WorldWideScience

Sample records for anionic ion-pairing reagent

  1. Reversed-phase liquid chromatography coupled on-line with capillary gas chromatography use of an anion-exchange membrane to remove an ion-pair reagent from the eluent.

    NARCIS (Netherlands)

    Brinkman, U.A.T.; Goosens, E.C.; de Jong, D.; de Jong, G.J.; Beerthuizen, I.M.

    1995-01-01

    In order to enable the coupling of reversed-phase liquid chromatography (RPLC) with capillary gas chromatography (GC), the performance of an anion-exchange micromembrane device has been studied to remove the ion-pair reagent methanesulphonic acid from an acetonitrile/water LC eluent. The regenerant

  2. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    International Nuclear Information System (INIS)

    Dodi, Alain; Bouscarel, Maelle

    2008-01-01

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  3. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Dodi, Alain; Bouscarel, Maelle [Commissariat a l' energie atomique - C.E.A, Centre d' Etude de Cadarache, Laboratoire d' Analyses Radiochimiques et Chimiques, St Paul lez Durance (France)

    2008-07-01

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  4. Heteroditopic receptors for ion-pair recognition.

    Science.gov (United States)

    McConnell, Anna J; Beer, Paul D

    2012-05-21

    Ion-pair recognition is a new field of research emerging from cation and anion coordination chemistry. Specific types of heteroditopic receptor designs for ion pairs and the complexity of ion-pair binding are discussed to illustrate key concepts such as cooperativity. The importance of this area of research is reflected by the wide variety of potential applications of ion-pair receptors, including applications as membrane transport and salt solubilization agents and sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ions...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  6. Ion pairing of radical ions of aromatic alkenes and alkynes studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Yamamoto, Yukio; Hayashi, Koichiro

    1991-01-01

    Pulse radiolysis of 1,2-dichloroethane solutions of trans,trans-1,4-bis(2-phenylethenyl)benzene and 1,4-bis(2-phenylethynyl)benzene was undertaken in the presence of Bu 4 NPF 6 (Bu=butyl) to investigate the effect of ion pairing of the solute radical cations with PF 6 - . It was also undertaken for the tetrahydrofuran solutions of the above compounds in the presence of Bu 4 NPF 6 and NaBPh 4 , where the solute radical anions are generated and form ion pairs with Bu 4 N + and Na + . The decay of the radical ions, which is due to neutralization, is retarded by the ion pairing. The rate constants for the neutralization reactions in the free-ion and ion-paired states were determined. Also presented are the data for the radical ions of trans-stilbene, diphenylacetylene, trans,trans-1,4-diphenyl-1,3-butadiene, and diphenylbutadiene. The radical ions of the aromatic alkynes are less stabilized by the ion pairing than those of the aromatic alkenes having the same carbon skeletons probably because of more extensive charge delocalization of the former radical ions. Spectral shifts to shorter wavelengths caused by the ion pairing are appreciable for the radical anions. Dependence of the spectral shifts on the size of the radical anions is described. (author)

  7. Diffusion, Ion Pairing and Aggregation in 1-Ethyl-3-Methylimidazolium-Based Ionic Liquids Studied by 1 H and 19 F PFG NMR: Effect of Temperature, Anion and Glucose Dissolution.

    Science.gov (United States)

    D'Agostino, Carmine; Mantle, Mick D; Mullan, Claire L; Hardacre, Christopher; Gladden, Lynn F

    2018-01-31

    In this work, using 1 H and 19 F PFG NMR, we probe the effect of temperature, ion size/type and glucose dissolution on the rate of transport in 1-ethyl-3-methylimidazolium ([EMIM] + )-based ionic liquids by measuring self-diffusion coefficients. Using such data, we are able to establish the degree of ion pairing and quantify the extent of ionic aggregation during diffusion. For the neat 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) a strong degree of ion pairing is observed. The substitution of the [OAc] - anion with the bis{(trifluoromethyl)sulfonyl}imide ([TFSI] - ) anion reduces the pairing between the ions, which is attributed to a lower electric charge density on the [TFSI] - anion, hence a weaker electric interaction with the [EMIM] + cation. The effect of glucose, important for applications of ionic liquids as extracting media, on the strongly paired [EMIM][OAc] sample was also investigated and it is observed that the carbohydrate decreases the degree of ion pairing, which is attributed to the ability of glucose to disrupt inter-ionic interactions by forming hydrogen bonding, particularly with the [OAc] - anion. Calculations of aggregation number from diffusion data show that the [OAc] - anion diffuses as a part of larger aggregates compared to the [EMIM] + cation. The results and analysis presented here show the usefulness of PFG NMR in studies of ionic liquids, giving new insights into ion pairing and aggregation and the factors affecting these parameters. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Feasibility of ion-pair/supercritical fluid extraction of an ionic compound--pseudoephedrine hydrochloride.

    Science.gov (United States)

    Eckard, P R; Taylor, L T

    1997-02-01

    The supercritical fluid extraction (SFE) of an ionic compound, pseudoephedrine hydrochloride, from a spiked-sand surface was successfully demonstrated. The effect of carbon dioxide density (CO2), supercritical fluid composition (pure vs. methanol modified), and the addition of a commonly used reversed-phase liquid chromatographic ion-pairing reagent, 1-heptanesulfonic acid, sodium salt, on extraction efficiency was examined. The extraction recoveries of pseudoephedrine hydrochloride with the addition of the ion-pairing reagent from a spiked-sand surface were shown to be statistically greater than the extraction recoveries without the ion-pairing reagent with both pure and methanol-modified carbon dioxide.

  9. Partition/Ion-Exclusion Chromatographic Ion Stacking for the Analysis of Trace Anions in Water and Salt Samples by Ion Chromatography.

    Science.gov (United States)

    Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami

    2018-01-01

    A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.

  10. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non-Polar Solvents by using Conductometry.

    Science.gov (United States)

    Iseda, Kazuya; Kokado, Kenta; Sada, Kazuki

    2018-03-01

    In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride ( TBACl ) ion-pair salt to the free ions through complexation with meso -octamethylcalix[4]pyrrole ( CP ), which is a well-known receptor for chloride anions. In the presence of CP , the conductivity of TBACl increases in various non-polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non-polar solvents. In other words, CP recognizes chloride as an ion-paired salt as well as a free anion in non-polar solvents. Additionally, the TBA(CP - Cl ) complex exhibited a considerably lower ion-pairing constant ( K ip ) than TBACl in non-polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli-responsive soft materials in organic solvents using coulombic forces.

  11. Extractive liquid-liquid spectrophotometric procedure for the determination of thiocyanate ions employing the ion pair reagent amiloride monohydrochloride

    International Nuclear Information System (INIS)

    Bashammakh, A.S.; Bahaffi, S.O.; Al-Sibaai, A.A.; Al-Wael, H.O.; El-Shahawi, M.S.

    2007-01-01

    An accurate, inexpensive and less laborious liquid-liquid extractive spectrophotometric procedure for the determination of thiocyanate ions in aqueous media has been developed. The method has been based upon the formation of a yellow colored complex ion associate of the ion-pairing reagent 1-(3, 5-diamino-6-chloropyrazinecarboxyl) guanidine hydrochloride monohydrate, namely amiloride hydrochloride, DPG + .Cl - and the thiocyanate ions in aqueous media containing HNO 3 (0.5 mol L -1 ) and subsequent extraction with 4-methyl-2-pentanone. The absorption electronic spectrum of the ion associate showed one well-defined peak at λ max 366 nm. The stoichiometric mole ratio of DPG + .Cl - to the thiocyanate ions is 1:1.The effective molar absorptivity (ε) of the ion associate at λ max 366 nm is 1.1 ± 0.1 x 10 4 L mol -1 cm -1 . The extraction constants (K d , K ex , and β) enabled a simple and convenient use of the developed binary ion associate for the extractive spectrophotometric determination of traces of thiocyanate ions in the aqueous media. Beer's law and Ringbom's plots are obeyed in the concentration range 0.05-10 and 0.1-7 μg mL -1 of the thiocyanate ions, respectively with a relative standard deviation of ±2.3%. The calculated lower limits of detection (LOD) and quantitation (LOQ) of the developed procedure for the thiocyanate ions were found equal to 0.02 and 0.066 μg mL -1 , respectively. The developed method has been applied for the determination of trace amounts of thicyanate ions in tap-, waste- and natural water samples and compared successfully with the reported methods at the 95% confidence level. The proposed method was also applied successfully for the determination of thiocyanate ions in saliva samples

  12. Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection

    Science.gov (United States)

    Levine, L. H.; Judkins, J. E.; Garland, J. L.; Sager, J. C. (Principal Investigator)

    2000-01-01

    A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.

  13. Assessing the Interplay between the Physicochemical Parameters of Ion-Pairing Reagents and the Analyte Sequence on the Electrospray Desorption Process for Oligonucleotides

    Science.gov (United States)

    Basiri, Babak; Murph, Mandi M.; Bartlett, Michael G.

    2017-08-01

    Alkylamines are widely used as ion-pairing agents during LC-MS of oligonucleotides. In addition to a better chromatographic separation, they also assist with the desorption of oligonucleotide ions into the gas phase, cause charge state reduction, and decrease cation adduction. However, the choice of such ion-pairing agents has considerable influence on the MS signal intensity of oligonucleotides as they can also cause significant ion suppression. Interestingly, optimal ion-pairing agents should be selected on a case by case basis as their choice is strongly influenced by the sequence of the oligonucleotide under investigation. Despite imposing major practical difficulties to analytical method development, such a highly variable system that responds very strongly to the nuances of the electrospray composition provides an excellent opportunity for a fundamental study of the electrospray ionization process. Our investigations using this system quantitatively revealed the major factors that influenced the ESI ionization efficiency of oligonucleotides. Parameters such as boiling point, proton affinity, partition coefficient, water solubility, and Henry's law constants for the ion-pairing reagents and the hydrophobic thymine content of the oligonucleotides were found to be the most significant contributors. Identification of these parameters also allowed for the development of a statistical predictive algorithm that can assist with the choice of an optimum IP agent for each particular oligonucleotide sequence. We believe that research in the field of oligonucleotide bioanalysis will significantly benefit from this algorithm (included in Supplementary Material) as it advocates for the use of lesser-known but more suitable ion-pair alternatives to TEA for many oligonucleotide sequences.

  14. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    Science.gov (United States)

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new

  15. Descriptors for ions and ion-pairs for use in linear free energy relationships.

    Science.gov (United States)

    Abraham, Michael H; Acree, William E

    2016-01-22

    The determination of Abraham descriptors for single ions is reviewed, and equations are given for the partition of single ions from water to a number of solvents. These ions include permanent anions and cations and ionic species such as carboxylic acid anions, phenoxide anions and protonated base cations. Descriptors for a large number of ions and ionic species are listed, and equations for the prediction of Abraham descriptors for ionic species are given. The application of descriptors for ions and ionic species to physicochemical processes is given; these are to water-solvent partitions, HPLC retention data, immobilised artificial membranes, the Finkelstein reaction and diffusion in water. Applications to biological processes include brain permeation, microsomal degradation of drugs, skin permeation and human intestinal absorption. The review concludes with a section on the determination of descriptors for ion-pairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    Science.gov (United States)

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  17. Fourier transform infrared spectroscopy of azide and cyanate ion pairs in AOT reverse micelles

    Science.gov (United States)

    Owrutsky, Jeffrey C.; Pomfret, Michael B.; Barton, David J.; Kidwell, David A.

    2008-07-01

    Evidence for ion pair formation in aqueous bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles (RMs) was obtained from infrared spectra of azide and cyanate with Li+, Na+, K+, and NH4+ counterions. The anions' antisymmetric stretching bands near 2000 cm-1 are shifted to higher frequency (blueshifted) in LiAOT and to a lesser extent in NaAOT, but they are very similar to those in bulk water with K+ and NH4+ as the counterions. The shifts are largest for low values of wo=[water]/[AOT] and approach the bulk value with increasing wo. The blueshifts are attributed to ion pairing between the anions and the counterions. This interpretation is reinforced by the similar trend (Li+>Na+>K+) for producing contact ion pairs with the metal cations in bulk dimethyl sulfoxide (DMSO) solutions. We find no evidence of ion pairs being formed in NH4AOT RMs, whereas ammonium does form ion pairs with azide and cyanate in bulk DMSO. Studies are also reported for the anions in formamide-containing AOT RMs, in which blueshifts and ion pair formation are observed more than in the aqueous RMs. Ion pairs are preferentially formed in confined RM systems, consistent with the well established ideas that RMs exhibit reduced polarity and a disrupted hydrogen bonding network compared to bulk water and that ion-specific effects are involved in mediating the structure of species at interfaces.

  18. Metal-Anion Pairing at Oxide/Water Interfaces: Theoretical and Experimental Investigations from the Nanoscale to the Macroscale

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Heather [The Ohio State Univ., Columbus, OH (United States)

    2016-11-14

    We combine the use of several techniques including bulk adsorption experiments, X-ray absorption, infrared, total internal reflection Raman, and vibrational sum frequencygeneration (XAS, IR, TIR-Raman, VSFG) spectroscopies, and molecular modeling to investigate ion adsorption at mineral surfaces. XAS and TIR-Raman provides data on how the metal binds to the surface (e.g., monodentate, bidentate), IR provides data on bulk anion adsorption at mineral surfaces from aqueous solutions, and VSFG provides surface specific data on anion adsorption at the mineral surface as well as impact of adsorbed metal-anion pairs on water structure at the mineral surface. Molecular modeling is used to guide spectroscopic data interpretation by providing information on water structure around ions in solution and the structure of metal-anion complexes in aqueous solutions. In addition, molecular modeling is used to provide insight into water structure at mineral surfaces, the surface sites involved in ion adsorption, and the distribution of ion pairs between aqueous solution and the mineral surface. Our studies have focused on systems involving alkaline earth metal (Mg2+, Ca2+, Sr2+, Ba2+) and heavy metal (Co2+, Cd2+) cations. The anions we have selected for studyinclude Cl-, NO3-, ClO4-, SO42-, SeO32-, and SeO42-. Ion adsorption and the potential formation ofternary complexes on silica (quartz, amorphous silica), alumina (corundum and gibbsite), and ferric iron oxides (goethite and hematite) are under investigation.

  19. Theoretical Probing of Weak Anion-Cation Interactions in Certain Pyridinium-Based Ionic Liquid Ion Pairs and the Application of Molecular Electrostatic Potential in Their Ionic Crystal Density Determination: A Comparative Study Using Density Functional Approach.

    Science.gov (United States)

    Joseph, Aswathy; Thomas, Vibin Ipe; Żyła, Gaweł; Padmanabhan, A S; Mathew, Suresh

    2018-01-11

    A comprehensive study on the structure, nature of interaction, and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF 4 - ), chloride (Cl - ), and bromide (Br - ) anions have been carried out using density functional theory (DFT). The anion-cation interaction energy (ΔE int ), thermochemistry values, theoretical band gap, molecular orbital energy order, DFT-based chemical activity descriptors [chemical potential (μ), chemical hardness (η), and electrophilicity index (ω)], and distribution of density of states (DOS) of these ion pairs were investigated. The ascendancy of the -CH 3 substituent at the fourth position of the 1-butylpyridinium cation ring on the values of ΔE int , theoretical band gap and chemical activity descriptors was evaluated. The ΔE int values were negative for all six ion pairs and were highest for Cl - containing ion pairs. The theoretical band gap value after -CH 3 substitution increased from 3.78 to 3.96 eV (for Cl - ) and from 2.74 to 2.88 eV (for Br - ) and decreased from 4.9 to 4.89 eV (for BF 4 - ). Ion pairs of BF 4 - were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH 3 substitution. The change in η and μ values due to the -CH 3 substituent is negligibly small in all cases except for the ion pairs of Cl - . Critical-point (CP) analyses were carried out to investigate the AIM topological parameters at the interionic bond critical points (BCPs). The RDG isosurface analysis indicated that the anion-cation interaction was dominated by strong H cat ···X ani and C cat ···X ani interactions in ion pairs of Cl - and Br - whereas a weak van der Waal's effect dominated in ion pairs of BF 4 - . The molecular electrostatic potential (MESP)-based parameter ΔΔV min measuring the anion-cation interaction strength showed a good linear correlation with

  20. Use of ion-pairing reagent for improving iodine speciation analysis in seaweed by pressure-driven capillary electrophoresis and ultraviolet detection.

    Science.gov (United States)

    Sun, Jiannan; Wang, Dan; Cheng, Heyong; Liu, Jinhua; Wang, Yuanchao; Xu, Zigang

    2015-01-30

    This study achieved resolution improvement for iodine speciation in the presence of an ion-pairing reagent by a pressure-driven capillary electrophoresis (CE) system. Addition of 0.01mM tetrabutyl ammonium hydroxide (TBAH) as the ion-pairing reagent into the electrophoretic buffer resulted in the complete separation of four iodine species (I(-), IO3(-), mono-iodothyrosine-MIT and di-iodothyrosine-DIT), because of the electrostatic interaction between TBAH and the negatively charged analytes. A +16kV separation voltage was applied along the separation capillary (50μm i.d., 80cm total and 60cm effective) with the inlet grounded. The detection wavelength was fixed at 210nm, and the pressure-driven flow rate was set at 0.12mLmin(-1) with an injected volume of 2μL. The optimal electrolyte consisted of 2mM borate, 2mM TBAH and 80% methanol with pH adjusted to 8.5. Baseline separation of iodine species was achieved within 7min. The detection limits for I(-), IO3(-), MIT and DIT were 0.052, 0.040, 0.032 and 0.025mgL(-1), respectively. The relative standard deviations of peak heights and areas were all below 3% for 5mgL(-1) and 5% for 1mgL(-1). Application of the proposed method was demonstrated by speciation analysis of iodine in two seaweed samples. The developed method offered satisfactory recoveries in the 91-99% range and good precisions (iodine speciation in environmental, food and biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Sensitivity of Electron Transfer Mediated Decay to Ion Pairing.

    Science.gov (United States)

    Pohl, Marvin N; Richter, Clemens; Lugovoy, Evgeny; Seidel, Robert; Slavíček, Petr; Aziz, Emad F; Abel, Bernd; Winter, Bernd; Hergenhahn, Uwe

    2017-08-17

    Ion pairing in electrolyte solutions remains a topic of discussion despite a long history of research. Very recently, nearest-neighbor mediated electronic de-excitation processes of core hole vacancies (electron transfer mediated decay, ETMD) were proposed to carry a spectral fingerprint of local solvation structure and in particular of contact ion pairs. Here, for the first time, we apply electron-electron coincidence detection to a liquid microjet, and record ETMD spectra of Li 1s vacancies in aqueous solutions of lithium chloride (LiCl) in direct comparison to lithium acetate (LiOAc). A change in the ETMD spectrum dependent on the electrolyte anion identity is observed for 4.5 M salt concentration. We discuss these findings within the framework of the formation and presence of contact ion pairs and the unique sensitivity of ETMD spectroscopy to ion pairing.

  2. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    International Nuclear Information System (INIS)

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-01-01

    The stabilization energies for the formation (E form ) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G ** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E form for the [dema][CF 3 SO 3 ] and [dmpa][CF 3 SO 3 ] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF 3 SO 3 ] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl − , BF 4 − , TFSA − anions. The anion has contact with the N–H bond of the dema + or dmpa + cations in the most stable geometries of the dema + and dmpa + complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E form for the less stable geometries for the dema + and dmpa + complexes are close to those for the most stable etma + complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA − anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF 3 SO 3 ] ionic liquid

  3. Adsorption of ion pairs onto graphene flakes and impacts of counterions during the adsorption processes

    Science.gov (United States)

    Zhu, Chang; Yun, Jiena; Wang, Qian; Yang, Gang

    2018-03-01

    Although cations and anions are two integral constituents for all electrolytes, adsorption of ion pairs onto carbonaceous materials gains obviously less attention than adsorption of only cations or anions. Here DFT calculations are employed finding that four adsorption configurations emerge for KI onto graphene flakes (GF) instead of three for the other ion pairs. Reservation of ionic bonds is critical to their stabilities, and the bilateral configurations, where GFs couple with both cations and anions, are disfavored due to rupture of ionic bonds. Relative stabilities of two vertical configurations can be regulated and even reversed through edge-functionalization. Surprisingly, the horizontal adsorption configurations, which are global energy minima as long as present, are non-existent for a majority of ion pairs, and their existence or not is determined by the adsorption differences between halide ions and alkali ions (△Ead). Counterions effects for both cations and anions increase with the atomic electronegativities and cations correspond to stronger counterion effects; e.g., Li+ added on the other side of GFs promotes the adsorption of F- more pronouncedly than edge-functionalization. Mechanisms of electron transfers are also discussed, and three alteration patterns by counterions are observed for each type of adsorption configurations. Furthermore, addition of counterions causes band gaps to vary within a wider range that may be useful to design electronic devices.

  4. Synthesis of guanidinium–sulfonimide ion pairs: towards novel ionic liquid crystals

    Directory of Open Access Journals (Sweden)

    Martin Butschies

    2013-06-01

    Full Text Available The recently introduced concept of ionic liquid crystals (ILCs with complementary ion pairs, consisting of both, mesogenic cation and anion, was extended from guanidinium sulfonates to guanidinium sulfonimides. In this preliminary study, the synthesis and mesomorphic properties of selected derivatives were described, which provide the first example of an ILC with the sulfonimide anion directly attached to the mesogenic unit.

  5. AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions.

    Science.gov (United States)

    Radisic, Dunja; Bowen, Kit H; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej

    2005-05-04

    The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)(-) and a resulting (MAMT)(-) configuration that was either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)(-) occurred at a completely different electron binding energy than had (AT)(-). Moreover, the VDE value of (MAMT)(-) was in agreement with that predicted by theory. The configuration of (MAMT)(-) and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced DNA alterations, BFPT in the WC/HS configurations of (AT)(-) is not feasible.

  6. AT Base Pair Anions vs. (9-methyl-A)(1-methyl-T) Base Pair Anions

    International Nuclear Information System (INIS)

    Radisic, Dunja; Bowen, Kit H.; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej S.

    2005-01-01

    The anionic base pairs of adenine and thymine, (AT)-, and 9-methyladenine and 1-methylthymine, (MAMT)-, have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)- found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration that was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)- was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)- and a resulting (MAMT)- configuration that wa s either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)- occurred at a completely different electron binding energy than had (AT)-. Moreover, the VDE value of (MAMT)- was in agreement with that predicted by theory. The configuration of (MAMT)- and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced damage, BFPT in the WC/HS configurations of (AT)- is not feasible

  7. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non‐Polar Solvents by using Conductometry

    Science.gov (United States)

    Iseda, Kazuya

    2018-01-01

    Abstract In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride (TBACl) ion‐pair salt to the free ions through complexation with meso‐octamethylcalix[4]pyrrole (CP), which is a well‐known receptor for chloride anions. In the presence of CP, the conductivity of TBACl increases in various non‐polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non‐polar solvents. In other words, CP recognizes chloride as an ion‐paired salt as well as a free anion in non‐polar solvents. Additionally, the TBA(CP–Cl) complex exhibited a considerably lower ion‐pairing constant (K ip) than TBACl in non‐polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli‐responsive soft materials in organic solvents using coulombic forces. PMID:29610717

  8. Separation of boron isotopes by ion exchange chromatography: studies on regeneration of strong base anion exchange resins

    International Nuclear Information System (INIS)

    Sharma, B.K.; Subramanian, R.; Mathur, P.K.

    1994-01-01

    The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography where the hydroxyl form of an anion exchange resin is equilibrated with boric acid solution containing mannitol as a complexing reagent. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. (author)

  9. Solvent extraction of anionic chelate complexes of lanthanum(III), europium(III), lutetium(III), scandium(III), and indium(III) with 2-thenoyltrifluoroacetone as ion-pairs with tetrabutylammonium ions

    International Nuclear Information System (INIS)

    Noro, Junji; Sekine, Tatsuya.

    1992-01-01

    The solvent extraction of lanthanum(III), europium(III), lutetium(III), scandium(III), and indium(III) in 0.1 mol dm -3 sodium nitrate solutions with 2-thenoyltrifluoroacetone (Htta) in the absence and presence of tetrabutylammonium ions (tba + ) into carbon tetrachloride was measured. The extraction of lanthanum(III), europium(III), and lutetium(III) was greatly enhanced by the addition of tba + ; this could be explained in terms of the extraction of a ternary complex, M(tta) 4 - tba + . However, the extractions of scandium(III) and indium(III) were nearly the same when tba + was added. The data were treated on the basis of the formation equilibrium of the ternary complex from the neutral chelate, M(tta) 3 , with the extracted ion-pairs of the reagents, tta - tba + , in the organic phase. It was concluded that the degree of association of M(tta) 3 with the ion-pair, tta - tba + , is greater in the order La(tta) 3 ≅ Eu(tta) 3 > Lu(tta) 3 , or that the stability of the ternary complex in the organic phase is higher in the order La(tta) 4 - tba + ≅ Eu(tta) 4 - tba + > Lu(tta) 4 - tba + . This is similar to those of adduct metal chelates of Htta with tributylphosphate (TBP) in synergistic extraction systems. (author)

  10. Indirect photometric detection of boron cluster anions electrophoretically separated in methanol.

    Science.gov (United States)

    Vítová, Lada; Fojt, Lukáš; Vespalec, Radim

    2014-04-18

    3,5-Dinitrobenzoate and picrate are light absorbing anions pertinent to indirect photometric detection of boron cluster anions in buffered methanolic background electrolytes (BGEs). Tris(hydroxymethyl)aminomethane and morpholine have been used as buffering bases, which eliminated baseline steps, and minimized the baseline noise. In methanolic BGEs, mobilities of boron cluster anions depend on both ionic constituents of the BGE buffer. This dependence can be explained by ion pair interaction of detected anions with BGE cations, which are not bonded into ion pairs with the BGE anions. The former ion pair interaction decreases sensitivity of the indirect photometric detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Ion-exchange concentration of inorganic anions from aqueous solution

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2016-01-01

    Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.

  12. Influence of a Counterion on the Ion Atmosphere of an Anion: A Molecular Dynamics Study of LiX and CsX (X = F(-), Cl(-), I(-)) in Methanol.

    Science.gov (United States)

    Kumar, Parveen; Kulkarni, Anant D; Yashonath, S

    2015-08-27

    We report molecular dynamics (MD) simulations to explore the influence of a counterion on the structure and dynamics of cationic and anionic solvation shells for various ions in methanol at 298 K. We show that the variation in ionic size of either the cation or the anion in an ion pair influences the solvation structure of the other ion as well as the diffusivity in an electrolyte solution of methanol. The extent of ionic association between the cation and its counteranion of different ionic sizes has been investigated by analyzing the radial distribution functions (RDFs) and the orientation of methanol molecules in the first solvation shell (FSS) of ions. It is shown that the methanol in the FSS of the anion as well the cation exhibit quite different radial and orientational structures as compared to methanol which lie in the FSS of either the anion or the cation but not both. We find that the coordination number (CN) of F(-), Cl(-), and I(-) ions decreases with increasing size of the anion which is contrary to the trend reported for the anions in H2O. The mean residence time (MRT) of methanol molecules in the FSS of ions has been calculated using the stable states picture (SSP) approach. It is seen that the ion-counterion interaction has a considerable influence on the MRT of methanol molecules in the FSS of ions. We also discuss the stability order of the ion-counterion using the potentials of mean force (PMFs) for ion pairs with ions of different sizes. The PMF plots reveal that the Li(+)-F(-) pair (small-small) is highly stable and the Li(+)-I(-) pair is least stable (small-large) in electrolyte solutions.

  13. Understanding weakly coordinating anions: tetrakis(pentafluorophenyl)borate paired with inorganic and organic cations.

    Science.gov (United States)

    Andreeva, Nadezhda A; Chaban, Vitaly V

    2017-03-01

    Efficient design of ionic compounds requires a systematic understanding of cation-anion interactions. Weakening of electrostatic attraction is essential to increase the liquid range of the ionic compound and decrease its melting point. Here, we report simulations of the closest-approach cation-anion distances in a variety of ion pairs containing the tetrakis(pentafluorophenyl)borate (TFPB - ) anion. Small alkali cations (Li + , Na + ) penetrate the TFPB - core, whereas K + and larger organic cations do not. In the latter case, the shortest possible distance from the cations to the boron atom of TFPB - ranges from 0.50 nm to 0.63 nm. TFPB - was shown to be substantially rigid, providing a steric hindrance to thermodynamically efficient cation-anion coordination. Our results prove that TFPB - is more efficient for electrostatic charge confinement than the tetraoctylammonium cation, whereas the perfluorophenyl group is more efficient than linear alkyl chains. These simulations will motivate development of TFPB - -based ionic liquids with low phase transition points. Graphical Abstract Ionic configuration of the equilibrated "TFPB + K"system.

  14. Determination of adrenaline, noradrenaline and corticosterone in rodent blood by ion pair reversed phase UHPLC-MS/MS.

    Science.gov (United States)

    Bergh, Marianne Skov-Skov; Bogen, Inger Lise; Andersen, Jannike Mørch; Øiestad, Åse Marit Leere; Berg, Thomas

    2018-01-01

    A novel ion pair reversed phase ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the stress hormones adrenaline, noradrenaline and corticosterone in rodent blood was developed and fully validated. Separations were performed on an Acquity HSS T3 column (2.1mm i.d.×100mm, 1.8μm) with gradient elution and a runtime of 5.5min. The retention of adrenaline and noradrenaline was substantially increased by employing the ion pair reagent heptafluorobutyric acid (HFBA). Ion pair reagents are usually added to the mobile phase only, but we demonstrate for the first time that including HFBA to the sample reconstitution solvent as well, has a major impact on the chromatography of these compounds. The stability of adrenaline and corticosterone in rodent blood was investigated using the surrogate analytes adrenaline-d 3 and corticosterone-d 8 . The applicability of the described method was demonstrated by measuring the concentration of stress hormones in rodent blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. High-performance liquid ion-pair chromatography in inorganic analysis

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Basova, E.M.; Bol'shova, T.A.; Ivanov, V.M.

    1990-01-01

    In literature review for the recent 15 years theoretical foundations, regularities and mechanisms of ionized compound retention in reverse-phase ion-pair chromatography are considered, possibilities and prospects of its application in inorganic analysis being demonstrated. Analytic characteristics of the methods for the determination of inorganic anions (I - , IO 3 - , MoO 4 2- , etc.), as well as metals (Zr, Hf, V, Nb, Mo, W, Ru, lanthanides, etc.) in the form of chelates, are given

  16. Polymer-supported reagents with enhanced metal ion recognition: Application to separations science

    International Nuclear Information System (INIS)

    Alexandratos, S.D.

    1993-01-01

    The design and development of polymer-supported reagents with ever-increasing specificities for targeted metal ions remains an important areas of research. The need for efficient separation schemes for both ions and molecules has been outlined in a report by the National Research Council (King) and will gain increased emphasis as environmental restoration is pursued. Polymer-supported reagents are unique in their ability to be applied in an environmentally benign manner to a host of challenges. Such reagents, in the form of beads, can be applied to continuous separation processes ranging from the removal of metal ions in water to the recovery of medicinal drugs produced through biotechnological means. The application of polymer-supported reagents to metal ion separations still requires developing a fundamental understanding of ligand-metal interactions, the role of the polymer in those interactions, and the methods of synthesizing such polymeric reagents in a readily applicable form. Ion exchange resins with sulfonic acid ligands are the prototypical polymer-supported reagents, and their properties have been exhaustively studied (Helfferich). The high acidity of the sulfonic acid group, however, precludes much selectivity, and it displays a very limited range of reaction free energy values with different metal ions (Boyd et al.). The carboxylic acid ligand, present in the acrylate resins, is more selective, though its weak acidity requires relatively high pH solutions for it to be effective. Research has thus been focused on the preparation of polymer-supported reagents with high levels of specificity for targeted metal ions

  17. Analysis of a variety of inorganic and organic additives in food products by ion-pairing liquid chromatography coupled to high-resolution mass spectrometry.

    Science.gov (United States)

    Kaufmann, Anton; Widmer, Mirjam; Maden, Kathryn; Butcher, Patrick; Walker, Stephan

    2018-03-05

    A reversed-phase ion-pairing chromatographic method was developed for the detection and quantification of inorganic and organic anionic food additives. A single-stage high-resolution mass spectrometer (orbitrap ion trap, Orbitrap) was used to detect the accurate masses of the unfragmented analyte ions. The developed ion-pairing chromatography method was based on a dibutylamine/hexafluoro-2-propanol buffer. Dibutylamine can be charged to serve as a chromatographic ion-pairing agent. This ensures sufficient retention of inorganic and organic anions. Yet, unlike quaternary amines, it can be de-charged in the electrospray to prevent the formation of neutral analyte ion-pairing agent adducts. This process is significantly facilitated by the added hexafluoro-2-propanol. This approach permits the sensitive detection and quantification of additives like nitrate and mono-, di-, and triphosphate as well as citric acid, a number of artificial sweeteners like cyclamate and aspartame, flavor enhancers like glutamate, and preservatives like sorbic acid. This is a major advantage, since the currently used analytical methods as utilized in food safety laboratories are only capable in monitoring a few compounds or a particular category of food additives. Graphical abstract Deptotonation of ion pair agent in the electrospray interface.

  18. Degradation of ion spent resin using the Fenton's reagent

    International Nuclear Information System (INIS)

    Araujo, Leandro Goulart de

    2013-01-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  19. Mechanisms and rules of anion partition into ionic liquids: phenolate ions in ionic liquid/water biphasic systems.

    Science.gov (United States)

    Katsuta, Shoichi; Nakamura, Ko-ichi; Kudo, Yoshihiro; Takeda, Yasuyuki

    2012-01-19

    It is important to understand the mechanisms and general rules of ion partitioning in hydrophobic ionic liquid (IL)/water biphasic systems in order to predict the extractability of an ionic species with various ILs. In this study, we have investigated the partition of picrate ion (target anion, T(-)) from aqueous sodium picrate solutions into several ILs and the accompanying changes in aqueous concentrations of the IL component cation (C(+)) and anion (A(-)) at 298.2 K. The main ILs examined are 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)amide. The aqueous concentrations of C(+) and A(-) decreased and increased, respectively, with the extraction of T(-) into the IL phase. From the standpoint of equilibrium, the partition behavior of T(-) can be explained both by the anion exchange with A(-) in the IL phase and by the ion pair extraction with C(+) in the aqueous phase. The aqueous concentrations of C(+) and A(-) are governed by the solubility product of the IL (K(sp)). The distribution ratio of T(-) is expressed as a function of Δ[T(-)](W), namely, the difference between the initial and equilibrium concentrations of T(-) in the aqueous phase; the distribution ratio of T(-) is nearly constant when Δ[T(-)](W) < K(sp)(1/2), but decreases with increasing Δ[T(-)](W) in the larger Δ[T(-)](W) region. The equilibrium constants of the ion pair extraction and the ion exchange extraction have been determined for picrate and other phenolate ions whose partition data were previously reported. The dependences of the extraction constants and extractability on the kinds of IL component ions can be quantitatively explained on the basis of the variations of K(sp).

  20. Reagent precipitation of copper ions from wastewater of machine-building factories

    Science.gov (United States)

    Porozhnyuk, L. A.; Lupandina, N. S.; Porozhnyuk, E. V.

    2018-03-01

    The article presents the results of reagent removal of copper ions from wastewater of machine-building factories. The urgency of the study is conditioned by the widening of the range of effective reagents through the implementation of industrial waste. The investigation covers mineralogical and fractional composition of chalk enrichment waste. In the work, the conditions of thermal activation of chalk enrichment waste used for reagent removal of copper ions from wastewater were elaborated. It was shown that the thermal activation of waste facilitates the increased treatment efficacy up to the set sanitation, hygiene and technological standards.

  1. Retention modeling under organic modifier gradient conditions in ion-pair reversed-phase chromatography. Application to the separation of a set of underivatized amino acids.

    Science.gov (United States)

    Pappa-Louisi, A; Agrafiotou, P; Papachristos, K

    2010-07-01

    The combined effect of the ion-pairing reagent concentration, C(ipr), and organic modifier content, phi, on the retention under phi-gradient conditions at different constant C(ipr) was treated in this study by using two approaches. In the first approach, the prediction of the retention time of a sample solute is based on a direct fitting procedure of a proper retention model to 3-D phi-gradient retention data obtained under the same phi-linear variation but with different slope and time duration of the initial isocratic part and in the presence of various constant C(ipr) values in the eluent. The second approach is based on a retention model describing the combined effect of C(ipr) and phi on the retention of solutes in isocratic mode and consequently analyzes isocratic data obtained in mobile phases containing different C(ipr) values. The effectiveness of the above approaches was tested in the retention prediction of a mixture of 16 underivatized amino acids using mobile phases containing acetonitrile as organic modifier and sodium dodecyl sulfate as ion-pairing reagent. From these approaches, only the first one gives satisfactory predictions and can be successfully used in optimization of ion-pair chromatographic separations under gradient conditions. The failure of the second approach to predict the retention of solutes in the gradient elution mode in the presence of different C(ipr) values was attributed to slow changes in the distribution equilibrium of ion-pairing reagents caused by phi-variation.

  2. Desalting Protein Ions in Native Mass Spectrometry Using Supercharging Reagents

    Science.gov (United States)

    Cassou, Catherine A.; Williams, Evan R.

    2014-01-01

    Effects of the supercharging reagents m-NBA and sulfolane on sodium ion adduction to protein ions formed using native mass spectrometry were investigated. There is extensive sodium adduction on protein ions formed by electrospray ionization from aqueous solutions containing millimolar concentrations of NaCl, which can lower sensitivity by distributing the signal of a given charge state over multiple adducted ions and can reduce mass measuring accuracy for large proteins and non-covalent complexes for which individual adducts cannot be resolved. The average number of sodium ions adducted to the most abundant ion formed from ten small (8.6–29 kDa) proteins for which adducts can be resolved is reduced by 58% or 80% on average, respectively, when 1.5% m-NBA or 2.5% sulfolane are added to aqueous solutions containing sodium compared to without the supercharging reagent. Sulfolane is more effective than m-NBA at reducing sodium ion adduction and at preserving non-covalent protein-ligand and protein-protein interactions. Desalting with 2.5% sulfolane enables detection of several glycosylated forms of 79.7 kDa holo-transferrin and NADH bound to the 146 kDa homotetramer LDH, which are otherwise unresolved due to peak broadening from extensive sodium adduction. Although sulfolane is more effective than m-NBA at protein ion desalting, m-NBA reduces salt clusters at high m/z and can increase the signal-to-noise ratios of protein ions by reducing chemical noise. Desalting is likely a result of these supercharging reagents binding sodium ions in solution, thereby reducing the sodium available to adduct to protein ions. PMID:25133273

  3. Gaz Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs

    Science.gov (United States)

    Habka, Sana; Brenner, Valerie; Mons, Michel; Gloaguen, Eric

    2016-06-01

    Cations and anions, in solution, tend to pair up forming ion pairs. They play a crucial role in many fundamental processes in ion-concentrated solutions and living organisms. Despite their importance and vast applications in physics, chemistry and biochemistry, they remain difficult to characterize namely because of the coexistence of several types of pairing in solution. However, an interesting alternative consists in applying highly selective gas phase spectroscopy which can offer new insights on these neutral ion pairs. Our study consists in characterizing contact ion pairs (CIPs) in isolated model systems (M+, Ph-(CH2)n-COO- with M=Li, Na, K, Rb, Cs, and n=1-3), to determine their spectral signatures and compare them to ion pairs in solution. We have used laser desorption to vaporize a solid tablet containing the desired salt. Structural information for each system was obtained by mass-selective, UV and IR laser spectroscopy combined with high level quantum chemistry calculations1. Evidence of the presence of neutral CIPs was found by scanning the π-π* transition of the phenyl ring using resonant two-photon ionization (R2PI). Then, conformational selective IR/UV double resonance spectra were recorded in the CO2- stretch region for each conformation detected. The good agreement between theoretical data obtained at the BSSE-corrected-fullCCSD(T)/dhf-TZVPP//B97-D3/dhf-TZVPP level and experimental IR spectra led us to assign the 3D structure for each ion pair formed. Spectral signatures of (M+, Ph-CH2-COO-) pairs, were assigned to a bidentate CIPs between the alkali cation and the carboxylate group. In the case of (Li+, Ph-(CH2)3-COO-) pairs, the presence of a flexible side chain promotes a cation-π interaction leading to a tridentate O-O-π structure with its unique IR and UV signatures. IR spectra obtained on isolated CIPs were found very much alike the ones published on lithium and sodium acetate in solution2. However, in the case of sodium acetate, solution

  4. Simultaneous analysis of aminoglycosides with many other classes of drug residues in bovine tissues by ultrahigh-performance liquid chromatography-tandem mass spectrometry using an ion-pairing reagent added to final extracts.

    Science.gov (United States)

    Lehotay, Steven J; Lightfield, Alan R

    2018-01-01

    The way to maximize scope of analysis, sample throughput, and laboratory efficiency in the monitoring of veterinary drug residues in food animals is to determine as many analytes as possible as fast as possible in as few methods as possible. Capital and overhead expenses are also reduced by using fewer instruments in the overall monitoring scheme. Traditionally, the highly polar aminoglycoside antibiotics require different chromatographic conditions from other classes of drugs, but in this work, we demonstrate that an ion-pairing reagent (sodium 1-heptanesulfonate) added to the combined final extracts from two sample preparation methods attains good separation of 174 targeted drugs, including 9 aminoglycosides, in the same 10.5-min ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The full method was validated in bovine kidney, liver, and muscle tissues according to US regulatory protocols, and 137-146 (79-84%) of the drugs gave between 70 and 120% average recoveries with ≤ 25% RSDs in the different types of tissues spiked at 0.5, 1, and 2 times the regulatory levels of interest (10-1000 ng/g depending on the drug). This method increases sample throughput and the possible number of drugs monitored in the US National Residue Program, and requires only one UHPLC-MS/MS method and instrument for analysis rather than two by the previous scheme. Graphical abstract Outline of the streamlined approach to monitor 174 veterinary drugs, including aminoglycosides, in bovine tissues by combining two extracts of the same sample with an ion-pairing reagent for analysis by UHPLC-MS/MS.

  5. A Survey of Aspartate Phenylalanine and Glutamate Phenylalanine Interactions in the Protein Data Bank: Searching for Anion Pairs

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Vivek M [ORNL; Harris, Jason B [ORNL; Adams, Rachel M [ORNL; Nguyen, Don [University of Tennessee, Knoxville (UTK); Spires, Jeremy [University of Tennessee, Knoxville (UTK); Howell, Elizabeth E. [University of Tennessee, Knoxville (UTK); Hinde, Robert J [ORNL

    2011-01-01

    Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242 8249]. To study the role of anion interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe Asp or Glu pairs separated by less than 7 in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura Morokuma energy calculations were performed on roughly 19000 benzene formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (2 to 7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion pairs are found throughout protein structures, in helices as well as strands. Numerous pairs also had nearby cation interactions as well as potential stacking. While more than 1000 structures did not contain an anion pair, the 3134 remaining structures contained approximately 2.6 anion pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.

  6. C-terminal peptide extension via gas-phase ion/ion reactions

    Science.gov (United States)

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  7. Aliphatic long chain quaternary ammonium compounds analysis by ion-pair chromatography coupled with suppressed conductivity and UV detection in lysing reagents for blood cell analysers.

    Science.gov (United States)

    Giovannelli, D; Abballe, F

    2005-08-26

    A method has been developed which allows simultaneous determination of three linear alkyl trimethylammonium salts. Dodecyltrimethylammonium chloride, tetradecyltrimethylammonium bromide and hexadecyltrimethylammonium chloride are widely used as main active ingredients of lysing reagents for blood cell analyzers which perform white blood cells differential determination into two or more sub-populations by impedance analysis. The ion-pair on styrene-divinyl benzene chromatographic phase looks like a suitable, reliable and long term stable tool for separation of such quaternary compounds. The detection based on suppressed conductivity was chosen because of the lack of significance chromophores. A micromembrane suppressor device compatible with high solvent concentration (up to 80%) was used in order to minimize the conductivity background before the detection. In the present work we show how the chemical post column derivatization makes the alkyl chain detectable also by UV direct detection at 210 nm.

  8. Rejuvenation processes applied to 'poisoned' anion exchangers in uranium processing

    International Nuclear Information System (INIS)

    Gilmore, A.J.

    1979-11-01

    The removal of 'poisons' from anion exchangers in uranium processing of Canadian radioactive ores is commonly called rejuvenation or regeneration. The cost of the ion exchange recovery of uranium is adversely affected by a decrease in the capacity and efficiency of the anion exchangers, due to their being 'poisoned' by silica, elemental sulphur, molybdenum and tetrathionates. These 'poisons' have a high affinity for the anion exchangers, are adsorbed in preference to the uranyl complex, and do not desorb with the reagents used normally in the uranyl desorption phase. The frequency of rejuvenation and the reagents required for rejuvenation are determined by the severity of the 'poisoning' accumulated by the exchanger in contact with the uranium leach liquor. Caustic soda (NaOH) at approximately equal to 18 cents/lb is commonly used to remove uranium anion exchangers of tetrathionate ((S 4 0 6 )/-/-) 'poisons'. A potential saving in operating cost would be of consequence if other reagents, e.g. sodium carbonate (Na 2 CO 3 ) at approximately equal to 3.6 cents/lb or calcium hydroxide (Ca(OH) 2 ) at approximately equal to 1.9 cents/lb, were effective in removing (S 4 0 6 )/-/-) from a 'poisoned' exchanger. A rejuvenation process for a test program was adopted after a perusal of the literature

  9. Gas Chromatographic-Ion Trap Mass Spectrometric Analysis of Volatile Organic Compounds by Ion-Molecule Reactions Using the Electron-Deficient Reagent Ion CCl{3/+}

    Science.gov (United States)

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl{3/+} was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl{3/+} could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl{3/+} with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M + CCl3 - HCl]+ for aromatic hydrocarbons, [M - OH]+ for saturated cyclic ether, ketone, and alcoholic compounds, [M - H]+ ion for monoterpenes, M·+ for sesquiterpenes, [M - CH3CO]+ for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl{3/+} were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds.

  10. An automated method for the analysis of phenolic acids in plasma based on ion-pairing micro-extraction coupled on-line to gas chromatography/mass spectrometry with in-liner derivatisation

    NARCIS (Netherlands)

    Peters, S.; Kaal, E.; Horsting, I.; Janssen, H.-G.

    2012-01-01

    A new method is presented for the analysis of phenolic acids in plasma based on ion-pairing ‘Micro-extraction in packed sorbent’ (MEPS) coupled on-line to in-liner derivatisation-gas chromatography-mass spectrometry (GC-MS). The ion-pairing reagent served a dual purpose. It was used both to improve

  11. Hemispherand-Strapped Calix[4]pyrrole: An Ion-pair Receptor for the Recognition and Extraction of Lithium Nitrite.

    Science.gov (United States)

    He, Qing; Zhang, Zhan; Brewster, James T; Lynch, Vincent M; Kim, Sung Kuk; Sessler, Jonathan L

    2016-08-10

    The hemispherand-strapped calix[4]pyrrole (1) acts as an ion pair receptor that exhibits selectivity for lithium salts. In organic media (CD2Cl2 and CD3OD, v/v, 9:1), receptor 1 binds LiCl with high preference relative to NaCl, KCl, and RbCl. DFT calculations provided support for the observed selectivity. Single crystal structures of five different lithium ion-pair complexes of 1 were obtained. In the case of LiCl, a single bridging water molecule between the lithium cation and chloride anion was observed, while tight contact ion pairs were observed in the case of the LiBr, LiI, LiNO3, and LiNO2 salts. Receptor 1 proved effective as an extractant for LiNO2 under both model solid-liquid and liquid-liquid extraction conditions.

  12. A survey of aspartate-phenylalanine and glutamate-phenylalanine interactions in the protein data bank: searching for anionpairs.

    Science.gov (United States)

    Philip, Vivek; Harris, Jason; Adams, Rachel; Nguyen, Don; Spiers, Jeremy; Baudry, Jerome; Howell, Elizabeth E; Hinde, Robert J

    2011-04-12

    Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anionpair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion-quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242-8249]. To study the role of anion-π interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe-Asp or -Glu pairs separated by less than 7 Å in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura-Morokuma energy calculations were performed on roughly 19000 benzene-formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (-2 to -7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anionpairs are found throughout protein structures, in helices as well as β strands. Numerous pairs also had nearby cation-π interactions as well as potential π-π stacking. While more than 1000 structures did not contain an anionpair, the 3134 remaining structures contained approximately 2.6 anionpairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.

  13. A Survey of Aspartate-Phenylalanine and Glutamate-Phenylalanine Interactions in the Protein Data Bank: Searching for Anion-pi Pairs

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Vivek M [ORNL; Harris, Jason B [ORNL; Adams, Rachel M [ORNL; Nguyen, Don [University of Tennessee; Spiers, Jeremy D [ORNL; Baudry, Jerome Y [ORNL; Howell, Elizabeth E [ORNL; Hinde, Robert J [ORNL

    2011-01-01

    Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion-{pi} pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion-quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242-8249]. To study the role of anion-{pi} interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe-Asp or -Glu pairs separated by less than 7 {angstrom} in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura-Morokuma energy calculations were performed on roughly 19000 benzene-formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (-2 to -7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion-{pi} pairs are found throughout protein structures, in helices as well as {beta} strands. Numerous pairs also had nearby cation-{pi} interactions as well as potential {pi}-{pi} stacking. While more than 1000 structures did not contain an anion-{pi} pair, the 3134 remaining structures contained approximately 2.6 anion-{pi} pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.

  14. Enhancement of evaporative light scattering detection in high-performance liquid chromatographic determination of neomycin based on highly volatile mobile phase, high-molecular-mass ion-pairing reagents and controlled peak shape.

    Science.gov (United States)

    Megoulas, Nikolaos C; Koupparis, Michael A

    2004-11-19

    In the frame of the development of a novel HPLC-ELSD (evaporative light scattering detection) method for the determination of the aminoglycoside antibiotic neomycin sulfate, the influence of mobile phase composition and peak broadening on ELSD response was evaluated. ELSD response was enhanced by: (a) increase of mobile phase volatility (solvents examined: water, acetonitrile, methanol and acetone), (b) increase of molecular mass of ion-pairing species [acidic reagents tested: formic, acetic, trifluoroacetic, trichloroacetic and heptafluorobutyric acid (HFBA)], and (c) decrease of peak width and asymmetry obtained by controlling the concentration of the ion-pairing acidic reagent (HFBA). Utilizing a Waters ODS-2 C18 Spherisorb column, evaporation temperature of 45 degrees C and nitrogen pressure of 3.5 bar, the optimized mobile phase was water-acetone (50:50), containing 11.6 mM HFBA, in an isocratic mode at a rate of 1.0 ml/min. Neomycin was eluted at 4.9 min, with asymmetry factor 1.3. Logarithmic calibration curve was obtained from 2 to 50 microg/ml (r > 0.9997). Limit of detection (LOD) was 0.6 microg/ml and R.S.D. = 1.7% (n = 3, 3.3 microg/ml). In raw materials, the simultaneous determination of sulfate (LOD = 3 microg/ml, R.S.D. = 1.7%, r> 0.9998) and of minor impurities was feasible. The developed method was also applied for the determination of neomycin in pharmaceutical formulations (powder, aerosol and cream) without any interference from excipients (recovery from spiked samples ranged from 99 to 102%) and a %R.S.D. of <2.1 (n = 3). The HPLC-ELSD method was also found applicable in the determination of neomycin in animal feeds (LOQ=0.2%) without any interference from the feed matrices.

  15. Development of an Ion-Pairing Reagent and HPLC-UV Method for the Detection and Quantification of Six Water-Soluble Vitamins in Animal Feed.

    Science.gov (United States)

    Kim, Ho Jin

    2016-01-01

    A novel and simple method for detecting six water-soluble vitamins in animal feed using high performance liquid chromatography equipped with a photodiode array detector (HPLC/PDA) and ion-pairing reagent was developed. The chromatographic peaks of the six water-soluble vitamins were successfully identified by comparing their retention times and UV spectra with reference standards. The mobile phase was composed of buffers A (5 mM PICB-6 in 0.1% CH3COOH) and B (5 mM PICB-6 in 65% methanol). All peaks were detected using a wavelength of 270 nm. Method validation was performed in terms of linearity, sensitivity, selectivity, accuracy, and precision. The limits of detection (LODs) for the instrument employed in these experiments ranged from 25 to 197 μg/kg, and the limits of quantification (LOQs) ranged from 84 to 658 μg/kg. Average recoveries of the six water-soluble vitamins ranged from 82.3% to 98.9%. Method replication resulted in intraday and interday peak area variation of water-soluble vitamins in animal feed.

  16. Degradation of ion spent resin using the Fenton's reagent; Degradacao da resina de troca ionica utilizando o reagente de Fenton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leandro Goulart de

    2013-07-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  17. Simultaneous determination of inorganic and organic anions by ion chromatography

    International Nuclear Information System (INIS)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  18. 3-(Dicyanomethylidene)indan-1-one-Functionalized Calix[4]arene-Calix[4]pyrrole Hybrid: An Ion-Pair Sensor for Cesium Salts.

    Science.gov (United States)

    Yeon, Yerim; Leem, Soojung; Wagen, Corin; Lynch, Vincent M; Kim, Sung Kuk; Sessler, Jonathan L

    2016-09-02

    A chromogenic calix[4]arene-calix[4]pyrrole hybrid ion pair receptor bearing an indane substituent at a β-pyrrolic position has been prepared. On the basis of solution-phase UV-vis spectroscopic analysis and (1)H NMR spectroscopic studies carried out in 10% methanol in chloroform, receptor 1 is able to bind only cesium ion pairs (e.g., CsF, CsCl, and CsNO3) but not the constituent cesium cation (as its perchlorate salt) or the F(-), Cl(-), or NO3(-) anions (as the tetrabutylammonium salts). It thus displays rudimentary AND logic gate behavior. Receptor 1 shows a colorimetric response to cesium ion pairs under conditions of solid-liquid (nitrobenzene) and liquid-liquid (D2O-nitrobenzene-d5) extraction.

