) for NH 3 was in reasonable agreement with experimental data in the [NH 3 ] range 0.3 to 4 x 10 19 molecule cm -3 , and general trends stemming from the effects of increasing ion mass were pointed out. Calculations of energies of individual cluster sizes indicate possible neutralization reaction mechanisms. With some exception, proton transfer is the only possible path and no H atoms should be formed. This is in general agreement with literature results for water vapour at approximately 390 K and with [H 2 O] >= 2 x 10 x 10 19 molecule cm -3 . (author)
On helium cluster dynamics in tungsten plasma facing components of fusion devices
International Nuclear Information System (INIS)
Krasheninnikov, S.I.; Faney, T.; Wirth, B.D.
2014-01-01
This paper describes the dynamics of helium clustering behaviour within either a nanometer-sized tendril of fuzz, or a half-space domain, as predicted by a reaction–diffusion model. This analysis has identified a dimensionless parameter, P Δ , which is a balance of the reaction and diffusion actions of insoluble He in a metal matrix and which governs the self-trapping effects of He into growing bubbles within a tendril. The impact of He self-trapping, as well as trapping caused by pre-existing traps in the form of lattice defects or clusters of impurities, within a half-space domain results in the formation of a densely packed layer of nanometer-sized bubbles with high number density. This prediction is consistent with available experimental observations in which a dense zone of helium bubbles is observed in tungsten, which are compared to estimates of the layer characteristics. Direct numerical simulation of the reaction–diffusion cluster dynamics supports the analysis presented here. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kohnert, Aaron A.; Wirth, Brian D. [University of Tennessee, Knoxville, Tennessee 37996-2300 (United States)
2015-04-21
The black dot damage features which develop in iron at low temperatures exhibit significant mobility during in situ irradiation experiments via a series of discrete, intermittent, long range hops. By incorporating this mobility into cluster dynamics models, the temperature dependence of such damage structures can be explained with a surprising degree of accuracy. Such motion, however, is one dimensional in nature. This aspect of the physics has not been fully considered in prior models. This article describes one dimensional reaction kinetics in the context of cluster dynamics and applies them to the black dot problem. This allows both a more detailed description of the mechanisms by which defects execute irradiation-induced hops while allowing a full examination of the importance of kinetic assumptions in accurately assessing the development of this irradiation microstructure. Results are presented to demonstrate whether one dimensional diffusion alters the dependence of the defect population on factors such as temperature and defect hop length. Finally, the size of interstitial loops that develop is shown to depend on the extent of the reaction volumes between interstitial clusters, as well as the dimensionality of these interactions.
International Nuclear Information System (INIS)
Acton, P.D.; Pilowsky, L.S.; Kung, H.F.; Ell, P.J.
1999-01-01
The segmentation of medical images is one of the most important steps in the analysis and quantification of imaging data. However, partial volume artefacts make accurate tissue boundary definition difficult, particularly for images with lower resolution commonly used in nuclear medicine. In single-photon emission tomography (SPET) neuroreceptor studies, areas of specific binding are usually delineated by manually drawing regions of interest (ROIs), a time-consuming and subjective process. This paper applies the technique of fuzzy c-means clustering (FCM) to automatically segment dynamic neuroreceptor SPET images. Fuzzy clustering was tested using a realistic, computer-generated, dynamic SPET phantom derived from segmenting an MR image of an anthropomorphic brain phantom. Also, the utility of applying FCM to real clinical data was assessed by comparison against conventional ROI analysis of iodine-123 iodobenzamide (IBZM) binding to dopamine D 2 /D 3 receptors in the brains of humans. In addition, a further test of the methodology was assessed by applying FCM segmentation to [ 123 I]IDAM images (5-iodo-2-[[2-2-[(dimethylamino)methyl]phenyl]thio] benzyl alcohol) of serotonin transporters in non-human primates. In the simulated dynamic SPET phantom, over a wide range of counts and ratios of specific binding to background, FCM correlated very strongly with the true counts (correlation coefficient r 2 >0.99, P 123 I]IBZM data comparable with manual ROI analysis, with the binding ratios derived from both methods significantly correlated (r 2 =0.83, P<0.0001). Fuzzy clustering is a powerful tool for the automatic, unsupervised segmentation of dynamic neuroreceptor SPET images. Where other automated techniques fail completely, and manual ROI definition would be highly subjective, FCM is capable of segmenting noisy images in a robust and repeatable manner. (orig.)
Dynamic connectivity algorithms for Monte Carlo simulations of the random-cluster model
International Nuclear Information System (INIS)
Elçi, Eren Metin; Weigel, Martin
2014-01-01
We review Sweeny's algorithm for Monte Carlo simulations of the random cluster model. Straightforward implementations suffer from the problem of computational critical slowing down, where the computational effort per edge operation scales with a power of the system size. By using a tailored dynamic connectivity algorithm we are able to perform all operations with a poly-logarithmic computational effort. This approach is shown to be efficient in keeping online connectivity information and is of use for a number of applications also beyond cluster-update simulations, for instance in monitoring droplet shape transitions. As the handling of the relevant data structures is non-trivial, we provide a Python module with a full implementation for future reference.
Estimation of radiation hardening in ferritic steels using the cluster dynamics models
Energy Technology Data Exchange (ETDEWEB)
Kwon, Jun Hyun; Kim, Whung Whoe; Hong, Jun Hwa [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2005-07-01
Evolution of microstructure under irradiation brings about the mechanical property changes of materials, of which the major concern is radiation hardening in this work. Radiation hardening is generally expressed in terms of an increase in yield strength as a function of radiation dose and temperature. Cluster dynamics model for radiation hardening has been developed to describe the evolution of point defects clusters (PDCs) and copperrich precipitates (CRPs). While the mathematical models developed by Stoller focus on the evolution of PDCs in ferritic steels under neutron irradiation, we slightly modify the model by including the CRP growth and estimate the magnitude of hardening induced by PDC and CRP. The model is then used to calculate the changes in yield strength of RPV steels. The calculation results are compared to measured yield strength values, obtained from surveillance testing of PWR vessel steels in France.
International Nuclear Information System (INIS)
Dalla Torre, J.; Fu, C.-C.; Willaime, F.; Barbu, A.; Bocquet, J.-L.
2006-01-01
The isochronal resistivity recovery in high purity α-iron irradiated by electrons was successfully reproduced by a multiscale modelling approach. The stability and mobility of small self-defect clusters determined by ab initio methods were used as input data for an event based Kinetic Monte Carlo (KMC) model, used to explore the defect population evolution during the annealing and to extract the resistivity recovery peaks. In this paper, we investigate the possibility of using an efficient mesoscale model, the Cluster Dynamics (CD), instead of KMC in this approach. The comparison between the two methods for various CD initial conditions shows the importance of spatial correlations between defects, which are neglected in the CD model. However, using appropriate initial conditions, e.g. starting from the concentration of Frenkel pairs after the uncorrelated stage I E , the CD model captures the main characteristics of subsequent defect population evolution, and it can therefore be used for fast and semi-quantitative investigations
Molecular dynamics study of B18H22 cluster implantation into silicon
International Nuclear Information System (INIS)
Marques, Luis A.; Pelaz, Lourdes; Santos, Ivan
2007-01-01
We have carried out molecular dynamics simulations of monatomic B and octadecaborane cluster implantations into Si in order to make a comparative study and determine the advantages and drawbacks of each approach when used to fabricate shallow junctions. We have simulated a total of 1000 cascades of monatomic boron and an equivalent of 56 cascades of octadecaborane in order to have good statistics. We have obtained and analyzed the doping profiles and the amount and morphology of the damage produced within the target. Our simulation results indicate that the use of octadecaborane clusters for the implantation process shows several advantages with respect to monatomic B beams, mainly related to the reduction of channeling and the lower amount of residual damage at the end of range
The structure, dynamics, and star formation rate of the Orion nebula cluster
International Nuclear Information System (INIS)
Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl
2014-01-01
The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ∼1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ∼5-8 free-fall times (t ff ). This implies a star formation efficiency per t ff of ε ff ∼ 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).
Dynamic PROOF clusters with PoD: architecture and user experience
Manafov, Anar
2011-12-01
PROOF on Demand (PoD) is a tool-set, which sets up a PROOF cluster on any resource management system. PoD is a user oriented product with an easy to use GUI and a command-line interface. It is fully automated. No administrative privileges or special knowledge is required to use it. PoD utilizes a plug-in system, to use different job submission front-ends. The current PoD distribution is shipped with LSF, Torque (PBS), Grid Engine, Condor, gLite, and SSH plug-ins. The product is to be extended. We therefore plan to implement a plug-in for AliEn Grid as well. Recently developed algorithms made it possible to efficiently maintain two types of connections: packet-forwarding and native PROOF connections. This helps to properly handle most kinds of workers, with and without firewalls. PoD maintains the PROOF environment automatically and, for example, prevents resource misusage in case when workers idle for too long. As PoD matures as a product and provides more plug-ins, it's used as a standard for setting up dynamic PROOF clusters in many different institutions. The GSI Analysis Facility (GSIAF) is in production since 2007. The static PROOF cluster has been phased out end of 2009. GSIAF is now completely based on PoD. Users create private dynamic PROOF clusters on the general purpose batch farm. This provides an easier resource sharing between interactive local batch and Grid usage. The main user communities are FAIR and ALICE.
International Nuclear Information System (INIS)
Romanova, M.M.
1985-01-01
The dynamics of a gas--star disk embedded in a dense, mildly oblate (flattening epsilon-c or approx. =0.2--0.3 the stable disk will survive for at least half the cluster evolution time. The possibility of a thin disk of stars existing inside a dense star cluster is considered. For small epsilon-c and for disk member stars having > or approx. =0.04 the mass of the cluster members, collisions between cluster and disk stars will have no effect on the disk evolution prior to instability
International Nuclear Information System (INIS)
Jing Yuhang; Meng Qingyuan; Zhao Wei
2009-01-01
Molecular dynamics simulations are performed to investigate the interaction between 60 deg. shuffle dislocation and tetrainterstitial (I 4 ) cluster in silicon, using Stillinger-Weber (SW) potential to calculate the interatomic forces. Based on Parrinello-Rahman method, shear stress is exerted on the model to move the dislocation. Simulation results show that the I 4 cluster can bend the dislocation line and delay the dislocation movement. During the course of intersection the dislocation line sections relatively far away from the I 4 cluster accelerate first, and then decelerate. The critical shear stress unpinning the 60 deg. dislocation from the I 4 cluster decreases as the temperature increases in the models.
Energy Technology Data Exchange (ETDEWEB)
Gong, Hengfeng, E-mail: gonghengfeng@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Division of Nuclear Materials and Engineering, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Wang, Chengbin; Zhang, Wei; Xu, Jian [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Division of Nuclear Materials and Engineering, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Division of Nuclear Materials and Engineering, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Deng, Huiqiu; Hu, Wangyu [Hunan University, Department of Applied Physics, Changsha 410082 (China)
2016-02-01
Highlights: • The He-related clusters exhibit the very high symmetry. • The trapping capability of vacancy to defects becomes weak due to the pre-existed SIA. • The average length of He{sub N}V{sub 1} clusters is longer than one of He{sub N} and He{sub N}V{sub 1}SIA{sub 1} cluster. - Abstract: Using molecular dynamics simulation, we investigated the energy and stability of helium-related cluster in nickel. All the binding energies of the He-related clusters are demonstrated to be positive and increase with the cluster sizes. Due to the pre-existed self-interstitial nickel atom, the trapping capability of vacancy to defects becomes weak. Besides, the minimum energy configurations of He-related clusters exhibit the very high symmetry in the local atomistic environment. And for the He{sub N} and He{sub N}V{sub 1}SIA{sub 1} clusters, the average length of He–He bonds shortens, but it elongates for the He{sub N}V{sub 1} clusters with helium cluster sizes. The helium-to-vacancy ratio plays a decisive role on the binding energies of He{sub N}V{sub M} cluster. These results can provide some excellent clues to insight the initial stage of helium bubbles nucleation and growth in the Ni-based alloys for the Generation-IV Molten Salt Reactor.
Campos, L Q Costa; Apolinario, S W S
2015-01-01
We implement Brownian dynamics to investigate the static properties of colloidal particles confined anisotropically and interacting via a potential which can be tailored in a repulsive-attractive-respulsive fashion as the interparticle distance increases. A diverse number of structural phases are self-assembled, which were classified according to two aspects, that is, their macroscopic and microscopic patterns. Concerning the microscopic phases we found the quasicrystalline, triangular, square, and mixed orderings, where this latter is a combination of square and triangular cells in a 3×2 proportion, i.e., the so-called (3(3),4(2)) Archimedian lattice. On the macroscopic level the system could self-organize in a compact or perforated single cluster surrounded or not by fringes. All the structural phases are summarized in detailed phases diagrams, which clearly show that the different phases are extended as the confinement potential becomes more anisotropic.
Anisotropic nonequilibrium hydrodynamic attractor
Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.
2018-02-01
We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.
Gnanasekaran, Ramachandran; Xu, Yao; Leitner, David M
2010-12-23
Water confined in proteins exhibits dynamics distinct from the dynamics of water in the bulk or near the surface of a biomolecule. We examine the water dynamics at the interface of the two globules of the homodimeric hemoglobin from Scapharca inaequivalvis (HbI) by molecular dynamics (MD) simulations, with focus on water-protein hydrogen bond lifetimes and rotational anisotropy of the interfacial waters. We find that relaxation of the waters at the interface of both deoxy- and oxy-HbI, which contain a cluster of 17 and 11 interfacial waters, respectively, is well described by stretched exponentials with exponents from 0.1 to 0.6 and relaxation times of tens to thousands of picoseconds. The interfacial water molecules of oxy-HbI exhibit slower rotational relaxation and hydrogen bond rearrangement than those of deoxy-HbI, consistent with an allosteric transition from unliganded to liganded conformers involving the expulsion of several water molecules from the interface. Though the interfacial waters are translationally and rotationally static on the picosecond time scale, they contribute to fast communication between the globules via vibrations. We find that the interfacial waters enhance vibrational energy transport across the interface by ≈10%.
The effect of gas dynamics on semi-analytic modelling of cluster galaxies
Saro, A.; De Lucia, G.; Dolag, K.; Borgani, S.
2008-12-01
We study the degree to which non-radiative gas dynamics affect the merger histories of haloes along with subsequent predictions from a semi-analytic model (SAM) of galaxy formation. To this aim, we use a sample of dark matter only and non-radiative smooth particle hydrodynamics (SPH) simulations of four massive clusters. The presence of gas-dynamical processes (e.g. ram pressure from the hot intra-cluster atmosphere) makes haloes more fragile in the runs which include gas. This results in a 25 per cent decrease in the total number of subhaloes at z = 0. The impact on the galaxy population predicted by SAMs is complicated by the presence of `orphan' galaxies, i.e. galaxies whose parent substructures are reduced below the resolution limit of the simulation. In the model employed in our study, these galaxies survive (unaffected by the tidal stripping process) for a residual merging time that is computed using a variation of the Chandrasekhar formula. Due to ram-pressure stripping, haloes in gas simulations tend to be less massive than their counterparts in the dark matter simulations. The resulting merging times for satellite galaxies are then longer in these simulations. On the other hand, the presence of gas influences the orbits of haloes making them on average more circular and therefore reducing the estimated merging times with respect to the dark matter only simulation. This effect is particularly significant for the most massive satellites and is (at least in part) responsible for the fact that brightest cluster galaxies in runs with gas have stellar masses which are about 25 per cent larger than those obtained from dark matter only simulations. Our results show that gas dynamics has only a marginal impact on the statistical properties of the galaxy population, but that its impact on the orbits and merging times of haloes strongly influences the assembly of the most massive galaxies.
Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties
Energy Technology Data Exchange (ETDEWEB)
Yan, Peng-Fei; Yuan, Qi-Rong [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Zhang, Li [QuFu Education Bureau, QuFu 273100 (China); Zhou, Xu, E-mail: pfyan0822@sina.com, E-mail: yuanqirong@njnu.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2014-05-01
Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have
Dynamics of voids and clusters and fluctuations in the cosmic background radiation
International Nuclear Information System (INIS)
Salpeter, E.E.
1983-01-01
The author summarizes briefly calculations on spherically symmetric models without dissipation for the dynamical development of large voids and galaxy (super)clusters from small underdensities and overdensities, respectively, at the recombination era. Implications are mentioned and conjectures for more complex geometries are discussed. He infers the density fluctuations which must have been present just after the recombination era to produce some present-day configuration. Fluctuations in the present-day cosmic background radiation are related to this and their inferred amplitude depends very strongly on the present-day value of the cosmological density parameter. The relation to observed upper limits on these fluctuations are discussed. (Auth.)
Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach
Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin
2017-08-01
Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.
One- and two-particle correlation functions in the dynamical quantum cluster approach
International Nuclear Information System (INIS)
Hochkeppel, Stephan
2008-01-01
This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA) which systematically restores non-local corrections to the Dynamical Mean Field approximation (DMFA). The DCA is formulated in momentum space and is characterised by a patching of the Brillouin zone where momentum conservation is only recovered between two patches. The approximation works well if k-space correlation functions show a weak momentum dependence. In order to study the temperature and doping dependence of the spin- and charge excitation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin and/or charge excitations. The effective vertex is calculated by using the Quantum Monte Carlo method on the finite cluster whereas the analytical continuation of dynamical quantities is performed by a stochastic version of the maximum entropy method. A comparison with high temperature auxiliary field quantum Monte Carlo data serves as a benchmark for our approach to two-particle correlation functions. Our method can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations: a collective spin mode emerges at optimal doping and sufficiently low temperatures in the spin response spectrum and exhibits the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy single-particle excitations are characterised by a coherent quasiparticle with bandwidth J. The origin of the quasiparticle can be quite well understood in a picture of a more or less antiferromagnetic ordered background in which holes
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
Energy Technology Data Exchange (ETDEWEB)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.
2015-12-17
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
Energy Technology Data Exchange (ETDEWEB)
Nadeau, Robert Michael [Univ. of California, Berkeley, CA (United States)
1995-10-01
This document contains information about the characterization and application of microearthquake clusters and fault zone dynamics. Topics discussed include: Seismological studies; fault-zone dynamics; periodic recurrence; scaling of microearthquakes to large earthquakes; implications of fault mechanics and seismic hazards; and wave propagation and temporal changes.
International Nuclear Information System (INIS)
Lin, Shiang-Jiun; Wu, Cheng-Da; Fang, Te-Hua; Chen, Guan-Hung
2012-01-01
The bombardment process of a Ni cluster onto a Cu (0 0 1) surface is studied using molecular dynamics (MD) simulations based on the tight-binding second-moment approximation (TB-SMA) many-body potential. The effects of incident cluster size, substrate temperature, and incident energy are evaluated in terms of molecular trajectories, kinetic energy, stress, self-diffusion coefficient, and sputtering yield. The simulation results clearly show that the penetration depth and Cu surface damage increase with increasing incident cluster size for a given incident energy per atom. The self-diffusion coefficient and the penetration depth of a cluster significantly increase with increasing substrate temperature. An incident cluster can be scattered into molecules or atoms that become embedded in the surface after incidence. When the incident energy is increased, the number of volcano-like defects and the penetration depth increase. A high sputtering yield can be obtained by increasing the incident energy at high temperature. The sputtering yield significantly increases with cluster size when the incident energy is above 5 eV/atom.
