WorldWideScience

Sample records for anisotropic behaviour law

  1. Predicting sintering deformation of ceramic film constrained by rigid substrate using anisotropic constitutive law

    International Nuclear Information System (INIS)

    Li Fan; Pan Jingzhe; Guillon, Olivier; Cocks, Alan

    2010-01-01

    Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.

  2. Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.

    Science.gov (United States)

    Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.

    2017-12-01

    Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular

  3. Effective stress law for anisotropic elastic deformation

    International Nuclear Information System (INIS)

    Carroll, M.M.

    1979-01-01

    An effective stress law is derived analytically to describe the effect of pore fluid pressure on the linearly elastic response of saturated porous rocks which exhibit anisotropy. For general anisotropy the difference between the effective stress and the applied stress is not hydrostatic. The effective stress law involves two constants for transversely isotropic response and three constants for orthotropic response; these constants can be expressed in terms of the moduli of the porous material and of the solid material. These expressions simplify considerably when the anisotropy is structural rather than intrinsic, i.e., in the case of an isotropic solid material with an anisotropic pore structure. In this case the effective stress law involves the solid or grain bulk modulus and two or three moduli of the porous material, for transverse isotropy and orthotropy, respectively. The law reduces, in the case of isotropic response, to that suggested by Geertsma (1957) and by Skempton (1961) and derived analytically by Nur and Byerlee

  4. Convergence in anisotropic conditions: gallery behaviour in the Callovo-Oxfordian clayey layer in North-Eastern France

    International Nuclear Information System (INIS)

    Blanco Martin, L.; Hadj-Hassen, F.; Philippe, J.C.; Boidy, E.; Colombet, G.; Armand, G.

    2010-01-01

    Document available in extended abstract form only. Coyne et Bellier (Tractebel Engineering) has been supplying geotechnical services to Andra since 1994 regarding the feasibility for developing a repository for radioactive waste in a 490 m deep clayey formation at the Meuse/Haute-Marne site. Armines/Mines-ParisTech (French engineering school) has been an Andra scientific partner for several years due to its expertise in rock creep behaviour as well as in mining technologies. Throughout the different works carried out for Andra (especially the studies concerning the enlargement of the underground research laboratory), the behaviour of the Callovo-Oxfordian clayey were computed. These studies are used mainly for predicting the long-term behaviour of this layer. Lemaitre's rheological law (or modified Norton's law) has been used for such purposes. This time-dependent law is able to model the isotropic hardening of an elastic-viscoplastic solid by taking into account a non linear viscosity (γ) which Coyne et Bellier has decided to represent by means of a cone-shaped dash-pot element (stiffness increases during creep, cf. Eric Boidy's PhD). This hypothesis, together with that standing for 'long-term incompressibility' (viscoplastic deformation occurs at constant volume), allows the law be expressed by means of the second invariants of the stress (q) and strain (ε vp ) tensors. The rheological model when the long term behaviour takes place beyond a stress threshold (σ S ) is shown. Modelling works that use this law reproduce well convergence measurements as long as radial stresses around the galleries are isotropic. When the stress field around the gallery is anisotropic, the classic Lemaitre's law no longer fits the convergence measurements. This is the case for the GMR gallery at the main level of the laboratory: the horizontal stress is 1.3 times greater than the vertical stress whilst the average vertical convergence is more than five

  5. Existence and uniqueness in anisotropic conductivity reconstruction with Faraday's law

    KAUST Repository

    Lee, Min-Gi

    2015-03-18

    We show that three sets of internal current densities are the right amount of data that give the existence and the uniqueness at the same time in reconstructing an anisotropic conductivity in two space dimensions. The curl free equation of Faraday’s law is taken instead of the usual divergence free equation of the electrical impedance to- mography. Boundary conditions related to given current densities are introduced which complete a well determined problem for conductivity reconstruction together with Fara- day’s law.

  6. On the origins of the anisotropic mechanical behaviour of extruded ...

    Indian Academy of Sciences (India)

    This paper presents some experimental investigations about the origins of the anisotropic behaviour in cyclic loadings of AA2017 aluminium alloy. In the first step, fatigue damage evolutions were quantified for controlled proportional cyclic loadings in axial and shear directions. In this stage, the aim was to confirm the ...

  7. Anisotropic power-law inflation for a conformal-violating Maxwell model

    Science.gov (United States)

    Do, Tuan Q.; Kao, W. F.

    2018-05-01

    A set of power-law solutions of a conformal-violating Maxwell model with a non-standard scalar-vector coupling will be shown in this paper. In particular, we are interested in a coupling term of the form X^{2n} F^{μ ν }F_{μ ν } with X denoting the kinetic term of the scalar field. Stability analysis indicates that the new set of anisotropic power-law solutions is unstable during the inflationary phase. The result is consistent with the cosmic no-hair conjecture. We show, however, that a set of stable slowly expanding solutions does exist for a small range of parameters λ and n. Hence a small anisotropy can survive during the slowly expanding phase.

  8. Anisotropic constitutive equations for the viscoplastic behaviour of the single crystal superalloy CMSX-4

    International Nuclear Information System (INIS)

    Fleury, G.; Schubert, F.

    1997-09-01

    Nickel-base superalloy blades of the first rotor stage in a gas turbine have to withstand extremely severe thermomechanical loading conditions. Single crystal blades exhibit a highly anisotropic deformation behaviour and are subjected to triaxial stress fields induced by complex cooling systems. Consequently the prediction of their deformation behaviour requires constitutive equations based on multiaxial formulations. The microstructural evolution of γ/γ' superalloys during the service time modifies the material properties and has therefore to be taken into account in the constitutive equations. For the modelling of the anisotropic, viscoplastic behaviour of single crystal blades taking into account the evolution of the microstructure, a microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of the γ'-particles, is applied. The prediction was validated by investigating the deformation behaviour of the superalloy CMSX-4 in the range of temperatures [750 C-950 C]. If the shape of γ'-particles remain cubic, for example, in creep testing at low temperatures (up to about 850 C), the microstructure-dependent potential leads to the cubic version of the Hills potential. The prediction is in good agreement with creep results for left angle 001 right angle - and left angle 111 right angle - orientated specimens but overestimates the creep resistance of left angle 011 right angle - orientated specimens. (orig.)

  9. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  10. On spectral scaling laws for incompressible anisotropic magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Galtier, Sebastien; Pouquet, Annick; Mangeney, Andre

    2005-01-01

    A heuristic model is given for anisotropic magnetohydrodynamics turbulence in the presence of a uniform external magnetic field B 0 e parallel . The model is valid for both moderate and strong B 0 and is able to describe both the strong and weak wave turbulence regimes as well as the transition between them. The main ingredient of the model is the assumption of constant ratio at all scales between the linear wave period and the nonlinear turnover time scale. Contrary to the model of critical balance introduced by Goldreich and Sridhar [Astrophys. J. 438, 763 (1995)], it is not assumed, in addition, that this ratio be equal to unity at all scales. This allows us to make use of the Iroshnikov-Kraichnan phenomenology; it is then possible to recover the widely observed anisotropic scaling law k parallel ∝k perpendicular 2/3 between parallel and perpendicular wave numbers (with reference to B 0 e parallel and to obtain for the total-energy spectrum E(k perpendicular ,k parallel )∼k perpendicular -α k parallel -β the universal prediction, 3α+2β=7. In particular, with such a prediction, the weak Alfven wave turbulence constant-flux solution is recovered and, for the first time, a possible explanation to its precursor found numerically by Galtier et al. [J. Plasma Phys. 63, 447 (2000)] is given.

  11. Formulation of anisotropic Hill criteria for the description of an aluminium alloy behaviour during the channel die compression test

    International Nuclear Information System (INIS)

    Gavrus, A.; Francillette, H.

    2007-01-01

    During the last years the study of the plastic deformation modes and the anisotropic mechanical behaviour of aluminium alloys have been the subject of many investigations. This paper deals with a phenomenological identification of an anisotropic Hill constitutive equation of aluminium AU4G samples using a channel die compression device at room temperature. By considering the different possible orientations of the samples in the channel die device, three initial textures, named ND (normal direction Z), LD (longitudinal direction X) and TD (transverse direction Y), were defined with the corresponding stresses σND, σLD and σTD. To describe the anisotropy of the material, a quadratic Hill criteria is used. An Avrami type equation based on the mixture of the hardening and softening phenomena is used to describe variation of each stress component with the equivalent plastic strain. The identification of the parameters of the law is made using an identification software (OPTPAR) and a good correlation between the experimental stresses and computed ones is obtained. The variation of the Hill parameters with a proposed equivalent strain, describing the deformation history of the material, is analysed. Finally, using the expressions of F, G, H and N, the constitutive equation of the normal anisotropy in the plane XY is obtained

  12. Anisotropic behaviour of transmission through thin superconducting NbN film in parallel magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Šindler, M., E-mail: sindler@fzu.cz [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Tesař, R. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Praha (Czech Republic); Koláček, J. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Skrbek, L. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Praha (Czech Republic)

    2017-02-15

    Highlights: • Transmission through thin NbN film in parallel magnetic field exhibits strong anisotropic behaviour in the terahertz range. • Response for a polarisation parallel with the applied field is given as weighted sum of superconducting and normal state contributions. • Effective medium approach fails to describe response for linear polarisation perpendicular to the applied magnetic field. - Abstract: Transmission of terahertz waves through a thin layer of the superconductor NbN deposited on an anisotropic R-cut sapphire substrate is studied as a function of temperature in a magnetic field oriented parallel with the sample. A significant difference is found between transmitted intensities of beams linearly polarised parallel with and perpendicular to the direction of applied magnetic field.

  13. Behaviour Codes in Sicily. Bypassing the Law

    Directory of Open Access Journals (Sweden)

    Anton Blok

    2010-08-01

    Full Text Available Focused on oral culture in western Sicily, this paper explores informal behaviour codes in their interaction with formal law. State-formation in Italy left people in peripheral areas to forge strategies of self-help and negotiate support from patrons (called “friends”. Ironically, the very networks of clientelism and their attendant behaviour codes further weakened the state’s control over its southern periphery and hindered its economic integration into the national and international economy – which in turn reinforced the impact of informal codes and practices on the working of formal law. The Sicilian case provides an example of the periphery as a locus of innovation.

  14. Bryan's effect and anisotropic nonlinear damping

    Science.gov (United States)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  15. Consent to Behavioural Targeting in European Law - What are the Policy Implications of Insights from Behavioural Economics?

    NARCIS (Netherlands)

    Zuiderveen Borgesius, F.

    2013-01-01

    Behavioural targeting is the monitoring of people’s online behaviour to target advertisements to specific individuals. European law requires companies to obtain informed consent of the internet user before they use tracking technologies for behavioural targeting. Other jurisdictions also emphasise

  16. Criticality of the D=2 bond-dilute anisotropic Heisenberg ferromagnet

    International Nuclear Information System (INIS)

    Mariz, A.M.; Tsallis, C.; Caride, A.O.

    1984-01-01

    The critical frontier and critical exponents associated with the quenched bond-dilute quantum anisotropic spin 1/2 Heisenberg ferromagnet in square lattice are described. To perform the calculations, an approximate real-space renormalization-group framework recently developed by some of us for the pure model (and analysed with some detail) is extended. Whenever comparison with available exact results is possible, the agreement is either perfect or quite satisfactory. Some effort has been dedicated to extract the main asymptotic behaviours of the critical frontier. Also several interesting quantum effects appearing in the composition laws of (Heisenberg) bond arrays are exhibited. (Author) [pt

  17. Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall.

    Science.gov (United States)

    Hernández-Gascón, B; Peña, E; Melero, H; Pascual, G; Doblaré, M; Ginebra, M P; Bellón, J M; Calvo, B

    2011-11-01

    The material properties of meshes used in hernia surgery contribute to the overall mechanical behaviour of the repaired abdominal wall. The mechanical response of a surgical mesh has to be defined since the haphazard orientation of an anisotropic mesh can lead to inconsistent surgical outcomes. This study was designed to characterize the mechanical behaviour of three surgical meshes (Surgipro®, Optilene® and Infinit®) and to describe a mechanical constitutive law that accurately reproduces the experimental results. Finally, through finite element simulation, the behaviour of the abdominal wall was modelled before and after surgical mesh implant. Uniaxial loading of mesh samples in two perpendicular directions revealed the isotropic response of Surgipro® and the anisotropic behaviour of Optilene® and Infinit®. A phenomenological constitutive law was used to reproduce the measured experimental curves. To analyze the mechanical effect of the meshes once implanted in the abdomen, finite element simulation of the healthy and partially herniated repaired rabbit abdominal wall served to reproduce wall behaviour before and after mesh implant. In all cases, maximal displacements were lower and maximal principal stresses higher in the implanted abdomen than the intact wall model. Despite the fact that no mesh showed a behaviour that perfectly matched that of abdominal muscle, the Infinit® mesh was able to best comply with the biomechanics of the abdominal wall. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Anisotropic Behaviour of Opalinus Clay Through Consolidated and Drained Triaxial Testing in Saturated Conditions

    Science.gov (United States)

    Favero, Valentina; Ferrari, Alessio; Laloui, Lyesse

    2018-05-01

    This paper investigates the anisotropic hydro-mechanical behaviour of Opalinus Clay shale, the host material currently being considered for the construction of a nuclear waste repository in Switzerland. Consolidated and drained triaxial tests on Opalinus Clay from the Mont Terri URL have been conducted in order to derive information on its strength and stiffness properties. Opalinus Clay specimens were tested both parallel to bedding (P-specimens) and perpendicular to bedding (S-specimens). The considered effective confining stress range (from 2 to 12 MPa) has been selected in order to reproduce possible in situ stress conditions for the repository. In this work, particular attention has been paid to the experimental procedure in order to ensure consolidated conditions and avoid generation of unwanted excess pore water pressure during drained shearing. The Skempton B parameter has been determined for all the tested specimens in order to ensure saturation. Both single-stage and multistage triaxial testing procedures were adopted in the experimental campaign. The results of the triaxial tests highlight an anisotropic elastic response of Opalinus Clay: S-specimens present a more compliant behaviour than P-specimens. The values of the Young modulus are found to increase with the increase in mean effective stress. The analysis of the peak and ultimate shear strength results reveals that the material behaves in a similar manner regardless of the considered direction of loading (P and S directions) with respect to the bedding orientation. Peak and ultimate failure envelopes for Opalinus Clay were derived for the investigated stress range.

  19. Influence of gas law on ultrasonic behaviour of porous media under pressure.

    Science.gov (United States)

    Griffiths, S; Ayrault, C

    2010-06-01

    This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars. 2010 Elsevier B.V. All rights reserved.

  20. MODELING OF THE BEHAVIOUR REOLOGICHESKIH TEL UNDER DIFFERENT LAW NAGRUZHENIYA

    Directory of Open Access Journals (Sweden)

    V. V. Bendyukov

    2014-01-01

    Full Text Available The Offered model of the behaviour reologicheskogo bodies (the viscous-elasticity of the materia, designs or systems under controlling influence of the load, acting on given law for some time.

  1. Effective Ohm's law for magnetized plasmas with anisotropic inhomogeneities

    International Nuclear Information System (INIS)

    Shamma, S.E.; Martinez-Sanchez, M.; Louis, J.F.

    1978-01-01

    Reduction formulae for the effective, or macroscopic, Ohm's law parameters are derived for inhomogeneous plasmas with anisotropic conductivity fluctuations having two general types of geometry: (a) elongated or shortened in the direction of the magnetic field and (b) two-dimensional, with the direction of constant properties lying in the plane perpendicular to the magnetic field. In each case, two approaches are used: (a) a small perturbation method and (b) an approximate method where each region in the plasma is considered separately, and consistency conditions are used to relate the results corresponding to each separate region to the effective properties of the whole plasma. Both methods are found to agree well when the fluctuations are weak, but differences appear at high fluctuation levels and, for nonuniformities very elongated along B, when the Hall parameter β is high. Comparison with available exact solutions valid at high β and strong fluctuation levels indicates that the self-consistency method gives accurate results even in these cases. The results of these analyses are used to evaluate the performance reduction in magnetohydrodynamic channels with plasma nonuniformities of several geometries, including axial streamers, perfectly isotropic fluctuations, and fluctuations elongated along B; the power density is reduced most strongly when β and the rms of the fluctuations are high, and also when the inhomogeneities are stretched along the magnetic field

  2. Dynamics of anisotropic power-law f(R) cosmology

    International Nuclear Information System (INIS)

    Shamir, M. F.

    2016-01-01

    Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.

  3. Dynamics of anisotropic power-law f(R) cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Lahore Campus, Department of Sciences and Humanities (Pakistan)

    2016-12-15

    Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.

  4. Do law students stand apart from other university students in their quest for mental health: A comparative study on wellbeing and associated behaviours in law and psychology students.

    Science.gov (United States)

    Skead, Natalie K; Rogers, Shane L

    2015-01-01

    We are not producing a product, but a well-balanced person.(1) It is well-documented that law students experience higher levels of psychological distress than members of the general population and university students in other professional disciplines. In 2014, we published our findings on an empirical study identifying the correlations between law student wellbeing and student behaviour both at and away from law school. The results of the study informed the development of an evidence-based 'behavioural toolkit' to assist law students and law schools in making informed choices and decisions that promote and even improve the mental health of students. The study we undertook was not, however, limited to law students. It extended to collecting quantitative data on psychological distress and associated behaviours in psychology students. This article reports on the comparative findings of the study and provides a comparative basis for understanding the contextual influences on the wellbeing of law students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A unified theoretical and experimental study of anisotropic hardening

    International Nuclear Information System (INIS)

    Boehler, J.P.; Raclin, J.

    1981-01-01

    The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)

  6. Crystal plasticity-based modeling for predicting anisotropic behaviour and formability of metallic materials

    International Nuclear Information System (INIS)

    Pham, Son; Jeong, Youngung; Creuziger, Adam; Iadicola, Mark; Foecke, Tim; Rollett, Anthony

    2016-01-01

    Metallic materials often exhibit anisotropic behaviour under complex load paths because of changes in microstructure, e.g., dislocations and crystallographic texture. In this study, we present the development of constitutive model based on dislocations, point defects and texture in order to predict anisotropic response under complex load paths. In detail, dislocation/solute atom interactions were considered to account for strain aging and static recovery. A hardening matrix based on the interaction of dislocations was built to represent the cross-hardening of different slip systems. Clear differentiation between forward and backward slip directions of dislocations was made to describe back stresses during path changes. In addition, we included dynamic recovery in order to better account for large plastic deformation. The model is validated against experimental data for AA5754-O with path changes, e.g., Figure 1 [1] Another effort is to include microstructure in forming predictions with a minimal increase in computational time. This effort enables comprehensive investigations of the influence of texture-induced anisotropy on formability [2]. Application of these improvements to predict forming limits of various BCC textures, such as γ, ρ, α, η and ϵ fibers and a random (R) texture. These simulations demonstrate that the crystallographic texture has significant (both positive and negative) effects on the forming limit diagrams (Figure 2). For example, the y fiber texture, that is often sought through thermo-mechanical processing due to high r-value, had the highest forming limit in the balanced biaxial strain path but the lowest forming limit under the plane strain path among textures under consideration. (paper)

  7. Anisotropic inflation with a non-minimally coupled electromagnetic field to gravity

    Science.gov (United States)

    Adak, Muzaffer; Akarsu, Özgür; Dereli, Tekin; Sert, Özcan

    2017-11-01

    We consider the non-minimal model of gravity in Y(R) F2-form. We investigate a particular case of the model, for which the higher order derivatives are eliminated but the scalar curvature R is kept to be dynamical via the constraint YRFmnFmn =-2/κ2. The effective fluid obtained can be represented by interacting electromagnetic field and vacuum depending on Y(R), namely, the energy density of the vacuum tracks R while energy density of the conventional electromagnetic field is dynamically scaled with the factor Y(R)/2. We give exact solutions for anisotropic inflation by assuming the volume scale factor of the Universe exhibits a power-law expansion. The directional scale factors do not necessarily exhibit power-law expansion, which would give rise to a constant expansion anisotropy, but expand non-trivially and give rise to a non-monotonically evolving expansion anisotropy that eventually converges to a non-zero constant. Relying on this fact, we discuss the anisotropic e-fold during the inflation by considering observed scale invariance in CMB and demanding the Universe to undergo the same amount of e-folds in all directions. We calculate the residual expansion anisotropy at the end of inflation, though as a result of non-monotonic behaviour of expansion anisotropy all the axes of the Universe undergo the same of amount of e-folds by the end of inflation. We also discuss the generation of the modified electromagnetic field during the first few e-folds of the inflation and its persistence against to the vacuum till end of inflation.

  8. Anisotropic inflation with derivative couplings

    Science.gov (United States)

    Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne

    2018-05-01

    We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.

  9. Magnetized Anisotropic Dark Energy Models in Barber’s Second Self-Creation Theory

    Directory of Open Access Journals (Sweden)

    D. D. Pawar

    2014-01-01

    Full Text Available The present paper deals with Bianchi type IX cosmological model with magnetized anisotropic dark energy by using Barber’s self-creation theory. The energy momentum tensor consists of anisotropic fluid with EoS parameter ω and a uniform magnetic field of energy density ρB. In order to obtain the exact solution we have assumed that dark energy components and the components of magnetic field interact minimally and obey the law of conservation of energy momentum tensors. We have also used the special law of variation for the mean generalized Hubble parameter and power law relation between scalar field and scale factor. Some physical and kinematical properties of the models have been discussed.

  10. A continuum anisotropic damage model with unilateral effect

    Directory of Open Access Journals (Sweden)

    A. Alliche

    2016-02-01

    Full Text Available A continuum damage mechanics model has been derived within the framework of irreversible thermodynamics with internal variables in order to describe the behaviour of quasi-brittle materials under various loading paths. The anisotropic character induced by the progressive material degradation is explicitly taken into account, and the Helmholtz free energy is a scalar function of the basic invariants of the second order strain and damage tensors. The elastic response varies depending on the closed or open configuration of defects. The constitutive laws derived within the framework of irreversible thermodynamics theory display a dissymmetry as well as unilateral effects under tensile and compressive loading conditions. This approach verifies continuity and uniqueness of the potential energy. An application to uniaxial tension-compression loading shows a good adequacy with experimental results when available, and realistic evolutions for computed stresses and strains otherwise.

  11. About the identification of behaviour law parameters of clayey rocks

    International Nuclear Information System (INIS)

    Lecampion, B.

    2002-09-01

    This work aims at developing identification methods for clayey rock parameters. These methods are necessary for the interpretation of the numerous data obtained at the ANDRA's Meuse/Haute-Marne underground laboratory. Two main rheological aspects have been considered: the poro-elastic behaviour and the elasto-visco-plastic behaviour. The first part of the study focusses on the poro-elastic parameters. Chapter 2 recalls the direct problem and discusses some important points of the identification inverse problem. Chapter 3 deals with the formulation of gradient calculation techniques for the linear poro-elastic case. The resolution using the finite-element method is discussed. The direct and associated state differentiation methods are validated for a 2D numerical example using the finite-element code Cast3M. The identification of poro-elastic coefficients of the Meuse/Haute-Marne argillaceous rocks is discussed in detail in chapter 4. The use of approximate semi-explicit solutions of the direct problems allows to obtain a fast identification method. The second part deals with the identification of elasto-visco-plastic parameters. The visco-plastic behaviour of Meuse/Haute-Marne rocks is discussed in chapter 5 and a visco-plastic model with nonlinear isotropic cold-drawing is proposed which allows to reproduce the tests. The parameters of this behaviour law are identified on a 1D creep test in drained conditions. Thus, the delayed deformations come from the poro-elastic and visco-plastic behaviour of the rock. It is shown that both phenomena can be separated. All poro-elasto-visco-plastic parameters are identified and a semi-explicit solution of the creep test is used. Chapter 6 presents an identification method of the elasto-visco-plastic parameters for the general case. The identification is equivalent to the minimization of a cost functional. The gradient of the functional is calculated by direct differentiation. The direct differentiation method is developed in

  12. Existence and uniqueness of global solutions for the modified anisotropic 3D Navier−Stokes equations

    KAUST Repository

    Bessaih, Hakima

    2016-01-27

    We study a modified three-dimensional incompressible anisotropic Navier−Stokes equations. The modification consists in the addition of a power term to the nonlinear convective one. This modification appears naturally in porous media when a fluid obeys the Darcy−Forchheimer law instead of the classical Darcy law. We prove global in time existence and uniqueness of solutions without assuming the smallness condition on the initial data. This improves the result obtained for the classical 3D incompressible anisotropic Navier−Stokes equations.

  13. Electromagnetism on anisotropic fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  14. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    Science.gov (United States)

    Wei, H. L.; Billings, S. A.

    2009-09-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  15. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    Energy Technology Data Exchange (ETDEWEB)

    Wei, H.L., E-mail: w.hualiang@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Billings, S.A., E-mail: s.billings@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2009-09-07

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  16. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    International Nuclear Information System (INIS)

    Wei, H.L.; Billings, S.A.

    2009-01-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  17. An anisotropic linear thermo-viscoelastic constitutive law - Elastic relaxation and thermal expansion creep in the time domain

    Science.gov (United States)

    Pettermann, Heinz E.; DeSimone, Antonio

    2017-09-01

    A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.

  18. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...

  19. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been studied and some assumptions among the ...

  20. Simulation of Ultrasonic Beam Focusing on a Defect in Anisotropic, Inhomogeneous Media

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo; Cho, Sung Jong; Erdenetuya, Sharaa; Jung, Duck Yong

    2011-01-01

    In ultrasonic testing of dissimilar metal welds, application of phased array technique in terms of incident beam focusing is not easy because of complicated material structures formed during the multi-pass welding process. Time reversal(TR) techniques can overcome some limitations of phased array since they are self-focusing that does not depend on the geometrical and physical properties of testing components. In this paper, we test the possibility of TR focusing on a defect within anisotropic, heterogeneous austenitic welds. A commercial simulation software is employed for TR focusing and imaging of a side-drilled hole. The performance of time reversed adaptive focal law is compared with those of calculated focal laws for both anisotropic and isotropic welds

  1. Anisotropic plasma with flows in tokamak: Steady state and stability

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.

    1996-01-01

    An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics

  2. On the creation of scalar particles in some anisotropic universe

    International Nuclear Information System (INIS)

    Nariai, Hidekazu.

    1978-01-01

    Because of an importance of the particle creation (especially, its possible fulfilment of the black-body law with a definite temperature) in an early universe to various other cosmological problems we study how the creation of scalar particles occurs in the Bianchi-type I anisotropic universe adopted in our previous works on the quantized scalar field. It is shown that, as in a special isotropic case dealt with in recent papers, the creation may occur at the sacrifice of the requirement that the quantization procedure should reproduce the usual theory for a free field in the limit when the anisotropic universe changes into the Minkowski space-time. It is further shown that the creation occurs in accordance with the black-body law only in a 2-dimensional hyper-surface relating to the anisotropic cosmic expansion, provided that we fix two arbitrary constants appearing in a general expression for the Feynman propagator in terms of a procedure similar to that in the isotropic case. A speculation on the isotropization of our model-universe is also made from the standpoint of seeking for how the thermal equilibrium in the whole universe is attained. (auth.)

  3. On the creation of scalar particles in some anisotropic universe

    International Nuclear Information System (INIS)

    Nariai, Hidekazu

    1978-01-01

    Because of an importance of the particle creation (especially, its possible fulfilment of the black-body law with a definite temperature) in an early universe to various other cosmological problems, we study how the creation of scalar particles occurs in the Bianchi-type I anisotropic universe adopted in our previous works on the quantized scalar field. It is shown that, as in a special isotropic case dealt with in recent papers, the creation may occur at the sacrifice of the requirement that the quantization procedure should reproduce the usual theory for a free field in the limit when the anisotropic universe changes into the Minkowski space-time. It is further shown that the creation occurs in accordance with the black-body law only in a 2-dimensional hyper-surface relating to the anisotropic cosmic expansion, provided that we fix two arbitrary constants appearing in a general expression for the Feynman propagator in terms of a procedure similar to that in the isotropic case. A speculation on the isotropization of our model-universe is also made from the standpoint of seeking the attainment of the thermal equilibrium in the whole universe. (author)

  4. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  5. New numerical modelling of the mechanical long-term behaviour of the GMR gallery in ANDRA's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Blanco Martin, L.; Hadj-Hassen, F.; Tijani, M.; Armand, G.

    2011-01-01

    This paper deals with a new macroscopic numerical modelling of the mechanical long-term behaviour of ANDRA's Underground Research Laboratory. The study focuses on the GMR gallery, oriented along the minor horizontal principal stress and located at the main level 490 m deep. The simulations are made using the finite element method (FEM).Convergence measurements in this gallery exhibit an important dis-symmetry between the vertical and horizontal directions, as well as a significant time effect in the vertical trend. In attempts to both understand the phenomena that lie beneath such dis-symmetry and reproduce the experimental data, a modification to Lemaitre's creep law has been proposed. The new viscoplastic law takes into account the following aspects: rock transverse isotropy, creep behaviour and rock expansion. The excavation history of the GMR gallery has also been considered in the numerical modelling. The numerical results are very satisfactory for the GMR drift. However, the mechanisms of anisotropic shear and expansion on which the new law is based do not lead to an accurate reproduction of the data measured in the galleries oriented in the perpendicular direction. Therefore, a thorough insight into the mechanical behaviour of the rock mass and into the proposed new law is needed before the latter can be applied to the Callovo-Oxfordian layer. (authors)

  6. Debonding analyses in anisotropic materials with strain- gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2012-01-01

    A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a micro-reinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted....... A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...

  7. The traces of anisotropic dark energy in light of Planck

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Wilmar; Kunz, Martin [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 Quai Ernest Ansermet, 1211 Genève 4 (Switzerland); Hollenstein, Lukas, E-mail: wilmar.cardona@unige.ch, E-mail: lukas.hollenstein@zhaw.ch, E-mail: martin.kunz@unige.ch [IAS Institute of Applied Simulation, ZHAW Zurich University of Applied Sciences, Grüental, PO Box, 8820 Wädenswil (Switzerland)

    2014-07-01

    We study a dark energy model with non-zero anisotropic stress, either linked to the dark energy density or to the dark matter density. We compute approximate solutions that allow to characterise the behaviour of the dark energy model and to assess the stability of the perturbations. We also determine the current limits on such an anisotropic stress from the cosmic microwave background data by the Planck satellite, and derive the corresponding constraints on the modified growth parameters like the growth index, the effective Newton's constant and the gravitational slip.

  8. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  9. A new model for spherically symmetric anisotropic compact star

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2016-05-15

    In this article we obtain a new anisotropic solution for Einstein's field equations of embedding class one metric. The solution represents realistic objects such as Her X-1 and RXJ 1856-37. We perform a detailed investigation of both objects by solving numerically the Einstein field equations with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if the anisotropy is zero everywhere inside the star then the density and pressures will become zero and the metric turns out to be flat. We report our results and compare with the above mentioned two compact objects as regards a number of key aspects: the central density, the surface density onset and the critical scaling behaviour, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications of our findings for the stability condition in a relativistic compact star. (orig.)

  10. Anisotropic phenomena in gauge/gravity duality

    International Nuclear Information System (INIS)

    Zeller, Hansjoerg

    2014-01-01

    In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the

  11. Anisotropic phenomena in gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Hansjoerg

    2014-05-26

    In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the

  12. Timoshenko beam element with anisotropic cross-sectional properties

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    Beam models are used for the aeroelastic time and frequency domain analysis of wind turbines due to their computational efficiency. Many current aeroelastic tools for the analysis of wind turbines rely on Timoshenko beam elements with classical crosssectional properties (EA, EI, etc.). Those cross......-sectional properties do not reflect the various couplings arising from the anisotropic behaviour of the blade material. A twonoded, three-dimensional Timoshenko beam element was therefore extended to allow for anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape functions are identical...... to the original formulation. The new element was implemented into a co-rotational formulation and validated against natural frequencies and several static load cases of previous works....

  13. Entanglement of periodic anisotropic XY chains

    International Nuclear Information System (INIS)

    Zhang Lifa; Tong Peiqing

    2005-01-01

    By using the concept of concurrence, the entanglement of periodic anisotropic XY chains in a transverse field is studied numerically. It is found that the derivatives ∂ λ C(1) of nearest-neighbour concurrence diverge at quantum critical points. By proper scaling, we found that all the derivatives ∂ λ C(1) for periodic XY chains in the vicinity of quantum critical points have the same behaviours as that of a uniform chain

  14. Patterns of Information Seeking Behaviour of Law Students in Digital Environment: A Study

    Directory of Open Access Journals (Sweden)

    Das, Rajesh Kumar

    2017-03-01

    Full Text Available Nowadays the enormous growth of modern information communication technologies and its massive use have influenced information users all over the world. Such a digital environment has drastically changed the information seeking patterns of information users of every community. These also tend law students to use various legal information sources and services in digital environments while seeking information. But there have been few empirical user studies on the aspect of digital information seeking behaviours of law students in either law or library and information science literatures. This paper aims to draw out patterns of information seeking behavior of students of law in digital environments at the University of Dhaka. A stratified random sample survey was conducted for this study. The results show that students prefer the electronic format of information rather than printed format. Major e-resources used by them and the influential factors of use were also identified in this study. This study also identified some crucial problems for seeking information and provides suggestions for the development of electronic legal information systems.

  15. Anisotropic square lattice Potts ferromagnet: renormalization group treatment

    International Nuclear Information System (INIS)

    Oliveira, P.M.C. de; Tsallis, C.

    1981-01-01

    The choice of a convenient self-dual cell within a real space renormalization group framework enables a satisfactory treatment of the anisotropic square lattice q-state Potts ferromagnet criticality. The exact critical frontier and dimensionality crossover exponent PHI as well as the expected universality behaviour (renormalization flow sense) are recovered for any linear scaling factor b and all values of q(q - [pt

  16. Electric field obtained from an elliptic critical-state model for anisotropic type-II superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Salazar, C., E-mail: cromeros@ifuap.buap.mx; Hernández-Flores, O.A.

    2016-02-15

    Highlights: • An anisotropic critical state model that incorporates a non-zero electric field is proposed. • The critical current density is driven by the electric field. • To determinate the magnetic properties is not required a material law for the electric field magnitude. - Abstract: The conventional elliptic critical-state models (ECSM) establish that the electric field vector is zero when it flows a critical current density in a type-II superconductor. This proposal incorporates a finite electric field on the ECSM to study samples with anisotropic-current-carrying capacity. Our theoretical scheme has the advantage of being able to dispense of a material law which drives the electric field magnitude, however, it does not consider the magnetic history of the superconductor.

  17. Many-dimensional anisotropic anharmonic oscillator

    International Nuclear Information System (INIS)

    Turbiner, A.V.

    1987-01-01

    Precision calculation of energies of several first states at d=2 and first 17 states at d=3 has been performed within the framework of a unique method based on ''nonlinearization'' method for d-dimension anisotropic an harmonic oscillator. Spectrum behaviour within the limit d → ∞ has been investigated and problems of the given approach accuracy have been studied. For the first time properties of nodal surfaces of the given task have been investigated. Routine perturbation theory in degrees of a perturbation parameter has been constructed for several first states

  18. Anisotropic damage model for concrete including unilateral effects: application to numerical simulation of confinement vessels; Modelisation de l'endommagement anisotrope du beton avec prise en compte de l'effet unilateral: application a la simulation des enceintes de confinement nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Godard, V

    2005-01-15

    The behaviour of concrete, considered as isotropic for a sound material, becomes anisotropic and unilateral as soon as microcracks are initiated. Concrete also shows a different behaviour in tension than in compression. However, isotropic models, which are more simple and time costless, are still widely used for industrial applications. An anisotropic and unilateral model, with few parameters, is thus proposed in the present work, which enhances the accuracy of the description of concrete's behaviour, while remaining suitable for industrial studies. The validation of the model is based on experimental results. Numerical simulations of structures are also proposed, among which one concerns a representative volume of a confinement vessel. Finally, a non local theory is investigated to overcome the problems induced by strain localisation. (author)

  19. Anisotropic characterization of magnetorheological materials

    Energy Technology Data Exchange (ETDEWEB)

    Dohmen, E., E-mail: eike.dohmen@tu-dresden.de; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) . The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle. - Highlights: • Novel magnetic field angle testing device (MFATD) presented. • Determination of magnetic field dependent anisotropic mechanical properties. • Experimental data for different field directions shown for a commercial MR fluid. • Material description of MR fluids as transversal-isotropic solids. • Magnetic field angle dependent variations in shear stresses experimentally measured. • Determination of frictional coefficients between the MR fluid and

  20. Anisotropic Constitutive Model of Strain-induced Phenomena in Stainless Steels at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2004-01-01

    A majority of the thin-walled components subjected to intensive plastic straining at cryogenic temperatures are made of stainless steels. The examples of such components can be found in the interconnections of particle accelerators, containing the superconducting magnets, where the thermal contraction is absorbed by thin-walled, axisymetric shells called bellows expansion joints. The stainless steels show three main phenomena induced by plastic strains at cryogenic temperatures: serrated (discontinuous) yielding, gamma->alpha' phase transformation and anisotropic ductile damage. In the present paper, a coupled constitutive model of gamma->alpha' phase transformation and orthotropic ductile damage is presented. A kinetic law of phase transformation, and a kinetic law of evolution of orthotropic damage are presented. The model is extended to anisotropic plasticity comprising a constant anisotropy (texture effect), which can be classically taken into account by the Hill yield surface, and plastic strain induced ...

  1. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.

    2014-06-03

    This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.

  2. Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-06-01

    Full Text Available This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow.

  3. How indicative is a self-reported driving behaviour profile of police registered traffic law offences?

    Science.gov (United States)

    Martinussen, L M; Møller, M; Prato, C G; Haustein, S

    2017-02-01

    Although most motorised countries have experienced massive improvements in road safety over the last decades, human behaviour and differences in accident risk across sub-groups of drivers remains a key issue in the area of road safety. The identification of risk groups requires the identification of reliable predictors of safe or unsafe driving behaviour. Given this background, the aim of this study was to test whether driver sub-groups identified based on self-reported driving behaviour and skill differed in registered traffic law offences and accidents, and whether group membership was predictive of having traffic law offences. Sub-groups of drivers were identified based on the Driver Behaviour Questionnaire (DBQ) and the Driver Skill Inventory (DSI), while traffic offences and accidents were register-based (Statistics Denmark). The participants (N=3683) were aged 18-84 years and randomly selected from the Danish Driving License Register. Results show that the driver sub-groups differed significantly in registered traffic offences but not in registered accidents. In a logistic regression analysis, the sub-group "Violating unsafe drivers" was found predictive of having a traffic offence, even when socio-demographic variables and exposure were controlled for. The most important predictive factor, however, was having a criminal record for non-traffic offences, while gender, living without a partner, and being self-employed also had a significant effect. The study confirms the use of the DBQ and DSI as suitable instruments for predicting traffic offences while also confirming previous results on accumulation of problematic behaviours across life contexts. The finding that driver sub-groups did not differ in registered accidents supports the recent research activities in finding and modelling surrogate safety measures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Energy Decay Laws in Strongly Anisotropic Magnetohydrodynamic Turbulence

    International Nuclear Information System (INIS)

    Bigot, Barbara; Galtier, Sebastien; Politano, Helene

    2008-01-01

    We investigate the influence of a uniform magnetic field B 0 =B 0 e parallel on energy decay laws in incompressible magnetohydrodynamic (MHD) turbulence. The nonlinear transfer reduction along B 0 is included in a model that distinguishes parallel and perpendicular directions, following a phenomenology of Kraichnan. We predict a slowing down of the energy decay due to anisotropy in the limit of strong B 0 , with distinct power laws for energy decay of shear- and pseudo-Alfven waves. Numerical results from the kinetic equations of Alfven wave turbulence recover these predictions, and MHD numerical results clearly tend to follow them in the lowest perpendicular planes

  5. Dynamics of an Anisotropic Universe in f(R,T) Theory

    International Nuclear Information System (INIS)

    Mishra, B.; Tarai, Sankarsan; Tripathy, S. K.