  19. Rate theory of solvent exchange and kinetics of Li(+) - BF4 (-)/PF6 (-) ion pairs in acetonitrile.

    Science.gov (United States)

    Dang, Liem X; Chang, Tsun-Mei

    2016-09-07

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li(+) and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li(+) in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li(+)-[BF4] and Li(+)-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li(+). We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li(+)-[BF4] and Li(+)-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  20. Procedure for reducing hydrogen ion concentration in acidic anion eluate

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1992-01-01

    A procedure is suggested for reducing the concentration of hydrogen ions in the acidic anionic eluate formed during the separation of uranium. The procedure involves anex elution, precipitation, filtration, precipitate rinsing, and anex rinsing. The procedure is included in the uranium elution process and requires at least one ion exchanger column and at least one tank in the continuous or discontinuous mode. Sparing the neutralizing agent by reducing the hydrogen ion concentration in the acidic anionic eluate is a major asset of this procedure. (Z.S.). 1 fig

  1. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.

  2. A newly developed highly selective Zn2+-AcO- ion-pair sensor through partner preference: equal efficiency under solitary and colonial situation.

    Science.gov (United States)

    Karar, Monaj; Paul, Suvendu; Biswas, Bhaskar; Majumdar, Tapas; Mallick, Arabinda

    2018-05-10

    Unusual self-sorting of an ion-pair under highly crowded conditions driven by a synthesized intelligent molecule 2-((E)-(3-((E)-2-hydroxy-3-methoxybenzylideneamino)-2-hydroxypropyl imino)methyl)-6-methoxyphenol, hereafter HBP, is described. When a mixture of various metal salts was allowed to react with HBP, only a specific ion-pair ZnII/AcO- in the solution simultaneously reacted, resulting in high-fidelity ion-pair recognition of HBP. This phenomenon was evidenced by significant changes in the absorption spectra and huge enhancement in emission intensity of HBP. The property that one molecule preferring one particular cation-anion pair over others is a rare but interesting phenomenon. Thus, the potential to interact selectively with the targeted ion-pair resulting in the formation of a specific complex recognized HBP as a new class of molecule that might find future applications in real time and on-site monitoring and separation of new molecules.

  3. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1981-01-01

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  4. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    Science.gov (United States)

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  5. Determination of anionic concentrations in ground water samples using ion chromatography

    International Nuclear Information System (INIS)

    Prathibha, P.; Saradhi, I.V.; Pandit, G.G.; Puranik, V.D.

    2011-01-01

    Ion chromatography is a powerful separation technique for the quantitative measurement of anions in aqueous samples as well as in soil, sediment and air particulate samples leached in aqueous solutions. Ion chromatographic technique is developed by making use of suppressed ion conductivity detection (Small et.al.,1975) and it is a rapid multi ion analysis technique. The time, processing and effort required for the analysis of anions is much less compared to other techniques available such as ion selective electrode technique. In the present paper ground water samples collected around New BARC campus, Visakhapatnam are analyzed for anions using Ion chromatograph. The data generated will establish the current baseline status of the ionic contaminants in the study area. Groundwater samples are collected at 13 locations around BARC Vizag campus covering 30 km radius in September, 2009, April and July, 2010. The water samples include samples from hand pump and open wells in villages. The water samples are analyzed for fluoride, chloride, nitrate and sulphate using Metrohm make Ion chromatograph. The fluoride concentration in samples varied from 0.22 to 1.26 ppm, chloride from 18.7 to 810.9, nitrate from 1.34 to 378.5 ppm and sulphate from 13.29 to 250.69 ppm. No significant seasonal variations are observed in the samples collected from various locations except chloride at two locations. Ions Chromatograph is found to be a useful tool for simultaneous analysis of environmental samples with good accuracy where the concentrations of anions vary within an order of magnitude among them themselves. (author)

  6. Ion-pair high performance liquid chromatographic retention behavior of salicylic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.W.; Chung, Y.S. [Chungbuk National University, Cheongju (Korea); Oh, S.K. [Handok Pharmaceuticals Co. Ltd., Chungbuk (Korea)

    1999-06-01

    The ion-pair high performance liquid chromatographic elution behavior of salicylic acid and its derivatives was studied with measuring capacity factor, k', changing the concentration of ion-pairing reagent (tetrabutylammonium chloride, TBACl) in mobile phase. As a result, it was found that k' of the samples increase at pH 7.2 as the TBACl concentration increase. The derivatives of salicylic acid were separated each other at an optimum mobile phase condition which was found from the observation of the retention behavior. The optimum mobile phase condition was methanol solution(MeOH:H{sub 2}O 30:70) containing 20 mM TBACl for the determination of salicylic acid and methanol solution (MeOH:H{sub 2}O 20:80) containing 40 mM TBACl for p-aminosalicylic acid at pH 7.2. The method has been applied for the analysis of the contents of salicylic acid derivatives in an aspirin tablet and a tuberculosis curing agent. 8 refs., 4 figs., 2 tabs.

  7. Patchy proteins, anions and the Hofmeister series

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Mikael; Jungwirth, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Center for Complex Molecular Systems and Biomolecules, Flemingovo namesti 2, 16610 Prague 6 (Czech Republic)], E-mail: mikael.lund@uochb.cas.cz

    2008-12-10

    We investigate specific anion binding to a range of patchy protein models and use our results to probe protein-protein interactions for aqueous lysozyme solutions. Our molecular simulation studies show that the ion-protein interaction mechanism and strength largely depend on the nature of the interfacial amino acid residues. Via direct ion pairing, small anions interact with charged side-chains while larger anions are attracted to non-polar residues due to several solvent assisted mechanisms. Incorporating ion and surface specificity into a mesoscopic model for protein-protein interactions we calculate the free energy of interaction between lysozyme molecules in aqueous solutions of sodium chloride and sodium iodide. In agreement with experiment, our finding is that 'salting out' follows the reverse Hofmeister series for pH below the iso-electric point and the direct series for pH above pI.

  8. Degradation of ion spent resin using the Fenton's reagent; Degradacao da resina de troca ionica utilizando o reagente de Fenton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leandro Goulart de

    2013-07-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  9. Functions of chalcogenide electrodes in solutions of complexing reagents and interfering ions

    International Nuclear Information System (INIS)

    Kiyanskij, V.V.

    1990-01-01

    The possibility to modify chalcogenide electrodes and their behaviour in solutions of complexing reagents for the development of new methods of potentiometric titration has been studied. It is shown that complexing reagents (EDTA, cupferron, 8-hydroxyquinoline, sodium dithiocarbaminate) and Cu(2), Hg(2) produce a strong effect on the functions of Ag, Cu, Cd, Pb - selective electrodes, which is used for titration of potential-determining and non-potential-determining ions ions (Sr 2+ , La 3+ etc.) and also for modification of sulfide-selecting electrode. A method of potentiometric titration of sulfates and chlorides with modified Cd- and Ag-selective electrodes is suggested

  10. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography.

    Science.gov (United States)

    Wybraniec, Sławomir; Stalica, Paweł; Jerz, Gerold; Klose, Bettina; Gebers, Nadine; Winterhalter, Peter; Spórna, Aneta; Szaleniec, Maciej; Mizrahi, Yosef

    2009-10-09

    Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elution-extrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical 'head-to-tail' mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol-acetonitrile-aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether-1-butanol-acetonitrile-aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar K(D) ratios and selectivity factors alpha around 1.0-1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization-MS using also

  11. Rate theory of solvent exchange and kinetics of Li+ − BF4−/PF6− ion pairs in acetonitrile

    International Nuclear Information System (INIS)

    Dang, Liem X.; Chang, Tsun-Mei

    2016-01-01

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li + and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li + in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li + -[BF 4 ] and Li + -[PF 6 ] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li + . We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li + -[BF 4 ] and Li + -[PF 6 ] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  12. QUANTITATIVE ION-PAIR EXTRACTION OF 4(5)-METHYLIMIDAZOLE FROM CARAMEL COLOR AND ITS DETERMINATION BY REVERSED-PHASE ION-PAIR LIQUID-CHROMATOGRAPHY

    DEFF Research Database (Denmark)

    Thomsen, Mohens; Willumsen, Dorthe

    1981-01-01

    A procedure for quantitative ion-pair extraction of 4(5)-methylimidazole from caramel colour using bis(2-ethylhexyl)phosphoric acid as ion-pairing agent has been developed. Furthermore, a reversed-phase ion-pair liquid chromatographic separation method has been established to analyse the content...

  13. Development of an Ion-Pairing Reagent and HPLC-UV Method for the Detection and Quantification of Six Water-Soluble Vitamins in Animal Feed

    Directory of Open Access Journals (Sweden)

    Ho Jin Kim

    2016-01-01

    Full Text Available A novel and simple method for detecting six water-soluble vitamins in animal feed using high performance liquid chromatography equipped with a photodiode array detector (HPLC/PDA and ion-pairing reagent was developed. The chromatographic peaks of the six water-soluble vitamins were successfully identified by comparing their retention times and UV spectra with reference standards. The mobile phase was composed of buffers A (5 mM PICB-6 in 0.1% CH3COOH and B (5 mM PICB-6 in 65% methanol. All peaks were detected using a wavelength of 270 nm. Method validation was performed in terms of linearity, sensitivity, selectivity, accuracy, and precision. The limits of detection (LODs for the instrument employed in these experiments ranged from 25 to 197 μg/kg, and the limits of quantification (LOQs ranged from 84 to 658 μg/kg. Average recoveries of the six water-soluble vitamins ranged from 82.3% to 98.9%. Method replication resulted in intraday and interday peak area variation of <5.6%. The developed method was specific and reliable and is therefore suitable for the routine analysis of water-soluble vitamins in animal feed.

  14. Metal-free reduction of the greenhouse gas sulfur hexafluoride, formation of SF5 containing ion pairs and the application in fluorinations

    KAUST Repository

    Rueping, Magnus

    2017-05-04

    A protocol for the fast and selective two-electron reduction of the potent greenhouse gas sulfur hexafluoride (SF6) by organic electron donors at ambient temperature has been developed. The reaction yields solid ion pairs consisting of donor dications and SF5-anions which can be effectively used in fluorination reactions.

  15. Ion pair and solvation dynamics of [Bmim][BF4 ] + water system.

    Science.gov (United States)

    Cascão, João; Silva, Wagner; Ferreira, Ana S D; Cabrita, Eurico J

    2018-02-01

    In this work, 1-butyl-3-methylimidazolium tetrafluoroborate/water mixtures were analysed over the whole water composition (x w ) in order to study the rotational and translational behaviour of the ions. We employed a multinuclear NMR approach to determine anion/cation/water diffusion coefficients and longitudinal relaxation rates at different water content. In neat ionic liquids (IL), the cation diffuses faster than the anion, and at low x w , anions and cations share almost the same diffusion coefficient, but above a critical water concentration, the anion begins to diffuse faster than the cation. We identified this composition as approximately 10% x w where the ions share the same diffusion coefficient. We found that the water at this composition seems to have a much more dramatic effect in the rotational diffusion of the anion that decreases substantially and approaches that of the anion in the diluted IL. Translational and rotational dynamics of the ions suggest that water is first incorporated in pockets in the nanostructure of the IL allowing the ions to maintain most of the cation/anion interactions present in neat IL but already disrupting some anion/cation interactions due to preferential interaction with the anion. HOESY and NOESY data show that water displays contacts both with the cation and the anion in a positive NOE regime in contrary to the negative regime found for the cation/anion and cation/cation cross-relaxation. This is in accordance with the high relative diffusion coefficient of water and suggests that water molecules can exchange between preferential location sites that allow water to maintain contacts both with the anion and cation. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Li+ solvation and kinetics of Li+-BF4-/PF6- ion pairs in ethylene carbonate. A molecular dynamics study with classical rate theories

    Science.gov (United States)

    Chang, Tsun-Mei; Dang, Liem X.

    2017-10-01

    Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li+ and the dissociation kinetics of ion pairs Li+-[BF4] and Li+-[PF6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found that the residence times of EC around Li+ ions varied from 60 to 450 ps, depending on the correction method used. We found that the relaxation times changed significantly from Li+-[BF4] to Li+-[PF6] ion pairs in EC. Our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influences the dissociation kinetics of ion pairing.

  17. Effects of anion size and concentration on electrolyte invasion into molecular-sized nanopores

    International Nuclear Information System (INIS)

    Liu Ling; Chen Xi; Kim, Taewan; Han Aijie; Qiao Yu

    2010-01-01

    When an electrolyte solution is pressurized into a molecular-sized nanopore, oppositely charged ions are strongly inclined to aggregate, which effectively reduces the ion solubility to zero. Inside the restrictive confinement, a unique quasi-periodic structure is formed where the paired ion couples are periodically separated by a number of water molecules. As the anion size or ion concentration varies, the geometrical characteristics of the confined ion structure would change considerably, leading to a significant variation in the transport pressure. Both experimental and simulation results indicate that, contradictory to the prediction of conventional theory, infiltration pressure decreases as the anions become larger.

  18. Analysing destruction channels of interstellar hydrocarbon anions with a 22pol ion-trap

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Eric; Lakhmanskaya, Olga; Best, Thorsten; Hauser, Daniel; Kumar, Sunil; Wester, Roland [Universitaet Innsbruck, Institut fuer Ionenphysik und Angewandte Physik (Austria)

    2014-07-01

    In the interstellar medium (ISM), ion-molecule reactions are considered to play a key role in the formation of complex molecules. The detection of the first interstellar anions, which happen to be carbon chain anions, has raised new interest in the quantitative composition of the ISM and the underlying reaction network. To understand the observed abundance of these carbon chain anions, a detailed analysis of the possible destruction channels is indispensable. A cryogenic 22-pol radio frequency ion trap is an ideal tool to observe reactions that take place slowly, such as carbon chain anions with molecular hydrogen. Furthermore, measurements over a large temperature scale are feasible. Longitudinal optical access to the trap also provides the possibility to make precise photodetachment measurements. Temperature dependent measurements of the reaction rates for the reaction between hydrocarbon chain anions and H{sub 2} are presented.

  19. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials.

    Science.gov (United States)

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-04-11

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  20. Effect of reagent charge on the labeling of erythrocyte membrane proteins by photoactivated reagents

    International Nuclear Information System (INIS)

    Schaeffer, J.C.; Hakimian, R.; Shimer, M.L.

    1986-01-01

    Leaky erythrocyte ghosts were labeled with 3 H-[2-(4-azido-2-nitroanilino)ethyl]trimethylammonium iodide (cationic label) or 3 H-N-(4-azido-2-nitrophenyl)-β-alanine (anionic label). After the membranes were thoroughly washed, seven times as much cationic label was associated with the membranes as anionic label at 5 μM, whereas at 50 μM the cationic label was favored 15-fold. The distribution of label in the membrane proteins was ascertain by SDS-gel electrophoresis followed by autoradiography. At 50 μM cationic label, erythrocyte membrane protein bands 1,2,3,4.2, and 5 were intensely labeled, while band 6 was labeled weakly. At 5 μM cationic label, bands 1 and 4.2 were heavily labeled, while 2,3 and 5 were labeled less well. At both 50 μM and 5 μM anionic label, bands 1 and 6 were most prominently labeled. Bands 2,3,4.2 and 5 were labeled also at 50 μM, but they were labeled only very weakly at 5 μM. Band 4.1 was labeled very poorly if at all by either reagent. A mixture of the reagents gave an additive pattern. Thus, the charge and concentration of these reagents appear to play a major role in their ability to label membrane proteins indiscriminately. Because these reagents contain the same chromophore, 4-azido-2-nitroaniline, and differ mainly only in their charge, they may prove useful in assessing the location of charged sites on proteins in supramolecular complexes

  1. Secondary partitioning isotope effects on solvolytic ion pair intermediates

    International Nuclear Information System (INIS)

    Abbey, K.J.

    1976-01-01

    The thermal decomposition of N-benzhydryl N-nitrosobenzamide (BNB) has been shown to produce an ion pair which either forms ester or reacts with the solvent. In ethanol, the fraction of ester produced, R, was much smaller than R values obtained from solvolysis or from the diphenyldiazomethane (DDM)-benzoic acid reaction, which was suggested to yield the same ion pair as solvolysis. This difference led to the conclusion that the ionic species for the nitrosamide decomposition is a nitrogen-separated ion pair. This study was initiated on the assumption that BNB led to solvolytic ion pairs, but that both the intimate and solvent-separated ion pairs were produced directly from the nitrosamide. The use of α-tritiated BNB for the study of partitioning isotope effects (PIE's) in this system led to activity ratios much lower than expected from other reported work. Results of studies of ''special'' salt effect were not consistent for all situations, but the results do suggest that the assumption that BNB leads to solvolytic ion pairs is probably valid. The investigation of the more stable p-methoxybenzhydryl benzoate system proved to be highly productive. The ester fraction produced, R, responded dramatically to the addition of common-ion as well as ''special'' salts. The functional relationship of R on salt concentration could be explained in terms of Winstein's solvolytic scheme where the intimate ion pair, the solvent-separated ion pair, and the dissociated ion were important. Tritium-labelled compounds were used for PIE studies on 3 different compounds, and three different methods of reaction are proposed

  2. A procedure for reducing the concentration of hydrogen ions in acid anionic eluate and equipment therefore

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1989-01-01

    The method is described of reducing the concentration of hydrogen ions in acid anionic eluate produced in the separation of uranium or other metals, in which anion exchanger elution, precipitation, filtration and precipitate and anion exchanger washing are used. The technological line for such elution comprises at least one ion exchange column and at least one container. They together form the first and the second stages of preparation of the acid anion elution solution, the sorption-elution separation of hydrogen ions on an cation exchanger being inserted between them. The preparation of the solution is divide into two stages. In the first stage, the acid and part of the solution for the preparation of the acid anion elution solution are supplied. The resulting enriched acid elution solution is fe onto the cation exchanger where the hydrogen ion concentration i reduced. It is then carried into the second stage where it is mixed with the remaining part of the solution. (B.S.)

  3. Anion analysis in uranium more concentrates by ion chromatography

    International Nuclear Information System (INIS)

    Badaut, V.

    2009-01-01

    In the present exploratory study, the applicability of anionic impurities or attributing nuclear material to a certain chemical process or origin has been investigated. Anions (e.g., nitrate, sulphate, fluoride, chloride) originate from acids or salt solutions that are used for processing of solutions containing uranium or plutonium. The study focuses on uranium ore concentrates ('yellow cakes') originating from different mines. Uranium is mined from different types of ore body and depending on the type of rock, different chemical processes for leaching, dissolving and precipitating the uranium need to be applied. Consequently, the anionic patterns observed in he products of these processes (the 'ore concentrates') are different. The concentrations of different anionic species were measured by ion chromatography using conductivity detection. The results show clear differences of anion concentrations and patterns between samples from different uranium mines. Besides this, differences between sampling campaigns n a same mine were also observed indicating that the uranium ore is not homogeneous in a mine. These within-mine variations, however, were smaller than the between-mine variations. (author)

  4. Ion pairing in ionic liquids

    International Nuclear Information System (INIS)

    Kirchner, Barbara; Malberg, Friedrich; Firaha, Dzmitry S; Hollóczki, Oldamur

    2015-01-01

    In the present article we briefly review the extensive discussion in literature about the presence or absence of ion pair-like aggregates in ionic liquids. While some experimental studies point towards the presence of neutral subunits in ionic liquids, many other experiments cannot confirm or even contradict their existence. Ion pairs can be detected directly in the gas phase, but no direct method is available to observe such association behavior in the liquid, and the corresponding indirect experimental proofs are based on such assumptions as unity charges at the ions. However, we have shown by calculating ionic liquid clusters of different sizes that assuming unity charges for ILs is erroneous, because a substantial charge transfer is taking place between the ionic liquid ions that reduce their total charge. Considering these effects might establish a bridge between the contradicting experimental results on this matter. Beside these results, according to molecular dynamics simulations the lifetimes of ion–ion contacts and their joint motions are far too short to verify the existence of neutral units in these materials. (topical review)

  5. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  6. Anionic subsites of the acetylcholinesterase from Torpedo californica: affinity labelling with the cationic reagent N,N-dimethyl-2-phenyl-aziridinium.

    OpenAIRE

    Weise, C; Kreienkamp, H J; Raba, R; Pedak, A; Aaviksaar, A; Hucho, F

    1990-01-01

    Several peptides of acetylcholinesterase of Torpedo californica labelled with the alkylating reagent [3H]N,N-dimethyl-2-phenyl-aziridinium (DPA) were localized within the primary structure. One peptide had the sequence KPQELIDVE (positions 270-278); the incorporation of DPA into this peptide could be specifically suppressed by propidium, which suggests that it is part of the peripheral anionic site. The incorporation of DPA into two other peptides was insensitive to propidium but could be pre...

  7. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann

    2014-04-01

    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  8. Ion flotation of rhodium(III) and palladium(II) with anionic surfactants.

    Science.gov (United States)

    He, X C

    1991-03-01

    The ion flotation of rhodium(III) and palladium(II) with some anionic surfactants has been investigated. Two flotation procedures are proposed for the separation of some platinum metals, based on differences in the kinetic properties of the chloro-complexes of rhodium(III), palladium(II) and platinum(IV). The first involves the selective flotation of Rh(H(2)O)(3+)(6) from PdCl(2-)(4) and PtCl(2-)(6) in dilute hydrochloric acid with sodium dodecylbenzenesulfonate (SDBS). After precipitation of the hydroxide and redissolution in dilute acid, the Rh(III) is converted into Rh(H(2)O)(3+)(6), Pd(II) and Pt(IV) remaining as PdCl(2-)(4) and PtCl(2-)(6) respectively, and separation is achieved by floating the Rh(H(2)O)(3+)(6) with SDBS. The second is for separation of Pd(II). Prior to flotation, the solution of PdCl(2-)(4) and PtCl(2-)(6) is heated with ammonium acetate to convert PdCl(2-)(4) into Pd(NH(3))(2+)(4). The chloro-complex of Pt(IV) is unaffected. The complex cation, Pd(NH(3))(2+)(4), is then selectively floated with SDBS. The procedures are fast, simple and do not require expensive reagents and apparatus.

  9. Quantitative determination of acidic hydrolysis products of Chemical Weapons Convention related chemicals from aqueous and soil samples using ion-pair solid-phase extraction and in situ butylation.

    Science.gov (United States)

    Pal Anagoni, Suresh; Kauser, Asma; Maity, Gopal; Upadhyayula, Vijayasarathi V R

    2018-02-01

    Chemical warfare agents such as organophosphorus nerve agents, mustard agents, and psychotomimetic agent like 3-quinuclidinylbenzilate degrade in the environment and form acidic degradation products, the analysis of which is difficult under normal analytical conditions. In the present work, a simultaneous extraction and derivatization method in which the analytes are butylated followed by gas chromatography and mass spectrometric identification of the analytes from aqueous and soil samples was carried out. The extraction was carried out using ion-pair solid-phase extraction with tetrabutylammonium hydroxide followed by gas chromatography with mass spectrometry in the electron ionization mode. Various parameters such as optimum concentration of the ion-pair reagent, pH of the sample, extraction solvent, and type of ion-pair reagent were optimized. The method was validated for various parameters such as linearity, accuracy, precision, and limit of detection and quantification. The method was observed to be linear from 1 to 1000 ng/mL range in selected ion monitoring mode. The extraction recoveries were in the range of 85-110% from the matrixes with the limit of quantification for alkyl phosphonic acids at 1 ng/mL, thiodiglycolic acid at 20 ng/mL, and benzilic acid at 50 ng/mL with intra- and interday precisions below 15%. The developed method was applied for the samples prepared in the scenario of challenging inspection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Anion concurrence and anion selectivity in the sorption of radionuclides by organotones

    International Nuclear Information System (INIS)

    Behnsen, Julia G.

    2007-01-01

    Some long-lived and radiologically important nuclear fission products, such as I-129 (half-life t 1/2 = 1,6 . 10 7 a), Tc-99 (t 1/2 = 2,1 . 10 5 a), and Se-79 (t 1/2 = 6,5 . 10 4 a) are anionic in aqueous environments. This study focuses on the adsorption of such anions to organoclays and the understanding of the selectivity of the process. The organoclays used in this study were prepared from a bentonite (MX-80) and a vermiculite clay, and the cationic surfactants hexadcylpyridium, hexadecyltrimethylammonium, and benzethonium. Surfactant adsorption to the bentonite exceeds the cation exchange capacity of the clay, with the surplus positive charge being balanced by the co-adsorption of chloride. The interlayer distance of the bentonites is increased sufficiently to contain bi- and pseudotrimolecular structures of the surfactants. Adsorption experiments were carried out using the batch technique. Anion adsorption of iodide, perrhenate, selenite, nitrate, and sulphate is mainly due to ion exchange with chloride. As an additional adsorption mechanism, the incorporation of inorganic ion pairs into the interlayer space of the clay is proposed as a result of experiments showing differences in the adsorption levels of sodium and potassium iodide. Anion adsorption results show a clear selectivity of the organoclays, with the affinity sequence being: ReO - 4 > I - > NO - 3 > Cl - > SO 2- 4 > SeO 2- 3 . This sequence corresponds to the sequence of increasing hydration energies of the anions, thus selectivity could be due to the process of minimization of free energy of the system. (orig.)

  11. Anomalous surface behavior of hydrated guanidinium ions due to ion pairing

    Science.gov (United States)

    Ekholm, Victor; Vazdar, Mario; Mason, Philip E.; Bialik, Erik; Walz, Marie-Madeleine; Öhrwall, Gunnar; Werner, Josephina; Rubensson, Jan-Erik; Jungwirth, Pavel; Björneholm, Olle

    2018-04-01

    Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (Na2SO4). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots. The surface affinities of both TPA+ and Gdm+ increase upon adding NaCl to the solution. With the addition of Na2SO4, the surface affinity of TPA+ increases, while that of Gdm+ decreases. From the results of MD simulations it is seen that Gdm+ and SO4 2 - ions form pairs. This finding can be used to explain the decreased surface affinity of Gdm+ when co-dissolved with SO4 2 - ions. Since SO4 2 - ions avoid the surface due to the double charge and strong water interaction, the Gdm+-SO4 2 - ion pair resides deeper in the solutions' bulk than the Gdm+ ions. Since TPA+ does not form ion pairs with SO4 2 -, the TPA+ ions are instead enriched at the surface.

  12. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography.

    Science.gov (United States)

    Bergmann, Marianne L; Sadjadi, Seyed; Schmedes, Anne

    2017-07-01

    The catecholamines, epinephrine (E) and norepinephrine (NE) are small polar, hydrophilic molecules, posing significant challenges to liquid chromatography - tandem mass spectrometry (LC-MS/MS) method development. Specifically, these compounds show little retention on conventional reversed-phase liquid chromatography columns. This work presents development and validation of an LC-MS/MS method for determining catecholamines in urine, based on a new approach to ion-pairing chromatography (IPC), in which the ion-pairing reagent (IPR), 1-Heptane Sulfonic Acid (HSA), is added to the extracted samples instead of the mobile phases. A Hamilton STARlet workstation carried out the solid phase extraction of urine samples. The extracted samples were diluted with 60mmol/L HSA and injected on a Kinetex core-shell biphenyl column with conventional LC-MS/MS suitable mobile phases. Chromatographic separation of E and NE was achieved successfully with very stable retention times (RT). In 484 injections, the RTs were steady with a CV of less than ±4%. Furthermore, HSA was separated from E and NE, allowing HSA to be diverted to waste instead of entering the mass spectrometer ion chamber. The method was validated with good analytical performance, and even though the analysis for urinary catecholamines is increasingly being replaced by plasma free metanephrines in diagnosing pheochromocytomas, this work represents the application of a new analytical technique that can be transferred to other small polar molecules, that are difficult to chromatograph on traditional reversed phase columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Nonlinear electrostatic structures in homogeneous and inhomogeneous pair-ion plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Ur-Rehman, H.; Shah, A.; Haque, Q.

    2012-01-01

    The nonlinear electrostatic structures such as solitons, shocks were studied in homogeneous, unmagnetized pair-ion plasma. The dissipation in the system was taken through kinematic viscosities of both pair-ion species. The one dimensional (Korteweg-de Vries-Burgers) KdVB equation was derived using reductive perturbation method. The analytical solution of KdVB equation was obtained using tanh method. It was found that solitons and monotonic shocks structures were formed in such type of plasmas depending on the value of dissipation in the system. Both compressive and refractive structures of solitons and monotonic shocks were obtained depending on the temperatures of negative and positive ions. The oscillatory shock structures in pair-ion plasmas were also obtained and its necessary conditions of formation were discussed. The acoustic solitons were also investigated in inhomogeneous unmagnetized pair-ion plasmas. The Korteweg-de Vries (KdV) like equation with an additional term due to density gradients was obtained by employing the reductive perturbation technique. It was found that amplitude of both compressive and refractive solitons was found to be enhanced as the density gradient parameter was increased. The Landau damping rates of electrostatic ion waves were studied for non-Maxwellian or Lorentzian pair-ion plasmas. The Val sov equation was solved analytically for weak damping effects in pair-ion plasma. It was found that Landau damping rate of ion plasma wave was increased in Lorentzian case in comparison with Maxwellian pair-ion plasmas. The numerical results were obtained by taking into account the parameters of pair-ion plasmas produced in laboratory experiments in Japan. (orig./A.B.)

  14. Application of perfluorinated acids as ion-pairing reagents for reversed-phase chromatography and retention-hydrophobicity relationships studies of selected beta-blockers.

    Science.gov (United States)

    Flieger, J

    2010-01-22

    The addition of the homologous series of perfluorinated acids-trifluoroacetic acid (TFAA), pentafluoropropionic acid (PFPA), heptafluorobutyric acid (HFBA) to mobile phases for reversed-phase high-performance liquid chromatography (RP-HPLC) of beta-blockers was tested. Acidic modifiers were responsible for acidification of mobile phase (pH 3) ensuring the protonation of the beta-blockers and further ion pairs creation. The effect of the type and concentration of mobile phase additives on retention parameters, the efficiency of the peaks, their symmetry and separation selectivity of the beta-blockers mixture were all studied. It appeared that at increasing acid concentration, the retention factor, for all compounds investigated, increased to varying degrees. It should be stressed that the presence of acids more significantly affected the retention of the most hydrophobic beta-blockers. Differences in hydrophobicity of drugs can be maximized through variation of the hydrophobicity of additives. Thus, the relative increase in the retention depends on either concentration and hydrophobicity of the anionic mobile phase additive or hydrophobicity of analytes. According to QSRR (quantitative structure retention relationship) methodology, chromatographic lipophilicity parameters: isocratic log k and log k(w) values (extrapolated retention to pure water) were correlated with the molecular (log P(o/w)) and apparent (log P(app)) octanol-water partition coefficients obtained experimentally by countercurrent chromatography (CCC) or predicted by Pallas software. The obtained, satisfactory retention-hydrophobicity correlations indicate that, in the case of the basic drugs examined in RP-HPLC systems modified with perfluorinated acids, the retention is mainly governed by their hydrophobicity. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Solvent-shared pairs of densely charged ions induce intense but short-range supra-additive slowdown of water rotation.

    Science.gov (United States)

    Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard

    2016-01-21

    The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.

  16. Determination of the ion-exchange capacity of anion-selective membranes

    Czech Academy of Sciences Publication Activity Database

    Karas, F.; Hnát, J.; Paidar, M.; Schauer, Jan; Bouzek, K.

    2014-01-01

    Roč. 39, č. 10 (2014), s. 5054-5062 ISSN 0360-3199 Institutional support: RVO:61389013 Keywords : ion-exchange capacity * anion-selective membranes * titration Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.313, year: 2014

  17. Na Cl ion pair association in water-DMSO mixtures: Effect of ion pair ...

    Indian Academy of Sciences (India)

    The 12-6-1 potential model predicts running coordination numbers closest to experimental data. Keywords. ... value of interaction energy minimum between the Na. + and Cl. − ..... ion pair mostly remains as a CIP, a fair amount of SAIP is also ...

  18. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    Science.gov (United States)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  19. Adiabatic pair creation in heavy-ion and laser fields

    International Nuclear Information System (INIS)

    Pickl, P.; Durr, D.

    2008-01-01

    The planned generation of lasers and heavy-ion colliders renews the hope to see electron-positron pair creation in strong classical fields. This old prediction is usually referred to as spontaneous pair creation. We observe that both heavy-ion collisions and pair creation in strong laser fields, are instances of the theory of adiabatic pair creation. We shall present the theory, thereby correcting earlier results. We give the momentum distribution of created pairs in overcritical fields. We discuss carefully the proposed experimental verifications and conclude that pure laser-based experiments are highly questionable. We propose a new experiment, joining laser fields and heavy ions, which may be feasible with present-day technology and which may indeed verify the theoretical prediction of adiabatic pair creation. Our presentation relies on recent rigorous works in mathematical physics. (authors)

  20. Ion-pair chromatography of nucleic acid derivatives

    International Nuclear Information System (INIS)

    Perrone, P.A.; Brown, P.R.

    1985-01-01

    Little work has been done on the ion-pair chromatography of nucleic acid constituents, although there is a great potential for the use of this technique in the field. Since the classic work in 1949, nucleotides, as well as nucleosides and bases, have been separated by ion-exchange chromatography. However, ion exchange is a difficult mode and most researchers prefer the use of reversed-phase whenever possible. Although reversed-phase is now the method of choice, ionic compounds like nucleotides and some of the more polar bases are not adequately retained by many systems of this type. In addition, it is difficult to analyze simultaneously members of all three classes of nucleic acid compounds (bases, nucleosides, and nucleotides) using a reversed-phase system, even with gradient elution. Ion pairing can be a useful technique because, theoretically, the separation of nonionic bases and nucleosides along with the ionic nucleotides can be achieved. Additionally, each group of compounds may be separated isocratically. In this chapter, they will discuss ion-pair chromatography as applied to nucleic acid constituents. The current theories, advantages and disadvantages, a limited number of applications, and potential for future work are presented

  1. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis and Properties of Anion Exchangers Derived from Chloromethyl Styrene Codivinylbenzene and Their Use in Water Treatment

    Directory of Open Access Journals (Sweden)

    Hesham A. Ezzeldin

    2010-01-01

    Full Text Available Amination of vinylbenzyl chloride-divinylbenzene (VBC-DVB copolymers is an effective method for preparation of ion-exchange resins. Conventionally, the starting polymer is produced by chloromethylation of a styrene-divinylbenzene copolymer that utilizes chloromethyl methyl ether, a known carcinogen. An alterative approach is to copolymerize vinylbenzyl chloride with divinylbenzene to generate the necessary VBC-DVB. This method provides precise control over the density of the ion-exchange groups. The regiochemistry of the vinylbenzyl chloride methods was realized using solvent-ion exchange groups. In this investigation, an improved solvent system was found for the preparation of anion exchange resins by the vinylbenzyl chloride route. The effectiveness of amination of the intermediate VBC-DVB polymers with a variety of trimethylamine reagents was investigated, and ethanolic trimethylamine produced the highest degree of amination. These resulting ion-exchange polymers were characterized by a variety of techniques such as analytical titrations, nitrogen analysis, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Testing of these copolymers for breakthrough was performed. The results indicate that these anion exchangers have a meaningful increase in thermal stability over commercial anionic exchange beads.

  3. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    Directory of Open Access Journals (Sweden)

    Wataru Aoyagi

    2016-06-01

    Full Text Available An ionic polymer-metal composite (IPMC actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  4. Study of the processes of ion pairs formation by the method of ion-ion coincidence: I2 and chlorine-containing hydrocarbons

    International Nuclear Information System (INIS)

    Golovin, A.V.

    1991-01-01

    A method of ion-ion coincidences was suggested to study the process of ion pairs formation during molecule photoionization. The principle of action of ion-ion coincidence method is based on recording of only the negative and positive ions that formed as a result of a molecule decomposition. The flowsheet of the facility of ion-ion coincidences was presented. The processes of ion pairs formation in iodine, chloroform, propyl-, n-propenyl-, tert.butyl- and benzyl-chlorides were studied. A simple model permitting to evaluate the dependence of quantum yield of ion pair formation on excitation energy was suggested

  5. Synthesis and Properties of Anion Exchangers Derived from Chloromethyl Styrene Co divinylbenzene and Their Use in Water Treatment

    International Nuclear Information System (INIS)

    Ezzeldin, H.A.; Apblett, A.; Foutch, G.L.

    2010-01-01

    Amination of vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers is an effective method for preparation of ion-exchange resins. Conventionally, the starting polymer is produced by chloromethylation of a styrene-divinylbenzene copolymer that utilizes chloromethyl methyl ether, a known carcinogen. An alterative approach is to co polymerize vinylbenzyl chloride with divinylbenzene to generate the necessary Vb-Dvb. This method provides precise control over the density of the ion-exchange groups. The regiochemistry of the vinylbenzyl chloride methods was realized using solvent-ion exchange groups. In this investigation, an improved solvent system was found for the preparation of anion exchange resins by the vinylbenzyl chloride route. The effectiveness of amination of the intermediate VBC-DVB polymers with a variety of trimethylamine reagents was investigated, and ethanolic trimethylamine produced the highest degree of amination. These resulting ion-exchange polymers were characterized by a variety of techniques such as analytical titrations, nitrogen analysis, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Testing of these copolymers for breakthrough was performed. The results indicate that these anion exchangers have a meaningful increase in thermal stability over commercial anionic exchange beads

  6. Ion pair formation in the vacuum ultraviolet region of NO studied by negative ion imaging spectroscopy

    International Nuclear Information System (INIS)

    Hikosaka, Y.; Kaneyasu, T.; Shigemasa, E.

    2007-01-01

    The pair formation of positive and negative fragment ions has been studied in the vacuum ultraviolet region of NO, with negative ion imaging spectroscopy. The negative ion yield curve obtained in the photon energy region of 19-25 eV exhibits many structures which are absent from the photoabsorption spectrum in the same region. The partial yields and asymmetry parameters associated with the dissociations into individual ion pair limits have been extracted from the negative ion images observed. On the basis of these quantities, the assignments for the structures exhibited on the negative ion yield curve are given and the dynamical properties on the ion pair dissociation are discussed

  7. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals

    Science.gov (United States)

    Maltseva, T. V.; Kolomiets, E. O.; Dzyazko, Yu. S.; Scherbakov, S.

    2018-02-01

    Organic-inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of the embedded particles. The approach is based on Ostwald-Freundlich equation, which was adapted to deposition in ion exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modification, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution (50 µg dm-3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.

  8. Identification of inorganic anions by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sakayanagi, Masataka; Yamada, Yaeko; Sakabe, Chikako; Watanabe, Kunio; Harigaya, Yoshihiro

    2006-03-10

    Inorganic anions were identified by using gas chromatography/mass spectrometry (GC/MS). Derivatization of the anions was achieved with pentafluorobenzyl p-toluenesulphonate (PFB-Tos) as the reaction reagent and a crown ether as a phase transfer catalyst. When PFB-Br was used as the reaction reagent, the retention time of it was close to those of the derivatized inorganic anions and interfered with the analysis. In contrast, the retention time of PFB-Tos differed greatly from the PFB derivatives of the inorganic anions and the compounds of interest could be detected without interference. Although the PFB derivatives of SO4, S2O3, CO3, ClO4, and ClO3 could not be detected, the derivatives of F, Cl, Br, I, CN, OCN, SCN, N3, NO3, and NO2 were detected using PFB-Tos as the derivatizing reagent. The inorganic anions were detectable within 30 ng approximately, which is of sufficient sensitivity for use in forensic chemistry. Accurate mass number was measured for each PFB derivative by high-resolution mass spectrometry (HRMS) within a measurement error of 2 millimass units (mmu), which allowed determination of the compositional formula from the mass number. In addition, actual analysis was performed successively by our method using trial samples of matrix.

  9. The effects of anionic and cationic surfactants on the ion flotation of Cd2+

    International Nuclear Information System (INIS)

    Kobayashi, Koichi

    1975-01-01

    The ion flotation of Cd 2+ ions has been investigated from the surface chemical point of view in comparison with the case of Cu 2+ ions reported previously. The effects of the change in the pH, the anionic and cationic surfactants, and bentonite on the flotation rate have also been studied. Sodium α-sulfolaurate proved to be one of the best surfactants among the anionic surfactants used for removing Cd 2+ ions, showing as high as a 97% removal. About 97% of the Cd 2+ ions could be floated in the region of pH 11.3 when a cationic surfactant was used with bentonite, regardless of the exact surfactant used. The addition of bentonite reduced the foam formation and liquid hold-up, resulting in effective bubble flotation. This behavior was as a whole similar to that of Cu 2+ ions. However, in all the flotation systems tested, the flotation rate increased sharply at about pH 8, and the flotation rate vs. pH curve for Cd 2+ shifted towards a more alkaline region than that for Cu 2+ , because of the stronger basic nature of the former. Also, the flotation rate of Cd 2+ ions for the Cd 2+ -anionic surfactant systems attained a steady value after about 7 min, longer than the 2-min gas flow required in the case of Cu 2+ ion flotation. The adjustment of the pH using ammonia gave a lower rate of flotation than in the case of flotation using sodium hydroxide. (auth.)

  10. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Zhao, Chenglong; Lu, Yaxiang; Hu, Yong-Sheng; Chen, Liquan; Wang, Qidi; Li, Baohua

    2017-01-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A 2 MO 3 -family layered compounds (A  =  Li, Na; M  =  Mn 4+ , Ru 4+ , etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible. (topical review)

  11. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries

    Science.gov (United States)

    Assat, Gaurav; Tarascon, Jean-Marie

    2018-05-01

    Our increasing dependence on lithium-ion batteries for energy storage calls for continual improvements in the performance of their positive electrodes, which have so far relied solely on cationic redox of transition-metal ions for driving the electrochemical reactions. Great hopes have recently been placed on the emergence of anionic redox—a transformational approach for designing positive electrodes as it leads to a near-doubling of capacity. But questions have been raised about the fundamental origins of anionic redox and whether its full potential can be realized in applications. In this Review, we discuss the underlying science that triggers a reversible and stable anionic redox activity. Furthermore, we highlight its practical limitations and outline possible approaches for improving such materials and designing new ones. We also summarize their chances for market implementation in the face of the competing nickel-based layered cathodes that are prevalent today.

  13. Polarographic investigation of complexing kinetics of polyacrylate anions with cadmium ions

    International Nuclear Information System (INIS)

    Avlyanov, Zh.K.; Kabanov, N.M.; Zezin, A.B.; Askarov, M.A.

    1990-01-01

    The processes which occur during the reduction of cadmium ions from polymer-metallic complexes (PMC) are studied for the purposes of polarographic investigation of complexing kinetics of polyacrylate anions (PAA) of different molecular masses with cadmium ions in KCl aqueous solutions. An expression is derived for establishing semiwave potential. PMC formation and dissociation reduction rate constants are calculated. It is shown that intramolecular reorderings required for the formation of a two-coordinate complex proceed much slower as compared to the diffusion of free ions

  14. Ion acoustic waves in pair-ion plasma: Linear and nonlinear analyses

    International Nuclear Information System (INIS)

    Saeed, R.; Mushtaq, A.

    2009-01-01

    Linear and nonlinear properties of low frequency ion acoustic wave (IAW) in pair-ion plasma in the presence of electrons are investigated. The dispersion relation and Kadomtsev-Petviashvili equation for linear/nonlinear IAW are derived from sets of hydrodynamic equations where the ion pairs are inertial while electrons are Boltzmannian. The dispersion curves for various concentrations of electrons are discussed and compared with experimental results. The predicted linear IAW propagates at the same frequencies as those of the experimentally observed IAW if n e0 ∼10 4 cm -3 . It is found that nonlinear profile of the ion acoustic solitary waves is significantly affected by the percentage ratio of electron number density and temperature. It is also determined that rarefactive solitary waves can propagate in this system. It is hoped that the results presented in this study would be helpful in understanding the salient features of the finite amplitude localized ion acoustic solitary pulses in a laboratory fullerene plasma.

  15. Simultaneous determination of inorganic anions and cations in explosive residues by ion chromatography.

    Science.gov (United States)

    Meng, Hong-Bo; Wang, Tian-Ran; Guo, Bao-Yuan; Hashi, Yuki; Guo, Can-Xiong; Lin, Jin-Ming

    2008-07-15

    A non-suppressed ion chromatographic method by connecting anion-exchange and cation-exchange columns directly was developed for the separation and determination of five inorganic anions (sulfate, nitrate, chloride, nitrite, and chlorate) and three cations (sodium, ammonium, and potassium) simultaneously in explosive residues. The mobile phase was composed of 3.5mM phthalic acid with 2% acetonitrile and water at flow rate of 0.2 mL/min. Under the optimal conditions, the eight inorganic ions were completely separated and detected simultaneously within 16 min. The limits of detection (S/N=3) of the anions and cations were in the range of 50-100 microg/L and 150-320 microg/L, respectively, the linear correlation coefficients were 0.9941-0.9996, and the R.S.D. of retention time and peak area were 0.10-0.29% and 5.65-8.12%, respectively. The method was applied successfully to the analysis of the explosive samples with satisfactory results.

  16. Application of cyclic phosphonamide reagents in the total synthesis of natural products and biologically active molecules

    Directory of Open Access Journals (Sweden)

    Thilo Focken

    2014-08-01

    Full Text Available A review of the synthesis of natural products and bioactive compounds adopting phosphonamide anion technology is presented highlighting the utility of phosphonamide reagents in stereocontrolled bond-forming reactions. Methodologies utilizing phosphonamide anions in asymmetric alkylations, Michael additions, olefinations, and cyclopropanations will be summarized, as well as an overview of the synthesis of the employed phosphonamide reagents.

  17. Drift waves and counter rotating vortices in pair-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Q., E-mail: qamar_haque@hotmail.co [Theoretical Plasma Physics Division, PINSTECH P.O. Nilore, Islamabad (Pakistan)

    2010-07-19

    Linear dispersion relation has been found for drift and acoustic waves in pair-ion-electron plasmas. The stationary solution in the form of counter rotating vortices has been obtained in the presence of equilibrium potential profile. It is noticed that the speed of nonlinear structures is reduced with the increase of electrons concentration in pair-ion plasmas. Linear instability condition has also been found in the presence of shear flow. It is pointed out that the present results can be useful for future pair-ion plasma experiments.

  18. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly

    2015-01-01

    at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling......, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry......) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method...

  19. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    Science.gov (United States)

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. New polymer-supported ion-complexing agents: Design, preparation and metal ion affinities of immobilized ligands

    International Nuclear Information System (INIS)

    Alexandratos, Spiro D.

    2007-01-01

    Polymer-supported reagents are comprised of crosslinked polymer networks that have been modified with ligands capable of selective metal ion complexation. Applications of these polymers are in environmental remediation, ion chromatography, sensor technology, and hydrometallurgy. Bifunctional polymers with diphosphonate/sulfonate ligands have a high selectivity for actinide ions. The distribution coefficient for the uranyl ion from 1 M nitric acid is 70,000, compared to 900 for the monophosphonate/sulfonate polymer and 200 for the sulfonic acid ion-exchange resin. A bifunctional trihexyl/triethylammonium polymer has a high affinity and selectivity for pertechnetate and perchlorate anions from groundwater. In one example, its distribution coefficient for perchlorate ions in the presence of competing anions is 3,300,000, compared to 203,180 for a commercially available anion-exchange resin. Polystyrene modified with N-methyl-D-glucamine ligands is capable of selectively complexing arsenate from groundwater. It complexes 99% of the arsenate present in a solution of 100 mg/L arsenate with 560 mg/L sulfate ions. Its selectivity is retained even in the presence of 400 mg/L phosphate. There is no affinity for arsenate above pH 9, allowing for the polymer to be regenerated with moderate alkali solution. In studies aimed at developing a Hg(II)-selective resin, simple amine resins were found to have a high Hg(II) affinity and that affinity is dependent upon the solution pH and the counterion

  1. Interesting features of nonlinear shock equations in dissipative pair-ion-electron plasmas

    International Nuclear Information System (INIS)

    Masood, W.; Rizvi, H.

    2011-01-01

    Two dimensional nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion-electron plasmas in the presence of weak transverse perturbation. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions. In the linear case, a biquadratic dispersion relation is obtained, which yields the fast and slow modes in a pair-ion-electron plasma. It is shown that the limiting cases of electron-ion and pair-ion can be retrieved from the general biquadratic dispersion relation, and the differences in the characters of the waves propagating in both the cases are also highlighted. Using the small amplitude approximation method, the nonlinear Kadomtsev Petviashvili Burgers as well as Burgers-Kadomtsev Petviashvili equations are derived and their applicability for pair-ion-electron plasma is explained in detail. The present study may have relevance to understand the formation of two dimensional electrostatic shocks in laboratory produced pair-ion-electron plasmas.

  2. Origin of Enhanced Reactivity of a Microsolvated Nucleophile in Ion Pair SN2 Reactions: The Cases of Sodium p-Nitrophenoxide with Halomethanes in Acetone.

    Science.gov (United States)

    Li, Qiang-Gen; Xu, Ke; Ren, Yi

    2015-04-30

    In a kinetic experiment on the SN2 reaction of sodium p-nitrophenoxide with iodomethane in acetone-water mixed solvent, Humeres et al. (J. Org. Chem. 2001, 66, 1163) found that the reaction depends strongly on the medium, and the fastest rate constant was observed in pure acetone. The present work tries to explore why acetone can enhance the reactivity of the title reactions. Accordingly, we make a mechanistic study on the reactions of sodium p-nitrophenoxide with halomethanes (CH3X, X = Cl, Br, I) in acetone by using a supramolecular/continuum model at the PCM-MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) level, in which the ion pair nucleophile is microsolvated by one to three acetone molecules. We compared the reactivity of the microsolvated ion pair nucleophiles with solvent-free ion pair and anionic ones. Our results clearly reveal that the microsolvated ion pair nucleophile is favorable for the SN2 reactions; meanwhile, the origin of the enhanced reactivity induced by microsolvation of the nucleophile is discussed in terms of the geometries of transition state (TS) structures and activation strain model, suggesting that lower deformation energies and stronger interaction energies between the deformed reactants in the TS lead to the lower overall reaction barriers for the SN2 reaction of microsolvated sodium p-nitrophenoxide toward halomethanes in acetone.

  3. Solvation of the fluorine containing anions and their lithium salts in propylene carbonate and dimethoxyethane.

    Science.gov (United States)

    Chaban, Vitaly

    2015-07-01

    Electrolyte solutions based on the propylene carbonate (PC)-dimethoxyethane (DME) mixtures are of significant importance and urgency due to emergence of lithium-ion batteries. Solvation and coordination of the lithium cation in these systems have been recently attended in detail. However, analogous information concerning anions (tetrafluoroborate, hexafluorophosphate) is still missed. This work reports PM7-MD simulations (electronic-structure level of description) to include finite-temperature effects on the anion solvation regularities in the PC-DME mixture. The reported result evidences that the anions appear weakly solvated. This observation is linked to the absence of suitable coordination sites in the solvent molecules. In the concentrated electrolyte solutions, both BF4(-) and PF6(-) prefer to exist as neutral ion pairs (LiBF4, LiPF6).

  4. Simultaneous Determination of Different Anions in Milk Samples Using Ion Chromatography with Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Gülçin Gümüş Yılmaz

    2016-12-01

    Full Text Available The description of a simple method for simultaneous determination of chloride, nitrate, sulfate, iodide, phosphate, thiocyanate, perchlorate, and orotic acid in milk samples was outlined. The method involves the use of dialysis cassettes for matrix elimination, followed by ion chromatography on a high capacity anion exchange column with suppressed conductivity detection. The novelty of dialysis process was that it did not need any chemical and organic solvent for elimination of macromolecules such as fat, carbohydrates and proteins from milk samples. External standard calibration curves for these analytes were linear with great correlation coefficients. The relative standard deviations of analyte concentrations were acceptable both inter-day and intra-day evaluations. Under optimized conditions, the limit of detection (Signal-to-Noise ratio = 3 for chloride, phosphate, thiocyanate, perchlorate, iodide, nitrate, sulfate, and orotate was found to be 0.012, 0.112, 0.140, 0.280, 0.312, 0.516, 0.520, and 0.840 mg L−1, respectively. Significant results were obtained for various spiked milk samples with % recovery in the range of 93.88 - 109.75 %. The proposed method was successfully applied to milk samples collected from Istanbul markets. The advantages of the method described herein are reagent-free, simple, and reliable.

  5. In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries

    International Nuclear Information System (INIS)

    Pradanawati, Sylvia Ayu; Wang, Fu-Ming; Rick, John

    2014-01-01

    Highlights: • A new pentafluorophosphate benzimidazole anion was formed by Lewis acid-base reaction. • This pentafluorophosphate benzimidazole anion is fabricated with the benzimidazole anion and PF 5 . • This pentafluorophosphate benzimidazole anion avoids the ominous side reactions that PF 5 reacts SEI to form LiF and HF at high temperature. • The additional pentafluorophosphate benzimidazole anion formation well maintains the battery performance at 60 °C measurement compares to the electrolyte only with contains the salt, LiPF 6 . - Abstract: Lithium salts play a critical role in initiating electrochemical reactions in Li-ion batteries. Single Li ions dissociate from bulk-salt and associate with carbonates to form a solid electrolyte interface (SEI) during the first charge-discharge of the battery. SEI formation and the chemical stability of salt must both be controlled and optimized to minimize irreversible reactions in SEI formation and to suppress the decomposition of the salt at high temperatures. This study synthesizes a new benzimidazole-based anion in the electrolyte. This anion, pentafluorophosphate benzimidazole, results from a Lewis acid-base reaction between the benzimidazole anion and PF 5 . The new pentafluorophosphate benzimidazole anion inhibits the decomposition of LiPF 6 by inhibiting PF 5 side reactions, which degrade the SEI, and lead to the formation of LiF and HF at high temperatures. In addition, the use of the pentafluorophosphate benzimidazole anion results in the formation of a modified SEI that is able to modify the battery's performance. Cyclic voltammetry, scanning electron microscopy, differential scanning calorimetry, electrochemical impedance spectroscopy, as well as charge-discharge and X-ray photoelectron spectroscopy measurements have been used to characterize the materials in this study. The formation of the pentafluorophosphate benzimidazole anion in the electrolyte caused a 14% decrease in the activation energy

  6. Anion capture and sensing with cationic boranes: on the synergy of Coulombic effects and onium ion-centred Lewis acidity.