Dynamics of fragment capture for cluster structures of weakly bound 7Li
Directory of Open Access Journals (Sweden)
Shrivastava A.
2013-12-01
Full Text Available Role of cluster structures of 7Li on reaction dynamics have been studied by performing exclusive measurements of prompt-γ rays from residues with scattered particles at energy, E/Vb = 1.6, with 198Pt target. Yields of the residues resulting after capture of t and 4,5,6He, corresponding to different excitation energies of the composite system were estimated. The results were compared with three body classical-dynamical model for breakup fusion, constrained by the measured fusion, α and t capture cross-sections. The cross-section of residues from capture of α and t agreed well with the prediction of the model showing dominance of the two step process - breakup fusion, while those from tightly bound 6He showed massive transfer to be the dominant mechanism.
A survey of energy conservation mechanisms for dynamic cluster based wireless sensor networks
International Nuclear Information System (INIS)
Enam, R.N.; Tahir, M.; Ahmed, S.; Qureshi, R.
2018-01-01
WSN (Wireless Sensor Network) is an emerging technology that has unlimited potential for numerous application areas including military, crisis management, environmental, transportation, medical, home/ city automations and smart spaces. But energy constrained nature of WSNs necessitates that their architecture and communicating protocols to be designed in an energy aware manner. Sensor data collection through clustering mechanisms has become a common strategy in WSN. This paper presents a survey report on the major perspectives with which energy conservation mechanisms has been proposed in dynamic cluster based WSNs so far. All the solutions discussed in this paper focus on the cluster based protocols only.We have covered a vast scale of existing energy efficient protocols and have categorized them in six categories. In the beginning of this paper the fundamentals of the energy constraint issues of WSNs have been discussed and an overview of the causes of energy consumptions at all layers of WSN has been given. Later in this paper several previously proposed energy efficient protocols of WSNs are presented. (author)
Theoretical study of electronic and dynamic properties of simple metal clusters in jellium model
International Nuclear Information System (INIS)
El-Amine Madjet, M.
1994-01-01
We have studied the electronic properties of alkali-metal clusters in various theoretical approximations and in the framework of the spherical jellium model. We have investigated the ground state properties of alkali clusters both in the LDA (local density approximation) and in HF (Hartree-Fock) theory. We have compared the LDA predictions of the ground state properties to predictions obtained within the HF theory. Such a comparison permitted us to check the validity of the local density functional theory in describing the ground state of a finite fermion system. For the study of collective dipolar excitations in clusters, we have considered an electromagnetic excitation. We have investigated the collective modes in the following approximations: random phase approximation (RPA), time-dependent local-density approximation (TDLDA) and the sum-rules approach. An assessment of the approximation for the continuum state within the RPA is made by comparing with TDLDA calculations for the static and dynamic electronic properties. The comparative study that we have done on the exchange-correlation effects on the electronic and optical properties have shown that the discrepancies with measured data are due mostly to the jellium approximation for the ionic background. (author). 69 refs., 30 figs., 18 tabs
Energy Technology Data Exchange (ETDEWEB)
Dunn, Aaron [Sandia National Laboratories, Albuquerque, 87185 NM (United States); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, 30332 GA (United States); Muntifering, Brittany [Sandia National Laboratories, Albuquerque, 87185 NM (United States); Northwestern University, Chicago, 60208 IL (United States); Dingreville, Rémi; Hattar, Khalid [Sandia National Laboratories, Albuquerque, 87185 NM (United States); Capolungo, Laurent, E-mail: laurent@lanl.gov [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, 30332 GA (United States); Material Science and Technology Division, MST-8, Los Alamos National Laboratory, Los Alamos, 87545 NM (United States)
2016-11-15
Charged particle irradiation is a frequently used experimental tool to study damage accumulation in metals expected during neutron irradiation. Understanding the correspondence between displacement rate and temperature during such studies is one of several factors that must be taken into account in order to design experiments that produce equivalent damage accumulation to neutron damage conditions. In this study, spatially resolved stochastic cluster dynamics (SRSCD) is used to simulate damage evolution in α-Fe and find displacement rate/temperature pairs under ‘target’ and ‘proxy’ conditions for which the local distribution of vacancies and vacancy clusters is the same as a function of displacement damage. The SRSCD methodology is chosen for this study due to its computational efficiency and ability to simulate damage accumulation in spatially inhomogeneous materials such as thin films. Results are presented for Frenkel pair irradiation and displacement cascade damage in thin films and bulk α-Fe. Holding all other material and irradiation conditions constant, temperature adjustments are shown to successfully make up for changes in displacement rate such that defect concentrations and cluster sizes remain relatively constant. The methodology presented in this study allows for a first-order prediction of the temperature at which ion irradiation experiments (‘proxy’ conditions) should take place in order to approximate neutron irradiation (‘target’ conditions).
A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data
Directory of Open Access Journals (Sweden)
Alessandro Manzi
2017-05-01
Full Text Available Human activity recognition is an important area in computer vision, with its wide range of applications including ambient assisted living. In this paper, an activity recognition system based on skeleton data extracted from a depth camera is presented. The system makes use of machine learning techniques to classify the actions that are described with a set of a few basic postures. The training phase creates several models related to the number of clustered postures by means of a multiclass Support Vector Machine (SVM, trained with Sequential Minimal Optimization (SMO. The classification phase adopts the X-means algorithm to find the optimal number of clusters dynamically. The contribution of the paper is twofold. The first aim is to perform activity recognition employing features based on a small number of informative postures, extracted independently from each activity instance; secondly, it aims to assess the minimum number of frames needed for an adequate classification. The system is evaluated on two publicly available datasets, the Cornell Activity Dataset (CAD-60 and the Telecommunication Systems Team (TST Fall detection dataset. The number of clusters needed to model each instance ranges from two to four elements. The proposed approach reaches excellent performances using only about 4 s of input data (~100 frames and outperforms the state of the art when it uses approximately 500 frames on the CAD-60 dataset. The results are promising for the test in real context.
A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data.
Manzi, Alessandro; Dario, Paolo; Cavallo, Filippo
2017-05-11
Human activity recognition is an important area in computer vision, with its wide range of applications including ambient assisted living. In this paper, an activity recognition system based on skeleton data extracted from a depth camera is presented. The system makes use of machine learning techniques to classify the actions that are described with a set of a few basic postures. The training phase creates several models related to the number of clustered postures by means of a multiclass Support Vector Machine (SVM), trained with Sequential Minimal Optimization (SMO). The classification phase adopts the X-means algorithm to find the optimal number of clusters dynamically. The contribution of the paper is twofold. The first aim is to perform activity recognition employing features based on a small number of informative postures, extracted independently from each activity instance; secondly, it aims to assess the minimum number of frames needed for an adequate classification. The system is evaluated on two publicly available datasets, the Cornell Activity Dataset (CAD-60) and the Telecommunication Systems Team (TST) Fall detection dataset. The number of clusters needed to model each instance ranges from two to four elements. The proposed approach reaches excellent performances using only about 4 s of input data (~100 frames) and outperforms the state of the art when it uses approximately 500 frames on the CAD-60 dataset. The results are promising for the test in real context.
Dynamic Fuzzy Clustering Method for Decision Support in Electricity Markets Negotiation
Directory of Open Access Journals (Sweden)
Ricardo FAIA
2016-10-01
Full Text Available Artificial Intelligence (AI methods contribute to the construction of systems where there is a need to automate the tasks. They are typically used for problems that have a large response time, or when a mathematical method cannot be used to solve the problem. However, the application of AI brings an added complexity to the development of such applications. AI has been frequently applied in the power systems field, namely in Electricity Markets (EM. In this area, AI applications are essentially used to forecast / estimate the prices of electricity or to search for the best opportunity to sell the product. This paper proposes a clustering methodology that is combined with fuzzy logic in order to perform the estimation of EM prices. The proposed method is based on the application of a clustering methodology that groups historic energy contracts according to their prices’ similarity. The optimal number of groups is automatically calculated taking into account the preference for the balance between the estimation error and the number of groups. The centroids of each cluster are used to define a dynamic fuzzy variable that approximates the tendency of contracts’ history. The resulting fuzzy variable allows estimating expected prices for contracts instantaneously and approximating missing values in the historic contracts.
Shi, Lin; Wang, Defeng; Liu, Wen; Fang, Kui; Wang, Yi-Xiang J; Huang, Wenhua; King, Ann D; Heng, Pheng Ann; Ahuja, Anil T
2014-05-01
To automatically and robustly detect the arterial input function (AIF) with high detection accuracy and low computational cost in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In this study, we developed an automatic AIF detection method using an accelerated version (Fast-AP) of affinity propagation (AP) clustering. The validity of this Fast-AP-based method was proved on two DCE-MRI datasets, i.e., rat kidney and human head and neck. The detailed AIF detection performance of this proposed method was assessed in comparison with other clustering-based methods, namely original AP and K-means, as well as the manual AIF detection method. Both the automatic AP- and Fast-AP-based methods achieved satisfactory AIF detection accuracy, but the computational cost of Fast-AP could be reduced by 64.37-92.10% on rat dataset and 73.18-90.18% on human dataset compared with the cost of AP. The K-means yielded the lowest computational cost, but resulted in the lowest AIF detection accuracy. The experimental results demonstrated that both the AP- and Fast-AP-based methods were insensitive to the initialization of cluster centers, and had superior robustness compared with K-means method. The Fast-AP-based method enables automatic AIF detection with high accuracy and efficiency. Copyright © 2013 Wiley Periodicals, Inc.
A Survey of Energy Conservation Mechanisms for Dynamic Cluster Based Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Rabia Noor Enam
2018-04-01
Full Text Available WSN (Wireless Sensor Network is an emerging technology that has unlimited potential for numerous application areas including military, crisis management, environmental, transportation, medical, home/ city automations and smart spaces. But energy constrained nature of WSNs necessitates that their architecture and communicating protocols to be designed in an energy aware manner. Sensor data collection through clustering mechanisms has become a common strategy in WSN. This paper presents a survey report on the major perspectives with which energy conservation mechanisms has been proposed in dynamic cluster based WSNs so far. All the solutions discussed in this paper focus on the cluster based protocols only.We have covered a vast scale of existing energy efficient protocols and have categorized them in six categories. In the beginning of this paper the fundamentals of the energy constraint issues of WSNs have been discussed and an overview of the causes of energy consumptions at all layers of WSN has been given. Later in this paper several previously proposed energy efficient protocols of WSNs are presented.
Anisotropic gravitational instability
International Nuclear Information System (INIS)
Polyachenko, V.L.; Fridman, A.M.
1988-01-01
Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common
Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells
Energy Technology Data Exchange (ETDEWEB)
Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)
2009-10-15
Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.
The shape of velocity dispersion profiles and the dynamical state of galaxy clusters
Costa, A. P.; Ribeiro, A. L. B.; de Carvalho, R. R.
2018-01-01
Motivated by the existence of the relationship between the dynamical state of clusters and the shape of the velocity dispersion profiles (VDPs), we study the VDPs for Gaussian (G) and non-Gaussian (NG) systems for a subsample of clusters from the Yang catalogue. The groups cover a redshift interval of 0.03 ≤ z ≤ 0.1 with halo mass ≥1014 M⊙. We use a robust statistical method, Hellinger Distance, to classify the dynamical state of the systems according to their velocity distribution. The stacked VDP of each class, G and NG, is then determined using either Bright or Faint galaxies. The stacked VDP for G groups displays a central peak followed by a monotonically decreasing trend which indicates a predominance of radial orbits, with the Bright stacked VDP showing lower velocity dispersions in all radii. The distinct features we find in NG systems are manifested not only by the characteristic shape of VDP, with a depression in the central region, but also by a possible higher infall rate associated with galaxies in the Faint stacked VDP.
Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells
International Nuclear Information System (INIS)
Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro
2009-01-01
Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, β-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.
A clustering approach to examine the dynamics of the NASDAQ topology in times of crisis
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-10-01
Full Text Available This paper investigates the dynamics of the NASDAQ topology before, during, and after 2008 financial crisis. First, multiresolution analysis by virtue of wavelet transform is employed to denoise each NASDAQ sector return series. Second, the correlation matrix of sectors is built and analyzed in each time period to view comovements of sectors. Third, hierarchical clustering trees are constructed in each time period to find out how the structure of the NASDAQ market evolves through time. Our results suggest that interrelationships between sectors become stronger in times of crisis and especially in post-crisis period. In addition, some markets tend to form the same cluster in all time periods; for instance the Industrial and Bank sectors and the Telecommunication and Computer sectors. However, the general topology of the NASDAQ market has been considerably changed over periods. In sum, the complex structure of the NASDAQ market is dynamic and is more integrated after 2008 financial crisis. This result indicates that there are less diversification opportunities in the post-crisis period in comparison with pre-crisis period. These empirical findings are important for the development of subsequent portfolio strategies.
U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization
Anjos, A; Ruiz-Ruano, F J; Camacho, J P M; Loreto, V; Cabrero, J; de Souza, M J; Cabral-de-Mello, D C
2015-01-01
The spliceosome, constituted by a protein set associated with small nuclear RNA (snRNA), is responsible for mRNA maturation through intron removal. Among snRNA genes, U1 is generally a conserved repetitive sequence. To unveil the chromosomal/genomic dynamics of this multigene family in grasshoppers, we mapped U1 genes by fluorescence in situ hybridization in 70 species belonging to the families Proscopiidae, Pyrgomorphidae, Ommexechidae, Romaleidae and Acrididae. Evident clusters were observed in all species, indicating that, at least, some U1 repeats are tandemly arrayed. High conservation was observed in the first four families, with most species carrying a single U1 cluster, frequently located in the third or fourth longest autosome. By contrast, extensive variation was observed among Acrididae, from a single chromosome pair carrying U1 to all chromosome pairs carrying it, with occasional occurrence of two or more clusters in the same chromosome. DNA sequence analysis in Eyprepocnemis plorans (species carrying U1 clusters on seven different chromosome pairs) and Locusta migratoria (carrying U1 in a single chromosome pair) supported the coexistence of functional and pseudogenic lineages. One of these pseudogenic lineages was truncated in the same nucleotide position in both species, suggesting that it was present in a common ancestor to both species. At least in E. plorans, this U1 snDNA pseudogenic lineage was associated with 5S rDNA and short interspersed elements (SINE)-like mobile elements. Given that we conclude in grasshoppers that the U1 snDNA had evolved under the birth-and-death model and that its intragenomic spread might be related with mobile elements. PMID:25248465
International Nuclear Information System (INIS)
Campbell, W; Miften, M; Jones, B
2016-01-01
Purpose: Pancreatic SBRT relies on extremely accurate delivery of ablative radiation doses to the target, and intra-fractional tracking of fiducial markers can facilitate improvements in dose delivery. However, this requires algorithms that are able to find fiducial markers with high speed and accuracy. The purpose of this study was to develop a novel marker tracking algorithm that is robust against many of the common errors seen with traditional template matching techniques. Methods: Using CBCT projection images, a method was developed to create detailed template images of fiducial marker clusters without prior knowledge of the number of markers, their positions, or their orientations. Briefly, the method (i) enhances markers in projection images, (ii) stabilizes the cluster’s position, (iii) reconstructs the cluster in 3D, and (iv) precomputes a set of static template images dependent on gantry angle. Furthermore, breathing data were used to produce 4D reconstructions of clusters, yielding dynamic template images dependent on gantry angle and breathing amplitude. To test these two approaches, static and dynamic templates were used to track the motion of marker clusters in more than 66,000 projection images from 75 CBCT scans of 15 pancreatic SBRT patients. Results: For both static and dynamic templates, the new technique was able to locate marker clusters present in projection images 100% of the time. The algorithm was also able to correctly locate markers in several instances where only some of the markers were visible due to insufficient field-of-view. In cases where clusters exhibited deformation and/or rotation during breathing, dynamic templates resulted in cross-correlation scores up to 70% higher than static templates. Conclusion: Patient-specific templates provided complete tracking of fiducial marker clusters in CBCT scans, and dynamic templates helped to provide higher cross-correlation scores for deforming/rotating clusters. This novel algorithm
Energy Technology Data Exchange (ETDEWEB)
Campbell, W; Miften, M; Jones, B [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO (United States)
2016-06-15
Purpose: Pancreatic SBRT relies on extremely accurate delivery of ablative radiation doses to the target, and intra-fractional tracking of fiducial markers can facilitate improvements in dose delivery. However, this requires algorithms that are able to find fiducial markers with high speed and accuracy. The purpose of this study was to develop a novel marker tracking algorithm that is robust against many of the common errors seen with traditional template matching techniques. Methods: Using CBCT projection images, a method was developed to create detailed template images of fiducial marker clusters without prior knowledge of the number of markers, their positions, or their orientations. Briefly, the method (i) enhances markers in projection images, (ii) stabilizes the cluster’s position, (iii) reconstructs the cluster in 3D, and (iv) precomputes a set of static template images dependent on gantry angle. Furthermore, breathing data were used to produce 4D reconstructions of clusters, yielding dynamic template images dependent on gantry angle and breathing amplitude. To test these two approaches, static and dynamic templates were used to track the motion of marker clusters in more than 66,000 projection images from 75 CBCT scans of 15 pancreatic SBRT patients. Results: For both static and dynamic templates, the new technique was able to locate marker clusters present in projection images 100% of the time. The algorithm was also able to correctly locate markers in several instances where only some of the markers were visible due to insufficient field-of-view. In cases where clusters exhibited deformation and/or rotation during breathing, dynamic templates resulted in cross-correlation scores up to 70% higher than static templates. Conclusion: Patient-specific templates provided complete tracking of fiducial marker clusters in CBCT scans, and dynamic templates helped to provide higher cross-correlation scores for deforming/rotating clusters. This novel algorithm
Algebraic solution of an anisotropic nonquadratic potential
International Nuclear Information System (INIS)
Boschi Filho, H.; Vaidya, A.N.
1990-06-01
We show that an anisotropic nonquadratic potential, for which a path integral treatment had been recently discussed in the literature, possesses the (SO(2,1)xSO(2,1))ΛSO(2,1) dynamical symmetry and constructs its Green function algebraically. A particular case which generates new eigenvalues and eigenfunctions is also discussed. (author). 11 refs
Lam, Wai Sze Tiffany
Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for
Theoretical studies of zirconium and carbon clusters with molecular dynamics simulations
International Nuclear Information System (INIS)
Zhang, B.