    2016-01-01

    Dynamics of an anisotropic universe is studied in f(R,T) gravity using a rescaled functional f(R,T), where R is the Ricci Scalar and T is the trace of energy-momentum tensor. Three models have been constructed assuming a power law expansion of the universe. Physical features of the models are discussed. The model parameters are constrained from a dimensional analysis. It is found from the work that the anisotropic Bianchi type VI_h (BVI_h) model in the modified gravity generally favours a quintessence phase when the parameter h is either -1 or 0. We may not get viable models in conformity with the present day observation for h=1.

  6. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  7. Multi-critical points in weakly anisotropic magnetic systems

    International Nuclear Information System (INIS)

    Basten, J.A.J.

    1979-02-01

    This report starts with a rather extensive presentation of the concepts and ideas which constitute the basis of the modern theory of static critical phenomena. It is shown how at a critical point the semi-phenomenological concepts of universality and scaling are directly related to the divergence of the correlation length and how they are extended to a calculational method for critical behaviour in Wilson's Renormalization-Group (RG) approach. Subsequently the predictions of the molecular-field and RG-theories on the phase transitions and critical behaviour in weakly anisotropic antiferromagnets are treated. In a magnetic field applied along the easy axis, these materials can display an (H,T) phase diagram which contains either a bicritical point or a tetracritical point. Especially the behaviour close to these multi-critical points, as predicted by the extended-scaling theory, is discussed. (Auth.)

  8. Influence of mineralogy and moisture content on plasticity and induced anisotropic damage of a clay-stone: application to nuclear waste disposals

    International Nuclear Information System (INIS)

    Chiarelli, A.S.; Sibai, M.; Karami, M.; Ledesert, B.; Hoteit, N.

    2000-01-01

    The influence of mineralogy and moisture content on mechanical behaviour of a clay-stone rock is studied by the way of uniaxial and triaxial compression tests and microscopic observations. Some parameters characteristic of phenomena like plasticity and induced anisotropic damage are discussed as a function of these two factors. Rock behaviour becomes more brittle when calcite content grows or when clay or moisture content decreases. At the micro-level, plasticity is induced by slip of clay sheets and induced anisotropic damage appears by growth of oriented microcracks at the interface between grains and matrix. (authors)

  9. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.

    Science.gov (United States)

    Nicolle, S; Vezin, P; Palierne, J-F

    2010-03-22

    Biological soft tissues exhibit a strongly nonlinear viscoelastic behaviour. Among parenchymous tissues, kidney and liver remain less studied than brain, and a first goal of this study is to report additional material properties of kidney and liver tissues in oscillatory shear and constant shear rate tests. Results show that the liver tissue is more compliant but more strain hardening than kidney. A wealth of multi-parameter mathematical models has been proposed for describing the mechanical behaviour of soft tissues. A second purpose of this work is to develop a new constitutive law capable of predicting our experimental data in the both linear and nonlinear viscoelastic regime with as few parameters as possible. We propose a nonlinear strain-hardening fractional derivative model in which six parameters allow fitting the viscoelastic behaviour of kidney and liver tissues for strains ranging from 0.01 to 1 and strain rates from 0.0151 s(-1) to 0.7s(-1). Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. How the explanation of LENR can be made consistent with observed behaviour and natural laws

    International Nuclear Information System (INIS)

    Storms, Edmund

    2015-01-01

    The phenomenon called 'cold fusion' or low energy nuclear reaction has been a challenge to accept and explain. The problem is compounded because an effective explanation must be consistent with the observed behaviour and natural laws. Hundreds of explanations have been published, but none was able to meet this expectation. Consequently, acceptance of the phenomenon by conventional science and application of the energy have been handicapped. The present article summarizes an effort to reduce this problem by identifying a few critical requirements and proposing a mechanism that is consistent with these requirements. This model can also predict many behaviours of importance to science and commercial applications. (author)

  11. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.; Sun, S.; Chen, Z.

    2014-01-01

    in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition

  12. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.

    Science.gov (United States)

    Then, C; Stassen, B; Depta, K; Silber, G

    2017-07-01

    Mechanical characterization of human superficial facial tissue has important applications in biomedical science, computer assisted forensics, graphics, and consumer goods development. Specifically, the latter may include facial hair removal devices. Predictive accuracy of numerical models and their ability to elucidate biomechanically relevant questions depends on the acquisition of experimental data and mechanical tissue behavior representation. Anisotropic viscoelastic behavioral characterization of human facial tissue, deformed in vivo with finite strain, however, is sparse. Employing an experimental-numerical approach, a procedure is presented to evaluate multidirectional tensile properties of superficial tissue layers of the face in vivo. Specifically, in addition to stress relaxation, displacement-controlled multi-step ramp-and-hold protocols were performed to separate elastic from inelastic properties. For numerical representation, an anisotropic hyperelastic material model in conjunction with a time domain linear viscoelasticity formulation with Prony series was employed. Model parameters were inversely derived, employing finite element models, using multi-criteria optimization. The methodology provides insight into mechanical superficial facial tissue properties. Experimental data shows pronounced anisotropy, especially with large strain. The stress relaxation rate does not depend on the loading direction, but is strain-dependent. Preconditioning eliminates equilibrium hysteresis effects and leads to stress-strain repeatability. In the preconditioned state tissue stiffness and hysteresis insensitivity to strain rate in the applied range is evident. The employed material model fits the nonlinear anisotropic elastic results and the viscoelasticity model reasonably reproduces time-dependent results. Inversely deduced maximum anisotropic long-term shear modulus of linear elasticity is G ∞,max aniso =2.43kPa and instantaneous initial shear modulus at an

  13. Identification of non-linear kinematic hardening with bending and unbending tests in anisotropic sheet-metals

    International Nuclear Information System (INIS)

    Brunet, M.; Morestin, F.; Godereaux, S.

    2000-01-01

    An inverse identification technique is proposed based on bending-unbending experiments on anisotropic sheet-metal strips. The initial anisotropy theory of plasticity is extended to include the concept of combined isotropic and non-linear kinematic hardening. This theory is adopted to characterise the anisotropic hardening due to loading-unloading which occurs in sheet-metal forming processes. To this end, a specific bending-unbending apparatus has been built to provide experimental moment-curvature curves. The constant bending moment applied over the length of the specimen to determine numerically the strain-stress behaviour but without Finite Element Analysis. Four constitutive parameters have to be identified by an inverse approach. Our identification results show that bending-unbending tests are suitable to model quite accurately the constitutive behaviour of sheet metals under complex loading paths. (author)

  14. Elastoplastic simulation coupled to the induced anisotropic damage for argilites

    International Nuclear Information System (INIS)

    Chiarelli, A.S.; Shao, J.F.

    2002-01-01

    A constitutive model coupling plastic deformation and induced damage is proposed to describe the mechanical behaviour of a shale rock, the argilites of East. The plastic behaviour is produced by a typical cohesive-frictional model. The material damage is represented by a second rank symmetric tensor. The damage criterion and evolution rate is related to tensile strains. The damage effect on plastic flow is also considered by an anisotropic transformation. The model formulation and a simple procedure for the determination of model parameters from standards tests is proposed. The validity of the model is checked against experimental data in various loading conditions. (author)

  15. Local thermodynamics of a magnetized, anisotropic plasma

    International Nuclear Information System (INIS)

    Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.

    2013-01-01

    An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.

  16. A Combined TEM/STEM and Micromagnetic Study of the Anisotropic Nature of Grain Boundaries and Coercivity in Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Gregor A. Zickler

    2017-01-01

    Full Text Available The nanoanalytical high resolution TEM/STEM investigation of the intergranular grain boundary phase of anisotropic sintered and rapidly quenched heavy rare earth-free Nd-Fe-B magnet materials revealed a difference in composition for grain boundaries parallel (large Fe-content and perpendicular (low Fe content to the alignment direction. This behaviour vanishes in magnets with a high degree of misorientation. The numerical finite element micromagnetic simulations are based on the anisotropic compositional behaviour of GBs and show a decrease of the coercive field with an increasing thickness of the grain boundary layer. The magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries parallel to the c-axis and secondly as Néel domain wall perpendicular to the c-axis into the adjacent hard magnetic grains. The increasing misalignment of grains leads to the loss of the anisotropic compositional behaviour and therefore to an averaged value of the grain boundary composition. In this case the simulations show an increase of the coercive field compared to the anisotropic magnet. The calculated coercive field values of the investigated magnet samples are in the order of μ0HcJ=1.8 T–2.1 T for a mean grain boundary thickness of 4 nm, which agrees perfectly with the experimental data.

  17. Quantitative multi-waves migration in elastic anisotropic media; Migration quantitative multi-ondes en milieu elastique anisotrope

    Energy Technology Data Exchange (ETDEWEB)

    Borgne, H.

    2004-12-01

    Seismic imaging is an important tool for ail exploration. From the filtered seismic traces and a subsurface velocity model, migration allows to localize the reflectors and to estimate physical properties of these interfaces. The subsurface is split up into a reference medium, corresponding to the low spatial frequencies (a smooth medium), and a perturbation medium, corresponding to the high spatial frequencies. The propagation of elastic waves in the medium of reference is modelled by the ray theory. The association of this theory with a principle of diffraction or reflection allows to take into account the high spatial frequencies: the Kirchhoff approach represents so the medium of perturbations with continuous surfaces, characterized by reflection coefficients. The target of the quantitative migration is to reconstruct this reflection coefficient, notably its behaviour according to the incidence angle. These information will open the way to seismic characterization of the reservoir domain, with. a stratigraphic inversion for instance. In order to improve the qualitative and quantitative migration results, one of the current challenges is to take into account the anisotropy of the subsurface. Taking into account rocks anisotropy in the imaging process of seismic data requires two improvements from the isotropic case. The first one roughly concerns the modelling aspect: an anisotropic propagator should be used to avoid a mis-positioning or bad focusing of the imaged reflectors. The second correction concerns the migration aspect: as anisotropy affects the reflectivity of subsurface, a specific anisotropic imaging formula should be applied in the migration kernel, in order to recover the correct A V A behavior of the subsurface reflectors, If the first correction is DOW made in most so-called anisotropic imaging algorithms, the second one is currently ignored. The first part of my work concerns theoretical aspects. 1 study first the preservation of amplitudes in the

  18. Saving Moore’s Law Down To 1 nm Channels With Anisotropic Effective Mass

    Science.gov (United States)

    Ilatikhameneh, Hesameddin; Ameen, Tarek; Novakovic, Bozidar; Tan, Yaohua; Klimeck, Gerhard; Rahman, Rajib

    2016-08-01

    Scaling transistors’ dimensions has been the thrust for the semiconductor industry in the last four decades. However, scaling channel lengths beyond 10 nm has become exceptionally challenging due to the direct tunneling between source and drain which degrades gate control, switching functionality, and worsens power dissipation. Fortunately, the emergence of novel classes of materials with exotic properties in recent times has opened up new avenues in device design. Here, we show that by using channel materials with an anisotropic effective mass, the channel can be scaled down to 1 nm and still provide an excellent switching performance in phosphorene nanoribbon MOSFETs. To solve power consumption challenge besides dimension scaling in conventional transistors, a novel tunnel transistor is proposed which takes advantage of anisotropic mass in both ON- and OFF-state of the operation. Full-band atomistic quantum transport simulations of phosphorene nanoribbon MOSFETs and TFETs based on the new design have been performed as a proof.

  19. Smectic liquid crystals in anisotropic colloidal silica gels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Dennis [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Borthwick, Matthew A [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Leheny, Robert L [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2004-05-19

    We report x-ray scattering studies of the smectic liquid crystal octylcyano-biphenol (8CB) confined by strained colloidal silica gels. The gels, comprised of aerosil particles, possess an anisotropic structure that stabilizes long-range nematic order in the liquid crystal while introducing random field effects that disrupt the smectic transition. The short-range smectic correlations that form within this environment are inconsistent with the presence of a topologically ordered state predicted for 3D random field XY systems and are quantitatively like the correlations of smectics confined by isotropic gels. Detailed analysis reveals that the quenched disorder suppresses the anisotropic scaling of the smectic correlation lengths observed in the pure liquid crystal. These results and additional measurements of the smectic-A to smectic-C transition in 4-n-pentylphenylthiol-4'-n-octyloxybenzoate (8barS5) indicate that the observed smectic behaviour is dictated by random fields coupling directly to the smectic order while fields coupling to the nematic director play a subordinate role.

  20. Long-term anisotropic mechanical response of surgical meshes used to repair abdominal wall defects.

    Science.gov (United States)

    Hernández-Gascón, B; Peña, E; Pascual, G; Rodríguez, M; Bellón, J M; Calvo, B

    2012-01-01

    Routine hernia repair surgery involves the implant of synthetic mesh. However, this type of procedure may give rise to pain and bowel incarceration and strangulation, causing considerable patient disability. The purpose of this study was to compare the long-term behaviour of three commercial meshes used to repair the partially herniated abdomen in New Zealand White rabbits: the heavyweight (HW) mesh, Surgipro(®) and lightweight (LW) mesh, Optilene(®), both made of polypropylene (PP), and a mediumweight (MW) mesh, Infinit(®), made of polytetrafluoroethylene (PTFE). The implanted meshes were mechanical and histological assessed at 14, 90 and 180 days post-implant. This behaviour was compared to the anisotropic mechanical behaviour of the unrepaired abdominal wall in control non-operated rabbits. Both uniaxial mechanical tests conducted in craneo-caudal and perpendicular directions and histological findings revealed substantial collagen growth over the repaired hernial defects causing stiffness in the repair zone, and thus a change in the original properties of the meshes. The mechanical behaviour of the healthy tissue in the craneo-caudal direction was not reproduced by any of the implanted meshes after 14 days or 90 days of implant, whereas in the perpendicular direction, SUR and OPT achieved similar behaviour. From a mechanical standpoint, the anisotropic PP-lightweight meshes may be considered a good choice in the long run, which correlates with the structure of the regenerated tissue. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Critical state of anisotropic hard superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Salazar, C; Perez-RodrIguez, F [Instituto de FIsica, Universidad Autonoma de Puebla, Apdo Post J-48, Puebla, Pue 72570 (Mexico)

    2003-11-01

    The magnetic response of anisotropic irreversible type-II superconductors is investigated theoretically. Using an elliptic vertical law for the electric field E as a function of the current density J, we have reproduced available experimental magnetization curves of YBCO samples with the c axis lying in the sample plane. Specifically, we could reproduce quantitatively and interpret correctly the appearance of additional extrema and segments with relatively small slopes of the virgin magnetization curves when the direction of the applied magnetic field differs from the principal axes. The notable deformation of magnetization curves in a tilted magnetic field is connected to the strong coupling between the components of the magnetic induction.

  2. Forming limit prediction by an evolving non-quadratic yield criterion considering the anisotropic hardening and r-value evolution

    Science.gov (United States)

    Lian, Junhe; Shen, Fuhui; Liu, Wenqi; Münstermann, Sebastian

    2018-05-01

    The constitutive model development has been driven to a very accurate and fine-resolution description of the material behaviour responding to various environmental variable changes. The evolving features of the anisotropic behaviour during deformation, therefore, has drawn particular attention due to its possible impacts on the sheet metal forming industry. An evolving non-associated Hill48 (enHill48) model was recently proposed and applied to the forming limit prediction by coupling with the modified maximum force criterion. On the one hand, the study showed the significance to include the anisotropic evolution for accurate forming limit prediction. On the other hand, it also illustrated that the enHill48 model introduced an instability region that suddenly decreases the formability. Therefore, in this study, an alternative model that is based on the associated flow rule and provides similar anisotropic predictive capability is extended to chapter the evolving effects and further applied to the forming limit prediction. The final results are compared with experimental data as well as the results by enHill48 model.

  3. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  4. Propagation law of impact elastic wave based on specific materials

    Directory of Open Access Journals (Sweden)

    Chunmin CHEN

    2017-02-01

    Full Text Available In order to explore the propagation law of the impact elastic wave on the platform, the experimental platform is built by using the specific isotropic materials and anisotropic materials. The glass cloth epoxy laminated plate is used for anisotropic material, and an organic glass plate is used for isotropic material. The PVDF sensors adhered on the specific materials are utilized to collect data, and the elastic wave propagation law of different thick plates and laminated plates under impact conditions is analyzed. The Experimental results show that in anisotropic material, transverse wave propagation speed along the fiber arrangement direction is the fastest, while longitudinal wave propagation speed is the slowest. The longitudinal wave propagation speed in anisotropic laminates is much slower than that in the laminated thick plates. In the test channel arranged along a particular angle away from the central region of the material, transverse wave propagation speed is larger. Based on the experimental results, this paper proposes a material combination mode which is advantageous to elastic wave propagation and diffusion in shock-isolating materials. It is proposed to design a composite material with high acoustic velocity by adding regularly arranged fibrous materials. The overall design of the barrier material is a layered structure and a certain number of 90°zigzag structure.

  5. Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media.

    Science.gov (United States)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2015-08-24

    Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.

  6. Behaviour Guides and Law. Research Perspectives on the (InFormal and its Currently Shifting Foundations

    Directory of Open Access Journals (Sweden)

    Karin Harrasser / Elisabeth Timm

    2010-08-01

    Full Text Available The juridification of social life in the modern bourgeois world was long understood as a triumph of rationality over particular interests, as the “civilisation” of physical violence. For some time now, this grand narrative of the modern world has been criticized as a specific historical case, as Eurocentric and bourgeois. Additionally, the concept and practice of modern, national sovereign statehood is being challenged in many ways. Individuals are also experiencing an unbounding of their “sovereignty”. The article sums up different disciplines’ research into the fields of behaviour guides and law. In doing so, it sketches out research perspectives intended to transcend the either-or dichotomy of the previous debates (ethics / particular / informal / personal / emotional-cultural vs. law / universal / formal / institutional and envisions new analytical assessments of these two poles.

  7. Possibilities of sanction of the improper behaviour of a power network operator. Instruments of energy economy act, public order law, and criminal law; Sanktionsmoeglichkeiten bei missbraeuchlichem Verhalten eines Energienetzbetreibers. Energiewirtschaftsrechtliche, ordnungsrechtliche und strafrechtliche Instrumentarien

    Energy Technology Data Exchange (ETDEWEB)

    Mitto, L.

    2007-07-01

    The liberalization of the electric power market and gas market has released a comprehensive reorganisation of the energy branch. Under this aspect, the author of the book under consideration reports on power network operators, their improper behaviour as well as the use of the instruments of energy economy act, public order law, and criminal law in order to sanction power network operators.

  8. Anisotropic generalization of well-known solutions describing relativistic self-gravitating fluid systems. An algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thirukkanesh, S. [Eastern University, Department of Mathematics, Chenkalady (Sri Lanka); Ragel, F.C. [Eastern University, Department of Physics, Chenkalady (Sri Lanka); Sharma, Ranjan; Das, Shyam [P.D. Women' s College, Department of Physics, Jalpaiguri (India)

    2018-01-15

    We present an algorithm to generalize a plethora of well-known solutions to Einstein field equations describing spherically symmetric relativistic fluid spheres by relaxing the pressure isotropy condition on the system. By suitably fixing the model parameters in our formulation, we generate closed-form solutions which may be treated as an anisotropic generalization of a large class of solutions describing isotropic fluid spheres. From the resultant solutions, a particular solution is taken up to show its physical acceptability. Making use of the current estimate of mass and radius of a known pulsar, the effects of anisotropic stress on the gross physical behaviour of a relativistic compact star is also highlighted. (orig.)

  9. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  10. Crack growth resistance for anisotropic plasticity with non-normality effects

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang

    2006-01-01

    For a plastically anisotropic solid a plasticity model using a plastic flow rule with non-normality is applied to predict crack growth. The fracture process is modelled in terms of a traction–separation law specified on the crack plane. A phenomenological elastic–viscoplastic material model...... is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy, and in each case the effect of the normality flow rule is compared with the effect of non-normality. Conditions of small scale yielding are assumed, with mode I loading conditions far from the crack......-tip, and various directions of the crack plane relative to the principal axes of the anisotropy are considered. It is found that the steady-state fracture toughness is significantly reduced when the non-normality flow rule is used. Furthermore, it is shown that the predictions are quite sensitive to the value...

  11. Lawful Distortion of Consumers’ Economic Behaviour

    DEFF Research Database (Denmark)

    Trzaskowski, Jan

    2016-01-01

    ‘collateral damage’. In that vein this article discusses situations where consumers may have their economic behaviour distorted by commercial practices that are not unfair under the Directive. It is expected that many consumers will make relatively good decisions most of the time...... Visitors’). The article suggests how behavioural sciences may be applied to understand these situations in order to protect more consumers from having their economic behaviour distorted by commercial practices. It is suggested that per se prohibitions may be advantageous in some instances as long......The Unfair Commercial Practices Directive prohibits unfair business-to-consumer commercial practices with a view to protect consumers’ economic interests. In a market economy such regulation cannot protect the economic interests of all consumers in all situations – there must inevitably be some...

  12. Physical attributes of anisotropic compact stars in f(R, G) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M.F.; Zia, Saeeda [National University of Computer and Emerging Sciences, Department of Sciences and Humanities, Lahore (Pakistan)

    2017-07-15

    Modified gravity is one of the potential candidates to explain the accelerated expansion of the universe. Current study highlights the materialization of anisotropic compact stars in the context of f(R, G) theory of gravity. In particular, to gain insight in the physical behavior of three stars namely, Her X1, SAX J 1808-3658 and 4U 1820-30, energy density, and radial and tangential pressures are calculated. The f(R, G) gravity model is split into a Starobinsky like f(R) model and a power law f(G) model. The main feature of the work is a 3-dimensional graphical analysis in which, anisotropic measurements, energy conditions and stability attributes of these stars are discussed. It is shown that all three stars behave as usual for positive values of the f(G) model parameter n. (orig.)

  13. How indicative is a self-reported driving behaviour profile of police registered traffic law offences?

    DEFF Research Database (Denmark)

    Martinussen, Laila Marianne; Møller, Mette; Prato, Carlo Giacomo

    2017-01-01

    of reliable predictors of safe or unsafe driving behaviour. Given this background, the aim of this study was to test whether driver sub-groups identified based on self-reported driving behaviour and skill differed in registered traffic law offences and accidents, and whether group membership was predictive...... from the Danish Driving License Register. Results show that the driver sub-groups differed significantly in registered traffic offences but not in registered accidents. In a logistic regression analysis, the sub-group “Violating unsafe drivers” was found predictive of having a traffic offence, even...... when socio-demographic variables and exposure were controlled for. The most important predictive factor, however, was having a criminal record for non-traffic offences, while gender, living without a partner, and being self-employed also had a significant effect. The study confirms the use of the DBQ...

  14. A three-dimensional, iterative mapping procedure for the implementation of an ionosphere-magnetosphere anisotropic Ohm's law boundary condition in global magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    M. L. Goodman

    1995-08-01

    Full Text Available The mathematical formulation of an iterative procedure for the numerical implementation of an ionosphere-magnetosphere (IM anisotropic Ohm's law boundary condition is presented. The procedure may be used in global magnetohydrodynamic (MHD simulations of the magnetosphere. The basic form of the boundary condition is well known, but a well-defined, simple, explicit method for implementing it in an MHD code has not been presented previously. The boundary condition relates the ionospheric electric field to the magnetic field-aligned current density driven through the ionosphere by the magnetospheric convection electric field, which is orthogonal to the magnetic field B, and maps down into the ionosphere along equipotential magnetic field lines. The source of this electric field is the flow of the solar wind orthogonal to B. The electric field and current density in the ionosphere are connected through an anisotropic conductivity tensor which involves the Hall, Pedersen, and parallel conductivities. Only the height-integrated Hall and Pedersen conductivities (conductances appear in the final form of the boundary condition, and are assumed to be known functions of position on the spherical surface R=R1 representing the boundary between the ionosphere and magnetosphere. The implementation presented consists of an iterative mapping of the electrostatic potential ψ the gradient of which gives the electric field, and the field-aligned current density between the IM boundary at R=R1 and the inner boundary of an MHD code which is taken to be at R2>R1. Given the field-aligned current density on R=R2, as computed by the MHD simulation, it is mapped down to R=R1 where it is used to compute ψ by solving the equation that is the IM Ohm's law boundary condition. Then ψ is mapped out to R=R2, where it is used to update the electric field and the component of velocity perpendicular to B. The updated electric field and perpendicular velocity serve as new boundary

  15. Relationship between morphology and electrical properties in PP/MWCNT composites: Processing-induced anisotropic percolation threshold

    Energy Technology Data Exchange (ETDEWEB)

    Cesano, F., E-mail: federico.cesano@unito.it [Department of Chemistry, NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre and INSTM Centro di Riferimento, University of Torino, Via P. Giuria, 7, 10125 Torino (Italy); Zaccone, M. [Proplast, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); ECNP, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); Armentano, I. [Materials Engineering Center, UdR INSTM, University of Perugia, Str. Pentima 4, 05100 Terni (Italy); Cravanzola, S.; Muscuso, L. [Department of Chemistry, NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre and INSTM Centro di Riferimento, University of Torino, Via P. Giuria, 7, 10125 Torino (Italy); Torre, L. [Materials Engineering Center, UdR INSTM, University of Perugia, Str. Pentima 4, 05100 Terni (Italy); Kenny, J.M. [ECNP, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); Materials Engineering Center, UdR INSTM, University of Perugia, Str. Pentima 4, 05100 Terni (Italy); Monti, M. [Proplast, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); Scarano, D. [Department of Chemistry, NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre and INSTM Centro di Riferimento, University of Torino, Via P. Giuria, 7, 10125 Torino (Italy)

    2016-09-01

    Multi-walled carbon nanotubes (MWCNTs)/polypropylene composites were prepared by melt-mixing, by varying the MWCNT content from 1 to 7 wt%, and samples were manufactured by injection moulding technique. DC electrical characterization was performed by the two-probe method in the three main directions: longitudinal and transversal to the flux of the material during the mould filling, and in the through-thickness direction. Moreover, a dedicated setup was adopted to measure the electrical resistance at different depths of the specimen cross-sectional areas. Two different electrical percolation thresholds, calculated at about 2 wt% and 3 wt% of MWCNTs (longitudinally/transversely to the mould filling flux and in the through-thickness directions, respectively), were found. In order to investigate the role of the structure/morphology of the composites on the electrical properties, samples have been cryofractured, chemically etched and characterized by means of scanning electron microscopy. As a result, the observed anisotropic electrical behaviour was associated with the different network morphology, which was detected in the cross-sectional area, caused by the injection moulding process. Based on the observed through-thickness electrical behaviour, a phenomenological DC conduction model has been developed, describing the sample as a multilayer system, being the external layers (skin) less conductive than the internal region (core). This model, combined with the bulk electrical tests, can be considered as a valuable mathematical tool to foresee the electrical behaviour of MWCNT-based composites for designing new industrial injection-moulded components. - Highlights: • (1–7 wt%) MWCNTs/polypropylene composites are made by injection moulding technique. • The mould temperature is affecting the anisotropic electrical properties. • The anisotropic properties are connected with CNTs dispersion/aggregation. • External layers (skin) are less conductive than the

  16. Civil Law and Neuroscience

    NARCIS (Netherlands)

    de Kogel, C.H.; Schrama, W.M.; Smit, M.

    2014-01-01

    The relationship between the brain and human behaviour is receiving increasing attention in legal practice. Much has already been published about the role of neuroscience in criminal law, but surprisingly little is known about its role in civil law. In this contribution, the relevance of

  17. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  18. Simple types of anisotropic inflation

    International Nuclear Information System (INIS)

    Barrow, John D.; Hervik, Sigbjoern

    2010-01-01

    We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.

  19. Anisotropic superconducting state parameters of Tl-2212 superconductors

    International Nuclear Information System (INIS)

    Khaskalam, Amit K.; Singh, R.K.; Varshney, Dinesh

    2001-01-01

    We have estimated the superconducting state parameters and their anisotropy in thallium based superconductors (Tl-2212), in the frame work of Fermi liquid approach. Determination of the effective mass of the charge carriers from the Fermi velocity and estimated anisotropic superconducting state parameters, particularly, the magnetic penetration depth along and perpendicular to the conducting plane. The coherence length along and perpendicular to the ab plane is evaluated and appears to be higher. The temperature dependence of penetration depth, their anisotropy and Ginsburg Landau parameter for optimised doped Tl based cuprates shows the power law. The technique permits a consistency with the reported data. (author)

  20. Anisotropic turbulence and zonal jets in rotating flows with a β-effect

    Directory of Open Access Journals (Sweden)

    B. Galperin

    2006-01-01

    Full Text Available Numerical studies of small-scale forced, two-dimensional turbulent flows on the surface of a rotating sphere have revealed strong large-scale anisotropization that culminates in the emergence of quasi-steady sets of alternating zonal jets, or zonation. The kinetic energy spectrum of such flows also becomes strongly anisotropic. For the zonal modes, a steep spectral distribution, E(n=CZ (Ω/R2 n-5, is established, where CZ=O(1 is a non-dimensional coefficient, Ω is the angular velocity, and R is the radius of the sphere, respectively. For other, non-zonal modes, the classical, Kolmogorov-Batchelor-Kraichnan, spectral law is preserved. This flow regime, referred to as a zonostrophic regime, appears to have wide applicability to large-scale planetary and terrestrial circulations as long as those are characterized by strong rotation, vertically stable stratification and small Burger numbers. The well-known manifestations of this regime are the banded disks of the outer planets of our Solar System. Relatively less known examples are systems of narrow, subsurface, alternating zonal jets throughout all major oceans discovered in state-of-the-art, eddy-permitting simulations of the general oceanic circulation. Furthermore, laboratory experiments recently conducted using the Coriolis turntable have basically confirmed that the lateral gradient of ''planetary vorticity'' (emulated via the topographic β-effect is the primary cause of the zonation and that the latter is entwined with the development of the strongly anisotropic kinetic energy spectrum that tends to attain the same zonal and non-zonal distributions, −5 and , respectively, in both the slope and the magnitude, as the corresponding spectra in other environmental conditions. The non-dimensional coefficient CZ in the −5 spectral law appears to be invariant, , in a variety of simulated and natural flows. This paper provides a brief review of the zonostrophic regime. The review includes the

  1. Drag force in a strongly coupled anisotropic plasma

    Science.gov (United States)

    Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego

    2012-08-01

    We calculate the drag force experienced by an infinitely massive quark propagating at constant velocity through an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We find that the gluon cloud trailing behind the quark is generally misaligned with the quark velocity, and that the latter is also misaligned with the force. The drag coefficient μ can be larger or smaller than the corresponding isotropic value depending on the velocity and the direction of motion. In the ultra-relativistic limit we find that generically μ ∝ p. We discuss the conditions under which this behaviour may extend to more general situations.

  2. Modeling of the mechanical behaviour of welded structures: behaviour laws and rupture criteria

    International Nuclear Information System (INIS)

    Paris, T.; Delaplanche, D.; Saanouni, K.

    2006-01-01

    In the framework of the technological developments carried out in the CEA, the analysis of the mechanical behaviour of the heterogeneous welded bonds Ta/TA6V is a main preoccupation. Indeed, the welding of these two materials which cannot be distinguished by their mechanical and thermal properties induces strong microstructural heterogeneities in the melted zone. In order to characterize the behaviour of the welded joints and to develop a model of mechanical behaviour, a four points bending test on a notched specimen has been developed and implemented. This new test has allowed to obtain a macroscopic response of strength-displacement type but to analyze too more finely, with an optical extensometry and images correlation method, the influence of the heterogeneities on the local deformation of the welded joint. The confrontation of these results to a metallurgical study allows to validate the first conclusions deduced of the mechanical characterization tests and to conclude as for the local mechanisms governing the behaviour and the damage of the melted zone. The mechanical behaviour can be restored by an elasto-viscoplastic model with isotropic and non linear kinematic strain hardening coupled to this damage. The proposed model allows to identify the macroscopic behaviour of the weld bead. (O.M.)

  3. Criticality of the D=2 quantum Heisenberg ferromagnet with quenched random anisotropic

    International Nuclear Information System (INIS)

    Mariz, A.M.; Tsallis, C.

    1985-01-01

    The square-lattice spin 1/2 anisotropic Heisenberg ferromagnet is considered, with interactions whose symmetry can independently (quenched model) and randomly be of two competing types, namely the isotropic Heisenberg type and the Ising one. Within a real space renormalization group framework, a quite precise numerical calculation of the critical frontier is performed, and its main asymptotic behaviour are established. The relevant universality classes are also characterized, through the analysis of the correlation length critical exponent. (Author) [pt

  4. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  5. Like Mother(-in-Law) Like Daughter? Influence of the Older Generation's Fertility Behaviours on Women's Desired Family Size in Bihar, India.

    Science.gov (United States)

    Kumar, Abhishek; Bordone, Valeria; Muttarak, Raya

    This paper investigates the associations between preferred family size of women in rural Bihar, India and the fertility behaviours of their mother and mother-in-law. Scheduled interviews of 440 pairs of married women aged 16-34 years and their mothers-in-law were conducted in 2011. Preferred family size is first measured by Coombs scale, allowing us to capture latent desired number of children and then categorized into three categories (low, medium and high). Women's preferred family size is estimated using ordered logistic regression. We find that the family size preferences are not associated with mother's fertility but with mother's education. Mother-in-law's desired number of grandchildren is positively associated with women's preferred family size. However, when the woman has higher education than her mother-in-law, her preferred family size gets smaller, suggesting that education provides women with greater autonomy in their decision-making on childbearing.

  6. Effect of Anisotropy on the Resilient Behaviour of a Granular Material in Low Traffic Pavement.

    Science.gov (United States)

    Jing, Peng; Nowamooz, Hossein; Chazallon, Cyrille

    2017-12-03

    Granular materials are often used in pavement structures. The influence of anisotropy on the mechanical behaviour of granular materials is very important. The coupled effects of water content and fine content usually lead to more complex anisotropic behaviour. With a repeated load triaxial test (RLTT), it is possible to measure the anisotropic deformation behaviour of granular materials. This article initially presents an experimental study of the resilient repeated load response of a compacted clayey natural sand with three fine contents and different water contents. Based on anisotropic behaviour, the non-linear resilient model (Boyce model) is improved by the radial anisotropy coefficient γ ₃ instead of the axial anisotropy coefficient γ ₁. The results from both approaches ( γ ₁ and γ ₃) are compared with the measured volumetric and deviatoric responses. These results confirm the capacity of the improved model to capture the general trend of the experiments. Finally, finite element calculations are performed with CAST3M in order to validate the improvement of the modified Boyce model (from γ ₁ to γ ₃). The modelling results indicate that the modified Boyce model with γ ₃ is more widely available in different water contents and different fine contents for this granular material. Besides, based on the results, the coupled effects of water content and fine content on the deflection of the structures can also be observed.

  7. On how AI & Law can help autonomous systems obey the law: a position paper

    NARCIS (Netherlands)

    Prakken, Hendrik

    2016-01-01

    In this position paper I discuss to what extent current and past AI & law research is relevant for research on autonomous intelligent systems that exhibit legally relevant behaviour. After a brief review of the history of AI & law, I will compare the problems faced by autonomous intelligent systems

  8. Frictional behaviour of high performance fibrous tows: Friction experiments

    NARCIS (Netherlands)

    Cornelissen, Bo; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Tow friction is an important mechanism in the production and processing of high performance fibrous tows. The frictional behaviour of these tows is anisotropic due to the texture of the filaments as well as the tows. This work describes capstan experiments that were performed to measure the

  9. Comprehensive analysis of tornado statistics in comparison to earthquakes: intensity and temporal behaviour

    Directory of Open Access Journals (Sweden)

    L. Schielicke

    2013-01-01

    Full Text Available Tornadoes and earthquakes are characterised by a high variability in their properties concerning intensity, geometric properties and temporal behaviour. Earthquakes are known for power-law behaviour in their intensity (Gutenberg–Richter law and temporal statistics (e.g. Omori law and interevent waiting times. The observed similarity of high variability of these two phenomena motivated us to compare the statistical behaviour of tornadoes using seismological methods and quest for power-law behaviour. In general, the statistics of tornadoes show power-law behaviour partly coextensive with characteristic scales when the temporal resolution is high (10 to 60 min. These characteristic scales match with the typical diurnal behaviour of tornadoes, which is characterised by a maximum of tornado occurrences in the late afternoon hours. Furthermore, the distributions support the observation that tornadoes cluster in time. Finally, we shortly discuss a possible similar underlying structure composed of heterogeneous, coupled, interactive threshold oscillators that possibly explains the observed behaviour.

  10. New definition of the decay law

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    1977-01-01

    Time evolution of unstable states is considered. The usual definition of the decay law is shown to be of a limited application. A more general definition is proposed. The decay law behaviour at long and short times is discussed

  11. Screening of the field of a static charge in an anisotropic magnetized plasma

    International Nuclear Information System (INIS)

    Arsenin, V.V.; Puzitskii, M.L.