    Science.gov (United States)

    Zhao, Haiyan; Leamer, Lauren A; Gabbaï, François P

    2013-06-21

    Stimulated by the growing importance and recognized toxicity of anions such as fluoride, cyanide and azides, we have, in the past few years, developed a family of Lewis acidic triarylboranes that can be used for the complexation of these anions in organic and protic solvents, including water. A central aspect of our approach lies in the decoration of the boranes with peripheral ammonium, phosphonium, sulfonium stibonium or telluronium groups. The presence of these cationic groups provides a Coulombic drive for the capture of the anion, leading to boranes that can be used in aqueous solutions where anion hydration and/or protonation are usually competitive. The anion affinity of these boranes can be markedly enhanced by narrowing the separation between the anion binding site (i.e. the boron atom) and the onium ion. In such systems, the latent Lewis acidity of the onium ion also plays a role as manifested by the formation of B-X→E (E = P, S, Sb, or Te; X = F, CN or N3) chelate motifs that provide additional stability to the resulting complexes. These effects, which are maximum in stibonium and telluronium boranes, show that the Lewis acidity of heavy onium ions can be exploited for anion coordination and capture. The significance of these advances is illustrated by the development of applications in anion sensing, fluorination chemistry and (18)F radiolabeling for positron emission tomography.

  7. Direct NMR Evidence that Transient Tautomeric and Anionic States in dG·dT Form Watson-Crick-like Base Pairs.

    Science.gov (United States)

    Szymanski, Eric S; Kimsey, Isaac J; Al-Hashimi, Hashim M

    2017-03-29

    The replicative and translational machinery utilizes the unique geometry of canonical G·C and A·T/U Watson-Crick base pairs to discriminate against DNA and RNA mismatches in order to ensure high fidelity replication, transcription, and translation. There is growing evidence that spontaneous errors occur when mismatches adopt a Watson-Crick-like geometry through tautomerization and/or ionization of the bases. Studies employing NMR relaxation dispersion recently showed that wobble dG·dT and rG·rU mismatches in DNA and RNA duplexes transiently form tautomeric and anionic species with probabilities (≈0.01-0.40%) that are in concordance with replicative and translational errors. Although computational studies indicate that these exceptionally short-lived and low-abundance species form Watson-Crick-like base pairs, their conformation could not be directly deduced from the experimental data, and alternative pairing geometries could not be ruled out. Here, we report direct NMR evidence that the transient tautomeric and anionic species form hydrogen-bonded Watson-Crick-like base pairs. A guanine-to-inosine substitution, which selectively knocks out a Watson-Crick-type (G)N2H 2 ···O2(T) hydrogen bond, significantly destabilized the transient tautomeric and anionic species, as assessed by lack of any detectable chemical exchange by imino nitrogen rotating frame spin relaxation (R 1ρ ) experiments. An 15 N R 1ρ NMR experiment targeting the amino nitrogen of guanine (dG-N2) provides direct evidence for Watson-Crick (G)N2H 2 ···O2(T) hydrogen bonding in the transient tautomeric state. The strategy presented in this work can be generally applied to examine hydrogen-bonding patterns in nucleic acid transient states including in other tautomeric and anionic species that are postulated to play roles in replication and translational errors.

  8. Determination of melamine in milk-based products and other food and beverage products by ion-pair liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Maria; Sancho, Juan V. [Research Institute for Pesticides and Water, University Jaume I, E-12071, Castellon (Spain); Hernandez, Felix, E-mail: felix.hernandez@qfa.uji.es [Research Institute for Pesticides and Water, University Jaume I, E-12071, Castellon (Spain)

    2009-09-01

    This paper describes a fast method for the sensitive and selective determination of melamine in a wide range of food matrices, including several milk-based products. The method involves an extraction with aqueous 1% trichloroacetic acid before the injection of the 10-fold diluted extract into the liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) system, using labelled melamine as the internal standard. As melamine is present in aqueous media in the cationic form, the chromatographic separation in reversed-phase LC requires the use of anionic ion-pair reagents, such as tridecafluoroheptanoic acid (THFA). This allows a satisfactory chromatographic retention and peak shape in all the types of food samples investigated. The method has been validated in six food matrices (biscuit, dry pasta and four milk-based products) by means of recovery experiments in samples spiked at 1 and 5 mg kg{sup -1}. Average recoveries (n = 5) ranged from 77% to 100%, with excellent precision (RSDs lower than 5%) and limits of detection between 0.01 and 0.1 mg kg{sup -1}. In addition, accuracy and robustness of the method was proven in different soya-based matrices by means of quality control (QC) sample analysis. QC recoveries, at 1 and 2.5 mg kg{sup -1}, were satisfactory, ranging from 79% to 110%. The method developed in this work has been applied to the determination of melamine in different types of food samples. All detections were confirmed by acquiring two MS/MS transitions (127 > 85 for quantification; 127 > 68 for confirmation) and comparing their ion intensity ratio with that of reference standards. Accuracy of the method was also assessed by applying it to a milk-based product and a baking mix material as part of an EU proficiency test, in which highly satisfactory results were obtained.

  9. Determination of melamine in milk-based products and other food and beverage products by ion-pair liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Ibanez, Maria; Sancho, Juan V.; Hernandez, Felix

    2009-01-01

    This paper describes a fast method for the sensitive and selective determination of melamine in a wide range of food matrices, including several milk-based products. The method involves an extraction with aqueous 1% trichloroacetic acid before the injection of the 10-fold diluted extract into the liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) system, using labelled melamine as the internal standard. As melamine is present in aqueous media in the cationic form, the chromatographic separation in reversed-phase LC requires the use of anionic ion-pair reagents, such as tridecafluoroheptanoic acid (THFA). This allows a satisfactory chromatographic retention and peak shape in all the types of food samples investigated. The method has been validated in six food matrices (biscuit, dry pasta and four milk-based products) by means of recovery experiments in samples spiked at 1 and 5 mg kg -1 . Average recoveries (n = 5) ranged from 77% to 100%, with excellent precision (RSDs lower than 5%) and limits of detection between 0.01 and 0.1 mg kg -1 . In addition, accuracy and robustness of the method was proven in different soya-based matrices by means of quality control (QC) sample analysis. QC recoveries, at 1 and 2.5 mg kg -1 , were satisfactory, ranging from 79% to 110%. The method developed in this work has been applied to the determination of melamine in different types of food samples. All detections were confirmed by acquiring two MS/MS transitions (127 > 85 for quantification; 127 > 68 for confirmation) and comparing their ion intensity ratio with that of reference standards. Accuracy of the method was also assessed by applying it to a milk-based product and a baking mix material as part of an EU proficiency test, in which highly satisfactory results were obtained.

  10. Protein assisted fluorescence enhancement of a dansyl containing fluorescent reagent: detection of Hg+ ion in aqueous medium.

    Science.gov (United States)

    Srivastava, Priyanka; Shahid, Mohammad; Misra, Arvind

    2011-07-21

    Intramolecular charge transfer (ICT) based fluorescent reagents containing a dansyl fluorophore have been synthesized and characterized. The reagent 1 and its complex, 1+Hg(2+) in sodium acetate buffer (pH 6.7) revealed considerable fluorescence enhancement (switched-on) in the presence of bovine serum albumin (BSA) with 10 ppb detection sensitivity. (1)H NMR spectral analysis suggests complexation between 1 and Hg(2+) ion involving the N,N-dimethylamino and carboxylic functions.

  11. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    Science.gov (United States)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  12. Time-Resolved Magnetic Field Effects Distinguish Loose Ion Pairs from Exciplexes

    Science.gov (United States)

    2013-01-01

    We describe the experimental investigation of time-resolved magnetic field effects in exciplex-forming organic donor–acceptor systems. In these systems, the photoexcited acceptor state is predominantly deactivated by bimolecular electron transfer reactions (yielding radical ion pairs) or by direct exciplex formation. The delayed fluorescence emitted by the exciplex is magnetosensitive if the reaction pathway involves loose radical ion pair states. This magnetic field effect results from the coherent interconversion between the electronic singlet and triplet radical ion pair states as described by the radical pair mechanism. By monitoring the changes in the exciplex luminescence intensity when applying external magnetic fields, details of the reaction mechanism can be elucidated. In this work we present results obtained with the fluorophore-quencher pair 9,10-dimethylanthracene/N,N-dimethylaniline (DMA) in solvents of systematically varied permittivity. A simple theoretical model is introduced that allows discriminating the initial state of quenching, viz., the loose ion pair and the exciplex, based on the time-resolved magnetic field effect. The approach is validated by applying it to the isotopologous fluorophore-quencher pairs pyrene/DMA and pyrene-d10/DMA. We detect that both the exciplex and the radical ion pair are formed during the initial quenching stage. Upon increasing the solvent polarity, the relative importance of the distant electron transfer quenching increases. However, even in comparably polar media, the exciplex pathway remains remarkably significant. We discuss our results in relation to recent findings on the involvement of exciplexes in photoinduced electron transfer reactions. PMID:24041160

  13. The separation of [32P]inositol phosphates by ion-pair chromatography: Optimization of the method and biological applications

    International Nuclear Information System (INIS)

    Sulpice, J.C.; Gascard, P.; Journet, E.; Rendu, F.; Renard, D.; Poggioli, J.; Giraud, F.

    1989-01-01

    We have developed an ion-pair reverse-phase HPLC method to measure inositol phosphates in 32 P-labeled cells. The different chromatographic parameters were analyzed to optimize the resolution of the 32 P-labeled metabolites. Analysis of inositol phosphates in biological samples was improved by a single charcoal pretreatment which eliminated interfering nucleotides without removing inositol phosphates. The kinetics of production of inositol phosphates in calcium-activated erythrocytes, vasopressin-stimulated hepatocytes, and thrombin-activated platelets were analyzed. Original data on the activation of phosphoinositide phospholipase C were obtained in intact erythrocytes by direct measurement of inositol (1,4,5)P3. Data from agonist-stimulated hepatocytes and platelets were consistent with those from previous studies. In conclusion, this technique offers many advantages over the methodologies currently employed involving anion-exchange chromatography and [ 3 H]inositol labeling: (i) 32 P labeling is less expensive and more efficient than 3 H labeling and can be used with all types of cells without permeabilization treatments and (ii) ion-pair HPLC gives good resolution of inositol phosphates from nucleotides with shorter retention times, and long reequilibration periods are not required

  14. Acoustic nonlinear periodic waves in pair-ion plasmas

    Science.gov (United States)

    Mahmood, Shahzad; Kaladze, Tamaz; Ur-Rehman, Hafeez

    2013-09-01

    Electrostatic acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in unmagnetized pair-ion plasmas consisting of same mass and oppositely charged ion species with different temperatures. Using reductive perturbation method and appropriate boundary conditions, the Korteweg-de Vries (KdV) equation is derived. The analytical solutions of both cnoidal wave and soliton solutions are discussed in detail. The phase plane plots of cnoidal and soliton structures are shown. It is found that both compressive and rarefactive cnoidal wave and soliton structures are formed depending on the temperature ratio of positive and negative ions in pair-ion plasmas. In the special case, it is revealed that the amplitude of soliton may become larger than it is allowed by the nonlinear stationary wave theory which is equal to the quantum tunneling by particle through a potential barrier effect. The serious flaws in the earlier published results by Yadav et al., [PRE 52, 3045 (1995)] and Chawla and Misra [Phys. Plasmas 17, 102315 (2010)] of studying ion acoustic nonlinear periodic waves are also pointed out.

  15. APLIKASI PENGOLAHAN POLUTAN ANION KHROM(VI DENGAN MENGGUNAKAN AGEN PENUKAR ION HYDROTALCIT ZN-AI-SO4 (Synthesis of and its Application to Treat Chrom(VI Pollutant Using Hydrotalcite Zn-Al_SO4 as Anion Exchanger

    Directory of Open Access Journals (Sweden)

    Roto Roto

    2009-03-01

    Full Text Available ABSTRAK Keberadaan logam khrom di dalam sistem perairan bersifat polutan yang harus ditangani dengan baik, dan untuk khrom (Vl yang sering dijumpai dalam bentuk anion dapat diolah dengan menggunakan mekanisme pertukaran ion. Suatu agen penukar anion telah dibuat berupa senyawa hidrotalsit Zn-Al-SOa melalui proses sintesis, karakterisasi serta dilakukan pula pengujian aplikasinya untuk pengurangan polutant anion khrom (VI dalam bentuk ion dikromat. Sintesis hidrotalsit Zn-Al-SOa dilakukan dengan metode stoikiometri pada pH 8 dan perlakuan hidrotermal. Aplikasi pertukaran dikromat dengan anion sulfat dalam antar lapis hidrotalsit serta uji regenerasi bahan diamati dengan bantuan analisis struktur dan analisis kinetika reaksi pertukaran. Produk pertukaran ion dikarakterisasi dengan XRD, spektrofotometri IR dan spektrometri serapan atom. Rumus kimia hidrotalsit produk diketahui adalah Zn0,74Al0,26(OH1,74(SO40,13.0,52H2O. Anion dikromat dapat menukar sulfat dalam antarlapis hidrotalsit yang ditunjukkan dalam spektra IR dan pola XRD. Kapasitas pertukaran anion untuk dikromat diketahui 216,84 mek/100 g, sedangkan kinetika reaksi pertukaran ion mengikuti orde dua dengan k = 3 x 10-8 ppm-1.detik-1. Hasil menunjukkan Zn-Al-Cr2O7 dapat mudah diregenerasi.    ABSTRACT  Chrom as pollutant in aquatics system usually establishes as crom (VI and should be worked with special treatment and as an example is ion exchanger. Material Zn-Al-SO4 hydrotalcite product have been synthesized and its application as anion exchanger for dichromate have been studied. Synthesis of Zn-Al-SO4 hydrotalcite was carried out by stoichiometric method at pH 8 and hydrothermal treatment. Sulphate in hydrotalcite interlayer was exchanged by dichromate. Kinetics of ion exchange was also investigated. The product of ion exchange was characterized by XRD, IR spectrophotometry and atomic adsorption  spectrometry. The chemical formula of the  hydrotalcite is Zn0.74Al0.26(OH1.74(SO4 0

  16. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models.

    Science.gov (United States)

    Flores-Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly; Vrecko, Darko; Tait, Stephan; Batstone, Damien J; Jeppsson, Ulf; Gernaey, Krist V

    2015-11-15

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method to increase the robustness of the solver making the system not so dependent of the initial conditions. Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under different anaerobic/anoxic/aerobic conditions. The same framework is implemented in the Benchmark Simulation Model No. 2 (BSM2) version of the Anaerobic Digestion Model No. 1 (ADM1) (WWTP3) as well, predicting pH values at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some

  17. Preparation and Microbiological Evaluation of Amphiphilic Kanamycin-Lipoamino Acid Ion-Pairs

    Directory of Open Access Journals (Sweden)

    Rosario Pignatello

    2014-05-01

    Full Text Available Amphiphilic ion-pairs of kanamycin (KAN were prepared by evaporation of a water-ethanol co-solution of KAN base and a lipoamino acid bearing a 12-carbon atoms alkyl side chain (LAA12, at different molar ratios. Infrared spectroscopy confirmed the structure of ion-pairs, while differential scanning calorimetry (DSC and powder X-ray diffractometry (PXRD studies supported the formation of new saline species with a different crystalline structure than the starting components. The solubility pattern shown in a range of both aqueous and organic solvents confirmed that the ion-pairs possess an amphiphilic character. The LAA12 counter-ion showed not to improve the antibacterial activity of KAN, suggesting that such chemical strategy is not able to favor the penetration of this drug inside the bacteria cells. Nevertheless, a slight improving, i.e., a one-fold dilution, was observed in E. coli. The present study can also serve as the basis for a further evaluation of LAA ion-pairing of antibiotics, as a means to improve the loading of hydrophilic drugs into lipid-based nanocarriers.

  18. Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555

    Energy Technology Data Exchange (ETDEWEB)

    Bowman-James, Kristin [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemistry

    2017-04-13

    The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hosts joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO42- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through

  19. The influence of reagent type on the kinetics of ultrafine coal flotation

    Science.gov (United States)

    Read, R.B.; Camp, L.R.; Summers, M.S.; Rapp, D.M.

    1989-01-01

    A kinetic study has been conducted to determine the influence of reagent type on flotation rates of ultrafine coal. Two ultrafine coal samples, the Illinois No. 5 (Springfield) and Pittsburgh No. 8, have been evaluated with various reagent types in order to derive the rate constants for coal (kc), ash (ka), and pyrite (kc). The reagents used in the study include anionic surfactants, anionic surfactant-alcohol mixtures, and frothing alcohols. In general, the surfactant-alcohol mixtures tend to float ultrafine coal at a rate three to four times faster than either pure alcohols or pure anionic surfactants. Pine oil, a mixture of terpene alcohols and hydrocarbons, was an exception to this finding; it exhibited higher rate constants than the pure aliphatic alcohols or other pure anionic surfactants studied; this may be explained by the fact that the sample of pine oil used (70% alpha-terpineol) acted as a frother/collector system similar to alcohol/kerosene. The separation efficiencies of ash and pyrite from coal, as evidenced by the ratios of kc/ka or kc/kp, tend to indicate, however, that commercially available surfactant-alcohol mixtures are not as selective as pure alcohols such as 2-ethyl-1-hexanol or methylisobutylcarbinol. Some distinct differences in various rate constants, or their ratios, were noted between the two coals studied, and are possibly attributable to surface chemistry effects. ?? 1989.

  20. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.

  1. Observation of water separated ion-pairs between cations and phospholipid headgroups.

    Science.gov (United States)

    van der Post, Sietse T; Hunger, Johannes; Bonn, Mischa; Bakker, Huib J

    2014-04-24

    In this work, we present evidence for ion pair formation of cations with a high surface charge density (Na(+) and Ca(2+)) and phosphate groups of phospholipids. We used femto-second infrared pump-probe and dielectric spectroscopy to probe the dynamics of water molecules in solutions of phosphorylethanolamine and different types of cations. We find that sodium and calcium cooperatively retard the dynamics of water in solutions of phosphorylethanolamine, implying the formation of solvent separated ion pairs. This ion-specific interaction is absent for potassium, cesium and ammonium. We compare our results to dielectric spectroscopy experiments, which probes the rotation of all dipolar molecules and ions in solution. The rotation of the dipolar phosphorylethanolamine ion shows that long-lived ion-pairs are only formed with calcium and not with ammonium, cesium, potassium, and sodium. This finding implies that the association between calcium and the phosphate is strong with lifetimes exceeding 200 ps, while the interaction with sodium is relatively short-lived (∼20-100 ps).

  2. Preconcentration of ultra-trace amounts of iron and antimony using ion pair solid phase extraction with modified multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Fazelirad, Hamid; Taher, Mohammad Ali

    2014-01-01

    Ion pair solid phase extraction was applied to the simultaneous preconcentration of iron and antimony. The ion pairs consisting of FeCl 4 − or SbCl 4 − anions and the benzyldimethyltetradecyl ammonium cation were formed on the surface of multi-walled carbon nanotubes, then eluted with nitric acid, and the elements finally quantified by ETAAS. The adsorption capacities of the impregnated MWCNTs are 9.2 mg g −1 for iron and 27.5 mg g −1 for antimony. The following analytical figures of merit were determined for iron and antimony, respectively: Enrichment factors of 210 and 230, assay precisions of ±5.3 % and ±4.8 %, linear calibration plots from 0.7 to 9.4 and 13.0 to 190 ng L −1 , and detection limits of 0.17 and 3.5 ng L −1 . The method was applied to the determination of iron and antimony in human hair, synthetic sample, and to the certified reference materials gold ore (MA-1b) and trace elements in water (SRM 1643d). (author)

  3. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    of charged particles in electromagnetic fields. The linear and nonlinear collective modes in electron-positron plasma have been investigated theoretically [3–6]. Recently, Oohara and Hatakeyama [7] have developed a novel method for generating a pair plasma con- sisting of only negative and positive ions with equal mass ...

  4. Determination of sulfur anions in spent oil shale leachates by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Niss, N.D.

    1989-07-01

    The leaching and transport of chemical constituents from spent oil shale disposal areas is an area of environmental concern at the present time. Sulfur-containing compounds are prevalent in spent oil shales and have the potential to leach into aqueous systems surrounding disposal sites. Computer modeling has been used in recent years to predict the transport of species in an aqueous environment. The quality of model predictions, however, depends on the validation steps taken in comparing model predictions with laboratory data on ion speciation. Further, the quality of the validation step depends on the reliability of laboratory methods in generating ion speciation data. The purpose of this study was to develop methods to separate and quantify sulfur-containing anions in spent oil shale leachates by suppressed ion chromatography. The anions studied were S{sup 2{minus}} (sulfide), SO{sup 2{minus}}{sub 3} (sulfite), SO{sup 2{minus}}{sub 4} (sulfate), SCN{sup {minus}} (thiocyanate), S{sub 2}O{sup 2{minus}}{sub 3} (thiosulfate), and S{sub 4}O{sup 2{minus}}{sub 6} (tetrathionate). After the separations were developed, a series of method-challenging experiments were performed to test the reliability of the methods and assure the development of an analytically sound product. 24 refs., 7 figs., 5 tabs.

  5. Hydrogen-deuterium exchange of the anionic group 6B transition-metal hydrides. Convenient, in-situ-deuterium transfer reagents

    International Nuclear Information System (INIS)

    Gaus, P.L.; Kao, S.C.; Darensbourg, M.Y.; Arndt, L.W.

    1984-01-01

    The facile exchange of hydrogen for detuerium in the anionic group 6B carbonyl hydrides HM(CO) 4 L - (M = Cr, W; L = CO P(OMe) 3 ) has been studied in THF 4 (tetrahydrofuran) with CH 3 OD, D 2 O, and CH 3 CO 2 D. This has provided a synthesis of the deuterides, DM(CO) 4 L - , as well as a convenient in situ source of deuteride reducing reagents for organic halides. A number of such reductions are described, using 2 H NMR to demonstrate both selectivity and stereospecificity for certain systems. The carbonyl region of the infrared spectra of the hydrides is not affected by deuteration of the hydrides, suggesting that the M-H or M-D vibrational modes are not coupled significantly to CO vibrations in these hydrides. The mechanism of the H/D exchange and of a related H 2 elimination reaction is discussed

  6. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat.

    Science.gov (United States)

    Cinti, Stefano; Fiore, Luca; Massoud, Renato; Cortese, Claudio; Moscone, Danila; Palleschi, Giuseppe; Arduini, Fabiana

    2018-03-01

    The recent goal of sustainability in analytical chemistry has boosted the development of eco-designed analytical tools to deliver fast and cost-effective analysis with low economic and environmental impact. Due to the recent focus in sustainability, we report the use of low-cost filter paper as a sustainable material to print silver electrodes and to load reagents for a reagent-free electrochemical detection of chloride in biological samples, namely serum and sweat. The electrochemical detection of chloride ions was carried out by exploiting the reaction of the analyte (i.e. chloride) with the silver working electrode. During the oxidation wave in cyclic voltammetry the silver ions are produced, thus they react with chloride ions to form AgCl, while in the reduction wave, the following reaction occurs: AgCl + e - -->Ag + Cl - . These reactions at the electrode surface resulted in anodic/cathodic peaks directly proportional to the chloride ions in solution. Chloride ions were detected with the addition of only 10μL of the sample on the paper-based electrochemical cell, obtaining linearity up to 200mM with a detection limit equal to 1mM and relative standard deviation lower than 10%. The accuracy of the sensor was evaluated in serum and sweat samples, with percentage recoveries between 93 ± 10 and 108 ± 8%. Moreover, the results achieved with the paper-based device were positively compared with those obtained by using the gold standard method (Ion Selective Electrode) adopted in routine clinical analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel

    Science.gov (United States)

    Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Schwarz, Simona

    2018-01-01

    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity. PMID:29510485

  8. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  9. Visual colorimetry for trace antimony(V) by ion-pair solid-phase extraction with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) on a PTFE type membrane filter.

    Science.gov (United States)

    Mizuguchi, Hitoshi; Matsuda, Yuki; Mori, Takehito; Uehara, Atsushi; Ishikawa, Yuta; Endo, Masatoshi; Shida, Junichi

    2008-02-01

    A new visual colorimetry for trace antimony(V) based on ion-pair solid-phase extraction to a PTFE-type membrane filter with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) ion ([Co(5-Cl-PADAP)(2)](+)) has been developed. Experiments showed that hexachloroantimonate(V) ion (SbCl(6)(-)) was adsorbed with [Co(5-Cl-PADAP)(2)](+) to the front surface of the PTFE filter. The adsorption of antimony(V) ion was promoted by the addition of lithium chloride as a source of chloride ion. The excess reagent of [Co(5-Cl-PADAP)(2)](+) was eluted by rinsing with a 10 wt% methanol aqueous solution. In this case, the slow rate of the hydrolysis reaction of SbCl(6)(-) and the difference of the hydrophobicity of the ion pairs were important for adsorption and separation with a PTFE-type membrane filter. The antimony(V) concentration was determined through a visual comparison with a standard series. The visual detection limit was 0.10 microg. The calibration curve assessed with the reflection spectrometric responses at 580 nm was linear in the concentration range of 0.10 - 1.2 microg (r = 0.996). The proposed method has been applied to the determination of sub-microgram levels of antimony(V) ion in water samples.

  10. Role of Anions Associated with the Formation and Properties of Silver Clusters.

    Science.gov (United States)

    Wang, Quan-Ming; Lin, Yu-Mei; Liu, Kuan-Guan

    2015-06-16

    Metal clusters have been very attractive due to their aesthetic structures and fascinating properties. Different from nanoparticles, each cluster of a macroscopic sample has a well-defined structure with identical composition, size, and shape. As the disadvantages of polydispersity are ruled out, informative structure-property relationships of metal clusters can be established. The formation of a high-nuclearity metal cluster involves the organization of metal ions into a complex entity in an ordered way. To achieve controllable preparation of metal clusters, it is helpful to introduce a directing agent in the formation process of a cluster. To this end, anion templates have been used to direct the formation of high nuclearity clusters. In this Account, the role of anions played in the formation of a variety of silver clusters has been reviewed. Silver ions are positively charged, so anionic species could be utilized to control the formation of silver clusters on the basis of electrostatic interactions, and the size and shape of the resulted clusters can be dictated by the templating anions. In addition, since the anion is an integral component in the silver clusters described, the physical properties of the clusters can be modulated by functional anions. The templating effects of simple inorganic anions and polyoxometales are shown in silver alkynyl clusters and silver thiolate clusters. Intercluster compounds are also described regarding the importance of anions in determining the packing of the ion pairs and making contribution to electron communications between the positive and negative counterparts. The role of the anions is threefold: (a) an anion is advantageous in stabilizing a cluster via balancing local positive charges of the metal cations; (b) an anion template could help control the size and shape of a cluster product; (c) an anion can be a key factor in influencing the function of a cluster through bringing in its intrinsic properties. Properties

  11. Separation of strontium ions from other alkaline earth metal ions using masking reagent

    International Nuclear Information System (INIS)

    Komatsu, Y.

    1996-01-01

    Cs + and Sr 2+ have been well known as serious elements in high level radioactive waste. Separation of Cs + has already been successful when using an ion-exchange method from solution in the presence of other alkali metal ions. The separation of Sr 2+ is, however, not so easy by any known separation method such as solvent-extraction and ion-exchange methods. This is because Sr 2+ is in the middle of the selectivity series, which is Mg 2+ > Ca 2+ > Sr 2+ > Ba 2+ for the solvent-extraction method and Ba 2+ > Sr 2+ > Ca 2+ > Mg 2+ for the ion- exchange method. In the present study, separation of strontium from other alkaline earth metal ions was studied by a combined use of three types of separation methods at 298 K: the solvent-extraction method was applied for the first separation, in which thenoyltrifluoroacetone (TTA, extractant) and trioctylphosphine oxide ( TOPO, adduct forming ligand) were used for the organic phase of the system. The separation factors for each combination of four alkaline earth metal ions were determined by the values of the distribution ratio. The Mg 2+ was well separated from Sr 2+ by the TTA-TOPO system. However, the separation of the combinations of Ca 2+ -Sr 2+ and Sr 2+ -Ba 2+ was not complete by the above solvent-extraction system. The second separation method, an ion-exchange method was applied using dihydrogen tetratitanate hydrate fibers (H 2 Ti 4 O 9 nH 2 O) as an ion exchanger to separate Sr 2+ and Ba 2+ . The separation factors for each combination of four alkaline earth metal ions were calculated by the values of the distribution coefficients. Ba 2+ was well separated from Sr 2+ by the ion-exchange method. To separate Ca 2+ and Sr 2+ , however, a modified solvent-extraction method was finally used in which H 2 Ti 4 O 9 nH 2 O was used as a masking reagent of Sr 2+ . After the dihydrogen tetratitanate hydrate fibers were contacted with the aqueous solution containing Ca 2+ and Sr 2+ , the organic solution containing TTA and TOPO

  12. μ- and tau-pair production from relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1986-01-01

    The question is addressed of μ- and tau-pair production from the motional Coulomb fields available at the new relativistic heavy-ion accelerators. A semiclassical field theory is developed which is appropriate for families of leptons which are coupled electromagnetically. The field equations are mapped on to a lattice of collocation points using basis spline methods, and techniques for solving the resulting lattice equations are outlined. The properties of the transverse electromagnetic field near the heavy-ion beam are examined and physical arguments are given as to the feasibility of pair creation under a variety of circumstances. Using the Dirac-Hartree equations developed in part one, we shall dynamically evolve the vacuum, using the appropriate fields, and compute μ-pair and tau-pair production cross sections. 16 refs., 10 figs

  13. Regioselective 1,4- and 1,6-Conjugate Additions of Grignard Reagent-Derived Organozinc(II)ates to Polyconjugated Esters.

    Science.gov (United States)

    Hatano, Manabu; Mizuno, Mai; Ishihara, Kazuaki

    2016-09-16

    Regioselective synthetic methods were developed for 1,4- and 1,6-conjugate additions of Grignard reagent-derived organozinc(II)ates to malonate-derived polyconjugated esters. By taking advantage of the tight ion-pair control of organozinc(II)ates, it was possible to switch between 1,4- and 1,6-conjugate additions by introducing a terminal ethoxy moiety in the conjugation.

  14. Effects of Ion Beam Irradiation on Nanoscale InOx Cooper-Pair Insulators

    Directory of Open Access Journals (Sweden)

    Srdjan Milosavljević

    2013-01-01

    Full Text Available This paper examines the effects of irradiating indium oxide films of nanoscale thickness by ion beams, when these films are in the Cooper-pair insulator state. Radiation effects are predicted on the basis of Monte Carlo simulations of ion transport. Results of numerical experiments are interpreted within the theoretical model of a Cooper-pair insulator. The study suggests that radiation-induced changes in InOx films exposed to ion beams could significantly alter their current-voltage characteristics and that a transition to a metallic state is possible, due to radiation-induced perturbation of the fine-tuned granular structure. Furthermore, incident and displaced ions can break up enough Cooper pairs in InOx films to cause dissolution of this specific insulating state.

  15. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Iowa State Univ., Ames, IA (United States)

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  16. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ionic liquid based on α-amino acid anion and N7,N9-dimethylguaninium cation ([dMG][AA]): theoretical study on the structure and electronic properties.

    Science.gov (United States)

    Shakourian-Fard, Mehdi; Fattahi, Alireza; Bayat, Ahmad

    2012-06-07

    The interactions between five amino acid based anions ([AA](-) (AA = Gly, Phe, His, Try, and Tyr)) and N7,N9-dimethylguaninium cation ([dMG](+)) have been investigated by the hybrid density functional theory method B3LYP together with the basis set 6-311++G(d,p). The calculated interaction energy was found to decrease in magnitude with increasing side-chain length in the amino acid anion. The interaction between the [dMG](+) cation and [AA](-) anion in the most stable configurations of ion pairs is a hydrogen bonding interaction. These hydrogen bonds (H bonds) were analyzed by the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis. Finally, several correlations between electron densities in bond critical points of hydrogen bonds and interaction energy as well as vibrational frequencies in the most stable configurations of ion pairs have been checked.

  18. Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids.

    Science.gov (United States)

    Borodin, Oleg

    2009-09-10

    A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.

  19. Dehydroabiethylamine acetate as metal-containing anion precipitant

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Borisov, V.A.

    1979-01-01

    The precipitation is studied of vanadate, tungstate-, molybdate- and chromate-ions by dehydroabiethylamine acetate. The degree of precipitation of metal-bearing anions is a function of the anion and of pH of the treated solutions. There exists a predetermined value of pH for each anion, at which the content of metal-bearing anion in the ultra-filtrate is at a minimum. For vanadate-ions, this pH is 5.0; for tungstate-ions, 3.0; for molybdate-ions, 4.0; for chrommate-ions, 8.0. The heats of solution of methavanadate, paratungstate, paramolybdate and dehydroabiethylamine chromate, calculated in accordance with the Vant-Hoff equation, range between 3.5 and 8.3 kJ/mole; free energy varies between 45.8 and 137.5 kJ/mole; and entropy varies between 110 and 371 J/degree mole

  20. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  1. Dowex anion exchanger-loaded-baker's yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury(II) species

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed E.; Yakout, Amr A.; Osman, Maher M.

    2009-01-01

    Dowex anion exchanger-immobilized-baker's yeast [Dae-yeast] were synthesized and potentially applied as environmental friendly biosorbents to evaluate the up-take process of anionic and cationic mercury(II) species as well as other metal ions. Optimization of mass ratio of Dowex anion exchanger versus yeast (1:1-1:10) in presence of various interacting buffer solutions (pH 4.0-9.0) was performed and evaluated. Surface modification of [Dae-yeast] was characterized by scanning electron microscopy (SEM) and infrared spectroscopy. The maximum metal biosorption capacity values of [Dae-yeast] towards mercury(II) were found in the range of 0.800-0.960, 0.840-0.950 and 0.730-0.900 mmol g -1 in presence of buffer solutions pH 2.0, 4.0 and 7.0, respectively. Three possible and different mechanisms are proposed to account for the biosorption of mercury and mercuric species under these three buffering conditions based on ion exchange, ion pair and chelation interaction processes. Factors affecting biosorption of mercury from aqueous medium including the pH effect of aqueous solutions (1.0-7.0), shaking time (1-30 min) and interfering ions were searched. The potential applications of modified biosorbents for selective biosorption and extraction of mercury from different real matrices including dental filling waste materials, industrial waste water samples and mercury lamp waste materials were also explored. The results denote to excellent percentage extraction values, from nitric acid as the dissolution solvent with a pH 2.0, as determined in the range of 90.77-97.91 ± 3.00-5.00%, 90.00-93.40 ± 4.00-5.00% and 92.31-100.00 ± 3.00-4.00% for the three tested samples, respectively.

  2. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  3. Modulation instability of ion thermal waves in a pair-ion plasma containing charged dust impurities

    International Nuclear Information System (INIS)

    Sabry, R.

    2008-01-01

    Modulation instability of ion thermal waves (ITWs) is investigated in a plasma composed of positive and negative ions as well as a fraction of stationary charged (positive or negative) dust impurities. For this purpose, a linear dispersion relation and a nonlinear Schroedinger equation are derived. The latter admits localized envelope solitary wave solutions of bright (pulses) and dark (holes, voids) type. The envelope soliton depends on the intrinsic plasma parameters. It is found that modulation instability of ITWs is significantly affected by the presence of positively/negatively charged dust grains. The findings of this investigation should be useful in understanding the stable electrostatic wave packet acceleration mechanisms in pair-ion plasma, and also enhances our knowledge on the occurrence of instability associated to the existence of charged dust impurities in pair-ion plasmas. Our results should be of relevance for laboratory plasmas.

  4. Separation of uranyl ion using polyaniline

    International Nuclear Information System (INIS)

    Jayshree Ramkumar; Chandramouleeswaran, S.

    2013-01-01

    Polyaniline (Pani) was synthesized by the chemical oxidation of aniline. The use of persulphate instead of dichromate was desired in order to avoid the incorporation of chromium in the polymer matrix. The presence of chromium in the matrix, when dichromate was used as an oxidant, was confirmed by various techniques. The batch mode experiments showed that Pani could be used for separation of different metal ions. These ions were converted into their anionic complexes using suitable complexing agents. It was found that EDTA was used as a suitable reagent for the separation of Cu 2+ from Zn 2+ whereas the uranyl ion uptake could be increased to about 95 % when carbonate was used instead of EDTA as complexing agent. A possible application of the above exchange system to preconcentration of uranyl ion from seawater has also been examined. (author)

  5. Resonant Ion Pair Formation in Electron Collisions with Ground State Molecular Ions

    International Nuclear Information System (INIS)

    Zong, W.; Dunn, G.H.; Djuric, N.; Greene, C.H.; Neau, A.; Zong, W.; Larsson, M.; Al-Khalili, A.; Neau, A.; Derkatch, A.M.; Vikor, L.; Shi, W.; Rosen, S.; Le Padellec, A.; Danared, H.; Ugglas, M. af

    1999-01-01

    Resonant ion pair formation from collisions of electrons with ground state diatomic molecular ions has been observed and absolute cross sections measured. The cross section for HD + is characterized by an abrupt threshold at 1.9thinspthinspeV and 14 resolved peaks in the range of energies 0≤E≤14 eV . The dominant mechanism responsible for the structures appears to be resonant capture and stabilization, modified by two-channel quantum interference. Data on HF + show structure correlated with photoionization of HF and with dissociative recombination of electrons with this ion. copyright 1999 The American Physical Society

  6. Determination of chromium(VI) in water by PIXE analysis using ion exchange paper. Limit of detection and interference by coexisting anions

    International Nuclear Information System (INIS)

    Thomyasirigul, Sureerat; Fukuda, Hitoshi; Hasegawa, Jun; Oguri, Yoshiyuki

    2009-01-01

    Concerning the PIXE analysis of Cr(VI) in water using ion-exchange filters, the limit of detection (LOD) and the influence of matrix anions were investigated. In order to look for the experimental condition for obtaining the minimum LOD, we measured the Cr-Kα X-ray counts and background counts under the Kα X-ray peak as a function of the incident proton energy and the thickness of the Mylar absorber foil in front of the detector. To investigate the interference by coexisting anions, each of PO 4 3- , SO 4 2- , NO 3 - , Cl - , and F - ions and Cr(VI) ions were mixed in aqueous solutions and adsorbed on DE81-DEAE cellulose paper, a weakly basic anion exchanger with diethylaminoethyl functional groups. Then the filter samples were measured by PIXE using 2.5 MeV proton beams. We obtained a LOD of 0.16 μg or 8 ppb for 20 mL samples at a proton energy of 2.5 MeV and a Mylar film thickness of 50 or 100 μm. The experimental results on the mixed solutions indicated that NO 3 - , Cl - , and F - as coexisting ions didn't interfere significantly with determination of a 50 μg/L Cr(VI) concentration for 40 mL total solution volume, despite the total amount of anions was about 90% of ion exchange capacity of a filter. On the other hand, slight interferences by PO 4 3- ions were observed. However, under the same condition, we found that if the total amount of SO 4 2- ions was higher than 20% of ion exchange capacity, they induced significant interferences in determining Cr(VI). (author)

  7. Utility of Charge Transfer and Ion-Pair Complexation for Spectrophotometric Determination of Eletriptan Hydrobromide in Pure and Dosage Forms

    Directory of Open Access Journals (Sweden)

    Ayman A. Gouda

    2013-01-01

    Full Text Available Three simple, sensitive, and accurate spectrophotometric methods have been developed for the determination of eletriptan hydrobromide (ELT in pure and dosage forms. The first two methods are based on charge transfer complex formation between ELT and chromogenic reagents quinalizarin (Quinz and alizarin red S (ARS producing charge transfer complexes which showed an absorption maximum at 569 and 533 nm for Quinz and ARS, respectively. The third method is based on the formation of ion-pair complex between ELT with molybdenum(V-thiocyanate inorganic complex in hydrochloric acid medium followed by extraction of the colored ion-pair with dichloromethane and measured at 470 nm. Different variables affecting the reactions were studied and optimized. Beer's law is obeyed in the concentration ranges 2.0–18, 1.0–8.0, and 2.0–32 μg mL−1 for Quinz, ARS, and Mo(V-thiocyanate, respectively. The molar absorptivity, Sandell sensitivity, detection, and quantification limits are also calculated. The correlation coefficients were ≥0.9994 with a relative standard deviation (R.S.D%. of ≤0.925. The proposed methods were successfully applied for simultaneous determination of ELT in tablets with good accuracy and precision and without interferences from common additives, and the validity is assessed by applying the standard addition technique, which is compared with those obtained using the reported method.

  8. Ion pairs in non-redundant protein structures

    Indian Academy of Sciences (India)

    Ion pairs contribute to several functions including the activity of catalytic triads, fusion of viral membranes, stability in thermophilic proteins and solvent–protein interactions. Furthermore, they have the ability to affect the stability of protein structures and are also a part of the forces that act to hold monomers together.

  9. Evaluation of ferrocyanide anion exchange resins regarding the uptake of Cs+ ions and their regeneration

    International Nuclear Information System (INIS)

    Won, Hui Jun; Mooon, Jei Kwon; Jung, Chong Hun; Chung, Won Yang

    2008-01-01

    Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake Cs + ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the Cs + ion of the surrogate soil decontamination solution, and resin- KCoFC showed the best Cs + ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the Cs + ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the Fe 2+ ion in the reduction step could also be reduced by adding the K + ion

  10. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-08-01

    We review here the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterisation of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3 m e and life times in the range of 6x10 -14 s -10 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering. First we present some experimental methods for high efficiency positron spectroscopy in heavy ion collisions. Then we describe the discovery of positron creation induced by strong time changing Coulomb fields. (orig./HSI)

  11. Does an electronic continuum correction improve effective short-range ion-ion interactions in aqueous solution?

    Science.gov (United States)

    Bruce, Ellen E.; van der Vegt, Nico F. A.

    2018-06-01

    Non-polarizable force fields for hydrated ions not always accurately describe short-range ion-ion interactions, frequently leading to artificial ion clustering in bulk aqueous solutions. This can be avoided by adjusting the nonbonded anion-cation or cation-water Lennard-Jones parameters. This approach has been successfully applied to different systems, but the parameterization is demanding owing to the necessity of separate investigations of each ion pair. Alternatively, polarization effects may effectively be accounted for using the electronic continuum correction (ECC) of Leontyev et al. [J. Chem. Phys. 119, 8024 (2003)], which involves scaling the ionic charges with the inverse square-root of the water high-frequency dielectric permittivity. ECC has proven to perform well for monovalent salts as well as for divalent salts in water. Its performance, however, for multivalent salts with higher valency remains unexplored. The present work illustrates the applicability of the ECC model to trivalent K3PO4 and divalent K2HPO4 in water. We demonstrate that the ECC models, without additional tuning of force field parameters, provide an accurate description of water-mediated interactions between salt ions. This results in predictions of the osmotic coefficients of aqueous K3PO4 and K2HPO4 solutions in good agreement with experimental data. Analysis of ion pairing thermodynamics in terms of contact ion pair (CIP), solvent-separated ion pair, and double solvent-separated ion pair contributions shows that potassium-phosphate CIP formation is stronger with trivalent than with divalent phosphate ions.

  12. Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using adjacent anion exchange membranes and anion exchange resin

    KAUST Repository

    Wallack, Maxwell J.; Geise, Geoffrey M.; Hatzell, Marta C.; Hickner, Michael A.; Logan, Bruce E.

    2015-01-01

    Microbial reverse electrodialysis cells (MRECs) combine power generation from salinity gradient energy using reverse electrodialysis (RED), with power generation from organic matter using a microbial fuel cell. Waste heat can be used to distill ammonium bicarbonate into high (HC) and low salt concentration (LC) solutions for use in the RED stack, but nitrogen crossover into the anode chamber must be minimized to avoid ammonia loses, and foster a healthy microbial community. To reduce nitrogen crossover, an additional low concentration (LC) chamber was inserted before the anode using an additional anion exchange membrane (AEM) next to another AEM, and filled with different amounts of anion or cation ion exchange resins. Addition of the extra AEM increased the ohmic resistance of the test RED stack from 103 Ω cm2 (1 AEM) to 295 Ω cm2 (2 AEMs). However, the use of the anion exchange resin decreased the solution resistance of the LC chamber by 74% (637 Ω cm2, no resin; 166 Ω cm2 with resin). Nitrogen crossover into the anode chamber was reduced by up to 97% using 50% of the chamber filled with an anion exchange resin compared to the control (no additional chamber). The added resistance contributed by the use of the additional LC chamber could be compensated for by using additional LC and HC membrane pairs in the RED stack.

  13. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    Directory of Open Access Journals (Sweden)

    Yunsu Lee

    2018-04-01

    Full Text Available This paper presents the effect of anion exchange resin (AER on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  14. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  15. Ion-Pair Oligomerization of Chromogenic Triangulenium Cations with Cyanostar-Modified Anions That Controls Emission in Hierarchical Materials

    DEFF Research Database (Denmark)

    Qiao, Bo; Hirsch, Brandon E.; Lee, Semin

    2017-01-01

    The hierarchical assembly of colored cationic molecules with receptor-modified counteranions can be used to control optical properties in materials. However, our knowledge of when the optical properties emerge in the hierarchical organization and the variety of cation-anion salts that are availab...

  16. Evidence for radical anion formation during liquid secondary ion mass spectrometry analysis of oligonucleotides and synthetic oligomeric analogues: a deconvolution algorithm for molecular ion region clusters.

    Science.gov (United States)

    Laramée, J A; Arbogast, B; Deinzer, M L

    1989-10-01

    It is shown that one-electron reduction is a common process that occurs in negative ion liquid secondary ion mass spectrometry (LSIMS) of oligonucleotides and synthetic oligonucleosides and that this process is in competition with proton loss. Deconvolution of the molecular anion cluster reveals contributions from (M-2H).-, (M-H)-, M.-, and (M + H)-. A model based on these ionic species gives excellent agreement with the experimental data. A correlation between the concentration of species arising via one-electron reduction [M.- and (M + H)-] and the electron affinity of the matrix has been demonstrated. The relative intensity of M.- is mass-dependent; this is rationalized on the basis of base-stacking. Base sequence ion formation is theorized to arise from M.- radical anion among other possible pathways.

  17. Asymmetric ion trap

    Science.gov (United States)

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  18. Nonlinear structure formation in ion-temperature-gradient driven drift waves in pair-ion plasma with nonthermal electron distribution

    Science.gov (United States)

    Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.

    2018-02-01

    Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.

  19. Recognition and extraction of cesium hydroxide and carbonate by using a neutral multitopic ion-pair receptor

    Energy Technology Data Exchange (ETDEWEB)

    He, Qing; Peters, Gretchen Marie; Lynch, Vincent M.; Sessler, Jonathan L. [Department of Chemistry, University of Texas, Austin, TX (United States)

    2017-10-16

    Current approaches to lowering the pH of basic media rely on the addition of a proton source. An alternative approach is described herein that involves the liquid-liquid extraction-based removal of cesium salts, specifically CsOH and Cs{sub 2}CO{sub 3}, from highly basic media. A multitopic ion-pair receptor (2) is used that can recognize and extract the hydroxide and carbonate anions as their cesium salts, as confirmed by {sup 1}H NMR spectroscopic titrations, ICP-MS, single-crystal structural analyses, and theoretical calculations. A sharp increase in the pH and cesium concentrations in the receiving phase is observed when receptor 2 is employed as a carrier in U-tube experiments involving the transport of CsOH through an intervening chloroform layer. The pH of the source phase likewise decreases. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Analysis of phosphorus herbicides by ion-pairing reversed-phase liquid chromatography coupled to inductively coupled plasma mass spectrometry with octapole reaction cell.

    Science.gov (United States)

    Sadi, Baki B M; Vonderheide, Anne P; Caruso, Joseph A

    2004-09-24

    A reversed phase ion-pairing high performance liquid chromatographic (RPIP-HPLC) method is developed for the separation of two phosphorus herbicides, Glufosinate and Glyphosate as well as Aminomethylphosphonic acid (AMPA), the major metabolite of Glyphosate. Tetrabutylammonium hydroxide is used as the ion-pairing reagent in conjunction with an ammonium acetate/acetic acid buffering system at pH 4.7. An inductively coupled plasma mass spectrometer (ICP-MS) is coupled to the chromatographic system to detect the herbicides at m/z = 31P. Historically, phosphorus has been recognized as one of the elements difficult to analyze in argon plasma. This is due to its relatively high ionization potential (10.5 eV) as well as the inherent presence of the polyatomic interferences 14N16O1H+ and 15N16O+ overlapping its only isotope at m/z = 31. An octapole reaction cell is utilized to minimize the isobaric polyatomic interferences and to obtain the highest signal-to-background ratio. Detection limits were found to be in the low ppt range (25-32 ng/l). The developed method is successfully applied to the analysis of water samples collected from the Ohio River and spiked with a standard compounds at a level of 20 microg/l.

  1. Organic-soluble lanthanide nuclear magnetic resonance shift reagents for sulfonium and isothiouronium salts

    International Nuclear Information System (INIS)

    Wenzel, T.J.; Zaia, J.

    1987-01-01

    Lanthanide complexes of the formula [Ln(fod) 4 ] - (FOD, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione) are effective organic-soluble nuclear magnetic resonance shift reagents for sulfonium and isothiouronium salts. The shift reagent is formed in solution from Ln(fod) 3 and Ag(fod) or K(fod). The selection of Ag(fod) or K(fod) in forming the shift reagent is dependent on the anion of the organic salt. Ag(fod) is more effective with halide salts, whereas K(fod) is preferred with tetrafluoroborate salts. Resolution of diastereotopic hydrogen atoms was observed in the shifted spectra of certain substrates. Enantiomeric resolution was obtained in the spectrum of sec-butylisothiouronium chloride with a chiral shift reagent. The reagents can be employed in solvents such as chloroform and benzene

  2. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography

    Science.gov (United States)

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-01-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na+), potassium (K+), ammonium (NH4+), chloride (Cl−) and nitrate (NO3−) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906

  3. An ion-neutral model to investigate chemical ionization mass spectrometry analysis of atmospheric molecules - application to a mixed reagent ion system for hydroperoxides and organic acids

    Science.gov (United States)

    Heikes, Brian G.; Treadaway, Victoria; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.

    2018-04-01

    An ion-neutral chemical kinetic model is described and used to simulate the negative ion chemistry occurring within a mixed-reagent ion chemical ionization mass spectrometer (CIMS). The model objective was the establishment of a theoretical basis to understand ambient pressure (variable sample flow and reagent ion carrier gas flow rates), water vapor, ozone and oxides of nitrogen effects on ion cluster sensitivities for hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HFo) and acetic acid (HAc). The model development started with established atmospheric ion chemistry mechanisms, thermodynamic data and reaction rate coefficients. The chemical mechanism was augmented with additional reactions and their reaction rate coefficients specific to the analytes. Some existing reaction rate coefficients were modified to enable the model to match laboratory and field campaign determinations of ion cluster sensitivities as functions of CIMS sample flow rate and ambient humidity. Relative trends in predicted and observed sensitivities are compared as instrument specific factors preclude a direct calculation of instrument sensitivity as a function of sample pressure and humidity. Predicted sensitivity trends and experimental sensitivity trends suggested the model captured the reagent ion and cluster chemistry and reproduced trends in ion cluster sensitivity with sample flow and humidity observed with a CIMS instrument developed for atmospheric peroxide measurements (PCIMSs). The model was further used to investigate the potential for isobaric compounds as interferences in the measurement of the above species. For ambient O3 mixing ratios more than 50 times those of H2O2, O3-(H2O) was predicted to be a significant isobaric interference to the measurement of H2O2 using O2-(H2O2) at m/z 66. O3 and NO give rise to species and cluster ions, CO3-(H2O) and NO3-(H2O), respectively, which interfere in the measurement of CH3OOH using O2-(CH3OOH) at m/z 80. The CO3-(H2O

  4. Thermodynamic and structural properties of the specific binding between Ag⁺ ion and C:C mismatched base pair in duplex DNA to form C-Ag-C metal-mediated base pair.