1993-01-01
With the aim of understanding the anomalous phonon behavior near the martensitic phase transition in Zr, we have simulated the dynamics of atomic motion in the high temperature bcc phase of Zr using an embedded-atom potential. The calculated dynamical structure factors reproduce the strong asymmetry in the scattering cross-sections in different Brillouin zones observed in inelastic neutron scattering experiments. From the real-space atomic picture, we observed the phase fluctuations between bcc and low temperature phase hcp. The anomalous phonon behavior arises from the incompleteness of the phase fluctuations. Combining an efficient simulated annealing scheme for generating closed, hollow, spheroidal cage structures with a tight-binding molecular-dynamics method for energy optimization. We have systematically studied the ground-state structure of every even-numbered carbon fullerene from C 20 to C 100 . Clusters of sizes 60, 70, and 84 are found to be energetically more stable than their neighbors. Most ground-state structures of fullerenes have relatively low symmetries. In many cases, several isomers of a fullerene are found to have competitively low energies, which suggests that a mixture of these isomers can be observed in experimentally prepared samples. We also simulate the collisions between fullerene and the thermal disintegration of fullerenes. We observed three different regimes of behavior as the collisions become more and more energetic: bouncing, fusion and fragmentation. The critical energies for fusion and fragmentation as well as details of the energy transfer process during the collisions are investigated. In simulations of the thermal disintegration of fullerene cages, the most commonly observed fragments after the disintegration of the carbon cages are dimers, rings, and multiple rings. The fragmentation temperature increases almost linearly with cluster size for small cages (n ≤ 58), but remains constant for larger fullerenes
Daub, Christopher D; Cann, Natalie M
2012-11-01
We study small clusters of water or methanol containing a single Ca(2+), Na(+), or Cl(-) ion with classical molecular dynamics simulations, using models that incorporate polarizability via the Drude oscillator framework. Evaporation and condensation of solvent from these clusters is examined in two systems, (1) for isolated clusters initially prepared at different temperatures and (2) those with a surrounding inert (Ar) gas of varying temperature. We examine these clusters over a range of sizes, from almost bare ions up to 40 solvent molecules. We report data on the evaporation and condensation of solvent from the clusters and argue that the observed temperature dependence of evaporation in the smallest clusters demonstrates that the presence of heated gas alone cannot, in most cases, solely account for bare ion production in electrospray ionization (ESI), neglecting the key contribution of the electric field. We also present our findings on the structure and energetics of the clusters as a function of size. Our data agree well with the abundant literature on hydrated ion clusters and offer some novel insight into the structure of methanol and ion clusters, especially those with a Cl(-) anion, where we observe the presence of chain-like structures of methanol molecules. Finally, we provide some data on the reparameterizations necessary to simulate ions in methanol using the separately developed Drude oscillator models for methanol and for ions in water.
Modelling of CMUTs with Anisotropic Plates
DEFF Research Database (Denmark)
la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt
2012-01-01
Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...... calculations match perfectly with FEM while an isotropic approach causes up to 10% deviations in deflection profile. Furthermore, we show how commonly used analytic modelling methods such as static calculations of the pull-in voltage and dynamic modelling through an equivalent circuit representation can...
Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A
2018-04-13
We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.
Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.
2018-04-01
We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.
Solov'yov, Andrey; ISACC 2007; Latest advances in atomic cluster collisions
2008-01-01
This book presents a 'snapshot' of the most recent and significant advances in the field of cluster physics. It is a comprehensive review based on contributions by the participants of the 2nd International Symposium on Atomic Cluster Collisions (ISACC 2007) held in July 19-23, 2007 at GSI, Darmstadt, Germany. The purpose of the Symposium is to promote the growth and exchange of scientific information on the structure and properties of nuclear, atomic, molecular, biological and complex cluster systems studied by means of photonic, electronic, heavy particle and atomic collisions. Particular attention is devoted to dynamic phenomena, many-body effects taking place in cluster systems of a different nature - these include problems of fusion and fission, fragmentation, collective electron excitations, phase transitions, etc.Both the experimental and theoretical aspects of cluster physics, uniquely placed between nuclear physics on the one hand and atomic, molecular and solid state physics on the other, are discuss...
EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary
Directory of Open Access Journals (Sweden)
A. T. Aikio
2008-02-01
Full Text Available The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromsø (66.6° cgmLat and Longyearbyen (75.2° cgmLat on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB made zig-zag-type motion with amplitude of 2.5° cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL. The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992. The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm.
During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4 R_{E} mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H^{+} and O^{+} ions took place within the plasma sheet boundary layer (PSBL as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency fluctuations.
The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2° during
International Nuclear Information System (INIS)
Bankura, Arindam; Chandra, Amalendu
2012-01-01
Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH − (H 2 O) n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH − (H 2 O) n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.
Hydrodynamic cavitation in Stokes flow of anisotropic fluids
Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam
2017-01-01
Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domai...
Dynamics of electron solvation in I-(CH3OH)n clusters (4 ≤n≤ 11)
International Nuclear Information System (INIS)
Young, Ryan M.; Yandell, Margaret A.; Neumark, Daniel M.
2011-01-01
The dynamics of electron solvation following excitation of the charge-transfer-to-solvent precursor state in iodide-doped methanol clusters, I - (CH 3 OH) n=4-11 , are studied with time-resolved photoelectron imaging. This excitation produces a I ... (CH 3 OH) n - cluster that is unstable with respect to electron autodetachment and whose autodetachment lifetime increases monotonically from ∼800 fs to 85 ps as n increases from 4 to 11. The vertical detachment energy (VDE) and width of the excited state feature in the photoelectron spectrum show complex time dependence during the lifetime of this state. The VDE decreases over the first 100-400 fs, then rises exponentially to a maximum with a ∼1 ps time constant, and finally decreases by as much as 180 meV with timescales of 3-20 ps. The early dynamics are associated with electron transfer from the iodide to the methanol cluster, while the longer-time changes in VDE are attributed to solvent reordering, possibly in conjunction with ejection of neutral iodine from the cluster. Changes in the observed width of the spectrum largely follow those of the VDEs; the dynamics of both are attributed to the major rearrangement of the solvent cluster during relaxation. The relaxation dynamics are interpreted as a reorientation of at least one methanol molecule and the disruption and formation of the solvent network in order to accommodate the excess charge.
Dynamics of electron solvation in I(-)(CH3OH)n clusters (4 ≤ n ≤ 11).
Young, Ryan M; Yandell, Margaret A; Neumark, Daniel M
2011-03-28
The dynamics of electron solvation following excitation of the charge-transfer-to-solvent precursor state in iodide-doped methanol clusters, I(-)(CH(3)OH)(n = 4-11), are studied with time-resolved photoelectron imaging. This excitation produces a I···(CH(3)OH)(n)(-) cluster that is unstable with respect to electron autodetachment and whose autodetachment lifetime increases monotonically from ~800 fs to 85 ps as n increases from 4 to 11. The vertical detachment energy (VDE) and width of the excited state feature in the photoelectron spectrum show complex time dependence during the lifetime of this state. The VDE decreases over the first 100-400 fs, then rises exponentially to a maximum with a ~1 ps time constant, and finally decreases by as much as 180 meV with timescales of 3-20 ps. The early dynamics are associated with electron transfer from the iodide to the methanol cluster, while the longer-time changes in VDE are attributed to solvent reordering, possibly in conjunction with ejection of neutral iodine from the cluster. Changes in the observed width of the spectrum largely follow those of the VDEs; the dynamics of both are attributed to the major rearrangement of the solvent cluster during relaxation. The relaxation dynamics are interpreted as a reorientation of at least one methanol molecule and the disruption and formation of the solvent network in order to accommodate the excess charge.
Paul, Subhajit; Das, Subir K.
2018-03-01
Via event-driven molecular dynamics simulations we study kinetics of clustering in assemblies of inelastic particles in various space dimensions. We consider two models, viz., the ballistic aggregation model (BAM) and the freely cooling granular gas model (GGM), for each of which we quantify the time dependence of kinetic energy and average mass of clusters (that form due to inelastic collisions). These quantities, for both the models, exhibit power-law behavior, at least in the long time limit. For the BAM, corresponding exponents exhibit strong dimension dependence and follow a hyperscaling relation. In addition, in the high packing fraction limit the behavior of these quantities become consistent with a scaling theory that predicts an inverse relation between energy and mass. On the other hand, in the case of the GGM we do not find any evidence for such a picture. In this case, even though the energy decay, irrespective of packing fraction, matches quantitatively with that for the high packing fraction picture of the BAM, it is inversely proportional to the growth of mass only in one dimension, and the growth appears to be rather insensitive to the choice of the dimension, unlike the BAM.
The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics
International Nuclear Information System (INIS)
Tremaine, Scott
2003-01-01
focus on N 10 6 for two main reasons: first, direct numerical integrations of N-body systems are beginning to approach this threshold, and second, globular star clusters provide remarkably accurate physical instantiations of the idealized N-body problem with N = 10 5 - 10 6 . The authors are distinguished contributors to the study of star-cluster dynamics and the gravitational N-body problem. The book contains lucid and concise descriptions of most of the important tools in the subject, with only a modest bias towards the authors' own interests. These tools include the two-body relaxation approximation, the Vlasov and Fokker-Planck equations, regularization of close encounters, conducting fluid models, Hill's approximation, Heggie's law for binary star evolution, symplectic integration algorithms, Liapunov exponents, and so on. The book also provides an up-to-date description of the principal processes that drive the evolution of idealized N-body systems - two-body relaxation, mass segregation, escape, core collapse and core bounce, binary star hardening, gravothermal oscillations - as well as additional processes such as stellar collisions and tidal shocks that affect real star clusters but not idealized N-body systems. In a relatively short (300 pages plus appendices) book such as this, many topics have to be omitted. The reader who is hoping to learn about the phenomenology of star clusters will be disappointed, as the description of their properties is limited to only a page of text; there is also almost no discussion of other, equally interesting N-body systems such as galaxies(N ∼ 10 6 - 10 12 ), open clusters (N ≅ 10 2 - 10 4 ), planetary systems, or the star clusters surrounding black holes that are found in the centres of most galaxies. All of these omissions are defensible decisions. Less defensible is the uneven set of references in the text; for example, nowhere is the reader informed that the classic predecessor to this work was Spitzer's 1987 monograph
Meng, Xiaocheng; Che, Renfei; Gao, Shi; He, Juntao
2018-04-01
With the advent of large data age, power system research has entered a new stage. At present, the main application of large data in the power system is the early warning analysis of the power equipment, that is, by collecting the relevant historical fault data information, the system security is improved by predicting the early warning and failure rate of different kinds of equipment under certain relational factors. In this paper, a method of line failure rate warning is proposed. Firstly, fuzzy dynamic clustering is carried out based on the collected historical information. Considering the imbalance between the attributes, the coefficient of variation is given to the corresponding weights. And then use the weighted fuzzy clustering to deal with the data more effectively. Then, by analyzing the basic idea and basic properties of the relational analysis model theory, the gray relational model is improved by combining the slope and the Deng model. And the incremental composition and composition of the two sequences are also considered to the gray relational model to obtain the gray relational degree between the various samples. The failure rate is predicted according to the principle of weighting. Finally, the concrete process is expounded by an example, and the validity and superiority of the proposed method are verified.
International Nuclear Information System (INIS)
Hills, J.G.
1975-01-01
We use analytic models to compute the evolution of the core of a stellar system due simultaneously to stellar evaporation which causes the system (core) to contract and to its binaries which cause it to expand by progressively decreasing its binding energy. The evolution of the system is determined by two parameters: the initial number of stars in the system N 0 , and the fraction f/subb/ of its stars which are binaries. For a fixed f/subb/, stellar evaporation initially dominates the dynamical evolution if N 0 is sufficiently large due to the fact that the rate of evaporation is determined chiefly by long-range encounters which increase in importance as the number of stars in the system increases. If stellar evaporation initially dominates, the system first contracts, but as N/subc/, the number of remaining stars in the system, decreases by evaporation, the system reaches a minimum radius and a maximum density and then it expands monotonically as N/subc/ decreases further. Open clusters expand monotonically from the beginning if they have anything approaching average Population I binary frequencies. Globular clusters are highly deficient in binaries in order to have formed and retained the high-density stellar cores observed in most of them. We estimate that for these system f/subb/ < or = 0.15
Heggie, D.; Hut, P.
2003-10-01
focus on N = 106 for two main reasons: first, direct numerical integrations of N-body systems are beginning to approach this threshold, and second, globular star clusters provide remarkably accurate physical instantiations of the idealized N-body problem with N = 105 - 106. The authors are distinguished contributors to the study of star-cluster dynamics and the gravitational N-body problem. The book contains lucid and concise descriptions of most of the important tools in the subject, with only a modest bias towards the authors' own interests. These tools include the two-body relaxation approximation, the Vlasov and Fokker-Planck equations, regularization of close encounters, conducting fluid models, Hill's approximation, Heggie's law for binary star evolution, symplectic integration algorithms, Liapunov exponents, and so on. The book also provides an up-to-date description of the principal processes that drive the evolution of idealized N-body systems - two-body relaxation, mass segregation, escape, core collapse and core bounce, binary star hardening, gravothermal oscillations - as well as additional processes such as stellar collisions and tidal shocks that affect real star clusters but not idealized N-body systems. In a relatively short (300 pages plus appendices) book such as this, many topics have to be omitted. The reader who is hoping to learn about the phenomenology of star clusters will be disappointed, as the description of their properties is limited to only a page of text; there is also almost no discussion of other, equally interesting N-body systems such as galaxies(N approx 106 - 1012), open clusters (N simeq 102 - 104), planetary systems, or the star clusters surrounding black holes that are found in the centres of most galaxies. All of these omissions are defensible decisions. Less defensible is the uneven set of references in the text; for example, nowhere is the reader informed that the classic predecessor to this work was Spitzer's 1987 monograph
Calculations of Helium Bubble Evolution in the PISCES Experiments with Cluster Dynamics
Blondel, Sophie; Younkin, Timothy; Wirth, Brian; Lasa, Ane; Green, David; Canik, John; Drobny, Jon; Curreli, Davide
2017-10-01
Plasma surface interactions in fusion tokamak reactors involve an inherently multiscale, highly non-equilibrium set of phenomena, for which current models are inadequate to predict the divertor response to and feedback on the plasma. In this presentation, we describe the latest code developments of Xolotl, a spatially-dependent reaction diffusion cluster dynamics code to simulate the divertor surface response to fusion-relevant plasma exposure. Xolotl is part of a code-coupling effort to model both plasma and material simultaneously; the first benchmark for this effort is the series of PISCES linear device experiments. We will discuss the processes leading to surface morphology changes, which further affect erosion, as well as how Xolotl has been updated in order to communicate with other codes. Furthermore, we will show results of the sub-surface evolution of helium bubbles in tungsten as well as the material surface displacement under these conditions.
Coupled cluster calculations for static and dynamic polarizabilities of C60
Kowalski, Karol; Hammond, Jeff R.; de Jong, Wibe A.; Sadlej, Andrzej J.
2008-12-01
New theoretical predictions for the static and frequency dependent polarizabilities of C60 are reported. Using the linear response coupled cluster approach with singles and doubles and a basis set especially designed to treat the molecular properties in external electric field, we obtained 82.20 and 83.62 Å3 for static and dynamic (λ =1064 nm) polarizabilities. These numbers are in a good agreement with experimentally inferred data of 76.5±8 and 79±4 Å3 [R. Antoine et al., J. Chem. Phys.110, 9771 (1999); A. Ballard et al., J. Chem. Phys.113, 5732 (2000)]. The reported results were obtained with the highest wave function-based level of theory ever applied to the C60 system.
International Nuclear Information System (INIS)
Acton, P.D.; Pilowsky, L.S.; Costa, D.C.; Ell, P.J.
1997-01-01
This paper describes the application of a multivariate statistical technique to investigate striatal dopamine D 2 receptor concentrations measured by iodine-123 iodobenzamide ( 123 I-IBZM) single-photon emission tomography (SPET). This technique enables the automatic segmentation of dynamic nuclear medicine images based on the underlying time-activity curves present in the data. Once the time-activity curves have been extracted, each pixel can be mapped back on to the underlying distribution, considerably reducing image noise. Cluster analysis has been verified using computer simulations and phantom studies. The technique has been applied to SPET images of dopamine D 2 receptors in a total of 20 healthy and 20 schizophrenic volunteers (22 male, 18 female), using the ligand 123 I-IBZM. Following automatic image segmentation, the concentration of striatal dopamine D 2 receptors shows a significant left-sided asymmetry in male schizophrenics compared with male controls. The mean left-minus-right laterality index for controls is -1.52 (95% CI -3.72-0.66) and for patients 4.04 (95% CI 1.07-7.01). Analysis of variance shows a case-by-sex-by-side interaction, with F=10.01, P=0.005. We can now demonstrate that the previously observed male sex-specific D 2 receptor asymmetry in schizophrenia, which had failed to attain statistical significance, is valid. Cluster analysis of dynamic nuclear medicine studies provides a powerful tool for automatic segmentation and noise reduction of the images, removing much of the subjectivity inherent in region-of-interest analysis. The observed striatal D 2 asymmetry could reflect long hypothesized disruptions in dopamine-rich cortico-striatal-limbic circuits in schizophrenic males. (orig.). With 4 figs., 2 tabs
International Nuclear Information System (INIS)
Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver
2014-01-01
The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He 7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He 2 * , and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Energy Technology Data Exchange (ETDEWEB)
Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)
2017-07-15
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)
Anisotropic contrast optical microscope.
Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M
2016-11-01
An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves
International Nuclear Information System (INIS)
Binney, J.; Silk, J.
1978-01-01
Recent developments in relation to the origin of galaxies are cited: the discovery that the intergalactic medium which seems to pervade rich clusters of galaxies has an iron abundance that lies within an order of magnitude of the solar value; the discovery that elliptical galaxies rotate much more slowly than the models of these galaxies had predicted; and the results of studies of cosmological infall in the context of the formation of galaxies and galaxy clusters, which have shown that the resulting density profile is fairly insensitive to initial conditions. After discussing the implications of these recent observations of X-ray clusters and of the rotation of elliptical galaxies, an attempt is made to construct a picture of the formation of elliptical and spiral galaxies in which galaxies form continuously from redshift z approximately 100 onwards. It is suggested that at a redshift z of roughly 5, a fundamental change occurred in the manner in which the cosmic material fragmented into stellar objects. It seems possible that explanations of a variety of puzzling aspects of galactic evolution, including the formation of Population I disks, the origin of the hot intracluster gas, the mass-to-light ratio stratification of galaxies, and the nature of the galaxy luminosity function, should all be sought in the context of this change of regime. Some remarks are made about gas in poor groups of galaxies and the interaction of disk galaxies with their environments. (U.K.)
Sebastianelli, Francesco; Xu, Minzhong; Bačić, Zlatko
2008-12-01
We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H2 (p-H2) and ortho-D2 (o-D2) molecules inside the large hexakaidecahedral (51264) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H2)n and (o-D2)n clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H2)4. At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H2 or D2 molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D2 molecules, their mean distance from the cage center, the D2-D2 separation, and the specific orientation and localization of the tetrahedral (D2)4 cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D2 occupancy.
Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.
2018-05-01
We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.
Network Signaling Channel for Improving ZigBee Performance in Dynamic Cluster-Tree Networks
Directory of Open Access Journals (Sweden)
D. Hämäläinen
2008-03-01
Full Text Available ZigBee is one of the most potential standardized technologies for wireless sensor networks (WSNs. Yet, sufficient energy-efficiency for the lowest power WSNs is achieved only in rather static networks. This severely limits the applicability of ZigBee in outdoor and mobile applications, where operation environment is harsh and link failures are common. This paper proposes a network channel beaconing (NCB algorithm for improving ZigBee performance in dynamic cluster-tree networks. NCB reduces the energy consumption of passive scans by dedicating one frequency channel for network beacon transmissions and by energy optimizing their transmission rate. According to an energy analysis, the power consumption of network maintenance operations reduces by 70%Ã¢Â€Â“76% in dynamic networks. In static networks, energy overhead is negligible. Moreover, the service time for data routing increases up to 37%. The performance of NCB is validated by ns-2 simulations. NCB can be implemented as an extension on MAC and NWK layers and it is fully compatible with ZigBee.