    1991-01-01

    The field of a static charge placed in an equilibrium plasma is screened at a distance of the order of the Debye radius. Debye screening occurs both with and without an external magnetic field. This property also persists when the plasma is not an equilibrium plasma but the velocity distribution function of the particles is isotropic (the screening radius in this case contains the characteristic value of the energy instead of the temperature). The situation can change if the distribution is anisotropic. First, the drop in the field can become non-Debye. In particular, in an unmagnetized plasma some distribution functions are characterized by a power-law decrease of the field. Second, a static test charge induces a magnetic as well as an electrostatic field in an anisotropic plasma. In this communication the authors describe the anomalies of screening of the field of a static charge in a magnetized plasma. For definiteness they consider a situation (typical, e.g., of magnetic mirror systems) when the ionic component is anisotropic. The simplifications for the sake of computations are limited to the case of a charge which extends along the magnetic field and only harmonics much longer than the Debye length are significant in the Fourier expansion of the density of this charge in the longitudinal coordinate

  12. Composite beam analysis linear analysis of naturally curved and twisted anisotropic beams

    Science.gov (United States)

    Borri, Marco; Ghiringhelli, Gian L.; Merlini, Teodoro

    1992-05-01

    The aim of this report is to present a consistent theory for the deformation of a naturally curved and twisted anisotropic beam. The proposed formulation naturally extends the classical Saint-Venant approach to the case of curved and twisted anisotropic beams. The mathematical model developed under the assumption of span-wise uniform cross-section, curvature and twist, can take into account any kind of elastic coupling due to the material properties and the curved geometry. The consistency of the presented math-model and its generality about the cross-sectional shape, make it a useful tool even in a preliminary design optimization context such as the aeroelastic tailoring of helicopter rotor blades. The advantage of the present procedure is that it only requires a two-dimensional discretization; thus, very detailed analyses can be performed and interlaminar stresses between laminae can be evaluated. Such analyses would be extremely time consuming if performed with standard finite element codes: that prevents their recursive use as for example when optimizing a beam design. Moreover, as a byproduct of the proposed formulation, one obtains the constitutive law of the cross-section in terms of stress resultant and moment and their conjugate strain measures. This constitutive law takes into account any kind of elastic couplings, e.g., torsion-tension, tension-shear, bending-shear, and constitutes a fundamental input in aeroelastic analyses of helicopter blades. Four simple examples are given in order to show the principal features of the method.

  13. Isotropic and anisotropic surface wave cloaking techniques

    International Nuclear Information System (INIS)

    McManus, T M; Spada, L La; Hao, Y

    2016-01-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques. (paper)

  14. Isotropic and anisotropic surface wave cloaking techniques

    Science.gov (United States)

    McManus, T. M.; La Spada, L.; Hao, Y.

    2016-04-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.

  15. Modified circular velocity law

    Science.gov (United States)

    Djeghloul, Nazim

    2018-05-01

    A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.

  16. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq; Ma, Xuxin; Waheed, Umair bin; Zuberi, Mohammad Akbar Hosain

    2014-01-01

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  17. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  18. Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere

    Science.gov (United States)

    Ata, Yalçın; Baykal, Yahya

    2017-10-01

    Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.

  19. Investigate the effect of anisotropic order parameter on the specific heat of anisotropic two-band superconductors

    International Nuclear Information System (INIS)

    Udomsamuthirun, P.; Peamsuwan, R.; Kumvongsa, C.

    2009-01-01

    The effect of anisotropic order parameter on the specific heat of anisotropic two-band superconductors in BCS weak-coupling limit is investigated. An analytical specific heat jump and the numerical specific heat are shown by using anisotropic order parameters, and the electron-phonon interaction and non-electron-phonon interaction. The two models of anisotropic order parameters are used for numerical calculation that we find little effect on the numerical results. The specific heat jump of MgB 2 , Lu 2 Fe 3 Si 5 and Nb 3 Sn superconductors can fit well with both of them. By comparing the experimental data with overall range of temperature, the best fit is Nb 3 Sn, MgB 2 , and Lu 2 Fe 3 Si 5 superconductors.

  20. European Union competition law, intellectual property law and standardization

    NARCIS (Netherlands)

    Geradin, Damien; Contreras, Jorge L.

    2016-01-01

    This paper provides an overview of the efforts of the European Commission to identify and, when necessary, challenge anticompetitive behaviour with respect to standardization and the licensing of standardized technologies, as well as the case-law of the CJEU on the same subject. The paper starts by

  1. An efficient wave extrapolation method for anisotropic media with tilt

    KAUST Repository

    Waheed, Umair bin

    2015-03-23

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  2. An efficient wave extrapolation method for anisotropic media with tilt

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2015-01-01

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  3. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  4. Event patterns extracted from anisotropic spectra of charged particles produced in Pb-Pb collisions at 2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ya-Hui; Liu, Fu-Hu [Shanxi University, Institute of Theoretical Physics and State Key Laboratory of Quantum Optics and Quantum Optics Devices, Taiyuan, Shanxi (China)

    2017-11-15

    Event patterns extracted from anisotropic spectra of charged particles produced in lead-lead collisions at 2.76 TeV are investigated. We use an inverse power-law resulted from the QCD calculus to describe the transverse momentum spectrum in the hard scattering process, and a revised Erlang distribution resulted from a multisource thermal model to describe the transverse momentum spectrum and anisotropic flow in the soft excitation process. The pseudorapidity distribution is described by a three-Gaussian function which is a revision of the Landau hydrodynamic model. Thus, the event patterns at the kinetic freeze-out are displayed by the scatter plots of the considered particles in the three-dimensional velocity, momentum, and rapidity spaces. (orig.)

  5. Event patterns extracted from anisotropic spectra of charged particles produced in Pb-Pb collisions at 2.76 TeV

    Science.gov (United States)

    Chen, Ya-Hui; Liu, Fu-Hu

    2017-11-01

    Event patterns extracted from anisotropic spectra of charged particles produced in lead-lead collisions at 2.76 TeV are investigated. We use an inverse power-law resulted from the QCD calculus to describe the transverse momentum spectrum in the hard scattering process, and a revised Erlang distribution resulted from a multisource thermal model to describe the transverse momentum spectrum and anisotropic flow in the soft excitation process. The pseudorapidity distribution is described by a three-Gaussian function which is a revision of the Landau hydrodynamic model. Thus, the event patterns at the kinetic freeze-out are displayed by the scatter plots of the considered particles in the three-dimensional velocity, momentum, and rapidity spaces.

  6. Complex Anisotropic Structure of the Mantle Wedge Beneath Kamchatka Volcanoes

    Science.gov (United States)

    Levin, V.; Park, J.; Gordeev, E.; Droznin, D.

    2002-12-01

    the slab. To explain the vertical stratification of anisotropy implied from receiver functions, and the strong lateral dependence of shear-wave splitting observations, we cannot rely on simple models of mantle wedge behaviour e.g., olivine-crystal alignment through subduction-driven corner flow. Diverse mechanisms can contribute to the observed pattern of anisotropic properties, with volatiles likely being a key influence. For instance, we find evidence in favor of a slow-symmetry-axis anisotropy within the uppermost 10-20 km of the mantle wedge, implying either excessive hydration of the mantle or else a presence of systematically aligned volatile-filled cracks or lenses. Also, shear-wave splitting is weak beneath the Avachinsky-Koryaksky volcanic center, suggesting either vertical flow or the influence of volatiles and/or thermally-enhanced diffusion creep.

  7. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  8. Cracking on anisotropic neutron stars

    Science.gov (United States)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  9. Mesophase behaviour of polyhedral particles

    KAUST Repository

    Agarwal, Umang; Escobedo, Fernando A.

    2011-01-01

    Translational and orientational excluded-volume fields encoded in particles with anisotropic shapes can lead to purely entropy-driven assembly of morphologies with specific order and symmetry. To elucidate this complex correlation, we carried out detailed Monte Carlo simulations of six convex space-filling polyhedrons, namely, truncated octahedrons, rhombic dodecahedrons, hexagonal prisms, cubes, gyrobifastigiums and triangular prisms. Simulations predict the formation of various new liquid-crystalline and plastic-crystalline phases at intermediate volume fractions. By correlating these findings with particle anisotropy and rotational symmetry, simple guidelines for predicting phase behaviour of polyhedral particles are proposed: high rotational symmetry is in general conducive to mesophase formation, with low anisotropy favouring plastic-solid behaviour and intermediate anisotropy (or high uniaxial anisotropy) favouring liquid-crystalline behaviour. It is also found that dynamical disorder is crucial in defining mesophase behaviour, and that the apparent kinetic barrier for the liquid-mesophase transition is much lower for liquid crystals (orientational order) than for plastic solids (translational order). © 2011 Macmillan Publishers Limited. All rights reserved.

  10. Mesophase behaviour of polyhedral particles

    KAUST Repository

    Agarwal, Umang

    2011-02-13

    Translational and orientational excluded-volume fields encoded in particles with anisotropic shapes can lead to purely entropy-driven assembly of morphologies with specific order and symmetry. To elucidate this complex correlation, we carried out detailed Monte Carlo simulations of six convex space-filling polyhedrons, namely, truncated octahedrons, rhombic dodecahedrons, hexagonal prisms, cubes, gyrobifastigiums and triangular prisms. Simulations predict the formation of various new liquid-crystalline and plastic-crystalline phases at intermediate volume fractions. By correlating these findings with particle anisotropy and rotational symmetry, simple guidelines for predicting phase behaviour of polyhedral particles are proposed: high rotational symmetry is in general conducive to mesophase formation, with low anisotropy favouring plastic-solid behaviour and intermediate anisotropy (or high uniaxial anisotropy) favouring liquid-crystalline behaviour. It is also found that dynamical disorder is crucial in defining mesophase behaviour, and that the apparent kinetic barrier for the liquid-mesophase transition is much lower for liquid crystals (orientational order) than for plastic solids (translational order). © 2011 Macmillan Publishers Limited. All rights reserved.

  11. Systematic breakdown of Amontons' law of friction for an elastic object locally obeying Amontons' law.

    Science.gov (United States)

    Otsuki, Michio; Matsukawa, Hiroshi

    2013-01-01

    In many sliding systems consisting of solid object on a solid substrate under dry condition, the friction force does not depend on the apparent contact area and is proportional to the loading force. This behaviour is called Amontons' law and indicates that the friction coefficient, or the ratio of the friction force to the loading force, is constant. Here, however, using numerical and analytical methods, we show that Amontons' law breaks down systematically under certain conditions for an elastic object experiencing a friction force that locally obeys Amontons' law. The macroscopic static friction coefficient, which corresponds to the onset of bulk sliding of the object, decreases as pressure or system length increases. This decrease results from precursor slips before the onset of bulk sliding, and is consistent with the results of certain previous experiments. The mechanisms for these behaviours are clarified. These results will provide new insight into controlling friction.

  12. Anisotropic Weyl invariance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)

    2017-07-15

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)

  13. Multi-axial model of anisotropic damage: numerical management of failure and application to the ruin of reinforced concrete structures under impact

    International Nuclear Information System (INIS)

    Leroux, A.

    2012-01-01

    The objective of this research thesis is to develop the most precise possible numeric modelling of reinforced concrete behaviour with application to the design of structures of protection of nuclear plants against violent dynamic loadings (explosions, impacts). After a discussion of existing models, of their benefits and weaknesses, a multi-axial model of anisotropic damage is proposed and implemented with the finite element method. A new procedure of failure management is also proposed which allows the induced anisotropic damage to be taken into account. Impact tests on concrete beams and concrete cubes with longitudinal steel have been performed in order to validate the model [fr

  14. A theory for the anisotropic interaction between two substitutional magnetic impurities and the magnetic anisotropic effect in dilute magnetic alloys

    International Nuclear Information System (INIS)

    Satter, M.A.

    1990-08-01

    In this paper, a formalism for studying the anisotropic interaction between two substitutional magnetic impurities and the magnetic anisotropic effect in a dilute noble metal- transition metal magnetic alloy has been developed from relativistic scattering theory. The theoretical development and the computational techniques of this formalism are based on relativistic spin-polarized scattering theory and relativistic band structure frameworks. For studying the magnetic anisotropic effect a convenient ''working'' frame of reference with its axes oriented along the fcc crystal axes is set up. This formalism is applied to study the situation for two Fe impurities in paramagnetic Au hosts. For AuFe dilute alloy, the two impurity site interaction as a function of separation is not oscillatory and the anisotropic effect is found to be less than the two site interaction itself only by an order of magnitude. Apart from the anisotropic coupling of the two impurity spins to the separation vector, for the first time, another weak anisotropic coupling to the crystal axes is also contained in the two site interaction. These anisotropic effects are the results of the relativistic spin-orbit interaction which are incorporated into the formalism. (author). 22 refs, 5 figs

  15. Long-wave model for strongly anisotropic growth of a crystal step.

    Science.gov (United States)

    Khenner, Mikhail

    2013-08-01

    A continuum model for the dynamics of a single step with the strongly anisotropic line energy is formulated and analyzed. The step grows by attachment of adatoms from the lower terrace, onto which atoms adsorb from a vapor phase or from a molecular beam, and the desorption is nonnegligible (the "one-sided" model). Via a multiscale expansion, we derived a long-wave, strongly nonlinear, and strongly anisotropic evolution PDE for the step profile. Written in terms of the step slope, the PDE can be represented in a form similar to a convective Cahn-Hilliard equation. We performed the linear stability analysis and computed the nonlinear dynamics. Linear stability depends on whether the stiffness is minimum or maximum in the direction of the step growth. It also depends nontrivially on the combination of the anisotropy strength parameter and the atomic flux from the terrace to the step. Computations show formation and coarsening of a hill-and-valley structure superimposed onto a long-wavelength profile, which independently coarsens. Coarsening laws for the hill-and-valley structure are computed for two principal orientations of a maximum step stiffness, the increasing anisotropy strength, and the varying atomic flux.

  16. Delay-active damage versus non-local enhancement for anisotropic damage dynamics computations with alternated loading

    International Nuclear Information System (INIS)

    Desmorat, R.; Chambart, M.; Gatuingt, F.; Guilbaud, D.

    2010-01-01

    Anisotropic damage thermodynamics framework allows to model the concrete-like materials behavior and in particular their dissymmetric tension/compression response. To deal with dynamics applications such as impact, it is furthermore necessary to take into account the strain rate effect observed experimentally. This is done in the present work by means of anisotropic visco-damage, by introducing a material strain rate effect in the cases of positive hydrostatic stresses only. The proposed delay-damage law assumes no viscous effect in compression as the consideration of inertia effects proves sufficient to model the apparent material strength increase. High-rate dynamics applications imply to deal with wave propagation and reflection which can generate alternated loading in the impacted structure. In order to do so, the key concept of active damage is defined and introduced within both the damage criterion and the delay-damage evolution law. At the structural level, strain localization often leads to spurious mesh dependency. Three-dimensional Finite Element computations of dynamic tensile tests by spalling are presented, with visco-damage and either without or with non-local enhancement. Delay-damage, as introduced, regularizes the solution in fast dynamics. The location of the macro-crack initiated is found influenced by non-local regularization. The strain rate range in which each enhancement, delay-damage or non-local enhancement, has a regularizing effect is studied. (authors)

  17. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  18. Dynamics of anisotropic tissue growth

    Energy Technology Data Exchange (ETDEWEB)

    Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de

    2008-06-15

    We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.

  19. Systematic Breakdown of Amontons' Law of Friction for an Elastic Object Locally Obeying Amontons' Law

    Science.gov (United States)

    Otsuki, Michio; Matsukawa, Hiroshi

    2013-01-01

    In many sliding systems consisting of solid object on a solid substrate under dry condition, the friction force does not depend on the apparent contact area and is proportional to the loading force. This behaviour is called Amontons' law and indicates that the friction coefficient, or the ratio of the friction force to the loading force, is constant. Here, however, using numerical and analytical methods, we show that Amontons' law breaks down systematically under certain conditions for an elastic object experiencing a friction force that locally obeys Amontons' law. The macroscopic static friction coefficient, which corresponds to the onset of bulk sliding of the object, decreases as pressure or system length increases. This decrease results from precursor slips before the onset of bulk sliding, and is consistent with the results of certain previous experiments. The mechanisms for these behaviours are clarified. These results will provide new insight into controlling friction. PMID:23545778

  20. Nonlinear constitutive relations for anisotropic elastic materials

    Science.gov (United States)

    Sokolova, Marina; Khristich, Dmitrii

    2018-03-01

    A general approach to constructing of nonlinear variants of connection between stresses and strains in anisotropic materials with different types of symmetry of properties is considered. This approach is based on the concept of elastic proper subspaces of anisotropic materials introduced in the mechanics of solids by J. Rychlewski and on the particular postulate of isotropy proposed by A. A. Il’yushin. The generalization of the particular postulate on the case of nonlinear anisotropic materials is formulated. Systems of invariants of deformations as lengths of projections of the strain vector into proper subspaces are developed. Some variants of nonlinear constitutive relations for anisotropic materials are offered. The analysis of these relations from the point of view of their satisfaction to general and limit forms of generalization of partial isotropy postulate on anisotropic materials is performed. The relations for particular cases of anisotropy are written.

  1. Characterization of Anisotropic Behavior for High Grade Pipes

    Science.gov (United States)

    Yang, Kun; Huo, Chunyong; Ji, Lingkang; Li, Yang; Zhang, Jiming; Ma, Qiurong

    With the developing requirement of nature gas, the property needs of steel for pipe line are higher and higher, especially in strength and toughness. It is necessary to improve the steel grade in order to ensure economic demand and safety. However, with the rise of steel grade, the differences on properties in different orientations (anisotropic behaviors) become more and more obvious after the process of hot rolling, which may affect the prediction of fracture for the pipes seriously (Thinking of isotropic mechanical properties for material in traditional predict way). In order to get the reason for anisotropic mechanics, a series of tests are carried out for high grade steel pipes, including not only mechanical properties but also microstructures. Result indicates that there are obviously anisotropic behaviors for high grade steel pipes in two orientations (rolling orientation and transverse orientation). Strength is better in T orientation because Rm is higher and Rt 0.5 rises more in T orientation, and toughness is better in L orientation because of the higher Akv and SA in L orientation under a same temperature. Banded structures are formed in T orientation, and the spatial distribution of inclusion and precipitated phases are different in T, L and S orientation. The anisotropic arrangement for the matrix in space (banded structures), which is formed after the process of hot rolling, may affect the mechanical properties in different orientation. Moreover, the elasticity modulus of particles is different from the elasticity modulus of matrix, deformation between particles and matrix may cause stress concentration, and damage forms in this place. Because of the different distribution of particles in space, the level of damage is anisotropic in different orientations, and the anisotropic mechanical properties occur finally. Therefore, the anisotropic mechanical properties are determined by the anisotropic microstructures, both the anisotropic of matrix and the

  2. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    2012-01-01

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized....

  3. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized....

  4. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  5. Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.

    Science.gov (United States)

    Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying

    2011-02-01

    Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.

  6. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  7. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  8. Influence on dose calculation by difference of dose calculation algorithms in stereotactic lung irradiation. Comparison of pencil beam convolution (inhomogeneity correction: batho power law) and analytical anisotropic algorithm

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)

  9. Global Administrative Law: Improving Inter-institutional Connections ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Research on how the interactions between and among institutions can affect developing countries' ability to implement regulatory goals and reforms will shed light on the neglected field of law and development. It will also develop a deeper understanding of the factors underlying regulatory behaviour. Although the law and ...

  10. Ground state properties of the bond alternating spin-1/2 anisotropic Heisenberg chain

    Directory of Open Access Journals (Sweden)

    S. Paul

    2017-06-01

    Full Text Available Ground state properties, dispersion relations and scaling behaviour of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain have been studied where the exchange interactions on alternate bonds are ferromagnetic (FM and antiferromagnetic (AFM in two separate cases. The resulting models separately represent nearest neighbour (NN AFM-AFM and AFM-FM bond alternating chains. Ground state energy has been estimated analytically by using both bond operator and Jordan-Wigner representations and numerically by using exact diagonalization. Dispersion relations, spin gap and several ground state orders have been obtained. Dimer order and string orders are found to coexist in the ground state. Spin gap is found to develop as soon as the non-uniformity in alternating bond strength is introduced in the AFM-AFM chain which further remains non-zero for the AFM-FM chain. This spin gap along with the string orders attribute to the Haldane phase. The Haldane phase is found to exist in most of the anisotropic region similar to the isotropic point.

  11. Views on the Anisotropic Nature of Ilva Valley Region

    Directory of Open Access Journals (Sweden)

    GABRIELA-ALINA MUREŞAN

    2012-01-01

    Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.

  12. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  13. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    Science.gov (United States)

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  14. A three-dimensional, iterative mapping procedure for the implementation of an ionosphere-magnetosphere anisotropic Ohm's law boundary condition in global magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    M. L. Goodman

    Full Text Available The mathematical formulation of an iterative procedure for the numerical implementation of an ionosphere-magnetosphere (IM anisotropic Ohm's law boundary condition is presented. The procedure may be used in global magnetohydrodynamic (MHD simulations of the magnetosphere. The basic form of the boundary condition is well known, but a well-defined, simple, explicit method for implementing it in an MHD code has not been presented previously. The boundary condition relates the ionospheric electric field to the magnetic field-aligned current density driven through the ionosphere by the magnetospheric convection electric field, which is orthogonal to the magnetic field B, and maps down into the ionosphere along equipotential magnetic field lines. The source of this electric field is the flow of the solar wind orthogonal to B. The electric field and current density in the ionosphere are connected through an anisotropic conductivity tensor which involves the Hall, Pedersen, and parallel conductivities. Only the height-integrated Hall and Pedersen conductivities (conductances appear in the final form of the boundary condition, and are assumed to be known functions of position on the spherical surface R=R1 representing the boundary between the ionosphere and magnetosphere. The implementation presented consists of an iterative mapping of the electrostatic potential ψ the gradient of which gives the electric field, and the field-aligned current density between the IM boundary at R=R1 and the inner boundary of an MHD code which is taken to be at R2>R1. Given the field-aligned current density on R=R2, as computed by the MHD simulation, it is mapped down to R=R1 where it is used to compute ψ by solving the equation that is the IM Ohm's law boundary condition. Then ψ is mapped out

  15. Conceptualising Animal Abuse with an Antisocial Behaviour Framework.

    Science.gov (United States)

    Gullone, Eleonora

    2011-01-26

    This paper reviews current findings in the human aggression and antisocial behaviour literature and those in the animal abuse literature with the aim of highlighting the overlap in conceptualisation. The major aim of this review is to highlight that the co-occurrence between animal abuse behaviours and aggression and violence toward humans can be logically understood through examination of the research evidence for antisocial and aggressive behaviour. From examination through this framework, it is not at all surprising that the two co-occur. Indeed, it would be surprising if they did not. Animal abuse is one expression of antisocial behaviour. What is also known from the extensive antisocial behaviour literature is that antisocial behaviours co-occur such that the presence of one form of antisocial behaviour is highly predictive of the presence of other antisocial behaviours. From such a framework, it becomes evident that animal abuse should be considered an important indicator of antisocial behaviour and violence as are other aggressive and antisocial behaviours. The implications of such a stance are that law enforcement, health and other professionals should not minimize the presence of animal abuse in their law enforcement, prevention, and treatment decisions.

  16. A Variational Approach to Perturbed Discrete Anisotropic Equations

    Directory of Open Access Journals (Sweden)

    Amjad Salari

    2016-01-01

    Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.

  17. The anisotropic mechanical behaviour of zircaloy-2

    International Nuclear Information System (INIS)

    Ballinger, R.; Pelloux, R.M.

    1980-01-01

    Zirconium alloys used in the LWR industry crystallize in the hexagonal crystal structure below approximately 1136 K and many of the fabrication steps are performed below this temperature. The hexagonal structure possesses a limited number of slip systems and normal deformation processes result in extensive twinning. The twinning process results in the development of a fabrication texture, the type and extent of which is a function of the strain path used in the fabrication process. The texture which develops is important for two reasons. First, the texture at a given point in the fabrication process will determine the ease with which the next strain increment may be taken. Second, the texture of the completed part will have a significant effect on its in service performance because properties such as yield strength, creep strength, and fatigue and stress corrosion cracking resistance are a strong function of texture. Currently there is little data available concerning the evolution of textures as a function of strain path during the fabrication process of Zircaloy. Consequently this experimental investigation was conducted to determine the effect of textures on the mechanical behaviour of Zircaloy-2 with a primary emphasis on the evolution of texture during plastic deformation. (author)

  18. About the identification of behaviour law parameters of clayey rocks; Sur l'identification des parametres des lois de comportement des roches argileuses

    Energy Technology Data Exchange (ETDEWEB)

    Lecampion, B

    2002-09-15

    This work aims at developing identification methods for clayey rock parameters. These methods are necessary for the interpretation of the numerous data obtained at the ANDRA's Meuse/Haute-Marne underground laboratory. Two main rheological aspects have been considered: the poro-elastic behaviour and the elasto-visco-plastic behaviour. The first part of the study focusses on the poro-elastic parameters. Chapter 2 recalls the direct problem and discusses some important points of the identification inverse problem. Chapter 3 deals with the formulation of gradient calculation techniques for the linear poro-elastic case. The resolution using the finite-element method is discussed. The direct and associated state differentiation methods are validated for a 2D numerical example using the finite-element code Cast3M. The identification of poro-elastic coefficients of the Meuse/Haute-Marne argillaceous rocks is discussed in detail in chapter 4. The use of approximate semi-explicit solutions of the direct problems allows to obtain a fast identification method. The second part deals with the identification of elasto-visco-plastic parameters. The visco-plastic behaviour of Meuse/Haute-Marne rocks is discussed in chapter 5 and a visco-plastic model with nonlinear isotropic cold-drawing is proposed which allows to reproduce the tests. The parameters of this behaviour law are identified on a 1D creep test in drained conditions. Thus, the delayed deformations come from the poro-elastic and visco-plastic behaviour of the rock. It is shown that both phenomena can be separated. All poro-elasto-visco-plastic parameters are identified and a semi-explicit solution of the creep test is used. Chapter 6 presents an identification method of the elasto-visco-plastic parameters for the general case. The identification is equivalent to the minimization of a cost functional. The gradient of the functional is calculated by direct differentiation. The direct differentiation method is developed

  19. Experimental Characterization and Cohesive Laws for Delamination of Off-Axis GFRP Laminates

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Bak, Brian Lau Verndal

    2015-01-01

    This work experimentally characterizes mixed mode delamination in glass fibre reinforced polymer laminates taking into account the influence of the off-axis angle between the lamina orientation and the crack growth direction on the fracture properties. Thus, providing a cohesive law that enables...... analysis of 3D models in which mixed mode crack growth within laminates having anisotropic fracture properties takes place....

  20. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities.

    Science.gov (United States)

    Aieta, Francesco; Genevet, Patrice; Yu, Nanfang; Kats, Mikhail A; Gaburro, Zeno; Capasso, Federico

    2012-03-14

    Experiments on ultrathin anisotropic arrays of subwavelength optical antennas display out-of-plane refraction. A powerful three-dimensional (3D) extension of the recently demonstrated generalized laws of refraction and reflection shows that the interface imparts a tangential wavevector to the incident light leading to anomalous beams, which in general are noncoplanar with the incident beam. The refracted beam direction can be controlled by varying the angle between the plane of incidence and the antenna array. © 2012 American Chemical Society

  1. Newton's law of cooling revisited

    International Nuclear Information System (INIS)

    Vollmer, M

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer from any object to its surrounding is not only due to conduction and convection but also due to radiation. The latter does not vary linearly with temperature difference, which leads to deviations from Newton's law. This paper presents a theoretical analysis of the cooling of objects with a small Biot number. It is shown that Newton's law of cooling, i.e. simple exponential behaviour, is mostly valid if temperature differences are below a certain threshold which depends on the experimental conditions. For any larger temperature differences appreciable deviations occur which need the complete nonlinear treatment. This is demonstrated by results of some laboratory experiments which use IR imaging to measure surface temperatures of solid cooling objects with temperature differences of up to 300 K.

  2. An anisotropic elastoplasticity model implemented in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.

  3. Anisotropic Bianchi Type-III Bulk Viscous Fluid Universe in Lyra Geometry

    Directory of Open Access Journals (Sweden)

    Priyanka Kumari

    2013-01-01

    Full Text Available An anisotropic Bianchi type-III cosmological model is investigated in the presence of a bulk viscous fluid within the framework of Lyra geometry with time-dependent displacement vector. It is shown that the field equations are solvable for any arbitrary function of a scale factor. To get the deterministic model of the universe, we have assumed that (i a simple power-law form of a scale factor and (ii the bulk viscosity coefficient are proportional to the energy density of the matter. The exact solutions of the Einstein’s field equations are obtained which represent an expanding, shearing, and decelerating model of the universe. Some physical and kinematical behaviors of the cosmological model are briefly discussed.

  4. General considerations on the enforcement (application of law

    Directory of Open Access Journals (Sweden)

    Berlingher Remus Daniel

    2016-06-01

    Full Text Available Law is a system of norms developed and/or recognized by the state as norms guiding human behaviour according to the values of that particular society, establishing rights and obligations, principles and definitions, structures and relationships of social organization and activity that must be obeyed and which, when necessary, are insured by the coercive force of the state. Thus, the development of this system of norms is not an end in itself, but is intended to regulate all social relations, guide human behaviours and achieve the aims of the law. The enforcement of law is the process of translating legal rules into practice, through which the subjects of law obey and execute legal norms, and state authorities apply them, depending on their competence. The enforcement of law depends on a number of factors that shape law, such as its natural framework of existence, the historical context and the ethnic and national particularities of that community’s development, the economic factor or framework, the framework and particularities of the political system, the cultural-ideological framework or factor, the international framework or factor, etc.

  5. The speed-curvature power law in Drosophila larval locomotion.

    Science.gov (United States)

    Zago, Myrka; Lacquaniti, Francesco; Gomez-Marin, Alex

    2016-10-01

    We report the discovery that the locomotor trajectories of Drosophila larvae follow the power-law relationship between speed and curvature previously found in the movements of human and non-human primates. Using high-resolution behavioural tracking in controlled but naturalistic sensory environments, we tested the law in maggots tracing different trajectory types, from reaching-like movements to scribbles. For most but not all flies, we found that the law holds robustly, with an exponent close to three-quarters rather than to the usual two-thirds found in almost all human situations, suggesting dynamic effects adding on purely kinematic constraints. There are different hypotheses for the origin of the law in primates, one invoking cortical computations, another viscoelastic muscle properties coupled with central pattern generators. Our findings are consistent with the latter view and demonstrate that the law is possible in animals with nervous systems orders of magnitude simpler than in primates. Scaling laws might exist because natural selection favours processes that remain behaviourally efficient across a wide range of neural and body architectures in distantly related species. © 2016 The Authors.

  6. Theoretical and numerical study of highly anisotropic turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.

    2004-01-01

    We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical

  7. Numerical simulation of anisotropic polymeric foams

    Directory of Open Access Journals (Sweden)

    Volnei Tita

    Full Text Available This paper shows in detail the modelling of anisotropic polymeric foam under compression and tension loadings, including discussions on isotropic material models and the entire procedure to calibrate the parameters involved. First, specimens of poly(vinyl chloride (PVC foam were investigated through experimental analyses in order to understand the mechanical behavior of this anisotropic material. Then, isotropic material models available in the commercial software AbaqusTM were investigated in order to verify their ability to model anisotropic foams and how the parameters involved can influence the results. Due to anisotropy, it is possible to obtain different values for the same parameter in the calibration process. The obtained set of parameters are used to calibrate the model according to the application of the structure. The models investigated showed minor and major limitations to simulate the mechanical behavior of anisotropic PVC foams under compression, tension and multi-axial loadings. Results show that the calibration process and the choice of the material model applied to the polymeric foam can provide good quantitative results and save project time. Results also indicate what kind and order of error one will get if certain choices are made throughout the modelling process. Finally, even though the developed calibration procedure is applied to specific PVC foam, it still outlines a very broad drill to analyze other anisotropic cellular materials.

  8. Astrophysical gyrokinetics: turbulence in pressure-anisotropic plasmas at ion scales and beyond

    Science.gov (United States)

    Kunz, M. W.; Abel, I. G.; Klein, K. G.

    2018-04-01

    We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. The turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion-Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (J. Plasma Phys., vol. 81, 2015, 325810501). At scales at and below the ion-Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalization of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvénic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfvén waves transition into kinetic Alfvén waves. Secondly, we derive and discuss a very general gyrokinetic free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfvén waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy, even within the bounds imposed on it by firehose and mirror instabilities, can cause order-of-magnitude variations in the ion-to-electron heating ratio due to the dissipation of Alfvénic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects turbulent fluctuation spectra, the differential heating of particle species and the ratio of parallel

  9. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang; Schuster, Gerard T.

    2016-01-01

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially

  10. The atomic world spooky? It ain't necessarily so! emergent quantum mechanics, how the classical laws of nature can conspire to cause quantum-like behaviour

    CERN Document Server

    van Holten, Theo

    2017-01-01

    The present book takes the discovery that quantum-like behaviour is not solely reserved to atomic particles one step further. If electrons are modelled as vibrating droplets instead of the usually assumed point objects, and if the classical laws of nature are applied, then exactly the same behaviour as in quantum theory is found, quantitatively correct! The world of atoms is strange and quantum mechanics, the theory of this world, is almost magic. Or is it? Tiny droplets of oil bouncing round on a fluid surface can also mimic the world of quantum mechanics. For the layman - for whom the main part of this book is written - this is good news. If the everyday laws of nature can conspire to show up quantum-like phenomena, there is hope to form mental pictures how the atomic world works. The book is almost formula-free, and explains everything by using many sketches and diagrams. The mathematical derivations underlying the main text are kept separate in a -peer reviewed - appendix. The author, a retired professor ...

  11. Improving privacy protection in the area of behavioural targeting

    NARCIS (Netherlands)

    Zuiderveen Borgesius, F.J.

    2014-01-01

    This PhD thesis discusses how European law could improve privacy protection in the area of behavioural targeting. Behavioural targeting, also referred to as online profiling, involves monitoring people’s online behaviour, and using the collected information to show people individually targeted

  12. Initial behavior of a quantized scalar field the associated pair-creation in several anisotropic universes

    International Nuclear Information System (INIS)

    Nariai, Hidekazu

    1981-01-01

    As a sequel to previous works on the definition of a positive frequency part of a quantized scalar field near an initial stage of several Robertson-Walker universes with flat, open or closed 3-space and the associated pair-creation of those particles, an attempt is made to seek for the same concept in several Bianchi-type I anisotropic universes. It is shown that, if the positive frequency part is introduced, the pair-creation of scalar particles and their spectral law are uniquely determined, as in the case of isotropic universes. (author)

  13. Hoarding disorder and the legal system: A comparative analysis of South African and Dutch law.

    Science.gov (United States)

    Cramer, Richard; Vols, Michel

    Hoarding is an internationally recognised disability. Those who suffer from hoarding behaviour can be comfortably brought within the definition of disability found in the Convention on the Rights of Persons with Disabilities and should be provided with "reasonable accommodation" where doing so does not place an unjustified burden on others. However, hoarding also poses a threat to public health, and hoarders' behaviour may infringe on the rights of their neighbours and landlords. Thus, through their behaviour, hoarders may ultimately come into conflict with various areas of law, including neighbour law, housing law as well as administrative law. This article examines how hoarding may be addressed by the law in both South Africa and the Netherlands. It seeks to answer to what extent hoarders are provided with "reasonable accommodation" when their behaviour brings them into conflict of the law in these two jurisdictions. It also takes cognisance of the need to balance the provision of "reasonable accommodation" with the rights of neighbours and landlords. Finally, it seeks to assess which of the two jurisdictions provides the most balanced approach to handling hoarding, in light of the need for therapeutic jurisprudence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.

    2011-01-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  15. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  16. Band gaps in periodically magnetized homogeneous anisotropic media

    Science.gov (United States)

    Merzlikin, A. M.; Levy, M.; Vinogradov, A. P.; Wu, Z.; Jalali, A. A.

    2010-11-01

    In [A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, A. B. Granovsky, Physica B 394 (2007) 277] it is shown that in anisotropic magnetophotonic crystal made of anisotropic dielectric layers and isotropic magneto-optical layers the magnetization leads to formation of additional band gaps (BG) inside the Brillouin zones. Due to the weakness of the magneto-optical effects the width of these BG is much smaller than that of usual BG forming on the boundaries of Brillouin zones. In the present communication we show that though the anisotropy suppresses magneto-optical effects. An anisotropic magnetophotonic crystal made of anisotropic dielectric layers and anisotropic magneto-optical; the width of additional BG may be much greater than the width of the usual Brillouin BG. Anisotropy tends to suppress Brillouin zone boundary band gap formation because the anisotropy suppresses magneto-optical properties, while degenerate band gap formation occurs around points of effective isotropy and is not suppressed.

  17. Description of scattering material behaviour and damage in inelastic materials; Beschreibung von streuendem Materialverhalten und von Schaedigung bei inelastischen Werkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Pensky, H.M.H.

    2000-07-01

    For realistic numerical simulations of the stress-strain behaviour of structures, models are necessary which describe elastic-inelastic and scattering material behaviour. The developed models simulate elastic, viscoplastic and anisotropic damage material phenomena. An approach is proposed for covering stochastic material beahviour by correspondingly distributed parameters of the deterministic material model. Numerical simulations of biaxial material tests and structural tests demonstrate the range of applicability. (orig.) [German] Die realitaetsnahe numerische Simulation des Spannungs-Verformungsverhaltens von Bauteilen erfordert Modelle zur Beschreibung inelastischen und streuenden Materialverhaltens. Die hier entwickelten Modelle beschreiben elastische, viskoplastische und anisotrope Schaedigungsphaenomene des Materialverhaltens. Desweiteren wird ein Konzept vorgestellt, mit dem streuendes Materialverhalten mit streuenden Materialparametersaetzen deterministischer Stoffmodelle beschreibbar ist. Numerische Simulationen von Werkstoff- und Bauteilversuchen veranschaulichen den Anwendungsbereich der Modelle. (orig.)

  18. A Monte-Carlo simulation of the behaviour of electron swarms in hydrogen using an anisotropic scattering model

    International Nuclear Information System (INIS)

    Blevin, H.A.; Fletcher, J.; Hunter, S.R.

    1978-05-01

    In a recent paper, a Monte-Carlo simulation of electron swarms in hydrogen using an isotropic scattering model was reported. In this previous work discrepancies between the predicted and measured electron transport parameters were observed. In this paper a far more realistic anisotropic scattering model is used. Good agreement between predicted and experimental data is observed and the simulation code has been used to calculate various parameters which are not directly measurable

  19. Magnetostatics of anisotropic superconducting ellipsoid

    International Nuclear Information System (INIS)

    Saif, A.G.

    1987-09-01

    The magnetization and the magnetic field distribution inside (outside) an anisotropic type II superconducting ellipsoid, with filamentary structure, is formulated. We have shown that the magnetic field in this case is different from that of the general anisotropic one. The nucleations of the flux lines for specimens with large demagnetization factors are theoretically studied. We have shown that the nucleations of the flux lines, for specimens with large demagnetization factor, appears at a field larger than that of ellipsoidal shape. (author). 15 refs

  20. Competition Law and the Bounded Rationality of Firms

    OpenAIRE

    Bhattacharya, Shilpi

    2016-01-01

    Firm rationality plays a role in several aspects of competition law. Yet, the conception of the firm as a rational, profit maximizing entity has been disputed in different disciplines. This literature shows that neoclassical economic assumptions on which competition law is based can fall short of explaining the full range of observed firm behaviour. Accordingly, an alternative conception of the firm as boundedly rational can impact the understanding of firm conduct in competition law. Be...

  1. The Jumping Ring and Lenz's Law--An Analysis

    Science.gov (United States)

    Bostock-Smith, J. M.