    Science.gov (United States)

    Torigoe, Hidetaka; Okamoto, Itaru; Dairaku, Takenori; Tanaka, Yoshiyuki; Ono, Akira; Kozasa, Tetsuo

    2012-11-01

    Metal ion-nucleic acid interactions have attracted considerable interest for their involvement in structure formation and catalytic activity of nucleic acids. Although interactions between metal ion and mismatched base pair duplex are important to understand mechanism of gene mutations related to heavy metal ions, they have not been well-characterized. We recently found that the Ag(+) ion stabilized a C:C mismatched base pair duplex DNA. A C-Ag-C metal-mediated base pair was supposed to be formed by the binding between the Ag(+) ion and the C:C mismatched base pair to stabilize the duplex. Here, we examined specificity, thermodynamics and structure of possible C-Ag-C metal-mediated base pair. UV melting indicated that only the duplex with the C:C mismatched base pair, and not of the duplexes with the perfectly matched and other mismatched base pairs, was specifically stabilized on adding the Ag(+) ion. Isothermal titration calorimetry demonstrated that the Ag(+) ion specifically bound with the C:C base pair at 1:1 molar ratio with a binding constant of 10(6) M(-1), which was significantly larger than those for nonspecific metal ion-DNA interactions. Electrospray ionization mass spectrometry also supported the specific 1:1 binding between the Ag(+) ion and the C:C base pair. Circular dichroism spectroscopy and NMR revealed that the Ag(+) ion may bind with the N3 positions of the C:C base pair without distorting the higher-order structure of the duplex. We conclude that the specific formation of C-Ag-C base pair with large binding affinity would provide a binding mode of metal ion-DNA interactions, similar to that of the previously reported T-Hg-T base pair. The C-Ag-C base pair may be useful not only for understanding of molecular mechanism of gene mutations related to heavy metal ions but also for wide variety of potential applications of metal-mediated base pairs in various fields, such as material, life and environmental sciences. Copyright © 2012 Elsevier

  5. Variation in yield ratios of fragment ions and of ion-pairs from CF2Cl2 following monochromatic soft X-ray absorption

    International Nuclear Information System (INIS)

    Suzuki, I.H.; Saito, N.; Bozek, J.D.

    1995-01-01

    Fragment ions produced from CF 2 Cl 2 have been measured from 44 to 1200eV using a time-of-flight mass spectrometer and monochromatized synchrotron radiation. Positively charged ion pairs from this molecule were observed in the inner-shell excitation regions using a Selected photoion-photoion coincidence technique. Obtained yield ratios of fragment ions indicate that the atomic chlorine ion, Cl + , has the greatest intensity at all photon energies above 60eV and exhibits a steep increase at the Cl L 2,3 -edges. Some fragment ions, in particular CF 2 + , have a clear intensity increase at the transitions of inner-shell electrons to unoccupied molecular orbitals. The ion pair F + - Cl + exhibits the highest yield at most photon energies, and some of the branching ratios for ion-pair production changed significantly near the Cl L 2,3 -edges. (author)

  6. Making the invisible visible: improved electrospray ion formation of metalloporphyrins/-phthalocyanines by attachment of the formate anion (HCOO(-)).

    Science.gov (United States)

    Hitzenberger, Jakob Felix; Dammann, Claudia; Lang, Nina; Lungerich, Dominik; García-Iglesias, Miguel; Bottari, Giovanni; Torres, Tomás; Jux, Norbert; Drewello, Thomas

    2016-02-21

    A protocol is developed for the coordination of the formate anion (HCOO(-)) to neutral metalloporphyrins (Pors) and -phthalocyanines (Pcs) containing divalent metals as a means to improve their ion formation in electrospray ionization (ESI). This method is particularly useful when the oxidation of the neutral metallomacrocycle fails. While focusing on Zn(II)Pors and Zn(II)Pcs, we show that formate is also readily attached to Mn(II), Mg(II) and Co(II)Pcs. However, for the Co(II)Pc secondary reactions can be observed. Upon collision-induced dissociation (CID), Zn(II)Por/Pc·formate supramolecular complexes can undergo the loss of CO2 in combination with transfer of a hydride anion (H(-)) to the zinc metal center. Further dissociation leads to electron transfer and hydrogen atom loss, generating a route to the radical anion of the Zn(II)Por/Pc without the need for electrochemical reduction, although the Zn(II)Por/Pc may have a too low electron affinity to allow electron transfer directly from the formate anion. In addition to single Por molecules, multi Por arrays were successfully analyzed by this method. In this case, multiple addition of formate occurs, giving rise to multiply charged species. In these multi Por arrays, complexation of the formate anion occurs by two surrounding Por units (sandwich). Therefore, the maximum attainment of formate anions in these arrays corresponds to the number of such sandwich complexes rather than the number of porphyrin moieties. The same bonding motif leads to dimers of the composition [(Zn(II)Por/Pc)2·HCOO](-). In these, the formate anion can act as a structural probe, allowing the distinction of isomeric ions with the formate bridging two macrocycles or being attached to a dimer of directly connected macrocycles.

  7. Lepton-pair production by bremsstrahlung in central relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Lippert, T.; Becker, U.; Gruen, N.; Scheid, W.; Soff, G.

    1988-03-01

    We study the production of lepton-pairs by classical bremsstrahlung in central relativistic heavy-ion collisions. For the stopping of the nuclei we assume a simple model of point charges and a deceleration time. Pair creation probabilities are calculated in first order perturbation theory. (orig.)

  8. Systematic trends in photonic reagent induced reactions in a homologous chemical family.

    Science.gov (United States)

    Tibbetts, Katharine Moore; Xing, Xi; Rabitz, Herschel

    2013-08-29

    The growing use of ultrafast laser pulses to induce chemical reactions prompts consideration of these pulses as "photonic reagents" in analogy to chemical reagents. This work explores the prospect that photonic reagents may affect systematic trends in dissociative ionization reactions of a homologous family of halomethanes, much as systematic outcomes are often observed for reactions between homologous families of chemical reagents and chemical substrates. The experiments in this work with photonic reagents of varying pulse energy and linear spectral chirp reveal systematic correlations between observable ion yields and the following set of natural variables describing the substrate molecules: the ionization energy of the parent molecule, the appearance energy of each fragment ion, and the relative strength of carbon-halogen bonds in molecules containing two different halogens. The results suggest that reactions induced by photonic reagents exhibit systematic behavior analogous to that observed in reactions driven by chemical reagents, which provides a basis to consider empirical "rules" for predicting the outcomes of photonic reagent induced reactions.

  9. Li + solvation and kinetics of Li+–BF4-/PF 6 - ion pairs in ethylene carbonate. A molecular dynamics study with classical rate theories

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tsun-Mei [Department of Chemistry, University of Wisconsin–Parkside, Kenosha, Wisconsin 53141, USA; Dang, Liem X. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 93352, USA

    2017-10-28

    Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li+ and the dissociation kinetics of ion pairs Li+-[BF4] and Li+-[PF6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux; Impey, Madden, and McDonald approaches; and Grote-Hynes theory. We found the residence times of EC around Li+ ions varied from 70 to 450 ps, depending on the correction method used. We found the relaxation times changed significantly from Li+-[BF4] to Li+-[PF6] ion pairs in EC. Our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influence the dissociation kinetics of ion pairing. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  10. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography.

    Science.gov (United States)

    Zakaria, Philip; Dicinoski, Greg W; Ng, Boon Khing; Shellie, Robert A; Hanna-Brown, Melissa; Haddad, Paul R

    2009-09-18

    The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.

  11. Effect of a commercial anion dietary supplement on acid-base balance, urine volume, and urinary ion excretion in male goats fed oat or grass hay diets.

    Science.gov (United States)

    Stratton-Phelps, Meri; House, John K

    2004-10-01

    To determine whether feeding a commercial anionic dietary supplement as a urinary acidifier to male goats may be useful for management of urolithiasis. 8 adult sexually intact male Toggenburg, Saanen, and Nubian goats. Goats were randomly assigned by age-, breed-, and weight-matched pairs to an oat or grass hay diet that was fed for 12 days. On days 13 to 14 (early sample collection time before supplementation), measurements were made of blood and urine sodium, potassium, calcium, magnesium, chloride, phosphorus, and sulfur concentrations; blood and urine pH; urine production; and water consumption. During the next 28 days, the anionic dietary supplement was added to the oat and grass hay diets to achieve a dietary cation-anion difference of 0 mEq/100g of dry matter. Blood and urine samples were analyzed during dietary supplementation on days 12 to 13 (middle sample collection time) and 27 to 28 (late sample collection time). Blood bicarbonate, pH, and urine pH of goats fed grass hay and goats fed oat hay were significantly decreased during the middle and late sample collection times, compared with the early sample collection time. Water consumption and urine production in all goats increased significantly during the late sample collection time, compared with the early sample collection time. The anionic dietary supplement used in our study increases urine volume, alters urine ion concentrations, and is an efficacious urinary acidifier in goats. Goats treated with prolonged anionic dietary supplementation should be monitored for secondary osteoporosis from chronic urinary calcium loss.

  12. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  13. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  14. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations.

    Science.gov (United States)

    Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    2014-08-01

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.

  15. Evaluation of ferrocyanide anion exchange resins regarding the uptake of Cs{sup +} ions and their regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Mooon, Jei Kwon; Jung, Chong Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Won Yang [Kangwon University, Chuncheon (Korea, Republic of)

    2008-10-15

    Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake Cs{sup +} ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the Cs{sup +} ion of the surrogate soil decontamination solution, and resin- KCoFC showed the best Cs{sup +} ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the Cs{sup +} ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the Fe{sup 2+} ion in the reduction step could also be reduced by adding the K{sup +} ion.

  16. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples.

    Science.gov (United States)

    Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong

    2017-07-04

    In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-01-01

    The authors review the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterization of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3m and lifetimes in the range of 6 x 10 - 14 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering

  18. Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer.

    Science.gov (United States)

    Jia, Xiuling; Chen, Dunjun; Bin, Liu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-06-09

    A novel ion-imprinted electrochemical sensor based on AlGaN/GaN high electron mobility transistors (HEMTs) was developed to detect trace amounts of phosphate anion. This sensor combined the advantages of the ion sensitivity of AlGaN/GaN HEMTs and specific recognition of ion imprinted polymers. The current response showed that the fabricated sensor is highly sensitive and selective to phosphate anions. The current change exhibited approximate linear dependence for phosphate concentration from 0.02 mg L(-1) to 2 mg L(-1), the sensitivity and detection limit of the sensor is 3.191 μA/mg L(-1) and 1.97 μg L(-1), respectively. The results indicated that this AlGaN/GaN HEMT-based electrochemical sensor has the potential applications on phosphate anion detection.

  19. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane

    Science.gov (United States)

    Peng, Jing; Roy, Asa L.; Greenbaum, Steve G.; Zawodzinski, Thomas A.

    2018-03-01

    We report the measured water uptake, density, ionic conductivity and water transport properties in Tokuyama A201 membrane in OH-, HCO3- and Cl- forms. The water uptake of the AEM varies with anion type in the order λ(OH-) > λ(HCO3-) > λ(Cl-) for samples equilibrated with the same water vapor activity (aw). The conductivity of the AEM is reduced by absorption of CO2. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were utilized to characterize the diffusivity of water and HCO3- ion. The anion diffusion coefficient and membrane conductivity are used to probe the applicability of the Nernst-Einstein equation in these AEMs.

  20. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.

    Science.gov (United States)

    Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L

    2009-07-01

    The aim of this research was to gain a mechanistic understanding of ion-pair mediated membrane transport of low-permeability drugs. Quasi-equilibrium mass transport analyses were developed to describe the ion-pair mediated octanol-buffer partitioning and hydrophobic membrane permeation of the model basic drug phenformin. Three lipophilic counterions were employed: p-toluenesulfonic acid, 2-naphthalenesulfonic acid, and 1-hydroxy-2-naphthoic acid (HNAP). Association constants and intrinsic octanol-buffer partition coefficients (Log P(AB)) of the ion-pairs were obtained by fitting a transport model to double reciprocal plots of apparent octanol-buffer distribution coefficients versus counterion concentration. All three counterions enhanced the lipophilicity of phenformin, with HNAP providing the greatest increase in Log P(AB), 3.7 units over phenformin alone. HNAP also enhanced the apparent membrane permeability of phenformin, 27-fold in the PAMPA model, and 4.9-fold across Caco-2 cell monolayers. As predicted from a quasi-equilibrium analysis of ion-pair mediated membrane transport, an order of magnitude increase in phenformin flux was observed per log increase in counterion concentration, such that log-log plots of phenformin flux versus HNAP concentration gave linear relationships. These results provide increased understanding of the underlying mechanisms of ion-pair mediated membrane transport, emphasizing the potential of this approach to enable oral delivery of low-permeability drugs.

  1. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  2. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  3. Rate theory of ion pairing at the water liquid-vapor interface: A case of sodium iodide

    Science.gov (United States)

    Dang, Liem X.; Schenter, Gregory K.

    2018-06-01

    Studies on ion pairing at interfaces have been intensified recently because of their importance in many chemical reactive phenomena, such as ion-ion interactions that are affected by interfaces and their influence on kinetic processes. In this study, we performed simulations to examine the thermodynamics and kinetics of small polarizable sodium iodide ions in the bulk and near the water liquid-vapor interface. Using classical transition state theory, we calculated the dissociation rates and corrected them with transmission coefficients obtained from the reactive flux formalism and Grote-Hynes theory. Our results show that in addition to affecting the free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results on the relaxation time obtained using the reactive flux formalism and Grote-Hynes theory present an unequivocal picture that the interface suppresses ion dissociation. The effects of the use of molecular models on the ion interactions as well as the ion-pair configurations at the interface are also quantified and discussed.

  4. Multiple electromagnetic electron-positron pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Alscher, A.; Hencken, K.; Trautmann, D.; Baur, G.

    1997-01-01

    We calculate the cross sections for the production of one and more electron-positron pairs due to the strong electromagnetic fields in relativistic heavy-ion collisions. We derive the N-pair amplitude using the generating functional of fermions in an external field and the path-integral formalism. The N-pair production probability is found to be an approximate Poisson distribution. We calculate total cross sections for the production of one pair in lowest order, including corrections from the Poisson distribution up to third order. Furthermore, we calculate cross sections for the production of up to five pairs including corrections from the Poisson distribution. copyright 1997 The American Physical Society

  5. Resonant ion-pair formation in the recombination of NO+ with electrons: Cross-section determination

    International Nuclear Information System (INIS)

    Le Padellec, A.; Djuric, N.; Al-Khalili, A.; Danared, H.; Derkatch, A. M.; Neau, A.; Popovic, D. B.; Rosen, S.; Semaniak, J.; Thomas, R.

    2001-01-01

    Resonant ion-pair formation from the collisions of NO + ions with electrons was studied using the heavy-ion storage ring CRYRING at the Manne Siegbahn Laboratory of Stockholm University. The total cross section is measured for the formation of N + +O - for electron energies 8--18 eV, and the results are compared with ion-pair formation in photoionization work. A peak in the cross section is observed at 12.5 eV, with a magnitude of 8.5 x 10 -19 cm 2 . An attempt to extract the cross section for the reverse process of associative ionization is made

  6. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  7. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    Science.gov (United States)

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-07

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  8. Ion flotation of uranium contained in industrial phosphoric acid with collector recycling

    International Nuclear Information System (INIS)

    Jdid, E.; Blazy, P.; Bessiere, J.

    1985-01-01

    Uranium has been recovered from wet-process phosphoric acid (30% P 2 O 5 ) by ion flotation with an anionic organophosphorous collector. Recoveries greater than 90% were obtained even at temperatures of about 60 C, the uranium concentrate, which was collected in the froth as a precipitate, containing 7 to 10% U. Collector consumption without recycling of the surface-active reagent was about 12 kg/kg U. Much of the reagent, however, can be recovered for recycling by attack with sodium hydroxide on the floated phase after filtration. This enables a precipitate containing about 30% U to be produced and decreases collector consumption to about 3 kg/kg U. The results were obtained in laboratory-scale experiments on industrial wet-process acid. (author)

  9. Capture from pair production as a beam loss mechanism for heavy ions at RHIC

    International Nuclear Information System (INIS)

    Feinberg, B.; Belkacem, A.; Claytor, N.; Dinneen, T.; Gould, H.

    1997-05-01

    Electron capture from electron-positron pair production is predicted to be a major source of beam loss for the heaviest ions at RHIC. Achieving the highest luminosity thus requires an understanding of the capture process. The authors report measurements of this process at Brookhaven National Laboratory's AGS using 10.8 GeV/nucleon Au 79+ projectiles on Au targets. Capture from pair production is a process in which the very high electromagnetic field involved in the collision of two relativistic heavy ions results in the production of an electron-positron pair with the capture of the electron by one of the ions. There are many theoretical papers published on capture from pair production with discrepancies between predicted cross sections. The experimental results are compared to theory and to previous experiments at 1 GeV/nucleon. The implications of extrapolations to RHIC energies are presented

  10. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    Science.gov (United States)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  11. Ion streaming instabilities in pair ion plasma and localized structure with non-thermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, M. Nasir; Qamar, A., E-mail: mnnasirphysics@gmail.com [Department of Physics, University of Peshawar (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University Mardan, National Center for Physics, Mardan (Pakistan)

    2015-12-15

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A quasi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted. (author)

  12. Ion-pairing reversed-phased chromatography/mass spectrometry of heparin

    DEFF Research Database (Denmark)

    Henriksen, Jens; Roepstorff, Peter; Ringborg, Lene H.

    2006-01-01

    not well characterised. In order to further characterise such mixtures, two on-line ion-pairing reverse-phased chromatography electrospray ionisation (ESI) mass spectrometry methods have been developed. One of the systems allows the determination of more than 200 components in a medium molecular weight...

  13. Extractive spectrophotometric determination of five selected drugs by ion-pair complex formation with bromothymol blue in pure form and pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Sneha G. Nair

    2015-12-01

    Full Text Available Simple, precise, selective, and expeditious spectrophotometric methods have been developed for the determination of itopride (ITO, midodrine (MID, diclofenac (DIC, mesalamine (MES, and sumatriptan (SUM in their pure form as well as in pharmaceutical preparations. The method was based on ion-pair complex formation between the drugs and anionic dye, bromothymol blue in an acidic medium (pH 2.0–4.0. The yellow colored complexes formed were quantitatively extracted into chloroform and measured at 411, 410, 413, 412, and 414 nm wavelength for ITO, MID, DIC, MES, and SUM, respectively. Beer’s law was obeyed in the concentration range of 3.0–30 µg/mL for ITO, 1.0–20 µg/mL for MID, 1.5–40 µg/mL for DIC, 1.2–12 µg/mL for MES, and 0.5–15 µg/mL for SUM. The stoichiometry of the complexes formed between the drugs and the dye was 1:1 as determined by Job’s method of continuous variation. The association constant (KIP of the ion-pair complexes formed was evaluated using Benesi–Hildebrand equation. Limit of detection, limit of quantification, and Sandell’s sensitivity of the methods were also estimated. The proposed methods were successfully employed for the determination of these drugs in their pharmaceutical dosage forms.

  14. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared......Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...... to that of a series of microsolvated oxygen centered anions. The association of the nucleophiles with a single water or methanol molecule allows the α-effect to be observed in the SN2 reaction with methyl chloride; this effect was not apparent in the reactions of the unsolvated anions. The results suggest...

  15. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  16. Electromagnetic heavy-lepton pair production in relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Senguel, M.Y. [Atakent Mahallesi, 3. Etap, Halkali-Kuecuekcekmece, Istanbul (Turkey); Gueclue, M.C.; Mercan, Oe.; Karakus, N.G. [istanbul Technical University, Faculty of Science and Letters, Istanbul (Turkey)

    2016-08-15

    We calculate the cross sections of electromagnetic productions of muon- and tauon-pair productions from the ultra-relativistic heavy ion collisions. Since the Compton wavelengths of muon and tauon are comparable to the radius of the colliding ions, nuclear form factors play important roles for calculating the cross sections. Recent measurement (Abrahamyan et al., Phys Rev Lett 108:112502, 2012) indicates that the neutrons are differently distributed from the protons; therefore this affects the cross section of the heavy-lepton pair production. In order to see the effects of the neutron distributions in the nucleus, we used analytical expression of the Fourier transforms of the Wood-Saxon distribution. Cross section calculations show that the Wood-Saxon distribution function is more sensitive to the parameter R compared to the parameter a. (orig.)

  17. Quantitative Analysis of Tenofovir by Titrimetric, Extractive Ion-pair ...

    African Journals Online (AJOL)

    Methods: Tenofovir disoproxil forms a complex of 1:1 molar ratio with fumaric acid that was employed in its aqueous titration with sodium hydroxide. Non-aqueous titration was also employed for its determination. Extractive ion-pair spectrophotometric technique using methyl orange was similarly employed to evaluate ...

  18. Removal of 125I from radioactive experimental waste with an anion exchange paper membrane

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi; Kagoshima, Mayumi

    2000-01-01

    The behavior of radioactive iodide and chloride ions through an anion exchange paper membrane to remove 125 I from radioactive experimental waste has been studied with nonequilibrium thermodynamic analyses. Anion exchange paper membrane was found to be electroconductively more permeable to iodide ion than to chloride ion. The iodide ion bound more strongly to the anion exchange site within a membrane phase than the chloride ion by more than twice. The results suggested that an anion exchange paper membrane was appropriate for the filtration removal system

  19. Sensitive and selective spectrophotometric assay of piroxicam in pure form, capsule and human blood serum samples via ion-pair complex formation

    Science.gov (United States)

    Alizadeh, Nina; Keyhanian, Fereshteh

    2014-09-01

    A simple, accurate and highly sensitive spectrophotometric method has been developed for the rapid determination of piroxicam (PX) in pure and pharmaceutical formulations. The proposed method involves formation of stable yellow colored ion-pair complexes of the amino derivative (basic nitrogen) of PX with three sulphonphthalein acid dyes namely; bromocresol green (BCG), bromothymol blue (BTB), bromophenol blue (BPB) in acidic medium. The colored species exhibited absorption maxima at 438, 429 and 432 nm with molar absorptivity values of 9.400 × 103, 1.218 × 103 and 1.02 × 104 L mol-1 cm-1 for PX-BCG, PX-BTB and PX-BPB complexes, respectively. The effect of optimum conditions via acidity, reagent concentration, time and solvent were studied. The reactions were extremely rapid at room temperature and the absorbance values remained constant for 48 h. Beer’s law was obeyed with a good correlation coefficient in the concentration ranges 1-100 μg mL-1 for BCG, BTB complexes and 1-95 μg mL-1 for BPB complex. The composition ratio of the ion-pair complexes were found to be 1:1 in all cases as established by Job’s method. No interference was observed from common additives and excipients which may be present in the pharmaceutical preparations. The proposed method was successfully applied for the determination of PX in capsule and human blood serum samples with good accuracy and precision.

  20. Infrared and Raman spectroscopic study of ion pairing of strontium(II ...

    African Journals Online (AJOL)

    ABSTRACT. Infrared and Raman spectroscopy techniques have been used to study the ionic interactions of strontium(II) and barium(II) with thiocyanate ion in liquid ammonia. A number of bands were observed in both ν(CN) and ν(CS) regions of infrared and Raman spectra and these were assigned to 1:1 contact ion pair, ...

  1. Influence of surface melting effects and availability of reagent ions on LDI-MS efficiency after UV laser irradiation of Pd nanostructures.

    Science.gov (United States)

    Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

    2015-03-01

    In this study, the influence of surface morphology, reagent ions and surface restructuring effects on atmospheric pressure laser desorption/ionization (LDI) for small molecules after laser irradiation of palladium self-assembled nanoparticular (Pd-NP) structures has been systematically studied. The dominant role of surface morphology during the LDI process, which was previously shown for silicon-based substrates, has not been investigated for metal-based substrates before. In our experiments, we demonstrated that both the presence of reagent ions and surface reorganization effects--in particular, melting--during laser irradiation was required for LDI activity of the substrate. The synthesized Pd nanostructures with diameters ranging from 60 to 180 nm started to melt at similar temperatures, viz. 890-898 K. These materials exhibited different LDI efficiencies, however, with Pd-NP materials being the most effective surface in our experiments. Pd nanostructures of diameters >400-800 nm started to melt at higher temperatures, >1000 K, making such targets more resistant to laser irradiation, with subsequent loss of LDI activity. Our data demonstrated that both melting of the surface structures and the presence of reagent ions were essential for efficient LDI of the investigated low molecular weight compounds. This dependence of LDI on melting points was exploited further to improve the performance of Pd-NP-based sampling targets. For example, adding sodium hypophosphite as reducing agent to Pd electrolyte solutions during synthesis lowered the melting points of the Pd-NP materials and subsequently gave reduced laser fluence requirements for LDI. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Ion chromatography for the analysis of salt splitting capacities of cation and anion resin in premixed resin sample

    International Nuclear Information System (INIS)

    Ghosh, Satinath; Kumar, Rakesh; Tripathy, M.K.; Dhole, K.; Sharma, R.S.; Varde, P.V.

    2017-01-01

    Mixed bed ion exchange resin is commonly used in various plants including nuclear reactors for the purpose of fine polishing. The analysis of ion exchange capacities of cation and anion resin in resin mixture is therefore an agenda in the context of purchasing of premixed resin from the manufacturer. An ion chromatographic method for assaying ion exchange capacities of pure as well as mixed resin has been optimized. The proposed method in contrast to the conventional ASTM method has been found to be quite encouraging to consider it as an alternate method for the analysis of premixed resin. (author)

  3. Study of the ion-channel behavior on glassy carbon electrode supported bilayer lipid membranes stimulated by perchlorate anion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiquan; Shi, Jun; Huang, Weimin, E-mail: huangwm@jlu.edu.cn

    2015-10-01

    In this paper, a kind of didodecyldimethylammonium bromide (DDAB) layer membranes was supported on a glassy carbon electrode (GCE). We studied the ion channel behavior of the supported bilayer lipid membrane by scanning electrochemical microscopy (SCEM) in tris(2,2′-bipyridine) ruthenium(II) solution. Perchlorate anion was used as a presence of stimulus and ruthenium(II) complex cations as the probing ions for the measurement of SECM, the lipid membrane channel was opened and exhibited the behavior of distinct SECM positive feedback curve. The channel was in a closed state in the absence of perchlorate anions while reflected the behavior of SECM negative feedback curve. The rates of electron transfer reaction in the lipid membranes surface were detected and it was dependant on the potential of SECM. - Highlights: • The rates of electron transfer reaction in the lipid membranes surface were detected. • Dynamic investigations of ion-channel behavior of supported bilayer lipid membranes by scanning electrochemical microscopy • A novel way to explore the interaction between molecules and supported bilayer lipid membranes.

  4. Effects of ion pairs on the dynamics of erbium doped fiber laser in the inhomogeneous model

    International Nuclear Information System (INIS)

    Keyvaninia, Sh.; Karvar, M.; Bahrampour, A.

    2006-01-01

    In a high concentration erbium doped fiber, the erbium ions are so closed together that the ion pairs and clusters are formed. In such fiber amplifiers, the ion pairs and clusters acting as a saturable absorber are distributed along the fiber laser. The inhomogeneous rate equations for the laser modes in a high-concentration EDFA are written. The governing equations are an uncountable system of partial differential equations. For the first time we introduced an approximation method that the system of partial differential equations is converted to a finite system of ordinary differential equations. The effects of ion pairs concentration on erbium doped fiber are analyzed that is in good agreement whit the experimental result.

  5. An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells.

    Science.gov (United States)

    Kurusu, Takamitsu; Saito, Katsunori; Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki

    2013-01-01

    Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(-) and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(-) efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(-) efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.

  6. New sorption-reagent materials for decontamination of liquid radioactive waste

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Golikov, A.P.; Zheleznov, V.V.; Kaplun, E.V.; Marinin, D.V.; Sokolnitskaya, T.A.

    2001-01-01

    Full text: Use of selective sorbents in liquid radioactive waste (LRW) management is widely spread in the field of nuclear power objects liquid waste decontamination, since the main objective there is to remove long-lived radionuclides of the nuclear cycle. The latter include, first of all, cesium-137, strontium-90, cobalt-60 and a number of α-irradiators. In this case LRW composition for most of the nuclear power objects is rather simple, except acidic deactivation solutions. At the same time, liquid radioactive wastes of different research centers have a variable chemical and radiochemical composition depending on objectives and tasks of a given center research activities. As a result, application of sorption technologies in such waste decontamination determines special requirements to these sorbents selectivity: a wide spectrum of radionuclides that can be removed and fairly high selectivity enabling to remove radionuclides from solutions of complex chemical composition (containing surfactants, complexing agents etc.). This paper is concerned with studying properties of new materials selective to different radionuclides. These materials are capable to interact with solution components whether already contained in the waste or deliberately added into resulting solution. Such sorption-reagent materials combine universal character of co-precipitation methods with simplicity of sorption methods. In this work we studied sorption-reagent inorganic ion-exchange materials interacting with sulfate-, carbonate-, oxalate-, sulfide-, and permanganate-ions. Insoluble compounds formed as a result of this interaction increase tens- and hundreds-fold the sorption selectivity of different radionuclides - strontium, cobalt, mercury, iron, and manganese as compared to conventional ion-exchange system. By means of X-ray phase analysis, IR-spectroscopy, chemical and radiochemical analysis, we have studied the mechanism of radionuclide sorption on different sorption-reagent

  7. Influence of ion pairing in ionic liquids on electrical double layer structures and surface force using classical density functional approach.

    Science.gov (United States)

    Ma, Ke; Forsman, Jan; Woodward, Clifford E

    2015-05-07

    We explore the influence of ion pairing in room temperature ionic liquids confined by planar electrode surfaces. Using a coarse-grained model for the aromatic ionic liquid [C4MIM(+)][BF4 (-)], we account for an ion pairing component as an equilibrium associating species within a classical density functional theory. We investigated the resulting structure of the electrical double layer as well as the ensuing surface forces and differential capacitance, as a function of the degree of ion association. We found that the short-range structure adjacent to surfaces was remarkably unaffected by the degree of ion pairing, up to several molecular diameters. This was even the case for 100% of ions being paired. The physical implications of ion pairing only become apparent in equilibrium properties that depend upon the long-range screening of charges, such as the asymptotic behaviour of surface forces and the differential capacitance, especially at low surface potential. The effect of ion pairing on capacitance is consistent with their invocation as a source of the anomalous temperature dependence of the latter. This work shows that ion pairing effects on equilibrium properties are subtle and may be difficult to extract directly from simulations.

  8. Method of separation of uranium from contaminating ions in an aqueous feed liquid containing uranyl ions

    International Nuclear Information System (INIS)

    Sundar, P.S.; Elikan, L.; Lyon, W.L.

    1975-01-01

    A coupled cationic/anionic method for the separation of uranium from contaminated aqueous solutions which contain uranyl ions is proposed. The fluid is extracted using an organic solvent containing a reagent which, together with the uranyl ions, forms a soluble aggregate in that solvent. As an example, 0.1 - 1 Mol/l Di-2-ethyl-hexyl-phosphorous acid in kerosene is mentioned. The organic solvent is then treated with a sealing liquid (volume ratio 20 - 35). For separation, an aqueous carbonate solution or a sulfuric acid solution can be used; the most favorable pH-values and concentrations for both cases are mentioned. The U +4 -ion at the sulfuric acid separation is subsequently oxidized to the uranyl ion with air. In each case, an extraction with an amine follows; after that, the amine is separated using an ammonium-carbonate solution and the uranium aggregate is precipitated, for example as ammonium uranyl tricarbonate, and then further processed to uranium oxide. The solvents and fluids used are led back in closed circuit; a flow diagram is given. (UWI) [de

  9. Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography.

    Science.gov (United States)

    Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan

    2014-08-15

    A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Separation of amaranthine-type betacyanins by ion-pair high-speed countercurrent chromatography.

    Science.gov (United States)

    Jerz, Gerold; Gebers, Nadine; Szot, Dominika; Szaleniec, Maciej; Winterhalter, Peter; Wybraniec, Slawomir

    2014-05-30

    Betacyanins, red-violet plant pigments, were fractionated by ion-pair high-speed countercurrent chromatography (IP-HSCCC) from leaves extract of Iresine lindenii Van Houtte, an ornamental plant of the family Amaranthaceae. An HSCCC solvent system consisting of TBME-1-BuOH-ACN-H2O (1:3:1:5, v/v/v/v) was applied using ion-pair forming heptafluorobutyric acid (HFBA). Significantly different elution profiles of betacyanin diastereomeric pairs (derivatives based on betanidin and isobetanidin) observed in the HSCCC in comparison to HPLC systems indicate a complementarity of both techniques' fractionation capabilities. The numerous diastereomeric pairs can be selectively separated from each other using the HSCCC system simplifying the pigment purification process. Apart from the three well known highly abundant pigments (amaranthine, betanin and iresinin I) together with their isoforms, three new acylated (feruloylated and sinapoylated) betacyanins as well as known pigment hylocerenin (previously isolated from cacti fruits) were characterized in the plant for the first time and they are new for the whole Amaranthaceae family. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  12. Enabling the intestinal absorption of highly polar antiviral agents: ion-pair facilitated membrane permeation of zanamivir heptyl ester and guanidino oseltamivir.

    Science.gov (United States)

    Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L

    2010-08-02

    Antiviral drugs often suffer from poor intestinal permeability, preventing their delivery via the oral route. The goal of this work was to enhance the intestinal absorption of the low-permeability antiviral agents zanamivir heptyl ester (ZHE) and guanidino oseltamivir (GO) utilizing an ion-pairing approach, as a critical step toward making them oral drugs. The counterion 1-hydroxy-2-naphthoic acid (HNAP) was utilized to enhance the lipophilicity and permeability of the highly polar drugs. HNAP substantially increased the log P of the drugs by up to 3.7 log units. Binding constants (K(11(aq))) of 388 M(-1) for ZHE-HNAP and 2.91 M(-1) for GO-HNAP were obtained by applying a quasi-equilibrium transport model to double-reciprocal plots of apparent octanol-buffer distribution coefficients versus HNAP concentration. HNAP enhanced the apparent permeability (P(app)) of both compounds across Caco-2 cell monolayers in a concentration-dependent manner, as substantial P(app) (0.8-3.0 x 10(-6) cm/s) was observed in the presence of 6-24 mM HNAP, whereas no detectable transport was observed without counterion. Consistent with a quasi-equilibrium transport model, a linear relationship with slope near 1 was obtained from a log-log plot of Caco-2 P(app) versus HNAP concentration, supporting the ion-pair mechanism behind the permeability enhancement. In the rat jejunal perfusion assay, the addition of HNAP failed to increase the effective permeability (P(eff)) of GO. However, the rat jejunal permeability of ZHE was significantly enhanced by the addition of HNAP in a concentration-dependent manner, from essentially zero without HNAP to 4.0 x 10(-5) cm/s with 10 mM HNAP, matching the P(eff) of the high-permeability standard metoprolol. The success of ZHE-HNAP was explained by its >100-fold stronger K(11(aq)) versus GO-HNAP, making ZHE-HNAP less prone to dissociation and ion-exchange with competing endogenous anions and able to remain intact during membrane permeation. Overall, this

  13. Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels.

    Science.gov (United States)

    Lomash, Suvendu; Chittori, Sagar; Brown, Patrick; Mayer, Mark L

    2013-03-05

    AvGluR1, a glutamate receptor ion channel from the primitive eukaryote Adineta vaga, is activated by alanine, cysteine, methionine, and phenylalanine, which produce lectin-sensitive desensitizing responses like those to glutamate, aspartate, and serine. AvGluR1 LBD crystal structures reveal an unusual scheme for binding dissimilar ligands that may be utilized by distantly related odorant/chemosensory receptors. Arginine residues in domain 2 coordinate the γ-carboxyl group of glutamate, whereas in the alanine, methionine, and serine complexes a chloride ion acts as a surrogate ligand, replacing the γ-carboxyl group. Removal of Cl(-) lowers affinity for these ligands but not for glutamate or aspartate nor for phenylalanine, which occludes the anion binding site and binds with low affinity. AvGluR1 LBD crystal structures and sedimentation analysis also provide insights into the evolutionary link between prokaryotic and eukaryotic iGluRs and reveal features unique to both classes, emphasizing the need for additional structure-based studies on iGluR-ligand interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots

    Directory of Open Access Journals (Sweden)

    Igor Pottosin

    2018-03-01

    Full Text Available Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•-induced activation of massive K+ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from −130 to −70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K+ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell’s turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K+ signaling.

  15. Ion exchange separation of lead from strontium in certified reference samples and spectrophotometric determination of lead as extractable ion-pair of eosin2- and the lead-cryptand (2.2.2)2+ complex

    International Nuclear Information System (INIS)

    Al-Merey, R.; Al-Shayah, O.

    2004-01-01

    A two-step procedure including anion exchange separation of lead from strontium in geological reference samples and a spectrophotometric determination of the separated lead as lead-cryptate (2.2.2) complex is presented. The exchangeable anion Cl - of the ion exchange resin (Dowex 1x4) is changed to Br - in 6M HBr solution. Lead is quantitatively retained in the column from 0.5M HBr medium, while Sr 2+ , Ba 2+ , Ca 2+ , Mg 2+ , Na + , K + , Fe 3+ , Cr 3+ , and Al 3+ are passed through. Subsequently the retained Ph is eluted from the column with 6M HBr. The separation efficiency of the resin is controlled using mixed standard solution of (Pb, Sr, Ca, Mg, Ba, Na, K, Fe, Cr and Al), and radioactive tracer of 85 Sr and 131 Ba. The resin selectivity coefficient (K) of separating Pb from Sr is found to be K S r P b∼10 9 . The Spectrophotometric method of lead determination is based on the formation of lead-crytate (2.2.2) complex at pH 8.3 using borate/HCl as a buffer solution. Then the ion-pair of eosin 2+ and lead-cryptand (2.2.2) complex is extracted with chloroform, finally the absorbance of the extractable legend is measured at 550 nm. The extraction recovery, accuracy, precision, linearity and detection limit of the spectrophotometric method are 99.58%, 1.7%, 0.080μg mL -1 , o-9μg mL -1 , and 0.060μg mL -1 , respectively. (author)

  16. Studies of radiation-produced radicals and radical ions. Progress report, June 1, 1981-August 31, 1982

    International Nuclear Information System (INIS)

    Williams, T.F.

    1982-01-01

    The discovery and characterization of novel radical ions produced by the γ irradiation of solids continues to be a fertile field for investigation. This Progress Report describes the generation and ESR identification of several new paramagnetic species, some of which have long been sought as important intermediates in radiation chemistry. We have also contributed to a general theoretical problem in ESR spectroscopy. Solid-state studies of electron attachment reactions, both non-dissociative and dissociative, reveal interesting structural and chemical information about the molecular nature of these processes for simple compounds. In particular, ESR measurements of the spin distribution in the products allow a fairly sharp distinction to be drawn between radical anions and radical-anion pairs or adducts. Dimer radical anion formation can also take place but the crystal structure plays a role in this process, as expected. Some radical anions undergo photolysis to give radical-anion pairs which may then revert back to the original radical anion by a thermal reaction. The chemistry of these reversible processes is made more intricate by a competing reaction in which the radical abstracts a hydrogen atom from a neighboring molecule. However, the unraveling of this complication has also served to extend our knowledge of the role of quantum tunneling in chemical reactions. The results of this investigation testify to the potential of solid-state techniques for the study of novel and frangible radical ions. Progress in this field shows no sign of abating, as witness the recent discovery of perfluorocycloalkane radical anions and alkane radical cations

  17. Communication: Potentials of mean force study of ionic liquid ion pair aggregation in polar covalent molecule solvents

    Science.gov (United States)

    Bandlamudi, Santosh Rathan Paul; Benjamin, Kenneth M.

    2018-05-01

    Molecular dynamics (MD) simulations were conducted for 1-ethyl-3-methylimidazolium methylsulfate [EMIM][MeSO4] dissolved in six polar covalent molecules [acetic acid, acetone, chloroform, dimethyl sulfoxide (DMSO), isopropyl alcohol, and methanol] to understand the free energies of ionic liquid (IL) ion pairing/aggregation in the limit of infinite dilution. Free energy landscapes or potentials of mean force (PMF) were computed using umbrella sampling and the weighted histogram analysis method. The PMF studies showed the strongest IL ion pairing in chloroform, and the strength of IL ion pairing decreases in the order of chloroform, acetone, propanol, acetic acid, DMSO, and methanol. In the limit of infinite dilution, the free energy curves for IL ion aggregation in co-solvents were characterized by two distinct minima [global (˜3.6 Å) and local (˜5.7 Å)], while free energy values at these minima differed significantly for IL in each co-solvent. The PMF studies were extended for determining the free energy of IL ion aggregation as a function of concentration of methanol. Studies showed that as the concentration of methanol increased, the free energy of ion aggregation decreased, suggesting greater ion pair stability, in agreement with previously reported MD clustering and radial distribution function data.

  18. Tailoring the Crystal Structure of Nanoclusters Unveiled High Photoluminescence via Ion Pairing

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2018-03-26

    The lack of structurally distinct nanoclusters (NCs) of identical size and composition prevented the mechanistic understanding of their structural effects on ion pairing and concomitant optical properties. To produce such highly sought NCs, we designed a new monothiolate-for-dithiolate exchange strategy that enabled the selective transformation of the structure of a NC without affecting its metal atomicity or composition. Through this method, a bimetallic [PtAg28(BDT)12(PPh3)4]4– NC (1) was successfully synthesized from [PtAg28(S-Adm)18(PPh3)4]2+ NC (2) (S-Adm, 1-adamantanethiolate; BDT, 1,3-benzenedithiolate; PPh3, triphenylphosphine). The determined X-ray crystal structure of 1 showed a PtAg12 icosahedron core and a partially exposed surface, which are distinct from a face-centered cubic PtAg12 core and a fully covered surface of 2. We reveal through mass spectrometry (MS) that 1 forms ion pairs with counterions attracted by the core charge of the cluster, which is in line with density functional simulations. The MS data for 1, 2, and other NCs suggested that such attraction is facilitated by the exposed surface of 1. The formation of ion pairs increases the photoluminescence (PL) quantum yield of 1 up to 17.6% depending on the bulkiness of the counterion. Unlike small counterions, larger ones are calculated to occupy ≤90% of the volume near the exposed cluster surface and to make the ligand shell of 1 more rigid, which is observed to increase the PL. Thus, the developed synthesis strategy for structurally different NCs of the same size and composition allows us to probe the structure–property relationship for ion pairing and concomitant PL enhancement.

  19. Automated Potentiometric Titrations in KCl/Water-Saturated Octanol: Method for Quantifying Factors Influencing Ion-Pair Partitioning

    Science.gov (United States)

    2009-01-01

    The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log PI values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log PI through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log PN − I)). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pKa′′ values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log PI and log D. In contrast to the common assumption that diff (log PN − I) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log PI is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log PI. On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log DN and log DI. This work also brings attention to the fascinating world of nature’s highly stabilized ion pairs. PMID:19265385

  20. Automated potentiometric titrations in KCl/water-saturated octanol: method for quantifying factors influencing ion-pair partitioning.

    Science.gov (United States)

    Scherrer, Robert A; Donovan, Stephen F

    2009-04-01

    The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log P(I) values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log P(I) through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log P(N - I))). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pK(a)'' values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log P(I) and log D. In contrast to the common assumption that diff (log P(N - I)) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log P(I) is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log P(I). On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log D(N) and log D(I). This work also brings attention to the fascinating world of nature's highly stabilized ion pairs.

  1. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  2. Investigation of metal ion extraction and aggregate formation combining acidic and neutral organophosphorous reagents

    Energy Technology Data Exchange (ETDEWEB)

    Braatz, A.D.; Nilsson, M. [Department of Chemical Engineering and Materials Science, 916 Engineering Tower, University of California-Irvine, Irvine, CA 92697-2575 (United States); Ellis, R.; Antonio, M. [Chemical Science and Engineering Division, Argonne National Laboratory, Building 200 9700 South Cass Ave, Argonne, IL 60439-4831 (United States)

    2013-07-01

    In the present study, we investigate how varying mixtures of tri-n-butyl phosphate (TBP) and dibutyl phosphate (HDBP) results in enhanced extraction of lanthanum(III), La{sup 3+}, and dysprosium(III), Dy{sup 3+}. Water and metal ion extraction were carefully monitored as a function of TBP:HDBP mole ratio.In addition to these techniques, EXAFS was used to determine the coordination environment of the metal ion in this system. To produce the necessary signal, a concentration of 1.25*10{sup -3} M La{sup 3+} and Dy{sup 3+} was used. Although previous studies of synergistic extraction of metal cations using combinations of neutral and acidic reagents explain the enhanced extraction by increased dehydration of the metal ion and the formation of mixed extractant complexes, our evidence for the increased water extraction coupled with the aggregate formation suggests a reverse micellar aspect to synergism in the system containing TBP and HDBP. It is quite possible that both of these phenomena contribute to our system behavior. The EXAFS data shows that, based on coordination numbers alone, several possible structures may exist. From this study, we cannot provide a definitive answer as to the nature of extraction in this system or the exact complex formed during extraction.

  3. Linear and nonlinear low-frequency electrostatic waves in a nonuniform pair-ion-dust magnetoplasma

    International Nuclear Information System (INIS)

    Saleem, H; Shukla, P K; Eliasson, B

    2008-01-01

    Linear and nonlinear properties of the low-frequency (in comparison with the ion gyrofrequency) electrostatic oscillations in pair-ion-dust magnetoplasma are presented. In the linear limit, the Shukla-Varma mode is coupled with the ion oscillations while the nonlinearly coupled modes appear in the form of a dipolar or a monopolar vortex

  4. Influence of some factors on kinetics of boron ions sorption by inorganic anion exchanger of MNG type

    International Nuclear Information System (INIS)

    Leont'eva, G.V.

    1991-01-01

    Consideration is given to the influence of particle size of anion exchanger and boron ion concentration on boron sorption from the solution of the following composition (kg/m 3 ): Na + -71.3; K + - 1.9; Ca 2+ - 43.8; Mg 2+ - 5.7; B 2 O 3 -0.32-1.50; Cl - - 204.6, SO 4 2- - 0.02, CO 3 2+ - 0.40; HCO 3 - - 1.74; pH=8.1; density - 1225 kg/m 3 . Increase of dispersivity of ion-exchange material promotes the elevation of sorption rate. Increase of boron ion concentration in the solution leads to exchange capacity growth and reduction of latent period of nucleation; this results to increase of sorption rate

  5. The Effects of Alkyl Chain Combinations on the Structural and Mechanical Properties of Biomimetic Ion Pair Amphiphile Bilayers

    Directory of Open Access Journals (Sweden)

    Cheng-hao Chen

    2017-10-01

    Full Text Available Ion pair amphiphile (IPA, a lipid-like complex composed of a pair of cationic and anionic surfactants, has great potentials in various pharmaceutical applications. In this work, we utilized molecular dynamics (MD simulation to systematically examine the structural and mechanical properties of the biomimetic bilayers consist of alkyltrimethyl-ammonium-alkylsulfate (CmTMA+-CnS− IPAs with various alkyl chain combinations. Our simulations show an intrinsic one-atom offset for the CmTMA+ and CnS− alignment, leading to the asymmetric index definition of ΔC = m − (n + 1. Larger |ΔC| gives rise to higher conformational fluctuations of the alkyl chains with the reduced packing order and mechanical strength. In contrast, increasing the IPA chain length enhances the van der Waals interactions within the bilayer and thus improves the bilayer packing order and mechanical properties. Further elongating the CmTMA+-CnS− alkyl chains to m and n ≥ 12 causes the liquid disorder to gel phase transition of the bilayer at 298 K, with the threshold membrane properties of 0.45 nm2 molecular area, deuterium order parameter value of 0.31, and effective bending rigidity of 20 kBT, etc. The combined results provide molecular insights into the design of biomimetic IPA bilayers with wide structural and mechanical characteristics for various applications.

  6. Probing ion-specific effects on aqueous acetate solutions: Ion pairing versus water structure modifications.

    Science.gov (United States)

    Petit, Tristan; Lange, Kathrin M; Conrad, Gerrit; Yamamoto, Kenji; Schwanke, Christoph; Hodeck, Kai F; Dantz, Marcus; Brandenburg, Tim; Suljoti, Edlira; Aziz, Emad F

    2014-05-01

    The effect of monovalent cations (Li(+), K(+), NH4 (+), Na(+)) on the water structure in aqueous chloride and acetate solutions was characterized by oxygen K-edge X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy, and resonant inelastic X-ray scattering (RIXS) of a liquid microjet. We show ion- and counterion dependent effects on the emission spectra of the oxygen K-edge, which we attribute to modifications of the hydrogen bond network of water. For acetates, ion pairing with carboxylates was also probed selectively by XAS and RIXS. We correlate our experimental results to speciation data and to the salting-out properties of the cations.

  7. Probing ion-specific effects on aqueous acetate solutions: Ion pairing versus water structure modifications

    Directory of Open Access Journals (Sweden)

    Tristan Petit

    2014-05-01

    Full Text Available The effect of monovalent cations (Li+, K+, NH4+, Na+ on the water structure in aqueous chloride and acetate solutions was characterized by oxygen K-edge X-ray absorption spectroscopy (XAS, X-ray emission spectroscopy, and resonant inelastic X-ray scattering (RIXS of a liquid microjet. We show ion- and counterion dependent effects on the emission spectra of the oxygen K-edge, which we attribute to modifications of the hydrogen bond network of water. For acetates, ion pairing with carboxylates was also probed selectively by XAS and RIXS. We correlate our experimental results to speciation data and to the salting-out properties of the cations.

  8. Evaluation of the resin oxidation process using Fenton's reagent

    International Nuclear Information System (INIS)

    Araujo, Leandro G.; Goes, Marcos M.; Marumo, Julio T.

    2013-01-01

    The ion exchange resin is considered radioactive waste after its final useful life in nuclear reactors. Usually, this type of waste is treated with the immobilization in cement Portland, in order to form a solid monolithic matrix, reducing the possibility of radionuclides release in to environment. Because of the characteristic of expansion and contraction of the resins in presence of water, its incorporation in the common Portland cement is limited in 10% in direct immobilization, causing high costs in the final product. A pre-treatment would be able to reduce the volume, degrading the resins and increasing the load capacity of this material. This paper is about a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Fenton's reagent. The resin evaluated was a mixture of cationic and anionic resins. The reactions were conducted by varying the concentration of the catalyst (25 to 80 mM), with and without external heat. The time of reaction was two hours. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%. The resin degradation was confirmed by the presence of CaCO 3 as a white precipitate resulting from the reaction between the Ca(OH) 2 and the CO 2 from the resin degradation. It was possible to degrade the resins without external heating. The calcium carbonates showed no correlation with the residual resin mass. (author)

  9. Probing subsistence of ion-pair and triple-ion of an ionic salt in liquid environments by means of conductometric contrivance

    International Nuclear Information System (INIS)

    Banik, Ishani; Roy, Mahendra Nath

    2013-01-01

    Highlights: • Study of ion-solvation of [Bu 4 NBF 4 ] in CH 3 CN, CH 3 OH, DMSO, and 1,3-DO. • Triple-ion formation in 1,3-Dioxolane. • Ion–solvent interaction is stronger in DMSO. • Ion–solvent interaction dominates over ion–ion interaction in the studied solutions. -- Abstract: Qualitative and quantitative analyses of molecular interaction prevailing in ionic salt-organic solvent media, probed by electrical conductances have been reported. Tetrabutylammonium tetrafluoroborate [Bu 4 NBF 4 ] in acetonitrile (CH 3 CN), methanol (CH 3 OH), dimethylsulfoxide (DMSO) and 1,3-dioxolane (1,3-DO) have been studied at 298.15 K. The extent of interaction is expressed in terms of the association constant (K A ) and shows the interaction to be a function of viscosity. Limiting molar conductances (Λ o ), association constants (K A ), and the association diameter (R) for ion-pair formation have been analyzed using the Fuoss conductance-concentration equation (1978). The observed molar conductivities were explained by the formation of ion-pairs (M + +X − ↔ MX, K P ) and triple-ions (2M + + X − ↔ M 2 X + ; M + + 2X − ↔ MX 2 − , K T ). The Walden product is obtained and discussed. The deviation of the conductometric curves (Λ vs c 1/2 ) from linearity for the electrolyte in 1,3-dioxolane indicates triple-ion formation, and therefore the corresponding conductance data have been analyzed by using the Fuoss–Kraus theory of triple-ions. The limiting ionic conductances (λ o ± ) have been calculated from the appropriate division of the limiting molar conductivity value of tetrabutylammonium tetraphenylborate [Bu 4 NBPh 4 ] as the “reference electrolyte” method along with a numerical evaluation of ion-pair and triple-ion formation constants (K P ≈ K A and K T ). The results have been interpreted in terms of solvent properties and configurational theory

  10. Polarographic investigation of complexing kinetics of polyacrylate anions with cadmium ions. Polyarograficheskoe issledovanie kinetiki kompleksoobrazovaniya poliakrilat-anionov s ionami kadmiya

    Energy Technology Data Exchange (ETDEWEB)

    Avlyanov, Zh K; Kabanov, N M; Zezin, A B; Askarov, M A

    1990-01-01

    The processes which occur during the reduction of cadmium ions from polymer-metallic complexes (PMC) are studied for the purposes of polarographic investigation of complexing kinetics of polyacrylate anions (PAA) of different molecular masses with cadmium ions in KCl aqueous solutions. An expression is derived for establishing semiwave potential. PMC formation and dissociation reduction rate constants are calculated. It is shown that intramolecular reorderings required for the formation of a two-coordinate complex proceed much slower as compared to the diffusion of free ions.

  11. Anions Analysis in Ground and Tap Waters by Sequential Chemical and CO2-Suppressed Ion Chromatography

    Directory of Open Access Journals (Sweden)

    Glen Andrew D. De Vera

    2011-06-01

    Full Text Available An ion chromatographic method using conductivity detection with sequential chemical and CO2 suppression was optimized for the simultaneous determination of fluoride, chloride, bromide, nitrate,phosphate and sulfate in ground and tap water. The separation was done using an anion exchange column with an eluent of 3.2 mM Na2CO3 and 3.2 mM NaHCO3 mixture. The method was linear in the concentration range of 5 to 300 μg/L with correlation coefficients greater than 0.99 for the six inorganic anions. The method was also shown to be applicable in trace anions analysis as given by the low method detection limits (MDL. The MDL was 1μg/L for both fluoride and chloride. Bromide, nitrate, phosphate and sulfate had MDLs of 7 μg/L, 10 μg/L, 9 μg/L and 2 μg/L, respectively. Good precision was obtained as shown in the relative standard deviation of 0.1 to 12% for peak area and 0.1 to 0.3% for retention time. The sensitivity of the method improved with the addition of CO2 suppressor to chemical suppression as shown in the lower background conductivity and detection limits. The recoveries of the anions spiked in water at 300 μg/L level ranged from 100 to 104%. The method was demonstrated to be sensitive, accurate and precise for trace analysis of the six anions and was applied in the anions analysis in ground and tap waters in Malolos, Bulacan. The water samples were found to contain high concentrations of chloride of up to 476 mg/L followed by sulfate (38 mg/L, bromide (1 mg/L, phosphate (0.4 mg/L, fluoride (0.2 mg/L and nitrate (0.1 mg/L.