Theoretical studies of zirconium and carbon clusters with molecular dynamics simulations
International Nuclear Information System (INIS)
Zhang, B.
1993-08-01
In this dissertation, we will present a systematic study of structures of fullerenes ranging from C 20 to C 100 by introducing a novel scheme. Using our new scheme, we not only reproduce all known fullerene structures but also successfully predicted several other fullerene structures which were confirmed by experiments. By utilizing the tight-binding molecular-dynamic (TBMD) simulation, we also studied the dynamical behavior of fullerenes: Vibrations, thermal disintegration of individual clusters as well as collisions between fullerenes. If the beauty of carbon fullerene is not enough, people found that carbon can also form tubules and even speculated that they can form three-dimensional graphite-like networks. By extending our fullerene structure searching scheme, we performed a search for the ground-state structure of three dimensional carbon network. We found the most stable structure people ever proposed for simple cubic based networks. From the difference of this new form of carbon and graphite in the electronic and vibrational properties, we propose an experimental probe to identify these novel three-dimensional carbon networks
International Nuclear Information System (INIS)
Arbelo-González, W.; Bonnet, L.; Larrégaray, P.; Rayez, J.-C.; Rubayo-Soneira, J.
2012-01-01
Graphical abstract: A recent classical description of photodissociation dynamics in a quantum spirit is applied for the first time to a realistic process, the fragmentation of NeBr 2 . Highlights: ► The photo-dissociation of NeBr 2 is studied by means of two approaches. ► The first is the standard classical one with Gaussian binning. ► The second is a new method applied for the first time to a realistic system. ► The new method leads to exactly the same results as the standard one. ► However, it requires about 10 times less trajectories in the present case. - Abstract: The recent classical dynamical approach of photodissociations with Bohr quantization [L. Bonnet, J. Chem. Phys. 133 (2010) 174108] is applied for the first time to a realistic process, the photofragmentation of the van der Waals cluster NeBr 2 . We illustrate the fact that this approach, formally equivalent to the standard one, may be numerically much more efficient.
Anisotropic constant-roll inflation
Energy Technology Data Exchange (ETDEWEB)
Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)
2018-01-15
We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)
Lépinoux, J.; Sigli, C.
2018-01-01
In a recent paper, the authors showed how the clusters free energies are constrained by the coagulation probability, and explained various anomalies observed during the precipitation kinetics in concentrated alloys. This coagulation probability appeared to be a too complex function to be accurately predicted knowing only the cluster distribution in Cluster Dynamics (CD). Using atomistic Monte Carlo (MC) simulations, it is shown that during a transformation at constant temperature, after a short transient regime, the transformation occurs at quasi-equilibrium. It is proposed to use MC simulations until the system quasi-equilibrates then to switch to CD which is mean field but not limited by a box size like MC. In this paper, we explain how to take into account the information available before the quasi-equilibrium state to establish guidelines to safely predict the cluster free energies.
International Nuclear Information System (INIS)
Kornich, G.V.; Lozovskaya, L.I.; Betts, G.; Zaporozhchenko, V.I.; Faupel, F.
2005-01-01
One conducted molecular and dynamic simulation of sputtering of isolated clusters consisting of 13, 27 and 195 Cu atoms from the (0001) graphite surface by 200 eV energy Ar and Xe ions. It is shown that the factors of reflection of Ar and Xe ions from copper clusters differ from one another insignificantly, though the energy of the reflected Xe ions is essentially lower than that of Ar ions. The values of the factor of cluster sputtering by Xe ions are higher in contrast to sputtering by Ar ions. One identified two mechanisms of cluster sputtering resulting in the maximum of sputtering intensity at the polar angles near the normal one, and in periodicity of maximums within the azimuth distributions of sputtering intensity with 60 deg period [ru
International Nuclear Information System (INIS)
Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)
1985-01-01
The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references
Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt;
2016-01-01
We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.
Anisotropic Concrete Compressive Strength
DEFF Research Database (Denmark)
Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao
2017-01-01
When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...
International Nuclear Information System (INIS)
Elzein, N.
2004-01-01
In this work with a use of molecular dynamic simulations we have reported the results of a quasiclassical simulation study of the interaction of H2/(D2) with Cu N (N=13-14) atoms in both rigid /(non rigid) clusters.The geometry of the cluster is obtained by an embedded-atom (EA) mode potential, and the interaction between the molecule and cIuster is described by a LEPS -London-Eyring -Polanyi-Sato) potential energy function.Both channels the reactive dissociative adsorption of the molecule on the cIuster) and non reactive (scattering of the molecule from the cluster) are considered. The dissociative chemisorption probability, cross section and rate constant are studied as functions of the initial quantal rovibrational state of the molecule, collision energy, impact parameter and the temperature (OK,296K,834K ,1014K,1554K) of the clusters
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
2015-12-01
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
11th International Conference on Clustering Aspects of Nuclear Structure and Dynamics
International Nuclear Information System (INIS)
2017-01-01
Preface The 11 th edition of the International Conference on Clustering Aspects of Nuclear Structure and Dynamics (CLUSTER‘16) was held in Napoli, Italy, on May 23-27 2016. All the Conference Sessions took place in the magnificent Complesso Monumentale dei Ss. Marcellino e Festo , located in the Historical Centre of Naples. This is one of the most prestigious building complexes of the Federico II University of Naples, the main home institution of the organizers, together with the Istituto Nazionale di Fisica Nucleare (Naples division). This building is 500 years old; in the XVIII century, it was reshaped by Luigi Vanvitelli, a famous architect of the pre-Neoclassical period in Italy, designer of the prestigious Royal Palace in the near town of Caserta. The site of Plenary Sessions was the Church of Ss. Marcellino e Festo , where all the participants were surrounded by the Baroque frescoes by Belisario Corenzio and, among the others, the paintings of Battistello Caracciolo, Massimo Stanzione, Giuseppe Simonelli and Francesco De Mura, important artists of the late Baroque period in South Italy. The sites of Parallel Sessions were two halls in the arcade of the S. Marcellino cloister: this gave the opportunity to the participants to enjoy the beauty of the architecture of the cloister with its fountains, gardens, sculptures. As organizers of the Conference, our main aims were: (1) to provide an excellent programme, with the expectation to be a reference point for the Nuclear Cluster Physics in the next four years; (2) to assure a very relaxing stay to the participants, allowing them to explore the bounty of artistic, and also culinary, masterpieces that Naples offers to its guests. The first point was assured by all the conveners that, with their excellent talks, gave a very precise and complete overview of the most recent achievements on Nuclear Cluster Physics, both from the experimental and theoretical point of view. We are indebted with the International
Stability of anisotropic stellar filaments
Bhatti, M. Zaeem-ul-Haq; Yousaf, Z.
2017-12-01
The study of perturbation of self-gravitating celestial cylindrical object have been carried out in this paper. We have designed a framework to construct the collapse equation by formulating the modified field equations with the background of f(R , T) theory as well as dynamical equations from the contracted form of Bianchi identities with anisotropic matter configuration. We have encapsulated the radial perturbations on metric and material variables of the geometry with some known static profile at Newtonian and post-Newtonian regimes. We examined a strong dependence of unstable regions on stiffness parameter which measures the rigidity of the fluid. Also, the static profile and matter variables with f(R , T) dark source terms control the instability of compact cylindrical system.
Effects of the mean-field dynamics and the phase-space geometry on the cluster formation
International Nuclear Information System (INIS)
Basrak, Z.; Eudes, P.; Abgrall, P.; Haddad, F.; Sebille, F.
1997-01-01
A model allowing to simulate the production of clusters is developed and applied to heavy-ion reactions at intermediate energies. The model investigates the geometrical properties of the dynamically generated one-body phase space. The collision process is entirely governed by the Landau-Vlasov model, which provides the time evolution of the one-body phase-space distribution. Particles emitted during successive time intervals of the dynamics are gathered together into subensembles to which a clusterization procedure is applied. Comparison with the experimental data for the Ar(65 MeV/nucleon) + Al reaction shows that the average behaviour of particle-dependent global observables is correctly reproduced within this framework. These results point out that the studied global properties of heavy-ion collisions greatly rely on the dynamical effects of the primary non-steady stage of the nuclear reaction. (orig.)
International Nuclear Information System (INIS)
Hideo, Kaburaki; Tomoko, Kadoyoshi; Futoshi, Shimizu; Hajime; Kimizuka; Shiro, Jitsukawa
2003-01-01
Irradiation of high-energy neutrons and charged particles into solids is known to cause a significant change in mechanical properties, in particular, hardening of metals. Hardening of solids arises as a result of interactions of dislocations with irradiation induced defect clusters. Molecular dynamics method combined with the visualization method has been used to elucidate these complex pinning structures in details. In particular, we have successfully observed the transient process for the formation of a super-jog from an edge dislocation and interstitial and vacancy clusters under irradiation cascade conditions. Parallel molecular dynamics programs, called as Parallel Molecular Dynamics Stencil (PMDS), have been developed in order to perform these large scale simulations for materials simulations. The contents of the program and its parallel performance are also reported. (authors)
Dynamical evolution in clusters of galaxies with low-frequency radio emission
International Nuclear Information System (INIS)
Guthrie, B.N.G.
1977-01-01
Clusters of galaxies in which radio emission at low frequencies ( approximately 10 9 yr). Confinement would probably occur for radio sources associated with bright galaxies in the cores of clusters and cD galaxies in clusters. However, cD galaxies may have recurrent radio outbursts so that steep spectra are not always observed. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Ezaoui, A
2008-06-15
In the first part, based on various works realized in situ, the author discusses the importance of a fine characterization of soils within the field of small and medium deformations. He also presents the rheological background on which the modelling will be based. Then, he presents the experimental device, a tri-axial apparatus, 'StaDy', which allows high precision measurements, possesses force sensors comprising a piezoelectric device to generate compression and shear waves. He also presents the different static and dynamic prompting systems. He reports the experimental campaign performed on a Hostun S28 sand, and the analysis of its results. He describes the procedure of determination of the elastic tensor, and analyses and discusses the evolutions of this tensor in terms of the stress-strain status. Viscous phenomena creep and relaxation stages, and plastic behaviours are quantified and discussed with respect to the loading status, the initial granular arrangement, and the efforts applied to the material. The small deformation modelling is then presented and predictions are compared with experimental results obtained in the literature about a bus station. A general analog formulation is introduced, which associates three components (elastic, plastic and viscous). Models are calibrated with triaxial test results, and simulations of viscous and plastic phenomena allow the proposed approaches to be validated.
Energy Technology Data Exchange (ETDEWEB)
Derakhshani, Kamran, E-mail: kderakhshani@iasbs.ac.ir [Institute for Advanced Studies in Basic Sciences, P. O. Box 45195-1159 Zanjan (Iran, Islamic Republic of)
2014-03-01
In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer parts of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ{sup 2} of surface brightness and velocity dispersion.
International Nuclear Information System (INIS)
Derakhshani, Kamran
2014-01-01
In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer parts of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ 2 of surface brightness and velocity dispersion.
Hydrodynamic cavitation in Stokes flow of anisotropic fluids
Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam
2017-05-01
Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.
International Nuclear Information System (INIS)
Blaise, Philippe
1998-01-01
The aim of this thesis is to study metallic sodium clusters by numerical simulation. We have developed two ab initio molecular dynamics programs within the formalism of density functional theory. The first is based on the semi-classical extended Thomas-Fermi approach. We use a real-space grid and a Car-Parrinello-like scheme. The computational cost is O(N), and we have built a pseudopotential that speeds up the calculations. By neglecting quantum shell effects, we are able to study a very large set of clusters. We show that sodium cluster energies fit well a liquid drop formula, by adjusting a few parameters. We have investigated breathing modes, surface oscillations and the net charge density. We have shown that the surface energy varies strongly with temperature, and that clusters have a lower melting point than bulk material. We have calculated fission barriers by a constraint method. The second program is based on the quantum Kohn-Sham approach. We use a real-space grid, and combine a generalized Broyden scheme for assuring self-consistency with an iterative Davidson-Lanczos algorithm for solving the Eigen-problem. The cost of the method is much higher. First of all, we have calculated some stable structures for small clusters and their energetics. We obtained very good agreement with previous works. Then, we have investigated highly charged cluster dynamics. We have identified a chaotic fission process. For high fissility systems, we observe a multi-fragmentation dynamics and we find preferential emission of monomers on a characteristic time scale less than a pico-second. This has been simulated for the first time, with the help of our adaptive grid method which follows each fragment as they move apart during the fragmentation. (author)
Energy Technology Data Exchange (ETDEWEB)
Brimbal, Daniel, E-mail: Daniel.brimbal@areva.com [AREVA NP, Tour AREVA, 1 Place Jean Millier, 92084 Paris La Défense (France); Fournier, Lionel [AREVA NP, Tour AREVA, 1 Place Jean Millier, 92084 Paris La Défense (France); Barbu, Alain [Alain Barbu Consultant, 6 Avenue Pasteur Martin Luther King, 78230 Le Pecq (France)
2016-01-15
A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium. - Highlights: • Irradiation of steels with helium is studied through a new cluster dynamics model. • There is only a small effect of helium on cavity distributions in PWR conditions. • An increase in helium production causes an increase in cavity density over 500 °C. • The role of helium is to stabilize cavities via reduced emission of vacancies.
Cluster dynamics modeling and experimental investigation of the effect of injected interstitials
Michaut, B.; Jourdan, T.; Malaplate, J.; Renault-Laborne, A.; Sefta, F.; Décamps, B.
2017-12-01
The effect of injected interstitials on loop and cavity microstructures is investigated experimentally and numerically for 304L austenitic stainless steel irradiated at 450 °C with 10 MeV Fe5+ ions up to about 100 dpa. A cluster dynamics model is parametrized on experimental results obtained by transmission electron microscopy (TEM) in a region where injected interstitials can be safely neglected. It is then used to model the damage profile and study the impact of self-ion injection. Results are compared to TEM observations on cross-sections of specimens. It is shown that injected interstitials have a significant effect on cavity density and mean size, even in the sink-dominated regime. To quantitatively match the experimental data in the self-ions injected area, a variation of some parameters is necessary. We propose that the fraction of freely migrating species may vary as a function of depth. Finally, we show that simple rate theory considerations do not seem to be valid for these experimental conditions.
"Divide-and-conquer" semiclassical molecular dynamics: An application to water clusters
Di Liberto, Giovanni; Conte, Riccardo; Ceotto, Michele
2018-03-01
We present an investigation of vibrational features in water clusters performed by means of our recently established divide-and-conquer semiclassical approach [M. Ceotto, G. Di Liberto, and R. Conte, Phys. Rev. Lett. 119, 010401 (2017)]. This technique allows us to simulate quantum vibrational spectra of high-dimensional systems starting from full-dimensional classical trajectories and projection of the semiclassical propagator onto a set of lower dimensional subspaces. The potential energy surface employed is a many-body representation up to three-body terms, in which monomers and two-body interactions are described by the high level Wang-Huang-Braams-Bowman (WHBB) water potential, while, for three-body interactions, calculations adopt a fast permutationally invariant ab initio surface at the same level of theory of the WHBB 3-body potential. Applications range from the water dimer up to the water decamer, a system made of 84 vibrational degrees of freedom. Results are generally in agreement with previous variational estimates in the literature. This is particularly true for the bending and the high-frequency stretching motions, while estimates of modes strongly influenced by hydrogen bonding are red shifted, in a few instances even substantially, as a consequence of the dynamical and global picture provided by the semiclassical approach.
An efficient implementation of parallel molecular dynamics method on SMP cluster architecture
International Nuclear Information System (INIS)
Suzuki, Masaaki; Okuda, Hiroshi; Yagawa, Genki
2003-01-01
The authors have applied MPI/OpenMP hybrid parallel programming model to parallelize a molecular dynamics (MD) method on a symmetric multiprocessor (SMP) cluster architecture. In that architecture, it can be expected that the hybrid parallel programming model, which uses the message passing library such as MPI for inter-SMP node communication and the loop directive such as OpenMP for intra-SNP node parallelization, is the most effective one. In this study, the parallel performance of the hybrid style has been compared with that of conventional flat parallel programming style, which uses only MPI, both in cases the fast multipole method (FMM) is employed for computing long-distance interactions and that is not employed. The computer environments used here are Hitachi SR8000/MPP placed at the University of Tokyo. The results of calculation are as follows. Without FMM, the parallel efficiency using 16 SMP nodes (128 PEs) is: 90% with the hybrid style, 75% with the flat-MPI style for MD simulation with 33,402 atoms. With FMM, the parallel efficiency using 16 SMP nodes (128 PEs) is: 60% with the hybrid style, 48% with the flat-MPI style for MD simulation with 117,649 atoms. (author)
Yokohama, Noriya; Tsuchimoto, Tadashi; Oishi, Masamichi; Itou, Katsuya
2007-01-20
It has been noted that the downtime of medical informatics systems is often long. Many systems encounter downtimes of hours or even days, which can have a critical effect on daily operations. Such systems remain especially weak in the areas of database and medical imaging data. The scheme design shows the three-layer architecture of the system: application, database, and storage layers. The application layer uses the DICOM protocol (Digital Imaging and Communication in Medicine) and HTTP (Hyper Text Transport Protocol) with AJAX (Asynchronous JavaScript+XML). The database is designed to decentralize in parallel using cluster technology. Consequently, restoration of the database can be done not only with ease but also with improved retrieval speed. In the storage layer, a network RAID (Redundant Array of Independent Disks) system, it is possible to construct exabyte-scale parallel file systems that exploit storage spread. Development and evaluation of the test-bed has been successful in medical information data backup and recovery in a network environment. This paper presents a schematic design of the new medical informatics system that can be accommodated from a recovery and the dynamic Web application for medical imaging distribution using AJAX.
International Nuclear Information System (INIS)
Chen Ruling; Luo Jianbin; Guo Dan; Lu Xinchun
2008-01-01
The process of a silica cluster impact on a crystal silicon substrate is studied by molecular dynamics simulation. At the impact loading stage, crystal silicon of the impact zone transforms to a locally ordered molten with increasing the local temperature and pressure of the impact zone. And then the transient molten forms amorphous silicon directly as the local temperature and pressure decrease at the impact unloading stage. Moreover, the phase behavior between the locally ordered molten and amorphous silicon exhibits the reversible structural transition. The transient molten contains not only lots of four-fold atom but also many three- and five-fold atoms. And the five-fold atom is similar to the mixture structure of semi-Si-II and semi-bct5-Si. The structure transformation between five- and four-fold atoms is affected by both pressure and temperature. The structure transformation between three- and four-fold atoms is affected mostly by temperature. The direct structure transformation between five- and three-fold atoms is not observed. Finally, these five- and three-fold atoms are also different from the usual five- and three-fold deficient atoms of amorphous silicon. In addition, according to the change of coordination number of atoms the impact process is divided into six stages: elastic, plastic, hysteresis, phase regressive, adhesion and cooling stages
[Dynamic study of small metallic clusters]; Estudio Dinamico de Pequenos Agregados Metalicos
Energy Technology Data Exchange (ETDEWEB)
Lopez, M.J. [Valladolid Univ. (Spain). Dept. de Fisica Teorica; Jellinek, J. [Argonne National Lab., IL (United States)
1995-12-31
We present a brief introduction to computer simulation techniques (particularly to classical molecular dynamics) and their application to the study of the thermodynamic properties of a material system. The basic concepts are illustrated in the study of structural and energetic properties such as the liquid-solid transition and the fragmentation of small clusters of nickel. [Espanol] Presentamos una breve introducci{acute o}n de las t{acute e}cnicas de simulaci{acute o}n por ordenador (en particular de la Din{acute a}mica Molecular cl{acute a}sica) y de su aplicaci{acute o}n al estudio de las propiedades termodin{acute a}micas de un sistema material. Los conceptos b{acute a}sicos se ilustran en el estudio de las propieades estructurales y energ{acute e}ticas, as{acute i} como de la transici{acute o}n de fase s{acute o}lido-l{acute i}quido y de las fragmentaciones de peque{tilde n}os agregados de n{acute i}quel.