    2008-01-01

    Lenz's law is sometimes invoked to explain the behaviour of the jumping, or levitating, ring. This is shown to be incomplete, and an alternative explanation using Faraday's laws and circuit analysis is offered. This leads to the choice of optimum material and dimensions for the ring. (Contains 1 table and 4 figures.)

  2. Liquid crystal phase behaviour of attractive disc-like particles.

    Science.gov (United States)

    Wu, Liang; Jackson, George; Müller, Erich A

    2013-08-08

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids.

  3. Jet quenching in a strongly coupled anisotropic plasma

    Science.gov (United States)

    Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego

    2012-08-01

    The jet quenching parameter of an anisotropic plasma depends on the relative orientation between the anisotropic direction, the direction of motion of the parton, and the direction along which the momentum broadening is measured. We calculate the jet quenching parameter of an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We present the results for arbitrary orientations and arbitrary values of the anisotropy. The anisotropic value can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. We compare our results to analogous calculations for the real-world quark-gluon plasma and find agreement in some cases and disagreement in others.

  4. A Distribution Family Bridging the Gaussian and the Laplace Laws, Gram–Charlier Expansions, Kurtosis Behaviour, and Entropy Features

    Directory of Open Access Journals (Sweden)

    Mario Faliva

    2017-03-01

    Full Text Available The paper devises a family of leptokurtic bell-shaped distributions which is based on the hyperbolic secant raised to a positive power, and bridges the Laplace and Gaussian laws on asymptotic arguments. Moment and cumulant generating functions are then derived and represented in terms of polygamma functions. The behaviour of shape parameters, namely kurtosis and entropy, is investigated. In addition, Gram–Charlier-type (GCT expansions, based on the aforementioned distributions and their orthogonal polynomials, are specified, and an operational criterion is provided to meet modelling requirements in a possibly severe kurtosis and skewness environment. The role played by entropy within the kurtosis ranges of GCT expansions is also examined.

  5. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  6. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  7. Jets in a strongly coupled anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa)

    2018-01-15

    In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.)

  8. Impacts of Canada's minimum age for tobacco sales (MATS) laws on youth smoking behaviour, 2000-2014.

    Science.gov (United States)

    Callaghan, Russell Clarence; Sanches, Marcos; Gatley, Jodi; Cunningham, James K; Chaiton, Michael Oliver; Schwartz, Robert; Bondy, Susan; Benny, Claire

    2018-01-13

    Recently, the US Institute of Medicine has proposed that raising the minimum age for tobacco purchasing/sales to 21 years would likely lead to reductions in smoking behavior among young people. Surprisingly few studies, however, have assessed the potential impacts of minimum-age tobacco restrictions on youth smoking. To estimate the impacts of Canadian minimum age for tobacco sales (MATS) laws on youth smoking behaviour. A regression-discontinuity design, using seven merged cycles of the Canadian Community Health Survey, 2000-2014. Survey respondents aged 14-22 years (n=98 320). Current Canadian MATS laws are 18 years in Alberta, Saskatchewan, Manitoba, Quebec, the Yukon and Northwest Territories, and 19 years of age in the rest of the country. Current, occasional and daily smoking status; smoking frequency and intensity; and average monthly cigarette consumption. In comparison to age groups slightly younger than the MATS, those just older had significant and abrupt increases immediately after the MATS in the prevalence of current smokers (absolute increase: 2.71%; 95% CI 0.70% to 4.80%; P=0.009) and daily smokers (absolute increase: 2.43%; 95% CI 0.74% to 4.12%; P=0.005). Average past-month cigarette consumption within age groups increased immediately following the MATS by 18% (95% CI 3% to 39%; P=0.02). There was no evidence of significant increases in smoking intensity for daily or occasional smokers after release from MATS restrictions. The study provides relevant evidence supporting the effectiveness of Canadian MATS laws for limiting smoking among tobacco-restricted youth. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Generation and evolution of anisotropic turbulence and related energy transfer in drifting proton-alpha plasmas

    Science.gov (United States)

    Maneva, Y. G.; Poedts, S.

    2018-05-01

    The power spectra of magnetic field fluctuations in the solar wind typically follow a power-law dependence with respect to the observed frequencies and wave-numbers. The background magnetic field often influences the plasma properties, setting a preferential direction for plasma heating and acceleration. At the same time the evolution of the solar-wind turbulence at the ion and electron scales is influenced by the plasma properties through local micro-instabilities and wave-particle interactions. The solar-wind-plasma temperature and the solar-wind turbulence at sub- and sup-ion scales simultaneously show anisotropic features, with different components and fluctuation power in parallel with and perpendicular to the orientation of the background magnetic field. The ratio between the power of the magnetic field fluctuations in parallel and perpendicular direction at the ion scales may vary with the heliospheric distance and depends on various parameters, including the local wave properties and nonthermal plasma features, such as temperature anisotropies and relative drift speeds. In this work we have performed two-and-a-half-dimensional hybrid simulations to study the generation and evolution of anisotropic turbulence in a drifting multi-ion species plasma. We investigate the evolution of the turbulent spectral slopes along and across the background magnetic field for the cases of initially isotropic and anisotropic turbulence. Finally, we show the effect of the various turbulent spectra for the local ion heating in the solar wind.

  10. Conjecture on the critical frontier of the fully anisotropic homogeneous quenched bond-mixed potts ferromagnet in square lattice

    International Nuclear Information System (INIS)

    Tsallis, C.

    1980-01-01

    It is conjectured that a logarithmic provides a very accurate approximation of the yet unknown critical frontier of a fully anisotropic homogeneous quenched bond-mixed q-state Potts ferromagnet in square lattice, where the random coupling constant J is distributed according to the laws P(J) and P'(J) for 'horizontal' and 'vertical' bonds respectively. Such an equation contains as particular cases a great number of exact results as well as a few recent conjectures (which are definitively only approximate). (Author) [pt

  11. Mechanical Behaviour of Materials Volume 1 Micro- and Macroscopic Constitutive Behaviour

    CERN Document Server

    François, Dominique; Zaoui, André

    2012-01-01

    Advances in technology are demanding ever-increasing mastery over the materials being used: the challenge is to gain a better understanding of their behaviour, and more particularly of the relations between their microstructure and their macroscopic properties.   This work, of which this is the first volume, aims to provide the means by which this challenge may be met. Starting from the mechanics of deformation, it develops the laws governing macroscopic behaviour – expressed as the constitutive equations – always taking account of the physical phenomena which underlie rheological behaviour. The most recent developments are presented, in particular those concerning heterogeneous materials such as metallic alloys, polymers and composites. Each chapter is devoted to one of the major classes of material behaviour.   As the subtitles indicate, Volume 1 deals with micro- and macroscopic constitutive behaviour and Volume 2 with damage and fracture mechanics. A third volume will be devoted to exercises and the...

  12. Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions

    Science.gov (United States)

    Jaiswal, Amaresh; Bhaduri, Partha Pratim

    2018-04-01

    We study the effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions. We use the Glauber model to generate initial conditions and ignore hydrodynamic expansion in the transverse direction. We employ the Beer-Lambert law to allow for the transmittance of produced hadrons in the medium and calculate the anisotropy generated due to the suppression of particles traversing through the medium. To separate non-flow contribution due to surface bias effects, we ignore hydrodynamic expansion in the transverse direction and consider purely longitudinal boost-invariant expansion. We calculate the transverse momentum dependence of elliptic flow, generated from an anisotropic escape mechanism due to surface bias effects, for various centralities in √{sN N}=200 GeV Au +Au collisions at the Relativistic Heavy Ion Collider and √{sN N}=2.76 TeV Pb +Pb collisions at the Large Hadron Collider. We find that the surface bias effects make a sizable contribution to the total elliptic flow observed in heavy-ion collisions, indicating that the viscosity of the QCD matter extracted from hydrodynamic simulations may be underestimated.

  13. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton

    2012-01-01

    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  14. Waves and discontinuities in relativistic and anisotropic magnetohydrodynamics

    International Nuclear Information System (INIS)

    Cissoko, Mahdy

    1975-01-01

    This work is devoted to the relativistic study of a non-dissipative anisotropic fluid diagram of infinite conductivity. Such a fluid diagram is constructed in part one. Starting from a macroscopic viewpoint a hydrothermodynamic study of the fluid diagram considered is carried out and the fundamental differential system of anisotropic magnetohydrodynamics is deduced. Part two concerns the study of characteristic varieties and propagation of waves for a polytropic anisotropic fluid diagram. Three types of characteristic varieties are revealed: entropy waves (or material waves), magnetosonic waves and Alfven waves. The propagation rates of Alfven and magnetosonic waves are situated with respect to each other. The study of wave cones showed up on the one hand certain special features of wave propagation in anisotropic magnetohydrodynamics and on the other hand the hyperbolic nature of differential operators associated with the various waves [fr

  15. Anisotropic interpolation theorems of Musielak-Orlicz type

    Directory of Open Access Journals (Sweden)

    Jinxia Li

    2016-10-01

    Full Text Available Abstract Anisotropy is a common attribute of Nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations { A k : k ∈ Z } $\\{A^{k}: k\\in\\mathbb{Z}\\}$ , where A is a real n × n $n\\times n$ matrix with all its eigenvalues λ satisfy | λ | > 1 $|\\lambda|>1$ . Let φ : R n × [ 0 , ∞ → [ 0 , ∞ $\\varphi: \\mathbb{R}^{n}\\times[0, \\infty\\to[0,\\infty$ be an anisotropic Musielak-Orlicz function such that φ ( x , ⋅ $\\varphi(x,\\cdot$ is an Orlicz function and φ ( ⋅ , t $\\varphi(\\cdot,t$ is a Muckenhoupt A ∞ ( A $\\mathbb {A}_{\\infty}(A$ weight. The aim of this article is to obtain two anisotropic interpolation theorems of Musielak-Orlicz type, which are weighted anisotropic extension of Marcinkiewicz interpolation theorems. The above results are new even for the isotropic weighted settings.

  16. Anisotropic conductivity imaging with MREIT using equipotential projection algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Degirmenci, Evren [Department of Electrical and Electronics Engineering, Mersin University, Mersin (Turkey); Eyueboglu, B Murat [Department of Electrical and Electronics Engineering, Middle East Technical University, 06531, Ankara (Turkey)

    2007-12-21

    Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.

  17. Emerging anisotropic compact stars in f(G,T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M.F.; Ahmad, Mushtaq [National University of Computer and Emerging Sciences, Lahore (Pakistan)

    2017-10-15

    The possible emergence of compact stars has been investigated in the recently introduced modified Gauss-Bonnet f(G,T) gravity, where G is the Gauss-Bonnet term and T is the trace of the energy-momentum tensor (Sharif and Ikram, Eur Phys J C 76:640, 2016). Specifically, for this modified f(G,T) theory, the analytic solutions of Krori and Barua have been applied to an anisotropic matter distribution. To determine the unknown constants appearing in the Krori and Barua metric, the well-known three models of the compact stars, namely 4U1820-30, Her X-I, and SAX J 1808.4-3658 have been used. The analysis of the physical behaviour of the compact stars has been presented and the physical features like energy density and pressure, energy conditions, static equilibrium, stability, measure of anisotropy, and regularity of the compact stars, have been discussed. (orig.)

  18. Anisotropic Bulk Viscous String Cosmological Model in a Scalar-Tensor Theory of Gravitation

    Directory of Open Access Journals (Sweden)

    D. R. K. Reddy

    2013-01-01

    Full Text Available Spatially homogeneous, anisotropic, and tilted Bianchi type-VI0 model is investigated in a new scalar-tensor theory of gravitation proposed by Saez and Ballester (1986 when the source for energy momentum tensor is a bulk viscous fluid containing one-dimensional cosmic strings. Exact solution of the highly nonlinear field equations is obtained using the following plausible physical conditions: (i scalar expansion of the space-time which is proportional to the shear scalar, (ii the barotropic equations of state for pressure and energy density, and (iii a special law of variation for Hubble’s parameter proposed by Berman (1983. Some physical and kinematical properties of the model are also discussed.

  19. Stability conditions for the Bianchi type II anisotropically inflating universes

    International Nuclear Information System (INIS)

    Kao, W.F.; Lin, Ing-Chen

    2009-01-01

    Stability conditions for a class of anisotropically inflating solutions in the Bianchi type II background space are shown explicitly in this paper. These inflating solutions were known to break the cosmic no-hair theorem such that they do not approach the de Sitter universe at large times. It can be shown that unstable modes of the anisotropic perturbations always exist for this class of expanding solutions. As a result, we show that these set of anisotropically expanding solutions are unstable against anisotropic perturbations in the Bianchi type II space

  20. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  1. Studies of spherical tori, stellarators and anisotropic pressure with M3D

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.; Hudson, S.; Tang, X.-Z.; Strauss, H.R.; Stutman, D.

    2001-01-01

    The M3D (Multi-level 3D) project simulates plasmas using multiple levels of physics, geometry, and grid models in one code package. The M3D code has been extended to fundamentally nonaxisymmetric and small aspect ratio, R/a>or∼1, configurations. Applications include the nonlinear stability of the NSTX spherical torus and the spherical pinch, and the relaxation of stellarator equilibria. The fluid-level physics model has been extended to evolve the anisotropic pressures p jparallel and p jperpendicular for the ion and electron species. Results show that when the density evolves, other terms in addition to the neoclassical collisional parallel viscous force, such as B· ∇p e in the Ohm's law, can be strongly destabilizing for nonlinear magnetic islands. (author)

  2. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    Science.gov (United States)

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-05-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  3. A Morphing framework to couple non-local and local anisotropic continua

    KAUST Repository

    Azdoud, Yan

    2013-05-01

    In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.

  4. Elastic properties of spherically anisotropic piezoelectric composites

    International Nuclear Information System (INIS)

    En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon

    2010-01-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)

  5. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo

    2017-11-02

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  6. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo; Zhao, Jiajun; Mei, Jun; Wu, Ying

    2017-01-01

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  7. Ecofriendly Synthesis of Anisotropic Gold Nanoparticles: A Potential Candidate of SERS Studies

    Directory of Open Access Journals (Sweden)

    Ujjwala Gaware

    2012-01-01

    Full Text Available Ecofriendly synthesis of nanoparticles has been inspiring to nanotechnologists especially for biomedical applications. Moreover, anisotropic particle synthesis is an attractive option due to decreased symmetry of such particles often leads to new and unusual chemical and physical behaviour. This paper reports a single-step room-temperature synthesis of gold nanotriangles using a cheap bioresource of reducing and stabilizing agent Piper betle leaf extract. On treating aqueous chloroauric acid solution with Piper betle leaf extract, after 12 hr, complete reduction of the chloroaurate ions was observed leading to the formation of flat and single crystalline gold nanotriangles. These gold nanotriangles can be exploited in photonics, optical coating, optoelectronics, magnetism, catalysis, chemical sensing, and so forth, and are a potential candidate of SERS studies.

  8. Scaling Law for Photon Transmission through Optically Turbid Slabs Based on Random Walk Theory

    Directory of Open Access Journals (Sweden)

    Xuesong Li

    2012-03-01

    Full Text Available Past work has demonstrated the value of a random walk theory (RWT to solve multiple-scattering problems arising in numerous contexts. This paper’s goal is to investigate the application range of the RWT using Monte Carlo simulations and extending it to anisotropic media using scaling laws. Meanwhile, this paper also reiterates rules for converting RWT formulas to real physical dimensions, and corrects some errors which appear in an earlier publication. The RWT theory, validated by the Monte Carlo simulations and combined with the scaling law, is expected to be useful to study multiple scattering and to greatly reduce the computation cost.

  9. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  10. Corrigendum to 'On the influence of microstructure on the fracture behaviour of hot extruded ferritic ODS steels' [J. Nucl. Mater. 497 (2017) 60-75

    Science.gov (United States)

    Das, A.; Viehrig, H. W.; Altstadt, E.; Heintze, C.; Hoffmann, J.

    2018-02-01

    ODS steels are known to show inferior fracture properties as compared to ferritic martensitic non-ODS steels. Hot extruded 13Cr ODS steel however, showed excellent fracture toughness at a temperature range from room temperature to 400 °C. In this work, the factors which resulted in superior and anisotropic fracture behaviour were investigated by comparing different orientations of two hot extruded materials using scanning electron, electron backscatter and transmission electron microscopy. Fracture behaviour of the two materials was compared using unloading compliance fracture toughness tests. Anisotropic fracture toughness was predominantly influenced by grain morphology. Superior fracture toughness in 13Cr ODS-KIT was predominantly influenced by factors such as smaller void inducing particle size and higher sub-micron particle-matrix interfacial strength.

  11. Plane-wave diffraction by periodic structures with artificial anisotropic dielectrics

    International Nuclear Information System (INIS)

    Kazerooni, Azadeh Semsar; Shahabadi, Mahmoud

    2010-01-01

    Periodic structures with artificial anisotropic dielectrics are studied. The artificial anisotropic dielectric material in this work is made of two alternating isotropic dielectric layers. By a proper choice of the dielectric constant of the layers, we can realize a uniaxial anisotropic medium with controllable anisotropy. The artificial anisotropic dielectric is then used in periodic structures. For these structures, the optical axis of the artificial dielectric is assumed to be parallel or perpendicular to the period of the structure. Diffraction of plane waves by these structures is analyzed by a fully vectorial rigorous matrix method based on a generalized transmission line (TL) formulation. The propagation constants and field distributions are computed and diffraction properties of such structures are studied to show that, by a proper choice of structural parameters, these periodic structures with artificial anisotropic dielectrics can be used as polarizers or polarizing mirrors

  12. Emergence of global scaling behaviour in the coupled Earth-atmosphere interaction

    OpenAIRE

    Fallah, Bijan; Saberi, Abbas Ali; Sodoudi, Sahar

    2016-01-01

    Scale invariance property in the global geometry of Earth may lead to a coupled interactive behaviour between various components of the climate system. One of the most interesting correlations exists between spatial statistics of the global topography and the temperature on Earth. Here we show that the power-law behaviour observed in the Earth topography via different approaches, resembles a scaling law in the global spatial distribution of independent atmospheric parameters. We report on obs...

  13. Noether symmetry analysis of anisotropic universe in modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M.F.; Kanwal, Fiza [National University of Computer and Emerging Sciences, Department of Sciences and Humanities, Lahore (Pakistan)

    2017-05-15

    In this paper we study the anisotropic universe using Noether symmetries in modified gravity. In particular, we choose a locally rotationally symmetric Bianchi type-I universe for the analysis in f(R, G) gravity, where R is the Ricci scalar and G is the Gauss-Bonnet invariant. Firstly, a model f(R, G) = f{sub 0}R{sup l} + f{sub 1}G{sup n} is proposed and the corresponding Noether symmetries are investigated. We have also recovered the Noether symmetries for f(R) and f(G) theories of gravity. Secondly, some important cosmological solutions are reconstructed. Exponential and power-law solutions are reported for a well-known f(R, G) model, i.e., f(R, G) = f{sub 0}R{sup n}G{sup 1-n}. Especially, Kasner's solution is recovered and it is anticipated that the familiar de Sitter spacetime giving ΛCDM cosmology may be reconstructed for some suitable value of n. (orig.)

  14. Anisotropic resonator analysis using the Fourier-Bessel mode solver

    Science.gov (United States)

    Gauthier, Robert C.

    2018-03-01

    A numerical mode solver for optical structures that conform to cylindrical symmetry using Faraday's and Ampere's laws as starting expressions is developed when electric or magnetic anisotropy is present. The technique builds on the existing Fourier-Bessel mode solver which allows resonator states to be computed exploiting the symmetry properties of the resonator and states to reduce the matrix system. The introduction of anisotropy into the theoretical frame work facilitates the inclusion of PML borders permitting the computation of open ended structures and a better estimation of the resonator state quality factor. Matrix populating expressions are provided that can accommodate any material anisotropy with arbitrary orientation in the computation domain. Several example of electrical anisotropic computations are provided for rationally symmetric structures such as standard optical fibers, axial Bragg-ring fibers and bottle resonators. The anisotropy present in the materials introduces off diagonal matrix elements in the permittivity tensor when expressed in cylindrical coordinates. The effects of the anisotropy of computed states are presented and discussed.

  15. Explaining the power-law distribution of human mobility through transportation modality decomposition

    Science.gov (United States)

    Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu

    2015-03-01

    Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.

  16. Anisotropic mobility and carrier dynamics in the β-type BEDT-TTF salts as studied by inter-layer transverse magnetoresistance

    Directory of Open Access Journals (Sweden)

    Shigeharu Sugawara and Masafumi Tamura

    2013-01-01

    Full Text Available A new method to estimate an in-plane conduction anisotropy in a quasi-two-dimensional (q2D layered conductor by measuring the inter-layer transverse magnetoresistance is proposed. We applied this method to layered organic conductors β-(BEDT-TTF2X (BEDT-TTF = bis(ethylenedithiotetrathiafulvalene, C10H8S8; X = IBr2, I2Br by applying magnetic field rotating within the basal plane at 4.2 K. We found the anisotropic behaviour of carrier mobility μ. From this, anomalous distribution of carrier lifetime τ on the Fermi surface is derived, by the use of Fermi surface data reported for the materials. Calculations of the non-uniform susceptibility χ0(q suggest that carrier scattering is enhanced at specific k-points related to partial nesting of the Fermi surface. The present method is thus demonstrated to be an efficient experimental tool to elucidate anisotropic carrier dynamics in q2D conductors.

  17. Anisotropic Intervalley Plasmon Excitations in Graphene

    International Nuclear Information System (INIS)

    Chen Jian; Xu Huai-Zhe

    2015-01-01

    We investigate theoretically the intervalley plasmon excitations (IPEs) in graphene monolayer within the random-phase approximation. We derive an analytical expression of the real part of the dielectric function. We find a low-energy plasmon mode with a linear anisotropic dispersion which depends on the Fermi energy and the dielectric constant of substrate. The IPEs show strongly anisotropic behavior, which becomes significant around the zigzag crystallographic direction. More interestingly, the group velocity of IPE varies from negative to positive, and vanishes at special energy. (paper)

  18. Modelling of CMUTs with Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt

    2012-01-01

    Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...... calculations match perfectly with FEM while an isotropic approach causes up to 10% deviations in deflection profile. Furthermore, we show how commonly used analytic modelling methods such as static calculations of the pull-in voltage and dynamic modelling through an equivalent circuit representation can...

  19. Phase space analysis for anisotropic universe with nonlinear bulk viscosity

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2018-06-01

    In this paper, we discuss phase space analysis of locally rotationally symmetric Bianchi type I universe model by taking a noninteracting mixture of dust like and viscous radiation like fluid whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. An autonomous system of equations is established by defining normalized dimensionless variables. In order to investigate stability of the system, we evaluate corresponding critical points for different values of the parameters. We also compute power-law scale factor whose behavior indicates different phases of the universe model. It is found that our analysis does not provide a complete immune from fine-tuning because the exponentially expanding solution occurs only for a particular range of parameters. We conclude that stable solutions exist in the presence of nonlinear model for bulk viscosity with different choices of the constant parameter m for anisotropic universe.

  20. On Pokrovskii's anisotropic gap equations in superconductivity theory

    Science.gov (United States)

    Yang, Yisong

    2003-11-01

    An existence and uniqueness theorem for Pokrovskii's zero-temperature anisotropic gap equation is proved. Furthermore, it is shown that Pokrovskii's finite-temperature equation is inconsistent with the Bardeen-Cooper-Schrieffer (BCS) theory. A reformulation of the anisotropic gap equation is presented along the line of Pokrovskii and it is shown that the new equation is consistent with the BCS theory for the whole temperature range. As an application, the Markowitz-Kadanoff model for anisotropic superconductivity is considered and a rigorous proof of the half-integer-exponent isotope effect is obtained. Furthermore, a sharp estimate of the gap solution near the transition temperature is established.

  1. Effect of water on the mechanical behaviour of shales

    International Nuclear Information System (INIS)

    Wakim, J.; Hadj-Hassen, F.; Tijani, M.; Noirel, J.F.

    2005-01-01

    This paper aims to presenting the results of a research conducted in order to study the effect of water on the mechanical behaviour of the Lorraine Basin Colliery shale. The work performed can be divided into four main parts. The first part is dedicated to classical tests and it includes geological and mineralogical analysis as well as mechanical laboratory tests. The second part is devoted to the phenomenon of shale swelling under water effect. New procedures and equipment of testing were set up in order to characterise this swelling behaviour and to determine its model parameters. The tests performed in this second part are allowed to develop a phenomenological model which describes the elasto-visco-plastic behaviour of shales before and after saturation. The last phase of the work is dedicated to implement the new model in the finite element code VIPLEF in order to apply in tunnel excavated in swelling anisotropic rocks. (authors)

  2. Behaviour of turbulence models near a turbulent/non-turbulent interface revisited

    International Nuclear Information System (INIS)

    Ferrey, P.; Aupoix, B.

    2006-01-01

    The behaviour of turbulence models near a turbulent/non-turbulent interface is investigated. The analysis holds as well for two-equation as for Reynolds stress turbulence models using Daly and Harlow diffusion model. The behaviour near the interface is shown not to be a power law, as usually considered, but a more complex parametric solution. Why previous works seemed to numerically confirm the power law solution is explained. Constraints for turbulence modelling, i.e., for ensuring that models have a good behaviour near a turbulent/non-turbulent interface so that the solution is not sensitive to small turbulence levels imposed in the irrotational flow, are drawn

  3. Data-driven imaging in anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Volker, Arno; Hunter, Alan [TNO Stieltjes weg 1, 2600 AD, Delft (Netherlands)

    2012-05-17

    Anisotropic materials are being used increasingly in high performance industrial applications, particularly in the aeronautical and nuclear industries. Some important examples of these materials are composites, single-crystal and heavy-grained metals. Ultrasonic array imaging in these materials requires exact knowledge of the anisotropic material properties. Without this information, the images can be adversely affected, causing a reduction in defect detection and characterization performance. The imaging operation can be formulated in two consecutive and reciprocal focusing steps, i.e., focusing the sources and then focusing the receivers. Applying just one of these focusing steps yields an interesting intermediate domain. The resulting common focus point gather (CFP-gather) can be interpreted to determine the propagation operator. After focusing the sources, the observed travel-time in the CFP-gather describes the propagation from the focus point to the receivers. If the correct propagation operator is used, the measured travel-times should be the same as the time-reversed focusing operator due to reciprocity. This makes it possible to iteratively update the focusing operator using the data only and allows the material to be imaged without explicit knowledge of the anisotropic material parameters. Furthermore, the determined propagation operator can also be used to invert for the anisotropic medium parameters. This paper details the proposed technique and demonstrates its use on simulated array data from a specimen of Inconel single-crystal alloy commonly used in the aeronautical and nuclear industries.

  4. An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials

    Science.gov (United States)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-03-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill's yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic-plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic-plastic constitutive model is the introduction of anisotropic effect in the Mie-Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie-Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \\varvec{ψ} tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic-plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and {895 ms}^{-1} impact velocities is performed. A good agreement is obtained in each test.

  5. Anisotropic magnetoresistance and piezoelectric effect in GaAs Hall samples

    Science.gov (United States)

    Ciftja, Orion

    2017-02-01

    Application of a strong magnetic field perpendicular to a two-dimensional electron system leads to a variety of quantum phases ranging from incompressible quantum Hall liquid to Wigner solid, charge density wave, and exotic non-Abelian states. A few quantum phases seen in past experiments on GaAs Hall samples of electrons show pronounced anisotropic magnetoresistance values at certain weak magnetic fields. We argue that this might be due to the piezoelectric effect that is inherent in a semiconductor host such as GaAs. Such an effect has the potential to create a sufficient in-plane internal strain that will be felt by electrons and will determine the direction of high and low resistance. When Wigner solid, charge density wave, and isotropic liquid phases are very close in energy, the overall stability of the system is very sensitive to local order and, thus, can be strongly influenced even by a weak perturbation such as the piezoelectric-induced effective electron-electron interaction, which is anisotropic. In this work, we argue that an anisotropic interaction potential may stabilize anisotropic liquid phases of electrons even in a strong magnetic field regime where normally one expects to see only isotropic quantum Hall or isotropic Fermi liquid states. We use this approach to support a theoretical framework that envisions the possibility of an anisotropic liquid crystalline state of electrons in the lowest Landau level. In particular, we argue that an anisotropic liquid state of electrons may stabilize in the lowest Landau level close to the liquid-solid transition region at filling factor ν =1 /6 for a given anisotropic Coulomb interaction potential. Quantum Monte Carlo simulations for a liquid crystalline state with broken rotational symmetry indicate stability of liquid crystalline order consistent with the existence of an anisotropic liquid state of electrons stabilized by anisotropy at filling factor ν =1 /6 of the lowest Landau level.

  6. Advances in the study of mechanical properties and constitutive law in the field of wood research

    Science.gov (United States)

    Zhao, S.; Zhao, J. X.; Han, G. Z.

    2016-07-01

    This paper presents an overview of mechanical properties and constitutive law for wood. Current research on the mechanical properties of wood have mostly focused on density, grain, moisture, and other natural factors. It has been established that high density, dense grain, and high moisture lead to higher strength. In most literature, wood has been regarded as an anisotropic material because of its fiber. A microscopic view is used in research of wood today, in this way, which has allowed for clear observation of anisotropy. In general, wood has higher strength under a dynamic load, and no densification. The constitutive model is the basis of numerical analysis. An anisotropic model of porous and composite materials has been used for wood, but results were poor, and new constitutions have been introduced. According to the literature, there is no single theory that is widely accepted for the dynamic load. Research has shown that grain and moisture are key factors in wood strength, but there has not been enough study on dynamic loads so far. Hill law has been the most common method of simulation. Models that consider high strain rate are attracting more and more attention.

  7. Development of laser ablation plasma by anisotropic self-radiation

    Directory of Open Access Journals (Sweden)

    Ohnishi Naofumi

    2013-11-01

    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  8. Anisotropic charged generalized polytropic models

    Science.gov (United States)

    Nasim, A.; Azam, M.

    2018-06-01

    In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.

  9. Newton's Law of Cooling Revisited

    Science.gov (United States)

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  10. Pulse splitting in nonlinear media with anisotropic dispersion properties

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.

    1998-01-01

    The nonlinear self-focusing of beams in media with anisotropic (mix-signed) dispersion is investigated. Theoretical predictions employing virial-type arguments and self-similar techniques suggest that a pulse propagating in a nonlinear medium with anisotropic dispersion will not collapse...

  11. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  12. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre

    2013-01-01

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  13. Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion.

    Science.gov (United States)

    Wang, By Lili; Heng, Liping; Jiang, Lei

    2018-02-28

    Development of stimulus-responsive anisotropic slippery surfaces is important because of the high demand for such materials in the field of liquid directional-driven systems. However, current studies in the field of slippery surfaces are mainly conducted to prepare isotropic slippery surfaces. Although we have developed electric-responsive anisotropic slippery surfaces that enable smart control of the droplet motion, there remain challenges for designing temperature-responsive anisotropic slippery surfaces to control the liquid droplet motion on the surface and in the tube. In this work, temperature-responsive anisotropic slippery surfaces have been prepared by using paraffin, a thermo-responsive phase-transition material, as a lubricating fluid and directional porous polystyrene (PS) films as the substrate. The smart regulation of the droplet motion of several liquids on this surface was accomplished by tuning the substrate temperature. The uniqueness of this surface lies in the use of an anisotropic structure and temperature-responsive lubricating fluids to achieve temperature-driven smart control of the anisotropic motion of the droplets. Furthermore, this surface was used to design temperature-driven anisotropic microreactors and to manipulate liquid transfer in tubes. This work advances the understanding of the principles underlying anisotropic slippery surfaces and provides a promising material for applications in the biochip and microreactor system.

  14. Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture

    Directory of Open Access Journals (Sweden)

    Simona Saba

    2014-04-01

    Full Text Available Pre-compacted elements (disks, torus of bentonite/sand mixture are candidate materials for sealing plugs of radioactive waste disposal. Choice of this material is mainly based on its swelling capacity allowing all gaps in the system to be sealed, and on its low permeability. When emplaced in the gallery, these elements will start to absorb water from the host rock and swell. Thereby, a swelling pressure will develop in the radial direction against the host rock and in the axial direction against the support structure. In this work, the swelling pressure of a small scale compacted disk of bentonite and sand was experimentally studied in both radial and axial directions. Different swelling kinetics were identified for different dry densities and along different directions. As a rule, the swelling pressure starts increasing quickly, reaches a peak value, decreases a little and finally stabilises. For some dry densities, higher peaks were observed in the radial direction than in the axial direction. The presence of peaks is related to the microstructure change and to the collapse of macro-pores. In parallel to the mechanical tests, microstructure investigation at the sample scale was conducted using microfocus X-ray computed tomography (μCT. Image observation showed a denser structure in the centre and a looser one in the border, which was also confirmed by image analysis. This structure heterogeneity in the radial direction and the occurrence of macro-pores close to the radial boundary of the sample can explain the large peaks observed in the radial swelling pressure evolution. Another interesting result is the higher anisotropy found at lower bentonite dry densities, which was also analysed by means of μCT observation of a sample at low bentonite dry density after the end of test. It was found that the macro-pores, especially those between sand grains, were not filled by swelled bentonite, which preserved the anisotropic microstructure caused by

  15. Analytical modeling of pressure transient behavior for coalbed methane transport in anisotropic media

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Xiaodong

    2014-01-01

    Resulting from the nature of anisotropy of coal media, it is a meaningful work to evaluate pressure transient behavior and flow characteristics within coals. In this article, a complete analytical model called the elliptical flow model is established by combining the theory of elliptical flow in anisotropic media and Fick's laws about the diffusion of coalbed methane. To investigate pressure transient behavior, analytical solutions were first obtained through introducing a series of special functions (Mathieu functions), which are extremely complex and are hard to calculate. Thus, a computer program was developed to establish type curves, on which the effects of the parameters, including anisotropy coefficient, storage coefficient, transfer coefficient and rate constant, were analyzed in detail. Calculative results show that the existence of anisotropy would cause great pressure depletion. To validate new analytical solutions, previous results were used to compare with the new results. It is found that a better agreement between the solutions obtained in this work and the literature was achieved. Finally, a case study is used to explain the effects of the parameters, including rock total compressibility coefficient, coal medium porosity and anisotropic permeability, sorption time constant, Langmuir volume and fluid viscosity, on bottom-hole pressure behavior. It is necessary to coordinate these parameters so as to reduce the pressure depletion. (paper)

  16. Scalable explicit implementation of anisotropic diffusion with Runge-Kutta-Legendre super-time stepping

    Science.gov (United States)

    Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca

    2017-12-01

    An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.

  17. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang

    2016-09-06

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.

  18. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    Science.gov (United States)

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  19. Disadvantage factor for anisotropic scattering

    International Nuclear Information System (INIS)

    Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.

    1990-01-01

    The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters

  20. Adaptive weighted anisotropic diffusion for computed tomography denoising

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi; Silver, Michael D. [Toshiba Medical Research Institute USA, Inc., Vernon Hills, IL (United States); Noshi, Yasuhiro [Toshiba Medical System Corporation, Tokyo (Japan)

    2011-07-01

    With increasing awareness of radiation safety, dose reduction has become an important task of modern CT system development. This paper proposes an adaptive weighted anisotropic diffusion method and an adaptive weighted sharp source anisotropic diffusion method as image domain filters to potentially help dose reduction. Different from existing anisotropic diffusion methods, the proposed methods incorporate an edge-sensitive adaptive source term as part of the diffusion iteration. It provides better edge and detail preservation. Visual evaluation showed that the new methods can reduce noise substantially without apparent edge and detail loss. The quantitative evaluations also showed over 50% of noise reduction in terms of noise standard deviations, which is equivalent to over 75% of dose reduction for a normal dose image quality. (orig.)

  1. Chiral magnetic effect in the anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Taghavi, Seyed Farid

    2015-01-01

    An anisotropic thermal plasma phase of a strongly coupled gauge theory can be holographically modelled by an anisotropic AdS black hole. The temperature and anisotropy parameter of the AdS black hole background of interest http://dx.doi.org/10.1007/JHEP07(2011)054 is specified by the location of the horizon and the value of the Dilaton field at the horizon. Interestingly, for the first time, we obtain two functions for the values of the horizon and Dilaton field in terms of the temperature and anisotropy parameter. Then by introducing a number of spinning probe D7-branes in the anisotropic background, we compute the value of the chiral magnetic effect (CME). We observe that in the isotropic and anisotropic plasma the value of the CME is equal for the massless quarks. However, at fixed temperature, raising the anisotropy in the system will increase the value of the CME for the massive quarks.

  2. Modelling of anisotropic compact stars of embedding class one

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali [Government General Degree College, Department of Mathematics, Singur, Hooghly, West Bengal (India); Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, U.P. (India); Manna, Tuhina [St. Xavier' s College, Department of Commerce (Evening), Kolkata, West Bengal (India)

    2016-10-15

    In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function ν, we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift. (orig.)

  3. Modelling approach for anisotropic inter-ply slippage in finite element forming simulation of thermoplastic UD-tapes

    Science.gov (United States)

    Dörr, Dominik; Faisst, Markus; Joppich, Tobias; Poppe, Christian; Henning, Frank; Kärger, Luise

    2018-05-01

    Finite Element (FE) forming simulation offers the possibility of a detailed analysis of thermoforming processes by means of constitutive modelling of intra- and inter-ply deformation mechanisms, which makes manufacturing defects predictable. Inter-ply slippage is a deformation mechanism, which influences the forming behaviour and which is usually assumed to be isotropic in FE forming simulation so far. Thus, the relative (fibre) orientation between the slipping plies is neglected for modelling of frictional behaviour. Characterization results, however, reveal a dependency of frictional behaviour on the relative orientation of the slipping plies. In this work, an anisotropic model for inter-ply slippage is presented, which is based on an FE forming simulation approach implemented within several user subroutines of the commercially available FE solver Abaqus. This approach accounts for the relative orientation between the slipping plies for modelling frictional behaviour. For this purpose, relative orientation of the slipping plies is consecutively evaluated, since it changes during forming due to inter-ply slipping and intra-ply shearing. The presented approach is parametrized based on characterization results with and without relative orientation for a thermoplastic UD-tape (PA6-CF) and applied to forming simulation of a generic geometry. Forming simulation results reveal an influence of the consideration of relative fibre orientation on the simulation results. This influence, however, is small for the considered geometry.

  4. Anisotropic modelling of Opalinus Clay behaviour: From triaxial tests to gallery excavation application

    Directory of Open Access Journals (Sweden)

    François Bertrand

    2017-06-01

    Full Text Available Deep repository in geological formations is the preferential solution considered in many countries to manage high-level nuclear wastes. In Switzerland, the Opalinus Clay is a candidate host rock. In this context, in situ and laboratory tests are conducted on Opalinus Clay to demonstrate the feasibility of deep disposal in this argillaceous formation. This paper presents a constitutive model able to fit the experimental data obtained from some triaxial tests conducted by Jahns (2013 on cores from borehole Schlattingen SLA-1. The elasto-plastic behaviour of Opalinus Clay is reproduced thanks to a Drucker-Prager model, taking into account the anisotropy behaviour of this sedimentary rock. The objective is to employ a single set of parameters representative of the material. In a second version of the model, the stress-dependence of the elastic properties and damage are taken into account. Finally, the parameters calibrated with experimental tests are used to simulate the excavation of a gallery with a second gradient approach.