  12. Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhao, Jie; Lu, Zhenda; Wang, Haotian; Liu, Wei; Lee, Hyun-Wook; Yan, Kai; Zhuo, Denys; Lin, Dingchang; Liu, Nian; Cui, Yi

    2015-07-08

    Prelithiation is an important strategy to compensate for lithium loss in lithium-ion batteries, particularly during the formation of the solid electrolyte interphase (SEI) from reduced electrolytes in the first charging cycle. We recently demonstrated that LixSi nanoparticles (NPs) synthesized by thermal alloying can serve as a high-capacity prelithiation reagent, although their chemical stability in the battery processing environment remained to be improved. Here we successfully developed a surface modification method to enhance the stability of LixSi NPs by exploiting the reduction of 1-fluorodecane on the LixSi surface to form a continuous and dense coating through a reaction process similar to SEI formation. The coating, consisting of LiF and lithium alkyl carbonate with long hydrophobic carbon chains, serves as an effective passivation layer in the ambient environment. Remarkably, artificial-SEI-protected LixSi NPs show a high prelithiation capacity of 2100 mA h g(-1) with negligible capacity decay in dry air after 5 days and maintain a high capacity of 1600 mA h g(-1) in humid air (∼10% relative humidity). Silicon, tin, and graphite were successfully prelithiated with these NPs to eliminate the irreversible first-cycle capacity loss. The use of prelithiation reagents offers a new approach to realize next-generation high-energy-density lithium-ion batteries.

  13. Ion-pair cloud-point extraction: a new method for the determination of water-soluble vitamins in plasma and urine.

    Science.gov (United States)

    Heydari, Rouhollah; Elyasi, Najmeh S

    2014-10-01

    A novel, simple, and effective ion-pair cloud-point extraction coupled with a gradient high-performance liquid chromatography method was developed for determination of thiamine (vitamin B1 ), niacinamide (vitamin B3 ), pyridoxine (vitamin B6 ), and riboflavin (vitamin B2 ) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion-pair formation approach between these ionizable analytes and 1-heptanesulfonic acid sodium salt as an ion-pairing agent. Influential variables on the ion-pair cloud-point extraction efficiency, such as the ion-pairing agent concentration, ionic strength, pH, volume of Triton X-100, extraction temperature, and incubation time have been fully evaluated and optimized. Water-soluble vitamins were successfully extracted by 1-heptanesulfonic acid sodium salt (0.2% w/v) as ion-pairing agent with Triton X-100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r(2) > 0.9916) and precision in the concentration ranges of 1-50 μg/mL for thiamine and niacinamide, 5-100 μg/mL for pyridoxine, and 0.5-20 μg/mL for riboflavin. The recoveries were in the range of 78.0-88.0% with relative standard deviations ranging from 6.2 to 8.2%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study of ion exchange equilibrium and determination of heat of ion exchange by ion chromatography

    International Nuclear Information System (INIS)

    Liu Kailu; Yang Wenying

    1996-01-01

    Ion chromatography using pellicularia ion exchange resins and dilute solution can be devoted to the study of ion exchange thermodynamics and kinetics. Ion exchange equilibrium equation was obtained, and examined by the experiments. Based on ion exchange equilibrium, the influence of eluent concentration and resin capacity on adjusted retention volumes was examined. The effect of temperature on adjusted retention volumes was investigated and heats of ion exchange of seven anions were determined by ion chromatography. The interaction between anions and skeleton structure of resins were observed

  15. Utilize the spectral line pair of the same ionized state ion to measure the ion temperature of tokamak plasma

    International Nuclear Information System (INIS)

    Lin Xiaodong

    2000-01-01

    Making use of a Fabry-Perot interferometer driven by a piezoelectric crystal and selecting the suitable separation of plates, the ion temperature is defined by measuring the superimposed profile of the spectral line pair of the same ionized state ions in Tokamak. The advantage of this method is to higher spectral resolution and wider spectral range select

  16. Improving methodological aspects of the analysis of five regulated haloacetic acids in water samples by solid-phase extraction, ion-pair liquid chromatography and electrospray tandem mass spectrometry.

    Science.gov (United States)

    Prieto-Blanco, M C; Alpendurada, M F; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D; Machado, S; Gonçalves, C

    2012-05-30

    Haloacetic acids (HAAs) are organic pollutants originated from the drinking water disinfection process, which ought to be controlled and minimized. In this work a method for monitoring haloacetic acids (HAAs) in water samples is proposed, which can be used in quality control laboratories using the techniques most frequently available. Among its main advantages we may highlight its automated character, including minimal steps of sample preparation, and above all, its improved selectivity and sensitivity in the analysis of real samples. Five haloacetic acids (HAA5) were analyzed using solid-phase extraction (SPE) combined with ion-pair liquid chromatography and tandem mass spectrometry. For the optimization of the chromatographic separation, two amines (triethylamine, TEA and dibutylamine, DBA) as ion pair reagents were compared, and a better selectivity and sensitivity was obtained using DBA, especially for monohaloacetic acids. SPE conditions were optimized using different polymeric adsorbents. The electrospray source parameters were studied for maximum precursor ion accumulation, while the collision cell energy of the triple quadrupole mass spectrometer was adjusted for optimum fragmentation. Precursor ions detected were deprotonated, dimeric and decarboxylated ions. The major product ions formed were: ionized halogen atom (chloride and bromide) and decarboxylated ions. After enrichment of the HAAs in Lichrolut EN adsorbent, the limits of detection obtained by LC-MS/MS analysis (between 0.04 and 0.3 ng mL(-1)) were comparable to those obtained by GC-MS after derivatization. Linearity with good correlation coefficients was obtained over two orders of magnitude irrespective of the compound. Adequate recoveries were achieved (60-102%), and the repeatability and intermediate precision were in the range of 2.4-6.6% and 3.8-14.8%, respectively. In order to demonstrate the usefulness of the method for routine HAAs monitoring, different types of water samples were

  17. Observations on small anionic clusters in an electrostatic ion beam trap

    International Nuclear Information System (INIS)

    Eritt, Markus

    2008-01-01

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C n - n=2-12), aluminium (Al n - n=2-7) and silver clusters (Ag n - n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon emission. The thermionic evaporative decay of anionic aluminium and

  18. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  19. Predissociation of high-lying Rydberg states of molecular iodine via ion-pair states

    Energy Technology Data Exchange (ETDEWEB)

    Bogomolov, Alexandr S. [Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090 (Russian Federation); Grüner, Barbara; Mudrich, Marcel [Physikalisches Institut, Universität Freiburg, D-79104 Freiburg (Germany); Kochubei, Sergei A. [Institute of Semiconductor Physics, ac. Lavrent' yev ave., 13, Novosibirsk 630090 (Russian Federation); Baklanov, Alexey V. [Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090 (Russian Federation)

    2014-03-28

    Velocity map imaging of the photofragments arising from two-photon photoexcitation of molecular iodine in the energy range 73 500–74 500 cm{sup −1} covering the bands of high-lying gerade Rydberg states [{sup 2}Π{sub 1/2}]{sub c}6d;0{sub g}{sup +} and [{sup 2}Π{sub 1/2}]{sub c}6d;2{sub g} has been applied. The ion signal was dominated by the atomic fragment ion I{sup +}. Up to 5 dissociation channels yielding I{sup +} ions with different kinetic energies were observed when the I{sub 2} molecule was excited within discrete peaks of Rydberg states and their satellites in this region. One of these channels gives rise to images of I{sup +} and I{sup −} ions with equal kinetic energy indicating predissociation of I{sub 2} via ion-pair states. The contribution of this channel was up to about 50% of the total I{sup +} signal. The four other channels correspond to predissociation via lower lying Rydberg states giving rise to excited iodine atoms providing I{sup +} ions by subsequent one-photon ionization by the same laser pulse. The ratio of these channels varied from peak to peak in the spectrum but their total ionic signal was always much higher than the signal of (2 + 1) resonance enhanced multi-photon ionization of I{sub 2}, which was previously considered to be the origin of ionic signal in this spectral range. The first-tier E0{sub g}{sup +} and D{sup ′}2{sub g} ion-pair states are concluded to be responsible for predissociation of Rydberg states [{sup 2}Π{sub 1/2}]{sub c}6d;0{sub g}{sup +} and [{sup 2}Π{sub 1/2}]{sub c}6d;2{sub g}, respectively. Further predissociation of these ion-pair states via lower lying Rydberg states gives rise to excited I(5s{sup 2}5p{sup 4}6s{sup 1}) atoms responsible for major part of ion signal. The isotropic angular distribution of the photofragment recoil directions observed for all channels indicates that the studied Rydberg states are long-lived compared with the rotational period of the I{sub 2} molecule.

  20. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture

    Science.gov (United States)

    Spickermann, C.; Thar, J.; Lehmann, S. B. C.; Zahn, S.; Hunger, J.; Buchner, R.; Hunt, P. A.; Welton, T.; Kirchner, B.

    2008-09-01

    In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C2C1im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C2C1im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H2O )-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C2C1im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.

  1. Thermodynamic Study of the Ion-Pair Complexation Equilibria of Dye and Surfactant by Spectral Titration and Chemometric Analysis

    Directory of Open Access Journals (Sweden)

    Hakimeh Abbasi Awal

    2017-12-01

    Full Text Available Surfactant-dye interactions are very important in chemical and dyeing processes. The dyes interact strongly with surfactant and show new spectrophotometric properties, so the UV-vis absorption spectrophotometric method has been used to study this process and extract some thermodynamic parameters. In this work, the association equilibrium between ionic dyes and ionic surfactant were studied by analyzing spectrophotometric data using chemometric methods. Methyl orange and crystal violet were selected as a model of cationic and anionic dyes respectively. Also sodium dodecyl sulphate and cetyltrimethylammonium bromide were selected as anionic and cationic surfactant, respectively. Hard model methods such as target transform fitting (TTF classical multi-wavelength fitting and soft model method such as multivariate curve resolution (MCR were used to analyze data that were recorded as a function of surfactant concentration in premicellar and postmicellar regions. Hard model methods were used to resolve data using ion-pair model in premicellar region in order to extract the concentration and spectral profiles of individual components and also related thermodynamic parameters. The equilibrium constants and other thermodynamic parameters of interaction of dyes with surfactants were determined by studying the dependence of their absorption spectra on the temperature in the range 293–308 K at concentrations of 5 × 10−6 M and 8 × 10−6 M for dye crystal violet and methyl orange, respectively. In postmicellar region, the MCR-ALS method was applied for resolving data and getting the spectra and concentration profiles in complex mixtures of dyes and surfactants.

  2. Reactivity of niobium cluster anions with nitrogen and carbon monoxide

    Science.gov (United States)

    Mwakapumba, Joseph; Ervin, Kent M.

    1997-02-01

    Reactions of small niobium cluster anions, Nbn-(n = 2-7), with CO and N2 are investigated using a flow tube reactor (flowing afterglow) apparatus. Carbon monoxide chemisorption on niobium cluster anions occurs with faster reaction rates than nitrogen chemisorption on corresponding cluster sizes. N2 addition to niobium cluster anions is much more size-selective than is CO addition. These general trends follow those reported in the literature for reactions of neutral and cationic niobium clusters with CO and N2. Extensive fragmentation of the clusters is observed upon chemisorption. A small fraction of the larger clusters survive and sequentially add multiple CO or N2 units without fragmentation. However, chemisorption saturation is not reached at the experimentally accessible pressure and reagent concentration ranges. The thermochemistry of the adsorption processes and the nature of the adsorbed species, molecular or dissociated, are discussed.

  3. Vinylimidazole-Based Asymmetric Ion Pair Comonomers: Synthesis, Polymerization Studies and Formation of Ionically Crosslinked PMMA

    NARCIS (Netherlands)

    Jana, S.; Vasantha, V.A.; Stubbs, L.P.; Parthiban, A.; Vancso, Gyula J.

    2013-01-01

    Vinylimidazole-based asymmetric ion pair comonomers (IPCs) which are free from nonpolymerizable counter ions have been synthesized, characterized and polymerized by free radical polymerization (FRP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer

  4. Improvement of calcium mineral separation contrast using anionic reagents: electrokinetics properties and flotation

    Science.gov (United States)

    Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.

    2017-07-01

    The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.

  5. Recent progress in nonperturbative electromagnetic lepton-pair production with capture in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Wells, J.C.; Oberacker, V.E.; Umar, A.S.

    1993-01-01

    The prospect of new colliding-beam accelerators capable of producing collisions of highly stripped high-Z ions, at fixed-target energies per nucleon up to 20 TeV or more, has motivated much interest in lepton-pair production from the QED vacuum. The time-dependent and essentially classical electromagnetic fields involved in such collisions contain larger Fourier components which give rise to sizable lepton-pair production in addition to many other exotic particles. The process of electron-positron production with electron capture is a principal beam-loss mechanism for highly charged ions in a storage ring. In this process, the electron is created in a bound state of one of the participant heavy ions (most likely the 1s state), thus changing the ion's charge state and causing it to be deflected out of the beam. There is a long and sometimes controversial history concerning the use of perturbative methods in studying electromagnetic lepton-pair production; however, reliable perturbative calculations have been used as input into design models for the Relativistic Heavy-Ion Collider (RHIC). Applying perturbation theory to these processes at high energies and small impact parameters results in probabilities which violate unitarity, and cross sections which violate the Froissart bound. This evidence, along with the initial nonperturbative studies, suggests that higher-order QED effects will be important for extreme relativistic collisions. Clearly, large nonperturbative effects in electron-pair production with capture would have important implications for RHIC. In this paper, the authors briefly discuss recent progress in nonperturbative studies of the capture problem. In Section 2, they state the Dirac equation for a lepton in the time-dependent external field of a heavy ion which must be solved to compute lepton-capture probabilities. Section 4 surveys results from recent applications of coupled-channel and lattice techniques to the lepton-capture problem

  6. Anion-Controlled Architecture and Photochromism of Naphthalene Diimide-Based Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Jian-Jun Liu

    2018-02-01

    Full Text Available Three new cadmium coordination polymers, namely [Cd(NO32(DPNDI(CH3OH]·CH3OH (1, [Cd(SCN2(DPNDI] (2, and [Cd(DPNDI2(DMF2]·2ClO4 (3 (DPNDI = N,N-di(4-pyridyl-1,4,5,8-naphthalene diimide, DMF = N,N-dimethylformamide have been synthesized by reactions of DPNDI with Cd(NO32, Cd(SCN2, and Cd(ClO42, respectively. Compound 1 is a one-dimensional coordination polymer with strong lone pair-π interactions between the coordinated NO3− anions and the imide ring of DPNDI; while 2 is a two-dimensional network with a (4, 4 net topology. In the case of 3, due to the presence of uncoordinated perchlorate counter ions, it exhibits a non-interpenetrated square-grid coordination polymer containing one-dimensional rhomboid channels. The structural diversity in these compounds is attributed to different coordination abilities and geometries of counter anions. Due to the presence of electron-deficient NDI moiety, the photochromic behavior of these compounds was studied. Interestingly, only compounds 1 and 3 exhibit color changes under light irradiation. The influence of the anions on the photochromism process of the NDI-based materials has been discussed.

  7. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  8. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    International Nuclear Information System (INIS)

    Gilchrist, Elizabeth S.; Nesterenko, Pavel N.; Smith, Norman W.; Barron, Leon P.

    2015-01-01

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks

  9. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Gilchrist, Elizabeth S. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Nesterenko, Pavel N. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart 7001 (Australia); Smith, Norman W. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Barron, Leon P., E-mail: leon.barron@kcl.ac.uk [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom)

    2015-03-20

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks.

  10. High Guanidinium Permeability Reveals Dehydration-Dependent Ion Selectivity in the Plasmodial Surface Anion Channel

    Directory of Open Access Journals (Sweden)

    Abdullah A. B. Bokhari

    2014-01-01

    Full Text Available Malaria parasites grow within vertebrate erythrocytes and increase host cell permeability to access nutrients from plasma. This increase is mediated by the plasmodial surface anion channel (PSAC, an unusual ion channel linked to the conserved clag gene family. Although PSAC recognizes and transports a broad range of uncharged and charged solutes, it must efficiently exclude the small Na+ ion to maintain infected cell osmotic stability. Here, we examine possible mechanisms for this remarkable solute selectivity. We identify guanidinium as an organic cation with high permeability into human erythrocytes infected with Plasmodium falciparum, but negligible uptake by uninfected cells. Transport characteristics and pharmacology indicate that this uptake is specifically mediated by PSAC. The rank order of organic and inorganic cation permeabilities suggests cation dehydration as the rate-limiting step in transport through the channel. The high guanidinium permeability of infected cells also allows rapid and stringent synchronization of parasite cultures, as required for molecular and cellular studies of this pathogen. These studies provide important insights into how nutrients and ions are transported via PSAC, an established target for antimalarial drug development.

  11. Ion-pairing reversed-phase chromatography coupled to inductively coupled plasma mass spectrometry as a tool to determine mercurial species in freshwater fish.

    Science.gov (United States)

    Cheng, Heyong; Chen, Xiaopan; Shen, Lihuan; Wang, Yuanchao; Xu, Zigang; Liu, Jinhua

    2018-01-05

    Most of analytical community is focused on reversed phase high performance liquid chromatography (RP-HPLC) for mercury speciation by employing mobile phases comprising of high salts and moderate amounts of organic solvents. This study aims at rapid mercury speciation analysis by ion-pairing RP-HPLC with inductively coupled plasma mass spectrometry (ICP-MS) detection only using low salts for the sake of green analytical chemistry. Two ion-pairing HPLC methods were developed on individual usage of positively and negatively charged ion-pairing reagents (tetrabutylammonium hydroxide -TBAH and sodium dodecylbenzene sulfonate -SDBS), where sodium 3-mercapto-1-propysulfonate (MPS) and l-cysteine (Cys) were individually added in mobile phases to transform mercury species into negative and positive Hg-complexes for good resolution. Addition of phenylalanine was also utilized for rapid baseline separation in combination of short C 18 guard columns. Optimum mobile phases of 2.0mM SDBS+2.0mM Cys+1.0mM Phe (pH 3.0) and 4.0mM TBAH+2.0mM MPS+2.0mM Phe (pH 6.0) both achieved baseline separation of inorganic mercury (Hg 2+ ), methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) on two consecutive 12.5-mm C 18 columns. The former mobile phase was selected for mercury speciation in freshwater fish because of short separation time (3.0min). Detection limits of 0.015 for Hg 2+ , 0.014 for MeHg, 0.028 for EtHg and 0.042μgL -1 for PhHg were obtained along with satisfactory precisions of peak height and area (1.0-2.8% for 5.0μgL -1 Hg-mixture standard). Good accordance of determined values of MeHg and total mercury in certified reference materials of fish tissue (GBW 10029) and tuna fish (BCR-463) with certified values as well as good recoveries (91-106%) proved good accuracy of the proposed method. An example application to freshwater fish indicated its potential in routine analysis, where MeHg was presented at 3.7-20.3μgkg -1 as the dominate species. Copyright © 2017

  12. Ionic pairing in binary liquids of charged hard spheres with non-additive diameters

    International Nuclear Information System (INIS)

    Pastore, G.; Giaquinta, P.V.; Thakur, J.S.; Tosi, M.P.

    1985-07-01

    We examine types of short range order that arise in binary liquids from a combination of Coulombic interactions and non-additivity of excluded volumes, the initial motivation being observations of complex formation by hydrated ions in concentrated aqueous solutions. The model is a fluid of charged hard spheres with contact distances σsub(+-)not=1/2(σsub(++)+σsub(--)), its structural functions being evaluated in the mean spherical approximation and in the hypernetted chain approximation. Cation-anion pairing is clearly seen in the calculated structural functions for negative deviations from additivity (σsub(+-) σsub(++)=σsub(--)) favour long-wavelength concentration fluctuations and demixing in a neutral mixture: these are suppressed by Coulombic interactions in favour of microscopic intermixing of the two species in the local liquid structure, up to like-ion pairing. Contact is made with diffraction from concentrated aqueous solutions of cadmium sulphate and other instances of possible applicability of the model are pointed out. (author)

  13. Coupled channel calculations for electron-positron pair production in collisions of heavy ions

    CERN Document Server

    Gail, M; Scheid, W

    2003-01-01

    Coupled channel calculations are performed for electron-positron pair production in relativistic collisions of heavy ions. For this purpose the wavefunction is expanded into different types of basis sets consisting of atomic wavefunctions centred around the projectile ion only and around both of the colliding nuclei. The results are compared with experimental data from Belkacem et al (1997 Phys. Rev. A 56 2807).

  14. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Y Chen; L Hu; M Punta; R Bruni; B Hillerich; B Kloss; B Rost; J Love; S Siegelbaum; W Hendrickson

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.

  15. Ion-ion and ion-solvent interactions in lithium imidazolide electrolytes studied by Raman spectroscopy and DFT models.

    Science.gov (United States)

    Scheers, Johan; Niedzicki, Leszek; Zukowska, Grażyna Z; Johansson, Patrik; Wieczorek, Władysław; Jacobsson, Per

    2011-06-21

    Molecular level interactions are of crucial importance for the transport properties and overall performance of ion conducting electrolytes. In this work we explore ion-ion and ion-solvent interactions in liquid and solid polymer electrolytes of lithium 4,5-dicyano-(2-trifluoromethyl)imidazolide (LiTDI)-a promising salt for lithium battery applications-using Raman spectroscopy and density functional theory calculations. High concentrations of ion associates are found in LiTDI:acetonitrile electrolytes, the vibrational signatures of which are transferable to PEO-based LiTDI electrolytes. The origins of the spectroscopic changes are interpreted by comparing experimental spectra with simulated Raman spectra of model structures. Simple ion pair models in vacuum identify the imidazole nitrogen atom of the TDI anion to be the most important coordination site for Li(+), however, including implicit or explicit solvent effects lead to qualitative changes in the coordination geometry and improved correlation of experimental and simulated Raman spectra. To model larger aggregates, solvent effects are found to be crucial, and we finally suggest possible triplet and dimer ionic structures in the investigated electrolytes. In addition, the effects of introducing water into the electrolytes-via a hydrate form of LiTDI-are discussed.

  16. Effect of some colloid surfactants on spectrophotometric characteristics of metal chelates with chromophore organic reagents

    International Nuclear Information System (INIS)

    Chernova, R.K.

    1977-01-01

    Theoretical regularities and prospects of using surface active substances (SAS) in spectrophotometric determination of metal ions (including ions of rare-earth elements, transition metals, Be(3)) with chromophore chelating reagents were investigated. The chromophore reagents investigated were pyrocatechol violet, phenolcarboxylic acids of the triarylmethane series, fluorones, phthalexones and azo-compounds. As SAS certain long-chain quaternary ammonium and pyridinium salts (LQAS) were employed. From the results reported it follows that the introduction of LQAS in the system of Mesup(n+)-chromophore reagent is a rather effective method of enhancing the contrast rendition and, in some cases, the sensitivity and selectivity of the reagents. Explanations are suggested as to the factors which cause the changes observed in the contrast of the reactions in the presence of SAS; the underlying phenomena are the ligand-ligand interactions between the organic reagents and SAS and solubilization processes of the reaction products by the micelles of SAS

  17. Separation of anionic oligosaccharides by high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Green, E.D.; Baenziger, J.U.

    1986-01-01

    The authors have developed methods for rapid fractionation of anionic oligosaccharides containing sulfate and/or sialic acid moieties by high-performance liquid chromatography (HPLC). Ion-exchange HPLC on amine-bearing columns (Micropak AX-10 and AX-5) at pH 4.0 is utilized to separate anionic oligosaccharides bearing zero, one, two, three, or four charges, independent of the identity of the anionic moieties (sulfate and/or sialic acid). Ion-exchange HPLC at pH 1.7 allows separation of neutral, mono-, di-, and tetrasialylated, monosulfated, and disulfated oligosaccharides. Oligosaccharides containing three sialic acid residues and those bearing one each of sulfate and sialic acid, however, coelute at pH 1.7. Since the latter two oligosaccharide species separate at pH 4.0, analysis at pH 4.0 followed by analysis at pH 1.7 can be utilized to completely fractionate complex mixtures of sulfated and sialylated oligosaccharides. Ion-suppression amine adsorption HPLC has previously been shown to separate anionic oligosaccharides on the basis of net carbohydrate content (size). In this study they demonstrate the utility of ion-suppression amine adsorption HPLC for resolving sialylated oligosaccharide isomers which differ only in the linkages of sialic acid residues (α2,3 vs α2,6) and/or location of α2,3- and α2,6-linked sialic acid moieties on the peripheral branches of oligosaccharides. These two methods can be used in tandem to separate oligosaccharides, both analytically and preparatively, based on their number, types, and linkages of anionic moieties

  18. N-acetylglyoxylic amide bearing a nitrophenyl group as anion receptors: NMR and X-ray investigations on anion binding and selectivity

    Science.gov (United States)

    Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh

    2017-10-01

    N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.

  19. Immobilisation in cement of ion exchange resins arising from the purification of reagents used for the decontamination of reactor circuits

    International Nuclear Information System (INIS)

    Donoghue, S.J.; Howard, C.G.; Lee, D.J.

    1987-06-01

    An account of the annual decontaminations undertaken on the SGHWR at Winfrith is given with reasons for changing from Citrox reagents to LOMI plus the effects of using nitric acid permanganate solution as a preoxidising agent. Safe disposal of these reagents after use is a problem concerning many water cooled reactor operators. A brief review of the various methods of disposal is given. The proposed method of disposing of LOMI wastes generated at Winfrith is to remove the activity onto ion exchange resins then immobilize them in a cement matrix. Duolite C225 (a cross linked polystyrene with sulphonic acid functional groups) has been identified as a suitable ion exchanger. Duolite C225 in the sodium form can be successfully immobilised in blended cement systems. The formulation which appears acceptable is manufactured from a 9 to 1 blend of Blast Furnace Slag and Ordinary Portland Cement, containing 40% ion exchange resin by weight, in the form of a slurry. The product has adequate strength for handling and shows little dimensional change with time. Experiments show that above 50% waste loading the product becomes unstable and its strength is unacceptably low. Changes in the metal cation have shown little effect on the properties of the product. Increasing the waste loading appears to have little effect on the hydration rate of the product. Preliminary calculations show that a volume reduction factor of 4 is obtained by taking the active LOMI effluent, removing the activity onto the Duolite C225 and then immobilising in cement. (author)

  20. Excited state fluorescence quenching of the U O2++ ion by monovalent anions

    International Nuclear Information System (INIS)

    Santarine, G.A.

    1987-01-01

    The reactions of the Uranyl ion U O 2 ++ in the excited state with the monovalent inorganic ions N O 3 - and I O 3 - in aqueous solutions at normal temperature were studied, using three techniques: Fluorescence in the steady state - Flash photolysis - Fluorescence decay after excitation. With increasing concentration of these ions it was observed a decrease in the normalized intensity and a decrease in the decay time of the fluorescence of the Uranyl ion in the solution and a corresponding appearance of the radicals N O 3 . or I O 3 . . In each case the radical was identified by its optical absorption spectrum. These results suggest that the quenching of fluorescence of the Uranyl ion in each case is owing to an electron transfer reaction. In the case of the Nitrate ion the transfer may occur after the formation of an ionic par (U O 2 + ...N O 3 ) in the ground state. Evidence for static quenching in the system Uranyl iodate was not forthcoming. A mechanism for the determination of the velocity constant (probability per ion pair per unit time) is proposed for each of the systems. (author)

  1. Exploring the anionic reactivity of ynimines, useful precursors of metalated ketenimines.

    Science.gov (United States)

    Laouiti, Anouar; Couty, François; Marrot, Jérome; Boubaker, Taoufik; Rammah, Mohamed M; Rammah, Mohamed B; Evano, Gwilherm

    2014-04-18

    Insights into the reactivity of ynimines under anionic conditions are reported. They were shown to be excellent precursors of metalated ketenimines, which can be generated in situ by the reaction of ynimines with organolithium reagents or strong bases. The metalated ketenimines can then be trapped with various electrophiles and, depending on their substitution pattern, afford original and divergent entries to various building blocks.

  2. Investigation on the ion pair amphiphiles and their in vitro release of amantadine drug based on PLGA–PEG–PLGA gel

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Ji, Xiaoqing; Shi, Chunhuan; Liu, Jing; Wang, Haiyang; Luan, Yuxia

    2014-01-01

    The amantadine drug and oleic acid surfactant are used to form amantadine-based ion pair amphiphiles based on proton transfer reaction between the drug and the surfactant molecules. The ion pair amphiphiles are characterized by 1 H-nuclear magnetic resonance, Fourier transform infrared spectroscopy, and X-ray diffraction. Self-assembly properties of amantadine-based ion pair amphiphiles are studied by surface tension determination, transmission electron microscopy, zeta potential, and dynamic light scattering. The aggregation behavior studies indicate that the as-prepared ion pair amphiphiles can self-assemble into vesicles with the size of 200–300 nm in aqueous solution. The drug release results show that the amantadine release rate could be well controlled by incorporating the amantadine-based ion pair vesicles in poly (lactic-co-glycolic acid)-poly (ethylene glycol)-poly (lactic-co-glycolic acid) (PLGA–PEG–PLGA) copolymer hydrogel. The drug release from the AT–OA vesicle-loaded PLGA–PEG–PLGA hydrogel is significantly inhibited in comparison with the AT-loaded PLGA–PEG–PLGA hydrogel. The present work thus demonstrates that the vesicle-loaded hydrogel is a good candidate for the drug delivery system with long-term controlled drug release behavior

  3. Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces.

    Science.gov (United States)

    Cotelle, Yoann; Benz, Sebastian; Avestro, Alyssa-Jennifer; Ward, Thomas R; Sakai, Naomi; Matile, Stefan

    2016-03-18

    To integrate anion-π, cation-π, and ion pair-π interactions in catalysis, the fundamental challenge is to run reactions reliably on aromatic surfaces. Addressing a specific question concerning enolate addition to nitroolefins, this study elaborates on Leonard turns to tackle this problem in a general manner. Increasingly refined turns are constructed to position malonate half thioesters as close as possible on π-acidic surfaces. The resulting preorganization of reactive intermediates is shown to support the disfavored addition to enolate acceptors to an absolutely unexpected extent. This decisive impact on anion-π catalysis increases with the rigidity of the turns. The new, rigidified Leonard turns are most effective with weak anion-π interactions, whereas stronger interactions do not require such ideal substrate positioning to operate well. The stunning simplicity of the motif and its surprisingly strong relevance for function should render the introduced approach generally useful. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Assessment of effect of Yb3+ ion pairs on a highly Yb-doped double-clad fibre laser

    Science.gov (United States)

    Vallés, J. A.; Martín, J. C.; Berdejo, V.; Cases, R.; Álvarez, J. M.; Rebolledo, M. Á.

    2018-03-01

    Using a previously validated characterization method based on the careful measurement of the characteristic parameters and fluorescence emission spectra of a highly Yb-doped double-clad fibre, we evaluate the contribution of ion pair induced processes to the output power of a double-clad Yb-doped fibre ring laser. This contribution is proved to be insignificant, contrary to analysis by other authors, who overestimate the role of ion pairs.

  5. Ion-pair and triple-ion formation of some tetraalkylammonium iodides in n-hexanol and its binary mixtures with o-toluidine

    International Nuclear Information System (INIS)

    Roy, Mahendra Nath; Sarkar, Lovely; Dewan, Rajani

    2011-01-01

    The electrolytic conductivity of the tetraalkylammonium iodides, R 4 NI (R = butyl to heptyl), has been studied in (0.00, 0.25, 0.50 and 0.75) mass fraction of o-toluidine (C 7 H 9 N) in n-hexanol (C 6 H 14 O) at T = 298.15 K. The limiting molar conductance Λ 0 , association constants K A and the co-sphere diameter R for ion-pair formation in 0.00 and 0.25 mass fraction of solvent mixture have been evaluated using the Fuoss-equation. However, the deviation of the conductometric curves (Λversusc 1/2 ) from linearity for the electrolytes at 0.50 and 0.75 mass fraction of o-toluidine (C 7 H 9 N) in n-hexanol (C 6 H 14 O) indicates triple ion formation, and therefore the corresponding conductance data have been analyzed by the Fuoss-Kraus theory of triple ions. The observed values of the molar conductivity are explained by the ion-pairs (M + + X - ↔ MX) and triple-ions (2M + +X - ↔M 2 X + ,M + +2X - ↔MX 2 - ) formation. From the investigations, the following trend in conductance of the solvated salts has been observed: Display Omitted

  6. A quantum theoretical study of reactions of methyldiazonium ion with DNA base pairs

    International Nuclear Information System (INIS)

    Shukla, P.K.; Ganapathy, Vinay; Mishra, P.C.

    2011-01-01

    Graphical abstract: Reactions of methyldiazonium ion at the different sites of the DNA bases in the Watson-Crick GC and AT base pairs were investigated employing density functional and second order Moller-Plesset (MP2) perturbation theories. Display Omitted Highlights: → Methylation of the DNA bases is important as it can cause mutation and cancer. → Methylation reactions of the GC and AT base pairs with CH 3 N 2 + were not studied earlier theoretically. → Experimental observations have been explained using theoretical methods. - Abstract: Methylation of the DNA bases in the Watson-Crick GC and AT base pairs by the methyldiazonium ion was investigated employing density functional and second order Moller-Plesset (MP2) perturbation theories. Methylation at the N3, N7 and O6 sites of guanine, N1, N3 and N7 sites of adenine, O2 and N3 sites of cytosine and the O2 and O4 sites of thymine were considered. The computed reactivities for methylation follow the order N7(guanine) > N3(adenine) > O6(guanine) which is in agreement with experiment. The base pairing in DNA is found to play a significant role with regard to reactivities of the different sites.

  7. Immobilisation in cement of ion exchange resins arising from the purification of reagents used for the decontamination of reactor circuits

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.; Lee, D.J.

    1988-04-01

    The aim of the programme is to show that ion exchange resins used to remove activity from decontaminating agents used in water reactors can be successfully immobilised in cement. To achieve this, blends of Ordinary Portland Cement and ground granulated Blast Furnace Slag (ratio 9:1) have been used. Improvements in the properties of the product and the waste loading of 50 w/o damp resin can be achieved using microsilica, a finely divided form of silicon dioxide, as an additive to the blended cement. This report contains data on the effects of anion resins, and mixed anion/cation resins, on the performance of the cemented product. The effects of organic acids, especially picolinic and formic acids, bound to anion resins have also been investigated. In addition, formulations developed have been assessed at commercial scale (200 litres of cemented product) for their process and product characteristics. The final part of the report deals with the long-term product performance of samples prepared from cation resins which are now nearly one year old. (author)

  8. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  9. Observations on small anionic clusters in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Eritt, Markus

    2008-10-02

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C{sub n}{sup -} n=2-12), aluminium (Al{sub n}{sup -} n=2-7) and silver clusters (Ag{sub n}{sup -} n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon

  10. Extraction of uranium(6), transuranium elements and europium by bidentate neutral phosphorus- and phosphorus-nitrogen-containing reagents with substituent in methylene bridge

    International Nuclear Information System (INIS)

    Kochetkova, N.E.; Kojro, O.Eh.; Nesterova, N.P.; Medved', T.Ya.; Chmutova, M.K.; Myasoedov, B.F.; Kabachnik, M.I.

    1986-01-01

    The influence of substituents in methylene bridge on solubility, extractivity and selectivity of bidentate neutral phosphorus- and phosphorus-nitrogen-containing reagents in the process of U(6), TUE, Eu extraction has been studied. It is ascertained that hydrogen substitution in the bridge of tetraphenylmethylenediphosphine dioxide (1) causes a decrease in the extractivity of reagent as to TPE, uranium (6) and europium. There is no visible regular relation between basicity and extractivity of substituted reagents. Hydrogen substitution in the bridge of diphenyl[diethylcarbamoylmethyl]phosphine oxide (2) causes a decrease in extractivity of the reagent as to TPE, uranium (6) and europium. In contrast to monodentate neutral reagents, when bidentate neutral reagents are used, sometimes no increase in the reagent extractivity with an increase in its basicity is observed. When fragments restricting the conformation mobility of bidentate reagent molecule are introduced in it (here substituents in methylene bridge), it may result in the violation of the regularity, since of all the factors affecting the reagent extractivity the spatial factor may become the prevailing one. On hydrogen substitution in the bridge of 1 separation factors of practically all (with few exceptions) studied pairs of elements increase. Hydrogen substitution in the bridge of 2 causes an increase in separation factor of U (6) /Am pair and it does not affect the separation factor of Am/Eu pair. Hydrogen substitution in the bridge of 1 and 2 does not result in the preparation of more efficient and considerably more selective reagents for extractive isolation and separation of the elements, but some of the substituted reagents (Cl-substituted 1, for instance) may turn out useful for the element separation

  11. f-Element Ion Chelation in Highly Basic Media

    International Nuclear Information System (INIS)

    Paine, R.T.

    2000-01-01

    A large body of data has been collected over the last fifty years on the chemical behavior of f-element ions. The ions undergo rapid hydrolysis reactions in neutral or basic aqueous solutions that produce poorly understood oxide-hydroxide species; therefore, most of the fundamental f-element solution chemistry has allowed synthetic and separations chemists to rationally design advanced organic chelating ligands useful for highly selective partitioning and separation of f-element ions from complex acidic solution matrices. These ligands and new examples under development allow for the safe use and treatment of solutions containing highly radioactive species. This DOE/EMSP project was undertaken to address the following fundamental objectives: (1) study the chemical speciation of Sr and lanthanide (Ln) ions in basic aqueous media containing classical counter anions found in waste matrices; (2) prepare pyridine N-oxide phosphonates and phosphonic acids that might act as selective chelators for Ln ions in model basic pH waste streams; (3) study the binding of the new chelators toward Ln ions and (4) examine the utility of the chelators as decontamination and dissolution agents under basic solution conditions. The project has been successful in attacking selected aspects of the very difficult problems associated with basic pH solution f-element waste chemistry. In particular, the project has (1) shed additional light on the initial stages of Ln ion sol-gel-precipitate formulation under basic solution conditions; (2) generated new families of pyridine phosphonic acid chelators; (3) characterized the function of the chelators and (4) examined their utility as oxide-hydroxide dissolution agents. These findings have contributed significantly to an improved understanding of the behavior of Ln ions in basic media containing anions found in typical waste sludges as well as to the development of sludge dissolution agents. The new chelating reagents are easily made and could be

  12. Sympathetic cooling of ions in a hybrid atom ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoeltkemeier, Bastian

    2016-10-27

    In this thesis the dynamics of a trapped ion immersed in a spatially localized buffer gas is investigated. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination and/or a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. One of these is a novel regime at large atom-to-ion mass ratios where the final ion temperature can tuned by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling). The second part of the thesis presents a hybrid atom ion trap designed for sympathetic cooling of hydroxide anions. In this hybrid trap the anions are immersed in a cloud of laser cooled rubidium atoms. The translational and rovibrational temperatures of the anions is probed by photodetachment tomography and spectroscopy which shows the first ever indication of sympathetic cooling of anions by laser cooled atoms.

  13. Pentafluorobenzyl bromide-A versatile derivatization agent in chromatography and mass spectrometry: I. Analysis of inorganic anions and organophosphates.

    Science.gov (United States)

    Tsikas, Dimitrios

    2017-02-01

    Pentafluorobenzyl bromide (PFB-Br) is a versatile derivatization agent. It is widely used in chromatography and mass spectrometry since several decades. The bromide atom is largely the single leaving group of PFB-Br. It is substituted by wide a spectrum of nucleophiles in aqueous and non-aqueous systems to form electrically neutral, in most organic solvents soluble, generally thermally stable, volatile, strongly electron-capturing and ultraviolet light-absorbing derivatives. Because of these greatly favoured physicochemical properties, PFB-Br emerged an ideal derivatization agent for highly sensitive analysis of endogenous and exogenous substances including various inorganic and organic anions by electron capture detection or after electron-capture negative-ion chemical ionization in GC-MS. The present article attempts an appraisal of the utility of PFB-Br in analytical chemistry. It reviews and discusses papers dealing with the use of PFB-Br as the derivatization reagent in the qualitative and quantitative analysis of endogenous and exogenous inorganic anions in various biological samples, notably plasma, urine and saliva. These analytes include nitrite, nitrate, cyanide and dialkyl organophosphates. Special emphasis is given to mass spectrometry-based approaches and stable-isotope dilution techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Industrial detergent wastewater treatment via fenton reagent

    International Nuclear Information System (INIS)

    Mohd Zairie Mohd Yusuff; Mohd Zulkifli Mohamad Noor; Izirwan Izhab

    2010-01-01

    Production of detergent can generates wastewater containing an organic matter with will consume an oxidation demand, surfactants, suspended solids, fat and oil. Besides, sulfate concentration is high in the most detergent plant effluent because of the sulphonation process that has physiological and toxic effects on marine organisms. Therefore, a research must be conducted to find the solution for this problem. The feasibility of Fentons reagent to treat detergent waste was investigated in this study. The sample of detergent wastewater was taken from FPG Oleo chemicals Sdn. Bhd. This experiment studied the effect of temperature towards the feasibility of Fentons reagent process besides the dosage between hydrogen peroxide (H 2 O 2 ) and ferrous ion (Fe 2+ ) in the reagent. While, evaluated efficiency of Fentons reagent in term of chemical oxygen demand (COD), total suspended solid (TSS) and the turbidity reduction within the experimental design. The result found that overall removal was achieved until 96.2 % in term of COD, 98.1 % in term of TSS and 99.6 % in term of turbidity using Fentons reagent process. Besides, also found that this process is optimum at temperature 35 degree Celsius are able to achieve the Standard A of Parameter Limit of Effluent of Standard A and Standard B were outlined by Department of Environment Malaysia (DOE) based on Environment Quality Act 1974. (author)

  15. Optimization of polymeric triiodide membrane electrode based on clozapine-triiodide ion-pair using experimental design.

    Science.gov (United States)

    Farhadi, Khalil; Bahram, Morteza; Shokatynia, Donya; Salehiyan, Floria

    2008-07-15

    Central composite design (CCD) and response surface methodology (RSM) were developed as experimental strategies for modeling and optimization of the influence of some variables on the performance of a new PVC membrane triiodide ion-selective electrode. This triiodide sensor is based on triiodide-clozapine ion-pair complexation. PVC, plasticizers, ion-pair amounts and pH were investigated as four variables to build a model to achieve the best Nernstian slope (59.9 mV) as response. The electrode is prepared by incorporating the ion-exchanger in PVC matrix plasticized with 2-nitrophenyl octal ether, which is directly coated on the surface of a graphite electrode. The influence of foreign ions on the electrode performance was also investigated. The optimized membranes demonstrate Nernstian response for triiodide ions over a wide linear range from 5.0 x 10(-6) to 1.0 x 10(-2)mol L(-1) with a limit of detection 2.0 x 10(-6) mol L(-1) at 25 degrees C. The electrodes could be used over a wide pH range 4-8, and have the advantages of easy to prepare, good selectivity and fast response time, long lifetime (over 3 months) and small interferences from hydrogen ion. The proposed electrode was successfully used as indicator electrode in potentiometric titration of triiodide ions and ascorbic acid.

  16. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  17. Comparative studies on extracts from Hericium erinaceus by different polarity reagents to gain higher antioxidant activities.

    Science.gov (United States)

    Jiang, Shengjuan; Wang, Yuliang; Zhang, Xiaolong

    2016-07-01

    Hericium erinaceus (H. erinaceus) is a source of exogenous antioxidants that has been traditionally used in China for the prevention and treatment of oxidative stress-associated disease. In the present study, the bioactive compounds of H. erinaceus were extracted with the following eight representative reagents: n-Hexane, xylene, chloroform, anhydrous ether, ethyl acetate, acetone, anhydrous ethanol and distilled water. The in vitro antioxidant activities were also evaluated. All of the extracted compounds exhibited reducing power and scavenging activity against 1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion free radicals. In addition, the antioxidant capacities varied with the used chemical reagents and exhibited dose-dependent effects. Extracts from anhydrous ethanol, chloroform and acetone were capable of inhibiting lipid peroxidation. The anhydrous ethanol extracts were observed to have significant levels of antioxidant compounds since they had a strong reducing power, high scavenging rates against DPPH and superoxide anion-free radicals (>90%), and high inhibition rates on lipid peroxidation (>60%). The present study will provide reference data for the antioxidant applications of H. erinaceus in pharmaceutical use and disease prevention.

  18. A quinoline-based Cu2 + ion complex fluorescence probe for selective detection of inorganic phosphate anion in aqueous solution and its application to living cells

    Science.gov (United States)

    Dai, Yanpeng; Wang, Peng; Fu, Jiaxin; Yao, Kun; Xu, Kuoxi; Pang, Xiaobin

    2017-08-01

    A quinaldine functionalized probe QP has been designed and synthesized. It exhibited selective turn-off fluorescence response toward Cu2 + ion over most of the biologically important ions at physiological pH. The binding ratio of the probe QP and Cu2 + ion was determined to be 1:1 through fluorescence titration, Job's plot and ESI-MS. The binding constant (K) of Cu2 + to probe QP was found to be 2.12 × 104 M- 1. Further, the Cu2 + ensemble of probe QP was found to respond H2PO4- and HPO42 - among other important biological anions via fluorescence turn-on response at physiological pH. Fluorescence microscopy imaging using living Hela cells showed that probe QP could be used as an effective fluorescent probe for detecting Cu2 + cation and H2PO4- and HPO42 - anions in living cells.

  19. Electrokinetic remediation of anionic contaminants from unsaturated soils

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1992-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in the DOE weapons complex, and for the nation as a whole. Electrokinetic remediation is one possible technique for in situ removal of such contaminants from unsaturated soils. In previous studies at Sandia National Laboratories, the electromigration of chromate ions and anionic dye ions have been demonstrated. This paper reports on a series of experiments that were conducted to study the effect of moisture content on the electromigration rate of anionic contaminants in unsaturated soil and determine the limiting moisture content for which electromigration occurs

  20. Multiple electromagnetic pair production in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Best, C.

    1992-04-01

    The problem of the unitary violation in the pair production in ultrarelativistic heavy ion collisions was studied by a consideration of the field-theoretical foundations. The quantum electrodynamics in an external field were thereby reduced to a Dirac-sea model, the equivalence of which to the non-radiative QED resulted from the equality of the generating functionals. The latter can both be expressed explicitely by means of the complet set of the solutions of the Dirac equation in an external field. This method is based solely on the path-integral approach, which makes it possible to discriminate clearly between the physically given correlation functions and their generating functional at the one hand and at the other hand between the models constructed to their interpretation. From the model expression for the pair production amplitudes and multiplicities could be calculated, for which only the knowledge of the one-particle S matrix is necessary. For the calculation of the multiplicities different forms of the perturbation theory were discussed. Finally an impact-parameter dependent Weizsaecker-Williams approximation for the calculation of arbitrary two-photon graphs was constructed and applied to the given problem. The results indicate that at small distances very high pair multiplicities are to be expected. Finally a new approach to the pair production in an external field was discussed, which is not based on the canonical field theory, but on the formalism of the Wigner functions. (orig./HSI) [de

  1. Determination of anions in pure and commercial phosphoric acid by ion chromatography and manual of 792 basic IC

    International Nuclear Information System (INIS)

    Al-Kabani, F.; Abdulbaki, M. K.

    2007-01-01

    A method for determination of anions in pure and concentrated phosphoric and samples (85%) and commercial phosphoric acid ion chromatography was developed, in order to control the specification of phosphoric acid produced in the pilot plant for phosphoric acid purification. The accuracy of the method was studied and the standard deviation was found to be between 0.09 and 0.10. Operation instructions of 792 Basic IC was described. (author)

  2. Evaluation of novel derivatisation reagents for the analysis of oxysterols

    Energy Technology Data Exchange (ETDEWEB)

    Crick, Peter J., E-mail: p.j.crick@swansea.ac.uk [Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Aponte, Jennifer; Bentley, T. William [Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Matthews, Ian [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Wang, Yuqin [Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Griffiths, William J., E-mail: w.j.griffiths@swansea.ac.uk [Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2014-04-11

    Graphical abstract: - Highlights: • New derivatisation reagents for LC–MS analysis of oxysterols. • New reagents based on Girard P give high ion-currents and informative LC–MS{sup n} spectra. • Permanent charge is vital for efficient MS{sup n} fragmentation. • New reagents offer greater scope for incorporation of isotope labels. - Abstract: Oxysterols are oxidised forms of cholesterol that are intermediates in the synthesis of bile acids and steroid hormones. They are also ligands to nuclear and G protein-coupled receptors. Analysis of oxysterols in biological systems is challenging due to their low abundance coupled with their lack of a strong chromophore and poor ionisation characteristics in mass spectrometry (MS). We have previously used enzyme-assisted derivatisation for sterol analysis (EADSA) to identify and quantitate oxysterols in biological samples. This technique relies on tagging sterols with the Girard P reagent to introduce a charged quaternary ammonium group. Here, we have compared several modified Girard-like reagents and show that the permanent charge is vital for efficient MS{sup n} fragmentation. However, we find that the reagent can be extended to include sites for potential stable isotope labels without a loss of performance.

  3. Ion chromatographic determination of fluoride and chloride in UO2 using microbore anion exchange columns

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Meena, D.L.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    Chemical characterization of nuclear fuels is required to ensure that nuclear fuel meets the technical specifications of the fuel. Trace non- metallic impurities like Cl and F is important as they affect clad corrosion. Their effect is more severe in presence of moisture. Chlorine and Fluorine is routinely analysed by ion selective electrode or conventional ion chromatography after pyrohydrolyzing the sample in moist O 2 atmosphere at 950°. Both the technique generates large quantity of liquid waste. Generally 1 ml/min flow rate required for the separation of F - and Cl - in conventional ion-chromatographic separation of F - and Cl - on 4.6- 4.0 mm id analytical column. The waste produced per sample injection is ∼ 30-40 ml with suppressed conductivity detection in ion chromatography. There is a need to reduce this analytical waste in analyzing the radioactive samples for the determination of F - and Cl - . Waste generation could be effectively reduced by using microbore anion exchange analytical column. Present paper describe the use of Metrosep A Supp 16 - 100/2.0 column with Na 2 CO 3 +NaOH mobile phase for the determination of F - and Cl - in UO 2 samples using suppressed conductivity detection

  4. Spectrophotometric Analysis of Phosphoric Acid Leakage in High-Temperature Phosphoric Acid-Doped Polybenzimidazole Membrane Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Seungyoon Han

    2016-01-01

    Full Text Available High-temperature proton exchange membrane fuel cells (HT-PEMFCs utilize a phosphoric acid- (PA- doped polybenzimidazole (PBI membrane as a polymer electrolyte. The PA concentration in the membrane can affect fuel cell performance, as a significant amount of PA can leak from the membrane electrode assembly (MEA by dissolution in discharged water, which is a byproduct of cell operation. Spectrophotometric analysis of PA leakage in PA-doped polybenzimidazole membrane fuel cells is described here. This spectrophotometric analysis is based on measurement of absorption of an ion pair formed by phosphomolybdic anions and the cationoid color reagent. Different color reagents were tested based on PA detection sensitivity, stability of the formed color, and accuracy with respect to the amount of PA measured. This method allows for nondestructive analysis and monitoring of PA leakage during HT-PEMFCs operation.

  5. Solvation and Ion Pair Association in Aqueous Metal Sulfates: Interpretation of NDIS raw data by isobaric-isothermal molecular dynamics simulation

    International Nuclear Information System (INIS)

    Chialvo, Ariel A.; Simonson, J. Michael

    2010-01-01

    We analyzed the solvation behavior of aqueous lithium, nickel, and ytterbium sulfates at ambient conditions in terms of the relevant radial distributions functions and the corresponding first-order difference of the sulfur-site neutron weighted distribution functions generated by isothermal-isobaric molecular dynamics simulation. We determined of the partial contributions to the neutron weighted distribution functions, to identify the main peaks, and the effect of the contact ion-pair configuration on the resulting H-S coordination number. Finally, we assessed the extent of the ion-pair formation according to Poirier-DeLap formalism and highlighted the significant increase of the ion-pair association exhibited by these salts with cation charge.

  6. Mono(pyridine-N-oxide) analog of DOTA as a suitable organic reagent for a sensitive and selective fluorimetric determination of Ln(III) ions

    Energy Technology Data Exchange (ETDEWEB)

    Vanek, Jakub [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Lubal, Premysl, E-mail: lubal@chemi.muni.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Sevcikova, Romana [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Polasek, Miloslav; Hermann, Petr [Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague (Czech Republic)

    2012-08-15

    The mono(pyridine-N-oxide) analog of the H{sub 4}dota macrocylic ligand, H{sub 3}do3a-py{sup NO}, is capable of forming thermodynamically stable and kinetically inert Ln(III) complexes. Its Eu(III) and Tb(III) complexes display a strong long-lived fluorescence as a result of the antenna effect of the pyridine-N-oxide fluorophore in the reagent. It is shown that H{sub 3}do3a-py{sup NO} can be used as a fluorogenic reagent for the determination of Eu(III) and Tb(III) at pH 6.5 and c{sub L}=1 mM. At an excitation wavelength of 286 nm, the emission maxima are 615 nm (Eu(III)-complex), and 547 nm (Tb(III)complex). Detection limits are at concentrations around 1.0 {mu}M and linearity of the method spans over 2 orders of magnitude. The method was applied to artificial and real samples (spiked mineral waters, extracts from cathode ray tube luminophore dust) and gave satisfactory results. The method is simple, rapid, and hardly interfered by other metal ions. - Graphical Abstract: A DOTA-like ligand with pyridine-N-oxide pendant arm is used for a quick, selective and sensitive determination of Eu{sup 3+} and Tb{sup 3+} ions through sensitized emission with excitation at 286 nm. The presented fluorimetric method is not interfered by transition metal or other lanthanide(III) ions and has a high dynamic range. Highlights: Black-Right-Pointing-Pointer Quick, selective and sensitive determination of Eu{sup 3+}/Tb{sup 3+} ions was developed. Black-Right-Pointing-Pointer Sensitized emission with excitation at 286 nm through pyridine-N-oxide pendant arm. Black-Right-Pointing-Pointer No interference of transition metal or other Ln(III) ions within high dynamic range.