Jets in a strongly coupled anisotropic plasma
Energy Technology Data Exchange (ETDEWEB)
Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa)
2018-01-15
In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.)
Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng
2014-01-01
We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of th...
Anisotropic elliptic optical fibers
Kang, Soon Ahm
1991-05-01
The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.
Energy Technology Data Exchange (ETDEWEB)
Araghi, Houshang, E-mail: araghi@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zabihi, Zabiholah [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nayebi, Payman [Department of Physics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of); Ehsani, Mohammad Mahdi [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2016-10-15
II–VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.
Molecular dynamics computer simulation study of Pd{sub n} (n=13, 19, 38 and 55) clusters
Energy Technology Data Exchange (ETDEWEB)
Karabacak, M [Afyon Kocatepe University, Department of Physics, Afyon (Turkey); Oezcelik, S [Gazi University, Department of Physics, Ankara (Turkey); Guevenc, Z B [Cankaya University, Department of Electronics and Communication Engineering, Ankara (Turkey)
2002-07-01
Using constant-energy molecular dynamics and thermal quenching simulations, we have studied minimum-energy structures and energetics, Pd{sub n} (n=13, 19, 38, and 55) clusters employing the Voter and Chen's version of parameterisation of the embedded-atom potential surface. Isomer statistics for Pdn ( n = 13 and 19 ) is obtained from 10000 initial independent configurations, which have been generated along high-energy trajectories (chosen energy values are high enough to melt the clusters). The thermal quenching technique is employed to remove the internal kinetic energy of the clusters. The locally stable isomers are separated from metastable ones. Probabilities belonging to sampling the basins of attractions of each isomers are computed, and then, isomers' energy spectra are analyzed.
Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P; Fang, Yigang; Kostko, Oleg; Ahmed, Musahid; Head-Gordon, Martin
2017-05-23
The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C 2 H 2 ) n + , just like ionized acetylene clusters. The fragmentation products result from reactive ion-molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C 4 H 4 + and C 6 H 6 + structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C 2 H 2 ) n + isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C 6 H 6 + isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.
Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P.; Fang, Yigang; Kostko, Oleg
2017-01-01
The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C2H2)n+, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C4H4+ and C6H6+ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C2H2)n+ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C6H6+ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM. PMID:28484019
THE DYNAMICAL EFFECTS OF WHITE DWARF BIRTH KICKS IN GLOBULAR STAR CLUSTERS
International Nuclear Information System (INIS)
Fregeau, John M.; Richer, Harvey B.; Rasio, Frederic A.; Hurley, Jarrod R.
2009-01-01
Recent observations of the white dwarf (WD) populations in the Galactic globular cluster NGC 6397 suggest that WDs receive a kick of a few km s -1 shortly before they are born. Using our Monte Carlo cluster evolution code, which includes accurate treatments of all relevant physical processes operating in globular clusters, we study the effects of the kicks on their host cluster and on the WD population itself. We find that in clusters whose velocity dispersion is comparable to the kick speed, WD kicks are a significant energy source for the cluster, prolonging the initial cluster core contraction phase significantly so that at late times the cluster core-to-half-mass radius ratio is a factor of up to ∼10 larger than in the no-kick case. WD kicks thus represent a possible resolution of the large discrepancy between observed and theoretically predicted values of this key structural parameter. Our modeling also reproduces the observed trend for younger WDs to be more extended in their radial distribution in the cluster than older WDs.
Ye, Meixia; Wang, Zhong; Wang, Yaqun; Wu, Rongling
2015-03-01
Dynamic changes of gene expression reflect an intrinsic mechanism of how an organism responds to developmental and environmental signals. With the increasing availability of expression data across a time-space scale by RNA-seq, the classification of genes as per their biological function using RNA-seq data has become one of the most significant challenges in contemporary biology. Here we develop a clustering mixture model to discover distinct groups of genes expressed during a period of organ development. By integrating the density function of multivariate Poisson distribution, the model accommodates the discrete property of read counts characteristic of RNA-seq data. The temporal dependence of gene expression is modeled by the first-order autoregressive process. The model is implemented with the Expectation-Maximization algorithm and model selection to determine the optimal number of gene clusters and obtain the estimates of Poisson parameters that describe the pattern of time-dependent expression of genes from each cluster. The model has been demonstrated by analyzing a real data from an experiment aimed to link the pattern of gene expression to catkin development in white poplar. The usefulness of the model has been validated through computer simulation. The model provides a valuable tool for clustering RNA-seq data, facilitating our global view of expression dynamics and understanding of gene regulation mechanisms. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Hydrogen migration dynamics in hydrated Al clusters: The Al17(−)·H2O system as an example
International Nuclear Information System (INIS)
Álvarez-Barcia, S.; Flores, J. R.
2014-01-01
The Al m (−) ·(H 2 O) n systems are known to undergo water splitting processes in the gas phase giving H k Al m (OH) k (−) ·(H 2 O) n−k systems, which can generate H 2 . The migration of H atoms from one Al atom to another on the cluster's surface is of critical importance to the mechanism of the complete H 2 production process. We have applied a combination of Molecular Dynamics and Rice-Ramsperger-Kassel-Marcus theory including tunneling effects to study the gas-phase evolution of HAl 17 (OH) (−) , which can be considered a model system. First, we have performed an extensive search for local minima and the connecting saddle points using a density functional theory method. It is found that in the water-splitting process Al 17 (−) ·(H 2 O) → HAl 17 (OH) (−) , the H atom which bonds to the Al cluster losses rather quickly its excess energy, which is easily “absorbed” by the cluster because of its flexibility. This fact ultimately determines that long-range hydrogen migration is not a very fast process and that, probably, tunneling only plays a secondary role in the migration dynamics, at least for moderate energies. Reduction of the total energy results in the process being very much slowed down. The consequences on the possible mechanisms of H 2 generation from the interaction of Al clusters and water molecules are discussed
Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.
Bonhommeau, David; Halberstadt, Nadine; Viel, Alexandra
2006-01-14
We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.
Wang, Dandan; Zhao, Gong-Bo; Wang, Yuting; Percival, Will J.; Ruggeri, Rossana; Zhu, Fangzhou; Tojeiro, Rita; Myers, Adam D.; Chuang, Chia-Hsun; Baumgarten, Falk; Zhao, Cheng; Gil-Marín, Héctor; Ross, Ashley J.; Burtin, Etienne; Zarrouk, Pauline; Bautista, Julian; Brinkmann, Jonathan; Dawson, Kyle; Brownstein, Joel R.; de la Macorra, Axel; Schneider, Donald P.; Shafieloo, Arman
2018-06-01
We present a measurement of the anisotropic and isotropic Baryon Acoustic Oscillations (BAO) from the extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample with optimal redshift weights. Applying the redshift weights improves the constraint on the BAO dilation parameter α(zeff) by 17 per cent. We reconstruct the evolution history of the BAO distance indicators in the redshift range of 0.8 < z < 2.2. This paper is part of a set that analyses the eBOSS DR14 quasar sample.
Energy Technology Data Exchange (ETDEWEB)
Guo, G.J.; Zhang, Y.G.; Li, M.; Wu, C.H. [Chinese Academy of Sciences, Inst. of Geology and Geophysics, Beijing (China). Key Laboratory of the Study of Earth' s Deep Interior
2008-07-01
In hydrate research fields, the hydrate nucleation mechanism still remains as an unsolved question. The static lifetimes of cagelike water clusters (CLWC) immersed in bulk liquid water have recently been measured by performing molecular dynamics simulations in the methane-water system, during which the member-water molecules of CLWCs are not allowed to exchange with their surrounding water molecules. This paper presented a study that measured the dynamic lifetimes of CLWCs permitting such water exchanges. The study involved re-analysis of previous simulation data that were used to study the effect of methane adsorption on the static lifetimes of a dodecahedral water cluster (DWC). The dynamic lifetimes of the DWC were calculated. The results of lifetime measurements of DWC in different systems were provided. The implications of this study for hydrate nucleation were also discussed. It was found that the dynamic lifetimes of CLWCs were not less than the static lifetimes previously obtained, and their ratio increased with the lifetime values. The results strengthened that CLWCs are metastable structures in liquid water and the occurrence probability of long-lived CLWCs will increase if one uses the dynamic lifetimes instead of the static lifetimes. 13 refs., 1 tab., 3 figs.
Ab-initio molecular dynamics studies of magnesium-doped sodium clusters
International Nuclear Information System (INIS)
Roethlisberger, U.; Andreoni, W.
1993-01-01
Structural, electronic, and vibrational properties of magnesium-doped sodium clusters have been determined using the Car-Parrinello method. It is found that in the energetically preferred structures the magnesium impurity never is located at the centre of the cluster. The validity of spherical jellium models and the effects of temperature are discussed. 9 refs, 3 figs, 1 tab
Competetive clustering in a bidisperse granular gas : experiment, molecular dynamics, and flux model
Mikkelsen, René; van der Meer, Devaraj; van der Weele, Ko; Lohse, Detlef
2004-01-01
A compartmentalized bidisperse granular gas clusters competitively [R. Mikkelsen, D. van der Meer, K. van der Weele, and D. Lohse, Phys. Rev. Lett. 89, 214301 (2002)]: By tuning the shaking strength, the clustering can be directed either towards the compartment initially containing mainly small
Matthew S. Bumgardner; Gary W. Graham; P. Charles Goebel; Robert L. Romig
2011-01-01
Preliminary studies have suggested that the Amish-based furniture and related products manufacturing cluster located in and around Holmes County, Ohio, uses sizeable quantities of hardwood lumber. The number of firms within the cluster has grown even as the broader domestic furniture manufacturing sector has contracted. The present study was undertaken in 2008 (spring/...
Nguyen, Huyen T; Jia, Guang; Shah, Zarine K; Pohar, Kamal; Mortazavi, Amir; Zynger, Debra L; Wei, Lai; Yang, Xiangyu; Clark, Daniel; Knopp, Michael V
2015-05-01
To apply k-means clustering of two pharmacokinetic parameters derived from 3T dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict the chemotherapeutic response in bladder cancer at the mid-cycle timepoint. With the predetermined number of three clusters, k-means clustering was performed on nondimensionalized Amp and kep estimates of each bladder tumor. Three cluster volume fractions (VFs) were calculated for each tumor at baseline and mid-cycle. The changes of three cluster VFs from baseline to mid-cycle were correlated with the tumor's chemotherapeutic response. Receiver-operating-characteristics curve analysis was used to evaluate the performance of each cluster VF change as a biomarker of chemotherapeutic response in bladder cancer. The k-means clustering partitioned each bladder tumor into cluster 1 (low kep and low Amp), cluster 2 (low kep and high Amp), cluster 3 (high kep and low Amp). The changes of all three cluster VFs were found to be associated with bladder tumor response to chemotherapy. The VF change of cluster 2 presented with the highest area-under-the-curve value (0.96) and the highest sensitivity/specificity/accuracy (96%/100%/97%) with a selected cutoff value. The k-means clustering of the two DCE-MRI pharmacokinetic parameters can characterize the complex microcirculatory changes within a bladder tumor to enable early prediction of the tumor's chemotherapeutic response. © 2014 Wiley Periodicals, Inc.
Anisotropic plasma with flows in tokamak: Steady state and stability
International Nuclear Information System (INIS)
Ilgisonis, V.I.
1996-01-01
An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics
International Nuclear Information System (INIS)
Xu Donghua; Wirth, Brian D.; Li Meimei; Kirk, Marquis A.
2012-01-01
We present a combinatorial approach that integrates state-of-the-art transmission electron microscopy (TEM) in situ irradiation experiments and high-performance computing techniques to study irradiation defect dynamics in metals. Here, we have studied the evolution of visible defect clusters in nanometer-thick molybdenum foils under 1 MeV krypton ion irradiation at 80 °C through both cluster dynamics modeling and in situ TEM experiments. The experimental details are reported elsewhere; we focus here on the details of model construction and comparing the model with the experiments. The model incorporates continuous production of point defects and/or small clusters, and the accompanying interactions, which include clustering, recombination and loss to the surfaces that result from the diffusion of the mobile defects. To account for the strong surface effect in thin TEM foils, the model includes one-dimensional spatial dependence along the foil depth, and explicitly treats the surfaces as black sinks. The rich amount of data (cluster number density and size distribution at a variety of foil thickness, irradiation dose and dose rate) offered by the advanced in situ experiments has allowed close comparisons with computer modeling and permitted significant validation and optimization of the model in terms of both physical model construct (damage production mode, identities of mobile defects) and parameterization (diffusivities of mobile defects). The optimized model exhibits good qualitative and quantitative agreement with the in situ TEM experiments. The combinatorial approach is expected to bring a unique opportunity for the study of radiation damage in structural materials.
International Nuclear Information System (INIS)
Marzouk, Youssef M.; Ghoniem, Ahmed F.
2005-01-01
A number of complex physical problems can be approached through N-body simulation, from fluid flow at high Reynolds number to gravitational astrophysics and molecular dynamics. In all these applications, direct summation is prohibitively expensive for large N and thus hierarchical methods are employed for fast summation. This work introduces new algorithms, based on k-means clustering, for partitioning parallel hierarchical N-body interactions. We demonstrate that the number of particle-cluster interactions and the order at which they are performed are directly affected by partition geometry. Weighted k-means partitions minimize the sum of clusters' second moments and create well-localized domains, and thus reduce the computational cost of N-body approximations by enabling the use of lower-order approximations and fewer cells. We also introduce compatible techniques for dynamic load balancing, including adaptive scaling of cluster volumes and adaptive redistribution of cluster centroids. We demonstrate the performance of these algorithms by constructing a parallel treecode for vortex particle simulations, based on the serial variable-order Cartesian code developed by Lindsay and Krasny [Journal of Computational Physics 172 (2) (2001) 879-907]. The method is applied to vortex simulations of a transverse jet. Results show outstanding parallel efficiencies even at high concurrencies, with velocity evaluation errors maintained at or below their serial values; on a realistic distribution of 1.2 million vortex particles, we observe a parallel efficiency of 98% on 1024 processors. Excellent load balance is achieved even in the face of several obstacles, such as an irregular, time-evolving particle distribution containing a range of length scales and the continual introduction of new vortex particles throughout the domain. Moreover, results suggest that k-means yields a more efficient partition of the domain than a global oct-tree
Gholami, Mohammad; Brennan, Robert W
2016-01-06
In this paper, we investigate alternative distributed clustering techniques for wireless sensor node tracking in an industrial environment. The research builds on extant work on wireless sensor node clustering by reporting on: (1) the development of a novel distributed management approach for tracking mobile nodes in an industrial wireless sensor network; and (2) an objective comparison of alternative cluster management approaches for wireless sensor networks. To perform this comparison, we focus on two main clustering approaches proposed in the literature: pre-defined clusters and ad hoc clusters. These approaches are compared in the context of their reconfigurability: more specifically, we investigate the trade-off between the cost and the effectiveness of competing strategies aimed at adapting to changes in the sensing environment. To support this work, we introduce three new metrics: a cost/efficiency measure, a performance measure, and a resource consumption measure. The results of our experiments show that ad hoc clusters adapt more readily to changes in the sensing environment, but this higher level of adaptability is at the cost of overall efficiency.
Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics
Beatrici, Carine P.; de Almeida, Rita M. C.; Brunnet, Leonardo G.
2017-03-01
Cell migration is essential to cell segregation, playing a central role in tissue formation, wound healing, and tumor evolution. Considering random mixtures of two cell types, it is still not clear which cell characteristics define clustering time scales. The mass of diffusing clusters merging with one another is expected to grow as td /d +2 when the diffusion constant scales with the inverse of the cluster mass. Cell segregation experiments deviate from that behavior. Explanations for that could arise from specific microscopic mechanisms or from collective effects, typical of active matter. Here we consider a power law connecting diffusion constant and cluster mass to propose an analytic approach to model cell segregation where we explicitly take into account finite-size corrections. The results are compared with active matter model simulations and experiments available in the literature. To investigate the role played by different mechanisms we considered different hypotheses describing cell-cell interaction: differential adhesion hypothesis and different velocities hypothesis. We find that the simulations yield normal diffusion for long time intervals. Analytic and simulation results show that (i) cluster evolution clearly tends to a scaling regime, disrupted only at finite-size limits; (ii) cluster diffusion is greatly enhanced by cell collective behavior, such that for high enough tendency to follow the neighbors, cluster diffusion may become independent of cluster size; (iii) the scaling exponent for cluster growth depends only on the mass-diffusion relation, not on the detailed local segregation mechanism. These results apply for active matter systems in general and, in particular, the mechanisms found underlying the increase in cell sorting speed certainly have deep implications in biological evolution as a selection mechanism.
Anisotropic cosmological solutions in massive vector theories
Energy Technology Data Exchange (ETDEWEB)
Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Kase, Ryotaro; Tsujikawa, Shinji, E-mail: Lavinia.heisenberg@googlemail.com, E-mail: r.kase@rs.tus.ac.jp, E-mail: shinji@rs.kagu.tus.ac.jp [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)
2016-11-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v {sup 2} || φ{sup 2} are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w {sub DE} in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w {sub DE}{sup (iso)} typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.
Anisotropic cosmological solutions in massive vector theories
International Nuclear Information System (INIS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-01-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v 2 || φ 2 are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w DE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w DE (iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.
Inhomogeneous anisotropic cosmology
International Nuclear Information System (INIS)
Kleban, Matthew; Senatore, Leonardo
2016-01-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Transient anisotropic magnetic field calculation
International Nuclear Information System (INIS)
Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan
2006-01-01
For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement
Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe
Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo
2014-01-01
Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months ...
Multi-agent grid system Agent-GRID with dynamic load balancing of cluster nodes
Satymbekov, M. N.; Pak, I. T.; Naizabayeva, L.; Nurzhanov, Ch. A.
2017-12-01
In this study the work presents the system designed for automated load balancing of the contributor by analysing the load of compute nodes and the subsequent migration of virtual machines from loaded nodes to less loaded ones. This system increases the performance of cluster nodes and helps in the timely processing of data. A grid system balances the work of cluster nodes the relevance of the system is the award of multi-agent balancing for the solution of such problems.
Simple types of anisotropic inflation
International Nuclear Information System (INIS)
Barrow, John D.; Hervik, Sigbjoern
2010-01-01
We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.