  5. Discovering the gas laws and understanding the kinetic theory of gases with an iPad app

    Science.gov (United States)

    Davies, Gary B.

    2017-07-01

    Carrying out classroom experiments that demonstrate Boyle’s law and Gay-Lussac’s law can be challenging. Even if we are able to conduct classroom experiments using pressure gauges and syringes, the results of these experiments do little to illuminate the kinetic theory of gases. However, molecular dynamics simulations that run on computers allow us to visualise the behaviour of individual particles and to link this behaviour to the bulk properties of the gas e.g. its pressure and temperature. In this article, I describe how to carry out ‘computer experiments’ using a commercial molecular dynamics iPad app called Atoms in Motion [1]. Using the app, I show how to obtain data from simulations that demonstrate Boyle’s law and Gay-Lussac’s law, and hence also the combined gas law.

  6. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    Science.gov (United States)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-03-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  7. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jieliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Su, Zhengliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Department of Automotive Engineering, Tsinghua University, Beijing 100084 (China); Yan, Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  8. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    International Nuclear Information System (INIS)

    Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze

    2015-01-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  9. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  10. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    OpenAIRE

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-01-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domai...

  11. On the derivation of a creep law from isothermal bore hole convergence

    International Nuclear Information System (INIS)

    Prij, J.; Mengelers, J.H.J.

    1981-01-01

    Some analytical as well as numerical aspects relevant to the creep behaviour of cavity-like structures in salt domes are presented. Two finite element models are presented for the modelling of the bore hole configuration, both dealing with the problem of a correct choice of the amount of salts which must be taken into account. A numerical procedure is suggested to derive a material creep law from measured bore hole convergence. This procedure is applied on convergence measurement in the ASSE mine (Germany) leading to a secondary creep law (depsilon/dt)sup(c)=8.8x10 -11 sigmasup(5.5) (sigma in MPa, (depsilon/dt)sup(c) in days -1 ) which describes the transient convergence behaviour correctly. Some questions concerning the uniqueness of the derived creep law are discussed

  12. General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations

    Science.gov (United States)

    Lin, Guoxing

    2018-05-01

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.

  13. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  15. Litigants in Person in Private Family Law Cases

    OpenAIRE

    Trinder, L.; Hunter, R.; Hitchings, E.; Miles, J.; Smith, L.; Moorhead, R.; Sefton, M.; Hinchly, V.; Pearce, J.; Bader, K.

    2014-01-01

    This study was designed to develop the evidence base on litigants in person in private family law cases, including their behavioural drivers, experiences and support needs, and impact on the court prior to the implementation of legal aid reforms in April 2013. Fieldwork was conducted between January and March 2013. The study delivered primarily qualitative evidence. The researchers sampled 151 private law family cases where a hearing was observed, the court file examined and parties and p...

  16. Anisotropic hydrodynamics for conformal Gubser flow

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)

    2016-12-15

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  17. Anisotropic hydrodynamics for conformal Gubser flow

    International Nuclear Information System (INIS)

    Strickland, Michael; Nopoush, Mohammad; Ryblewski, Radoslaw

    2016-01-01

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3)_q symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  18. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.

    Science.gov (United States)

    Şenel Ayaz, H Gözde; Perets, Anat; Ayaz, Hasan; Gilroy, Kyle D; Govindaraj, Muthu; Brookstein, David; Lelkes, Peter I

    2014-10-01

    For patients with end-stage heart disease, the access to heart transplantation is limited due to the shortage of donor organs and to the potential for rejection of the donated organ. Therefore, current studies focus on bioengineering approaches for creating biomimetic cardiac patches that will assist in restoring cardiac function, by repairing and/or regenerating the intrinsically anisotropic myocardium. In this paper we present a simplified, straightforward approach for creating bioactive anisotropic cardiac patches, based on a combination of bioengineering and textile-manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. Using knitted conventional textiles, made of cotton or polyester yarns as template targets, we successfully electrospun anisotropic three-dimensional scaffolds from poly(lactic-co-glycolic) acid (PLGA), and thermoplastic polycarbonate-urethane (PCU, Bionate(®)). The surface topography and mechanical properties of textile-templated anisotropic scaffolds significantly differed from those of scaffolds electrospun from the same materials onto conventional 2-D flat-target electrospun scaffolds. Anisotropic textile-templated scaffolds electrospun from both PLGA and PCU, supported the adhesion and proliferation of H9C2 cardiac myoblasts cell line, and guided the cardiac tissue-like anisotropic organization of these cells in vitro. All cell-seeded PCU scaffolds exhibited mechanical properties comparable to those of a human heart, but only the cells on the polyester-templated scaffolds exhibited prolonged spontaneous synchronous contractility on the entire engineered construct for 10 days in vitro at a near physiologic frequency of ∼120 bpm. Taken together, the methods described here take advantage of straightforward established textile manufacturing strategies as an efficient and cost-effective approach to engineering 3D anisotropic, elastomeric PCU scaffolds that can serve as a cardiac patch. Copyright

  19. ELOCA: fuel element behaviour during high temperature transients

    International Nuclear Information System (INIS)

    Sills, H.E.

    1979-03-01

    The ELOCA computer code was developed to simulate the uniform thermal-mechanical behaviour of a fuel element during high-temperature transients such as a loss-of-coolant accident (LOCA). Primary emphasis is on the diametral expansion of the fuel sheath. The model assumed is a single UO2/zircaloy-clad element with axisymmetric properties. Physical effects considered by the code are fuel expansion, cracking and melting; variation, during the transient, of internal gas pressure; changing fuel/sheath heat transfer; thermal, elastic and plastic sheath deformation (anisotropic); Zr/H 2 O chemical reaction effects; and beryllium-assisted crack penetration of the sheath. (author)

  20. Anisotropic, Mixed-Norm Lizorkin-Triebel Spaces and Diffeomorphic Maps

    DEFF Research Database (Denmark)

    Johnsen, Jon; Hansen, Sabrina Munch; Sickel, Winfried

    2014-01-01

    This paper gives general results on invariance of anisotropic Lizorkin-Triebel spaces with mixed norms under coordinate transformations on Euclidean space, open sets, and cylindrical domains.......This paper gives general results on invariance of anisotropic Lizorkin-Triebel spaces with mixed norms under coordinate transformations on Euclidean space, open sets, and cylindrical domains....

  1. Anisotropically Swelling Gels Attained through Axis-Dependent Crosslinking of MOF Crystals.

    Science.gov (United States)

    Ishiwata, Takumi; Kokado, Kenta; Sada, Kazuki

    2017-03-01

    Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared-layer metal-organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis-dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The anisotropic Ising correlations as elliptic integrals: duality and differential equations

    International Nuclear Information System (INIS)

    McCoy, B M; Maillard, J-M

    2016-01-01

    We present the reduction of the correlation functions of the Ising model on the anisotropic square lattice to complete elliptic integrals of the first, second and third kind, the extension of Kramers–Wannier duality to anisotropic correlation functions, and the linear differential equations for these anisotropic correlations. More precisely, we show that the anisotropic correlation functions are homogeneous polynomials of the complete elliptic integrals of the first, second and third kind. We give the exact dual transformation matching the correlation functions and the dual correlation functions. We show that the linear differential operators annihilating the general two-point correlation functions are factorized in a very simple way, in operators of decreasing orders. (paper)

  3. Hybrid localized waves supported by resonant anisotropic metasurfaces

    DEFF Research Database (Denmark)

    Bogdanov, A. A.; Yermakov, O. Y.; Ovcharenko, A. I.

    2016-01-01

    We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.......We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime....

  4. Mixed Mode cohesive law with interface dilatation

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Goutianos, Stergios

    2014-01-01

    displacements. As the crack faces displace relatively to each other, the roughness asperities ride on top of each other and result in an opening (dilatation) in the normal direction. Furthermore, the interaction of the crack surfaces in the contact zone gives rise to compressive normal stresses and frictional...... shear stresses opposing the crack face displacements. A phenomenological Mixed Mode cohesive zone law, derived from a potential function, is developed to describe the above mentioned fracture behaviour under monotonic opening. The interface dilatation introduces two new lengths. The cohesive law...

  5. Modeling Dynamic Anisotropic Behaviour and Spall Failure in Commercial Aluminium Alloys AA7010

    Science.gov (United States)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-04-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour involves very high pressures and shockwaves in orthotropic materials of aluminium alloys. The previous published constitutive model is used as a reference to start the development in this work. The proposed formulation that used a new definition of Mandel stress tensor to define Hill's yield criterion and a new shock equation of state (EOS) of the generalised orthotropic pressure is further enhanced with Grady spall failure model to closely predict shockwave propagation and spall failure in the chosen commercial aluminium alloy. This hyperelastic-plastic constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The implementations of a new EOS of the generalised orthotropic pressure including the spall failure are also discussed in this paper. The capability of the proposed constitutive model to capture the complex behaviour of the selected material is validated against range of Plate Impact Test data at 234, 450 and 895 ms-1 impact velocities.

  6. Prestack exploding reflector modelling and migration for anisotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-10-09

    The double-square-root equation is commonly used to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the double-square-root-derived phase operator allows for up and downgoing wavefields but suffers from an essential singularity for horizontally travelling waves. This singularity is also associated with an anisotropic version of the double-square-root extrapolator. Perturbation theory allows us to separate the isotropic contribution, as well as the singularity, from the anisotropic contribution to the operator. As a result, the anisotropic residual operator is free from such singularities and can be applied as a stand alone operator to correct for anisotropy. We can apply the residual anisotropy operator even if the original prestack wavefield was obtained using, for example, reverse-time migration. The residual correction is also useful for anisotropic parameter estimation. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. It also proves useful in approximately imaging the Vertical Transverse Isotropic Marmousi model.

  7. Dynamical anisotropic response of black phosphorus under magnetic field

    Science.gov (United States)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  8. Anisotropic light scattering of individual sickle red blood cells.

    Science.gov (United States)

    Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun

    2012-04-01

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.

  9. Modeling of charged anisotropic compact stars in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)

    2017-06-15

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)

  10. Stretched exponentials and power laws in granular avalanching

    Science.gov (United States)

    Head, D. A.; Rodgers, G. J.

    1999-02-01

    We introduce a model for granular surface flow which exhibits both stretched exponential and power law avalanching over its parameter range. Two modes of transport are incorporated, a rolling layer consisting of individual particles and the overdamped, sliding motion of particle clusters. The crossover in behaviour observed in experiments on piles of rice is attributed to a change in the dominant mode of transport. We predict that power law avalanching will be observed whenever surface flow is dominated by clustered motion.

  11. Anisotropic mechanical properties and Stone-Wales defects in graphene monolayer: A theoretical study

    International Nuclear Information System (INIS)

    Fan, B.B.; Yang, X.B.; Zhang, R.

    2010-01-01

    We investigate the mechanical properties of graphene monolayer via the density functional theoretical (DFT) method. We find that the strain energies are anisotropic for the graphene under large strain. We attribute the anisotropic feature to the anisotropic sp 2 hybridization in the hexagonal lattice. We further identify that the formation energies of Stone-Wales (SW) defects in the graphene monolayer are determined by the defect concentration and also the direction of applied tensile strain, correlating with the anisotropic feature.

  12. Singling Out People without Knowing Their Names - Behavioural targeting, pseudonymous data, and the new Data Protection Regulation

    NARCIS (Netherlands)

    Zuiderveen Borgesius, F.J.

    2016-01-01

    Information about millions of people is collected for behavioural targeting, a type of marketing that involves tracking people's online behaviour for targeted advertising. It is hotly debated whether data protection law applies to behavioural targeting. Many behavioural targeting companies say that,

  13. An anisotropic elasto-viscoplastic model for short-fiber reinforced polymers

    NARCIS (Netherlands)

    Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.

    2017-01-01

    The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and

  14. An Anisotropic Elasto-Viscoplastic Model for Short-Fiber Reinforced Polymers

    NARCIS (Netherlands)

    Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.

    2018-01-01

    The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and

  15. Bianchi-type II spacetime and anisotropic brane-world cosmology

    International Nuclear Information System (INIS)

    Sevinc, O.

    2010-01-01

    Anisotropic generalization of Randall and Sundrum brane-world model is considered. I studied a bulk with an anisotropic space of motion of the brane, depending on both time and extra coordinate. Then I discussed possibility of obtaining the fine-tuning condition of Randall and Sundrum following the method of Andrei V. Frolov (Phys. Lett. B, 514,213).

  16. Remarks on the relativistic magnetohydrodynamics of an anisotropic fluid

    International Nuclear Information System (INIS)

    Ignat, M.

    1980-01-01

    Considering a pressure tensor of a general form, a relativistic rarefied, anisotropic, infinite electrically conducting and nondissipative plasma is studied. For this purpose, the method of the orthonormal frame of reference is used. The choice of the frame of reference is made adequately to the problem. Some thermodynamical properties of such a relativistic, anisotropic plasma are also given. (author)

  17. Anisotropic wetting characteristics versus roughness on machined surfaces of hydrophilic and hydrophobic materials

    International Nuclear Information System (INIS)

    Liang, Yande; Shu, Liming; Natsu, Wataru; He, Fuben

    2015-01-01

    Graphical abstract: - Highlights: • The aim is to investigate the influence of roughness on anisotropic wetting on machined surfaces. • The relationship between roughness and anisotropic wetting is modeled by thermodynamical analysis. • The effect of roughness on anisotropic wetting on hydrophilic materials is stronger than that on hydrophobic materials. • The energy barrier existing in the direction perpendicular to the lay is one of the main reasons for the anisotropic wetting. • The contact angle in the parallel direction is larger than that in the perpendicular direction. - Abstract: Anisotropic wetting of machined surfaces is widely applied in industries which can be greatly affected by roughness and solid's chemical properties. However, there has not been much work on it. A free-energy thermodynamic model is presented by analyzing geometry morphology of machined surfaces (2-D model surfaces), which demonstrates the influence of roughness on anisotropic wetting. It can be concluded that the energy barrier is one of the main reasons for the anisotropic wetting existing in the direction perpendicular to the lay. In addition, experiments in investigating anisotropic wetting, which was characterized by the static contact angle and droplet's distortion, were performed on machined surfaces with different roughness on hydrophilic and hydrophobic materials. The droplet's anisotropy found on machined surfaces increased with mean slope of roughness profile Kr. It indicates that roughness on anisotropic wetting on hydrophilic materials has a stronger effect than that on hydrophobic materials. Furthermore, the contact angles predicted by the model are basically consistent with the experimentally ones

  18. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  19. On cracking of charged anisotropic polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M. [Division of Science and Technology, University of Education, Township Campus, Lahore-54590 (Pakistan); Mardan, S.A., E-mail: azam.math@ue.edu.pk, E-mail: syedalimardanazmi@yahoo.com [Department of Mathematics, University of the Management and Technology, C-II, Johar Town, Lahore-54590 (Pakistan)

    2017-01-01

    Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways ( i ) by perturbing polytropic constant, anisotropy and charge parameter ( ii ) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.

  20. The chemical and electrochemical anisotropic etching of silicon

    International Nuclear Information System (INIS)

    Dixon, E.

    1997-06-01

    The success of silicon IC technology in producing a wide variety of microstructures relies heavily on the orientation dependant etching observed for silicon in alkaline media. Despite the rapid growth of this industry, the chemical and electrochemical mechanisms by which anisotropic etching occurs remain poorly understood. The most common etchant systems in use are ethylenediamine-pyrocatechol-water (EPW) and potassium hydroxide-isopropanol-water (KOH-IPA), and whilst these systems are highly plane selective they each have distinct disadvantages. The occurrence of inhomogeneities such as micropyramids and pits on the surface of etched substrates is a particularly disadvantageous characteristic of many alkaline etching systems. A complete understanding of the chemical and electrochemical anisotropic etching mechanisms is essential in order to obtain more reproducible etching, improved etch rate ratios and the development of more reliable etching baths. Wet chemical etching experiments to evaluate the etching rates for the different alkali metal cations have shown that similar etch rates are observed for LiOH, NaOH and KOH but those of RbOH and CsOH are significantly lower. The presence of impurities was shown to worsen the etched wafer's surface finish obtained in these etching baths. Additives have been shown to dramatically improve the surface finish with the presence of IPA in conjunction with etchant oxygenation virtually eliminating all surface defects. Electrochemical experiments were used to assess the electrochemical behaviour of Si p-(100) in of a wide variety of etchants and variations were seen according to the etchant used. A.C impedance spectroscopy showed a variation in the flat-band potential (V FB ) according to alkali metal hydroxide etchant used. These trends were similarly observed in the presence of isopropanol. Oxygenation was observed to reproducibly alter the flat-band potentials. A.c impedance spectroscopic studies additionally confirmed the

  1. Black Holes with Anisotropic Fluid in Lyra Scalar-Tensor Theory

    Directory of Open Access Journals (Sweden)

    Melis ULU DOĞRU

    2018-02-01

    Full Text Available In this paper, we investigate distribution of anisotropic fluid which is a resource of black holes in regard to Lyra scalar-tensor theory. As part of the theory, we obtain field equations of spherically symmetric space-time with anisotropic fluid. By using field equations, we suggest distribution of anisotropic fluid, responsible for space-time geometries such as Schwarzschild, Reissner-Nordström, Minkowski type, de Sitter type, Anti-de Sitter type, BTZ and charged BTZ black holes. Finally, we discuss obtained pressures and density of the fluid for different values of arbitrary constants, geometrically and physically.

  2. Veselago focusing of anisotropic massless Dirac fermions

    Science.gov (United States)

    Zhang, Shu-Hui; Yang, Wen; Peeters, F. M.

    2018-05-01

    Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.

  3. Computer-simulation study of a disordered classical spin system in one dimension with long-range anisotropic ferromagnetic interactions

    Science.gov (United States)

    Romano, S.

    1992-01-01

    The present paper considers a classical system, consisting of n-component unit vectors (n=2 or 3), associated with a one-dimensional lattice \\{uk||k∈openZ\\}, and interacting via a translationally invariant pair potential of the long-range, ferromagnetic and anisotropic form W=Wjk=-ɛ||j-k||-2(auj,nuk,n +b tsumλuk,λ denotes the Cartesian components of the unit vectors. According to the available rigorous results, the system disorders at all finite temperatures when a=b, or n=3, a=0, and possesses an ordering transition at finite temperature when b=0. Approximate arguments and simulation results suggest that the isotropic models (a=b) produce a transition to a low-temperature phase with infinite susceptibility and power-law decay of the correlation function. If this is true, the available correlation inequalities entail that it also happens in the anisotropic but O(2)-invariant case n=3, b=0. We report here Monte Carlo calculations for this latter potential model; simulation results were found to be consistent with this conjecture, and to suggest that T*c=0.65+/-0.01.

  4. Is the classical law of the addition of probabilities violated in quantum interference?

    International Nuclear Information System (INIS)

    Arsenovic, Dusan; Bozic, Mirjana; Vuskovic, Lepsa

    2002-01-01

    We analyse and compare the positive and negative arguments on whether quantum interference violates the classical law of the addition of probabilities. The analysis takes into account the results of recent interference experiments in neutron, electron and atom optics. Nonclassical behaviour of atoms was found in atomic experiments where the measurements included their time of arrival and space distribution. We determine probabilities of elementary events associated with the nonclassical behaviour of particles in interferometers. We show that the emergence of the interference pattern in the process of accumulation of such elementary events is consistent with the classical law of the addition of probabilities

  5. Anomalously large anisotropic magnetoresistance in a perovskite manganite

    Science.gov (United States)

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi

    2009-01-01

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504

  6. Sign rules for anisotropic quantum spin systems

    International Nuclear Information System (INIS)

    Bishop, R. F.; Farnell, D. J. J.; Parkinson, J. B.

    2000-01-01

    We present exact ''sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the importance of such sign rules in variational calculations and quantum Monte Carlo calculations is emphasized. This is illustrated by a simple variational treatment of a one-dimensional anisotropic spin model

  7. anisotropic crack modelling of reinforced concrete structures with an enhanced kinematics: application to bidimensional elements under cyclic loading

    International Nuclear Information System (INIS)

    Kishta, Ejona

    2016-01-01

    Civil engineering buildings, massive and unique, are mostly made of reinforced or prestressed concrete. Sustainability, tightness and safety are the major pillars of a building's performance. Cracking is a major phenomenon which impacts the buildings' behaviour under different loadings in terms of sustainability and structural capacity. Development of numerical models which describe accurately the response of quasi-brittle materials under complex loading remains an important research topic for the scientific community. The objective of this work is the development of a numerical model which represents explicitly cracking of reinforced concrete structures. Concrete and reinforced concrete degradation process, characterised by the appearance of several anisotropic crack families, is described by means of an anisotropic damage model accounting for oriented crack families. The kinematics of this model is enriched with a displacement jump in order to reproduce the development of cracks in the material during loading. This displacement jump is identified as the crack opening. The developed model is validated on simulations of plain concrete structures exhibiting model as well as mixed-mode failure. The performances of the enriched model are shown by the simulation of reinforced concrete structures such as a shear wall submitted to cyclic loading. (author) [fr

  8. Anisotropic Flow Measurements in ALICE at the Large Hadron Collider

    NARCIS (Netherlands)

    Bilandzic, A.

    2012-01-01

    Anisotropic flow is one of the observables which is sensitive to the properties of the created hot and dense system in heavy-ion collisions. In noncentral heavy-ion collisions the initial volume of the interacting system is anisotropic in coordinate space. Due to multiple interactions this anisotropy

  9. Double anisotropic electrically conductive flexible Janus-typed membranes.

    Science.gov (United States)

    Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia

    2017-12-07

    Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.

  10. An example of coupling behaviour-damage-environment in polycrystals. Application to Pellet-Cladding Interaction

    International Nuclear Information System (INIS)

    Diard, Olivier

    2001-01-01

    Zircaloy-4 cladding is the first containment barrier for fission products, and its integrity must therefore be ensured in nominal and accidental situations. However, stress corrosion induced cracks may appear due to a strong pellet-cladding interaction. It is therefore important to model this interaction and crack growth and propagation to establish non-damage criteria. Thus, this research thesis aims at developing a modelling covering both issues (pellet-cladding interaction, and stress corrosion cracking) and allowing macroscopic and microscopic scales to be coupled. After a bibliographical synthesis on iodine-induced stress corrosion cracking and similar phenomena, the author presents the model proposed for the pellet-cladding interaction: phenomena to be taken into account, phenomenological and macroscopic behaviour laws used respectively for pellet and cladding. An extended version of an existing cladding viscoplastic model is proposed. Stress and strain fields in the cladding are obtained, notably in the contact zone. In the next part, the author presents various numerical tools developed or used to model multi-crystalline aggregates, and the model of crystalline plasticity used to simulate cladding behaviour at the microstructure scale. Effects of mesh density, element types and anisotropic elasticity are also discussed. The next chapter addresses the mechanical-chemical coupling. Some coupling formulas are presented for simple cases in order to define the effective diffusion coefficient. The last part reports the modelling of intergranular damage: definition of a damage criterion at the granular scale, assessment of stresses at grain boundaries, and effect of crystallographic neighbouring. A model of grain boundary damage is also proposed. This model is assessed on Failure Mechanics test samples and on simple microstructures. The application of the whole numerical model is reported [fr

  11. The approach of smokers to the new tobacco law and the change in their behaviour.

    Science.gov (United States)

    Atilla, Nurhan; Köksal, Nurhan; Özer, Ali; Kahraman, Hasan; Ekerbiçer, Hasan

    2012-01-01

    The aim of our study is; to assess the approach of smokers to tobacco law, examine changes in their smoking related behaviors after the new law and determine the factors associated with these changes. Data collected by questionnaire including 30 question. We applied the questionnaire to 1509 current smokers, and ex-smokers who quitted smoking after the law. SPSS packet programme was used for analyses. Participants consisted of 419 (28.0%) female, 1090 (72.0%) male with an average age of 33.6 ± 10.5 years. Although 80% of them knew that passive smoking is harmful to non-smokers, rate of smoking at home and in the car were very high. 869 (58.0%) of participants supported the law. 87 (5.8%) smokers quitted smoking after the law, 316 (20.9%) reduced. While health problems (37.3%) were the most frequent reason for quitting, restriction of smoking area had the most effect to reduce (54.2%). We satisfied that; the new tobacco law encouraged smokers to quit smoking. In addition, the majority of smokers supported the law.

  12. Holographic models with anisotropic scaling

    Science.gov (United States)

    Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.

    2013-12-01

    We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.

  13. Anisotropic models for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2015-05-15

    In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor Δ with the help of both metric potentials e{sup ν} and e{sup λ}. Here we consider e{sup λ} the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas e{sup ν} is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model. (orig.)

  14. Nuclear law within the field of tension between engineering and law

    International Nuclear Information System (INIS)

    Lukes, R.

    1978-01-01

    Technical safety laws - legal regulations concerned with requirements made on the state and the behaviour of industrial production facilities, production and production - is getting more voluminous. However, as in a lot of cases undefined legal terms are used, the intensity of regulation decreases. The concretization of undefined legal terms by courts leads to requirements becoming unpredictable, as the Voerde and Wyhl decisions have shown. To a limited extent, legal standards which are to regulate technical matters can be formulated more clearly. However, other forms of concretization have to be looked for. (orig.) [de

  15. Generalization of Asaoka method to linearly anisotropic scattering: benchmark data in cylindrical geometry

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1975-11-01

    The Integral Transform Method for the neutron transport equation has been developed in last years by Asaoka and others. The method uses Fourier transform techniques in solving isotropic one-dimensional transport problems in homogeneous media. The method has been extended to linearly anisotropic transport in one-dimensional homogeneous media. Series expansions were also obtained using Hembd techniques for the new anisotropic matrix elements in cylindrical geometry. Carlvik spatial-spherical harmonics method was generalized to solve the same problem. By applying a relation between the isotropic and anisotropic one-dimensional kernels, it was demonstrated that anisotropic matrix elements can be calculated by a linear combination of a few isotropic matrix elements. This means in practice that the anisotropic problem of order N with the N+2 isotropic matrix for the plane and spherical geometries, and N+1 isotropic matrix for cylindrical geometries can be solved. A method of solving linearly anisotropic one-dimensional transport problems in homogeneous media was defined by applying Mika and Stankiewicz observations: isotropic matrix elements were computed by Hembd series and anisotropic matrix elements then calculated from recursive relations. The method has been applied to albedo and critical problems in cylindrical geometries. Finally, a number of results were computed with 12-digit accuracy for use as benchmarks [fr

  16. Hybrid anisotropic materials for wind power turbine blades

    CERN Document Server

    Golfman, Yosif

    2012-01-01

    Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades. This boo

  17. Anisotropic behavior of quantum transport in graphene superlattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength of multi......We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength...

  18. Anisotropic Rabi model

    OpenAIRE

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-01-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of th...

  19. Experimental study of mechanical behaviour of a clay-stone: application to nuclear waste disposals

    International Nuclear Information System (INIS)

    Chiarelli, A.S.; Shao, J.F.; Ledesert, B.; Hoteit, N.

    2001-01-01

    A study of mechanical behaviour of deep argillaceous rocks from East of France, the 'argilites de l'Est' as a potential host rock for radioactive waste disposal studied by ANDRA, (french national radioactive waste management agency) is presented. Some uniaxial and triaxial compression tests with unloading-reloading cycles were realised on samples from three different depths. Important plastic strains associated to directional degradation of elastic properties show that the two principles strain mechanisms are plasticity and induced anisotropic damage. At microscopic scale, it is related to sliding of clay sheets and oriented microcracks. The influence of mineralogy is that brittle behaviour is more important with calcite while it decreases with clay. (authors)

  20. Thermal stresses in hexagonal materials - heat treatment influence on their mechanical behaviour

    International Nuclear Information System (INIS)

    Gloaguen, D.; Freour, S.; Guillen, R.; Royer, J.; Francois, M.

    2004-01-01

    Internal stresses due to anisotropic thermal and plastic properties were investigated in rolled zirconium and titanium. The thermal stresses induced by a cooling process were predicted using a self-consistent model and compared with experimental results obtained by X-ray diffraction. The study of the elastoplastic response during uniaxial loading was performed along the rolling and the transverse direction of the sheet, considering the influence of the texture and the thermal stresses on the mechanical behaviour. An approach in order to determine the thermal behaviour of phases embedded in two-phase materials is also presented. For zirconium, the residual stresses due to thermal anisotropy are rather important (equivalent to 35% of the yield stress) and consequently they play an important role on the elastoplastic transition contrary to titanium. The study of two-phase material shows the influence and the interaction of the second phase on the thermal behaviour in the studied phase

  1. A theory of power-law distributions in financial market fluctuations.

    Science.gov (United States)

    Gabaix, Xavier; Gopikrishnan, Parameswaran; Plerou, Vasiliki; Stanley, H Eugene

    2003-05-15

    Insights into the dynamics of a complex system are often gained by focusing on large fluctuations. For the financial system, huge databases now exist that facilitate the analysis of large fluctuations and the characterization of their statistical behaviour. Power laws appear to describe histograms of relevant financial fluctuations, such as fluctuations in stock price, trading volume and the number of trades. Surprisingly, the exponents that characterize these power laws are similar for different types and sizes of markets, for different market trends and even for different countries--suggesting that a generic theoretical basis may underlie these phenomena. Here we propose a model, based on a plausible set of assumptions, which provides an explanation for these empirical power laws. Our model is based on the hypothesis that large movements in stock market activity arise from the trades of large participants. Starting from an empirical characterization of the size distribution of those large market participants (mutual funds), we show that the power laws observed in financial data arise when the trading behaviour is performed in an optimal way. Our model additionally explains certain striking empirical regularities that describe the relationship between large fluctuations in prices, trading volume and the number of trades.

  2. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality

    Science.gov (United States)

    Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young

    2016-09-01

    In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.

  3. Introduction. National Courts vis-à-vis EU Law

    DEFF Research Database (Denmark)

    Mayoral, Juan A.; Wind, Marlene

    2016-01-01

    National Courts and EU Law examines both how and why national courts and judges are involved in the process of legal integration within the European Union. As well as reviewing conventional thinking, the book presents new legal and empirical insights into the issue of judicial behaviour...

  4. Speckle Suppression by Weighted Euclidean Distance Anisotropic Diffusion

    Directory of Open Access Journals (Sweden)

    Fengcheng Guo

    2018-05-01

    Full Text Available To better reduce image speckle noise while also maintaining edge information in synthetic aperture radar (SAR images, we propose a novel anisotropic diffusion algorithm using weighted Euclidean distance (WEDAD. Presented here is a modified speckle reducing anisotropic diffusion (SRAD method, which constructs a new edge detection operator using weighted Euclidean distances. The new edge detection operator can adaptively distinguish between homogenous and heterogeneous image regions, effectively generate anisotropic diffusion coefficients for each image pixel, and filter each pixel at different scales. Additionally, the effects of two different weighting methods (Gaussian weighting and non-linear weighting of de-noising were analyzed. The effect of different adjustment coefficient settings on speckle suppression was also explored. A series of experiments were conducted using an added noise image, GF-3 SAR image, and YG-29 SAR image. The experimental results demonstrate that the proposed method can not only significantly suppress speckle, thus improving the visual effects, but also better preserve the edge information of images.

  5. Self-force on dislocation segments in anisotropic crystals

    International Nuclear Information System (INIS)

    Fitzgerald, S P; Aubry, S

    2010-01-01

    A dislocation segment in a crystal experiences a 'self-force', by virtue of the orientation dependence of its elastic energy. If the crystal is elastically isotropic, this force is manifested as a couple acting to rotate the segment toward the lower energy of the pure screw orientation (i.e. acting to align the dislocation line with its Burgers vector). If the crystal is anisotropic, there are additional contributions to the couple, arising from the more complex energy landscape of the lattice itself. These effects can strongly influence the dynamic evolution of dislocation networks, and via their governing role in dislocation multiplication phenomena, control plastic flow in metals. In this paper we develop a model for dislocation self-forces in a general anisotropic crystal, and briefly consider the technologically important example of α-iron, which becomes increasingly anisotropic as the temperature approaches that of the α-γ phase transition at 912 0 C.

  6. Preconditioned conjugate gradient technique for the analysis of symmetric anisotropic structures

    Science.gov (United States)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient preconditioned conjugate gradient (PCG) technique and a computational procedure are presented for the analysis of symmetric anisotropic structures. The technique is based on selecting the preconditioning matrix as the orthotropic part of the global stiffness matrix of the structure, with all the nonorthotropic terms set equal to zero. This particular choice of the preconditioning matrix results in reducing the size of the analysis model of the anisotropic structure to that of the corresponding orthotropic structure. The similarities between the proposed PCG technique and a reduction technique previously presented by the authors are identified and exploited to generate from the PCG technique direct measures for the sensitivity of the different response quantities to the nonorthotropic (anisotropic) material coefficients of the structure. The effectiveness of the PCG technique is demonstrated by means of a numerical example of an anisotropic cylindrical panel.

  7. THE ECONOMIC BASIS IN ORGANISATIONAL BEHAVIOURBEHAVIOURAL THEORY OF THE FIRM

    OpenAIRE

    VIRGINIA BĂLEANU

    2007-01-01

    From the economic sciences’ stand point, the process of decision making, including aspects concerning with establishing organizational objectives, is the object of the firm theories. So, these theories that reflect the management’s responsibility in the context of the relationships between people and the organization may be considered the economic basis of organisational behaviour. Parkinson’s Law and the Peter Principle are unconventional examples of the organisational practices that prove t...

  8. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.; Larsen, E.W.

    1992-01-01

    The diffusion synthetic acceleration (DSA) algorithm effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analysis that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented. (author). 10 refs., 7 figs., 5 tabs

  9. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.; Larsen, E.W.

    1991-01-01

    This paper reports on the diffusion synthetic acceleration (DSA) algorithm that effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analyses that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented

  10. ANALYSIS OF DEFORMABILITY OF ANISOTROPIC AGRILLITE CLAYSTONES

    Directory of Open Access Journals (Sweden)

    Ponomaryov Andrey Budimirovicn

    2017-08-01

    Full Text Available In the paper, the results of deformability study of agrillite claystones are used for determination of the Jointed rock model parameters. The number of stamp, pressuremeter and compressive tests allowed to research anisotropic deformability of argillite claystone in vertical and horizontal direction. The following problems were solved during the study: 1 the in-place and laboratory experiments to calculate the anisotropy coefficient were done for anisotropic agrillite claystones with both natural moisture and total water saturation; 2 the deformation parameters were determined and the numerical simulation of the stress-strain state of claystone in field tests was carried out with the use of Plaxis 2D software application; 3 the comparative analysis was done for calculated claystone deformation and the values obtained during the in-place tests. The authors proved that agrillite claystones shows two times less deformation under loading in the horizontal direction than vertically. The ratio is obtained to determine the parameters for numerical simulation of the Jointed Rock model used as a practical tool for analysis of stress-strain behavior of anisotropic soils. The authors provided a recommended practice for consideration of specific properties of argillite claystones when carrying out foundation works.

  11. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods

    Science.gov (United States)

    Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong

    2018-01-01

    Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.

  12. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...

  13. Grain-growth law during Stage 1 sintering of materials

    International Nuclear Information System (INIS)

    He Zeming; Ma, J.

    2002-01-01

    This work investigates the grain-growth behaviour of powder compact during Stage 1 sintering (<90{%} theoretical density). It is widely accepted that grain size is an important state variable in the constitutive modelling in material sintering. However, it is noted that all the existing grain-growth laws proposed in the literature do not incorporate the effect of externally applied stress independently. In this work, a grain-growth law with externally applied stress as a variable was proposed. Alumina powders were forge-sintered at different applied stresses to examine the proposed grain-growth relationship. The proposed grain-growth law was then applied to model the grain-growth process on the sinter forging of tool steel. It is shown that the present proposed grain-growth law provides a good description on the experimental results. (author)

  14. Field theoretic approach to structure formation in an anisotropic medium

    International Nuclear Information System (INIS)

    Joy, Minu; Kuriakose, V.C.

    2003-01-01

    Considering a real scalar field distribution which is assumed to be locally anisotropic and coupled to a Bianchi type-I background spacetime, the energy density and pressure associated with the anisotropic matter field distribution are evaluated. The vanishing of the expectation values of the nondiagonal components of T μν allows us to treat the scalar field in complete analogy with the distribution of fluid. The primeval density perturbations produced by the vacuum fluctuations of the scalar field are considered and the Jeans criterion for structure formation is obtained. The metric and matter field perturbations are considered and it is found that for the present anisotropic case the perturbations of the pressure in the radial and tangential directions are different. The Jeans instability is discussed and the Jeans wave number for the present case is evaluated. It is found that for the anisotropic case the Jeans length depends on the velocity of the fluctuations in the radial and transverse directions and thus on the direction of propagation of the perturbations

  15. Effective Medium Theory for Anisotropic Metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2017-11-12

    This dissertation includes the study of effective medium theories (EMTs) and their applications in describing wave propagation in anisotropic metamaterials, which can guide the design of metamaterials. An EMT based on field averaging is proposed to describe a peculiar anisotropic dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. This dispersion relation is associated with the topological transition of the iso-frequency contours (IFCs), suggesting interesting wave propagation behaviors from beam shaping to beam splitting. In the framework of coherent potential approximation, an analytical EMT is further developed, with the ability to build a direct connection between the microscopic structure and the macroscopic material properties, which overcomes the requirement of prior knowledge of the field distributions. The derived EMT is valid beyond the long-wavelength limit. Using the EMT, an anisotropic zero-index metamaterial is designed. Moreover, the derived EMT imposes a condition that no scattered wave is generated in the ambient medium, which suggests the input signal cannot detect any object that might exist, making it invisible. Such correspondence between the EMT and the invisibilityinspires us to explore the wave cloaking in the same framework of coherent potential approximation. To further broaden the application realm of EMT, an EMT using the parameter retrieval method is studied in the regimes where the previously-developed EMTs are no longer accurate. Based on this study, in conjunction with the EMT mentioned above, a general scheme to realize coherent perfect absorption (CPA) in anisotropic metamaterials is proposed. As an exciting area in metamaterials, the field of metasurfaces has drawn great attention recently. As an easily attainable device, a grating may be the simplest version of metasurfaces. Here, an analytical EMT for gratings made of cylinders is developed by using the multiple scattering

  16. An anisotropic standing wave braneworld and associated Sturm-Liouville problem

    International Nuclear Information System (INIS)

    Gogberashvili, Merab; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto

    2012-01-01

    We present a consistent derivation of the recently proposed 5D anisotropic standing wave braneworld generated by gravity coupled to a phantom-like scalar field. We explicitly solve the corresponding junction conditions, a fact that enables us to give a physical interpretation to the anisotropic energy-momentum tensor components of the brane. So matter on the brane represents an oscillating fluid which emits anisotropic waves into the bulk. We also analyze the Sturm-Liouville problem associated with the correct localization condition of the transverse to the brane metric and scalar fields. It is shown that this condition restricts the physically meaningful space of solutions for the localization of the fluctuations of the model. (paper)

  17. Experimental evidence for anisotropic double exchange interaction driven anisotropic transport in manganite heterostructures

    NARCIS (Netherlands)

    Liao, Zhaoliang; Koster, Gertjan; Huijben, Mark; Rijnders, A.J.H.M.