  7. Investigation of Uranyl Nitrate Ion Pairs Complexed with Amide Ligands using Electrospray Ionization Ion Trap Mass Spectrometry and Density Functional Theory

    International Nuclear Information System (INIS)

    Groenewold, Gary S.; Dinescu, Adriana; Benson, Michael T.; Gresham, Garold L.; van Stipdonk, Michael J.

    2011-01-01

    Ion populations formed from electrospray of uranyl nitrate solutions containing different amides vary depending on ligand nucleophilicity and steric crowding at the metal center. The most abundant species were ion pair complexes having the general formula (UO2(NO3)(amide)n=2,3)+, and complexes containing the amide conjugate base, reduced uranyl UO2+, and a 2+ charge were also formed. The formamide experiment produced the greatest diversity of species that stems from weaker amide binding leading to dissociation and subsequent solvent coordination or metal reduction. Experiments using methyl formamide, dimethyl formamide, acetamide, and methyl acetamide produced ion pair and doubly charged complexes that were more abundant, and less abundant complexes containing solvent or reduced uranyl. This pattern is reversed in the dimethylacetamide experiment, which displayed reduced doubly charged complexes and augmented reduced uranyl complexes. DFT investigations of the tris-amide ion pair complexes showed that inter-ligand repulsion distorts the amide ligands out of the uranyl equatorial plane, and that complex stabilities do not increase with increasing amide nucleophilicity. Elimination of an amide ligand largely relieves the interligand repulsion, and the remaining amide ligands become closely aligned with the equatorial plane in the structures of the bis-amide ligands. The studies show that the phenomenological distribution of coordination complexes in a metal-ligand electrospray experiment is a function of both ligand nucleophilicity and interligand repulsion, and that the latter factor begins exerting influence even in the case of relatively small ligands like the substituted methyl-formamide and methyl-acetamide ligands.

  8. Retention of metal and sulphate ions from acidic mining water by anionic nanofibrillated cellulose.

    Science.gov (United States)

    Venäläinen, Salla H; Hartikainen, Helinä

    2017-12-01

    We carried out an adsorption experiment to investigate the ability of anionic nanofibrillated cellulose (NFC) to retain metal and SO 4 2- ions from authentic highly acidic (pH3.2) mining water. Anionic NFC gels of different consistencies (1.1-%, 1.4-% and 1.8-% w/w) were allowed to react for 10min with mining water, after which NFC-induced changes in the metal and SO 4 2- concentrations of the mining water were determined. The sorption capacities of the NFC gels were calculated as the difference between the element concentrations in the untreated and NFC-treated mining water samples. All the NFCs efficiently co-adsorbed both metals and SO 4 2- . The retention of metals was concluded to take place through formation of metal-ligand complexes. The reaction between the NFC ligand and the polyvalent cations renders the cellulose nanofibrils positively charged and, thus, able to retain SO 4 2- electrostatically. Adsorption capacity of the NFC gels substantially increased upon decreasing DM content as a result of the dilution-induced weakening of the mutual interactions between individual cellulose nanofibrils. This outcome reveals that the dilution of the NFC gel not only increases its purification capacity but also reduces the demand for cellulosic raw material. These results suggest that anionic NFC made of renewable materials serves as an environmentally sound and multifunctional purification agent for acidic multimetal mining waters or AMDs of high ionic strength. Unlike industrial minerals traditionally used to precipitate valuable metals from acidic mining effluents before their permanent disposal from the material cycle, NFC neither requires mining of unrenewable raw materials nor produces inorganic sludges. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Behavior of cationic, anionic and colloidal species of titanium, zirconium and thorium in presence of ion exchange resins

    International Nuclear Information System (INIS)

    Souza Filho, G. de; Abrao, A.

    1976-01-01

    The distribution of titanium, zirconium and thorium is aqueous and resin phases has been studied using strong cationic resin in the R-NH 4 form. Solutions of the above elements in perchloric, nitric, hydrochloric and suphuric media were used. Each set of experiments was made by separately varying one of the five parameters - type of anion present, acidity of solution, temperature of percolation, age of solution and concentration of the element. It was found that, depending on the particular balance of these parameters, the elements investigated may be found in acidic solutions either as cationic, anionic or colloidal species. It is emphasized that the colloidal species of titanium, zirconium or thorium are not retained by the ion exchangers, and from this property a method for the separation and purification of the above elements has been outlined [pt

  10. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    Science.gov (United States)

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Effects of ion strength and ion pairing on (plant-wide) modelling of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Solon, Kimberly

    2014-01-01

    the effects that an improved physico-chemical description will have on the predicted effluent quality (EQI) and operational cost (OCI) indices. The acid-base equilibria implemented in the Anaerobic Digestion Model No.1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects......The objective of this study is to show the influence of ionic strength (as activity corrections) andion pairing on (plant-wide) modelling of anaerobic digestion processes in wastewater treatment plants(WWTPs). Using the Benchmark Simulation Model No. 2 (BSM2) as a case study, this paper presents...... for ionic strength via the Davies approach to consider chemical activities instead of molar concentrations. Also, a speciation sub-routine based on a multi-dimensional Newton-Raphson iteration method accounts for the formation of some of the ion pairs playing an important role in wastewater treatment...

  12. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  13. Copolymer-grafted silica phase from a cation-anion monomer pair for enhanced separation in reversed-phase liquid chromatography.

    Science.gov (United States)

    Mallik, Abul K; Qiu, Hongdeng; Takafuji, Makoto; Ihara, Hirotaka

    2014-05-01

    This work reports a new imidazolium and L-alanine derived copolymer-grafted silica stationary phase for ready separation of complex isomers using high-performance liquid chromatography (HPLC). For this purpose, 1-allyl-3-octadecylimidazolium bromide ([AyImC18]Br) and N-acryloyl-L-alanine sodium salt ([AAL]Na) ionic liquids (IL) monomers were synthesized. Subsequently, the bromide counteranion was exchanged with the 2-(acrylamido)propanoate organic counteranion by reacting the [AyImC18]Br with excess [AAL]Na in water. The obtained IL cation-anion monomer pair was then copolymerized on mercaptopropyl-modified silica (Sil-MPS) via a surface-initiated radical chain-transfer reaction. The selective retention behaviors of polycyclic aromatic hydrocarbons (PAHs), including some positional isomers, steroids, and nucleobases were investigated using the newly obtained Sil-poly(ImC18-AAL), and octadecyl silylated silica (ODS) was used as the reference column. Interesting results were obtained for the separation of PAHs, steroids, and nucleobases with the new organic phase. The results showed that the Sil-poly(ImC18-AAL) presented multiple noncovalent interactions, including hydrophobic, π-π, carbonyl-π, and ion-dipole interactions for the separation of PAHs and dipolar compounds. Only pure water was sufficient as the mobile phase for the separation of the nucleobases. Ten nucleosides and bases were separated, using only water as the mobile phase, within a very short time using the Sil-poly(ImC18-AAL), which is otherwise difficult to achieve using conventional hydrophobic columns such as ODS. The combination of electrostatic and hydrophobic interactions are important for the effective separation of such basic compounds without the use of any organic additive as the eluent on the Sil-poly(ImC18-AAL) column.

  14. Influence of processes of structure formation in mixed solvent and anion nature on cadmium ions discharge kinetics from water-dimethylformamide electrolyte

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Bozhenko, L.G.; Kucherenko, S.S.; Fedorova, O.V.

    1986-01-01

    Electrochemical reaction of cadmium ion discharge in water-dimethylformamide (DMF) solutions is studied. The influence of DMF concentration in the presence of different anions (ClO 4 - , F - , I - ) on both reaction kinetics and mechanism is discussed on the basis of structural transformations in the mixed solvent and near the surface electrode processes

  15. Equilibration-Based Preconcentrating Minicolumn Sensors for Trace Level Monitoring of Radionuclides and Metal Ions in Water without Consumable Reagents

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.

    2006-01-01

    A sensor technique is described that captures analyte species on a preconcentrating minicolumn containing a selective solid phase sorbent. In this approach, the sample is pumped through the column until the sorbent phase is fully equilibrated with the sample concentration, and the exit concentration equals the inlet concentration. On-column detection of the captured analytes using radiometric and spectroscopic methods are demonstrated. In trace level detection applications, this sensor provides a steady state signal that is proportional to sample analyte concentration and is reversible. The method is demonstrated for the detection of Tc-99 using anion exchange beads mixed with scintillating beads and light detection; Sr-90 using SuperLig 620 beads mixed with scintillating beads and light detection; and hexavalent chromium detection using anion exchange beads with spectroscopic detection. Theory has been developed to describe the signal at equilibration, and to describe analyte uptake as a function of volume and concentration, using parameters and concepts from frontal chromatography. It is shown that experimental sensor behavior closely matches theoretical predictions and that effective sensors can be prepared using low plate number columns. This sensor modality has many desirable characteristics for in situ sensors for trace-level contaminant long-term monitoring where the use of consumable reagents for sensor regeneration would be undesirable. Initial experiments in groundwater matrixes demonstrated the detection of Tc-99 at drinking water level standards (activity of 0.033 Bq/mL) and detection of hexavalent chromium to levels below drinking water standards of 50 ppb

  16. Resonant ion-pair formation in electron collisions with HD+ and OH+

    International Nuclear Information System (INIS)

    Larson, Aa.; Djuric, N.; Zong, W.; Greene, C. H.; Orel, A. E.; Al-Khalili, A.; Derkatch, A. M.; Le Padellec, A.; Neau, A.; Rosen, S.

    2000-01-01

    Resonant ion-pair formation from collisions of electrons with electronic and vibronic ground-state diatomic molecular ions has been studied in the present work for HD + and OH + . The cross section for HD + has a magnitude of the order of 3x10 -19 cm 2 and is characterized by an energy threshold and 14 resolved peaks in the energy range up to 16 eV. A theoretical study confirms that the structures derive primarily from quantum interference of the multiple dissociation pathways. Measurements for OH + reveal that the cross section for H + and O - formation is lower than 10 -21 cm 2 at energies of 6 and 12 eV. (c) 2000 The American Physical Society

  17. Infrared spectroscopy of anionic hydrated fluorobenzenes

    International Nuclear Information System (INIS)

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-01-01

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C 6 F 6 - ·H 2 O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules

  18. Qualitative and quantitative analysis of cations and anions using ion selective detectors in capillary electrophoresis

    International Nuclear Information System (INIS)

    Nann, A.

    1994-01-01

    The present work reports on the application of ion-selective microelectrodes as potentiometric detectors for the qualitative and quantitative analysis of cations and anions separated by capillary electrophoresis. Due to the high internal resistance of microelectrodes, their potentials are strongly affected by external electrical fields. Therefore, the influence of the electrophoretic field on the electrode response had to be kept at a minimum. With the electrode tip inserted in the capillary aperture (on-column detection), heavy drifts and noise of the signals were observed, mainly because the electrophoretic potential is superimposed on the Nernstian electrode response. As the potential inside the capillary is site-dependent, already minor movements and vibrations not perceptible under the light microscopy cause unacceptable disturbances of the electrode signal. One possibility to solve the problem consists in post- or off-column detection, i.e., with the detector located outside the influence of the electrophoretic field. If quantitative analyses with maximum resolution are to be achieved, only on-column detection is suitable because outside the capillary, the separation efficiency drops drastically. By etching the detector-side capillary end to a conical aperture, the field strength in the last 10 μm fell approximately 1/25 as compared with that in a cylindrical one. Thus, potential drifts and noise were reduced correspondingly so that on-column detection can also be used for potentiometric detection. To obtain quantitative results, the signals of the ion-selective detector were first delogarithmized and then integrated over time. Thus, it was possible to quantify cations and anions with a coefficient of variations ≤5%. (author) figs., tabs., 179 refs

  19. f-Element Ion Chelation in Highly Basic Media - Final Report

    International Nuclear Information System (INIS)

    Paine, R.T.

    2000-01-01

    A large body of data has been collected over the last fifty years on the chemical behavior of f-element ions. The ions undergo rapid hydrolysis reactions in neutral or basic aqueous solutions that produce poorly understood oxide-hydroxide species; therefore, most of the fundamental f-element solution chemistry has allowed synthetic and separations chemists to rationally design advanced organic chelating ligands useful for highly selective partitioning and separation of f-element ions from complex acidic solution matrices. These ligands and new examples under development allow for the safe use and treatment of solutions containing highly radioactive species. This DOE/EMSP project was undertaken to address the following fundamental objectives: (1) study the chemical speciation of Sr and lanthanide (Ln) ions in basic aqueous media containing classical counter anions found in waste matrices; (2) prepare pyridine N-oxide phosphonates and phosphonic acids that might act as selective chelator s for Ln ions in model basic pH waste streams; (3) study the binding of the new chelators toward Ln ions and (4) examine the utility of the chelators as decontamination and dissolution agents under basic solution conditions. The project has been successful in attacking selected aspects of the very difficult problems associated with basic pH solution f-element waste chemistry. In particular, the project has (1) shed additional light on the initial stages of Ln ion sol-gel-precipitate formulation under basic solution conditions; (2) generated new families of pyridine phosphonic acid chelators; (3) characterized the function of the chelators and (4) examined their utility as oxide-hydroxide dissolution agents. These findings have contributed significantly to an improved understanding of the behavior of Ln ions in basic media containing anions found in typical waste sludges as well as to the development of sludge dissolution agents. The new chelating reagents are easily made and could be

  20. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  1. The chemistry of molecular anions in circumstellar sources

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, Marcelino [LUTH, Observatoire de Paris-Meudon, 5 Place Jules Janssen, 92190 Meudon (France); Cernicharo, José [Departamento de Astrofísica, CAB, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, 28850 Madrid (Spain); Guélin, Michel [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d' Héres (France)

    2015-01-22

    The detection of negatively charged molecules in the interstellar and circumstellar medium in the past four years has been one of the most impacting surprises in the area of molecular astrophysics. It has motivated the interest of astronomers, physicists, and chemists on the study of the spectroscopy, chemical kinetics, and prevalence of molecular anions in the different astronomical regions. Up to six different molecular anions have been discovered in space to date, the last one being the small ion CN{sup −}, which has been observed in the envelope of the carbon star IRC +10216 and which contrary to the other larger anions is not formed by electron attachment to CN, but through reactions of large carbon anions with nitrogen atoms. Here we briefly review the current status of our knowledge of the chemistry of molecular anions in space, with particular emphasis on the circumstellar source IRC +10216, which to date is the astronomical source harboring the largest variety of anions.

  2. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Fang, Yong; Pan, Yushi; Li, Peng; Xue, Mei; Pei, Fei; Yang, Wenjian; Ma, Ning; Hu, Qiuhui

    2016-12-15

    An analytical method using reversed phase chromatography-inductively coupled plasma mass spectrometry for arsenic and mercury speciation analysis was described. The effect of ion-pairing reagent on simultaneous separation of four arsenic (arsenite, arsenate, monomethlyarsonate and dimethylarsinate) and three mercury species (inorganic mercury (Hg(II)), methylmecury and ethylmercury) was investigated. Parameters including concentrations and pH of the mobile phase were optimized. The separation and re-equilibration time was attained within 20min. Meanwhile, a sequential extraction method for arsenic and mercury in rice was tested. Subsequently, 1% HNO3 microwave-assisted extraction was chosen. Calibration curves based on peak area measurements were linear with correlation coefficient greater than 0.9958 for each species in the range studied. The detection limits of the species were in the range of 0.84-2.41μg/L for arsenic and 0.01-0.04μg/L for mercury, respectively. The proposed method was then successfully applied for the simultaneous determination of arsenic and mercury species in rice flour standard material and two kinds of rice from local markets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Separation of p-aminobenzenearsonic acid and its oxide by ion-pair reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Kang, J; Ma, X; Meng, L; Ma, D

    1999-05-01

    To study the separation of p-aminobenzenearsonic acid (PABAA) and its oxide, p-aminophenylarsine oxide (PAPAO), both the absorption spectra were scanned at the wavelengths from 200 nm to 380 nm. PABAA had absorption maximum at 254 nm and PAPAO 258 nm. The effects of salt concentration, column temperature, methanol and ion-pair agent concentrations on the capacity factor were investigated. Compounds of high polarity showed almost no retention on reversed-phase column; as the volume fraction of the methanol decreased from 90% to 10%, the retention time of PABAA gradually increased with broad peak, and partially eluted when methanol volume fraction being below 20%. With temperature rising, the retention time of PABAA was decreased. But PABAA capacity factor can be increased by selecting an appropriate salt concentration for the mobile phase. The cetyltrimethyl and tetrabutyl ammonium ions were separately added as ion-pair agents to the mobile phase containing methanol in phosphate buffer of 10 mmol/L, the changes of retention time were observed. The mechanism of retention based on reversed phase ion-pair model is proposed. Besides, the retention behaviour is also influenced by size exclusion in stationary phase as well as polar interactions with residual silanol group on the silica surface.

  4. Evaluation of a portable urinary pH meter and reagent strips.

    Science.gov (United States)

    De Coninck, Vincent; Keller, Etienne Xavier; Rodríguez-Monsalve, María; Haymann, Jean-Philippe; Doizi, Steeve; Traxer, Olivier

    2018-04-27

    To evaluate a portable electronic pH meter and to put its accuracy in perspective with reagent strips read by a layperson, a healthcare professional and an electronic reading device. Based on a pre-analysis on 20 patients, a sample size of 77 urine aliquots from healthy volunteers was necessary to obtain sufficient study power. Measurements of urinary pH were obtained by use of reagent strips, a portable pH meter and a laboratory pH meter (gold standard). Reagents strips were read by a professional experienced in interpreting strips, a layperson, and an electronic strip reader. The mean matched pair difference between measurement methods was analyzed by the paired t-test. The degree of correlation and agreement were evaluated by the Pearson's correlation coefficient and Bland-Altman plots, respectively. The mean matched pair difference between the gold standard and all other pH measurement methods was the smallest with the portable electronic pH meter (bias 0.01, 95% CI -0.07 to 0.08; p=0.89), followed by strips read by a professional (bias -0.09, 95% CI -0.21 to 0.02; p=0.10), layperson (bias -0.17, 95% CI -0.31 to -0.04; p=0.015) and electronic strip reader (bias -0.29, 95% CI -0.41 to -0.16; pmeter achieved the highest Pearson's correlation coefficient and narrowest 95% limits of agreement, followed by strip interpretation by a professional, the electronic strip reader and the layperson. In order to quantify the ability of pH measurement methods to correctly classify values within a predefined urinary pH target range, we performed classification tests for several stones. The portable electronic pH meter outperformed all other measurement methods for negative predictive values. Findings of the current study support that the portable electronic pH meter is a reliable pH measuring device. It seems to be more accurate compared to reagent strips readings.

  5. Ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Duolite A-102 D

    Directory of Open Access Journals (Sweden)

    R.S. Lokhande

    2008-04-01

    Full Text Available The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems was observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 13.7, 38.0, 23.9, 22.9 kJ/mol, respectively.

  6. Influence of the anion nature and alkyl substituents in the behavior of ionic liquids derived from phenylpyridines

    Science.gov (United States)

    Dreyse, Paulina; Alarcón, Antonia; Galdámez, Antonio; González, Iván; Cortés-Arriagada, Diego; Castillo, Francisco; Mella, Andy

    2018-02-01

    Quaternary alkyl 2-phenylpyridinium and 2-(2,4-difluorophenyl)pyridinium amines with iodide, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions have been fully characterized by 1H NMR, FT-IR and MALDI mass spectroscopic methods and studied by quantum chemistry calculations. The compounds with bis(trifluoromethylsulfonyl)imide anion can be classified as ionic liquids, because they melt at room temperature. The quaternary amines with iodide and hexafluorophosphate anions are solid at 25 °C. The X-ray diffraction characterization of the 2-(2,4-difluorophenyl)-1-methylphenylpyridinium hexafluorophosphate and 1-ethyl-2-(2,4-difluorophenyl)phenylpyridinium hexafluorophosphate show an extensive series of Csbnd H⋯F, Csbnd F⋯π and Psbnd F⋯π intermolecular interactions, which give rise to a supramolecular network. The relationship between the solid-state structures and the melting points is discussed by the evaluation of the thermal behavior based on experimental data from Differential Scanning Calorimetry (DSC) studies, and also using the analysis of the ion pairs binding energies. These new compounds based on phenylpyridine allow us to grow the diversity of ionic liquids and their crystalline salts, increasing the knowledge about the chemical and physical properties of these ionic species.

  7. Molecular dynamics simulation, ab initio calculation, and size-selected anion photoelectron spectroscopy study of initial hydration processes of calcium chloride.

    Science.gov (United States)

    He, Zhili; Feng, Gang; Yang, Bin; Yang, Lijiang; Liu, Cheng-Wen; Xu, Hong-Guang; Xu, Xi-Ling; Zheng, Wei-Jun; Gao, Yi Qin

    2018-06-14

    To understand the initial hydration processes of CaCl 2 , we performed molecular simulations employing the force field based on the theory of electronic continuum correction with rescaling. Integrated tempering sampling molecular dynamics were combined with ab initio calculations to overcome the sampling challenge in cluster structure search and refinement. The calculated vertical detachment energies of CaCl 2 (H 2 O) n - (n = 0-8) were compared with the values obtained from photoelectron spectra, and consistency was found between the experiment and computation. Separation of the Cl-Ca ion pair is investigated in CaCl 2 (H 2 O) n - anions, where the first Ca-Cl ionic bond required 4 water molecules, and both Ca-Cl bonds are broken when the number of water molecules is larger than 7. For neutral CaCl 2 (H 2 O) n clusters, breaking of the first Ca-Cl bond starts at n = 5, and 8 water molecules are not enough to separate the two ion pairs. Comparing with the observations on magnesium chloride, it shows that separating one ion pair in CaCl 2 (H 2 O) n requires fewer water molecules than those for MgCl 2 (H 2 O) n . Coincidentally, the solubility of calcium chloride is higher than that of magnesium chloride in bulk solutions.

  8. Optical and electronic properties of polyvinyl alcohol doped with pairs of mixed valence metal ions

    International Nuclear Information System (INIS)

    Bulinski, Mircea; Kuncser, Victor; Plapcianu, Carmen; Krautwald, Stefan; Franke, Hilmar; Rotaru, P; Filoti, George

    2004-01-01

    The electronic mechanisms induced by the UV exposure of thin films of polyvinyl alcohol doped with pairs of mixed valence metal ions were studied in relation to their optical behaviour by Moessbauer spectroscopy and optical absorption. The results obtained definitely point to the role of each element from the pair in the electronic mechanism involved, with influence on the optical properties regarding applications in real-time holography and integrated optics

  9. Use of Anion Exchange Resins for One-Step Processing of Algae from Harvest to Biofuel

    Directory of Open Access Journals (Sweden)

    Martin Poenie

    2012-07-01

    Full Text Available Some microalgae are particularly attractive as a renewable feedstock for biodiesel production due to their rapid growth, high content of triacylglycerols, and ability to be grown on non-arable land. Unfortunately, obtaining oil from algae is currently cost prohibitive in part due to the need to pump and process large volumes of dilute algal suspensions. In an effort to circumvent this problem, we have explored the use of anion exchange resins for simplifying the processing of algae to biofuel. Anion exchange resins can bind and accumulate the algal cells out of suspension to form a dewatered concentrate. Treatment of the resin-bound algae with sulfuric acid/methanol elutes the algae and regenerates the resin while converting algal lipids to biodiesel. Hydrophobic polymers can remove biodiesel from the sulfuric acid/methanol, allowing the transesterification reagent to be reused. We show that in situ transesterification of algal lipids can efficiently convert algal lipids to fatty acid methyl esters while allowing the resin and transesterification reagent to be recycled numerous times without loss of effectiveness.

  10. Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry

    NARCIS (Netherlands)

    Coulier, L.; Bas, R.; Jespersen, S.; Verheij, E.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    We have developed an analytical method, consisting of ion-pair liquid chromatography coupled to electrospray ionization mass spectrometry (IP-LC-ESI-MS), for the simultaneous quantitative analysis of several key classes of polar metabolites, like nucleotides, coenzyme A esters, sugar nucleotides,

  11. Ni-Ni ion pair excitation transfer in D sub(3h) symmetry

    International Nuclear Information System (INIS)

    Terrile, M.C.

    1990-01-01

    The mechanisms contributing to excitation transfer are examined for Ni-Ni ion pairs in order to explain the delocalized character of electronic excitations observed in CsNiF sub(3). Using both first-and second-order perturbation theory and from symmetry arguments, the kind of interactions giving matrix elements between states connecting different sites for the position of the excitation are discussed. (author)

  12. Synthesis of Randomly Substituted Anionic Cyclodextrins in Ball Milling

    Directory of Open Access Journals (Sweden)

    László Jicsinszky

    2017-03-01

    Full Text Available A number of influencing factors mean that the random substitution of cyclodextrins (CD in solution is difficult to reproduce. Reaction assembly in mechanochemistry reduces the number of these factors. However, lack of water can improve the reaction outcomes by minimizing the reagent’s hydrolysis. High-energy ball milling is an efficient, green and simple method for one-step reactions and usually reduces degradation and byproduct formation. Anionic CD derivatives have successfully been synthesized in the solid state, using a planetary ball mill. Comparison with solution reactions, the solvent-free conditions strongly reduced the reagent hydrolysis and resulted in products of higher degree of substitution (DS with more homogeneous DS distribution. The synthesis of anionic CD derivatives can be effectively performed under mechanochemical activation without significant changes to the substitution pattern but the DS distributions were considerably different from the products of solution syntheses.

  13. A contribution to the regeneration of ettringite as a donor of aluminous ions

    Directory of Open Access Journals (Sweden)

    Silvie Heviánková

    2005-11-01

    Full Text Available At our institute was developed a technological procedure of mine water desulphation. The metod consists of chemical precipitation by sodium aluminate and calcium hydroxide. By the application of this metod, very interesting results were obtained. The amount of SO42- anions decreased to almost zero-value, using optimal doses of the chemical reagents. The incurred sludge was subjected to the partial dissolving by sulphuric acid with the aim wiev to obtain aluminous ionts in the solution. From this solution, the aluminous ions were separated selectively by two methods. In the first case is added calcium chloride for the precipitation of sulphates. In the second case is added sodium hydroxide for the controled neutralization.

  14. On the rogue wave propagation in ion pair superthermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A. [Physics Department, College of Sciences and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K., E-mail: emadshewy@yahoo.com; Elwakil, S. A. [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2016-02-15

    Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.

  15. Characterization of Reagent Pencils for Deposition of Reagents onto Paper-Based Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Cheyenne H. Liu

    2017-08-01

    Full Text Available Reagent pencils allow for solvent-free deposition of reagents onto paper-based microfluidic devices. The pencils are portable, easy to use, extend the shelf-life of reagents, and offer a platform for customizing diagnostic devices at the point of care. In this work, reagent pencils were characterized by measuring the wear resistance of pencil cores made from polyethylene glycols (PEGs with different molecular weights and incorporating various concentrations of three different reagents using a standard pin abrasion test, as well as by measuring the efficiency of reagent delivery from the pencils to the test zones of paper-based microfluidic devices using absorption spectroscopy and digital image colorimetry. The molecular weight of the PEG, concentration of the reagent, and the molecular weight of the reagent were all found to have an inverse correlation with the wear of the pencil cores, but the amount of reagent delivered to the test zone of a device correlated most strongly with the concentration of the reagent in the pencil core. Up to 49% of the total reagent deposited on a device with a pencil was released into the test zone, compared to 58% for reagents deposited from a solution. The results suggest that reagent pencils can be prepared for a variety of reagents using PEGs with molecular weights in the range of 2000 to 6000 g/mol.

  16. Carbon monoxide activation via O-bound CO using decamethylscandocinium-hydridoborate ion pairs.

    Science.gov (United States)

    Berkefeld, Andreas; Piers, Warren E; Parvez, Masood; Castro, Ludovic; Maron, Laurent; Eisenstein, Odile

    2012-07-04

    Ion pairs [Cp*(2)Sc](+)[HB(p-C(6)F(4)R)(3)](-) (R = F, 1-F; R = H, 1-H) were prepared and shown to be unreactive toward D(2) and α-olefins, leading to the conclusion that no back-transfer of hydride from boron to scandium occurs. Nevertheless, reaction with CO is observed to yield two products, both ion pairs of the [Cp*(2)Sc](+) cation with formylborate (2-R) and borataepoxide (3-R) counteranions. DFT calculations show that these products arise from the carbonyl adduct of the [Cp*(2)Sc](+) in which the CO is bonded to scandium through the oxygen atom, not the carbon atom. The formylborate 2-R is formed in a two-step process initiated by an abstraction of the hydride by the carbon end of an O-bound CO, which forms an η(2)-formyl intermediate that adds, in a second step, the borane at the carbon. The borataepoxide 3-R is suggested to result from an isomerization of 2-R. This unprecedented reaction represents a new way to activate CO via a reaction channel emanating from the ephemeral isocarbonyl isomer of the CO adduct.

  17. Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries.

    Science.gov (United States)

    Grayfer, Ekaterina D; Pazhetnov, Egor M; Kozlova, Mariia N; Artemkina, Sofya B; Fedorov, Vladimir E

    2017-12-22

    Classical Li-ion battery technology is based on the insertion of lithium ions into cathode materials involving metal (cationic) redox reactions. However, this vision is now being reconsidered, as many new-generation electrode materials with enhanced reversible capacities operate through combined cationic and anionic (non-metal) reversible redox processes or even exclusively through anionic redox transformations. Anionic participation in the redox reactions is observed in materials with more pronounced covalency, which is less typical for oxides, but quite common for phosphides or chalcogenides. In this Concept, we would like to draw the reader's attention to this new idea, especially, as it applies to transition-metal polychalcogenides, such as FeS 2 , VS 4 , TiS 3 , NbS 3 , TiS 4 , MoS 3 , etc., in which the key role is played by the (S-S) 2- /2 S 2- redox reaction. The exploration and better understanding of the anion-driven chemistry is important for designing advanced materials for battery and other energy-related applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Radical pair formation in γ-irradiated 2-methyltetrahydrofuran rigid solutions of polynitrobenzenes

    International Nuclear Information System (INIS)

    Konishi, S.; Hoshino, M.; Imamura, M.

    1981-01-01

    The γ-irradiated MTHF (2-methyltetrahydrofuran) rigid solutions of mDNB (m-dinitrobenzene) and sTNB (s-trinitrobenzene) showed at 77 K ESR spectra characteristic of triplet species in addition to the spectra of doublet species, whereas no triplet ESR spectra were observed for the mononitrobenzene and o- and p-di-nitrobenzene solutions. The distances of the unpaired spins evaluated from the observed fine structure constants by using a point-dipole approximation are 4.3 and 4.6 A for the mDNB solution and 3.9 and 4.7 A for the sTNB solution. The detection of only the solute anion radicals by the optical absorption spectra of the irradiated solutions and the difference of the rate of formation for the triplet species and the solute anion strongly suggest that the triplet species are ascribed to the solute anion-solvent radical pairs. Such radical pairs are most likely to be formed through the migration of a MTHF cation radical, i.e., so-called hole migration, to a specific site between the two nitro groups on the meta positions of a solute anion followed by the production of a stable solvent radical, which is paired with the solute anion

  19. Evaluation of Tropaeolin 000-1 as a Colorimetric Reagent for Assay ...

    African Journals Online (AJOL)

    for Assay of Duloxetine and Escitalopram in Solid Dosage ... Purpose: To explore the application of tropaeolin 000-1 reagent for the rapid, ..... The effects of placebo interference testing are ... oppositely charged TL and TO ions form a stable.

  20. Organophosphorus reagents in actinide separations: Unique tools for production, cleanup and disposal

    International Nuclear Information System (INIS)

    Nash, K. L.

    2000-01-01

    Interactions of actinide ions with phosphate and organophosphorus reagents have figured prominently in nuclear science and technology, particularly in the hydrometallurgical processing of irradiated nuclear fuel. Actinide interactions with phosphorus-containing species impact all aspects from the stability of naturally occurring actinides in phosphate mineral phases through the application of the bismuth phosphate and PUREX processes for large-scale production of transuranic elements to the development of analytical separation and environment restoration processes based on new organophosphorus reagents. In this report, an overview of the unique role of organophosphorus compounds in actinide production, disposal, and environment restoration is presented. The broad utility of these reagents and their unique chemical properties is emphasized

  1. Tandem MS Analysis of Selenamide-Derivatized Peptide Ions

    Science.gov (United States)

    Zhang, Yun; Zhang, Hao; Cui, Weidong; Chen, Hao

    2011-09-01

    Our previous study showed that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used for selective and rapid derivatization of protein/peptide thiols in high conversion yield. This paper reports the systematic investigation of MS/MS dissociation behaviors of selenamide-derivatized peptide ions upon collision induced dissociation (CID) and electron transfer dissociation (ETD). In the positive ion mode, derivatized peptide ions exhibit tag-dependent CID dissociation pathways. For instance, ebselen-derivatized peptide ions preferentially undergo Se-S bond cleavage upon CID to produce a characteristic fragment ion, the protonated ebselen ( m/z 276), which allows selective identification of thiol peptides from protein digest as well as selective detection of thiol proteins from protein mixture using precursor ion scan (PIS). In contrast, NPSP-derivatized peptide ions retain their phenylselenenyl tags during CID, which is useful in sequencing peptides and locating cysteine residues. In the negative ion CID mode, both types of tags are preferentially lost via the Se-S cleavage, analogous to the S-S bond cleavage during CID of disulfide-containing peptide anions. In consideration of the convenience in preparing selenamide-derivatized peptides and the similarity of Se-S of the tag to the S-S bond, we also examined ETD of the derivatized peptide ions to probe the mechanism for electron-based ion dissociation. Interestingly, facile cleavage of Se-S bond occurs to the peptide ions carrying either protons or alkali metal ions, while backbone cleavage to form c/z ions is severely inhibited. These results are in agreement with the Utah-Washington mechanism proposed for depicting electron-based ion dissociation processes.

  2. Comprehensive Analysis of Umami Compounds by Ion-Pair Liquid Chromatography Coupled to Mass Spectrometry

    NARCIS (Netherlands)

    Coulier, L.; Bas, R.; Hekman, M.; Werff, B.J.C. van der; Burgering, M.; Thissen, U.

    2011-01-01

    An ion-pair LC-ESI-MS method was developed capable of analyzing various reported umami or umami-enhancing compounds, including glutamic acid and 5'-ribonucleotides. The method was validated using tomato and potato samples and showed overall good analytical performance with respect to selectivity,

  3. The effect of cation source and dietary cation-anion difference on rumen ion concentrations in lactating dairy cows.

    Science.gov (United States)

    Catterton, T L; Erdman, R A

    2016-08-01

    Many studies have focused on the influence of dietary cation-anion difference (DCAD) on animal performance but few have examined the effect of DCAD on the rumen ionic environment. The objective of this study was to examine the effects of DCAD, cation source (Na vs. K), and anion source (Cl vs. bicarbonate or carbonate) on rumen environment and fermentation. The study used 5 rumen-fistulated dairy cows and 5 dietary treatments that were applied using a 5×5 Latin square design with 2-wk experimental periods. Treatments consisted of (1) the basal total mixed ration (TMR); (2) the basal TMR plus 340mEq/kg of Na (dry matter basis) using NaCl; (3) the basal TMR plus 340mEq/kg of K using KCl; (4) the basal TMR plus 340mEq/kg of Na using NaHCO3; and (5) the basal TMR plus 340mEq/kg of K using K2CO3. On the last day of each experimental period, rumen samples were collected and pooled from 5 different locations at 0, 1.5, 3, 4.5, 6, 9, and 12h postfeeding for measurement of rumen pH and concentrations of strong ions and volatile fatty acids (VFA). Dietary supplementation of individual strong ions increased the corresponding rumen ion concentration. Rumen Na was decreased by 24mEq/L when K was substituted for Na in the diet, but added dietary Na had no effect on rumen K. Rumen Cl was increased by 10mEq/L in diets supplemented with Cl. Cation source had no effect on rumen pH or total VFA concentration. Increased DCAD increased rumen pH by 0.10 pH units and increased rumen acetate by 4mEq/L but did not increase total VFA. This study demonstrated that rumen ion concentrations can be manipulated by dietary ion concentrations. If production and feed efficiency responses to DCAD and ionophores in the diet are affected by rumen Na and K concentrations, then manipulating dietary Na and K could be used either to enhance or diminish those responses. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Nano magnetic solid phase extraction for preconcentration of lead ions in environmental samples by a newly synthesized reagent.

    Science.gov (United States)

    Golshekan, Mostafa; Shariati, Shahab

    2013-01-01

    In this study, magnetite nanoparticles with particle size lower than 47 nm were synthesized and were applied for preconcentration of Pb2+ ions from aqueous solutions. To preconcentrate the Pb2+ ions, the surface of the synthesized nano particles was modified with sodium dodecyl sulfate (SDS) as an anionic surfactant. A new chelating agent (2-((E)-2-amino-4,5-dinitrophenylimino)methyl)phenol) was synthesized and used to form a very stable complex with Pb2+ ions. The lead ions formed complexes and were quantitatively extracted with SDS-coated magnetite nanoparticles. After magnetic separation of adsorbent, the adsorbent was eluted with 0.5% (v/v) HC1 in dimethyl sulfoxide (DMSO) prior to analysis by flame atomic absorption spectrometry (FAAS). Orthogonal array design (OAD) was used to study and optimize the different experimental parameters. Under the optimum conditions, enhancement factor up to 63.5 was achieved for extraction from only 10 mL of sample solution and the relative standard deviation (RSD %) of the method was lower than 2.8%. The obtained calibration curve was linear in the range of 1-300 pg L-' with reasonable linearity (r2 > 0.998). The limit of detection (LOD) based on S/N = 3 was 0.04 microg L(-1) for 10 mL sample volumes. Finally, applicability of the proposed method was successfully confirmed by preconcentration and determination of trace amounts of lead ions in environmental samples and satisfactory results were obtained.

  5. A computational study of anion-modulated cation-π interactions.

    Science.gov (United States)

    Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2012-05-24

    The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.

  6. Effects of Anion Mobility on Electrochemical Behaviors of Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kee Sung; Chen, Junzheng; Cao, Ruiguo; Rajput, Nav Nidhi; Murugesan, Vijayakumar; Shi, Lili; Pan, Huilin; Zhang, Jiguang; Liu, Jun; Persson, Kristin A.; Mueller, Karl T.

    2017-10-27

    The electrolyte is a crucial component of lithium-sulfur (Li-S) batteries, as it controls polysulfide dissolution, charge shuttling processes, and solid-electrolyte interphase (SEI) layer formation. Experimentally, the overall performance of Li-S batteries varies with choice of solvent system and Li-salt used in the electrolyte, and a lack of predictive understanding about the effects of individual electrolyte components inhibits the rational design of electrolytes for Li-S batteries. Here we analyze the role of the counter anions of common Li salts (such as TfO-, FSI-, TFSI-, and TDI-) when dissolved in DOL/DME (1:1 vol.) for use in Li-S batteries. The evolution of ion-ion and ion-solvent interactions due to vari-ous anions was analyzed using 17O NMR and pulsed-field gradient (PFG) NMR and then correlated with electrochemi-cal performance in Li-S cells. These data reveal that the for-mation of the passivation layer on the anode and the loss of active materials from the cathode (evidenced by polysulfide dissolution) are related to anion mobility and affinity with lithium polysulfide, respectively. For future electrolyte de-sign, anions with lower mobility and weaker interactions with lithium polysulfides may be superior candidates for increasing the long-term stability of Li-S batteries.

  7. Contribution of various metabolites to the "unmeasured" anions in critically ill patients with metabolic acidosis.

    NARCIS (Netherlands)

    Moviat, M.; Terpstra, A.M.; Ruitenbeek, W.; Kluijtmans, L.A.J.; Pickkers, P.; Hoeven, J.G. van der

    2008-01-01

    OBJECTIVE: The physicochemical approach, described by Stewart to investigate the acid-base balance, includes the strong ion gap (SIG), a quantitative measure of "unmeasured" anions, which strongly correlates to the corrected anion gap. The chemical nature of these anions is for the most part

  8. Evaluation of calix[4]arene tethered Schiff bases for anion recognition

    International Nuclear Information System (INIS)

    Chawla, H.M.; Munjal, Priyanka

    2016-01-01

    Two calix[4]arene tethered Schiff base derivatives (L1 and L2) have been synthesized and their ion recognition capability has been evaluated through NMR, UV–vis and fluorescence spectroscopy. L1 interacts with cyanide ions very selectively to usher a significant change in color and fluorescence intensity. On the other hand L2 does not show selectivity for anion sensing despite having the same functional groups as those present in L1. The differential observations may be attributed to plausible stereo control of anion recognition and tautomerization in the synthesized Schiff base derivatives.

  9. Evaluation of calix[4]arene tethered Schiff bases for anion recognition

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, H.M., E-mail: hmchawla@chemistry.iitd.ac.in; Munjal, Priyanka

    2016-11-15

    Two calix[4]arene tethered Schiff base derivatives (L1 and L2) have been synthesized and their ion recognition capability has been evaluated through NMR, UV–vis and fluorescence spectroscopy. L1 interacts with cyanide ions very selectively to usher a significant change in color and fluorescence intensity. On the other hand L2 does not show selectivity for anion sensing despite having the same functional groups as those present in L1. The differential observations may be attributed to plausible stereo control of anion recognition and tautomerization in the synthesized Schiff base derivatives.

  10. On the Adsorption of Some Anionic Collectors on Fluoride Minerals

    DEFF Research Database (Denmark)

    Sørensen, Emil

    1973-01-01

    Test flotations have been carried out in a small apparatus under standardized conditions in order to determine the dependence of the flotation yield on the reagent concentration for certain minerals and anionic collectors. The results suggest that a special adsorption mechanism is operating...... in the case of fluoride minerals, and a theory is presented which involves the joint action of ionic and hydrogen bonds. A precondition is the compatibility of the crystal geometry with the configuration of the polar group of the collector molecules....

  11. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  12. Simultaneous in-line concentration for spectrophotometric determination of cations and anions

    Directory of Open Access Journals (Sweden)

    Rocha Fábio R. P

    2004-01-01

    Full Text Available A flow system is proposed for simultaneous in-line concentration of cations and anions. A sliding-bar commutator was employed to insert an anion and a cation exchange column into a flowing sample stream for serial retention of the analytes. In the injector alternative position, different solutions flowed through the columns for parallel elution of the species in different analytical paths. Three-way solenoid valves allowed the intermittent reagent introduction in the sample zones. Signals were measured by employing two flow-through LED-based detectors. The simultaneous retention of the sample zones in coiled reactors can be also performed to increase the residence time and the analyte conversion rate. The analytical potentiality was demonstrated by the in-line concentration of ammonium and phosphate followed by spectrophotometric detection. For a 90 s loading time, the sampling rate was estimated as 40 determinations per hour, which is three-fold higher than the obtained without performing the tasks simultaneously. Enrichment factors of 8.0 and 18 were estimated for phosphate and ammonium, respectively, yielding detection limits of 1 mg L-1 PO4(3- and 1 mg L-1 NH4+ (99.7% confidence level. The reagent consumption was lower than 2 mg per determination. Results for freshwater samples agreed with the obtained by reference APHA procedures at the 95% confidence level.

  13. Assembling Metal Ions Induced Cyanide-Bridged Heterometallic 1D and Ion-Pair Complexes: Synthesis, Crystal Structures and Magnetic Properties

    International Nuclear Information System (INIS)

    Kong, Lingqian; Zhao, Zengdian; Chen, Kexun; Wang, Ping; Zhang, Daopeng

    2013-01-01

    We obtained a heterobimetallic one-dimensional cyanide-bridged Mn(II)-Ni(II) complex and an Co(III)-Ni(II) ion-pair complex with [Ni(CN) 4 ] 2- as building block and M(II)-phenanthroline (M = Mn, Co) compounds as assembling segment. The different structural types of complexes 1 and 2 indicate that the property of the metal ions the assembling segment contained have obvious influence on the structure of the cyanide-bridged complex. Investigation over the magnetic properties of complex 1 reveals an overall weak antiferromagnetic coupling between the adjacent Mn(II) ions bridged by the antiferromagnetic [-NC-Ni-CN-] unit. Among of all the molecular magnetism systems, for the well known reasons, cyanide-containing complexes have been widely employed as bridges to assemble homo/hetero-metallic molecular magnetic materials by using the cyanide bridge transferring magnetic coupling between the neighboring paramagnetic ions, in whichsome showed interesting magnetic properties, such as high-Tc magnets, spin crossover materials, single-molecule magnets (SMMs) and single-chain magnets (SCMs)

  14. Synthesis and characterization of cobalt ferrocyanides loaded on organic anion exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Valsala, T.P. [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India)], E-mail: tpvalsala@yahoo.co.in; Joseph, Annie [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Shah, J.G. [Back End Technology Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Raj, Kanwar [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Venugopal, V. [Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Trombay 400 085 (India)

    2009-02-15

    Transition metal ferrocyanides have important applications in the selective removal of radioactive caesium from low level and intermediate level radioactive liquid waste streams. The microcrystalline nature of these materials renders them useless for application in column mode operations. Special preparation procedures have been developed to prepare granular solids by in situ precipitation of metal ferrocyanides on organic anion exchangers, which is suitable for column mode operations. The elemental compositions of the metal ferrocyanides precipitated inside the pores of anion exchanger were determined by analysing the dissolved samples using ICP-AES system and flame photometer. From the XRD and EDX analyses and the elemental composition of the synthesized materials, the nature of the compound formed inside the anion exchanger was found to be cobalt ferrocyanide. From SEM analysis of the samples, the particle size of the cobalt ferrocyanide precipitated inside the anion exchanger was found to be much less than that of cobalt ferrocyanide precipitated outside. The efficiency of these materials for removal of Cs was evaluated by measuring the distribution coefficient (Kd), ion exchange capacity and kinetics of Cs uptake. The Kd of the materials loaded on anion exchanger was found to be of the order of 10{sup 5} ml/g. The Cs uptake kinetics of the materials loaded on anion exchanger was slower than that of precipitated materials. The ion exchange capacity of the cobalt ferrocyanide loaded on anion exchanger was found to be much higher than that of the precipitated cobalt ferrocyanide.

  15. Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gab-Jin; Bong, Soo-Yeon; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Lim, Soo-Gon [Energy and Machinery Korea Co., Ltd., Changwon (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan (Korea, Republic of)

    2015-09-15

    An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098x10{sup -2} -7.0x10{sup -2}S cm{sup -1}. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

  16. One-pot fabrication of FRET-based fluorescent probe for detecting copper ion and sulfide anion in 100% aqueous media

    Science.gov (United States)

    Lv, Kun; Chen, Jian; Wang, Hong; Zhang, Peisheng; Yu, Maolin; Long, Yunfei; Yi, Pinggui

    2017-04-01

    The design of effective tools for detecting copper ion (Cu2 +) and sulfide anion (S2 -) is of great importance due to the abnormal level of Cu2 + and S2 - has been associated with an increase in risk of many diseases. Herein, we report on the fabrication of fluorescence resonance energy transfer (FRET) based fluorescent probe PF (PEI-FITC) for detecting Cu2 + and S2 - in 100% aqueous media via a facile one-pot method by covalent linking fluorescein isothiocyanate (FITC) with branched-polyethylenimine (b-PEI). PF could selectively coordinate with Cu2 + among 10 metal ions to form PF-Cu2 + complex, resulting in fluorescence quenching through FRET mechanism. Furthermore, the in situ generated PF-Cu2 + complex can be used to selectively detect S2 - based on the displacement approach, resulting in an off-on type sensing. There is no obvious interference from other anions, such as Cl-, NO3-, ClO4-, SO42 -, HCO3-, CO32 -, Br-, HPO42 -, F- and S2O32 -. In addition, PF was successfully used to determine Cu2 + and S2 - in human serum and tap water samples. Therefore, the FRET-based probe PF may provide a new method for selective detection of multifarious analysts in biological and environmental applications, and even hold promise for application in more complicated systems.

  17. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kono, M. [Faculty of Policy Studies, Chuo University, Tokyo 192-0393 (Japan); Vranjes, J. [Instituto de Astrofisica de Canarias, Tenerife E38205 (Spain); Departamento de Astrofisica, Universidad de La Laguna, Tenerife E38205 (Spain)

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  18. Ab initio molecular dynamics approach to a quantitative description of ion pairing in water

    Czech Academy of Sciences Publication Activity Database

    Pluhařová, Eva; Maršálek, Ondřej; Schmidt, B.; Jungwirth, Pavel

    2013-01-01

    Roč. 4, č. 23 (2013), s. 4177-4181 ISSN 1948-7185 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ion pairing * charge transfer * water * ab initio molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.687, year: 2013

  19. Impact-parameter dependence of the total probability for electromagnetic electron-positron pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Hencken, K.; Trautmann, D.; Baur, G.

    1995-01-01

    We calculate the impact-parameter-dependent total probability P total (b) for the electromagnetic production of electron-positron pairs in relativistic heavy-ion collisions in lowest order. We study expecially impact parameters smaller than the Compton wavelength of the electron, where the equivalent-photon approximation cannot be used. Calculations with and without a form factor for the heavy ions are done; the influence is found to be small. The lowest-order results are found to violate unitarity and are used for the calculation of multiple-pair production probabilities with the help of the approximate Poisson distribution already found in earlier publications

  20. Ion-pair hollow-fiber liquid-phase microextraction of the quaternary ammonium surfactant dicocodimethylammonium chloride.

    Science.gov (United States)

    Hultgren, Sofie; Larsson, Niklas; Nilsson, Bo F; Jönsson, Jan Ake

    2009-02-01

    A two-phase hollow-fiber (HF) liquid-phase microextraction (LPME) method was developed for determination of a quaternary ammonium compound surfactant, dicocodimethylammonium chloride, in aqueous samples. The porous HF was fixed on a metal rod support and was impregnated with approximately 6.6 microL of organic extractant, which was immobilized in the HF pores. Surfactant extraction was facilitated by addition of carboxylic acid to the sample forming neutral ion pairs with the quaternary ammonium compound. After extraction, the analyte was transferred from the organic extractant in the fiber pores by dissolving the 1-octanol into 100 microL methanol. The methanol extract was analyzed by liquid chromatography-mass spectrometry. The method was optimized (with optimized parameters in brackets) with regard to type of organic extractant (1-octanol), fiber length (2 cm), choice and concentration of anionic carrier (600 microg L(-1) octanoate), procedure of transfer to methanol (15-min sonication), sample volume (250 mL), extraction time (17 h), pH (10), and ionic strength (50 mM carbonate). Aspects influencing repeatability in LPME of (quaternary ammonium) surfactants are discussed. The enrichment factor achieved in 250-mL carbonate buffer was around 400. Due to matrix effects, the enrichment factors achieved when industrial process water was analyzed were 120 or about 30% of that in carbonate buffer. Detection limits of 0.3 microg L(-1) in carbonate buffer and 0.9 microg L(-1) in industrial process water were obtained. If the studied compound is seen as a model substance representing quaternary dialkylated dimethylated ammonium surfactants in general, the developed method may be applied to other quaternary ammonium surfactants.

  1. Dissecting Hofmeister Effects: Direct Anion-Amide Interactions Are Weaker than Cation-Amide Binding.

    Science.gov (United States)

    Balos, Vasileios; Kim, Heejae; Bonn, Mischa; Hunger, Johannes

    2016-07-04

    Whereas there is increasing evidence for ion-induced protein destabilization through direct ion-protein interactions, the strength of the binding of anions to proteins relative to cation-protein binding has remained elusive. In this work, the rotational mobility of a model amide in aqueous solution was used as a reporter for the interactions of different anions with the amide group. Protein-stabilizing salts such as KCl and KNO3 do not affect the rotational mobility of the amide. Conversely, protein denaturants such as KSCN and KI markedly reduce the orientational freedom of the amide group. Thus these results provide evidence for a direct denaturation mechanism through ion-protein interactions. Comparing the present findings with results for cations shows that in contrast to common belief, anion-amide binding is weaker than cation-amide binding. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Modified Extraction-Free Ion-Pair Methods for the Determination of Flunarizine Dihydrochloride in Bulk Drug, Tablets, and Human Urine

    Science.gov (United States)

    Prashanth, K. N.; Basavaiah, K.

    2018-01-01

    Two simple and sensitive extraction-free spectrophotometric methods are described for the determination of flunarizine dihydrochloride. The methods are based on the ion-pair complex formation between the nitrogenous compound flunarizine (FNZ), converted from flunarizine dihydrochloride (FNH), and the acidic dye phenol red (PR), in which experimental variables were circumvented. The first method (method A) is based on the formation of a yellow-colored ion-pair complex (1:1 drug:dye) between FNZ and PR in chloroform, which is measured at 415 nm. In the second method (method B), the formed drug-dye ion-pair complex is treated with ethanolic potassium hydroxide in an ethanolic medium, and the resulting base form of the dye is measured at 580 nm. The stoichiometry of the formed ion-pair complex between the drug and dye (1:1) is determined by Job's continuous variations method, and the stability constant of the complex is also calculated. These methods quantify FNZ over the concentration ranges 5.0-70.0 in method A and 0.5-7.0 μg/mL in method B. The calculated molar absorptivities are 6.17 × 103 and 5.5 × 104 L/mol·cm-1 for method A and method B, respectively, with corresponding Sandell sensitivity values of 0.0655 and 0.0074 μg/cm2. The methods are applied to the determination of FNZ in pure drug and human urine.