Dynamical Competition of IC-Industry Clustering from Taiwan to China
Tsai, Bi-Huei; Tsai, Kuo-Hui
2009-08-01
Most studies employ qualitative approach to explore the industrial clusters; however, few research has objectively quantified the evolutions of industry clustering. The purpose of this paper is to quantitatively analyze clustering among IC design, IC manufacturing as well as IC packaging and testing industries by using the foreign direct investment (FDI) data. The Lotka-Volterra system equations are first adopted here to capture the competition or cooperation among such three industries, thus explaining their clustering inclinations. The results indicate that the evolution of FDI into China for IC design industry significantly inspire the subsequent FDI of IC manufacturing as well as IC packaging and testing industries. Since IC design industry lie in the upstream stage of IC production, the middle-stream IC manufacturing and downstream IC packing and testing enterprises tend to cluster together with IC design firms, in order to sustain a steady business. Finally, Taiwan IC industry's FDI amount into China is predicted to cumulatively increase, which supports the industrial clustering tendency for Taiwan IC industry. Particularly, the FDI prediction of Lotka-Volterra model performs superior to that of the conventional Bass model after the forecast accuracy of these two models are compared. The prediction ability is dramatically improved as the industrial mutualism among each IC production stage is taken into account.
ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast.
Boczko, Erik M; Gedeon, Tomas; Stowers, Chris C; Young, Todd R
2010-07-01
Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations under certain conditions, and several unsatisfactory explanations for this phenomenon have been proposed. These ‘autonomous oscillations’ have often appeared with periods that are nearly integer divisors of the calculated doubling time of the culture. We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that we call clustering. We develop some novel ordinary differential equation models of the cell cycle. For these models, and for random and stochastic perturbations, we give both rigorous proofs and simulations showing that both positive and negative growth rate feedback within the cell cycle are possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety of models and for a broad selection of parameter values. These results suggest that the clustering phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer number of clusters, clustering would lead to periodic-like behaviour with periods that are nearly integer divisors of the period of the cell cycle. Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating yeast cultures.
Celik, Fatih Ahmet
2014-10-01
In this study, the microstructural evolution of crystal-type and icosahedral (icos)-type polyhedrons in Cu-50 at%Al alloy based on the embedded atom method (EAM) model is studied at two cooling rates under normal and high pressures by using the molecular dynamics (MD) simulation method. The cluster-type index method (CTIM) which describes icos and defective icos polyhedrons and the new cluster-type index method (CTIM-2) which describes crystal-type polyhedrons have been used to perform polyhedron analysis in the model alloy system. The results of our simulations demonstrate that the effects of the cooling rate and pressure play an important role in the numbers of polyhedrons and their structures in the system.
Energy Technology Data Exchange (ETDEWEB)
Celik, Fatih Ahmet, E-mail: facelik@beu.edu.tr
2014-10-01
In this study, the microstructural evolution of crystal-type and icosahedral (icos)-type polyhedrons in Cu–50 at%Al alloy based on the embedded atom method (EAM) model is studied at two cooling rates under normal and high pressures by using the molecular dynamics (MD) simulation method. The cluster-type index method (CTIM) which describes icos and defective icos polyhedrons and the new cluster-type index method (CTIM-2) which describes crystal-type polyhedrons have been used to perform polyhedron analysis in the model alloy system. The results of our simulations demonstrate that the effects of the cooling rate and pressure play an important role in the numbers of polyhedrons and their structures in the system.
Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng
2014-04-01
We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.
Directory of Open Access Journals (Sweden)
Qiong-Tao Xie
2014-06-01
Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.
Directory of Open Access Journals (Sweden)
Najib A. Mozahem
2018-03-01
Full Text Available Recently, researchers have started to pay more attention to a usually ignored topic: audience perceptions. Legitimacy, for example, is no longer modeled as the number of organizations in a population. It is now thought to be dependent on how audience members perceive these organizations. This paper will study how the newspaper industry in Lebanon emerged. The paper studies the period 1851–1879, building on the theoretic formulation of Hannan et al. (2007. The concept of cluster formation will also be introduced in order to help answer the question of whether unified identity projection is a necessary condition for successful legitimation and emergence. So far, research has produced diverging results as to the necessary conditions for successful legitimation. Cluster Analysis is used to show that in the case of the Lebanese newspaper industry, successful emergence was attained without the need to project a unified identity. In fact, the analysis clearly shows that there were two separate groups of clusters that had emerged by the end of the period. The nature of these two clusters will be investigated by looking at the category spanning activities of the newspapers that were members of the clusters. Keywords: TBC, Business, Industry, Information science
Mozahem, Najib A
2018-03-01
Recently, researchers have started to pay more attention to a usually ignored topic: audience perceptions. Legitimacy, for example, is no longer modeled as the number of organizations in a population. It is now thought to be dependent on how audience members perceive these organizations. This paper will study how the newspaper industry in Lebanon emerged. The paper studies the period 1851-1879, building on the theoretic formulation of Hannan et al. (2007). The concept of cluster formation will also be introduced in order to help answer the question of whether unified identity projection is a necessary condition for successful legitimation and emergence. So far, research has produced diverging results as to the necessary conditions for successful legitimation. Cluster Analysis is used to show that in the case of the Lebanese newspaper industry, successful emergence was attained without the need to project a unified identity. In fact, the analysis clearly shows that there were two separate groups of clusters that had emerged by the end of the period. The nature of these two clusters will be investigated by looking at the category spanning activities of the newspapers that were members of the clusters.
First principles study of vibrational dynamics of ceria-titania hybrid clusters
Energy Technology Data Exchange (ETDEWEB)
Majid, Abdul, E-mail: abdulmajid40@yahoo.com; Bibi, Maryam [University of Gujrat, Department of Physics (Pakistan)
2017-04-15
Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO{sub 2}, whereas two IR active and one Raman active modes were observed for CeO{sub 2}. The comparative analysis indicates that the hybrid cluster CeTiO{sub 4} contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO{sub 4} to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.
Cluster geometry and survival probability in systems driven by reaction-diffusion dynamics
International Nuclear Information System (INIS)
Windus, Alastair; Jensen, Henrik J
2008-01-01
We consider a reaction-diffusion model incorporating the reactions A→φ, A→2A and 2A→3A. Depending on the relative rates for sexual and asexual reproduction of the quantity A, the model exhibits either a continuous or first-order absorbing phase transition to an extinct state. A tricritical point separates the two phase lines. While we comment on this critical behaviour, the main focus of the paper is on the geometry of the population clusters that form. We observe the different cluster structures that arise at criticality for the three different types of critical behaviour and show that there exists a linear relationship for the survival probability against initial cluster size at the tricritical point only.
Cluster geometry and survival probability in systems driven by reaction-diffusion dynamics
Energy Technology Data Exchange (ETDEWEB)
Windus, Alastair; Jensen, Henrik J [The Institute for Mathematical Sciences, 53 Prince' s Gate, South Kensington, London SW7 2PG (United Kingdom)], E-mail: h.jensen@imperial.ac.uk
2008-11-15
We consider a reaction-diffusion model incorporating the reactions A{yields}{phi}, A{yields}2A and 2A{yields}3A. Depending on the relative rates for sexual and asexual reproduction of the quantity A, the model exhibits either a continuous or first-order absorbing phase transition to an extinct state. A tricritical point separates the two phase lines. While we comment on this critical behaviour, the main focus of the paper is on the geometry of the population clusters that form. We observe the different cluster structures that arise at criticality for the three different types of critical behaviour and show that there exists a linear relationship for the survival probability against initial cluster size at the tricritical point only.
Fast electrons from multi-electron dynamics in xenon clusters induced by inner-shell ionization
International Nuclear Information System (INIS)
Bostedt, Christoph; Thomas, Heiko; Hoener, Matthias; Moeller, Thomas; Saalmann, Ulf; Georgescu, Ionut; Gnodtke, Christian; Rost, Jan-Michael
2010-01-01
Fast electrons emitted from xenon clusters in strong femtosecond 90 eV pulses have been measured at the Free-electron Laser in Hamburg (FLASH). Energy absorption occurs mainly through atomic inner-shell photo-ionization. Photo-electrons are trapped in the strong Coulomb potential of the cluster ions and form a non-equilibrium plasma with supra-atomic density. Its equilibration through multiple energy-exchanging collisions within the entire cluster volume produces electrons with energies well beyond the dominant emission line of atomic xenon. Here, in contrast to traditional low-frequency laser plasma heating, the plasma gains energy from electrons delivered through massive single-photon excitation from bound states. Electron emission induced by thermalization of a non-equilibrium plasma is expected to be a general phenomenon occurring for strong atomic x-ray absorption in extended systems.
International Nuclear Information System (INIS)
Geller, Aaron M.; De Grijs, Richard; Li, Chengyuan; Hurley, Jarrod R.
2013-01-01
The massive (13,000-26,000 M ☉ ) and young (15-30 Myr) Large Magellanic Cloud star cluster NGC 1818 reveals an unexpected increasing binary frequency with radius for F-type stars (1.3-2.2 M ☉ ). This is in contrast to many older star clusters that show a decreasing binary frequency with radius. We study this phenomenon with sophisticated N-body modeling, exploring a range of initial conditions, from smooth virialized density distributions to highly substructured and collapsing configurations. We find that many of these models can reproduce the cluster's observed properties, although with a modest preference for substructured initial conditions. Our models produce the observed radial trend in binary frequency through disruption of soft binaries (with semi-major axes, a ≳ 3000 AU), on approximately a crossing time (∼5.4 Myr), preferentially in the cluster core. Mass segregation subsequently causes the binaries to sink toward the core. After roughly one initial half-mass relaxation time (t rh (0) ∼ 340 Myr) the radial binary frequency distribution becomes bimodal, the innermost binaries having already segregated toward the core, leaving a minimum in the radial binary frequency distribution that marches outward with time. After 4-6 t rh (0), the rising distribution in the halo disappears, leaving a radial distribution that rises only toward the core. Thus, both a radial binary frequency distribution that falls toward the core (as observed for NGC 1818) and one that rises toward the core (as for older star clusters) can arise naturally from the same evolutionary sequence owing to binary disruption and mass segregation in rich star clusters.
International Nuclear Information System (INIS)
Solovyeva, Lilia
2008-01-01
Cluster of galaxies are the largest and youngest objects in the Universe and these objects are very interesting for study the cosmology. In this moment with the capacity of the instruments (XMM-Newton, Chandra) and with numerical simulations it is possible to study the dynamical state of gas in the cluster during their formation. And plus, now, we have the possibility to study the cluster in different wavelengths (optics, radio, X-ray). Our study helps us to understand the physics processes in clusters. In our work we studied the galaxy cluster around the maximum core collapse. We used the X-ray data, how the first indicators of dynamical state of gas. After with the help of numerical simulation and optics data we performed the completed analysis with the proposition of merger scenario possible. We performed the detailed analysis of two clusters (CL0016+16 and A548b), these clusters presents the signature of major merger and also we studied the cluster from numerical simulation (Cluster 6) around the major merger. (author) [fr
Probing the structure and dynamics of cage-like clusters: from water to Met-Cars
International Nuclear Information System (INIS)
Castleman, A.W. Jr.
1995-01-01
Our recent work on metal compounds led to the discovery of a new class of metal-carbon clusters which are of finite size and have specific geometry, but exhibit varying electronic character because of the different metals of which they can be comprised. We term these metallo-carbohedrenes or Met-Cars for short. This paper reviews the progress made in elucidating the structures if these two classes of clusters which seem to be quite different, but have some interesting common features involving structural considerations. (orig.)
Anisotropic light scattering of individual sickle red blood cells.
Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun
2012-04-01
We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.
Czech Academy of Sciences Publication Activity Database
Profant, V.; Poterya, Viktoriya; Fárník, Michal; Slavíček, P.; Buck, U.
2007-01-01
Roč. 111, č. 49 (2007), s. 12477-12486 ISSN 1089-5639 R&D Projects: GA AV ČR KAN400400651; GA ČR GA203/06/1290 Grant - others:GA ČR GP203/07/P449; University Grant(CZ) 8113-10/257852 Institutional research plan: CEZ:AV0Z40400503 Source of funding: V - iné verejné zdroje Keywords : pyrrole cluster s * structure * dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007
Directory of Open Access Journals (Sweden)
Amgalanbaatar Baldansuren
2016-12-01
Full Text Available A well-defined, monodisperse Ag6+ cluster was prepared by mild chemical treatments including aqueous ion-exchange, dehydration, oxygen calcination at 673 K and hydrogen reduction 293 K, rather than autoreduction and irradiations with γ-ray and X-ray. H2 reduction was proved as a crucial step to form the nanosize cluster with six equivalent silver atoms. Hydrogen isotope exchange and dynamics were probed by EPR and HYSCORE to provide information relevant to the cluster geometry, size, charge state and spin state. Desorption experiments result in the deuterium desorption energy of 0.78 eV from the cluster, exceeding the experimental value of 0.38 eV for the single crystal Ag(111 surface. These experiments indicate that the EPR-active clusters are in delicate equilibrium with EPR-silent clusters.
Absence of saturation of void growth in rate theory with anisotropic diffusion
Hudson, T S; Sutton, A P
2002-01-01
We present a first attempt at solution the problem of the growth of a single void in the presence of anisotropically diffusing radiation induced self-interstitial atom (SIA) clusters. In order to treat a distribution of voids we perform ensemble averaging over the positions of centres of voids using a mean-field approximation. In this way we are able to model physical situations in between the Standard Rate Theory (SRT) treatment of swelling (isotropic diffusion), and the purely 1-dimensional diffusion of clusters in the Production Bias Model. The background absorption by dislocations is however treated isotropically, with a bias for interstitial cluster absorption assumed similar to that of individual SIAs. We find that for moderate anisotropy, unsaturated void growth is characteristic of this anisotropic diffusion of clusters. In addition we obtain a higher initial void swelling rate than predicted by SRT whenever the diffusion is anisotropic.
Czech Academy of Sciences Publication Activity Database
Grygoryeva, Kateřina; Kubečka, J.; Pysanenko, Andriy; Lengyel, Jozef; Slavíček, Petr; Fárník, Michal
2016-01-01
Roč. 120, č. 24 (2016), s. 4139-4146 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GA15-12386S Institutional support: RVO:61388955 Keywords : photochemistry * clusters * laser techniques Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.847, year: 2016
Electronic structure and dynamics of ordered clusters with ME or RE ions on oxide surface
Energy Technology Data Exchange (ETDEWEB)
Kulagin, N.A., E-mail: nkulagin@bestnet.kharkov.u [Kharkiv National University for Radio Electronics, Avenue Shakespeare 6-48, 61045 Kharkiv (Ukraine)
2011-03-15
Selected data of ab initio simulation of the electronic structure and spectral properties of either cluster with ions of iron, rare earth or actinium group elements have been presented here. Appearance of doped Cr{sup +4} ions in oxides, Cu{sup +2} in HTSC, Nd{sup +2} in solids has been discussed. Analysis of experimental data for plasma created ordered structures of crystallites with size of about 10{sup -9} m on surface of separate oxides are given, too. Change in the spectroscopic properties of clusters and nano-structures on surface of strontium titanate crystals discussed shortly using the X-ray line spectroscopy experimental results. - Research highlights: External influence and variation of technology induce changes in valence of nl ions in compounds. Wave function of cluster presented as anti-symmetrical set of ions wave functions. The main equation describes the self-consistent field depending on state of all electrons of cluster. Level scheme of Cr{sup 4+} ions in octo- and tetra-site corresponds to doped oxides spectra after treatment. Plasma treatment effects in appearance of systems of unit crystallites with size of about 10{sup -6}-10{sup -9} m.
Electronic structure and dynamics of ordered clusters with ME or RE ions on oxide surface
International Nuclear Information System (INIS)
Kulagin, N.A.
2011-01-01
Selected data of ab initio simulation of the electronic structure and spectral properties of either cluster with ions of iron, rare earth or actinium group elements have been presented here. Appearance of doped Cr +4 ions in oxides, Cu +2 in HTSC, Nd +2 in solids has been discussed. Analysis of experimental data for plasma created ordered structures of crystallites with size of about 10 -9 m on surface of separate oxides are given, too. Change in the spectroscopic properties of clusters and nano-structures on surface of strontium titanate crystals discussed shortly using the X-ray line spectroscopy experimental results. - Research highlights: → External influence and variation of technology induce changes in valence of nl ions in compounds. → Wave function of cluster presented as anti-symmetrical set of ions wave functions. → The main equation describes the self-consistent field depending on state of all electrons of cluster. → Level scheme of Cr 4+ ions in octo- and tetra-site corresponds to doped oxides spectra after treatment. → Plasma treatment effects in appearance of systems of unit crystallites with size of about 10 -6 -10 -9 m.
Wang, L.; Madhok, A.; Li, S.X.
2014-01-01
Research on agglomeration finds that either a higher survival rate of incumbent firms or a higher founding rate of new entrants, or both, can sustain an industry cluster. The conditioning effects of time on the two distinct mechanisms of survival and founding are, however, rarely examined. We argue
RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS
Energy Technology Data Exchange (ETDEWEB)
López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)
2016-11-20
A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.
Analysis of anisotropic shells containing flowing fluid
International Nuclear Information System (INIS)
Lakis, A.A.
1983-01-01
A general theory for the dynamic analysis of anisotropic thin cylindrical shells containing flowing fluid is presented. The shell may be uniform or non-uniform, provided it is geometrically axially symmetric. This is a finite- element theory, using cylindrical finite elements, but the displacement functions are determined by using classical shell theory. A new solution of the wave equation of the liquid finite element leads to an expression of the fluid pressure, p, as a function of the nodal displacements of the element and three operative forces (inertia, centrifugal and Coriolis) of the moving fluid. (Author) [pt
Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe
Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo
2015-04-01
Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.
Anisotropic hydrodynamics with a scalar collisional kernel
Almaalol, Dekrayat; Strickland, Michael
2018-04-01
Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.
Nuclear clustering - a cluster core model study
International Nuclear Information System (INIS)
Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.
2015-01-01
Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei
International Nuclear Information System (INIS)
Lepere, V.
2006-09-01
The present work concerns the building up of a complex set-up whose aim being the investigation of the photo fragmentation of ionised clusters and biological molecules. This new tool is based on the association of several techniques. Two ion sources are available: clusters produced in a supersonic beam are ionised by 70 eV electrons while ions of biological interest are produced in an 'electro-spray'. Ro-vibrational cooling is achieved in a 'Zajfman' electrostatic ion trap. The lifetime of ions can also be measured using the trap. Two types of lasers are used to excite the ionised species: the femtosecond laser available at the ELYSE facilities and a nanosecond laser. Both lasers have a repetition rate of 1 kHz. The neutral and ionised fragments are detected in coincidence using a sophisticated detection system allowing time and localisation of the various fragments to be determined. With such a tool, I was able to investigate in details the fragmentation dynamics of ionised clusters and bio-molecules. The first experiments deal with the measurement of the lifetime of the Ar 2+ dimer II(1/2)u metastable state. The relative population of this state was also determined. The Ar 2+ and Ar 3+ photo-fragmentation was then studied and electronic transitions responsible for their dissociation identified. The detailed analysis of our data allowed to distinguish the various fragmentation mechanisms. Finally, a preliminary investigation of the protonated tryptamine fragmentation is presented. (author)
Rodríguez-Carballo, Eddie; Lopez-Delisle, Lucille; Zhan, Ye; Fabre, Pierre J; Beccari, Leonardo; El-Idrissi, Imane; Huynh, Thi Hanh Nguyen; Ozadam, Hakan; Dekker, Job; Duboule, Denis
2017-11-15
The mammalian HoxD cluster lies between two topologically associating domains (TADs) matching distinct enhancer-rich regulatory landscapes. During limb development, the telomeric TAD controls the early transcription of Hoxd genes in forearm cells, whereas the centromeric TAD subsequently regulates more posterior Hoxd genes in digit cells. Therefore, the TAD boundary prevents the terminal Hoxd13 gene from responding to forearm enhancers, thereby allowing proper limb patterning. To assess the nature and function of this CTCF-rich DNA region in embryos , we compared chromatin interaction profiles between proximal and distal limb bud cells isolated from mutant stocks where various parts of this boundary region were removed. The resulting progressive release in boundary effect triggered inter-TAD contacts, favored by the activity of the newly accessed enhancers. However, the boundary was highly resilient, and only a 400-kb deletion, including the whole-gene cluster, was eventually able to merge the neighboring TADs into a single structure. In this unified TAD, both proximal and distal limb enhancers nevertheless continued to work independently over a targeted transgenic reporter construct. We propose that the whole HoxD cluster is a dynamic TAD border and that the exact boundary position varies depending on both the transcriptional status and the developmental context. © 2017 Rodríguez-Carballo et al.; Published by Cold Spring Harbor Laboratory Press.