    2017-01-01

    An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar

  18. Limit laws for exponential families

    OpenAIRE

    Balkema, August A.; Klüppelberg, Claudia; Resnick, Sidney I.

    1999-01-01

    For a real random variable [math] with distribution function [math] , define ¶ [math] ¶ The distribution [math] generates a natural exponential family of distribution functions [math] , where ¶ [math] ¶ We study the asymptotic behaviour of the distribution functions [math] as [math] increases to [math] . If [math] then [math] pointwise on [math] . It may still be possible to obtain a non-degenerate weak limit law [math] by choosing suitable scaling and centring constants [math] an...

  19. Characterization of highly anisotropic three-dimensionally nanostructured surfaces

    International Nuclear Information System (INIS)

    Schmidt, Daniel

    2014-01-01

    Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example of metal slanted columnar thin films, which have been conformally coated with a thin passivating oxide layer by atomic layer deposition. Furthermore, the application of an effective medium approximation approach to in-situ growth monitoring of this anisotropic thin film functionalization process is presented. It was found that structural parameters determined with the presented optical model equivalents for slanted columnar thin films agree very well with scanning electron microscope image estimates. - Highlights: • Summary of optical model strategies for sculptured thin films with arbitrary geometries • Application of the rigorous anisotropic Bruggeman effective medium applications • In-situ growth monitoring of atomic layer deposition on biaxial metal slanted columnar thin film

  20. On a hierarchical construction of the anisotropic LTSN solution from the isotropic LTSN solution

    International Nuclear Information System (INIS)

    Foletto, Taline; Segatto, Cynthia F.; Bodmann, Bardo E.; Vilhena, Marco T.

    2015-01-01

    In this work, we present a recursive scheme targeting the hierarchical construction of anisotropic LTS N solution from the isotropic LTS N solution. The main idea relies in the decomposition of the associated LTS N anisotropic matrix as a sum of two matrices in which one matrix contains the isotropic and the other anisotropic part of the problem. The matrix containing the anisotropic part is considered as the source of the isotropic problem. The solution of this problem is made by the decomposition of the angular flux as a truncated series of intermediate functions and replace in the isotropic equation. After the replacement of these into the split isotropic equation, we construct a set of isotropic recursive problems, that are readily solved by the classic LTS N isotropic method. We apply this methodology to solve problems considering homogeneous and heterogeneous anisotropic regions. Numerical results are presented and compared with the classical LTS N anisotropic solution. (author)

  1. The weather and climate: emergent laws and multifractal cascades

    Science.gov (United States)

    Lovejoy, Shaun; Schertzer, Daniel

    2013-04-01

    Science in general and physics and geophysics in particular are hierarchies of interlocking theories and models with low level, fundamental laws such as quantum mechanics and statistical mechanics providing the underpinnings for the emergence of the qualitatively new, higher level laws of thermodynamics and continuum mechanics that provide the current bases for modelling the weather and climate. Yest it was the belief of generations of turbulence pioneers (notably Richardson, Kolmogorov, Obhukhov, Corrsin, Bolgiano) that at sufficiently high levels of nonlinearity (quantified by the Reynold's number, of the order 10**12 in the atmosphere) that new even higher level laws would emerge describing "fully developed turbulence". However for atmospheric applications, the pioneers' eponymous laws suffered from two basic restrictions - isotropy and homogeneity - that prevented them from being valid over wide ranges of scale. Over the last thirty years both of these restrictions have been overcome - the former with the generalization from isotropic to strongly anisotropic notions of scale (to account notably for stratification), and from homogeneity to strong heterogeneity (intermittency) via multifractal cascades. In this presentation we give an overview of recent developments and analyses covering huge ranges of space-time scales (including weather, macroweather and climate time scales). We show how the combination of strong anisotropy and strong intermittency commonly leads to the "phenomenological fallacy" in which morphology is confounded with mechanism. With the help of stochastic models, we show how processes with vastly different large and small scale morphologies can arise from a unique multifractal dynamical mechanisms [Lovejoy and Schertzer, 2013]. References: Lovejoy, S., and D. Schertzer (2013), The Weather and Climate: Emergent Laws and Multifractal Cascades, 480 pp., Cambridge University Press, Cambridge.

  2. Law on the peaceful uses of nuclear energy: key concepts

    International Nuclear Information System (INIS)

    Pompignan, D. de

    2005-01-01

    The key concepts which ought to be included in legislation governing the peaceful uses of nuclear energy can be divided into two categories depending on whether they derive from the fundamental principles of nuclear law or reflect categories of general law. Their inclusion results in compliance with a shared obligation when they derive from a binding international instrument. It also permits the transposition into law of broader nuclear concepts and principles, and the more specific characteristics of a general nuclear law, which is to lay down priorities. When the resulting classification is tested in reality, we can see that it is difficult to measure the effectiveness of the two concept categories inasmuch as this depends not only on quantifiable and controllable legal elements but also on non-legal behavioural factors, an obvious example of which is safety culture. Once the difficulties of defining a legal framework for nuclear activities and selecting the key concepts to guide them are known, the inclusion of a concept in a general nuclear law is determined by national legal and ethical considerations. Thus, a general nuclear law should indicate the way in which the legal principles which reflect various prevailing ethical imperatives with regard to the environment, participation, and public interest, are applicable to the development of the peaceful uses of nuclear energy, having regard to the national specificities of each country and the particular nature of these activities. This means that there is a need to find original legal solutions reconciling the constraints of a specific law with the requirements of the ordinary law, i.e. the key concepts deriving from the principles of nuclear law. Given the possible reluctance of lawmakers to commit themselves for the future by formulating detailed provisions valid over the long term, it has been suggested that a code of good practice for the nuclear industry should be introduced which would go beyond the

  3. Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights

    Directory of Open Access Journals (Sweden)

    Tianshou Ma

    2018-01-01

    Full Text Available Strength anisotropy is one of the most distinct features of anisotropic rocks, and it also normally reveals strong anisotropy in Brazilian test Strength (“BtS”. Theoretical research on the “BtS” of anisotropic rocks is seldom performed, and in particular some significant factors, such as the anisotropic tensile strength of anisotropic rocks, the initial Brazilian disc fracture points, and the stress distribution on the Brazilian disc, are often ignored. The aim of the present paper is to review the state of the art in the experimental studies on the “BtS” of anisotropic rocks since the pioneering work was introduced in 1964, and to propose a novel theoretical method to underpin the failure mechanisms and predict the “BtS” of anisotropic rocks under Brazilian test conditions. The experimental data of Longmaxi Shale-I and Jixi Coal were utilized to verify the proposed method. The results show the predicted “BtS” results show strong agreement with experimental data, the maximum error is only ~6.55% for Longmaxi Shale-I and ~7.50% for Jixi Coal, and the simulated failure patterns of the Longmaxi Shale-I are also consistent with the test results. For the Longmaxi Shale-I, the Brazilian disc experiences tensile failure of the intact rock when 0° ≤ βw ≤ 24°, shear failure along the weakness planes when 24° ≤ βw ≤ 76°, and tensile failure along the weakness planes when 76° ≤ βw ≤ 90°. For the Jixi Coal, the Brazilian disc experiences tensile failure when 0° ≤ βw ≤ 23° or 76° ≤ βw ≤ 90°, shear failure along the butt cleats when 23° ≤ βw ≤ 32°, and shear failure along the face cleats when 32° ≤ βw ≤ 76°. The proposed method can not only be used to predict the “BtS” and underpin the failure mechanisms of anisotropic rocks containing a single group of weakness planes, but can also be generalized for fractured rocks containing multi-groups of weakness planes.

  4. Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem

    Science.gov (United States)

    Servan-Camas, Borja; Tsai, Frank T.-C.

    2010-02-01

    This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).

  5. Computational Study of Subdural Cortical Stimulation: Effects of Simulating Anisotropic Conductivity on Activation of Cortical Neurons.

    Directory of Open Access Journals (Sweden)

    Hyeon Seo

    Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.

  6. Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating

    Directory of Open Access Journals (Sweden)

    Kyong-Min Lee

    2017-11-01

    Full Text Available Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a single crystal diamond tool, was used to fabricate a mold with microscale directional patterns of triangular cross-sectional shape for good moldability, and the patterns were duplicated on a flat thermoplastic polymer plate by compression molding for the mass production of an anisotropic wetting polymer surface. Anisotropic wetting was observed only with microscale patterns, but the sliding of water could not be achieved because of the pinning effect of the micro-structure. Therefore, an additional dip coating process with 1H, 1H, 2H, 2H-perfluorodecythricholosilanes, and TiO2 nanoparticles was applied for a small sliding angle with nanoscale patterns and a low surface energy. The anisotropic superhydrophobic surface was fabricated and the surface morphology and anisotropic wetting behaviors were investigated. The suggested fabrication method can be used to mass produce an anisotropic superhydrophobic polymer surface, demonstrating the feasibility of liquid shape control and transportation.

  7. Anisotropic spin motive force in multi-layered Dirac fermion system, α-(BEDT-TTF)2I3

    International Nuclear Information System (INIS)

    Kubo, K; Morinari, T

    2015-01-01

    We investigate the anisotropic spin motive force in α-(BEDT-TTF) 2 I 3 , which is a multi-layered massless Dirac fermion system under pressure. Assuming the interlayer antiferromagnetic interaction and the interlayer anisotropic ferromagnetic interaction, we numerically examine the spin ordered state of the ground state using the steepest descent method. The anisotropic interaction leads to the anisotropic spin ordered state. We calculate the spin motive force produced by the anisotropic spin texture. The result quantitatively agrees with the experiment. (paper)

  8. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method

    Science.gov (United States)

    Huang, Xin; Yin, Chang-Chun; Cao, Xiao-Yue; Liu, Yun-He; Zhang, Bo; Cai, Jing

    2017-09-01

    The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic

  9. Analytical theory and method for longitudinal magneto-optical Kerr effect of optically anisotropic magnetic film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao, E-mail: sps_wangx@ujn.edu.cn [School of Physics and Technology, University of Jinan, Jinan 250022 (China); School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Lian, Jie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China); Li, Ping; Xu, XiJin [School of Physics and Technology, University of Jinan, Jinan 250022 (China); Li, MengMeng [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2017-01-15

    The Fresnel equations are solved to analyze the reflection and propagation properties of the ordinary and extraordinary light of the optically anisotropic magnetic film. Using the boundary and propagation matrix, the longitudinal magneto-optical Kerr rotation expression is derived. After that, simulations are performed on optically anisotropic and isotropic Co/SiO{sub 2} film. Results show that for Co material in the thin-film limit, the anisotropic Co can provide larger max rotations than the isotropic Co in the visible region. This is because that the refractive index discrepancy of optically anisotropic Co film reduces the Fresnel reflective coefficient r{sub pp,} which improves the Kerr rotation. This makes the optically anisotropic Co film more effective in magneto optical sensor design and device fabrication. - Highlights: • In this work, using the boundary matrix and media propagation matrix developed by Zak and S.D.Bader,we get the analytical solution of the magneto-optical Kerr rotation of the optical anisotropic magnetic film. • Results show that for film in the thin-film limit, the anisotropic Co can provide larger maximum rotations than the isotropic Co. • The improvement of Kerr rotation can be attributed to the refractive index discrepancy of optically anisotropic Co film which reduce the Fresnel reflective coefficient rpp.

  10. Anisotropic cosmological solutions in massive vector theories

    Energy Technology Data Exchange (ETDEWEB)

    Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Kase, Ryotaro; Tsujikawa, Shinji, E-mail: Lavinia.heisenberg@googlemail.com, E-mail: r.kase@rs.tus.ac.jp, E-mail: shinji@rs.kagu.tus.ac.jp [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2016-11-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v {sup 2} || φ{sup 2} are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w {sub DE} in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w {sub DE}{sup (iso)} typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.

  11. Anisotropic cosmological solutions in massive vector theories

    International Nuclear Information System (INIS)

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v 2 || φ 2 are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w DE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w DE (iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.

  12. A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting

    Science.gov (United States)

    Wu, Dong; Chen, Qi-Dai; Yao, Jia; Guan, Yong-Chao; Wang, Jian-Nan; Niu, Li-Gang; Fang, Hong-Hua; Sun, Hong-Bo

    2010-02-01

    The study of anisotropic wetting has become one of the most important research areas in biomimicry. However, realization of controlled anisotropic surfaces remains challenging. Here we investigated anisotropic wetting on grooves with different linewidth, period, and height fabricated by laser interference lithography and found that the anisotropy strongly depended on the height. The anisotropy significantly increased from 9° to 48° when the height was changed from 100 nm to 1.3 μm. This was interpreted by a thermodynamic model as a consequence of the increase of free energy barriers versus the height increase. According to the relationship, controlled anisotropic surfaces were rapidly realized by adjusting the grooves' height that was simply accomplished by changing the resin thickness. Finally, the perpendicular contact angle was further enhanced to 131°±2° by surface modification, which was very close to 135°±3° of a common grass leaf.

  13. Sustainability Policy and the Law

    DEFF Research Database (Denmark)

    Karsten, Jens; Reisch, Lucia

    2008-01-01

    Growing awareness of environmental and social concern and the pressing issue of climate change have forcefully re-established sustainability policy as a part of consumer policy. The need for change in consumer behaviour and for more responsible lifestyles on the demand-side of the economy is chal...... of sustainability policy in European politics. Beyond this descriptive purpose the paper thereby purports to frame the debate on sustainability policy and the law on the eve of a new political cycle of the European Union.......Growing awareness of environmental and social concern and the pressing issue of climate change have forcefully re-established sustainability policy as a part of consumer policy. The need for change in consumer behaviour and for more responsible lifestyles on the demand-side of the economy...

  14. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin

    2017-11-24

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  15. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin; Dü ring, Bertram; Kreusser, Lisa Maria; Markowich, Peter A.; Schö nlieb, Carola-Bibiane

    2017-01-01

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  16. DNA-nanoparticle superlattices formed from anisotropic building blocks

    Science.gov (United States)

    Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu; Zhang, Jian; Young, Kaylie L.; Senesi, Andrew J.; Mirkin, Chad A.

    2010-11-01

    Directional bonding interactions in solid-state atomic lattices dictate the unique symmetries of atomic crystals, resulting in a diverse and complex assortment of three-dimensional structures that exhibit a wide variety of material properties. Methods to create analogous nanoparticle superlattices are beginning to be realized, but the concept of anisotropy is still largely underdeveloped in most particle assembly schemes. Some examples provide interesting methods to take advantage of anisotropic effects, but most are able to make only small clusters or lattices that are limited in crystallinity and especially in lattice parameter programmability. Anisotropic nanoparticles can be used to impart directional bonding interactions on the nanoscale, both through face-selective functionalization of the particle with recognition elements to introduce the concept of valency, and through anisotropic interactions resulting from particle shape. In this work, we examine the concept of inherent shape-directed crystallization in the context of DNA-mediated nanoparticle assembly. Importantly, we show how the anisotropy of these particles can be used to synthesize one-, two- and three-dimensional structures that cannot be made through the assembly of spherical particles.

  17. Surface Waves Propagating on Grounded Anisotropic Dielectric Slab

    Directory of Open Access Journals (Sweden)

    Zhuozhu Chen

    2018-01-01

    Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.

  18. INDONESIA SHARI'AH COMPLIANCE STOCK RETURN BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Helma Malini

    2017-04-01

    Full Text Available This study aims to measures the behaviour of Indonesia Shari'ah compliance stock return. The measurement of return behaviour toward volatility will proved the capability of Indonesia Shari'ah compliance toward volatility that happened in Indonesia during the period of observation. Investing in Shari'ah compliance is quite different than investing in conventional stock which followed the capital market set of rules and law, Shari'ah compliance follows not only the capital market set of laws and but also the Islamic principles of principles. Most of the previous studies examine issues related to the conventional stocks and market. The present study take one step further by investigating issue related to Shari'ah compliance instrument. In the case of Shari'ah stock price in Indonesia, the dynamics volatility of the stock price can be minimized by taking an integrated screening process to the listed company, as precautions steps toward volatility

  19. SO-FDTD analysis of anisotropic magnetized plasma

    International Nuclear Information System (INIS)

    Yang Hongwei; Nanjing Univ. of Science and Technology, Nanjing; Yuan Hong; Chen Rushan; Yang Yang

    2007-01-01

    A novel finite-difference time-domain (FDTD) method, called shift operator FDTD (SO-FDTD) method is developed for anisotropic magnetized dispersive media. The recursive relation between operators is used. In this paper, some expressions containing the dielectric constants of magnetized dispersive media are written as rational polynomial function. The SO-FDTD formulation for anisotropic magnetized plasma is derived. The high efficiency and effectiveness of the method are confirmed by computing the reflection and transmission through a magnetized plasma layer, with the direction of the propagation parallel to the direction of the biasing field. A comparison with frequency domain analytic results is included. The CPU time was several times shorter than that of the JEC method. (authors)

  20. Newton–Hooke-type symmetry of anisotropic oscillators

    International Nuclear Information System (INIS)

    Zhang, P.M.; Horvathy, P.A.; Andrzejewski, K.; Gonera, J.; Kosiński, P.

    2013-01-01

    Rotation-less Newton–Hooke-type symmetry, found recently in the Hill problem, and instrumental for explaining the center-of-mass decomposition, is generalized to an arbitrary anisotropic oscillator in the plane. Conversely, the latter system is shown, by the orbit method, to be the most general one with such a symmetry. Full Newton–Hooke symmetry is recovered in the isotropic case. Star escape from a galaxy is studied as an application. -- Highlights: ► Rotation-less Newton–Hooke (NH) symmetry is generalized to an arbitrary anisotropic oscillator. ► The orbit method is used to find the most general case for rotation-less NH symmetry. ► The NH symmetry is decomposed into Heisenberg algebras based on chiral decomposition

  1. Inflationary perturbations in anisotropic, shear-free universes

    International Nuclear Information System (INIS)

    Pereira, Thiago S.; Carneiro, Saulo; Marugan, Guillermo A. Mena

    2012-01-01

    In this work, the linear and gauge-invariant theory of cosmological perturbations in a class of anisotropic and shear-free spacetimes is developed. After constructing an explicit set of complete eigenfunctions in terms of which perturbations can be expanded, we identify the effective degrees of freedom during a generic slow-roll inflationary phase. These correspond to the anisotropic equivalent of the standard Mukhanov-Sasaki variables. The associated equations of motion present a remarkable resemblance to those found in perturbed Friedmann-Robertson-Walker spacetimes with curvature, apart from the spectrum of the Laplacian, which exhibits the characteristic frequencies of the underlying geometry. In particular, it is found that the perturbations cannot develop arbitrarily large super-Hubble modes

  2. Generalized analytic solutions and response characteristics of magnetotelluric fields on anisotropic infinite faults

    Science.gov (United States)

    Bing, Xue; Yicai, Ji

    2018-06-01

    In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.

  3. A magnetic relaxation study on anisotropic reorientation in aqueous polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Mulder, C.W.R.

    1984-01-01

    The present thesis proposes a study on anisotropic reorientation of aqueous polyelectrolyte solutions. In particular, it is directed to the question to what extent information may be obtained on anisotropic reorientation by nuclear magnetic relaxation experiments. The polymethacrylic acid/water system has been chosen as probe system. (Auth.)

  4. Anisotropic magnetoresistance in a Fermi glass

    International Nuclear Information System (INIS)

    Ovadyahu, Z.; Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84120)

    1986-01-01

    Insulating thin films of indium oxide exhibit negative, anisotropic magnetoresistance. The systematics of these results imply that the magnetoresistance mechanism may give different weight to the distribution of the localization lengths than that given by the hopping conductivity

  5. Adaptive anisotropic diffusion filtering of Monte Carlo dose distributions

    International Nuclear Information System (INIS)

    Miao Binhe; Jeraj, Robert; Bao Shanglian; Mackie, Thomas R

    2003-01-01

    The Monte Carlo method is the most accurate method for radiotherapy dose calculations, if used correctly. However, any Monte Carlo dose calculation is burdened with statistical noise. In this paper, denoising of Monte Carlo dose distributions with a three-dimensional adaptive anisotropic diffusion method was investigated. The standard anisotropic diffusion method was extended by changing the filtering parameters adaptively according to the local statistical noise. Smoothing of dose distributions with different noise levels in an inhomogeneous phantom, a conventional and an IMRT treatment case is shown. The resultant dose distributions were analysed using several evaluating criteria. It is shown that the adaptive anisotropic diffusion method can reduce statistical noise significantly (two to five times, corresponding to the reduction of simulation time by a factor of up to 20), while preserving important gradients of the dose distribution well. The choice of free parameters of the method was found to be fairly robust

  6. Cosmological signatures of anisotropic spatial curvature

    International Nuclear Information System (INIS)

    Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo

    2015-01-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature

  7. Cosmological signatures of anisotropic spatial curvature

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  8. Inhomogeneous anisotropic cosmology

    International Nuclear Information System (INIS)

    Kleban, Matthew; Senatore, Leonardo

    2016-01-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  9. The Electrical Resistivity and Acoustic Emission Response Law and Damage Evolution of Limestone in Brazilian Split Test

    Directory of Open Access Journals (Sweden)

    Xinji Xu

    2016-01-01

    Full Text Available The Brazilian split test was performed on two groups of limestone samples with loading directions vertical and parallel to the bedding plane, and the response laws of the electrical resistivity and acoustic emission (AE in the two loading modes were obtained. The test results showed that the Brazilian split test with loading directions vertical and parallel to the bedding showed obviously different results and anisotropic characteristics. On the basis of the response laws of the electrical resistivity and AE, the damage variables based on the electrical resistivity and AE properties were modified, and the evolution laws of the damage variables in the Brazilian split test with different loading directions were obtained. It was found that the damage evolution laws varied with the loading direction. Specifically, in the time-varying curve of the damage variable with the loading direction vertical to the bedding, the damage variable based on electrical resistivity properties showed an obvious damage weakening stage while that based on AE properties showed an abrupt increase under low load.

  10. Longitudinal fluctuations and decorrelation of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  11. Pornography consumption and non-marital sexual behaviour in a sample of young Indonesian university students.

    Science.gov (United States)

    Hald, Gert Martin; Mulya, Teguh Wijaya

    2013-01-01

    Using a sample of Indonesian university students and a cross sectional design, this study investigated prevalence rates and patterns of pornography consumption in Indonesia, a religious, sexually conservative, Muslim-majority nation with strict anti-pornography laws. Further, the association between pornography consumption and common non-marital sexual behaviours was explored. The study found that in this sample, pornography is as widely and readily consumed as in comparable international studies predominantly utilising Western background samples from more sexually liberal and less religious countries with very few laws on pornography. Gender differences in patterns of pornography consumption were pronounced and comparable with findings in international counterpart studies. For men only, pornography consumption was found to significantly predict common sexual behaviours in non-marital relations. The study is the first to provide insights into prevalence rates and patterns of pornography consumption and its association with common non-marital sexual behaviours in a sexually conservative, Muslim-majority nation with strict anti-pornography laws.

  12. Crime and Punishment in Igbo Customary Law: The Challenge of ...

    African Journals Online (AJOL)

    Crime and Punishment in Igbo Customary Law: The Challenge of Nigerian ... has its own means of controlling the social behaviour of its citizens in order to reach ... of the customary practices are immersed gives an added fillip to this disregard.

  13. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....

  14. Anisotropic stress as a signature of nonstandard propagation of gravitational waves.

    Science.gov (United States)

    Saltas, Ippocratis D; Sawicki, Ignacy; Amendola, Luca; Kunz, Martin

    2014-11-07

    We make precise the heretofore ambiguous statement that anisotropic stress is a sign of a modification of gravity. We show that in cosmological solutions of very general classes of models extending gravity-all scalar-tensor theories (Horndeski), Einstein-aether models, and bimetric massive gravity-a direct correspondence exists between perfect fluids apparently carrying anisotropic stress and a modification in the propagation of gravitational waves. Since the anisotropic stress can be measured in a model-independent manner, a comparison of the behavior of gravitational waves from cosmological sources with large-scale-structure formation could, in principle, lead to new constraints on the theory of gravity.

  15. Anisotropic Failure Strength of Shale with Increasing Confinement: Behaviors, Factors and Mechanism.

    Science.gov (United States)

    Cheng, Cheng; Li, Xiao; Qian, Haitao

    2017-11-15

    Some studies reported that the anisotropic failure strength of shale will be weakened by increasing confinement. In this paper, it is found that there are various types of anisotropic strength behaviors. Four types of anisotropic strength ratio ( S A 1 ) behaviors and three types of anisotropic strength difference ( S A 2 ) behaviors have been classified based on laboratory experiments on nine groups of different shale samples. The cohesion c w and friction angle ϕ w of the weak planes are proven to be two dominant factors according to a series of bonded-particle discrete element modelling analyses. It is observed that shale is more prone to a slight increase of S A 1 and significant increase of S A 2 with increasing confinement for higher cohesion c w and lower to medium friction angle ϕ w . This study also investigated the mechanism of the anisotropic strength behaviors with increasing confinement. Owing to different contributions of c w and ϕ w under different confinements, different combinations of c w and ϕ w may have various types of influences on the minimum failure strength with the increasing confinement; therefore, different types of anisotropic behaviors occur for different shale specimens as the confinement increases. These findings are very important to understand the stability of wellbore and underground tunneling in the shale rock mass, and should be helpful for further studies on hydraulic fracture propagations in the shale reservoir.

  16. An optimization-based framework for anisotropic simplex mesh adaptation

    Science.gov (United States)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  17. Study of anisotropic mechanical properties for aeronautical PMMA

    Directory of Open Access Journals (Sweden)

    Wei Shang

    Full Text Available For the properties of polymer are relative to its structure, the main purpose of the present work is to investigate the mechanical properties of the aeronautical PMMA which has been treated by the directional tensile technology. Isodyne images reveal the stress state in directional PMMA. And then, an anisotropic mechanical model is established. Furthermore, all mechanical parameters are measured by the digital image correlation method. Finally, based on the anisotropic mechanical model and mechanical parameters, the FEM numerical simulation and experimental methods are applied to analyze the fracture mechanical properties along different directions.

  18. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    Science.gov (United States)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  19. MHz gravitational waves from short-term anisotropic inflation

    International Nuclear Information System (INIS)

    Ito, Asuka; Soda, Jiro

    2016-01-01

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10 −26 ∼10 −27 are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  20. Neurocriminology: implications for the punishment, prediction and prevention of criminal behaviour.

    Science.gov (United States)

    Glenn, Andrea L; Raine, Adrian

    2014-01-01

    Criminal behaviour and violence are increasingly viewed as worldwide public health problems. A growing body of knowledge shows that criminal behaviour has a neurobiological basis, and this has intensified judicial interest in the potential application of neuroscience to criminal law. It also gives rise to important questions. What are the implications of such application for predicting future criminal behaviour and protecting society? Can it be used to prevent violence? And what are the implications for the way offenders are punished?

  1. Thermal fluctuations and critical behavior in a magnetized, anisotropic plasma

    International Nuclear Information System (INIS)

    Hazeltine, R. D.; Mahajan, S. M.

    2013-01-01

    Thermal fluctuations in a magnetized, anisotropic plasma are studied by applying standard methods, based on the Einstein rule, to the known thermodynamic potential of the system. It is found in particular that magnetic fluctuations become critical when the anisotropy p ∥ −p ⊥ changes sign. By examining the critical region, additional insight on the equations of state for near-critical anisotropic plasma is obtained

  2. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan; Wu, Ying

    2015-01-01

    -dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided

  3. Casimir interactions for anisotropic magnetodielectric metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Da Rosa, Felipe S [Los Alamos National Laboratory; Dalvit, Diego A [Los Alamos National Laboratory; Milonni, Peter W [Los Alamos National Laboratory

    2008-01-01

    We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.

  4. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-01-01

    these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing

  5. On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas

    Directory of Open Access Journals (Sweden)

    L.-N. Hau

    2007-09-01

    Full Text Available Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.

  6. Anisotropic modelling of the electrical conductivity of fractured bedrock

    International Nuclear Information System (INIS)

    Flykt, M.J.; Sihvola, A.H.; Eloranta, E.H.

    1995-01-01

    The electromagnetic characterization of fractured bedrock is of importance when studying the final disposal of nuclear waste. The different types of discontinuities at all scales in rocks can be viewed as an inhomogeneity. In some cases there are reasons to assume the influence of the discontinuities on electrical conductivity is anisotropic in character. The effort has been made to use electromagnetic mixing rules in the definition of an equivalent homogeneous anisotropic conductivity tensor for such fractured rock mass. (author) (16 refs., 6 figs.)

  7. Fourier Multipliers on Anisotropic Mixed-Norm Spaces of Distributions

    DEFF Research Database (Denmark)

    Cleanthous, Galatia; Georgiadis, Athanasios; Nielsen, Morten

    2018-01-01

    A new general Hormander type condition involving anisotropies and mixed norms is introduced, and boundedness results for Fourier multi- pliers on anisotropic Besov and Triebel-Lizorkin spaces of distributions with mixed Lebesgue norms are obtained. As an application, the continuity of such operat......A new general Hormander type condition involving anisotropies and mixed norms is introduced, and boundedness results for Fourier multi- pliers on anisotropic Besov and Triebel-Lizorkin spaces of distributions with mixed Lebesgue norms are obtained. As an application, the continuity...

  8. Features of the electric-field distribution in anisotropic semiconductor wafers in a transverse magnetic field

    International Nuclear Information System (INIS)

    Filippov, V. V.; Bormontov, E. N.

    2013-01-01

    A macroscopic model of the Hall effects and magnetoresistance in anisotropic semiconductor wafers is developed. The results obtained by solving the electrodynamic boundary problem allow the potential and eddy currents in anisotropic semiconductors to be calculated at different current-contact locations, depending on the parameters of the sample material’s anisotropy. The results of this study are of great practical importance for investigating the physical properties of anisotropic semiconductors and simulating the electron-transport phenomena in devices based on anisotropic semiconductors

  9. Features of the electric-field distribution in anisotropic semiconductor wafers in a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. V., E-mail: wwfilippow@mail.ru [Lipetsk State Pedagogical University (Russian Federation); Bormontov, E. N. [Voronezh State University (Russian Federation)

    2013-07-15

    A macroscopic model of the Hall effects and magnetoresistance in anisotropic semiconductor wafers is developed. The results obtained by solving the electrodynamic boundary problem allow the potential and eddy currents in anisotropic semiconductors to be calculated at different current-contact locations, depending on the parameters of the sample material's anisotropy. The results of this study are of great practical importance for investigating the physical properties of anisotropic semiconductors and simulating the electron-transport phenomena in devices based on anisotropic semiconductors.

  10. 1-D DC Resistivity Modeling and Interpretation in Anisotropic Media Using Particle Swarm Optimization

    Science.gov (United States)

    Pekşen, Ertan; Yas, Türker; Kıyak, Alper

    2014-09-01

    We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.

  11. Nonlinear, anisotropic, and giant photoconductivity in intrinsic and doped graphene

    Science.gov (United States)

    Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit

    2018-01-01

    We present a framework to calculate the anisotropic and nonlinear photoconductivity for two band systems with application to graphene. In contrast to the usual perturbative (second order in the optical field strength) techniques, we calculate photoconductivity to all orders in the optical field strength. In particular, for graphene, we find the photoresponse to be giant (at large optical field strengths) and anisotropic. The anisotropic photoresponse in graphene is correlated with polarization of the incident field, with the response being similar to that of a half-wave plate. We predict that the anisotropy in the simultaneous measurement of longitudinal (σx x) and transverse (σy x) photoconductivity, with four probes, offers a unique experimental signature of the photovoltaic response, distinguishing it from the thermal-Seebeck and bolometric effects in photoresponse.

  12. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, Ramzi

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.

  13. The power of law : Spinoza’s contribution to legal theory

    NARCIS (Netherlands)

    Gribnau, J.L.M.

    1995-01-01

    Spinoza’s legal theoretical ideas are based on psychological and sociological regularities in human behaviour of knowledge. His naturalistic and descriptive approach of the relationship between law and power shows that the exercise of state power on that basis - within the constitutional constraints

  14. Influence of the growth process on some laws deduced from percolation theory

    International Nuclear Information System (INIS)

    Hachi, M.; Olivier, G.

    1985-09-01

    A brutal application of the percolation theory to some physical problems can lead to erroneous interpretation of the experimental results. Among these problems, the influence of the growth process on the percolation laws is studied. The behaviour of nsub(s)(t), the number of clusters of size s, at time t, is analyzed and linked to a macroscopic property of the system for a comparison to experimental laws. (author)

  15. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    A hollow-core fiber using anisotropic anti-resonant tubes in thecladding is proposed for low loss and effectively single-mode guidance. We show that the loss performance and higher-order mode suppression is significantly improved by using symmetrically distributed anisotropic antiresonant tubes i...

  16. [Significance of mobbing in Italian law].

    Science.gov (United States)

    Bollani, A

    2008-01-01

    The author analyzes the juridical profile that the phenomenon of mobbing assumes within the Italian legal system, emphasizing that the English term of current usage does not designate any specific legal entity as such but simply refers, in summary fashion, to deeds and behaviours that need to be qualified according to the law in vigour. The normative frame of reference for mobbing is found in article 2087 of the Civil code, which states, as an open, teleologically oriented norm, the employer's obligation to safeguard the moral person of the employee; hence the onus is on the interpreter, essentially, to evaluate if there has been, in actual fact, a contravention of this safeguarded legal right. The author then discusses profiles that intersect with mobbing (or behaviours perceived as such) drawing on other cases regulated by the law such as the safeguarding of professionality (art. 2103 of the Civil code), and underlines that often mobbing ends by being construed as a mere accompaniment to, if not duplication of, other typical cases. Finally, the author discusses aspects of the judicial process related to the allegation and proof of the facts constituting the offence, and to the damage, in its various non patrimonial components.

  17. Algebraic collapsing acceleration of the characteristics method with anisotropic scattering

    International Nuclear Information System (INIS)

    Le Tellier, R.; Hebert, A.; Roy, R.

    2004-01-01

    In this paper, the characteristics solvers implemented in the lattice code Dragon are extended to allow a complete anisotropic treatment of the collision operator. An efficient synthetic acceleration method, called Algebraic Collapsing Acceleration (ACA), is presented. Tests show that this method can substantially speed up the convergence of scattering source iterations. The effect of boundary conditions, either specular or white reflections, on anisotropic scattering lattice-cell problems is also considered. (author)

  18. A study on the effective hydraulic conductivity of an anisotropic porous medium

    International Nuclear Information System (INIS)

    Seong, Kwan Jae

    2002-01-01

    Effective hydraulic conductivity of a statistically anisotropic heterogeneous medium is obtained for steady two-dimensional flows employing stochastic analysis. Flow equations are solved up to second order and the effective conductivity is obtained in a semi-analytic form depending only on the spatial correlation function and the anisotropy ratio of the hydraulic conductivity field, hence becoming a true intrinsic property independent of the flow field. Results are obtained using a statistically anisotropic Gaussian correlation function where the anisotropic is defined as the ratio of integral scales normal and parallel to the mean flow direction. Second order results indicate that the effective conductivity of an anisotropic medium is greater than that of an isotropic one when the anisotropy ratio is less than one and vice versa. It is also found that the effective conductivity has upper and lower bounds of the arithmetic and the harmonic mean conductivities

  19. Non-linear behaviour of multi-phase MOX fuels: a micro-mechanical approach

    International Nuclear Information System (INIS)

    Rousette, S.; Gatt, J.M.; Michel, J.C.

    2005-01-01

    The modelling of mechanical pellet-clad interaction requires knowledge of the thermo-mechanical behaviour of nuclear fuels. Some nuclear fuels such as MOX are composed of several phases. The mechanical properties of these phases, which are elasto-visco-plastic in-pile, are changing in-pile. The objective is to formulate a mechanical behaviour law taking all the physical phenomena into account in the different phases, which can easily be introduced into a fuel rod modelling code. Consequently, Non-uniform Transformation Field Analysis (NTFA) is used on the one hand, to correctly capture the heterogeneity of the anelastic strain in the different phases and, on the other hand, to provide a simple overall constitutive law for computational codes. This method is a good way to describe the behaviour of MOX fuel. Transformation Field Analysis (TFA), which corresponds to piecewise uniform transformation fields, is used to perform a sensitivity study. (authors)

  20. Analytical Method and Semianalytical Method for Analysis of Scattering by Anisotropic Sphere: A Review

    Directory of Open Access Journals (Sweden)

    Chao Wan

    2012-01-01

    Full Text Available The history of methods for the electromagnetic scattering by an anisotropic sphere has been reviewed. Two main methods, angular expansion method and T-matrix method, which are widely used for the anisotropic sphere, are expressed in Cartesian coordinate firstly. The comparison of those and the further exploration on the scattering field are illustrated afterwards. Based on the most general form concluded by variable separation method, the coupled electric field and magnetic field of radial anisotropic sphere can be derived. By simplifying the condition, simpler case of uniaxial anisotropic media is expressed with confirmed coefficients for the internal and external field. Details of significant phenomenon are presented.

  1. Numerical Investigations On The Seismic Behaviour Of Confined Masonry Walls

    International Nuclear Information System (INIS)

    Calderini, Chiara; Cattari, Serena; Lagomarsino, Sergio

    2008-01-01

    In the last century, severe earthquakes highlighted the seismic vulnerability of unreinforced masonry buildings. Many technological innovations have been introduced in time in order to improve resistance, ductility, and dissipation properties of this type of constructions. The most widely diffused are reinforced masonry and confined masonry. Damage observation of recent earthquakes demonstrated the effectiveness of the response of confined masonry structures to seismic actions. In general, in this type of structures, reinforced concrete beams and columns are not main structural elements, however, they have the following functions: to confine masonry in order to increase its ductility; to bear tensile stresses derived from bending; to contrast the out-of-plane overturning of masonry panels. It is well evident that these functions are as much effectively performed as the connection between masonry and reinforced concrete elements is good (for example by mean of local interlocking or reinforcements). Confined masonry structures have been extensively studied in the last decades both from a theoretical point of view and by experimental tests Aims of this paper is to give a contribution to the understanding of the seismic behaviour of confined masonry walls by means of numerical parametrical analyses. There latter are performed by mean of the finite element method; a nonlinear anisotropic constitutive law recently developed for masonry is adopted. Comparison with available experimental results are carried out in order to validate the results. A comparison between the resistance obtained from the numerical analyses and the prevision provided by simplified resistance criteria proposed in literature and in codes is finally provided

  2. Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs

  3. Van der Waals Attraction of Vortices in Anisotropic and Layered Superconductors

    International Nuclear Information System (INIS)

    Blatter, G.; Geshkenbein, V.