  3. Study on the identification of organic and common anions in the pyrohydrolysis distillate of mixed uranium-plutonium carbide for the interference free determination of chlorine and fluorine by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Jeyakumar, Subbiah; Mishra, Vivekchandra Guruprasad; Das, Mrinal Kanti; Raut, Vaibhavi Vishwajeet; Sawant, Ramesh Mahadeo [Bhabha Atomic Research Centre, Mumbai (India). Radioanalytical Chemistry Div.; Ramakumar, Karanam Lakshminarayana [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry and Isotope Group

    2014-07-01

    Identification of various soluble organic acids formed during the pyrohydrolysis of uranium-plutonium mixed carbide [(U,Pu)C] was carried out using ion chromatography. This has significant importance as the soluble organic acids can cause severe interferences during the ion chromatography separation and determination of Cl{sup -} and F{sup -} in the pyrohydrolysis distillate of (U,Pu)C. Determination of Cl and F is important in the chemical quality control of nuclear materials as these two elements can cause corrosion and hence, their concentrations in all nuclear materials are restricted to certain specified values. Since the pyrohydrolysis distillates contain both inorganic and organic acid anions, for the sake of separating and identifying organic acid anions from the common inorganic anions, three independent isocratic elutions using varying concentrations of NaOH eluent were employed for the separation of weakly, moderately and strongly retained anions. It was observed that pyrohydrolysis of (U,Pu)C also produced soluble organic acids as in the case of nitric acid dissolution of UC. The present investigation revealed the presence of formic, acetic, propionic, butyric, oxalic acid anions in the pyrohydrolysis distillate of (U,Pu)C in trace or ultra-trace concentrations. The presence of each organic acid identified in the chromatogram was confirmed with spike addition as well as by separating them by capillary electrophoresis method. The presence of lower aliphatic acids viz. formic and acetic acids was reconfirmed by carrying out an independent separation with tetraborate eluent. It is suggested that nitric acid being formed during pyrohydrolysis could be responsible for the formation of organic acids. Based on the findings, an ion chromatography separation method has been proposed for the interference-free determination of chloride and fluoride in pyrohydrolysis distillate of (U,Pu)C. (orig.)

  4. 3.5 Radiation stability of ion exchangers

    International Nuclear Information System (INIS)

    Marhol, M.

    1976-01-01

    The main knowledge is summed up of the radiation stability of ion exchangers. No basic changes occur in inorganic ion exchangers with the exception of the exchange capacity at doses of up to 10 9 rad. This also applies to coal-based ion exchangers. Tables are given showing the changes in specific volume, exchange capacity and weight of different types of organic ion exchangers in dependence on the radiation dose. The effects are discussed of the structure of organic cation and anion exchangers, polymeric strong basic anion exchangers, polycondensate anion exchangers and ion exchange membranes on their radiation stability. General experimental procedures are given for laboratory tests of the radiation stability of exchangers. (L.K.)

  5. Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

    International Nuclear Information System (INIS)

    Kim, Do Hee; Lee, Bo Kyung; Lee, Dong Soo

    1999-01-01

    A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H 2 O 2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported

  6. Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive.

    Science.gov (United States)

    Li, Qiaoyun; Wan, Xiaocao; Liu, Chao; Fang, Liang

    2018-07-01

    The aim of this study was to prepare a drug-in-adhesive patch of nicotine (NIC) and use ion-pair strategy to regulate drug delivery rate. Moreover, the mechanism of how ion-pair strategy regulated drug release was elucidated at molecular level. Formulation factors including pressure sensitive adhesives (PSAs), drug loading and counter ions (C 4 , C 6 , C 8 , C 10 , and C 12 ) were screened. In vitro release experiment and in vitro transdermal experiment were conducted to determine the rate-limiting step in drug delivery process. FT-IR and molecular modeling were used to characterize the interaction between drug and PSA. Thermal analysis and rheology study were conducted to investigate the mobility variation of PSA. The optimized patch prepared with NIC-C 8 had the transdermal profile fairly close to that of the commercial product (p > 0.05). The release rate constants (k) of NIC, NIC-C 4 and NIC-C 10 were 21.1, 14.4 and 32.4, respectively. Different release rates of NIC ion-pair complexes were attributed to the dual effect of ion-pair strategy on drug release. On one hand, ion-pair strategy enhanced the interaction between drug and PSA, which inhibited drug release. On the other hand, using ion-pair strategy improved the mobility of PSA, which facilitated drug release. Drug release behavior was determined by combined effect of two aspects above. These conclusions provided a new idea for us to regulate drug release behavior from patch. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Determination of the diffusion coefficient of hydrogen ion in hydrogels.

    Science.gov (United States)

    Schuszter, Gábor; Gehér-Herczegh, Tünde; Szűcs, Árpád; Tóth, Ágota; Horváth, Dezső

    2017-05-17

    The role of diffusion in chemical pattern formation has been widely studied due to the great diversity of patterns emerging in reaction-diffusion systems, particularly in H + -autocatalytic reactions where hydrogels are applied to avoid convection. A custom-made conductometric cell is designed to measure the effective diffusion coefficient of a pair of strong electrolytes containing sodium ions or hydrogen ions with a common anion. This together with the individual diffusion coefficient for sodium ions, obtained from PFGSE-NMR spectroscopy, allows the determination of the diffusion coefficient of hydrogen ions in hydrogels. Numerical calculations are also performed to study the behavior of a diffusion-migration model describing ionic diffusion in our system. The method we present for one particular case may be extended for various hydrogels and diffusing ions (such as hydroxide) which are relevant e.g. for the development of pH-regulated self-healing mechanisms and hydrogels used for drug delivery.

  8. A chemical approach for site-specific identification of NMR signals from protein side-chain NH3+ groups forming intermolecular ion pairs in protein–nucleic acid complexes

    International Nuclear Information System (INIS)

    Anderson, Kurtis M.; Nguyen, Dan; Esadze, Alexandre; Zandrashvili, Levani; Gorenstein, David G.; Iwahara, Junji

    2015-01-01

    Protein–nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein–DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH 3 + groups forming the intermolecular ion pairs. A characteristic change in their 1 H and 15 N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain 15 N and DNA phosphorodithiaote 31 P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein–RNA complexes as well

  9. Determination of arsenate and organic arsenic via potentiometric titration of its heteropoly anions.

    Science.gov (United States)

    Metelka, R; Slavíková, S; Vytras, K

    2002-08-16

    Determination of arsenate based on its conversion to molybdoarsenate heteropoly anions followed by potentiometric titration is described. The titration is realized on the ion-pairing principle using cetylpyridinium chloride (or an analogous titrant containing a lipophilic cation), and is monitored by a carbon paste electrode, although other liquid-polymeric membrane-based electrodes can also be used. Calibration plots of the titrant end-point consumption versus concentration of arsenic were constructed and used to evaluate the content of arsenic in aqueous samples. The method could be applied in the analyses of samples with quite low arsenic content (amounts approximately 10 mug As in 50 cm(3) could be titrated). Organic arsenic was determined analogously after the Schöniger combustion of the sample and conversion of its arsenic to arsenate.

  10. Anion and cation partitioning between olivine, plagioclase phenocrysts and the host magma

    International Nuclear Information System (INIS)

    Yurimoto, Hisayoshi; Sueno, Shigeho

    1984-01-01

    Partition coefficients for -1, -2, -3, +1, +2, +3, +4 and +5 valent ions between the groundmass of tholeiite basalt and coexisting olivine and plagioclase phenocrysts from the Mid-Atlantic Ridge have been determined by secondary ion mass spectrometry. The present cation partitioning strongly supports the 'crystal structure control' mechanism. The partition coefficient for an anion is also under control of the crystal structure, so that each of the cation and anion positions in the crystal structure gives rise to a parabola-shaped peak on the partition coefficient vs. ionic radius diagram. (author)

  11. Nitrate and nitrite content in bottled beverages by ion-pair high-performance liquid chromatography.

    Science.gov (United States)

    Song, Yang; Deng, Gui-Fang; Xu, Xiang-Rong; Chen, Yong-Hong; Chen, Feng; Li, Hua-Bin

    2013-01-01

    Nitrate and nitrite levels in six types of beverages--total of 292 individual samples from 73 brands (four bottles each)--from Guangzhou city in China were evaluated by ion-pair high-performance liquid chromatography. All samples contained nitrate. Nitrate and nitrite ranges were 0.43-46.08 and safety of Chinese bottled beverages.

  12. New Anion-Exchange Resins for Improved Separations of Nuclear Materials

    International Nuclear Information System (INIS)

    Bartsch, Richard A.; Barr, Mary E.

    2001-01-01

    Improved separations of nuclear materials will have a significant impact upon a broad range of DOE activities. DOE-EM Focus Areas and Crosscutting Programs have identified improved methods for the extraction and recovery of radioactive metal ions from process, waste, and environmental waters as critical needs for the coming years. We propose to develop multifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the field of ion-specific chelating ligands with robust, commercial ion-exchange technology to provide materials which exhibit superior selectivity and kinetics of sorption and desorption. The following Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new material: Efficient Separations and Processing - radionuclide removal from aqueous phases; Plutonium - Pu, Am or total alpha removal to meet regulatory requirement s before discharge to the environment; Plumes - U and Tc in groundwater, U, Pu, Am, and Tc in soils; Mixed Waste - radionuclide partitioning; High-Level Tank Waste - actinide and Tc removal from supernatants and/or sludges. The basic scientific issues which need to be addressed are actinide complex speciation along with modeling of metal complex/functional site interactions in order to determine optimal binding-site characteristics. Synthesis of multifunctionalized extractants and ion-exchange materials that implement key features of the optimized binding site, and testing of these materials, will provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The long-range implications of this research, however, go far beyond the nuclear complex. This new methodology of ''facilitated uptake'' could revolutionize ion-exchange technology

  13. Ion-exchange equilibrium of Fe3+-Cl- and UO22+-Cl- systems in a porous anion exchanger

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Kawakami, Fumiaki; Sasaki, Mitsunaga

    1985-01-01

    The ion-exchange equilibrium behavior of complex ions was investigatided in the systems of UO 2 2+ - Cl - and Fe 3+ - Cl - using an anion exchanger. It was performed by examining the dependency of adsorption distribution and selectivity of complexes on the micro structure of ion-exchangers, and temperature-dependency of selectivity. Changes in micropore structure of the ion-exchanger were found to have a significant effect on selectivity; the coefficient of selectivity and the average valence of the adsorbed species increased as the discrete pore ratio used as the index for pore structure decreased. In this study, equilibrium reactions were regarded as a sort of addition reaction for a easier analysis. This analysis based on the concept of addition chemical potential suggested that decreases in the discrete pore ratio were advantageous for the adsorption of complex ion species with higher valence, and average valence of the adsorbed species within the exchanger was shifted to the higher side. For this reason, it is assumed that the coefficient of selectivity became larger with a decrease in the discrete pore ratio. There is also a marked change in the coefficient of selectivity with temperature, and this becomes greater the higher the temperature. The ΔH of the present system accompanying the complex forming reaction is estimated to be 7 to 8 kcal/mol, and this value suggests that the temperature effect of the complex forming reaction contributes greatly to the change in selectivity with temperature. (author)

  14. Spectrophotometric Determination of Gemifloxacin Mesylate in Pharmaceutical Formulations Through Ion-Pair Complex Formation

    Directory of Open Access Journals (Sweden)

    Marothu Vamsi Krishna

    2008-01-01

    Full Text Available Four simple and sensitive ion-pairing spectrophotometric methods have been described for the assay of gemifloxacin mesylate (GFX either in pure form or in pharmaceutical formulations. The developed methods involve formation of colored chloroform extractable ion-pair complexes of the drug with safranin O (SFN O and methylene blue (MB in basic medium; Napthol blue 12BR (NB 12BR and azocaramine G (AG in acidic medium. The extracted complexes showed absorbance maxima at 525, 650, 620 and 540 nm for SFN O, MB, NB 12BR and AG, respectively.Beer's law is obeyed in the concentration ranges 3-15, 4-20, 2-10 and 2-10 μg/mL with molar absorptivity of 2.81 × 104, 2.20 x 104, 4.02 × 104 and 4.15 × 104 L mole−1 cm−1 and relative standard deviation of 0.077, 0.104, 0.080 and 0.103% for SFN O, MB, NB 12BR and AG, respectively. These methods have been successfully applied for the assay of drug in pharmaceutical formulations. No interference was observed from common pharmaceutical adjuvants. Results of analysis were validated statistically and through recovery studies.

  15. Preparation of Cationic MOFs with Mobile Anions by Anion Stripping to Remove 2,4-D from Water

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-07-01

    Full Text Available A cationic porous framework with mobile anions (MIL-101(Cr-Cl was easily and successfully synthesized by utilizing the stronger affinity of F− to Al3+ than Cr3+ in the charge-balanced framework of MIL-101(Cr. The structure, morphology and porosity of MIL-101(Cr-Cl were characterized. The obtained new materials retain the high surface area, good thermostability, and structure topology of MIL-101(Cr. With the mobile Cl− anion, MIL-101(Cr-Cl can be used as an ion-exchange material for anionic organic pollutions. In this work, 2,4-dichlorophenoxyacetic acid (2,4-D was used as a model to test the absorption performance of this new material. This new material exhibited improved adsorbability compared to that of the original metal-organic frameworks (MOFs. At the same time, this material also shows high anti-interference performance with changing solution pH.

  16. Highly sensitive and simple liquid chromatography assay with ion-pairing extraction and visible detection for quantification of gold from nanoparticles.

    Science.gov (United States)

    Pallotta, Arnaud; Philippe, Valentin; Boudier, Ariane; Leroy, Pierre; Clarot, Igor

    2018-03-01

    A simple isocratic HPLC method using visible detection was developed and validated for the quantification of gold in nanoparticles (AuNP). After a first step of oxidation of nanoparticles, an ion-pair between tetrachloroaurate anion and the cationic dye Rhodamine B was formed and extracted from the aqueous media with the help of an organic solvent. The corresponding Rhodamine B was finally quantified by reversed phase liquid chromatography using a Nucleosil C18 (150mm × 4.6mm, 3µm) column and with a mobile phase containing acetonitrile and 0.1% trifluoroacetic acid aqueous solution (25/75, V/V) at 1.0mLmin -1. and at a wavelength of 555nm. The method was validated using methodology described by the International Conference on Harmonization and was shown to be specific, precise (RSD < 11%), accurate and linear in the range of 0.1 - 30.0µM with a lower limit of quantification (LLOQ) of 0.1µM. This method was in a first time applied to AuNP quality control after their synthesis. In a second time, the absence of gold leakage (either as AuNP or gold salt form) from nanostructured multilayered polyelectrolyte films under shear stress was assessed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Assembling Metal Ions Induced Cyanide-Bridged Heterometallic 1D and Ion-Pair Complexes: Synthesis, Crystal Structures and Magnetic Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingqian [Liaocheng Univ., Liaocheng (China); Zhao, Zengdian; Chen, Kexun; Wang, Ping; Zhang, Daopeng [Shandong Univ. of Technology, Zibo (China)

    2013-07-15

    We obtained a heterobimetallic one-dimensional cyanide-bridged Mn(II)-Ni(II) complex and an Co(III)-Ni(II) ion-pair complex with [Ni(CN){sub 4}]{sup 2-} as building block and M(II)-phenanthroline (M = Mn, Co) compounds as assembling segment. The different structural types of complexes 1 and 2 indicate that the property of the metal ions the assembling segment contained have obvious influence on the structure of the cyanide-bridged complex. Investigation over the magnetic properties of complex 1 reveals an overall weak antiferromagnetic coupling between the adjacent Mn(II) ions bridged by the antiferromagnetic [-NC-Ni-CN-] unit. Among of all the molecular magnetism systems, for the well known reasons, cyanide-containing complexes have been widely employed as bridges to assemble homo/hetero-metallic molecular magnetic materials by using the cyanide bridge transferring magnetic coupling between the neighboring paramagnetic ions, in whichsome showed interesting magnetic properties, such as high-Tc magnets, spin crossover materials, single-molecule magnets (SMMs) and single-chain magnets (SCMs)

  18. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-01-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K d values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  19. Influence of Introduced Substituents on the Anion-selectivity of [14]Tetraazaannulene Complexes.

    Science.gov (United States)

    Moriuchi-Kawakami, Takayo; Obita, Minako; Tsujinaka, Toshiki; Shibutani, Yasuhiko

    2015-01-01

    Nickel(II) complexes of [14]tetraazaannulene derivatives incorporating aromatic rings into their azaannulene framework were synthesized, and the anion-selectivity of the [14]tetraazaannulene nickel complexes 1 - 4 was evaluated by potentiometric measurements with solvent polymeric membrane electrodes. All of the [14]Tetraazaannulene nickel complexes, except 3, were found to exhibit high selectivity for the I(-) ion over the SCN(-) ion, although considerable interference of the ClO4(-) ion was observed in all 1 - 4 complexes. Concerning the anion-selectivities of 1 and 4, the incorporation of naphthalene rings into the azaannulene framework decreased not only the interference of the ClO4(-) ion but also the I(-) ion-selectivity over the SCN(-) ion. Comparison studies between the dibenzotetraaza[14]annulene nickel complexes 1 - 3 indicated that differences in the attached substituents of the [14]tetraazaannulene nickel complexes greatly influenced the ion-selectivity as ionophores. According to our computational results, the ionophoric properties of [14]tetraazaannulene nickel complexes 1 - 4 were influenced by their electrostatic properties rather than their topological properties.

  20. Pair production with electron capture in peripheral collisions of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, C.A.C.A. E-mail: bertu@if.ufrj.br; Dolci, D.D. E-mail: dolci@if.ufrj.br

    2001-02-26

    The production of electron-positron pairs with the capture of the electron in an atomic orbital is investigated for the conditions of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Dirac wave functions for the leptons are used, taking corrections to orders of Z{alpha} into account. The dependence on the transverse momentum transfer is studied and the accuracy of the equivalent photon approximation is discussed as a function of the nuclear charge.

  1. Solvent, isotope, and magnetic field effects in the geminate recombination of radical ion pairs

    International Nuclear Information System (INIS)

    Werner, H.; Staerk, H.; Weller, A.

    1978-01-01

    The magnetic field dependence of the geminate recombination triplet yield of radical ion pairs generated via photoinduced electron transfer in polar solvents is investigated for the systems pyrene/N,N-dimethylaniline (Py/DMA), pyrene/3,5-dimethoxy-N,N-dimethylaniline (Py/DMDMA), and the perdeuterated system Py-d 10 /DMA-d 11 . The magnetic field dependence characterized through its B/sub 1/2/ value is found to be dependent on the sum of the hyperfine coupling constants in the radical pair in agreement with previous theoretical predictions. A drastic reduction of the B/sub 1/2/ value is observed with the perdeuterated system. By means of measurements of the radical ion and triplet absorption signals with nanosecond time resolution, the influence of the solvent on the geminate singlet and triplet recombination yields is investigated. Complementary measurements of exciplex lifetimes and quantum yields are carried out in a series of solvents with different polarities in order to determine the rate constants of fluorescence emission and intersystem crossing in the exciplexes

  2. Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Jixin, E-mail: jixin.qiao@risoe.d [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Hou Xiaolin; Roos, Per [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Miro, Manuel [Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, Carretera de Valldemossa km. 7.5, E-07122 Palma de Mallorca, Illes Balears (Spain)

    2011-01-31

    This paper reports an automated analytical method for rapid determination of plutonium isotopes ({sup 239}Pu and {sup 240}Pu) in environmental solid extracts. Anion exchange chromatographic columns were incorporated in a sequential injection (SI) system to undertake the automated separation of plutonium from matrix and interfering elements. The analytical results most distinctly demonstrated that the crosslinkage of the anion exchanger is a key parameter controlling the separation efficiency. AG 1-x4 type resin was selected as the most suitable sorbent material for analyte separation. Investigation of column size effect upon the separation efficiency revealed that small-sized (2 mL) columns sufficed to handle up to 50 g of environmental soil samples. Under the optimum conditions, chemical yields of plutonium exceeded 90% and the decontamination factors for uranium, thorium and lead ranged from 10{sup 3} to 10{sup 4}. The determination of plutonium isotopes in three standard/certified reference materials (IAEA-375 soil, IAEA-135 sediment and NIST-4359 seaweed) and two reference samples (Irish Sea sediment and Danish soil) revealed a good agreement with reference/certified values. The SI column-separation method is straightforward and less labor intensive as compared with batch-wise anion exchange chromatographic procedures. Besides, the automated method features low consumption of ion-exchanger and reagents for column washing and elution, with the consequent decrease in the generation of acidic waste, thus bearing green chemical credentials.

  3. Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water.

    Science.gov (United States)

    Kanazawa, Nobuhiro; Urano, Kohei; Kokado, Naohiro; Urushigawa, Yoshikuni

    2001-06-01

    The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.

  4. Dynamic separation of Szilard-Chalmers reaction products applied to the trioxalatochromium ion adsorbed on anionic exchange resin

    International Nuclear Information System (INIS)

    Silva, J.B.S.

    1979-01-01

    A method of dynamic elution of recoiled 51 Cr +3 , formed by the Szilard-Chalmers reaction during the irradiation of trioxalatochromium ion adsorbed on anionic exchange resin is presented. The influence of some factors on the separation yield of chromium-51, such as: composition, concentration and flow rate of eluent, mesh size of the resin and irradiation time are studied. The results are compardd with those obtained by the static method, in which the recoiled atom is separated from the target after irradiation. Because of the high separation yield of chromium-51, the method of dynamic separation is proposed for routine production of this elemnt, with high specific activities. (author) [pt

  5. Dependence of the Rate of LiF Ion-Pairing on the Description of Molecular Interaction

    Czech Academy of Sciences Publication Activity Database

    Pluhařová, Eva; Baer, M. D.; Schenter, G. K.; Jungwirth, Pavel; Mundy, C. J.

    2016-01-01

    Roč. 120, č. 8 (2016), s. 1749-1758 ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : molecular dynamics * ion pairing kinetics * lithium fluoride Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  6. Isotope effect study of κ-(BEDT-TTF)2Cu(NCS)2: Labeling in the anion

    International Nuclear Information System (INIS)

    Kini, A.M.; Wang, H.H.; Schlueter, J.A.

    1995-01-01

    Since the initial discovery of organic superconductivity in 1979, a large number of organic superconductors have now been synthesized. However, the mechanism of electron-pairing in these novel superconductors has remained largely unresolved. Isotope effect studies constitute an important experimental tool for the investigation of whether or not the electron-pairing mechanism in organic superconductors is phonon-mediated, as in conventional superconductors. Recent isotope effect studies in the authors' laboratory, involving seven different isotopically labeled BEDT-TTF (or ET) derivatives, have demonstrated the following: (1) intramolecular phonon modes involving C double-bond C and Csingle bondS stretching vibrations in the ET donor molecule are not the dominant mediators of electron-pairing, and (2) in κ-(ET) 2 Cu(NCS) 2 , there exist two competing isotope effects--a normal mass effect, i.e., lowering of T c upon isotopic labeling, when the ET molecular mass is increased by concurrent 13 C and 34 S labeling, in addition to an inverse isotope effect upon deuterium labeling in ET. It is of great interest to investigate if there is an isotope effect when the charge-compensating anions, which are also located within the non-conducting layer in the superconducting cation-radical salts, are isotopically labeled. The existence of an isotope effect when the anions are labeled would be indicative of electron-pairing with the mediation of vibrational frequencies associated with the anions. In this paper, the authors present the results of the first isotope effect study in which isotopic labeling in the anion portion of κ-(ET) 2 Cu(NCS) 2 is carried out. The authors find no isotope effect when the carbon and nitrogen atoms of the thiocyanate groups in the anion are replaced with 13 C and 15 N isotopes

  7. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization

    DEFF Research Database (Denmark)

    Feketeová, Linda; Albright, Abigail L; Sørensen, Brita Singers

    2014-01-01

    Radiosensitizers are used in radiotherapy to enhance tumour control of radioresistant hypoxic tumours. While the detailed mechanism of radiosensitization is still unknown, the formation of radical anions is believed to be a key step. Thus understanding the ionization reactions of radiosensitizers......, misonidazole and related compounds using a hybrid linear ion trap – Fourier Transform Ion Cyclotron Resonance mass spectrometer (Finnigan-LTQ-FT). A key finding is that negative electrospray ionization of these radiosensitizers leads to the formation of radical anions, allowing their fragmentation reactions...

  8. Importance of the ion-pair interactions in the OPEP coarse-grained force field: parametrization and validation.

    Science.gov (United States)

    Sterpone, Fabio; Nguyen, Phuong H; Kalimeri, Maria; Derreumaux, Philippe

    2013-10-08

    We have derived new effective interactions that improve the description of ion-pairs in the OPEP coarse-grained force field without introducing explicit electrostatic terms. The iterative Boltzmann inversion method was used to extract these potentials from all atom simulations by targeting the radial distribution function of the distance between the center of mass of the side-chains. The new potentials have been tested on several systems that differ in structural properties, thermodynamic stabilities and number of ion-pairs. Our modeling, by refining the packing of the charged amino-acids, impacts the stability of secondary structure motifs and the population of intermediate states during temperature folding/unfolding; it also improves the aggregation propensity of peptides. The new version of the OPEP force field has the potentiality to describe more realistically a large spectrum of situations where salt-bridges are key interactions.

  9. On the extraction of ion association data and transference numbers from ionic diffusivity and conductivity data in polymer electrolytes

    International Nuclear Information System (INIS)

    Stolwijk, Nicolaas A.; Kösters, Johannes; Wiencierz, Manfred; Schönhoff, Monika

    2013-01-01

    The degree of ion association in polymer electrolytes is often characterized by the Nernst–Einstein deviation parameter Δ, which quantifies the relative difference between the true ionic conductivity directly measured by electrical methods and the hypothetical maximum conductivity calculated from the individual ionic self-diffusion coefficients. Despite its unambiguous definition, the parameter Δ is a global quantity with limited explanatory power. Similar is true for the cation transport number t cat * , which relies on the same ionic diffusion coefficients usually measured by nuclear magnetic resonance or radiotracer methods. Particularly in cases when neutral ion pairs dominate over higher-order aggregates, more specific information can be extracted from the same body of experimental data that is used for the calculation of Δ and t cat * . This information concerns the pair contributions to the diffusion coefficient of cations and anions. Also the true cation transference number based on charged species only can be deduced. We present the basic theoretical framework and some pertinent examples dealing with ion pairing in polymer electrolytes

  10. Verification of the sputter-generated 32SFn- (n = 1-6) anions by accelerator mass spectrometry

    Science.gov (United States)

    Mane, R. G.; Surendran, P.; Kumar, Sanjay; Nair, J. P.; Yadav, M. L.; Hemalatha, M.; Thomas, R. G.; Mahata, K.; Kailas, S.; Gupta, A. K.

    2016-01-01

    Recently, we have performed systematic Secondary Ion Mass Spectrometry (SIMS) measurements at our ion source test set up and have demonstrated that gas phase 32SFn- (n = 1-6) anions for all size 'n' can be readily generated from a variety of surfaces undergoing Cs+ ion sputtering in the presence of high purity SF6 gas by employing the gas spray-cesium sputter technique. In our SIMS measurements, the isotopic yield ratio 34SFn-/32SFn- (n = 1-6) was found to be close to its natural abundance but not for all size 'n'. In order to gain further insight into the constituents of these molecular anions, ultra sensitive Accelerator Mass Spectrometry (AMS) measurements were conducted with the most abundant 32SFn- (n = 1-6) anions, at BARC-TIFR 14 UD Pelletron accelerator. The results from these measurements are discussed in this paper.

  11. Radiation stability of anion-exchange resins based on epichlorohydrin and vinylpyridines

    International Nuclear Information System (INIS)

    Zainutdinov, S.S.; Dzhalilov, A.T.; Askarov, M.A.

    1983-01-01

    The vigorous development of nuclear technology and atomic energy and the hydrometallurgy of the rare and radioactive metals has made it necessary to create and use ion-exchange materials possessing a high resistance to the action of ionizing radiations and the temperature. In view of this, the necessity has arisen for obtaining ion-exchange materials possessing adequate radiation stability. The results of an investigation of the radiation stability of anion-exchange resins based on the products of spontaneous polymerization in the interaction of epichlorohydrin with vinylpyridines show that they possess higher radiation resistance than the industrial anion-exchange resin AN-31 used at the present time

  12. Positive cooperativity of the specific binding between Hg2+ ion and T:T mismatched base pairs in duplex DNA

    International Nuclear Information System (INIS)

    Torigoe, Hidetaka; Miyakawa, Yukako; Ono, Akira; Kozasa, Tetsuo

    2012-01-01

    Highlights: ► Hg 2+ specifically bound with the T:T mismatched base pair at 1:1 molar ratio. ► The binding constant between Hg 2+ and the T:T mismatched base pair was 10 6 M −1 . ► The binding constant was larger than those for nonspecific metal–DNA interactions. ► The binding constant for the second Hg 2+ was larger than that for the first Hg 2+ . ► The positive cooperative binding was observed between Hg 2+ and multiple T:T. - Abstract: Metal-mediated base pairs by the interaction between metal ions and artificial bases in oligonucleotides have been developed for their potential applications in nanotechnology. We recently found that a natural T:T mismatched base pair bound with Hg 2+ ion to form a novel T–Hg–T base pair. Here, we examined the thermodynamic properties of the binding between Hg 2+ and each of the single and double T:T mismatched base pair duplex DNAs by isothermal titration calorimetry. Hg 2+ specifically bound with the T:T mismatched base pair at 1:1 molar ratio with 10 6 M −1 binding constant, which was significantly larger than those for nonspecific metal ion–DNA interactions. In the Hg 2+ –double T:T mismatched base pair interaction, the affinity for the second Hg 2+ binding was significantly larger than that for the first Hg 2+ binding. The positively cooperative binding may be favorable to align multiple Hg 2+ in duplex DNA for the application of the metal-mediated base pairs in nanotechnology.

  13. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents.

    Science.gov (United States)

    Mazzini, Virginia; Craig, Vincent S J

    2017-10-01

    The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific-ion

  14. Tandem mass spectrometry characteristics of polyester anions and cations formed by electrospray ionization.

    Science.gov (United States)

    Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael

    2005-01-01

    Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.

  15. Rejuvenation of the anion exchanger used for uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.-Y.; Espenscheid, W.F.

    1986-01-01

    The present invention is directed to improving the performance of strong base anionic exchange resins used in uranium recovery that exhibit an undesirable decrease in loading capacity and in total exchange capacity. The invention comprises treating an anionic exchange resin to remove physically adsorbed and occluded fouling agents and to remove poisons which may be chemically bound to active ion groups on the resin. The process involves treating the resin, after the uranium ion exchange stage, with an alkaline carbonate solution, preferably treating the resin with an acid eluant first. The acid treatment dissolves insoluble fouling agents which are physically occluded or adsorbed by the resin and that the weak base treatment augments that result and probably removes poisons which are physically or chemically bound to the resin

  16. Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Ca2+-ATPase

    Science.gov (United States)

    Tadini-Buoninsegni, Francesco; Moncelli, Maria Rosa; Peruzzi, Niccolò; Ninham, Barry W.; Dei, Luigi; Nostro, Pierandrea Lo

    2015-10-01

    The occurrence of Hofmeister (specific ion) effects in various membrane-related physiological processes is well documented. For example the effect of anions on the transport activity of the ion pump Na+, K+-ATPase has been investigated. Here we report on specific anion effects on the ATP-dependent Ca2+ translocation by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Current measurements following ATP concentration jumps on SERCA-containing vesicles adsorbed on solid supported membranes were carried out in the presence of different potassium salts. We found that monovalent anions strongly interfere with ATP-induced Ca2+ translocation by SERCA, according to their increasing chaotropicity in the Hofmeister series. On the contrary, a significant increase in Ca2+ translocation was observed in the presence of sulphate. We suggest that the anions can affect the conformational transition between the phosphorylated intermediates E1P and E2P of the SERCA cycle. In particular, the stabilization of the E1P conformation by chaotropic anions seems to be related to their adsorption at the enzyme/water and/or at the membrane/water interface, while the more kosmotropic species affect SERCA conformation and functionality by modifying the hydration layers of the enzyme.

  17. Effect of competing ions and causticization on the ammonia adsorption by a novel poly ligand exchanger (PLE) ammonia adsorption reagent.

    Science.gov (United States)

    Chen, Quanzhou; Zhou, Kanggen; Hu, Yuanjuan; Liu, Fang; Wang, Aihe

    2017-03-01

    In this paper, a poly ligand exchanger, Cu(II)-loaded chelating resin named ammonia adsorption reagent (AMAR), bearing the functional group of weak iminodiacetate acid, was prepared to efficiently remove ammonia from solutions. Batch adsorption equilibrium experiments were conducted under a range of conditions. The effects of pH on the removal of ammonia by AMAR were investigated at 25 °C. The copper loaded on the resin forms a complex with NH 3 in solution under alkaline condition. The effect of alkaline dosage (AD) on the ammonia adsorption was investigated. The maximum breakthrough bed volumes were obtained when the AD was set as 0.75 mmol OH - /mL. The higher AD did not guarantee the better ammonia removal efficiency due to the forming of Cu(OH) 2 precipitate between OH - in solutions and Cu(II) on the resin. The effect of competing ions on the adsorption breakthrough curve of virgin AMAR and causticized AMAR was also investigated. The results demonstrated that the existence of competing ions had a negative impact on the adsorption capacity for both virgin AMAR and causticized AMAR. After causticization, the AMAR was more resistant to the competing ions comparing with virgin AMAR. The bivalent Ca 2+ affects the ammonia adsorption more than does the monovalent Na + .

  18. Solvent extraction of europium(III) with benzoylacetone and benzoyltrifluoroacetone into carbon tetrachloride in the absence and presence of tetrabutylammonium ions

    International Nuclear Information System (INIS)

    Noro, Junji; Sekine, Tatsuya.

    1992-01-01

    The solvent extraction of europium (III) in 0.1 mol dm -3 sodium nitrate solutions with benzoylacetone (Hbza) or benzoyltrifluoroacetone (Hbfa) in carbon tetrachloride was measured in the absence and presence or tetrabutylammonium ions (tba + ). Although extraction with Hbfa occurred at lower pH than with Hbza, the extraction measured as a function of the β-diketonate ion concentration in the aqueous phase was rather similar. It was also found that extraction with Hbfa was greatly enhanced by the addition of tba + , the effect, however, was negligible with Hbza. The data were analyzed from the stand point that the neutral metal chelate, Eu(bfa) 3 , was extracted into the organic phase and associated with ion-pairs of the reagents, bfa - tba + , in this phase. It was also found that though extraction of ion-pairs of bfa - tba + occurred, that of bza - tba + was negligible. Thus, the reason for the negligible extraction of the ternary complex, Eu (bza) 4 - tba + , was explained in terms of the negligible extraction of the bza - tba + , which might associate with Eu(bza) 3 in the organic phase. (author)

  19. Bicarbonate adsorption band of the chromatography for carbon isotope separation using anion exchangers

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Obanawa, Heiichiro; Hata, Masahisa; Sato, Katsuya

    1985-01-01

    The equilibria of bicarbonate ion between two phases were studied for the carbon isotope separation using anion exchangers. The condition of the formation of a bicarbonate adsorption band was quantitatively discussed. The formation of the adsorption band depends on the difference of S-potential which is the sum of the standard redection chemical potentials and L-potential which is the sum of the reduction chemical potential. The isotopic separation factor observed was about 1.012, independent of the concentrations of acid and alkali in the solutions. The isotopic separation factor was considered to be determined by the reaction of bicarbonate ion on anion exchangers and carbon dioxide dissolved in solutions. The enriched carbon isotope whose isotopic abundance ratio ( 13 C/ 12 C) was 1.258 was obtained with the column packed with anion exchangers. (author)

  20. Selective adsorption and ion exchange of metal cations and anions with silico-titanates and layered titanates

    International Nuclear Information System (INIS)

    Anthony, R.G.; Philip, C.V.

    1993-01-01

    Metal ions may be removed from aqueous wastes from metal processing plants and from refineries. They may also be used in concentrating radioactive elements found in dilute, aqueous, nuclear wastes. A new series of silico-titanates and alkali titanates are shown to have specific selectivity for cations of lead, mercury, and cadmium and the dichromate anion in solutions with low and high pH. Furthermore, one particular silico-titanate, TAM-5, was found to be highly selective for Cs + and Sr 2+ in solutions of 5.7 M Na + and 0.6 M Oh - . A high potential exists for these materials for removing Cs + and Sr 2+ from radioactive aqueous wastes containing high concentrations of Na + at high and low pH

  1. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.

    Science.gov (United States)

    Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho

    2011-01-28

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  2. A plant wide aqueous phase chemistry model describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores-Alsina, X.; Mbamba, C. Kazadi; Solon, K.

    cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling studies can......, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems (Ikumi et al., 2014). In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation...... of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies (Solon et al., 2015...

  3. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    Science.gov (United States)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  4. An investigation on the physicochemical properties of the nanostructured [(4-X)PMAT][N(CN)2] ion pairs as energetic and tunable aryl alkyl amino tetrazolium based ionic liquids

    Science.gov (United States)

    Khalili, Behzad; Rimaz, Mehdi

    2017-06-01

    In this study the different class of tunable and high nitrogen content ionic liquids termed TAMATILs (Tunable Aryl Methyl Amino Tetrazolium based Ionic Liquids) were designed. The physicochemical properties of the nanostructured TAMATILs composed of para substituted phenyl methyl amino tetrazolium cations [(4-X)PMAT]+ (X = H, Me, OCH3, OH, NH2, NO2, F, CN, CHO, CF3, COMe and CO2Me) and dicyanimide anion [N(CN)2]- were fully investigated using M06-2X functional in conjunction with the 6-311++G(2d,2p) basis set. For all of the studied nanostructured ILs the structural parameters, interaction energy, cation's enthalpy of formation, natural charges, charge transfer values and topological properties were calculated and discussed. The substituent effect on the interaction energy and physicochemical properties also is taking into account. The results showed that the strength of interaction has a linear correlation with electron content of the phenyl ring in a way the substituents with electron withdrawing effects lead to make more stable ion pairs with higher interaction energies. Some of the main physical properties of ILs such as surface tension, melting point, critical-point temperature, electrochemical stability and conductivity are discussed and estimated for studying ion pairs using quantum chemical computationally obtained thermochemical data. Finally the enthalpy and Gibbs free energy of formation for twelve nanostructured individual cations with the general formula of [(4-X)PMAT]+ (X = 4-H, 4-Me, 4-OMe, 4-OH, 4-NH2, 4-NO2, 4-F, 4-CN, 4-CHO, 4-CF3, 4-COMe and 4-CO2Me) are calculated.

  5. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  6. Anion-Exchange Membrane Fuel Cells with Improved CO2 Tolerance: Impact of Chemically Induced Bicarbonate Ion Consumption.

    Science.gov (United States)

    Katayama, Yu; Yamauchi, Kosuke; Hayashi, Kohei; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Kikkawa, Yuuki; Negishi, Takayuki; Watanabe, Shin; Isomura, Takenori; Eguchi, Koichi

    2017-08-30

    Over the last few decades, because of the significant development of anion exchange membranes, increasing efforts have been devoted the realization of anion exchange membrane fuel cells (AEMFCs) that operate with the supply of hydrogen generated on-site. In this paper, ammonia was selected as a hydrogen source, following which the effect of conceivable impurities, unreacted NH 3 and atmospheric CO 2 , on the performance of AEMFCs was established. As expected, we show that these impurities worsen the performance of AEMFCs significantly. Furthermore, with the help of in situ attenuated total reflection infrared (ATR-IR) spectroscopy, it was revealed that the degradation of the cell performance was primarily due to the inhibition of the hydrogen oxidation reaction (HOR). This is attributed to the active site occupation by CO-related adspecies derived from (bi)carbonate adspecies. Interestingly, this degradation in the HOR activity is suppressed in the presence of both NH 3 and HCO 3 - because of the bicarbonate ion consumption reaction induced by the existence of NH 3 . Further analysis using in situ ATR-IR and electrochemical methods revealed that the poisonous CO-related adspecies were completely removed under NH 3 -HCO 3 - conditions, accompanied by the improvement in HOR activity. Finally, a fuel cell test was conducted by using the practical AEMFC with the supply of NH 3 -contained H 2 gas to the anode and ambient air to the cathode. The result confirmed the validity of this positive effect of NH 3 -HCO 3 - coexistence on CO 2 -tolerence of AEMFCs. The cell performance achieved nearly 95% of that without any impurity in the fuels. These results clearly show the impact of the chemically induced bicarbonate ion consumption reaction on the realization of highly CO 2 -tolerent AEMFCs.

  7. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    DEFF Research Database (Denmark)

    Marek, Ales; Pedersen, Martin Holst Friborg

    2015-01-01

    An alternative and robust method for the reduction of carbonyl groups by frustrated Lewis pairs (FLPs) is reported in this paper. With its very mild reaction conditions, good to excellent yields, absolute regioselectivity and the non-metallic character of the reagent, it provides an excellent too...

  8. Neutralization of methyl cation via chemical reactions in low-energy ion-surface collisions with fluorocarbon and hydrocarbon self-assembled monolayer films.

    Science.gov (United States)

    Somogyi, Arpád; Smith, Darrin L; Wysocki, Vicki H; Colorado, Ramon; Lee, T Randall

    2002-10-01

    Low-energy ion-surface collisions of methyl cation at hydrocarbon and fluorocarbon self-assembled monolayer (SAM) surfaces produce extensive neutralization of CH3+. These experimental observations are reported together with the results obtained for ion-surface collisions with the molecular ions of benzene, styrene, 3-fluorobenzonitrile, 1,3,5-triazine, and ammonia on the same surfaces. For comparison, low-energy gas-phase collisions of CD3+ and 3-fluorobenzonitrile molecular ions with neutral n-butane reagent gas were conducted in a triple quadrupole (QQQ) instrument. Relevant MP2 6-31G*//MP2 6-31G* ab initio and thermochemical calculations provide further insight in the neutralization mechanisms of methyl cation. The data suggest that neutralization of methyl cation with hydrocarbon and fluorocarbon SAMs occurs by concerted chemical reactions, i.e., that neutralization of the projectile occurs not only by a direct electron transfer from the surface but also by formation of a neutral molecule. The calculations indicate that the following products can be formed by exothermic processes and without appreciable activation energy: CH4 (formal hydride ion addition) and C2H6 (formal methyl anion addition) from a hydrocarbon surface and CH3F (formal fluoride addition) from a fluorocarbon surface. The results also demonstrate that, in some cases, simple thermochemical calculations cannot be used to predict the energy profiles because relatively large activation energies can be associated with exothermic reactions, as was found for the formation of CH3CF3 (formal addition of trifluoromethyl anion).

  9. Study of the surface-enhanced Raman spectroscopy of residual impurities in hydroxylamine-reduced silver colloid and the effects of anions on the colloid activity.

    Science.gov (United States)

    Dong, Xiao; Gu, Huaimin; Liu, Fangfang

    2012-03-01

    The paper investigated the residual ions in hydroxylamine-reduced silver colloid (HRSC) and the relationship between the condition of HRSC and the enhanced mechanisms of this colloid. We also detected the SERS of MB and studied the effects of anions on the Raman signal. In the case of HRSC, the bands of residual ions diminish while the bands of Ag-anions increase gradually with increasing the concentrations of Cl(-) and NO(3)(-). It means the affinity of residual ions on the silver surface is weaker than that of Cl(-) and NO(3)(-) and the residual ions are replaced gradually by the added Cl(-) or NO(3)(-). The Raman signal of residual ions can be detected by treatment with anions that do not bind strongly to the silver surface, such as SO(4)(2-). The most intense band of Ag-anions bonds can be also observed when adding weakly binding anions to the colloid. However, the anions which make up the Ag-anions bonds are residual Cl(-) and the effect of weakly binding anions is only to aggregate the silver particles. Residual Cl(-) can be replaced by I(-) which has the highest affinity. From the detection of methylene blue (MB), the effects of anions on the enhancement of Raman signal are discussed in detail, and these findings could make the conditions suitable for detecting analytes in high efficiency. This study will have a profound implication to SERS users about their interpretation of SERS spectra when obtaining these anomalous bands. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Influence of the type of oxidant on anion exchange properties of fibrous Cladophora cellulose/polypyrrole composites.

    Science.gov (United States)

    Razaq, Aamir; Mihranyan, Albert; Welch, Ken; Nyholm, Leif; Strømme, Maria

    2009-01-15

    The electrochemically controlled anion absorption properties of a novel large surface area composite paper material composed of polypyrrole (PPy) and cellulose derived from Cladophora sp. algae, synthesized with two oxidizing agents, iron(III) chloride and phosphomolybdic acid (PMo), were analyzed in four different electrolytes containing anions (i.e., chloride, aspartate, glutamate, and p-toluenesulfonate) of varying size.The composites were characterized with scanning and transmission electron microscopy, N2 gas adsorption,and conductivity measurements. The potential-controlled ion exchange properties of the materials were studied by cyclic voltammetry and chronoamperometry at varying potentials. The surface area and conductivity of the iron(III) chloride synthesized sample were 58.8 m2/g and 0.65 S/cm, respectively, while the corresponding values for the PMo synthesized sample were 31.3 m2/g and 0.12 S/cm. The number of absorbed ions per sample mass was found to be larger for the iron(III) chloride synthesized sample than for the PMo synthesized one in all four electrolytes. Although the largest extraction yields were obtained in the presence of the smallest anion (i.e., chloride) for both samples, the relative degree of extraction for the largest ions (i.e., glutamate and p-toluenesulfonate) was higher for the PMo sample. This clearly shows that it is possible to increase the extraction yield of large anions by carrying out the PPy polymerization in the presence of large anions. The results likewise show that high ion exchange capacities, as well as extraction and desorption rates, can be obtained for large anions with high surface area composites coated with relatively thin layers of PPy.

  11. Ion-Pair Extractive Spectrophotometric Assay of Terbinafine Hydrochloride in Pharmaceuticals and Spiked Urine Using Bromocresol Purple

    Science.gov (United States)

    Salem Qarah, N. A.; Basavaiah, K.; Swamy, N.

    2016-09-01

    Two simple, rapid, selective, and sensitive methods were developed and validated for the determination of terbinafi ne hydrochloride (TBH) in pharmaceuticals and urine. The fi rst method (method A) is based on the formation of a yellow ion-pair complex of TBH and bromocresol purple (BCP), a sulfonephthalein dye, in Walpole buffer of pH 3.61, which was extracted into chloroform and investigated at 420 nm. For the second method (method B) the drug-dye ion-pair was broken in alkaline KOH medium, and the resulting free dye color was measured at 610 nm. All variables were studied to optimize the reaction conditions. The regression analysis of Beer's law plots showed good correlation in the concentration ranges of 1-10 and 0.1-2.0 μg/mL for method A and method B, respectively. Molar absorptivity values were 2.99 × 104, and 1.51×105 L/(mol × cm) for measurements by these methods. The methods were also validated for limits of detection (LOD) and quantifi cation (LOQ), intra-day and inter-day accuracy and precision, selectivity, robustness and ruggedness. The composition of the ion-pair (drug-dye) used in the method A was found to be 1:1 by both mole-ratio and Job's methods. The developed methods were applied to tablets, and the results were in good agreement with the label claim and those of the reference method. Because of its high sensitivity, method A was applied to spiked human urine with percent recoveries in the range 96.58-107.3 and a standard deviation <2%.

  12. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    Energy Technology Data Exchange (ETDEWEB)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju [Dept. of Chemistry, Sunchon National University, Suncheon (Korea, Republic of)

    2016-10-15

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN{sup -} selective, colorimetric sensor either without or with UV irradiation.

  13. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    International Nuclear Information System (INIS)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju

    2016-01-01

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN"- selective, colorimetric sensor either without or with UV irradiation

  14. Specific anion effects on copper surface through electrochemical treatment: Enhanced photoelectrochemical CO2 reduction activity of derived nanostructures induced by chaotropic anions

    Science.gov (United States)

    Navaee, Aso; Salimi, Abdollah

    2018-05-01

    Copper derivatives are the most prominent CO2 reduction electrocatalyst. Herein, the metallic copper has been electrochemically treated with some of common ionic salts such as N3bar, HPO2bar, S2bar, Fbar, Clbar, Brbar and Ibar based on the dissolution of a metallic working electrode in an aqueous solution to derive the surface roughness incorporated with nanostructures. Diverse surface morphology can be obtained when the ionic radii of anions are changed. Surface study reveals various roughness shapes based on the size and polarity of the anions, where the ions with higher ionic radii have higher impact on the Cu surface. In comparison, polyatomic oxyanion such as HPO2bar even with large ionic radii do not have enough strength to create the surface roughness than that of oxygen-free anions with large ionic radii. The photoelectrochemical behavior of the modified surfaces toward CO2 reduction is studied at a wide potential window in bicarbonate aqueous solution. Based on our investigations, treated surfaces by Ibar, Clbar and S2bargive a more surface roughness, while Ibar and N3bar offer higher catalytic activity toward CO2 reduction due to possible complexing ability of these anions with Cu cations, followed by formation of the co-catalyst semiconductor and facilitate electron transfer. This methodology can be applied to investigate the effect of ions on transition metals along with obtaining different surface morphologies tailored to different applications.

  15. Medium dependent dual turn on/turn off fluorescence sensing for Cu2 + ions using AMI/SDS assemblies

    Science.gov (United States)

    Gujar, Varsha B.; Ottoor, Divya

    2017-02-01

    Behavior of Amiloride (AMI) as a metal ion sensor in anionic surfactant assemblies of varying concentrations at different pH is depicted in this work. From a non-sensor fluorophore, AMI has been transformed in to a tunable fluorosensor for Cu2 + ions in various SDS concentrations. At premicellar concentration of SDS, ion-pair complex is expected to be formed between AMI and SDS due to electrostatic interactions between them. However at CMC concentrations of SDS, fluorescence intensity of AMI is greatly enhanced with red shift in emission, due to the incorporation of AMI molecule in the hydrophobic micellar interface. The behavior of metal sensing by AMI-SDS assemblies gives rise to several interesting observations. Micellation of SDS has been greatly enhanced by increasing copper ion concentrations, as these counter ions screens the charge on monomers of SDS which lead to the aggregation at premicellar concentrations only. Concentrations and pH dependent discrete trends of interactions between SDS-AMI and SDS-Cu2 + ions, have given tunable fluorescence responses (fluorescence turn on/turn off) of AMI for added Cu2 + ions. The electrostatic interaction between the metal cations and the anionic surfactants is the driving force for bringing the metal ions near to the vicinity of micelle where AMI resides. Thus, a comprehensive understanding of the mechanism related to the 'turn on-turn off' fluorescence response of AMI with respect to pH and SDS concentration for effective Cu2 + ion sensing is illustrated in this work.

  16. A chemical approach for site-specific identification of NMR signals from protein side-chain NH{sub 3}{sup +} groups forming intermolecular ion pairs in protein–nucleic acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kurtis M. [University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine (United States); Nguyen, Dan; Esadze, Alexandre; Zandrashvili, Levani [University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (United States); Gorenstein, David G. [University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine (United States); Iwahara, Junji, E-mail: juiwahar@utmb.edu, E-mail: j.iwahara@utmb.edu [University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (United States)

    2015-05-15

    Protein–nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein–DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH{sub 3}{sup +} groups forming the intermolecular ion pairs. A characteristic change in their {sup 1}H and {sup 15}N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain {sup 15}N and DNA phosphorodithiaote {sup 31}P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein–RNA complexes as well.

  17. Fixing of metallic acetates on an anion-exchange resin; Fixation d'acetates metalliques dans une resine echangeuse d'anions

    Energy Technology Data Exchange (ETDEWEB)

    Brigaudeau-Vaissiere, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etude Nucleaires

    1966-06-01

    After giving a brief review of the theoretical principles governing the fixation of anionic complexes of metallic elements on an anion exchange resin, we consider the particular case of uranyl acetate. By plotting the partition curves we have been able to calculate the exchange constants in the resin. By studying the changes in the logarithm of the limiting partition coefficient as a function of the logarithm of the free acetate ion concentration, it has been possible to calculate the dissociation constants for the complexes in solution. The fixation of a large number of metallic acetates has been studied. All the tests have been negative except in the case of mercury. For this reason we have been able to consider the possibility of separating uranium from a certain number of elements. Some of these separations are possible even in the presence of interfering anions such as chlorides which have a greater affinity for the resin than have the acetate ions. In the case of water-ethanol and water-isopropanol mixtures, we have improved the conditions under which copper acetate and mercury acetate may be fixed. This study has enabled us to calculate the dissociation constant for the CuAc{sub 3}{sup -} complex in the mixtures water +40% (by weight) isopropanol and water +50% (by weight) isopropanol. It should also make it possible to use separation conditions which could not hitherto be applied in aqueous media. (author) [French] Apres avoir rappele les principes theoriques de la fixation des complexes anioniques des elements metalliques dans une resine echangeuse d'anions, nous avons etudie tout particulierement le cas de l'acetate d'uranyle. Le trace des courbes de partage nous a permis de calculer les constantes d'echange dans la resine. L'etude des variations du logarithme du coefficient limite de partage avec le logarithme de la concentration des ions acetate libres nous a conduits aux calculs des constantes de dissociation des complexes en solution. La fixation d

  18. Adsorption and intercalation of anionic surfactants onto layered ...

    Indian Academy of Sciences (India)

    Layered double hydroxides (LDH) with brucite like structure was modified with various anionic surfactants containing sulfonate, carboxyl, phosphonate and sulfate end group through ion-exchange method. XRD reports indicated that the sulfonate group containing surfactants led to an adsorption process whereas the sulfate ...