Disadvantage factor for anisotropic scattering
International Nuclear Information System (INIS)
Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.
1990-01-01
The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters
Cracking on anisotropic neutron stars
Setiawan, A. M.; Sulaksono, A.
2017-07-01
We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.
Magnetostatics of anisotropic superconducting ellipsoid
International Nuclear Information System (INIS)
Saif, A.G.
1987-09-01
The magnetization and the magnetic field distribution inside (outside) an anisotropic type II superconducting ellipsoid, with filamentary structure, is formulated. We have shown that the magnetic field in this case is different from that of the general anisotropic one. The nucleations of the flux lines for specimens with large demagnetization factors are theoretically studied. We have shown that the nucleations of the flux lines, for specimens with large demagnetization factor, appears at a field larger than that of ellipsoidal shape. (author). 15 refs
International Nuclear Information System (INIS)
Sifón, Cristóbal; Barrientos, L. Felipe; González, Jorge; Infante, Leopoldo; Dünner, Rolando; Menanteau, Felipe; Hughes, John P.; Baker, Andrew J.; Hasselfield, Matthew; Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B.; Addison, Graeme E.; Dunkley, Joanna; Battaglia, Nick; Bond, J. Richard; Hajian, Amir; Das, Sudeep; Devlin, Mark J.; Hilton, Matt
2013-01-01
We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 deg 2 area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R ∼ 700-800) spectra and redshifts for ≈60 member galaxies on average per cluster. The dynamical masses M 200c of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z = 0.50 and a median mass M 200c ≅12×10 14 h 70 -1 M sun with a lower limit M 200c ≅6×10 14 h 70 -1 M sun , consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y 0 -tilde, the central Compton parameter y 0 , and the integrated Compton signal Y 200c , which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter (∼< 20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that ∼50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations
Directory of Open Access Journals (Sweden)
Renata De Paris
Full Text Available Protein receptor conformations, obtained from molecular dynamics (MD simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids and four agglomerative hierarchical methods (Complete linkage, Ward's, Unweighted Pair Group Method and Weighted Pair Group Method to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to
Zotos, Euaggelos E.; Jung, Christof
2017-02-01
The escape mechanism of orbits in a star cluster rotating around its parent galaxy in a circular orbit is investigated. A three degrees of freedom model is used for describing the dynamical properties of the Hamiltonian system. The gravitational field of the star cluster is represented by a smooth and spherically symmetric Plummer potential. We distinguish between ordered and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels. The Smaller ALignment Index (SALI) method is used for determining the regular or chaotic nature of the orbits. The basins of escape are located and they are also correlated with the corresponding escape time of the orbits. Areas of bounded regular or chaotic motion and basins of escape were found to coexist in the (x, z) plane. The properties of the normally hyperbolic invariant manifolds (NHIMs), located in the vicinity of the index-1 Lagrange points L1 and L2, are also explored. These manifolds are of paramount importance as they control the flow of stars over the saddle points, while they also trigger the formation of tidal tails observed in star clusters. Bifurcation diagrams of the Lyapunov periodic orbits as well as restrictions of the Poincaré map to the NHIMs are deployed for elucidating the dynamics in the neighbourhood of the saddle points. The extended tidal tails, or tidal arms, formed by stars with low velocity which escape through the Lagrange points are monitored. The numerical results of this work are also compared with previous related work.
CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER
Energy Technology Data Exchange (ETDEWEB)
Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)
2015-05-10
NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.
Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster
Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico
2015-05-01
NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.
Last, Isidore; Jortner, Joshua
2004-11-01
In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters
Anisotropic ordering in a two-temperature lattice gas
DEFF Research Database (Denmark)
Szolnoki, Attila; Szabó, György; Mouritsen, Ole G.
1997-01-01
We consider a two-dimensional lattice gas model with repulsive nearest- and next-nearest-neighbor interactions that evolves in time according to anisotropic Kawasaki dynamics. The hopping of particles along the principal directions is governed by two heat baths at different temperatures T-x and T...
Adiabatic invariants in stellar dynamics, 3: Application to globular cluster evolution
Weinberg, Martin D.
1994-01-01
The previous two companion papers demonstrate that slowly varying perturbations may not result in adiabatic cutoffs and provide a formalism for computing the long-term effects of time-dependent perturbations on stellar systems. Here, the theory is implemented in a Fokker-Planck code and a suite of runs illustrating the effects of shock heating on globular cluster evolution are described. Shock heating alone results in considerable mass loss for clusters with R(sub g) less than or approximately 8 kpc: a concentration c = 1.5 cluster with R(sub g) kpc loses up to 95% of its initial mass in 15 Gyr. Only those with concentration c greater than or approximately 1.3 survive disk shocks inside of this radius. Other effects, such as mass loss by stellar evolution, will decrease this survival bound. Loss of the initial halo together with mass segregation leads to mass spectral indices, x, which may be considerably larger than their initial values.
The galactic globular cluster NGC 1851: its dynamical and evolutionary properties
Saviane, I.; Piotto, G.; Fagotto, F.; Zaggia, S.; Capaccioli, M.; Aparicio, A.
1998-05-01
We have completely mapped the Galactic globular cluster NGC 1851 with large-field, ground-based VI CCD photometry and pre-repair HST/WFPC1 data for the central region. The photometric data set has allowed a V vs. (V-I) colour-magnitude diagram for ~ 20500 stars to be constructed. >From the apparent luminosity of the horizontal branch (HB) we derive a true distance modulus (m-M)_0 = 15.44 +/- 0.20. An accurate inspection of the cluster's bright and blue objects confirms the presence of seven ``supra-HB'' stars, six of which are identified as evolved descendants from HB progenitors. The HB morphology is found to be clearly bimodal, showing both a red clump and a blue tail, which are not compatible with standard evolutionary models. Synthetic Hertzsprung-Russell (HR) diagrams demonstrate that the problem could be solved by assuming a bimodal efficiency of the mass loss along the red giant branch (RGB). With the aid of Kolmogorov-Smirnov statistics we find evidence that the radial distribution of the blue HB stars is different from that of the red HB and sub-giant branch (SGB) stars. We give the first measurement of the mean absolute I magnitude for 22 known RR Lyr variables ( = 0.12 +/- 0.20 mag at a metallicity [Fe/H] = -1.28). The mean absolute V magnitude is = 0.58 +/- 0.20 mag, and we confirm that these stars are brighter than those of the zero-age HB (ZAHB). Moreover, we found seven new RR Lyr candidates (six ab type and one c type). With these additional variables the ratio of the two types is now N_c/Nab = 0.38. >From a sample of 25 globular clusters a new calibration for Delta V_bump() HB as a function of cluster metallicity is derived. NGC 1851 follows this general trend fairly well. From a comparison with the theoretical models, we also find some evidence for an age-metallicity relation among globular clusters. We identify 13 blue straggler stars, which do not show any sign of variability. The blue stragglers are less concentrated than the subgiant branch
Structural dynamics of N-ethylpropionamide clusters examined by nonlinear infrared spectroscopy
International Nuclear Information System (INIS)
Wang, Jianping; Yang, Fan; Zhao, Juan; Shi, Jipei
2015-01-01
In this work, the structural dynamics of N-ethylpropionamide (NEPA), a model molecule of β-peptides, in four typical solvents (DMSO, CH 3 CN, CHCl 3 , and CCl 4 ), were examined using the N—H stretching vibration (or the amide-A mode) as a structural probe. Steady-state and transient infrared spectroscopic methods in combination with quantum chemical computations and molecular dynamics simulations were used. It was found that in these solvents, NEPA exists in different aggregation forms, including monomer, dimer, and oligomers. Hydrogen-bonding interaction and local-solvent environment both affect the amide-A absorption profile and its vibrational relaxation dynamics and also affect the structural dynamics of NEPA. In particular, a correlation between the red-shifted frequency for the NEPA monomer from nonpolar to polar solvent and the vibrational excitation relaxation rate of the N—H stretching mode was observed
Biosensor based on measurements of the clustering dynamics of magnetic particles
DEFF Research Database (Denmark)
2014-01-01
Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample.......Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample....
International Nuclear Information System (INIS)
Gherbi, Chirihane; Aliouat, Zibouda; Benmohammed, Mohamed
2016-01-01
Clustering is a well known approach to cope with large nodes density and efficiently conserving energy in Wireless Sensor Networks (WSN). Load balancing is an effective approach for optimizing resources like channel bandwidth, the main objective of this paper is to combine these two valuable approaches in order to significantly improve the main WSN service such as information routing. So, our proposal is a routing protocol in which load traffic is shared among cluster members in order to reduce the dropping probability due to queue overflow at some nodes. To this end, a novel hierarchical approach, called Hierarchical Energy-Balancing Multipath routing protocol for Wireless Sensor Networks (HEBM) is proposed. The HEBM approach aims to fulfill the following purposes: decreasing the overall network energy consumption, balancing the energy dissipation among the sensor nodes and as direct consequence: extending the lifetime of the network. In fact, the cluster-heads are optimally determined and suitably distributed over the area of interest allowing the member nodes reaching them with adequate energy dissipation and appropriate load balancing utilization. In addition, nodes radio are turned off for fixed time duration according to sleeping control rules optimizing so their energy consumption. The performance evaluation of the proposed protocol is carried out through the well-known NS2 simulator and the exhibited results are convincing. Like this, the residual energy of sensor nodes was measured every 20 s throughout the duration of simulation, in order to calculate the total number of alive nodes. Based on the simulation results, we concluded that our proposed HEBM protocol increases the profit of energy, and prolongs the network lifetime duration from 32% to 40% compared to DEEAC reference protocol and from 25% to 28% compared to FEMCHRP protocol. The authors also note that the proposed protocol is 41.7% better than DEEAC with respect to FND (Fist node die), and 25
Dynamical effects in the formation and evolution of galaxies and clusters
International Nuclear Information System (INIS)
White, S.D.M.
1977-01-01
The development of computer programs capable of simulating the self-consistent evolution of systems of a thousand or more self-gravitating particles has opened to experiment many aspects of problems concerning the dissipationless formation of galaxies and galaxy clusters which could previously only be treated at the cost of extreme oversimplification. As a result of experiments now being carried out, the range of validity, the inadequacies and the mistaken emphasis of many previous analyses are becoming evident. The applications of numerical experiments are discussed and illustrated. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)
2015-11-15
In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.
International Nuclear Information System (INIS)
Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin
2015-01-01
In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing
3-D waveform tomography sensitivity kernels for anisotropic media
Djebbi, Ramzi
2014-01-01
The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.
Self-force on dislocation segments in anisotropic crystals
International Nuclear Information System (INIS)
Fitzgerald, S P; Aubry, S
2010-01-01
A dislocation segment in a crystal experiences a 'self-force', by virtue of the orientation dependence of its elastic energy. If the crystal is elastically isotropic, this force is manifested as a couple acting to rotate the segment toward the lower energy of the pure screw orientation (i.e. acting to align the dislocation line with its Burgers vector). If the crystal is anisotropic, there are additional contributions to the couple, arising from the more complex energy landscape of the lattice itself. These effects can strongly influence the dynamic evolution of dislocation networks, and via their governing role in dislocation multiplication phenomena, control plastic flow in metals. In this paper we develop a model for dislocation self-forces in a general anisotropic crystal, and briefly consider the technologically important example of α-iron, which becomes increasingly anisotropic as the temperature approaches that of the α-γ phase transition at 912 0 C.
Independent center, independent electron approximation for dynamics of molecules and clusters
International Nuclear Information System (INIS)
McGuire, J.H.; Straton, J.C.; Wang, J.; Wang, Y.D.; Weaver, O.L.; Corchs, S.E.; Rivarola, R.D.
1996-01-01
A formalism is developed for evaluating probabilities and cross sections for multiple-electron transitions in scattering of molecules and clusters by charged collision partners. First, the molecule is divided into subclusters each made up of identical centers (atoms). Within each subcluster coherent scattering from identical centers may lead to observable phase terms and a geometrical structure factor. Then, using a mean field approximation to describe the interactions between centers we obtain A I ∼ summation k product ke iδ k I A Ik . Second, the independent electron approximation for each center may be obtained by neglecting the correlation between electrons in each center. The probability amplitude for each center is then a product of single electron transition probability amplitudes, a Ik i , i.e. A Ik ≅ product iaik i . Finally, the independent subcluster approximation is introduced by neglecting the interactions between different subclusters in the molecule or cluster. The total probability amplitude then reduces to a simple product of amplitudes for each subcluster, A≅ product IAI . Limitations of this simple approximation are discussed. copyright 1996 American Institute of Physics
Directory of Open Access Journals (Sweden)
Kyle T Greenway
Full Text Available Neuraminidase inhibitors are the main pharmaceutical agents employed for treatments of influenza infections. The neuraminidase structures typically exhibit a 150-cavity, an exposed pocket that is adjacent to the catalytic site. This site offers promising additional contact points for improving potency of existing pharmaceuticals, as well as generating entirely new candidate inhibitors. Several inhibitors based on known compounds and designed to interact with 150-cavity residues have been reported. However, the dynamics of any of these inhibitors remains unstudied and their viability remains unknown. This work reports the outcome of long-term, all-atom molecular dynamics simulations of four such inhibitors, along with three standard inhibitors for comparison. Each is studied in complex with four representative neuraminidase structures, which are also simulated in the absence of ligands for comparison, resulting in a total simulation time of 9.6 µs. Our results demonstrate that standard inhibitors characteristically reduce the mobility of these dynamic proteins, while the 150-binders do not, instead giving rise to many unique conformations. We further describe an improved RMSD-based clustering technique that isolates these conformations--the structures of which are provided to facilitate future molecular docking studies--and reveals their interdependence. We find that this approach confers many advantages over previously described techniques, and the implications for rational drug design are discussed.
International Nuclear Information System (INIS)
Wopperer, P.; Dinh, P.M.; Reinhard, P.-G.; Suraud, E.
2015-01-01
There are various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers observables such as total ionization, Photo-Electron Spectra (PES), Photoelectron Angular Distributions (PAD), and ideally combined PES/PAD. It has a long history in molecular physics and was increasingly used in cluster physics as well. Recent progress in the design of new light sources (high intensity, high frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on these observables, especially for the analysis of various dynamical scenarios, well beyond a simple access to electronic density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters up to such a complex and interesting system as C 60 . A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real time and on a spatial grid, and augmented by a Self-Interaction Correction (SIC). This provides a pertinent, robust, and efficient description of electronic emission including the detailed pattern of PES and PAD. A direct comparison between experiments and well founded elaborate microscopic theories is thus readily possible, at variance with more demanding observables such as for example fragmentation or dissociation cross sections. The purpose of this paper is to describe the theoretical tools developed on the basis of real-time and real-space TDDFT and to address in a realistic manner the analysis of electronic emission following irradiation of clusters and molecules by various laser pulses. After a general introduction, we shall present in a second part the available experimental results motivating such studies, starting from the simplest
Flexibility dynamics in clusters of residential demand response and distributed generation
MacDougall, P.A.; Kok, J.K.; Warmer, C.; Roossien, B.
2013-01-01
Supply and demand response is a untapped resource in the current electrical system. However little work has been done to investigate the dynamics of utilizing such flexibility as well as the potential effects it could have on the infrastructure. This paper provides a starting point to seeing the
Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures
DEFF Research Database (Denmark)
Kuzma, N. N.; Pourfathi, M.; Kara, H.
2012-01-01
During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, Xe-129 nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by H-1 neighbors. A second peak appears upon annealing for several hours at 125 K. Its...
DEFF Research Database (Denmark)
2014-01-01
Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample. The setup may be implemented in a disc...
Tian, Jiting; Zhou, Wei; Feng, Qijie; Zheng, Jian
2018-03-01
An unsolved problem in research of sputtering from metals induced by energetic large cluster ions is that molecular dynamics (MD) simulations often produce sputtering yields much higher than experimental results. Different from the previous simulations considering only elastic atomic interactions (nuclear stopping), here we incorporate inelastic electrons-atoms interactions (electronic stopping, ES) into MD simulations using a friction model. In this way we have simulated continuous 45° impacts of 10-20 keV C60 on a Ag(111) surface, and found that the calculated sputtering yields can be very close to the experimental results when the model parameter is appropriately assigned. Conversely, when we ignore the effect of ES, the yields are much higher, just like the previous studies. We further expand our research to the sputtering of Au induced by continuous keV C60 or Ar100 bombardments, and obtain quite similar results. Our study indicates that the gap between the experimental and the simulated sputtering yields is probably induced by the ignorance of ES in the simulations, and that a careful treatment of this issue is important for simulations of cluster-ion-induced sputtering, especially for those aiming to compare with experiments.
Wei, Ye; Sang, Shengbo; Zhou, Bing; Deng, Xiao; Chai, Jing; Ji, Jianlong; Ge, Yang; Huo, Yuanliang; Zhang, Wendong
2017-09-01
Carbon cluster ion implantation is an important technique in fabricating functional devices at micro/nanoscale. In this work, a numerical model is constructed for implantation and implemented with a cutting-edge molecular dynamics method. A series of simulations with varying incident energies and incident angles is performed for incidence on silicon substrate and correlated effects are compared in detail. Meanwhile, the behavior of the cluster during implantation is also examined under elevated temperatures. By mapping the nanoscopic morphology with variable parameters, numerical formalism is proposed to explain the different impacts on phrase transition and surface pattern formation. Particularly, implantation efficiency (IE) is computed and further used to evaluate the performance of the overall process. The calculated results could be properly adopted as the theoretical basis for designing nano-structures and adjusting devices’ properties. Project supported by the National Natural Science Foundation of China (Nos. 51622507, 61471255, 61474079, 61403273, 51502193, 51205273), the Natural Science Foundation of Shanxi (Nos. 201601D021057, 201603D421035), the Youth Foundation Project of Shanxi Province (Nos. 2015021097), the Doctoral Fund of MOE of China (No. 20131402110013), the National High Technology Research and Development Program of China (No. 2015AA042601), and the Specialized Project in Public Welfare from The Ministry of Water Resources of China (Nos. 1261530110110).
The ATLAS collaboration
2017-01-01
The electron and photon reconstruction in ATLAS has moved towards the use of a dynamical, topo- logical cell-based approach for cluster building, owing to advancements in the calibration procedure which allow for such a method to be applied. The move to this new technique allows for improved measurements of electron and photon energies, particularly in situations where an electron radiates a bremsstrahlung photon, or a photon converts to an electron-poistron pair. This note details the changes to the ATLAS electron and photon reconstruction software, and assesses its performance under current LHC luminosity conditions using simulated data. Changes to the converted photon reconstruction are also detailed, which improve the reconstruction efficiency of double-track converted photons, as well as reducing the reconstruction of spurious one-track converted photons. The performance of the new reconstruction algorithm is also presented in a number of important topologies relevant to precision Standard Model physics,...