    1996-01-01

    We show that in anisotropic and layered superconductors the fluctuations of vortex lines produce an attractive long-range vortex-vortex interaction of the van der Waals type. This attraction follows from the anisotropic screening properties of the material and has profound consequences for the low-field phase diagram of these materials. copyright 1996 The American Physical Society

  4. Gauss law constraints on Debye–Hückel screening

    Indian Academy of Sciences (India)

    We demand that the Gauss law at the edge must be obeyed by the electric potential () generated within a neutral plasma/electrolyte of strictly finite size by the introduction of a test charge b. Our proposal has the nice features that total ionic numbers are conserved, the point-Coulomb behaviour of () is guaranteed at ...

  5. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing

    Energy Technology Data Exchange (ETDEWEB)

    Asuncion, Maria Christine Tankeh, E-mail: christine.asuncion@u.nus.edu [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. - Highlights: • Silk/gelatin scaffolds with unidirectional alignment were fabricated using a simple and scalable process • Presence of gelatin in silk resulted to lesser shrinkage, better water retention and improved cell proliferation. • Mesenchymal stem cells were shown to align themselves according to the fiber alignment.

  6. Double-grooved nanofibre surfaces with enhanced anisotropic hydrophobicity.

    Science.gov (United States)

    Liang, Meimei; Chen, Xin; Xu, Yang; Zhu, Lei; Jin, Xiangyu; Huang, Chen

    2017-11-02

    This study reports a facile method for fabricating double-grooved fibrous surfaces. The primary grooves of the surface are formed by aligned fibres, while the secondary grooves are achieved by oriented nanogrooves on the fibre surface. Investigation into the formation mechanism reveals that the nanogrooves can be readily tailored through adjusting the solvent ratio and relative humidity. With this understanding, a variety of polymers have been successfully electrospun into fibres having the same nanogrooved feature. These fibres show high resemblance to natural hierarchical structures, and thereby endowing the corresponding double-grooved surface with enhanced anisotropic hydrophobicity. A water droplet at a parallel direction to the grooves exhibits a much higher contact angle and a lower roll-off angle than the droplet at a perpendicular direction. The application potential of such anisotropic hydrophobicity has been demonstrated via a fog collection experiment, in which the double-grooved surface can harvest the largest amount of water. Moreover, the fabrication method requires neither post-treatment nor sophisticated equipment, making us anticipate that the double-grooved surface would be competitive in areas where a highly ordered surface, a large surface area and an anisotropic hydrophobicity are preferred.

  7. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  8. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-04-30

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  9. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  10. Fractionaly Integrated Flux model and Scaling Laws in Weather and Climate

    Science.gov (United States)

    Schertzer, Daniel; Lovejoy, Shaun

    2013-04-01

    The Fractionaly Integrated Flux model (FIF) has been extensively used to model intermittent observables, like the velocity field, by defining them with the help of a fractional integration of a conservative (i.e. strictly scale invariant) flux, such as the turbulent energy flux. It indeed corresponds to a well-defined modelling that yields the observed scaling laws. Generalised Scale Invariance (GSI) enables FIF to deal with anisotropic fractional integrations and has been rather successful to define and model a unique regime of scaling anisotropic turbulence up to planetary scales. This turbulence has an effective dimension of 23/9=2.55... instead of the classical hypothesised 2D and 3D turbulent regimes, respectively for large and small spatial scales. It therefore theoretically eliminates a non plausible "dimension transition" between these two regimes and the resulting requirement of a turbulent energy "mesoscale gap", whose empirical evidence has been brought more and more into question. More recently, GSI-FIF was used to analyse climate, therefore at much larger time scales. Indeed, the 23/9-dimensional regime necessarily breaks up at the outer spatial scales. The corresponding transition range, which can be called "macroweather", seems to have many interesting properties, e.g. it rather corresponds to a fractional differentiation in time with a roughly flat frequency spectrum. Furthermore, this transition yields the possibility to have at much larger time scales scaling space-time climate fluctuations with a much stronger scaling anisotropy between time and space. Lovejoy, S. and D. Schertzer (2013). The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge Press (in press). Schertzer, D. et al. (1997). Fractals 5(3): 427-471. Schertzer, D. and S. Lovejoy (2011). International Journal of Bifurcation and Chaos 21(12): 3417-3456.

  11. Longitudinal disordering of vortex lattices in anisotropic superconductors

    International Nuclear Information System (INIS)

    Harshman, D.R.; Brandt, E.H.; Fiory, A.T.; Inui, M.; Mitzi, D.B.; Schneemeyer, L.F.; Waszczak, J.V.

    1993-01-01

    Vortex disordering in superconducting crystals is shown to be markedly sensitive to penetration-depth anisotropy. At low temperature and high magnetic field, the muon-spin-rotation spectra for the highly anisotropic Bi 2 Sr 2 CaCu 2 O 8+δ material are found to be anomalously narrow and symmetric about the applied field, in a manner consistent with a layered vortex sublattice structure with pinning-induced misalignment between layers. In contrast, spectra for the less-anisotropic YBa 2 Cu 3 O 7-δ compounds taken at comparable fields are broader and asymmetric, showing that the vortex lattices are aligned parallel to the applied-field direction

  12. An anisotropic diffusion approximation to thermal radiative transfer

    International Nuclear Information System (INIS)

    Johnson, Seth R.; Larsen, Edward W.

    2011-01-01

    This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)

  13. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing

    2016-01-01

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  14. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.

    2015-12-17

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  15. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian

    2016-01-15

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  16. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  17. Anisotropic swim stress in active matter with nematic order

    Science.gov (United States)

    Yan, Wen; Brady, John F.

    2018-05-01

    Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.

  18. Anisotropic temperature relaxation of plasmas in an external magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1977-01-01

    The magnetized kinetic equation derived in an earlier paper (Hassan and Watson, 1977) is used to study the problem of relaxation of anisotropic electron and ion temperatures in a magnetized plasma. In the case of anisotropic electron temperature relaxation, it is shown that for small anisotropies the exchange of energy within the electrons between the components parallel and perpendicular to the magnetic field direction determine the relaxation rate. For anisotropic ion temperature relaxation it is shown that the essential mechanism for relaxation is provided by energy transfer between ions and electrons, and that the expression for the relaxation rate perpendicular to the magnetic field contains a significant term proportional to ln eta 0 ln (msub(e)/msub(i)) (where eta 0 = Ωsub(e)/ksub(D)Vsub(e perpendicular to)), in addition to the term proportional to the Coulomb logarithm. (author)

  19. Anisotropic magnetoelectric characteristics in five-layer magnetization-graded multiferroic composites

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-05-01

    Full Text Available We investigate the anisotropic magnetoelectric(ME characteristics for the five-layer magnetization-graded multiferroic composites(MGMC. The magnetic anisotropy and corresponding anisotropic magnetomechanical effect, demagnetization effect and magneto-mechanical damping’s dependence on magnetic field direction result in an obvious anisotropic ME coupling effect. The experimental results show that ME voltage coefficient in H33 mode is remarkably larger than the other ones (H11, H31 and H13 over the whole Hdc range. Correspondingly, ∂VME/∂Hdc arrives about 420mV/Oe at an optimum bias magnetic field of 46Oe, which is approximately 40 times larger than that of the previous reported composite. Furthermore, it also demonstrates an obvious angular dependence on dc magnetic field. Taking advantage of these specifications, the MGMC can be used to detect weak dc magnetic field and its spatial orientation.

  20. δ M formalism and anisotropic chaotic inflation power spectrum

    Science.gov (United States)

    Talebian-Ashkezari, A.; Ahmadi, N.

    2018-05-01

    A new analytical approach to linear perturbations in anisotropic inflation has been introduced in [A. Talebian-Ashkezari, N. Ahmadi and A.A. Abolhasani, JCAP 03 (2018) 001] under the name of δ M formalism. In this paper we apply the mentioned approach to a model of anisotropic inflation driven by a scalar field, coupled to the kinetic term of a vector field with a U(1) symmetry. The δ M formalism provides an efficient way of computing tensor-tensor, tensor-scalar as well as scalar-scalar 2-point correlations that are needed for the analysis of the observational features of an anisotropic model on the CMB. A comparison between δ M results and the tedious calculations using in-in formalism shows the aptitude of the δ M formalism in calculating accurate two point correlation functions between physical modes of the system.

  1. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi

    2013-08-19

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it\\'s kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  2. Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Jiang Weixiang; Cui Tiejun

    2010-01-01

    We show experimentally that a line source in an anisotropic metamaterial directly radiates planar electromagnetic waves instead of cylindrical waves, when one component of the permeability tensor approaches zero. The impedance of this material can be perfectly matched to that of free space, which can significantly reduce the reflections between the source and the superstrate, as in traditional highly directive antennas based on zero index metamaterials. Such a unique property determines the two-way propagation of electromagnetic waves excited by a line source, instead of all-way propagation. From this feature, a highly directive emission of electromagnetic waves is achieved using the anisotropic metamaterial with arbitrary shape. We have designed and fabricated the anisotropic metamaterial in the microwave region, and observed the generation of plane waves and their highly directive emission. The proposed plane-wave emission is independent of the shape variance of the anisotropic metamaterial, which can be utilized in the design of conformal antennas.

  3. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2013-01-01

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it's kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  4. Can draconian law enforcement solve the South African Road Safety crisis?

    CSIR Research Space (South Africa)

    Mohammed, SO

    2008-07-01

    Full Text Available Traffic law enforcement has been defined as the area of activity aimed at controlling road user behaviour by preventive, persuasive and punitive measures in order to effect the safe and efficient movement of traffic. The Department of Transport...

  5. Anisotropic Interactions between Cold Rydberg Atoms

    Science.gov (United States)

    2015-09-28

    AFRL-AFOSR-CL-TR-2015-0002 Anisotropic interactions between cold Rydberg atoms Luis Marcassa INSTITUTO DE FISICA DE SAO CARLOS Final Report 09/28...problem with the report +551633739806 Organization / Institution name Instituto de Fisica de Sao Carlos Grant/Contract Title The full title of the

  6. TOPICAL REVIEW Textured silicon nitride: processing and anisotropic properties

    Directory of Open Access Journals (Sweden)

    Xinwen Zhu and Yoshio Sakka

    2008-01-01

    Full Text Available Textured silicon nitride (Si3N4 has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW and templated grain growth (TGG. The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3 N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured

  7. Ultraviolet laser-induced voltage in anisotropic shale

    Science.gov (United States)

    Miao, Xinyang; Zhu, Jing; Li, Yizhang; Zhao, Kun; Zhan, Honglei; Yue, Wenzheng

    2018-01-01

    The anisotropy of shales plays a significant role in oil and gas exploration and engineering. Owing to various problems and limitations, anisotropic properties were seldom investigated by direct current resistivity methods. Here in this work, a 248 nm ultraviolet laser was employed to assess the anisotropic electrical response of a dielectric shale. Angular dependence of laser-induced voltages (V p) were obtained, with a data symmetry at the location of 180° and a ~62.2% V p anisotropy of the sample. The double-exponential functions have provided an explanation for the electrical field controlled carrier transportation process in horizontal and vertical directions. The results demonstrate that the combination of optics and electrical logging analysis (Opti-electrical Logging) is a promising technology for the investigation of unconventional reservoirs.

  8. Transient electromagnetic scattering on anisotropic media

    International Nuclear Information System (INIS)

    Stewart, R.D.

    1990-01-01

    This dissertation treats the problem of transient scattering of obliquely incident electromagnetic plane waves on a stratified anisotropic dielectric slab. Scattering operators are derived for the reflective response of the medium. The internal fields are calculated. Wave splitting and invariant imbedding techniques are used. These techniques are first presented for fields normally incident on a stratified, isotropic dielectric medium. The techniques of wave splitting and invariant imbedding are applied to normally incident plane waves on an anisotropic medium. An integro-differential equation is derived for the reflective response and the direct and inverse scattering problems are discussed. These techniques are applied to the case of obliquely incident plane waves. The reflective response is derived and the direct and inverse problems discussed and compared to those for the normal incidence case. The internal fields are investigated for the oblique incidence via a Green's function approach. A numerical scheme is presented to calculate the Green's function. Finally, symmetry relations of the reflective response are discussed

  9. Models of fragmentation with composite power laws

    Science.gov (United States)

    Tavassoli, Z.; Rodgers, G. J.

    1999-06-01

    Some models for binary fragmentation are introduced in which a time dependent transition size produces two regions of fragment sizes above and below the transition size. In the first model we assume a fixed rate of fragmentation for the largest fragment and two different rates of fragmentation in the two regions of sizes above and below the transition size. The model is solved exactly in the long time limit to reveal stable time-invariant solutions for the fragment size and mass distributions. These solutions exhibit composite power law behaviours; power laws with two different exponents for fragments in smaller and larger regions. A special case of the model with no fragmentation in the smaller size region is also examined. Another model is also introduced which have three regions of fragment sizes with different rates of fragmentation. The similarities between the stable distributions in our models and composite power law distributions from experimental work on shock fragmentation of long thin glass rods and thick clay plates are discussed.

  10. FDTD analysis of 3-D conducting target coated by anisotropic magnetized plasma

    International Nuclear Information System (INIS)

    Xu Lijun; Liu Shaobin; Mo Jinjun; Yuan Naichang

    2006-01-01

    The JEC finite-difference time-domain (JEC-FDTD) method is extended to three dimensional anisotropic dispersive media- the magnetized plasma. The problem which incorporates both anisotropy and frequency dispersion at the same time is solved for the electromagnetic wave propagation. The three dimensional JEC-FDTD formulations for anisotropic magnetized plasma are derived. The method is applied to the electromagnetic scattering of dihedral corner reflector and sphere-cone coated with anisotropic magnetized plasma. By simulating the interaction of electromagnetic wave with magnetized plasma, some numerical results are obtained, which indicate that an appropriate plasma coating may efficiently reduce the RCS of a metallic target. (authors)

  11. Do wealth distributions follow power laws? Evidence from ‘rich lists’

    Science.gov (United States)

    Brzezinski, Michal

    2014-07-01

    We use data on the wealth of the richest persons taken from the 'rich lists' provided by business magazines like Forbes to verify if the upper tails of wealth distributions follow, as often claimed, a power-law behaviour. The data sets used cover the world's richest persons over 1996-2012, the richest Americans over 1988-2012, the richest Chinese over 2006-2012, and the richest Russians over 2004-2011. Using a recently introduced comprehensive empirical methodology for detecting power laws, which allows for testing the goodness of fit as well as for comparing the power-law model with rival distributions, we find that a power-law model is consistent with data only in 35% of the analysed data sets. Moreover, even if wealth data are consistent with the power-law model, they are usually also consistent with some rivals like the log-normal or stretched exponential distributions.

  12. Monte carlo simulation of anisotropic grain growth in liquid phase sintering

    International Nuclear Information System (INIS)

    Han, Yoon Soo; Kim, Do Kyung

    2003-01-01

    One of the key techniques in modern engineering ceramic system is microstructural control of anisotropic grain growth because grain orientation and shape proved to have an influence on mechanic, dielectric and electric behavior of ceramics. But until now, computer simulation for grain growth has not sufficiently addressed to this subject. The reason is that simulation algorithm was laborious because it has to contain mass transfer through liquid phase and especially anisotropic grain growth has to be considered based on interfacial properties in real system. The goal of present study is simulation of anisotropic grain growth in liquid phase by Q-states model. To give anisotropic inherency to grains, constraint on mobility to specific boundaries was applied. For comparison, we measured grain size distribution and deduced grain growth kinetics from relation ship between average grain size and time. As a result, the grain size distribution functions become broader and the peak height decreases as the anisotropy is increased. The growth exponent 0.67 and 0.47 found by linear fitting have slightly different values in comparison with work of Grest et al. but similar is trend to the decrease of exponent with anisotropy

  13. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  14. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  15. Anisotropic fractal media by vector calculus in non-integer dimensional space

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2014-01-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media

  16. Influence of copper foil polycrystalline structure on graphene anisotropic etching

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kamal P. [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Mahyavanshi, Rakesh D. [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2017-01-30

    Graphical abstract: Hexagonal hole formation with anisotropic etching independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. - Highlights: • Reveal the influence of copper polycrystalline structure on anisotropic etching of graphene. • Hexagonal hole formation with etching is observed to be independent of stripes and wrinkles in graphene. • Variation in etched pattern of graphene depending on the base Cu grain is confirmed. • This finding will help to understand the nature of microscopic etched pattern in graphene. - Abstract: Anisotropic etching of graphene and other two dimensional materials is an important tool to understand the growth process as well as enabling fabrication of various well-defined structures. Here, we reveal the influence of copper foil polycrystalline structure on anisotropic etching process of as-synthesized graphene. Graphene crystals were synthesized on the polycrystalline Cu foil by a low-pressure chemical vapor deposition (LPCVD) system. Microscopic analysis shows difference in shape, size and stripes alignment of graphene crystals with dissimilar nucleation within closure vicinity of neighboring Cu grains. Post-growth etching of such graphene crystals also significantly affected by the crystallographic nature of Cu grains as observed by the field emission scanning electron microscope (FE-SEM) and electron back scattered diffraction (EBSD) analysis. Hexagonal hole formation with anisotropic etching is observed to be independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. The findings can facilitate to understand the nature of microscopic etched pattern depending on metal

  17. Influence of copper foil polycrystalline structure on graphene anisotropic etching

    International Nuclear Information System (INIS)

    Sharma, Kamal P.; Mahyavanshi, Rakesh D.; Kalita, Golap; Tanemura, Masaki

    2017-01-01

    Graphical abstract: Hexagonal hole formation with anisotropic etching independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. - Highlights: • Reveal the influence of copper polycrystalline structure on anisotropic etching of graphene. • Hexagonal hole formation with etching is observed to be independent of stripes and wrinkles in graphene. • Variation in etched pattern of graphene depending on the base Cu grain is confirmed. • This finding will help to understand the nature of microscopic etched pattern in graphene. - Abstract: Anisotropic etching of graphene and other two dimensional materials is an important tool to understand the growth process as well as enabling fabrication of various well-defined structures. Here, we reveal the influence of copper foil polycrystalline structure on anisotropic etching process of as-synthesized graphene. Graphene crystals were synthesized on the polycrystalline Cu foil by a low-pressure chemical vapor deposition (LPCVD) system. Microscopic analysis shows difference in shape, size and stripes alignment of graphene crystals with dissimilar nucleation within closure vicinity of neighboring Cu grains. Post-growth etching of such graphene crystals also significantly affected by the crystallographic nature of Cu grains as observed by the field emission scanning electron microscope (FE-SEM) and electron back scattered diffraction (EBSD) analysis. Hexagonal hole formation with anisotropic etching is observed to be independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. The findings can facilitate to understand the nature of microscopic etched pattern depending on metal

  18. Slip sliding away: Promoting ethical behaviours in soccer ...

    African Journals Online (AJOL)

    Slip sliding away: Promoting ethical behaviours in soccer. ... African Journal for Physical Activity and Health Sciences ... after the 2010 Soccer World Cup, has led to increased demands on sport organisations, coaches and players ... While the natural law steers individuals to act morally, a performance ethic motivates many ...

  19. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    Science.gov (United States)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority

  20. The Cn method applied to problems with an anisotropic diffusion law

    International Nuclear Information System (INIS)

    Grandjean, P.M.

    A 2-dimensional Cn calculation has been applied to homogeneous media subjected to the Rayleigh impact law. Results obtained with collision probabilities and Chandrasekhar calculations are compared to those from Cn method. Introducing in the expression of the transport equation, an expansion truncated on a polynomial basis for the outgoing angular flux (or possibly entrance flux) gives two Cn systems of algebraic linear equations for the expansion coefficients. The matrix elements of these equations are the moments of the Green function in infinite medium. The search for the Green function is effected through the Fourier transformation of the integrodifferential equation and its moments are derived from their Fourier transforms through a numerical integration in the complex plane. The method has been used for calculating the albedo in semi-infinite media, the extrapolation length of the Milne problem, and the albedo and transmission factor of a slab (a concise study of convergence is presented). A system of integro-differential equations bearing on the moments of the angular flux inside the medium has been derived, for the collision probability method. It is numerically solved with approximately the bulk flux by step functions. The albedo in semi-infinite medium has also been computed through the semi-analytical Chandrasekhar method. In the latter, the outgoing flux is expressed as a function of the entrance flux by means of a integral whose kernel is numerically derived [fr

  1. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying; Mei, Jun; Sheng, Ping

    2012-01-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle

  2. Stochastic kinetics reveal imperative role of anisotropic interfacial tension to determine morphology and evolution of nucleated droplets in nematogenic films

    Science.gov (United States)

    Bhattacharjee, Amit Kumar

    2017-01-01

    For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. The nucleation process in liquid crystals is less understood. We numerically investigate nucleation in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the morphology and kinetic pathway in spontaneous formation and growth of droplets of the stable phase in the metastable background. The parameter κ that quantifies the anisotropic elastic energy plays a central role in determining the geometric structure of the droplets. Noncircular nematic droplets with homogeneous director orientation are nucleated in a background of supercooled isotropic phase for small κ. For large κ, noncircular droplets with integer topological charge, accompanied by a biaxial ring at the outer surface, are nucleated. The isotropic droplet shape in a superheated nematic background is found to depend on κ in a similar way. Identical growth laws are found in the two cases, although an unusual two-stage mechanism is observed in the nucleation of isotropic droplets. Temporal distributions of successive events indi- cate the relevance of long-ranged elasticity-mediated interactions within the isotropic domains. Implications for a theoretical description of nucleation in anisotropic fluids are discussed.

  3. Nonlinear anisotropic parabolic equations in Lm

    Directory of Open Access Journals (Sweden)

    Fares Mokhtari

    2014-01-01

    Full Text Available In this paper, we give a result of regularity of weak solutions for a class of nonlinear anisotropic parabolic equations with lower-order term when the right-hand side is an Lm function, with m being ”small”. This work generalizes some results given in [2] and [3].

  4. Power laws in citation distributions: evidence from Scopus.

    Science.gov (United States)

    Brzezinski, Michal

    Modeling distributions of citations to scientific papers is crucial for understanding how science develops. However, there is a considerable empirical controversy on which statistical model fits the citation distributions best. This paper is concerned with rigorous empirical detection of power-law behaviour in the distribution of citations received by the most highly cited scientific papers. We have used a large, novel data set on citations to scientific papers published between 1998 and 2002 drawn from Scopus. The power-law model is compared with a number of alternative models using a likelihood ratio test. We have found that the power-law hypothesis is rejected for around half of the Scopus fields of science. For these fields of science, the Yule, power-law with exponential cut-off and log-normal distributions seem to fit the data better than the pure power-law model. On the other hand, when the power-law hypothesis is not rejected, it is usually empirically indistinguishable from most of the alternative models. The pure power-law model seems to be the best model only for the most highly cited papers in "Physics and Astronomy". Overall, our results seem to support theories implying that the most highly cited scientific papers follow the Yule, power-law with exponential cut-off or log-normal distribution. Our findings suggest also that power laws in citation distributions, when present, account only for a very small fraction of the published papers (less than 1 % for most of science fields) and that the power-law scaling parameter (exponent) is substantially higher (from around 3.2 to around 4.7) than found in the older literature.

  5. Stoner–Wohlfarth model for the anisotropic case

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Marcos F. de, E-mail: mcampos@metal.eeimvr.uff.br [Programa de Pós-graduação em Engenharia Metalúrgica-PUVR, Universidade Federal Fluminense, Av dos Trabalhadores 420,27255-125 Volta Redonda, Rio de Janeiro (Brazil); Sampaio da Silva, Fernanda A. [Programa de Pós-graduação em Engenharia Metalúrgica-PUVR, Universidade Federal Fluminense, Av dos Trabalhadores 420,27255-125 Volta Redonda, Rio de Janeiro (Brazil); Perigo, Elio A. [Laboratory for the Physics of Advanced Materials, University of Luxembourg, L1511 Luxembourg (Luxembourg); Castro, José A. de [Programa de Pós-graduação em Engenharia Metalúrgica-PUVR, Universidade Federal Fluminense, Av dos Trabalhadores 420,27255-125 Volta Redonda, Rio de Janeiro (Brazil)

    2013-11-15

    The Stoner–Wohlfarth (SW) model was calculated for the anisotropic case, by assuming crystallographical texture distributions as Gaussian, Lorentzian and Cos{sup n} (alpha). All these distributions were tested and both Gaussian and Cos{sup n} (alpha) give similar results for M{sub r}/M{sub s} above 0.8. However, the use of Cos{sup n} (alpha) makes it easier to find analytical expressions representing texture. The Lorentzian distribution is a suitable choice for not well aligned magnets, or magnets with a high fraction of misaligned grains. It is discussed how to obtain the alignment degree M{sub r}/M{sub s} directly from two measurements of magnetic remanence at the transverse and parallel directions to the alignment direction of the magnet. It is demonstrated that even the well aligned magnets with M{sub r}/M{sub s}=0.96 present coercive field of 60–70% of the anisotropy field, depending on the chosen distribution. The anisotropic SW model was used for discussing hysteresis squareness. Improving the crystalographical texture, the loop squareness also increases. - Highlights: • The Stoner–Wohlfarth model was calculated for the anisotropic case. • Different distribution functions for texture description were compared and discussed. • Lorentzian distribution is adequate for not well oriented magnets. • Determination of the alignment ratio M{sub r}/M{sub s} from 2 remanence measurements. • Prediction of the coercive field in Stoner–Wohlfarth aligned magnets.

  6. The obligation to contract in British law

    Directory of Open Access Journals (Sweden)

    Verena Klappstein

    2014-06-01

    Full Text Available Nowadays the obligation to contract is rarely looked upon. Without reason though, because it is neither outdated nor inoperable. Based on three common law doctrines the obligation to contract goes back to the Middle Ages. It has not lost its relevance, as it can still be found in modern statutory law, such as in the electricity and mail sector. What is more, it is a fundamental institution with a great impact. The analysis showed that the five chosen forms of obligations to contract bear analogical requirements but very similar rationales and economic consequences. It sets impaired market power right and it overstrikes irrational behaviour of market participants. As overall achievement it aligns the range of property, freedom of contract and freedom of competition.

  7. Anisotropic stars obeying Chaplygin equation of state

    Indian Academy of Sciences (India)

    P Bhar

    2017-12-14

    Dec 14, 2017 ... Anisotropic effects may also originate from slow rotation of the core ... to include the effects of pressure anisotropy, electric charge, scalar field, dark energy and the cosmological constant in .... Generating solutions. In order to ...

  8. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    Science.gov (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  9. Selective optical transmission in anisotropic multilayers structure

    International Nuclear Information System (INIS)

    Ouchani, N.; Bria, D.; Nougaoui, A.; Merad, A.E.

    2007-08-01

    We developed a Green's function method to study theoretically a single-defect photonic crystal composed of anisotropic dielectric materials. This structure can trap light of a given frequency range and filter only a certain frequency light with a very high quality. It is shown that the defect modes appear as peaks in the transmission spectrum. Their intensities and frequency positions depend on the incidence angle and the orientation of the principal axes of layers consisting of the superlattice and the layer defect. Our structure offers a great variety of possibilities for creating and controlling the number and transmitted intensities of defect modes. It can be a good candidate for realizing a selective electromagnetic filter. In addition to this filtration process, the defective anisotropic photonic crystal can be used to switch the modes when appropriate geometry is selected. (author)

  10. An analytical model of anisotropic low-field electron mobility in wurtzite indium nitride

    International Nuclear Information System (INIS)

    Wang, Shulong; Liu, Hongxia; Song, Xin; Guo, Yulong; Yang, Zhaonian

    2014-01-01

    This paper presents a theoretical analysis of anisotropic transport properties and develops an anisotropic low-field electron analytical mobility model for wurtzite indium nitride (InN). For the different effective masses in the Γ-A and Γ-M directions of the lowest valley, both the transient and steady state transport behaviors of wurtzite InN show different transport characteristics in the two directions. From the relationship between velocity and electric field, the difference is more obvious when the electric field is low in the two directions. To make an accurate description of the anisotropic transport properties under low field, for the first time, we present an analytical model of anisotropic low-field electron mobility in wurtzite InN. The effects of different ionized impurity scattering models on the low-field mobility calculated by Monte Carlo method (Conwell-Weisskopf and Brooks-Herring method) are also considered. (orig.)

  11. Anisotropic Characteristics of Turbulence Dissipation in Swirling Flow: A Direct Numerical Simulation Study

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-01-01

    Full Text Available This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.

  12. The weather and Climate: emergent laws and multifractal cascades

    Science.gov (United States)

    Lovejoy, S.

    2016-12-01

    In the atmosphere, nonlinear terms are typically about a trillion times larger than linear ones; we anticipate the emergence of high level turbulence laws. The classical turbulence laws were restricted to homogeneous and isotropic systems; to apply them to the atmosphere they must be generalized to account for strong anisotropy (especially stratification) and variability (intermittency). Over the last 30 years, using scaling symmetry principles and multifractal cascades, this has been done. While hitherto they were believed applicable only up to ≈ 100 m, (generalized) turbulence laws now anisotropic and multifractal, they cover spatial scales up planetary in extent and in time well beyond weather scales to include the climate. These higher level laws are stochastic in nature and provide the theoretical basis both for stochastic parametrizations as well as stochastic forecasting. In the time domain the emergent laws for fluctuations DT (for example in temperature T) have means T > ≈ DtH i.e. they are scaling (power laws) in the time interval Dt. We find find exponents H>0 (fluctuations increase with scale) up to ≈ Dt ≈10 days (the lifetime of planetary scale structures, the analogous transition in the ocean is at Dt ≈ 1 year on Mars it is Dt ≈ 2 sols). At larger Dt, there is a transition to a new "macroweather" regime with H≈30 years (anthropocene; larger in the pre-industrial epoch), new climate processes begin to dominate, leading to H>0. "The climate is what you expect, the weather is what you get": the climate is thought to be a kind of "average weather". However this "expected" behavior is macroweather, not the climate. On the contrary, the climate is the new even lower frequency regime at scales Dt> 30 yrs and it has statistical properties very similar to the weather. At these scales, "macroweather is what you expect, the climate is what you get". The scaling in the macroweather regime implies that there is a long-term memory. We show how the

  13. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    Science.gov (United States)

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  14. The influence of the anisotropic stress state on the intermediate strain properties of granular material

    KAUST Repository

    Goudarzy, M.

    2017-07-20

    This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical samples containing spherical glass particles. Tests were carried out with the modified resonant column device available at Ruhr-Universität Bochum. Dry samples were subjected to two anisotropic stress states: (a) cell pressure, σ′h, constant and vertical stress, σ′v, increased (stress state GB-I) and (b) σ′v/σ′h equal to 2 (stress state GB-II). The experimental results revealed that the effect of stress state GB-II on the modulus and damping ratio was more significant and obvious than stress state GB-I. The effect of the anisotropic stress state was explained through the impact of confining pressure and anisotropic stress components on the stiffness and damping ratio. The results showed that: (a) G(γ) increased, η(γ) decreased and their strain non-linearity decreased with an increase in the confining pressure component σ′vσ′h; (b) G(γ) decreased, η(γ) increased and their strain non-linearity increased with an increase in the anisotropic stress component, σ′v/σ′h. The analysis of results revealed that reference shear strain was also affected by anisotropic stress state. Therefore, an empirical relationship was developed to predict the reference shear strain, as a function of confining pressure and anisotropic stress components. Additionally, the damping ratio was written as a function of the minimum damping ratio and the reference shear strain.

  15. Microstructural influence on the local behaviour of 16MND5 steel

    International Nuclear Information System (INIS)

    Sekfali, S.

    2004-06-01

    16MND5 Steel or A508 Cl3 is used for manufacture by forging of nuclear reactor vessels. This material presents a good compromise in term of tenacity and yield stress, its microstructure is mainly bainitic tempered. Because of the chemical composition local variation and process of development, this material presents microstructural heterogeneities which can locally modify the properties of damage. In particular, some zones present a martensitic microstructure. The goal of this thesis is to bring some explanations on the influence of the microstructure; more particularly, size of the crystallographic entities and their spatial distribution on the local behaviour of 16MND5 steel. Two microstructures were elaborated for this purpose, a tempered bainitic microstructure and a tempered martensitic microstructure. An experimental characterization was carried out on the two microstructures in order to determine morphology, spatial distribution of the crystallographic orientations and tensile behaviour. A deposit of micro grid was carried out on tensile specimens to determine the experimental deformation field on a beforehand EBSD analyzed zone. The determination of the tensile behaviour allowed the identification of a multi crystalline behaviour law by a reverse method using the density of dislocation on each system of slip. This behaviour law was used in simulations with a finite element method to simulate the local mechanical field of the two microstructures and to compare with the obtained experimental deformation fields. It results, a good adequacy between simulations and experiments and the description of the influence of the neighbor grain's orientation on the local behaviour. (author)

  16. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Mark L [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Walters, Matthew [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Diaz-Barriga, James [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Rabinovich, W S [Naval Research Laboratory, Code 5652, 4555 Overlook Ave. SW, Washington, DC 20375-5320 (United States)

    2003-10-21

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain.

  17. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    International Nuclear Information System (INIS)

    Biermann, Mark L; Walters, Matthew; Diaz-Barriga, James; Rabinovich, W S

    2003-01-01

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain

  18. Two-phase flow in porous media: power-law scaling of effective permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)

    2011-09-15

    A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.

  19. Information Seeking and Students Studying for Professional Careers: The Cases of Engineering and Law Students in Ireland

    Science.gov (United States)

    Kerins, Gillian; Madden, Ronan; Fulton, Crystal

    2004-01-01

    This paper reports the results of two empirical studies which explored the information seeking behaviour of engineering and law students in Ireland. Findings reveal similar patterns in the information seeking behaviour between students studying to become professionals and information seeking patterns of these groups identified in the Leckie et al.…

  20. Adaptive slices for acquisition of anisotropic BRDF

    Czech Academy of Sciences Publication Activity Database

    Vávra, Radomír; Filip, Jiří

    (2018) ISSN 2096-0433 R&D Projects: GA ČR GA17-18407S Institutional support: RVO:67985556 Keywords : anisotropic BRDF * slice * sampling Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2018/RO/vavra-0486116.pdf

  1. An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media

    KAUST Repository

    Waheed, Umair bin; Yarman, Can Evren; Flagg, Garret

    2015-01-01

    Computation of first-arrival traveltimes for quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization - and it requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We addressed this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function was updated to capture the effects of the higher order nonlinear terms. We used Aitken's extrapolation to speed up convergence rate of the iterative algorithm. The result is an algorithm for computing first-arrival traveltimes in tilted anisotropic media. We evaluated the applicability and usefulness of our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests determined that the proposed method matches the first arrivals obtained by wavefield extrapolation, even for strongly anisotropic and highly complex subsurface structures. Thus, for the cases where two-point ray tracing fails, our method can be a potential substitute for computing traveltimes. The approach presented here can be easily extended to compute first-arrival traveltimes for anisotropic media with lower symmetries, such as monoclinic or even the triclinic media.

  2. An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media

    KAUST Repository

    Waheed, Umair bin

    2015-03-30

    Computation of first-arrival traveltimes for quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization - and it requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We addressed this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function was updated to capture the effects of the higher order nonlinear terms. We used Aitken\\'s extrapolation to speed up convergence rate of the iterative algorithm. The result is an algorithm for computing first-arrival traveltimes in tilted anisotropic media. We evaluated the applicability and usefulness of our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests determined that the proposed method matches the first arrivals obtained by wavefield extrapolation, even for strongly anisotropic and highly complex subsurface structures. Thus, for the cases where two-point ray tracing fails, our method can be a potential substitute for computing traveltimes. The approach presented here can be easily extended to compute first-arrival traveltimes for anisotropic media with lower symmetries, such as monoclinic or even the triclinic media.

  3. Efficient Modeling and Migration in Anisotropic Media Based on Prestack Exploding Reflector Model and Effective Anisotropy

    KAUST Repository

    Wang, Hui

    2014-05-01

    This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my

  4. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.

    Science.gov (United States)

    Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui

    2018-05-15

    Atomically thin two-dimensional (2D) semiconductors have presented a plethora of opportunities for future optoelectronic devices and photonics applications, made possible by the strong light matter interactions at the 2D quantum limit. Many body interactions between fundamental particles in 2D semiconductors are strongly enhanced compared with those in bulk semiconductors because of the reduced dimensionality and, thus, reduced dielectric screening. These enhanced many body interactions lead to the formation of robust quasi-particles, such as excitons, trions, and biexcitons, which are extremely important for the optoelectronics device applications of 2D semiconductors, such as light emitting diodes, lasers, and optical modulators, etc. Recently, the emerging anisotropic 2D semiconductors, such as black phosphorus (termed as phosphorene) and phosphorene-like 2D materials, such as ReSe 2 , 2D-perovskites, SnS, etc., show strong anisotropic optical and electrical properties, which are different from conventional isotropic 2D semiconductors, such as transition metal dichalcogenide (TMD) monolayers. This anisotropy leads to the formation of quasi-one-dimensional (quasi-1D) excitons and trions in a 2D system, which results in even stronger many body interactions in anisotropic 2D materials, arising from the further reduced dimensionality of the quasi-particles and thus reduced dielectric screening. Many body interactions have been heavily investigated in TMD monolayers in past years, but not in anisotropic 2D materials yet. The quasi-particles in anisotropic 2D materials have fractional dimensionality which makes them perfect candidates to serve as a platform to study fundamental particle interactions in fractional dimensional space. In this Account, we present our recent progress related to 2D phosphorene, a 2D system with quasi-1D excitons and trions. Phosphorene, because of its unique anisotropic properties, provides a unique 2D platform for investigating the

  5. Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis

    Science.gov (United States)

    Hallez, Hans; Staelens, Steven; Lemahieu, Ignace

    2009-10-01

    EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.

  6. Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis

    International Nuclear Information System (INIS)

    Hallez, Hans; Staelens, Steven; Lemahieu, Ignace

    2009-01-01

    EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10 deg. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.

  7. Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 5.02 and 2.76 TeV

    CERN Document Server

    Acharya, Shreyasi; The ALICE collaboration; Adamova, Dagmar; Adolfsson, Jonatan; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Al-turany, Mohammad; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Ali, Yasir; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altenkamper, Lucas; Altsybeev, Igor; Andrei, Cristian; Andreou, Dimitra; Andrews, Harry Arthur; Andronic, Anton; Angeletti, Massimo; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Apadula, Nicole; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barioglio, Luca; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartsch, Esther; Bastid, Nicole; Basu, Sumit; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Bazo Alba, Jose Luis; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhaduri, Partha Pratim; Bhasin, Anju; Bhat, Inayat Rasool; Bhatt, Himani; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Antonio; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Boca, Gianluigi; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonomi, Germano; Bonora, Matthias; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Bratrud, Lars; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Soto Camacho, Rabi; Camerini, Paolo; Capon, Aaron Allan; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Chandra, Sinjini; Chang, Beomsu; Chang, Wan; Chapeland, Sylvain; Chartier, Marielle; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Chowdhury, Tasnuva; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Concas, Matteo; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Costanza, Susanna; Crkovska, Jana; Crochet, Philippe; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Franz Degenhardt, Hermann; Deisting, Alexander; Deloff, Andrzej; Delsanto, Silvia; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Ruzza, Benedetto; Arteche Diaz, Raul; Dietel, Thomas; Dillenseger, Pascal; Ding, Yanchun; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Van Doremalen, Lennart Vincent; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dudi, Sandeep; Duggal, Ashpreet Kaur; Dukhishyam, Mallick; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Ersdal, Magnus Rentsch; Espagnon, Bruno; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Fabbietti, Laura; Faggin, Mattia; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiorenza, Gabriele; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Jhuma; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Gronefeld, Julius Maximilian; Grosa, Fabrizio; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Guernane, Rachid; Guerzoni, Barbara; Guittiere, Manuel; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Habib, Michael Karim; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Haque, Md Rihan; Harris, John William; Harton, Austin Vincent; Hassan, Hadi; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Gonzalez Hernandez, Emma; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hills, Christopher; Hippolyte, Boris; Hohlweger, Bernhard; Horak, David; Hornung, Sebastian; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Huhn, Patrick; Humanic, Thomas; Hushnud, Hushnud; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Iddon, James Philip; Iga Buitron, Sergio Arturo; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jaelani, Syaefudin; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Jena, Chitrasen; Jercic, Marko; Jimenez Bustamante, Raul Tonatiuh; Jin, Muqing; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karczmarczyk, Przemyslaw; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Ketzer, Bernhard Franz; Khabanova, Zhanna; Khan, Shaista; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kielbowicz, Miroslaw Marek; Kileng, Bjarte; Kim, Byungchul; Kim, Daehyeok; Kim, Dong Jo; Kim, Eun Joo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Se Yong; Kim, Taejun; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Varga-kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Konyushikhin, Maxim; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Kralik, Ivan; Kravcakova, Adela; Kreis, Lukas; Krivda, Marian; Krizek, Filip; Kruger, Mario; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lai, Yue Shi; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Larionov, Pavel; Lattuca, Alessandra; Laudi, Elisa; Lavicka, Roman; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Leogrande, Emilia; Leon Monzon, Ildefonso; Levai, Peter; Li, Xiaomei; Li, Xing Long; Lien, Jorgen Andre; Lietava, Roman; Lim, Bong-hwi; Lindal, Svein; Lindenstruth, Volker; Lindsay, Scott William; Lippmann, Christian; Lisa, Michael Annan; Litichevskyi, Vladyslav; Liu, Alwina; Ljunggren, Hans Martin; Llope, William; Lodato, Davide Francesco; Loginov, Vitaly; Loizides, Constantinos; Loncar, Petra; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Luhder, Jens Robert; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Maevskaya, Alla; Mager, Magnus; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Masson, Erwann; Mastroserio, Annalisa; Mathis, Andreas Michael; Toledo Matuoka, Paula Fernanda; Matyja, Adam Tomasz; Mayer, Christoph; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Soncco Meza, Carlos; Mhlanga, Sibaliso; Miake, Yasuo; Micheletti, Luca; Mieskolainen, Matti Mikael; Mihaylov, Dimitar Lubomirov; Mikhaylov, Konstantin; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Auro Prasad; Mohanty, Bedangadas; Khan, Mohammed Mohisin; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Arratia Munoz, Miguel Ignacio; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Myrcha, Julian Wojciech; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Narayan, Amrendra; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Nesbo, Simon Voigt; Neskovic, Gvozden; Ng, Fabian; Nicassio, Maria; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oh, Hoonjung; Ohlson, Alice Elisabeth; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Paic, Guy; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Panebianco, Stefano; Papikyan, Vardanush; Pareek, Pooja; Park, Jonghan; Parkkila, Jasper Elias; Parmar, Sonia; Passfeld, Annika; Pathak, Surya Prakash; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira, Luis Gustavo; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrovici, Mihai; Petta, Catia; Peretti Pezzi, Rafael; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Pisano, Silvia; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pliquett, Fabian; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Punin, Valery; Putschke, Jorn Henning; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reshetin, Andrey; Revol, Jean-pierre; Reygers, Klaus Johannes; Riabov, Viktor; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogalev, Roman; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Rokita, Przemyslaw Stefan; Ronchetti, Federico; Dominguez Rosas, Edgar; Roslon, Krystian; Rosnet, Philippe; Rossi, Andrea; Rotondi, Alberto; Roukoutakis, Filimon; Roy, Christelle Sophie; Roy, Pradip Kumar; Vazquez Rueda, Omar; Rui, Rinaldo; Rumyantsev, Boris; Rustamov, Anar; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Saha, Sumit Kumar; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sarkar, Amal; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Schaefer, Brennan; Scheid, Horst Sebastian; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Marten Ole; Schmidt, Martin; Schmidt, Nicolas Vincent; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shahoyan, Ruben; Shaikh, Wadut; Shangaraev, Artem; Sharma, Anjali; Sharma, Ankita; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shimomura, Maya; Shirinkin, Sergey; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Sputowska, Iwona Anna; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Stocco, Diego; Storetvedt, Maksim Melnik; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thakur, Sanchari; Thomas, Deepa; Thoresen, Freja; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Topilskaya, Nataliya; Toppi, Marco; Rojas Torres, Solangel; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Tropp, Lukas; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Trzcinski, Tomasz Piotr; Trzeciak, Barbara Antonina; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vermunt, Luuk; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wang, Hongkai; Wang, Mengliang; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wegrzynek, Adam; Weiser, Dennis Franz; Wenzel, Sandro Christian; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Willsher, Emily; Windelband, Bernd Stefan; Witt, William Edward; Xu, Ran; Yalcin, Serpil; Yamakawa, Kosei; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correa Zanoli, Henrique Jose; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Yonghong; Zhang, Zuman; Zhao, Chengxin; Zherebchevskii, Vladimir; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Ya; Zichichi, Antonino; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann; Zou, Shuguang

    2018-01-01

    Measurements of anisotropic flow coefficients with two- and multi-particle cumulants for inclusive charged particles in Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 5.02 and 2.76 TeV are reported in the pseudorapidity range $|\\eta|<0.8$ and transverse momentum $0.2 < p_{\\rm T} < 50$ GeV/$c$. The full data sample collected by the ALICE detector in 2015 (2010), corresponding to an integrated luminosity of 12.7 (2.0) $\\mu$b$^{-1}$ in the centrality range 0-80%, is analysed. Flow coefficients up to the sixth flow harmonic ($v_6$) are reported and a detailed comparison among results at the two energies is carried out. The $p_{\\rm T}$ dependence of anisotropic flow coefficients and its evolution with respect to centrality and harmonic number $n$ are investigated. An approximate power-law scaling of the form $v_{\\rm n}(p_{\\rm T}) \\sim p_{\\rm T}^{\\rm n/3}$ is observed for all flow harmonics at low $p_{\\rm T}$ ($0.2 < p_{\\rm T} < 3$ GeV/$c$). At the same time, the ratios $v_{\\rm n}/v_{\\rm m}^{\\rm n/m}$ ar...

  8. Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures

    CERN Document Server

    Gopalakrishnan, Srinivasan; Roy Mahapatra, Debiprosad

    2008-01-01

    The use of composites and Functionally Graded Materials (FGMs) in structural applications has increased. FGMs allow the user to design materials for a specified functionality and have many uses in structural engineering. However, the behaviour of these structures under high-impact loading is not well understood. This book is the first to apply the Spectral Finite Element Method (SFEM) to inhomogeneous and anisotropic structures in a unified and systematic manner. It focuses on some of the problems with this media which were previously thought unmanageable. Types of SFEM for regular and damaged 1-D and 2-D waveguides, solution techniques, methods of detecting the presence of damages and their locations, and methods for controlling the wave propagation responses are discussed. Tables, figures and graphs support the theory and case studies are included. This book is of value to senior undergraduates and postgraduates studying in this field, and researchers and practicing engineers in structural integrity.

  9. Instabilities of collisionless current sheets revisited: The role of anisotropic heating

    International Nuclear Information System (INIS)

    Muñoz, P. A.; Kilian, P.; Büchner, J.

    2014-01-01

    In this work, we investigate the influence of the anisotropic heating on the spontaneous instability and evolution of thin Harris-type collisionless current sheets, embedded in antiparallel magnetic fields. In particular, we explore the influence of the macroparticle shape-function using a 2D version of the PIC code ACRONYM. We also investigate the role of the numerical collisionality due to the finite number of macroparticles in PIC codes. It is shown that it is appropriate to choose higher order shape functions of the macroparticles compared to a larger number of macroparticles per cell. This allows to estimate better the anisotropic electron heating due to the collisions of macroparticles in a PIC code. Temperature anisotropies can stabilize the tearing mode instability and trigger additional current sheet instabilities. We found a good agreement between the analytically derived threshold for the stabilization of the anisotropic tearing mode and other instabilities, either spontaneously developing or initially triggered ones. Numerical effects causing anisotropic heating at electron time scales become especially important for higher mass ratios (above m i /m e =180). If numerical effects are carefully taken into account, one can recover the theoretical estimated linear growth rates of the tearing instability of thin isotropic collisionless current sheets, also for higher mass ratios

  10. Multivariate statistical analysis of electron energy-loss spectroscopy in anisotropic materials

    International Nuclear Information System (INIS)

    Hu Xuerang; Sun Yuekui; Yuan Jun

    2008-01-01

    Recently, an expression has been developed to take into account the complex dependence of the fine structure in core-level electron energy-loss spectroscopy (EELS) in anisotropic materials on specimen orientation and spectral collection conditions [Y. Sun, J. Yuan, Phys. Rev. B 71 (2005) 125109]. One application of this expression is the development of a phenomenological theory of magic-angle electron energy-loss spectroscopy (MAEELS), which can be used to extract the isotropically averaged spectral information for materials with arbitrary anisotropy. Here we use this expression to extract not only the isotropically averaged spectral information, but also the anisotropic spectral components, without the restriction of MAEELS. The application is based on a multivariate statistical analysis of core-level EELS for anisotropic materials. To demonstrate the applicability of this approach, we have conducted a study on a set of carbon K-edge spectra of multi-wall carbon nanotube (MWCNT) acquired with energy-loss spectroscopic profiling (ELSP) technique and successfully extracted both the averaged and dichroic spectral components of the wrapped graphite-like sheets. Our result shows that this can be a practical alternative to MAEELS for the study of electronic structure of anisotropic materials, in particular for those nanostructures made of layered materials

  11. A resistor interpretation of general anisotropic cardiac tissue.

    Science.gov (United States)

    Shao, Hai; Sampson, Kevin J; Pormann, John B; Rose, Donald J; Henriquez, Craig S

    2004-02-01

    This paper describes a spatial discretization scheme for partial differential equation systems that contain anisotropic diffusion. The discretization method uses unstructured finite volumes, or the boxes, that are formed as a secondary geometric structure from an underlying triangular mesh. We show how the discretization can be interpreted as a resistive circuit network, where each resistor is assigned at each edge of the triangular element. The resistor is computed as an anisotropy dependent geometric quantity of the local mesh structure. Finally, we show that under certain conditions, the discretization gives rise to negative resistors that can produce non-physical hyperpolarizations near depolarizing stimuli. We discuss how the proper choice of triangulation (anisotropic Delaunay triangulation) can ensure monotonicity (i.e. all resistors are positive).

  12. Anisotropic cosmological constant and the CMB quadrupole anomaly

    International Nuclear Information System (INIS)

    Rodrigues, Davi C.

    2008-01-01

    There are evidences that the cosmic microwave background (CMB) large-angle anomalies imply a departure from statistical isotropy and hence from the standard cosmological model. We propose a ΛCDM model extension whose dark energy component preserves its nondynamical character but wields anisotropic vacuum pressure. Exact solutions for the cosmological scale factors are presented, upper bounds for the deformation parameter are evaluated and its value is estimated considering the elliptical universe proposal to solve the quadrupole anomaly. This model can be constructed from a Bianchi I cosmology with a cosmological constant from two different ways: (i) a straightforward anisotropic modification of the vacuum pressure consistently with energy-momentum conservation; (ii) a Poisson structure deformation between canonical momenta such that the dynamics remain invariant under scale factors rescalings

  13. On the problem of making autonomous vehicles conform to traffic law

    NARCIS (Netherlands)

    Prakken, H.

    2017-01-01

    Autonomous vehicles are one of the most spectacular recent developments of Artificial Intelligence. Among the problems that still need to be solved before they can fully autonomously participate in traffic is the one of making their behaviour conform to the traffic laws. This paper discusses this

  14. Anisotropic Hanle line shape via magnetothermoelectric phenomena

    NARCIS (Netherlands)

    Das, Kumar; Dejene, Fasil; van Wees, Bart; Vera Marun, Ivan

    2016-01-01

    We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times

  15. Analytical results for entanglement in the five-qubit anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Wang Xiaoguang

    2004-01-01

    We solve the eigenvalue problem of the five-qubit anisotropic Heisenberg model, without use of Bethe's ansatz, and give analytical results for entanglement and mixedness of two nearest-neighbor qubits. The entanglement takes its maximum at Δ=1 (Δ>1) for the case of zero (finite) temperature with Δ being the anisotropic parameter. In contrast, the mixedness takes its minimum at Δ=1 (Δ>1) for the case of zero (finite) temperature

  16. Integral superposition of paraxial Gaussian beams in inhomogeneous anisotropic layered structures in Cartesian coordinates

    Czech Academy of Sciences Publication Activity Database

    Červený, V.; Pšenčík, Ivan

    2015-01-01

    Roč. 25, - (2015), s. 109-155 ISSN 2336-3827 Institutional support: RVO:67985530 Keywords : integral superposition of paraxial Gaussian beams * inhomogeneous anisotropic media * S waves in weakly anisotropic media Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  17. Lower critical field of an anisotropic type-II superconductor

    International Nuclear Information System (INIS)

    Klemm, R.A.; Clem, J.R.

    1980-01-01

    We consider the Ginzburg-Landau free energy of the anisotropic mass form in the presence of a magnetic field of arbitrary fixed direction. It is shown that the free energy may be transformed into the isotropic Ginsburg-Landau form with a kappa that depends upon the direction of the magnetic induction B relative to the crystal lattice. The lower critical field H/sub c/1 is then found for arbitrary direction of B. For highly anisotropic crystals the angular dependence of H/sub c/1 can exhibit a discontinuity or a cusp. The special case of a crystal with uniaxial symmetry is considered in detail

  18. All spherically symmetric charged anisotropic solutions for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2017-06-15

    In the present paper we develop an algorithm for all spherically symmetric anisotropic charged fluid distributions. Considering a new source function ν(r) we find a set of solutions which is physically well behaved and represents compact stellar models. A detailed study specifically shows that the models actually correspond to strange stars in terms of their mass and radius. In this connection we investigate several physical properties like energy conditions, stability, mass-radius ratio, electric charge content, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent agreement with the already available evidence in theory as well as observations. (orig.)

  19. Anisotropic hypersonic phonon propagation in films of aligned ellipsoids.

    Science.gov (United States)

    Beltramo, Peter J; Schneider, Dirk; Fytas, George; Furst, Eric M

    2014-11-14

    A material with anisotropic elastic mechanical properties and a direction-dependent hypersonic band gap is fabricated using ac electric field-directed convective self-assembly of colloidal ellipsoids. The frequency of the gap, which is detected in the direction perpendicular to particle alignment and entirely absent parallel to alignment, and the effective sound velocities can be tuned by the particle aspect ratio. We hypothesize that the band gap originates from the primary eigenmode peak, the m-splitted (s,1,2) mode, of the particle resonating with the effective medium. These results reveal the potential for powerful control of the hypersonic phononic band diagram by combining anisotropic particles and self-assembly.

  20. Necking of anisotropic micro-films with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2008-01-01

    Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco......-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening...... exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress....

  1. General presentation of the core mechanical behaviour approach in France

    International Nuclear Information System (INIS)

    Bernard, A.; Dorsselaere, J.P. van

    1984-01-01

    This French review paper presents the evolution along time of the FBR core mechanical behaviour approach, from RAPSODIE to SPX2, through PHENIX and SPX1: core designs, knowledge of the irradiation laws, project criterias, calculation codes, and R and D fields. (author)

  2. Anisotropic magnetocrystalline coupling of the skyrmion lattice in MnSi

    Science.gov (United States)

    Luo, Yongkang; Lin, Shi-Zeng; Fobes, D. M.; Liu, Zhiqi; Bauer, E. D.; Betts, J. B.; Migliori, A.; Thompson, J. D.; Janoschek, M.; Maiorov, B.

    2018-03-01

    We investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are observed in the elastic moduli and attenuation when the magnetic field is parallel to the [011] crystallographic direction. These observations are interpreted in a phenomenological Ginzburg-Landau theory that identifies switching of the SKX orientation to be the result of an anisotropic magnetocrystalline coupling potential. Our paper sheds new light on the nature of magnetocrystalline coupling potential relevant to future spintronic applications.

  3. Anisotropic Magnus Force in Type-II Superconductors with Planar Defects

    Science.gov (United States)

    Monroy, Ricardo Vega; Gomez, Eliceo Cortés

    2015-02-01

    The effect of planar defects on the Magnus force in type-II superconductors is studied. It is shown that the deformation of the vortex due to the presence of a planar defect leads to a local decrease in the mean free path of electrons in the vortex. This effect reduces the effective Magnus coefficient in normal direction to the planar defect, leading to an anisotropic regime of the Hall effect. The presented developments here can qualitatively explain experimental observations of the anisotropic Hall effect in high- T c superconductors in the mixed state.

  4. Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiao [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Huang, Shiming [Department of Physics, Tongji University, Shanghai 200092 (China); Wang, Yilong, E-mail: yilongwang@tongji.edu.cn [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Shi, Donglu, E-mail: shid@ucmail.uc.edu [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2016-07-01

    Anisotropic yolk/shell or Janus inorganic/polystyrene nanocomposites were prepared by combining miniemulsion polymerization and sol–gel reaction. The morphologies of the anisotropic composites were found to be greatly influenced by surface modification of zinc oxide (ZnO) nanoparticle seeds. Two different types of the oleic acid modified ZnO nanoparticles (OA-ZnO) were prepared by post-treatment of commercial ZnO powder and homemade OA-ZnO nanoparticles. The morphologies and properties of the nanocomposites were investigated by transmission electron microscope (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and energy dispersive X-ray spectroscopy (EDX). It was found that both post-treated OA-ZnO and in-situ prepared OA-ZnO nanoparticles resulted in the yolk–shell and Janus structure nanocomposites, but with varied size and morphology. These nanocomposites showed stable and strong fluorescence by introducing quantum dots as the co-seeds. The fluorescent anisotropic nanocomposites were decorated separately with surface carboxyl and hydroxyl groups. These composites with unique anisotropic properties will have high potential in biomedical applications, particularly in bio-detection. - Graphical abstract: Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles. - Highlights: • Non-magnetic anisotropic yolk/shell or Janus nanocomposites are prepared and characterized. • Different surface modification of zinc oxide (ZnO) nanoparticles results in varied morphology and size of the final product. • Fluorescent anisotropic nanocomposites embodying quantum dots are an ideal candidate for bio-detection applications.

  5. Anisotropic diffusion in a toroidal geometry

    International Nuclear Information System (INIS)

    Fischer, Paul F

    2005-01-01

    As part of the Department of Energy's applications oriented SciDAC project, three model problems have been proposed by the Center for Extended Magnetohydrodynamics Modeling to test the potential of numerical algorithms for challenging magnetohydrodynamics (MHD) problems that are required for future fusion development. The first of these, anisotropic diffusion in a toroidal geometry, is considered in this note

  6. Possibility to explain the temperature distribution in sunspots by an anisotropic heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Eschrich, K O; Krause, F [Akademie der Wissenschaften der DDR, Potsdam. Zentralinstitut fuer Astrophysik

    1977-01-01

    Numerical solutions of a heat conduction problem in an anisotropic medium are used for a discussion of the possibility to explain the temperature distribution in sunspots and their environment. The anisotropy is assumed being due to the strong magnetic field in sunspots and the region below. This magnetic field forces the convection to take an anisotropic structure (two-dimensional turbulence) and thus the region gets anisotropic conduction properties, on the average. The discussion shows that the observed temperature profiles can be explained in the case the depth of the region of anisotropy is about as large as the diameter of the spot or larger.

  7. Hydraulic fracturing in anisotropic and heterogeneous rocks

    NARCIS (Netherlands)

    Valliappan, V.; Remmers, J.J.C.; Barnhoorn, A.; Smeulders, D.M.J.

    2017-01-01

    In this paper, we present a two dimensional model for modelling the hydraulic fracture process in anisotropic and heterogeneous rocks. The model is formulated using extended finite elements (XFEM) in combination with Newton-Raphson method for spatial and Euler's implicit scheme for time. The

  8. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments...

  9. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done

  10. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2017-06-15

    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  11. Attenuation of soliton oscillations in media with a negative bispersion law

    International Nuclear Information System (INIS)

    Burtsev, S.P.

    1985-01-01

    The evolution of small two-dimensional perturbations of a plane soliton are considered. The Cauchy problem for the linearized Kadomtsev-Petviashvili equation is solved. The asymptotic behaviour of the Green function at t → + infiinity yields the decrement of the soliton oscillations in media with a negative dispersion law

  12. Nonlinear force propagation, anisotropic stiffening and non-affine relaxation in a model cytoskeleton

    Science.gov (United States)

    Mizuno, Daisuke; Head, David; Ikebe, Emi; Nakamasu, Akiko; Kinoshita, Suguru; Peijuan, Zhang; Ando, Shoji

    2013-03-01

    Forces are generated heterogeneously in living cells and transmitted through cytoskeletal networks that respond highly non-linearly. Here, we carry out high-bandwidth passive microrheology on vimentin networks reconstituted in vitro, and observe the nonlinear mechanical response due to forces propagating from a local source applied by an optical tweezer. Since the applied force is constant, the gel becomes equilibrated and the fluctuation-dissipation theorem can be employed to deduce the viscoelasticity of the local environment from the thermal fluctuations of colloidal probes. Our experiments unequivocally demonstrate the anisotropic stiffening of the cytoskeletal network behind the applied force, with greater stiffening in the parallel direction. Quantitative agreement with an affine continuum model is obtained, but only for the response at certain frequency ~ 10-1000 Hz which separates the high-frequency power law and low-frequency elastic behavior of the network. We argue that the failure of the model at lower frequencies is due to the presence of non-affinity, and observe that zero-frequency changes in particle separation can be fitted when an independently-measured, empirical nonaffinity factor is applied.

  13. Equation of short fatigue crack growth law of 1Cr18Ni9Ti weld metal

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Yang Bing; Gao Qing

    2005-01-01

    The method is investigated for characterizing the short fatigue crack (SFC) behaviour of 1Cr18Ni9Ti weld metal by the 'effective short fatigue crack criterion'. Three considerations are given. Firstly, the dominant effective short fatigue crack (DESFC) behaviour is a result of the interaction and evolution of the collective SFCs and, therefore, it is deemed suitable to describe their collective behaviour. Secondly, the significant character of microstructural short crack (MSC) regime and physical short crack (PSC) regime for the behaviour of SFCs indicates that it should be well exhibited in the characterization. Thirdly, the stronger irregular behaviour of SFCs indicates the single parameter of cyclic stress or strain amplitude for representing driving force of DESFC growth may be not appropriated. A new growth law for the collective SFCs is derived from a consideration of the local cyclic strain energy density driving the DESFC initiation in the initial zone and, then, driving the DESFC growth in the zones around its tips. The final form of this law is relative to the total cyclic strain energy density of remote fields, which circle the initial zone and, then, the zones around the DESFC tips. Availability has been indicated by an analysis of the test data of present material. (authors)

  14. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties.

    Science.gov (United States)

    Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Luxa, Jan; Bouša, Daniel; Boothroyd, Chris; Pumera, Martin

    2016-03-01

    Layered elemental materials, such as black phosphorus, exhibit unique properties originating from their highly anisotropic layered structure. The results presented herein demonstrate an anomalous anisotropy for the electrical, magnetic, and electrochemical properties of black phosphorus. It is shown that heterogeneous electron transfer from black phosphorus to outer- and inner-sphere molecular probes is highly anisotropic. The electron-transfer rates differ at the basal and edge planes. These unusual properties were interpreted by means of calculations, manifesting the metallic character of the edge planes as compared to the semiconducting properties of the basal plane. This indicates that black phosphorus belongs to a group of materials known as topological insulators. Consequently, these effects render the magnetic properties highly anisotropic, as both diamagnetic and paramagnetic behavior can be observed depending on the orientation in the magnetic field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Anisotropic magnetoresistance and spin polarization of La0.7Sr0.3MnO3/SrTiO3 superlattices

    International Nuclear Information System (INIS)

    Wang, L.M.; Guo, C.-C.

    2005-01-01

    The crystalline structure, anisotropic magnetoresistance (AMR), and magnetization of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 (LSMO/STO) superlattices grown by a rf sputtering system are systematically analyzed to study the spin polarization of manganite at interfaces. The presence of positive low-temperature AMR in LSMO/STO superlattices implies that two bands of majority and minority character contribute to the transport properties, leading to a reduced spin polarization. Furthermore, the magnetization of superlattices follows the T 3/2 law and decays more quickly as the thickness ratio d STO /d LSMO increases, corresponding to a reduced exchange coupling. The results clearly show that the spin polarization is strongly correlated with the influence of interface-induced strain on the structure

  16. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali; Ma, X.; Waheed, Umair bin; Zuberi, Mohammad

    2013-01-01

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented

  17. Angle-domain common-image gathers from anisotropic Gaussian ...

    Indian Academy of Sciences (India)

    3State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology,. Chengdu ... studied the extraction scheme of ADCIGs by using. Kirchhoff ..... The effect of shale properties on anisotropic brittleness.

  18. Anisotropic Josephson-vortex dynamics in layered organic superconductors

    International Nuclear Information System (INIS)

    Yasuzuka, S.; Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T.; Koga, H.; Yamamura, Y.; Saito, K.; Akutsu, H.; Yamada, J.

    2010-01-01

    To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors κ-(ET) 2 Cu(NCS) 2 and β-(BDA-TTP) 2 SbF 6 under magnetic fields precisely parallel to the conducting planes. For κ-(ET) 2 Cu(NCS) 2 , in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for β-(BDA-TTP) 2 SbF 6 . The different anisotropic behavior is discussed in terms of the interlayer coupling strength.

  19. FISCAL BEHAVIOUR OF THE ECONOMIC AGENT. FACTORS OF INFLUENCE

    Directory of Open Access Journals (Sweden)

    Nicoleta, MIHAILA

    2013-10-01

    Full Text Available Defining the behaviour appears to be a relatively easy initiative, in reality, however, the definition of this concept requires consideration of a variety of items. Coercive character of taxation and the opposition of taxpayers to comply with taxes generate their fiscal behaviour as a form of manifestation intended to hinder performance or application of tax laws or impose "conditions" in achieving its objective. Behaviour of taxpayers is simmilar to searching for a optimum situation in order to satisfy their necessities; this one, being subject of taxation, may represent the compliance to paying taxes or noncompliance on ethical, social, economic issues. Resistance to paying taxes can take various forms of manifestation: underground economy, fraud and tax evasion, tax abstinence.

  20. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    Science.gov (United States)

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  1. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  2. Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage

    Science.gov (United States)

    Hou, Quanwen; Zhao, Xiaopeng; Meng, Tong; Liu, Cunliang

    2016-09-01

    Thermal metamaterials and devices based on transformation thermodynamics often require materials with anisotropic and inhomogeneous thermal conductivities. In this study, still based on the concept of transformation thermodynamics, we designed a planar illusion thermal device, which can delocalize a heat source in the device such that the temperature profile outside the device appears to be produced by a virtual source at another position. This device can be constructed by only one kind of material with constant anisotropic thermal conductivity. The condition which should be satisfied by the device is provided, and the required anisotropic thermal conductivity is then deduced theoretically. This study may be useful for the designs of metamaterials or devices since materials with constant anisotropic parameters have great facility in fabrication. A prototype device has been fabricated based on a composite composed by two naturally occurring materials. The experimental results validate the effectiveness of the device.

  3. In situ anisotropic parameter determination using refraction seismic and VSP methods

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, J.M.; Lawton, D.C. (Calgary Univ., AB (Canada))

    1999-01-01

    A prime concern in the time-to-depth conversion of reflection seismic data is seismic anisotropy, because it can produce velocity anomalies in seismic data that mimic the structural plays of interest to the petroleum prospector in both size and shape. Ongoing techniques of time-to-depth conversion of P-wave seismic data do not handle the travel time and velocity distortions caused by seismic anisotropy, particularly in areas of complex geologic structures. To address this problem, the first step is to know which rock units are anisotropic and measure their anisotropic parameters. Laboratory means are available, but there are problems with these mainly with shales because of their fissile nature. In situ measurements are preferable because they yield a more robust value, and at the University of Calgary such measurements were undertaken using refraction seismic and vertical seismic profiling (VSP) methods. Results indicate that the two Thomsen anisotropic parameters of interest can be determined from the VSP experiment, but these values are slightly less than those obtained using the refraction technique. This may be because of the sensitivity of the shot statics which arises from the direct travel time measurement of the technique. The experiment yields another method to measure velocity anisotropy, in situ, where steeply dipping strata outcrop, which allows for the accurate measurement of the anisotropic parameters for use in depth migration routines. 4 refs.

  4. In situ anisotropic parameter determination using refraction seismic and VSP methods

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, J.M.; Lawton, D.C. [Calgary Univ., AB (Canada)

    1999-11-01

    A prime concern in the time-to-depth conversion of reflection seismic data is seismic anisotropy, because it can produce velocity anomalies in seismic data that mimic the structural plays of interest to the petroleum prospector in both size and shape. Ongoing techniques of time-to-depth conversion of P-wave seismic data do not handle the travel time and velocity distortions caused by seismic anisotropy, particularly in areas of complex geologic structures. To address this problem, the first step is to know which rock units are anisotropic and measure their anisotropic parameters. Laboratory means are available, but there are problems with these mainly with shales because of their fissile nature. In situ measurements are preferable because they yield a more robust value, and at the University of Calgary such measurements were undertaken using refraction seismic and vertical seismic profiling (VSP) methods. Results indicate that the two Thomsen anisotropic parameters of interest can be determined from the VSP experiment, but these values are slightly less than those obtained using the refraction technique. This may be because of the sensitivity of the shot statics which arises from the direct travel time measurement of the technique. The experiment yields another method to measure velocity anisotropy, in situ, where steeply dipping strata outcrop, which allows for the accurate measurement of the anisotropic parameters for use in depth migration routines. 4 refs.

  5. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  6. Wireless energy transfer between anisotropic metamaterials shells

    International Nuclear Information System (INIS)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-01-01

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted

  7. Anisotropic hydrodynamics with a scalar collisional kernel

    Science.gov (United States)

    Almaalol, Dekrayat; Strickland, Michael

    2018-04-01

    Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.

  8. Solving the dynamic rupture problem with different numerical approaches and constitutive laws

    Science.gov (United States)

    Bizzarri, A.; Cocco, M.; Andrews, D.J.; Boschi, Enzo

    2001-01-01

    We study the dynamic initiation, propagation and arrest of a 2-D in-plane shear rupture by solving the elastodynamic equation by using both a boundary integral equation method and a finite difference approach. For both methods we adopt different constitutive laws: a slip-weakening (SW) law, with constant weakening rate, and rate- and state-dependent friction laws (Dieterich-Ruina). Our numerical procedures allow the use of heterogeneous distributions of constitutive parameters along the fault for both formulations. We first compare the two solution methods with an SW law, emphasizing the required stability conditions to achieve a good resolution of the cohesive zone and to avoid artificial complexity in the solutions. Our modelling results show that the two methods provide very similar time histories of dynamic source parameters. We point out that, if a careful control of resolution and stability is performed, the two methods yield identical solutions. We have also compared the rupture evolution resulting from an SW and a rate- and state-dependent friction law. This comparison shows that despite the different constitutive formulations, a similar behaviour is simulated during the rupture propagation and arrest. We also observe a crack tip bifurcation and a jump in rupture velocity (approaching the P-wave speed) with the Dieterich-Ruina (DR) law. The rupture arrest at a barrier (high strength zone) and the barrier-healing mechanism are also reproduced by this law. However, this constitutive formulation allows the simulation of a more general and complex variety of rupture behaviours. By assuming different heterogeneous distributions of the initial constitutive parameters, we are able to model a barrier-healing as well as a self-healing process. This result suggests that if the heterogeneity of the constitutive parameters is taken into account, the different healing mechanisms can be simulated. We also study the nucleation phase duration Tn, defined as the time

  9. Homogenization of linearly anisotropic scattering cross sections in a consistent B1 heterogeneous leakage model

    International Nuclear Information System (INIS)

    Marleau, G.; Debos, E.

    1998-01-01

    One of the main problems encountered in cell calculations is that of spatial homogenization where one associates to an heterogeneous cell an homogeneous set of cross sections. The homogenization process is in fact trivial when a totally reflected cell without leakage is fully homogenized since it involved only a flux-volume weighting of the isotropic cross sections. When anisotropic leakages models are considered, in addition to homogenizing isotropic cross sections, the anisotropic scattering cross section must also be considered. The simple option, which consists of using the same homogenization procedure for both the isotropic and anisotropic components of the scattering cross section, leads to inconsistencies between the homogeneous and homogenized transport equation. Here we will present a method for homogenizing the anisotropic scattering cross sections that will resolve these inconsistencies. (author)

  10. Anisotropic superfluidity of hadronic matter

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1977-10-01

    From a model of strong interactions with important general features (f-g model) and from recent experiments of Rudnick and co-workers on thin films of helium II, hadronic matter is considered as a new manifestation of anisotropic superfluidity. In order to test the validity of the suggestion, some qualitative features of multiparticle production of hadrons are considered, and found to have a natural explanation. A prediction is made following a recent experiment on π + p collisions

  11. Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack

    International Nuclear Information System (INIS)

    Bostroem, A.

    2001-12-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the

  12. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    Science.gov (United States)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  13. Linearly polarized photoluminescence of anisotropically strained c-plane GaN layers on stripe-shaped cavity-engineered sapphire substrate

    Science.gov (United States)

    Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon

    2018-05-01

    Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.

  14. Asymptotic behaviour near extinction of continuous-state branching processes

    OpenAIRE

    Berzunza, Gabriel; Pardo, Juan Carlos

    2016-01-01

    In this note, we study the asymptotic behaviour near extinction of (sub-) critical continuous state branching processes. In particular, we establish an analogue of Khintchin's law of the iterated logarithm near extinction time for a continuous state branching process whose branching mechanism satisfies a given condition and its reflected process at its infimum.

  15. Nonlinear viscoelastic behaviour of shells of revolution under arbitrary loading

    International Nuclear Information System (INIS)

    Leonard, J.W.; Arbabi-Kanjoori, F.

    1975-01-01

    A formulation and solution technique are presented for the creep analysis of shells of revolution subjected to arbitrary loads and temperature changes. Arbitrary creep laws are admitted in the formulation with specific attention given to the two common laws, i.e. strain hardening and time hardening. The governing equations for creep of shells of revolution are derived. The solution method requires the quasi-static linearization of the equations: linear incremental behaviour is assumed during each time step. The incremental equations are expanded in Fourier series and solved by a numerical integration technique. (Auth.)

  16. Making of Magnet Barium Ferit Anisotropic

    International Nuclear Information System (INIS)

    Idayati, Novrita; Dedi

    2003-01-01

    Barium Hexa ferrite (BaFe 12 O 19 ) is ceramic and materials which usually used for making of permanent magnet. In this research Barium Hexa ferrite were made Anisotropic, and applied for loudspeaker, electro motors, dynamo, KWh metre, etc. this Magnet is commonly used due to its high Induction of Remanen (Br) and coercivity (high Hc). Besides it applies a more simple and easier process technology, cheaper raw material, and easy to find it, hence the magnetic component is much cheaper. Powder Metallurgy was used for the process technology, by reacting all materials in the powder (oxide), with a certain size distribution and a tight preparation step. The next step was mixing ferrite and Barium Carbonate (in the form of oxide), calcination, compaction, cantering and characterisation. The Anisotropic particle effects a high Induce Remanen (Br) and of koersifitas (high Hc). All the process steps will is determine physical and chemical characteristics of the magnet. The best Magnet characteristic of the magnet produced in this research is Induction of Remanen (Br) = 4,27 kg, Coercivity (Hc) = 1,745 kOe, Energy Product max (BHmaks) = 2,31 MGOe

  17. Information seeking and students studying for professional careers: the cases of engineering and law students in Ireland

    Directory of Open Access Journals (Sweden)

    Gillian Kerins

    2004-01-01

    Full Text Available This paper reports the results of two empirical studies which explored the information seeking behaviour of engineering and law students in Ireland. Findings reveal similar patterns in the information seeking behaviour between students studying to become professionals and information seeking patterns of these groups identified in Leckie et al.'s model. Students learned their information seeking strategies, including effective and less effective approaches, from educators and continuing mis-perceptions of libraries and information professionals. The studies suggest that engineering and law students in Ireland could benefit from greater information literacy training and awareness, enabling them to acquire the information skills they need to function effectively and efficiently in their future professional work lives.

  18. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    Science.gov (United States)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-04-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type-n and type-p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  19. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    Science.gov (United States)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-06-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type- n and type- p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire ( d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  20. Paraphilia and sex offending - A South African criminal law perspective.

    Science.gov (United States)

    Carstens, Pieter; Stevens, Philip

    2016-01-01

    Historically, the link between sexual deviance and criminality has been described and documented, asserted by psychiatry, and manifested in law. Laws that have regulated sexual behaviour have referred to terms such as 'sexual deviation', 'sexual perversion' or even archaic moral terms such as 'unnatural acts and unspeakable crimes against nature'. A possible link between sexual perversion, psychopathy, and criminality, specifically manifesting in sexual homicide, has been the subject of remarkable research in forensic psychiatry. This contribution examines the phenomenon of paraphilia with specific reference to its definition, diagnostic classification and characteristics, as well as a few selections of incidences of paraphilia in South African criminal case law. A brief assessment is made of how South African criminal courts have dealt with paraphilia. In this regard, an analysis is made of the criminal liability of the paraphiliac. The South African response to sexual deviation as addressed in the Criminal Law (Sexual Offences and Related Matters) Amendment Act 32 of 2007 will also be addressed with reference to its efficacy in addressing paraphilia within South African criminal law. The interface between criminal law and medical ethics within the context of this theme will also be canvassed. In conclusion, recommendations for possible reform are canvassed. Copyright © 2016. Published by Elsevier Ltd.