Molecular dynamics studies of the transient nucleation regime in the freezing of (RbCl)108 clusters
International Nuclear Information System (INIS)
Huang, Jinfan; Bartell, L.S.Lawrence S.
2004-01-01
The freezing of supercooled liquids in the transient period before a steady state of nucleation is attained has been the subject of a number of theoretical treatments. To our knowledge, no published experimental studies or computer simulations have been carried out in sufficient detail to test definitively the behavior predicted by the various theories. The present molecular dynamics (MD) simulation of 375 nucleation events in small, liquid RbCl clusters, however, yields a reasonably accurate account of the transient region. Despite published criticisms of a 1969 treatment by Kashchiev, it turns out that the behavior observed in the present study agrees with that predicted by Kashchiev. The study also obtains a much more accurate nucleation rate and time lag than reported for MD studies of RbCl previously published in this journal. In addition, it provides estimates of the solid-liquid interfacial free energy and the Granasy thickness of the diffuse solid-liquid interface
DEFF Research Database (Denmark)
Bork, Nicolai Christian; Loukonen, Ville; Kjærgaard, Henrik Grum
2014-01-01
We present a molecular dynamics (MD) based study of the acetonitrile-hydrogen chloride molecular cluster in the gas phase, aimed at resolving the anomalous features often seen in infrared spectra of hydrogen bonded complexes. We find that the infrared spectrum obtained from the Fourier transform...... of the electric dipole moment autocorrelation function converges very slowly due to the floppy nature of the complex. Even after 55 picoseconds of simulation, significant differences in the modelled and experimental spectrum are seen, likely due to insufficient configurational sampling. Instead, we utilize the MD...... trajectory for a structural based analysis. We find that the most populated values of the N-H-Cl angle are around 162°. The global minimum energy conformation at 180.0° is essentially unpopulated. We re-model the spectrum by combining population data from the MD simulations with optimizations constraining...
Directory of Open Access Journals (Sweden)
Jiahang Yuan
2017-01-01
Full Text Available In consideration of the interaction among attributes and the influence of decision makers’ risk attitude, this paper proposes an intuitionistic trapezoidal fuzzy aggregation operator based on Choquet integral and prospect theory. With respect to a multiattribute group decision-making problem, the prospect value functions of intuitionistic trapezoidal fuzzy numbers are aggregated by the proposed operator; then a grey relation-projection pursuit dynamic cluster method is developed to obtain the ranking of alternatives; the firefly algorithm is used to optimize the objective function of projection for obtaining the best projection direction of grey correlation projection values, and the grey correlation projection values are evaluated, which are applied to classify, rank, and prefer the alternatives. Finally, an illustrative example is taken in the present study to make the proposed method comprehensible.
Dynamics of Rb{sup +}-benzene and Rb{sup +}-benzene-Ar {sub n} (n {<=} 3) clusters
Energy Technology Data Exchange (ETDEWEB)
Alberti, M. [Centre de Recerca en Quimica Teorica, Departament de Quimica Fisica, Parc Cientific, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain)], E-mail: m.alberti@ub.edu; Aguilar, A. [Centre de Recerca en Quimica Teorica, Departament de Quimica Fisica, Parc Cientific, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain); Lucas, J.M. [Centre de Recerca en Quimica Teorica, Departament de Quimica Fisica, Parc Cientific, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain); Cappelletti, D. [Dipartimento di Ingegneria Civile ed Ambientale, Universita di Perugia, 06123 Perugia (Italy); Lagana, A. [Dipartimento di Chimica, Universita di Perugia, 06123 Perugia (Italy); Pirani, F. [Dipartimento di Chimica, Universita di Perugia, 06123 Perugia (Italy)
2006-09-29
The potential energy function of the Rb{sup +}-benzene cluster and of some of its Ar solvated variants is here modeled using a combination (pairwise sum) of ion(atom)-molecular bond and ion-molecular charges interaction contributions which provide, respectively, the non electrostatic and the electrostatic terms of the total non covalent intermolecular potential energy. In particular, such interaction contributions have been represented using, in addition to the ion(atom) polarizability, the bond polarizability tensor components and the charge distribution which account, respectively, for the polarizability and the quadrupolar moment of the benzene molecule. On the resulting potential energy surface, dynamical calculations have been carried out for the microcanonical ensemble by focusing on isomerization processes and on the effect of the mass of the cation.
Bouy, H.; Bertin, E.; Moraux, E.; Cuillandre, J.-C.; Bouvier, J.; Barrado, D.; Solano, E.; Bayo, A.
2013-06-01
Context. The kinematic properties of the different classes of objects in a given association hold important clues about the history of its members, and offer a unique opportunity to test the predictions of the various models of stellar formation and evolution. Aims: DANCe (standing for dynamical analysis of nearby clusters) is a survey program aimed at deriving a comprehensive and homogeneous census of the stellar and substellar content of a number of nearby (history, and the presence of reference extragalactic sources for the anchoring onto the ICRS. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.
Cluster dynamics: A classical trajectory study of A + A/sub n/arrow-right-leftA*/sub n/+1
International Nuclear Information System (INIS)
Brady, J.W.; Doll, J.D.; Thompson, D.L.
1979-01-01
The dynamics of the collision of an atom A with a small cluster of atoms, A/sub n/, leading to the formation of a quasibound A*/sub n/+1 complex, which subsequently decays, has been studied using classical trajectories. Pairwise Lennard-Jones potentials (with parameters appropriate for argon) were used to describe the identical point masses (Ar). The results illustrate the feasibility of direct calculations of microscopic rates for nucleation processes. The dissociation of collisionally formed A*/sub n/+1 (n=3,4, and 5) occurs by first-order exponential decay. Furthermore the energy dependence of the dissociation rate constants appears to be well described by the RRK functional form
Continuum mechanics of anisotropic materials
Cowin, Stephen C
2013-01-01
Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.
Energy Technology Data Exchange (ETDEWEB)
Acton, P.D. [Inst. of Nuclear Medicine, Univ. Coll. London Medical School, London (United Kingdom); Pilowsky, L.S. [Institute of Psychiatry, London (United Kingdom); Costa, D.C. [Inst. of Nuclear Medicine, Univ. Coll. London Medical School, London (United Kingdom); Ell, P.J. [Inst. of Nuclear Medicine, Univ. Coll. London Medical School, London (United Kingdom)
1997-02-01
This paper describes the application of a multivariate statistical technique to investigate striatal dopamine D{sub 2}receptor concentrations measured by iodine-123 iodobenzamide ({sup 123}I-IBZM) single-photon emission tomography (SPET). This technique enables the automatic segmentation of dynamic nuclear medicine images based on the underlying time-activity curves present in the data. Once the time-activity curves have been extracted, each pixel can be mapped back on to the underlying distribution, considerably reducing image noise. Cluster analysis has been verified using computer simulations and phantom studies. The technique has been applied to SPET images of dopamine D {sub 2}receptors in a total of 20 healthy and 20 schizophrenic volunteers (22 male, 18 female), using the ligand {sup 123}I-IBZM. Following automatic image segmentation, the concentration of striatal dopamine D {sub 2}receptors shows a significant left-sided asymmetry in male schizophrenics compared with male controls. The mean left-minus-right laterality index for controls is -1.52 (95% CI -3.72-0.66) and for patients 4.04 (95% CI 1.07-7.01). Analysis of variance shows a case-by-sex-by-side interaction, with F=10.01, P=0.005. We can now demonstrate that the previously observed male sex-specific D {sub 2}receptor asymmetry in schizophrenia, which had failed to attain statistical significance, is valid. Cluster analysis of dynamic nuclear medicine studies provides a powerful tool for automatic segmentation and noise reduction of the images, removing much of the subjectivity inherent in region-of-interest analysis. The observed striatal D {sub 2}asymmetry could reflect long hypothesized disruptions in dopamine-rich cortico-striatal-limbic circuits in schizophrenic males. (orig.). With 4 figs., 2 tabs.
Zarrouk, Pauline; Burtin, Etienne; Gil-Marín, Héctor; Ross, Ashley J.; Tojeiro, Rita; Pâris, Isabelle; Dawson, Kyle S.; Myers, Adam D.; Percival, Will J.; Chuang, Chia-Hsun; Zhao, Gong-Bo; Bautista, Julian; Comparat, Johan; González-Pérez, Violeta; Habib, Salman; Heitmann, Katrin; Hou, Jiamin; Laurent, Pierre; Le Goff, Jean-Marc; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Ruggeri, Rossana; Sánchez, Ariel G.; Schneider, Donald P.; Tinker, Jeremy L.; Wang, Yuting; Yèche, Christophe; Baumgarten, Falk; Brownstein, Joel R.; de la Torre, Sylvain; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; Mariappan, Vivek; Palanque-Delabrouille, Nathalie; Peacock, John; Petitjean, Patrick; Seo, Hee-Jong; Zhao, Cheng
2018-06-01
We present the clustering measurements of quasars in configuration space based on the Data Release 14 (DR14) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (eBOSS). This data set includes 148 659 quasars spread over the redshift range 0.8 ≤ z ≤ 2.2 and spanning 2112.9 deg2. We use the Convolution Lagrangian Perturbation Theory approach with a Gaussian Streaming model for the redshift space distortions of the correlation function and demonstrate its applicability for dark matter haloes hosting eBOSS quasar tracers. At the effective redshift zeff = 1.52, we measure the linear growth rate of structure fσ8(zeff) = 0.426 ± 0.077, the expansion rate H(z_eff)= 159^{+12}_{-13}(rs^fid/r_s) {{}km s}^{-1} Mpc^{-1}, and the angular diameter distance DA(z_eff)=1850^{+90}_{-115} (r_s/rs^fid) {}Mpc, where rs is the sound horizon at the end of the baryon drag epoch and rs^fid is its value in the fiducial cosmology. The quoted uncertainties include both systematic and statistical contributions. The results on the evolution of distances are consistent with the predictions of flat Λ-cold dark matter cosmology with Planck parameters, and the measurement of fσ8 extends the validity of General Relativity to higher redshifts (z > 1). This paper is released with companion papers using the same sample. The results on the cosmological parameters of the studies are found to be in very good agreement, providing clear evidence of the complementarity and of the robustness of the first full-shape clustering measurements with the eBOSS DR14 quasar sample.
Anisotropic solutions by gravitational decoupling
Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.
2018-02-01
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.
Anisotropic solutions by gravitational decoupling
Energy Technology Data Exchange (ETDEWEB)
Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)
2018-02-15
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)
Molecular Dynamics Simulation of Solidification of Pd-Ni Clusters with Different Nickel Content
Directory of Open Access Journals (Sweden)
Chen Gang
2014-01-01
Full Text Available Molecular dynamics simulation has been performed for investigating the glass transition of Pd-Ni alloy nanoparticles in the solidification process. The results showed that the Pd-Ni nanoparticles with composition far from pure metal should form amorphous structure more easily, which is in accordance with the results of the thermodynamic calculation. There are some regular and distorted fivefold symmetry in the amorphous Pd-Ni alloy nanoparticles. The nanoclusters with bigger difference value between formation enthalpies of solutions and glasses will transform to glass more easily than the other Pd-Ni alloy nanoclusters.
SPATIAL ANISOTROPY OF GALAXY KINEMATICS IN SLOAN DIGITAL SKY SURVEY GALAXY CLUSTERS
International Nuclear Information System (INIS)
Skielboe, Andreas; Wojtak, Radosław; Pedersen, Kristian; Rozo, Eduardo; Rykoff, Eli S.
2012-01-01
Measurements of galaxy cluster kinematics are important in understanding the dynamical state and evolution of clusters of galaxies, as well as constraining cosmological models. While it is well established that clusters exhibit non-spherical geometries, evident in the distribution of galaxies on the sky, azimuthal variations of galaxy kinematics within clusters have yet to be observed. Here we measure the azimuthal dependence of the line-of-sight velocity dispersion profile in a stacked sample of 1743 galaxy clusters from the Sloan Digital Sky Survey (SDSS). The clusters are drawn from the SDSS DR8 redMaPPer catalog. We find that the line-of-sight velocity dispersion of galaxies lying along the major axis of the central galaxy is larger than those that lie along the minor axis. This is the first observational detection of anisotropic kinematics of galaxies in clusters. We show that the result is consistent with predictions from numerical simulations. Furthermore, we find that the degree of projected anisotropy is strongly dependent on the line-of-sight orientation of the galaxy cluster, opening new possibilities for assessing systematics in optical cluster finding.
Failure in imperfect anisotropic materials
DEFF Research Database (Denmark)
Legarth, Brian Nyvang
2005-01-01
The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...
Magnetic relaxation in anisotropic magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1971-01-01
The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....
Real-time observation of formation and relaxation dynamics of NH4 in (CH3OH)m(NH3)n clusters.
Yamada, Yuji; Nishino, Yoko; Fujihara, Akimasa; Ishikawa, Haruki; Fuke, Kiyokazu
2009-03-26
The formation and relaxation dynamics of NH4(CH3OH)m(NH3)n clusters produced by photolysis of ammonia-methanol mixed clusters has been observed by a time-resolved pump-probe method with femtosecond pulse lasers. From the detailed analysis of the time evolutions of the protonated cluster ions, NH4(+)(CH3OH)m(NH3)n, the kinetic model has been constructed, which consists of sequential three-step reaction: ultrafast hydrogen-atom transfer producing the radical pair (NH4-NH2)*, the relaxation process of radical-pair clusters, and dissociation of the solvated NH4 clusters. The initial hydrogen transfer hardly occurs between ammonia and methanol, implying the unfavorable formation of radical pair, (CH3OH2-NH2)*. The remarkable dependence of the time constants in each step on the number and composition of solvents has been explained by the following factors: hydrogen delocalization within the clusters, the internal conversion of the excited-state radical pair, and the stabilization of NH4 by solvation. The dependence of the time profiles on the probe wavelength is attributed to the different ionization efficiency of the NH4(CH3OH)m(NH3)n clusters.
Sarazin, C.; Hogge, T.; Chatzikos, M.; Wik, D.; Giacintucci, S.; Clarke, T.; Wong, K.; Gitti, M.; Finoguenov, A.
2014-07-01
XMM-Newton and Chandra observations of remarkable dynamic structures in the X-ray gas and connected radio sources in three clusters are presented. Abell 2061 is a highly irregular, merging cluster in the Corona Borealis supercluster. X-ray observations show that there is a plume of very cool gas (˜1 keV) to the NE of the cluster, and a hot (7.6 keV) shock region just NE of the center. There is a very bright radio relic to the far SW of the cluster, and a central radio halo/relic with an extension to the NE. Comparison to SLAM simulations show that this is an offset merger of a ˜5 × 10^{13} M⊙ subcluster with a ˜2.5 × 10^{14} M⊙ cluster seen after first core passage. The plume is the cool-core gas from the subcluster, which has been ``slingshot'' to the NE of the cluster. The plume gas is now falling back into the cluster center, and shocks when it hits the central gas. The model predicts a strong shock to the SW at the location of the bright radio relic, and another shock at the NE radio extension. Time permitting, the observations of Abell 2626 and Abell 3667 will also be presented.
Spin-glass-like dynamics of ferromagnetic clusters in La0.75Ba0.25CoO3
International Nuclear Information System (INIS)
Kumar, Devendra
2014-01-01
We report a magnetization study of the compound La 0.75 Ba 0.25 CoO 3 where the Ba 2+ doping is just above the critical limit for percolation of ferromagnetic clusters. The field cooled and zero-field cooled (ZFC) magnetization exhibit thermomagnetic irreversibility and the ac susceptibility shows a frequency dependent peak at the ferromagnetic ordering temperature (T C ≈ 203 K) of the clusters. These features indicate the presence of a non-equilibrium state below T C . For the non-equilibrium state, the dynamic scaling of the imaginary part of the ac susceptibility and the static scaling of the nonlinear susceptibility clearly establish a spin-glass-like cooperative freezing of ferromagnetic clusters at 200.9(2) K. The assertion of the occurrence of spin-glass-like freezing of ferromagnetic clusters is further substantiated by ZFC ageing and memory experiments. We also observe certain dynamical features which are not present in a typical spin glass, such as: the initial magnetization after ZFC ageing first increases and then decreases with the waiting time; and there is an imperfect recovery of relaxation in negative temperature cycling experiments. This imperfect recovery transforms to perfect recovery for concurrent field cycling. Our analysis suggests that these additional dynamical features have their origin in the inter-cluster exchange interaction and cluster size distribution. The inter-cluster exchange interaction above the magnetic percolation level gives a superferromagnetic state in some granular thin films, but our results show the absence of a typical superferromagnetic-like state in La 0.75 Ba 0.25 CoO 3 . (paper)
Apatin, V. M.; Lokhman, V. N.; Makarov, G. N.; Ogurok, N.-D. D.; Ryabov, E. A.
2018-02-01
We report the results of research on the experimental control of CF3Br molecule clustering under gas-dynamic expansion of the CF3Br - Ar mixture at a nozzle exit by using IR laser radiation. A cw CO2 laser is used for exciting molecules and clusters in the beam and a time-of-flight mass-spectrometer with laser UV ionisation of particles for their detection. The parameters of the gas above the nozzle are determined (compositions and pressure) at which intensive molecule clustering occurs. It is found that in the case of the CF3Br gas without carrier when the pressure P0 above the nozzle does not exceed 4 atm, molecular clusters actually are not generated in the beam. If the gas mixture of CF3Br with argon is used at a pressure ratio 1 : N, where N >= 3, and the total pressure above the nozzle is P0 >= 2 atm, then there occurs molecule clustering. We study the dependences of the efficiency of suppressing the molecule clustering on parameters of the exciting pulse, gas parameters above the nozzle, and on a distance of the molecule irradiation zone from the nozzle exit section. It is shown that in the case of resonant vibrational excitation of gas-dynamically cooled CF3Br molecules at the nozzle exit one can realise isotope-selective suppression of molecule clustering with respect to bromine isotopes. With the CF3Br - Ar mixtures having the pressure ratio 1 : 3 and 1 : 15, the enrichment factors obtained with respect to bromine isotopes are kenr ≈ 1.05 ± 0.005 and kenr ≈ 1.06 ± 0.007, respectively, under jet irradiation by laser emission in the 9R(30) line (1084.635 cm-1). The results obtained let us assume that this method can be used to control clustering of molecules comprising heavy element isotopes, which have a small isotopic shift in IR absorption spectra.
Energy Technology Data Exchange (ETDEWEB)
Varghese, Jithin J.; Mushrif, Samir H., E-mail: shmushrif@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)
2015-05-14
Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu{sub n} where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH{sub 3} and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH{sub x} (x = 1–3) species and recombination of H with CH{sub x} have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.
International Nuclear Information System (INIS)
Varghese, Jithin J.; Mushrif, Samir H.
2015-01-01
Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu n where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH 3 and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH x (x = 1–3) species and recombination of H with CH x have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters
Gil-Marín, Héctor; Guy, Julien; Zarrouk, Pauline; Burtin, Etienne; Chuang, Chia-Hsun; Perci