  19. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  20. Application of a cholesterol stationary phase in the analysis of phosphorothioate oligonucleotides by means of ion pair chromatography coupled with tandem mass spectrometry.

    Science.gov (United States)

    Studzińska, Sylwia; Krzemińska, Katarzyna; Szumski, Michał; Buszewski, Bogusław

    2016-07-01

    The main aim of this study was the investigation of the influence of several ion pair reagents towards both the retention and the mass spectrometry sensitivity of phosphorothioate oligonucleotides. A cholesterol stationary phase was applied for the first time in the analysis of this group of compounds. The mobile phase composition was modified by changing the concentration and the type of amines and acetates or 1,1,1,3,3,3-hexafluoroisopropanol. It has been shown that the increase of amines concentration results in the retention factor increase for each oligonucleotide, on each adsorbent. The only exception was the mobile phase composed of triethylamine and 1,1,1,3,3,3-hexafluoroisopropanol. This is a consequence of interactions taking place between a cholesterol molecule and an alcohol. This effect was convenient when the mass spectrometry detection was applied, since it allowed an increase in the sensitivity. Moreover, optimization of the mobile phase composition and its impact on the efficiency of ionization process and on the sensitivity in mass spectrometry were also presented. The optimization of this new method, based on cholesterol stationary phase coupled with mass spectrometry detection, was finally applied for the determination of phosphorothioate oligonucleotides impurity in a real sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Preparation of anionic clay–birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate

    International Nuclear Information System (INIS)

    Arulraj, James; Rajamathi, Michael

    2013-01-01

    Oxalate intercalated anionic clay-like nickel zinc hydroxysalt was obtained starting from nickel zinc hydroxyacetate, Ni 3 Zn 2 (OH) 8 (OAc) 2 ·2H 2 O, by anion exchange. The intercalated oxalate species was reacted with potassium permanganate in such a way that the layered manganese oxide formed was within the interlayer region of the anionic clay resulting in a layered composite in which the negative charges on the birnessite type manganese oxide layers compensate the positive charges on the anionic clay layers. Birnessite to anionic clay ratio could be varied by varying the reaction time or the amount of potassium permanganate used. - Graphical abstract: Nickel zinc hydroxyoxalate was reacted with potassium permanganate to get nickel zinc hydroxide birnessite composites in which the positive charges on the hydroxide layers are neutralized by the negative charges on birnessite layers. Highlights: ► Anionic and cationic layered solid composites prepared. ► Ni–Zn hydroxyoxalate reacted with KMnO 4 to deposit MnO 2 in the interlayer. ► Birnessite layers coexist with anionic clay layers in the composites. ► Birnessite/anionic clay ratio controlled by amount of KMnO 4 used and reaction time

  2. Ion-pair extraction of [3]histobadine from biological fluids

    International Nuclear Information System (INIS)

    Scasnar, V.

    1997-01-01

    A simple and specific radiometric assay was developed for determination of stobadine, a cardio protective drug, in the serum of experimental animals. It is based on a single extraction step of the radioactively labeled drug from serum into the benzene solution of dicarbolide of cobalt followed by the quantitation of the extracted radioactivity by using liquid scintillation counting. The extraction mechanism involves the ion-pair formation between the protonized molecule of stobadine and the hydrophobic, negatively charged molecule of dicarbollide of cobalt. The extraction of yield of stobadine from 1 ml of serum was 95% in the concentration range from 1 to 6000 ng/ml. The co extraction of metabolites was less than 5%. The assay was applied to determination of stobadine in serum of dogs and the data obtained were in good agreement with those obtained by high performance liquid chromatography. (author)

  3. Some aspects of surfactant action mechanism in the organic reagents - metal ions systems

    International Nuclear Information System (INIS)

    Chernova, R.K.; Shtykov, S.N.; Beloliptseva, G.M.; Sukhova, L.K.; Amelin, V.G.; Kulapina, E.G.

    1984-01-01

    Results are reviewed of investigations into the interaction of ions of Mo(6), W, Zr, Be, Sc, Nb, Ta, J, rare earths, a. o. with organic reagents of triphenylmethane class in the 8M H 2 SO 4 -pH14 acidity range and the 1x10 -3 -5x10 -6 M concentration range both in the presence and absence of different surfactant type (cetylpyridine, methyltrimethylammonium, synthanols, etc). Three types of effects, determining enhancement of the sensitivity and selectivity of reactions jn the Me-R-surfactant systems, were determined: an increase in the number of coordinated ligands, the activating effect of cation surfactants resulting in a potential complexing in acid media, multicenter interaction of polydentate ligands both via chelating groups and auxochrome groups in the presence of cation surfactants. Protolytic and flotation properties of ionic associates are considered. The observed effects are explained from the viewpoint of electrostatic and hydrophobic interactions in the R-surfactant systems, observed by the methods of NMR, polarography amperometry, conductometry. A possible use of the investigated M-R-surfactant systems as complexonometric indicators was evaluated. A possibility was shown of using them for direct titrimetric determination of hundredth milligram portions of Cu, Ga, In and Sc at a titrant concentratjon of less than 0.01 M. It follows from the estimation of basic optical parameters of the Me-R-surfactant systems that detection

  4. A polyaniline-magnetite nanocomposite as an anion exchange sorbent for solid-phase extraction of chromium(VI) ions

    International Nuclear Information System (INIS)

    Rezvani, Mehdi; Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Shekari, Nafiseh

    2014-01-01

    This work describes a novel polyaniline-magnetite nanocomposite and its application to the preconcentration of Cr(VI) anions. The material was obtained by oxidative polymerization of aniline in the presence of magnetite nanoparticles. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Extraction time, amount of magnetic sorbent and pH value were selected as the main factors affecting sorption. The sorption capacity of the sorbent for Cr(VI) is 54 mg g −1 . The type, volume and concentration of the eluents, and the elution time were selected as main factors in the optimization study of the elution step. Following sorption and elution, the Cr(VI) ions were reacted with diphenylcarbazide, and the resulting dye was quantified by HPLC with optical detection at 546 nm. The limit of detection is 0.1 μg L −1 , and all the relative standard deviations are <6.3 %. The nanocomposite was successfully applied to the rapid extraction and determination of trace quantities of Cr(VI) ions in spiked water samples. (author)

  5. Handling Pyrophoric Reagents

    Energy Technology Data Exchange (ETDEWEB)

    Alnajjar, Mikhail S.; Haynie, Todd O.

    2009-08-14

    Pyrophoric reagents are extremely hazardous. Special handling techniques are required to prevent contact with air and the resulting fire. This document provides several methods for working with pyrophoric reagents outside of an inert atmosphere.

  6. Simultaneous quantification of porcine myocardial adenine nucleotides and creatine phosphate by ion-pair reverse-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Cordis, G.A.; Das, D.K.

    1987-01-01

    In order to follow the energy metabolism and the levels of high-energy phosphate compounds in porcine myocardium subjected to ischemic insult, it was necessary to develop a high-performance liquid chromatography (HPLC) method where creatine phosphate (CP) and the adenine nucleotides could be measured simultaneously in a single run. Currently available ion-pair reverse-phase HPLC methods require a separate injection with a change in wavelength and mobile phase in order to measure the creatine phosphate, while baseline separation of AMP is lacking. The ion-exchange HPLC method includes a simultaneous determination, but the baseline drifts due to the gradient and baseline separation of AMP is not achieved. In the following ion-pair reverse-phase HPLC method, simultaneous measurements of porcine myocardial adenine nucleotides and creatine phosphate were achieved along with a stable baseline and homogeneous baseline separation of each measured compound, allowing accurate quantification

  7. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 °C - A potentiometric and spectrophotometric study

    Science.gov (United States)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2013-11-01

    Carbonic acid ionization and sodium bicarbonate and carbonate ion pair formation constants have been experimentally determined in dilute hydrothermal solutions to 200 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using the pH indicators, 2-napthol and 4-nitrophenol, at 25-200 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for NaHCO(aq)(K) and NaCO3-(aq)(K) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The NaHCO(aq) and NaCO3-(aq) ion pair formation constants vary between 25 and 200 °C having values of logK=-0.18 to 0.58 and logK=1.01 to 2.21, respectively. These ion pairs are weak at low-temperatures but become increasingly important with increasing temperature under neutral to alkaline conditions in moderately dilute to concentrated NaCl solutions, with NaCO3-(aq) predominating over CO32-(aq) in ⩾0.1 M NaCl solution at temperatures above 100 °C. The results demonstrate that NaCl cannot be considered as an inert (non-complexing) electrolyte in aqueous carbon dioxide containing solutions at elevated temperatures.

  8. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method

    Science.gov (United States)

    Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul

    2012-01-01

    Background Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Methods Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. Results The nanoparticles prepared in this study were spherical, with an average particle size of 85–424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Conclusion Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug. PMID:22275837

  9. Characterization of oligosaccharides with capillary high performance anion exchange chromatography hyphenated to pulsed amperometric detection and ion trap mass spectrometry : application to the analysis of human lysosomal disorders

    NARCIS (Netherlands)

    Bruggink, Cornelis

    The development of a capillary ion chromatograph is described together with a matching desalter. This desalter made it possible to use on-line a mass spectrometer. The mass spectrometer enables partly to characterize carbohydrates eluting from the anion exchange column. This separation technology is

  10. Preparation of anionic clay-birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Arulraj, James [Materials Research Group, Department of Chemistry, St. Joseph' s College, 36 Langford Road, Bangalore 560 027 (India); Rajamathi, Michael, E-mail: mikerajamathi@rediffmail.com [Materials Research Group, Department of Chemistry, St. Joseph' s College, 36 Langford Road, Bangalore 560 027 (India)

    2013-02-15

    Oxalate intercalated anionic clay-like nickel zinc hydroxysalt was obtained starting from nickel zinc hydroxyacetate, Ni{sub 3}Zn{sub 2}(OH){sub 8}(OAc){sub 2}{center_dot}2H{sub 2}O, by anion exchange. The intercalated oxalate species was reacted with potassium permanganate in such a way that the layered manganese oxide formed was within the interlayer region of the anionic clay resulting in a layered composite in which the negative charges on the birnessite type manganese oxide layers compensate the positive charges on the anionic clay layers. Birnessite to anionic clay ratio could be varied by varying the reaction time or the amount of potassium permanganate used. - Graphical abstract: Nickel zinc hydroxyoxalate was reacted with potassium permanganate to get nickel zinc hydroxide birnessite composites in which the positive charges on the hydroxide layers are neutralized by the negative charges on birnessite layers. Highlights: Black-Right-Pointing-Pointer Anionic and cationic layered solid composites prepared. Black-Right-Pointing-Pointer Ni-Zn hydroxyoxalate reacted with KMnO{sub 4} to deposit MnO{sub 2} in the interlayer. Black-Right-Pointing-Pointer Birnessite layers coexist with anionic clay layers in the composites. Black-Right-Pointing-Pointer Birnessite/anionic clay ratio controlled by amount of KMnO{sub 4} used and reaction time.

  11. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Directory of Open Access Journals (Sweden)

    Siekierka Anna

    2017-01-01

    Full Text Available Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  12. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Science.gov (United States)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  13. Potential of mean force for ion pairs in non-aqueous solvents. Comparison of polarizable and non-polarizable MD simulations

    Science.gov (United States)

    Odinokov, A. V.; Leontyev, I. V.; Basilevsky, M. V.; Petrov, N. Ch.

    2011-01-01

    Potentials of mean force (PMF) are calculated for two model ion pairs in two non-aqueous solvents. Standard non-polarizable molecular dynamics simulation (NPMD) and approximate polarizable simulation (PMD) are implemented and compared as tools for monitoring PMF profiles. For the polar solvent (dimethylsulfoxide, DMSO) the PMF generated in terms of the NPMD reproduces fairly well the refined PMD-PMF profile. For the non-polar solvent (benzene) the conventional NPMD computation proves to be deficient. The validity of the correction found in terms of the approximate PMD approach is verified by its comparison with the result of the explicit PMD computation in benzene. The shapes of the PMF profiles in DMSO and in benzene are quite different. In DMSO, owing to dielectric screening, the PMF presents a flat plot with a shallow minimum positioned in the vicinity of the van der Waals contact of the ion pair. For the benzene case, the observed minimum proves to be unexpectedly deep, which manifests the formation of a tightly-binded contact ion pair. This remarkable effect arises owing to the strong electrostatic interaction that is incompletely screened by a non-polar medium. The PMFs for the binary benzene/DMSO mixtures display intermediate behaviour depending on the DMSO content.

  14. ICR studies of some anionic gas phase reactions and FTICR software design

    International Nuclear Information System (INIS)

    Noest, A.J.

    1983-01-01

    This thesis consists of two parts. Part one (Chs. 1-5) reports experimental results from mostly drift-cell ICR studies of negative ion-molecule reactions; part two (Chs. 6-11) concerns the design of software for an FTICR instrument. The author discusses successively: 1. ion cyclotron resonance spectrometry; 2. the gas phase allyl anion; 3. the (M-H) and (M-H2) anions from acetone; 4. negative ion-molecule reactions of aliphatic nitrites studied by cyclotron resonance; 5. homoconjugation versus charge-dipole interaction effects in the stabilization of carbanions in the gas phase; 6. the Fourier Transform ICR method; 7. the FTICR-software; 8. an efficient adaptive matcher filter for fast transient signals; 9. reduction of spectral peak height errors by time-domain weighing; 10. Chirp excitation; 11. Compact data storage. The book concludes with a Dutch and English summary (G.J.P.)

  15. Production of rare-earth atomic negative ion beams in a cesium-sputter-type negative ion source

    International Nuclear Information System (INIS)

    Davis, V.T.; Covington, A.M.; Duvvuri, S.S.; Kraus, R.G.; Emmons, E.D.; Kvale, T.J.; Thompson, J.S.

    2007-01-01

    The desire to study negative ion structure and negative ion-photon interactions has spurred the development of ion sources for use in research and industry. The many different types of negative ion sources available today differ in their characteristics and abilities to produce anions of various species. Thus the importance of choosing the correct type of negative ion source for a particular research or industrial application is clear. In this study, the results of an investigation on the production of beams composed of negatively-charged rare-earth ions from a cylindrical-cathode-geometry, cesium-sputter-type negative ion source are presented. Beams of atomic anions have been observed for most of the first-row rare-earth elements, with typical currents ranging from hundreds of picoamps to several nanoamps

  16. Ion-exclusion/cation-exchange chromatography with dual detection of the conductivity and spectrophotometry for the simultaneous determination of common inorganic anionic species and cations in river and wastewater.

    Science.gov (United States)

    Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Hasebe, Kiyoshi; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2011-01-01

    Simultaneous determinations of common inorganic anionic species (SO(4)(2-), Cl(-), NO(3)(-), phosphate and silicate) and cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) were conducted using an ion-chromatography system with dual detection of conductivity and spectrophotometry in tandem. The separation of ionic species on a weakly acidic cation-exchange resin was accomplished using a mixture of 100 mM ascorbic acid and 4 mM 18-crown-6 as an acidic eluent (pH 2.6), after which the ions were detected using a conductivity detector. Subsequently, phosphate and silicate were analyzed based on derivatization with molybdate and spectrophotometry at 700 nm. The detection limits at S/N = 3 ranged from 0.11 to 2.9 µM for analyte ionic species. This method was applied to practical river water and wastewater with acceptable criteria for the anion-cation balance and comparisons of the measured and calculated electrical conductivity, demonstrating the usefulness of the present method for water quality monitoring.

  17. Improvement of Thermal Stability via Outer-Loop Ion Pair Interaction of Mutated T1 Lipase from Geobacillus zalihae Strain T1

    Directory of Open Access Journals (Sweden)

    Mahiran Basri

    2012-01-01

    Full Text Available Mutant D311E and K344R were constructed using site-directed mutagenesis to introduce an additional ion pair at the inter-loop and the intra-loop, respectively, to determine the effect of ion pairs on the stability of T1 lipase isolated from Geobacillus zalihae. A series of purification steps was applied, and the pure lipases of T1, D311E and K344R were obtained. The wild-type and mutant lipases were analyzed using circular dichroism. The Tm for T1 lipase, D311E lipase and K344R lipase were approximately 68.52 °C, 70.59 °C and 68.54 °C, respectively. Mutation at D311 increases the stability of T1 lipase and exhibited higher Tm as compared to the wild-type and K344R. Based on the above, D311E lipase was chosen for further study. D311E lipase was successfully crystallized using the sitting drop vapor diffusion method. The crystal was diffracted at 2.1 Å using an in-house X-ray beam and belonged to the monoclinic space group C2 with the unit cell parameters a = 117.32 Å, b = 81.16 Å and c = 100.14 Å. Structural analysis showed the existence of an additional ion pair around E311 in the structure of D311E. The additional ion pair in D311E may regulate the stability of this mutant lipase at high temperatures as predicted in silico and spectroscopically.

  18. Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Leung, P.K.; Xu, Q.; Zhao, T.S.; Zeng, L.; Zhang, C.

    2013-01-01

    Highlights: • The permeability of vanadium ions through the silica nanocomposite AEM (SNAEM) is ten times lower than that for Nafion 115. • The rates of self-discharge and capacity fading of the VRFB are substantially reduced with the use of the SNAEM. • The Coulombic and energy efficiencies are as high as 92% and 73%, respectively, at 40 mA cm −2 . -- Abstract: Crossover of vanadium ions through the membranes of all-vanadium redox flow batteries (VRFB) is an issue that limits the performance of this type of flow battery. This paper reports on the preparation of a sol–gel derived silica nanocomposite anion exchange membrane (AEM) for VRFBs. The EDS and FT-IR characterizations confirm the presence and the uniformity of the silica nanoparticles formed in the membrane via an in situ sol–gel process. The properties of the obtained membrane, including the ion-exchange capacity, the area resistance, and the water uptake, are evaluated and compared to the pristine AEM and the Nafion cation exchange membrane (CEM). The experimental results show that the permeability of the vanadium ions through the silica nanocomposite AEM is about 20% lower than that of the pristine AEM, and one order of magnitude lower than that of the Nafion CEM. As a result, the rates of self-discharge and the capacity fading of the VRFB are substantially reduced. The Coulombic and energy efficiencies at a current density of 40 mA cm −2 are, respectively, as high as 92% and 73%

  19. Thermometric nanosize NMR-sensors for temperature determination in weakly polar non-aqueous media on the base of ion pairs of paramagnetic complexes of lanthanides(III)

    International Nuclear Information System (INIS)

    Babajlov, S.P.

    2008-01-01

    For temperature determination in solutions it is suggested that the temperature dependence of the paramagnetic lanthanide-induced shifts (LIS) in the NMR spectra on the ligand nuclei be used for [Ln(PTA) 2 (18-crown-6)] + [Ln(PTA) 4 ] - complex ion pairs formed in CCl 4 , CDCl 3 , CD 2 Cl 2 , CD 3 C 6 D 5 , and C 2 D 3 N type low-polar solvents (Ln = La, Ce, Pr, Nd, Eu; PTA is the pivalyltrifluoroacetonate anion). It was found experimentally that the [Ln(PTA) 2 (18-crown-6)] + complex cation molecules (Ln = Ce and Pr) proved most suitable for use as nanosized (∼1.1 nm) probes for temperature determinations in nonaqueous solutions. A linear dependence of the LIS on the 1 H nuclei of different groups and the difference between the LIS corresponding to the CH 2 groups of the 18-crown-6 molecules and the CH groups of the PTA anions on the reciprocal temperature (1/T) was found. The LIS of the individual signals of different groups in Ln paramagnetic complexes (relative to the signals of the diamagnetic analogs, e.g., La or Lu) may be used for temperature control in the sample, although the temperature measurement error is smaller (≤0.04 K) when the difference between the LIS of the CH 2 and CH groups is used. Due to the high thermodynamic and kinetic stability combined with small sizes of [Ln(PTA) 2 (18-crown-6)] + [Ln(PTA) 4 ] - molecules in nonaqueous solutions, these compounds may be used as thermometric NMR sensors directly in reaction media for in situ control over temperature [ru

  20. Non-aqueous electrolytes for lithium ion batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  1. The mechanism of ion exchange on ammonium 12-molybdophosphate (AMP)

    International Nuclear Information System (INIS)

    Boeyens, J.C.A.; McDougall, G.J.; Smit, J. van R.

    1987-01-01

    This paper reviews some published and unpublished data on the ion-exchange properties of AMP. The three NH 4 + ions are only partially exchanged for large monovalent ions. In the case of NH 4 + /K + exchange, the energy lost by the breaking of H bonds between the NH 4 + ions and anionic cage oxygen atoms beyond the point of maximum exchange is no longer compensated for by bond strengthening in the anion due to contraction of the cage. With Rb + , Cs + and T1 + , limited convertibility results from the lattice expansion required to accommodate these larger ions. During exchange, part of the cations pass through the anionic cages, thereby causing considerable lattice disorder. The maximum exchange capacity of AMP for the alkali metal ions is not a simple function of cation radius. (author)

  2. Thermodynamic characteristics of sorption extraction and chromatographic separation of anionic complexes of erbium and cerium with Trilon B on weakly basic anionite

    Science.gov (United States)

    Cheremisina, O. V.; Ponomareva, M. A.; Sagdiev, V. N.

    2016-03-01

    The adsorption of anionic complexes of erbium with Trilon B on D-403 anionite is studied at ionic strengths of 1 and 2 mol/kg (NaNO3) and temperatures of 298 and 343 K. The values of the stability constants of complex ions of REE with Trilon B and the Gibbs energies of complexation are calculated. The values of the Gibbs energy and the enthalpy and entropy of ion exchange are determined. Using the obtained thermo-dynamic and sorption characteristics, the possible separation of anionic complexes of erbium and cerium with Trilon B is demonstrated via frontal ion-exchange chromatography. A series of sorption capacities of anionic complexes of cerium, yttrium, and erbium is presented using the values of the Gibbs energy of ion exchange.

  3. Theoretical understanding on the v(1)-SO4(2-) band perturbed by the formation of magnesium sulfate ion pairs.

    Science.gov (United States)

    Zhang, Hao; Zhang, Yun-Hong; Wang, Feng

    2009-02-01

    The factors determining the spectroscopic characteristics of the v(1)-SO4(2-) band of the MgSO4 ion pairs are discussed via ab initio calculation, including coupling effect, hydrogen bonding effect, and direct contact effect of Mg2+ with SO4(2-). With the calculation of the heavy water hydrated contact ion pairs (CIP), the overlap between the librations of water and the v(1)-SO4(2-) band can be separated, and thus the coupling effect is abstracted, and this coupling effect leads to a blue shift for the v(1)-SO4(2-) band of 5.6 cm(-1) in the monodentate CIP and 3.6 cm(-1) in the bidentate CIP. The hydrogen bonding between each water molecule without relation to Mg2+ and the sulfate ion makes the v(1)-SO4(2-) band blue shift of 3.7 cm(-1). When the outer-sphere water around Mg2+ are hydrogen bonded between SO4(2-) and Mg2+, it will make the largest disturbance to the v(1)-SO4(2-) band. Moreover, the inner-sphere water can affect the v(1)-SO4(2-) band conjunct with the direct contact of Mg2+ with SO4(2-), showing a blue shift of 14.4 cm(-1) in the solvent-shared ion pair, 22.6 cm(-1) in the monodentate CIP, 4.3 cm(-1) in the bidentate CIP, and 21.4 cm(-1) in the tridentate CIP. At last, the Raman spectral evolution in the efflorescence production process is tried to be rationalized. The shoulder at 995 cm(-1) is attributed to the monodentate CIP with 2-3 outer-sphere water molecules, whereas the new peak at 1021 cm(-1) at high concentration is assigned to the formation of aqueous triple ion.

  4. Role of ion-pair states in the predissociation dynamics of Rydberg states of molecular iodine.

    Science.gov (United States)

    von Vangerow, J; Bogomolov, A S; Dozmorov, N V; Schomas, D; Stienkemeier, F; Baklanov, A V; Mudrich, M

    2016-07-28

    Using femtosecond pump-probe ion imaging spectroscopy, we establish the key role of I(+) + I(-) ion-pair (IP) states in the predissociation dynamics of molecular iodine I2 excited to Rydberg states. Two-photon excitation of Rydberg states lying above the lowest IP state dissociation threshold (1st tier) is found to be followed by direct parallel transitions into IP states of the 1st tier asymptotically correlating to a pair of I ions in their lowest states I(+)((3)P2) + I(-)((1)S0), of the 2nd tier correlating to I(+)((3)P0) + I(-)((1)S0), and of the 3rd tier correlating to I(+)((1)D2) + I(-)((1)S0). Predissociation via the 1st tier proceeds presumably with a delay of 1.6-1.7 ps which is close to the vibrational period in the 3rd tier state (3rd tier-mediated process). The 2nd tier IP state is concluded to be the main precursor for predissociation via lower lying Rydberg states proceeding with a characteristic time of 7-8 ps and giving rise to Rydberg atoms I(5s(2)5p(4)6s(1)). The channel generating I((2)P3/2) + I((2)P1/2) atoms with total kinetic energy corresponding to one-photon excitation is found to proceed via a pump - dump mechanism with dramatic change of angular anisotropy of this channel as compared with earlier nanosecond experiments.

  5. A new multifunctional 1, 10-phenanthroline based fluorophore for anion and cation sensing

    Energy Technology Data Exchange (ETDEWEB)

    Alreja, Priya; Kaur, Navneet, E-mail: neet_chem@yahoo.co.in

    2015-12-15

    We report a new multi-ion responsive fluorophore 1 possessing an amide functionality featuring with 1, 10-phenanthroline unit with appropriately placed coordination sites for sensing Cu{sup 2+} and Zn{sup 2+} ions in 1:2 stoichiometry. Also, various functionalities of 1 organize to create an appropriate cavity to accommodate weakly basic and larger iodide ion generating 1:1 complex. The fluorescence intensity was greatly quenched on coordination of Cu{sup 2+}, Zn{sup 2+} and I{sup −} ions with appropriately placed multiple donor sites of 1 which was further supported by Density Functional Theory (DFT) computational studies. - Highlights: • A novel multifunctional 1, 10- Phenanthroline based fluorophore for sensing anion and cations. • First report on applicability of amides as multiple users for anion and cations. • Fluorescence quenching observed with Cu{sup 2+}, Zn{sup 2+} and I{sup -}. • Fluorescence titration experiments are well supported by DFT calculations.

  6. Some aspects of surfactant action mechanism in the organic reagents - metal ions systems

    Energy Technology Data Exchange (ETDEWEB)

    Chernova, R K; Shtykov, S N; Beloliptseva, G M; Sukhova, L K; Amelin, V G; Kulapina, E G [Saratovskij Gosudarstvennyj Univ. (USSR)

    1984-06-01

    Results are reviewed of investigations into the interaction of ions of Mo(6), W, Zr, Be, Sc, Nb, Ta, J, rare earths, a. o. with organic reagents of triphenylmethane class in the 8M H/sub 2/SO/sub 4/-pH14 acidity range and the 1x10/sup -3/-5x10/sup -6/ M concentration range both in the presence and absence of different surfactant type (cetylpyridine, methyltrimethylammonium, synthanols, etc). Three types of effects, determining enhancement of the sensitivity and selectivity of reactions jn the Me-R-surfactant systems, were determined: an increase in the number of coordinated ligands, the activating effect of cation surfactants resulting in a potential complexing in acid media, multicenter interaction of polydentate ligands both via chelating groups and auxochrome groups in the presence of cation surfactants. Protolytic and flotation properties of ionic associates are considered. The observed effects are explained from the viewpoint of electrostatic and hydrophobic interactions in the R-surfactant systems, observed by the methods of NMR, polarography amperometry, conductometry. A possible use of the investigated M-R-surfactant systems as complexonometric indicators was evaluated. A possibility was shown of using them for direct titrimetric determination of hundredth milligram portions of Cu, Ga, In and Sc at a titrant concentratjon of less than 0.01 M. It follows from the estimation of basic optical parameters of the Me-R-surfactant systems that detection.

  7. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-01-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  8. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-05-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  9. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors.

    Science.gov (United States)

    Dou, Qingyun; Liu, Lingyang; Yang, Bingjun; Lang, Junwei; Yan, Xingbin

    2017-12-19

    Supercapacitors based on activated carbon electrodes and ionic liquids as electrolytes are capable of storing charge through the electrosorption of ions on porous carbons and represent important energy storage devices with high power delivery/uptake. Various computational and instrumental methods have been developed to understand the ion storage behavior, however, techniques that can probe various cations and anions of ionic liquids separately remain lacking. Here, we report an approach to monitoring cations and anions independently by using silica nanoparticle-grafted ionic liquids, in which ions attaching to silica nanoparticle cannot access activated carbon pores upon charging, whereas free counter-ions can. Aided by this strategy, conventional electrochemical characterizations allow the direct measurement of the respective capacitance contributions and acting potential windows of different ions. Moreover, coupled with electrochemical quartz crystal microbalance, this method can provide unprecedented insight into the underlying electrochemistry.

  10. Isolation of nitrosylruthenium nitrato complexes by ion exchange and extraction chromatography

    International Nuclear Information System (INIS)

    Huang, H.; Liu, L.

    TBP Levextrel and cation exchange resins were used to separate RuNO nitrato complexes of different nitric acid concentrations. 7402 quaternary ammonium salt Levextrel was used instead of an anionic exchange resin to separate anionic and neutral complex ions. The results indicated that D 3 and D 4 , which can easily be extracted by TBP, were anionic and neutral complex ions

  11. A simple and highly selective 2,2-diferrocenylpropane-based multi-channel ion pair receptor for Pb(2+) and HSO4(-).

    Science.gov (United States)

    Wan, Qian; Zhuo, Ji-Bin; Wang, Xiao-Xue; Lin, Cai-Xia; Yuan, Yao-Feng

    2015-03-28

    A structurally simple, 2,2-diferrocenylpropane-based ion pair receptor 1 was synthesized and characterized by (1)H NMR, (13)C NMR, HRMS, elemental analyses, and single-crystal X-ray diffraction. The ion pair receptor 1 showed excellent selectivity and sensitivity towards Pb(2+) with multi-channel responses: a fluorescence enhancement (more than 42-fold), a notable color change from yellow to red, redox anodic shift (ΔE1/2 = 151 mV), while HSO4(-) promoted fluorescence enhancement when Pb(2+) or Zn(2+) was bonded to the cation binding-site. (1)H NMR titration and density functional theory were performed to reveal the sensing mechanism based on photo-induced electron transfer (PET).

  12. Pu Anion Exchange Process Intensification

    International Nuclear Information System (INIS)

    Taylor-Pashow, Kathryn M. L.

    2017-01-01

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  13. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  14. Anisotropic exchange interaction for magnetic ion pairs in insulators

    International Nuclear Information System (INIS)

    Passeggi, M.C.G.

    1975-12-01

    The sources of possible contributions to the magnetic anisotropy for a pair of orbitally non degenerate magnetic ions are investigated. The problem being formulated with the help of the operator form of perturbation theory and irreducible tensor operators. Apart from the usual dipole-dipole effective interaction, mainly induced by the electronic spin-spin dipole coupling corrected by covalency, other mechanisms mediated by the spin-orbit coupling appear. These are a consequence of an appropriate description of the spin-orbit operators for a system which allows for delocalization of the magnetic electrons. A process similar to that known as pseudodipolar appears from contributions in which spin orbit combined with the Coulomb repulsion and with one-electron interactions (acting analogously as for the ''kinetic exchange'') produce compensating effects in third and fourth order, respectively. However, this effect does not appear to be describable in terms of the phenomenological exchange, as is usually assumed. (Passeggi, M.C.G.)

  15. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.

    Science.gov (United States)

    Tsonev, Latchezar I; Hirsh, Allen G

    2008-07-25

    pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.

  16. Specific Reagent for Cr(III): Imaging Cellular Uptake of Cr(III) in Hct116 Cells and Theoretical Rationalization.

    Science.gov (United States)

    Ali, Firoj; Saha, Sukdeb; Maity, Arunava; Taye, Nandaraj; Si, Mrinal Kanti; Suresh, E; Ganguly, Bishwajit; Chattopadhyay, Samit; Das, Amitava

    2015-10-15

    A new rhodamine-based reagent (L1), trapped inside the micellar structure of biologically benign Triton-X 100, could be used for specific recognition of Cr(III) in aqueous buffer medium having physiological pH. This visible light excitable reagent on selective binding to Cr(III) resulted in a strong fluorescence turn-on response with a maximum at ∼583 nm and tail of that luminescence band extended until 650 nm, an optical response that is desired for avoiding the cellular autofluorescence. Interference studies confirm that other metal ions do not interfere with the detection process of Cr(III) in aqueous buffer medium having pH 7.2. To examine the nature of binding of Cr(III) to L1, various spectroscopic studies are performed with the model reagent L2, which tend to support Cr(III)-η(2)-olefin π-interactions involving two olefin bonds in molecular probe L1. Computational studies are also performed with another model reagent LM to examine the possibility of such Cr(III)-η(2)-olefin π-interactions. Presumably, polar functional groups of the model reagent LM upon coordination to the Cr(III) center effectively reduce the formal charge on the metal ion and this is further substantiated by results of the theoretical studies. This assembly is found to be cell membrane permeable and shows insignificant toxicity toward live colon cancer cells (Hct116). Confocal laser scanning microscopic studies further revealed that the reagent L1 could be used as an imaging reagent for detection of cellular uptake of Cr(III) in pure aqueous buffer medium by Hct116 cells. Examples of a specific reagent for paramagnetic Cr(III) with luminescence ON response are scanty in the contemporary literature. This ligand design helped us in achieving the turn on response by utilizing the conversion from spirolactam to an acyclic xanthene form on coordination to Cr(III).

  17. Fundamental characteristics study of anion-exchange PVDF-SiO(2) membranes.

    Science.gov (United States)

    Zuo, Xingtao; Shi, Wenxin; Yu, Shuili; He, Jiajie

    2012-01-01

    A new type of poly(vinylidene fluoride)(PVDF)-SiO(2) hybrid anion-exchange membrane was prepared by blending method. The anion-exchange groups were introduced by the reaction of epoxy groups with trimethylamine (TMA). Contact angle between water and the membrane surface was measured to characterize the hydrophilicity change of the membrane surface. The effects of nano-sized SiO(2) particles in the membrane-forming materials on the membrane mechanical properties and conductivity were also investigated. The experimental results indicated that PVDF-SiO(2) anion-exchange membranes exhibited better water content, ion-exchange capacity, conductivity and mechanic properties, and so may find potential applications in alkaline membrane fuel cells and water treatment processes.

  18. Expanding frontiers in materials chemistry and physics with multiple anions.

    Science.gov (United States)

    Kageyama, Hiroshi; Hayashi, Katsuro; Maeda, Kazuhiko; Attfield, J Paul; Hiroi, Zenji; Rondinelli, James M; Poeppelmeier, Kenneth R

    2018-02-22

    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials.

  19. Measurements of Coulomb Cross Section for Production of Direct Electron-pairs by High Energy Ions at the CERN SPS

    CERN Multimedia

    2002-01-01

    QED predicts copious direct electron pair production by ultrarelativistic heavy nuclei in a high Z medium such as nuclear emulsion. First order QED calculations (combined screening and non-screening) for this process show that 1000@+32 electron pairs above 100~keV energy) should be emitted for a total |1|6O track length of 10.9~m in nuclear emulsion at 200~GeV/AMU. Emulsion exposures with oxygen (and other nuclei if available) at 60 and 200~GeV/AMU will be used to calibrate the energy dependent cross section @s~@j~(1n~E)|2|-|3, whose exponent depends on atomic screening. The oxygen tracks in the developed emulsions will be scanned with a microscope, and the number of direct electron pairs will be counted for individual tracks. The exposed stacks will contain sufficient emulsion (and CR39 plastic to check for possible interactions) that adequate path length will be available for exposures to @$>$~10|4~ions at each energy and ion species. \\\\ \\\\ If the absolute value of this cross section is confirmed as large a...

  20. Uranium isotopic effect studies on cation and anion exchange resins

    International Nuclear Information System (INIS)

    Sarpal, S.K.; Gupta, A.R.

    1975-01-01

    Uranium isotope effects in exchange reactions involving hexavalent and tetravalent uranium, on ion exchange resins, have been re-examined. The earlier work on uranium isotope effects in electron exchange reactions involving hexavalent and tetravalent uranium, has been critically reviewed. New experimental data on these systems in hydrochloric acid medium, has been obtained, using break-through technique on anion-exchange columns. The isotope effects in these break-through experiments have been reinterpreted in a way which is consistent with the anion exchange behaviour of the various uranium species in these systems. (author)

  1. Benzonitrile: Electron affinity, excited states, and anion solvation

    Science.gov (United States)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  2. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    Directory of Open Access Journals (Sweden)

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ

    2011-03-01

    Full Text Available The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ are observed in the solution containing acetate anion as compared to those in the solution containing sulfate anion. As the reduction of bismuth sulfide film in the background solutions depends on the nature of anion, it influences the cathodic reduction of Ni2+ ions prior to OPD of Ni. A greater current and mass change (Dƒ is conditioned by simultaneously occurring reduction of bismuth sulfide film when the film is reduced in the acetate nickel plating electrolyte in contrast to that in the sulfate one.http://dx.doi.org/10.5755/j01.ms.17.1.244

  3. Separation of boron isotopes using NMG type anion exchange resin

    International Nuclear Information System (INIS)

    Itagaki, Takaharu; Kosuge, Masao; Fukuda, Junji; Fujii, Yasuhiko.

    1992-01-01

    Ion exchange separation of boron isotopes (B-10 and B-11) has been studied by using a special boron selective ion exchange resin; NMG (n-methyl glucamine)-type anion exchange resin. The resin has shown a large isotope separation coefficient of 1.02 at the experimental conditions of temperature, 80degC, and boric acid concentration, 0.2 M (mole/dm 3 ). Enriched B-10 (92%) was obtained after the migration of 1149 m by a recyclic operation of ion exchange columns in a merry-go-round method. (author)

  4. Research on the Microstructure and Property of an Anion Rubber Modified Asphalt

    Directory of Open Access Journals (Sweden)

    Wei Hong

    2013-01-01

    Full Text Available The anion rubber modified asphalt (ARMA mixture was first successfully developed with a unique process. In the development process, rubber and asphalt were mixed in the same proportion. Furthermore, the microstructure and modification mechanism of the material were characterized by SEM, FT-IR, TG, and XRD tests. The mechanical property of the mixture was also tested in accordance with the relevant standards. In the end, the material’s capacity of releasing anion was measured by DLY-6A232 atmospheric ion gauge. The results indicated that the addition of anion additive into the rubber modified asphalt (RMA was a mere physical mixture, and the anion additives and rubber particles uniformly dispersed in the ARMA. The addition of anion additive could improve the thermal stability of the RMA. Compared with the traditional asphalt pavement material, the ARMA material shows excellent mechanical properties as well as the ability of releasing anion. Moreover, the material has enormous economic and social benefits by taking full advantage of a large amount of waste tires, thus improving the road surrounding environment.

  5. Determination of iridium in the Bering Sea and Arctic Ocean seawaters by anion exchange preconcentration-neutron activation analysis

    International Nuclear Information System (INIS)

    Li Shihong; Mao Xueying; Chai Zhifang

    2004-01-01

    Anion exchange method is investigated to separate and enrich iridium in seawater by radiotracer 192 Ir. The adsorption of Ir in the resin increases with the decreasing acidity in the 0.05-1.2 mol/L HCl media, The recovery of iridium in pH=1.5 seawater reaches 89% by a single anion-exchange column. The polyethylene container of acidity of pH=1.5 are suitable for storing trace Ir in seawater. An anion exchange preconcentration-neutron activation analysis procedure is developed to determine iridium in seawaters sampled from the Bering Sea and Arctic Ocean at different depth. The reagent blank value of the whole procedures is (0.18-0.20) x 10 -12 g Ir. The iridium concentrations in the Bering Sea and Arctic Ocean seawater samples are (0.85-3.58) x 10 -12 g/L (0-3504 m) and (1.26-1.97) x 10 -12 g/L (25-1900 m), respectively

  6. Heavy Rydberg behaviour in high vibrational levels of some ion-pair states of the halogens and inter-halogens

    International Nuclear Information System (INIS)

    Donovan, Robert J.; Lawley, Kenneth P.; Ridley, Trevor

    2015-01-01

    We report the identification of heavy Rydberg resonances in the ion-pair spectra of I 2 , Cl 2 , ICl, and IBr. Extensive vibrational progressions are analysed in terms of the energy dependence of the quantum defect δ(E b ) rather than as Dunham expansions. This is shown to define the heavy Rydberg region, providing a more revealing fit to the data with fewer coefficients and leads just as easily to numbering data sets separated by gaps in the observed vibrational progressions. Interaction of heavy Rydberg states with electronic Rydberg states at avoided crossings on the inner wall of the ion-pair potential is shown to produce distinctive changes in the energy dependence of δ(E b ), with weak and strong interactions readily distinguished. Heavy Rydberg behaviour is found to extend well below near-dissociation states, down to vibrational levels ∼18 000-20 000 cm −1 below dissociation. The rapid semi-classical calculation of δ(E b ) for heavy Rydberg states is emphasised and shows their absolute magnitude to be essentially the volume of phase space excluded from the vibrational motion by avoiding core-core penetration of the ions

  7. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin

    International Nuclear Information System (INIS)

    Cahuzac, S.

    1969-06-01

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO 2 2+ . By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni 2+ - Co 2+ ; Ni 2+ - Co 2+ - Cu 2+ ; UO 2 2+ - Fe 3+ ; UO 2 2+ - Cr 3+ ; UO 2 2+ - Cu 2+ ; UO 2 2+ - Ni 2+ ; UO 2 2+ - Co 2+ ; UO 2 2+ - Mn 2+ and UO 2 2+ - Cd 2+ ), as well as the purification

  8. IONS FROM AQUEOUS PHASE BY WATER HYACINTH (Eichhornia

    African Journals Online (AJOL)

    Preferred Customer

    Most often there is incomplete metal ion removal, high reagent and ... environmentally friendly water filters for heavy metal ions removal in aqueous systems. Currently E. crassipes is ..... From the results, the singly charged ions have very little ...

  9. New anion-exchange resins for improved separations of nuclear materials

    International Nuclear Information System (INIS)

    Barr, M.E.; Bartsch, R.A.

    1998-01-01

    'The overall objective of this research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion-exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional-site interactions in order to determine optimal binding-site characteristics. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials: Efficient Separations and Processing; Plutonium; Plumes; Mixed Waste; High-Level Tank Waste. Sites within the DOE complex which would benefit from the improved anion-exchange technology include Hanford, INEL, Los Alamos, Oak Ridge, and Savannah River. As of April 1998, this report summarizes work after 1.6 years of a 3-year project. The authors technical approach combines empirical testing with theoretical modeling (applied in an iterative mode) in order to determine optimal binding-site characteristics. They determine actinide-complex speciation in specific media, then develop models for the metal complex/functional-site interactions Synthesis and evaluation of multi-functionalized extractants and ion-exchange materials that implement key features of the optimized binding site provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The implementation of the bifunctionality concept involves N-derivatization of pyridinium units from a base poly(4-vinylpyridine) resin with a second cationic site such that the two anion-exchange sites are linked by spacer arms of varying

  10. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.

    2013-09-17

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  11. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.; Hickner, Michael A.; Logan, Bruce E.

    2013-01-01

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  12. Preparation and characterization of novel anion phase change heat storage materials.

    Science.gov (United States)

    Hong, Wei; Lil, Qingshan; Sun, Jing; Di, Youbo; Zhao, Zhou; Yu, Wei'an; Qu, Yuan; Jiao, TiFeng; Wang, Guowei; Xing, Guangzhong

    2013-10-01

    In this paper, polyurethane phase change material was successfully prepared with TDI with BDO for hard segments and PEG for soft segments. Moreover, based on this the solid-solid phase change material, A-PCM1030 which can release anions was prepared with the successful addition of anion additives A1030 for the first time. Then the test of the above material was conducted utilizing FT-IR, DSC, TEM, WAXD and Air Ion Detector. The Results indicated that the polyurethane phase change material possesses excellent thermal stability since there was no appearance of liquid leakage and phase separation after 50 times warming-cooling thermal cycles. It also presented reversibility on absorbing and releasing heat. In addition, adding a little A1030 can increase the thermal stability and reduce phase transition temperatures, as well as reduce the undercooling of the polyurethane phase change material. In addition, the anion test results suggested that the supreme amount of anion released by A-PCM1030 could reach 2510 anions/cm3 under dynamic conditions, which is beneficial for human health.

  13. Adsorption behaviour of scandium, yttrium, cerium and uranium from xylenol orange solutions onto anion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Chao, H E; Suzuki, N [Tohoku Univ., Sendai (Japan). Faculty of Science

    1981-04-01

    The effects of concentration, pH and anions on the adsorption behaviour of xylenol orange (XO) on the strong anion exchangers, Amberlite IRA-400 and Hitachi 2632 are described. The adsorption behaviour of the XO complexes of Ce(III), Y(III), Sc(III) and U(VI) on the Amberlite IRA-400 resin as a function of XO concentration and pH is reported. A continuous-flow radiometric detector is used to investigate the separations of the Ce(III)-Sc(III), Y(III)-Sc(III), and Ce(III)-Y(III) pairs on the XO-form Hitachi 2632 resin column by pH control. Satisfactory separations of the Ce(III)-Sc(III) and Y(III)-Sc(III) pairs are achieved.

  14. High-precision molecular dynamics simulation of UO2–PuO2: Anion self-diffusion in UO2

    International Nuclear Information System (INIS)

    Potashnikov, S.I.; Boyarchenkov, A.S.; Nekrasov, K.A.; Kupryazhkin, A.Ya.

    2013-01-01

    Highlights: ► We perform MD simulation of oxygen diffusion in UO2 (up to 50 000 ions and 1 μs time). ► We reached 1400 K and 10 −12 cm 2 /sec, which allowed direct comparison to experiments. ► S-shaped T-dependence of activation energy and λ-peak of its derivative were obtained. ► Continual superionic phase transition (rather than first or second order) was proved. ► Activation energy of exchange diffusion equals anti-Frenkel defect formation energy. -- Abstract: Our series of articles is devoted to high-precision molecular dynamics simulation of mixed actinide-oxide (MOX) fuel in the approximation of rigid ions and pair interactions (RIPI) using high-performance graphics processors (GPU). In this article we study self-diffusion mechanisms of oxygen anions in uranium dioxide (UO 2 ) with the 10 recent and widely used sets of interatomic pair potentials (SPP) under periodic (PBC) and isolated (IBC) boundary conditions. Wide range of measured diffusion coefficients (from 10 −3 cm 2 /s at melting point down to 10 −12 cm 2 /s at 1400 K) made possible a direct comparison (without extrapolation) of the simulation results with the experimental data, which have been known only at low temperatures (T < 1500 K). A highly detailed (with the temperature step of 1 K) calculation of the diffusion coefficient allowed us to plot temperature dependences of the diffusion activation energy and its derivative, both of which show a wide (∼1000 K) superionic transition region confirming the broad λ-peaks of heat capacity obtained by us earlier. It is shown that regardless of SPP the anion self-diffusion in model crystals without surface or artificially embedded defects goes on via exchange mechanism, rather than interstitial or vacancy mechanisms suggested by the previous works. The activation energy of exchange diffusion turned out to coincide with the anti-Frenkel defect formation energy calculated by the lattice statics

  15. Progress in liquid ion exchangers

    International Nuclear Information System (INIS)

    Nakagawa, Genkichi

    1974-01-01

    Review is made on the extraction with anion exchangers and the extraction with liquid cation exchangers. On the former, explanation is made on the extraction of acids, the relation between anion exchange and the extraction of metals, the composition of the metallic complexes that are extracted, and the application of the extraction with anion exchangers to analytical chemistry. On the latter, explanation is made on the extraction of metals and its application to analytical chemistry. The extraction with liquid ion exchangers is suitable for the operation in chromatography, because the distribution of extracting agents into aqueous phase is small, and extraction equilibrium is quickly reached, usually within 1 to several minutes. The separation by means of anion exchangers is usually made from hydrochloric acid solution. For example, Brinkman et al. determined Rf values for more than 50 elements by thin layer chromatography. Tables are given for showing the structure of the liquid ion exchangers and the polymerized state of various amines. (Mori, K.)

  16. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    Science.gov (United States)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  17. Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells.

    Science.gov (United States)

    Hou, Xianfeng; Zeng, Fang; Du, Fangkai; Wu, Shuizhu

    2013-08-23

    Sulfide anions are generated not only as a byproduct from industrial processes but also in biosystems. Hence, robust fluorescent sensors for detecting sulfide anions which are fast-responding, water soluble and biocompatible are highly desirable. Herein, we report a carbon-dot-based fluorescent sensor, which features excellent water solubility, low cytotoxicity and a short response time. This sensor is based on the ligand/Cu(II) approach so as to achieve fast sensing of sulfide anions. The carbon dot (CD) serves as the fluorophore as well as the anchoring site for the ligands which bind with copper ions. For this CD-based system, as copper ions bind with the ligands which reside on the surface of the CD, the paramagnetic copper ions efficiently quench the fluorescence of the CD, affording the system a turn-off sensor for copper ions. More importantly, the subsequently added sulfide anions can extract Cu(2+) from the system and form very stable CuS with Cu(2+), resulting in fluorescence enhancement and affording the system a turn-on sensor for sulfide anions. This fast-responding and selective sensor can operate in totally aqueous solution or in physiological milieu with a low detection limit of 0.78 μM. It displays good biocompatibility, and excellent cell membrane permeability, and can be used to monitor S(2-) levels in running water and living cells.

  18. Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites.

    Science.gov (United States)

    Batuk, Dmitry; Batuk, Maria; Abakumov, Artem M; Tsirlin, Alexander A; McCammon, Catherine; Dubrovinsky, Leonid; Hadermann, Joke

    2013-09-03

    Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites were investigated using the (Pb(1-z)Sr(z))(1-x)Fe(1+x)O(3-y) perovskites as a model system. The isovalent substitution of Sr(2+) for Pb(2+) highlights the influence of the A cation electronic structure because these cations exhibit very close ionic radii. Two compositional ranges have been identified in the system: 0.05 ≤ z ≤ 0.2, where the CS plane orientation gradually varies but stays close to (203)p, and 0.3 ≤ z ≤ 0.45 with (101)p CS planes. The incommensurately modulated structure of Pb0.792Sr0.168Fe1.040O2.529 was refined from neutron powder diffraction data using the (3 + 1)D approach (space group X2/m(α0γ), X = (1/2, 1/2, 1/2, 1/2), a = 3.9512(1) Å, b = 3.9483(1) Å, c = 3.9165(1) Å, β = 93.268(2)°, q = 0.0879(1)a* + 0.1276(1)c*, RF = 0.023, RP = 0.029, and T = 900 K). A comparison of the compounds with different CS planes indicates that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.

  19. Preparation and physicochemical characterization of anionic uranyl. beta. -ketoenolates

    Energy Technology Data Exchange (ETDEWEB)

    Marangoni, G; Paolucci, G [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi; Graziani, R; Celon, E

    1978-01-01

    New classes of anionic uranyl ..beta..-ketoenolates of formula (UO/sub 2/L/sub 2/X)/sup -/ (where L = 1,3-diphenylpropane-1,3-dionate (dppd), 4,4,4-trifluoro-1-phenylbutane-1,3-dionate (tfpbd), or 1-phenylbutane-1,3-dionate (pbd); X = Cl/sup -/, Br/sup -/, I/sup -/, (NO/sub 3/)/sup -/, (O/sub 2/CMe)/sup -/, or (NCS)/sup -/) and (L/sub 2/O/sub 2/U(..mu..-X) UO/sub 2/L/sub 2/)/sup -/ (where X = F/sup -/, and also Cl/sup -/ only in the case of L = dppd) have been synthesized and characterized by a number of physical measurements. The different ability of the various anionic ligands to enter into the co-ordination sphere of the uranyl ion, their potentially different bonding modes, and the possible correlations between physical parameters and the nature of either the chelate substituents or the anionic ligand are discussed.

  20. Carbon nanoparticle stabilised liquid|liquid micro-interfaces for electrochemically driven ion-transfer processes

    International Nuclear Information System (INIS)

    MacDonald, Stuart M.; Fletcher, Paul D.I.; Cui Zhenggang; Opallo, Marcin; Chen Jingyuan; Marken, Frank

    2007-01-01

    Stabilised liquid|liquid interfaces between an organic 4-(3-phenylpropyl)-pyridine (PPP) phase and an aqueous electrolyte phase are obtained in the presence of suitable nanoparticles. The use of nanoparticulate stabilisers (ca. 30 nm diameter laponite or 9-18 nm diameter carbon) in 'Pickering' emulsion systems allows stable organic microdroplets to be formed and these are readily deposited onto conventional tin-doped indium oxide (ITO) electrodes. In contrast to the electrically insulating laponite nanoparticles, conducting carbon nanoparticles are shown to effectively catalyse the simultaneous electron transfer and ion transfer process at triple phase boundary junctions. Anion transfer processes between the aqueous and organic phase are driven electrochemically at the extensive triple phase junction carbon nanoparticle|4-(3-phenylpropyl)-pyridine|aqueous electrolyte. The organic phase consists of a redox active reagent 5,10,15,20-tetraphenyl-21H,23H-porphinato manganese(III) (MnTPP + ), 5,10,15,20-tetraphenyl-21H,23H-porphinato iron(III) (FeTPP + ), or proto-porphyrinato-IX iron(III) (hemin) dissolved in 4-(3-phenylpropyl)-pyridine (PPP). The composition of the aqueous electrolyte phase determines the reversible potential for the Nernstian anion transfer process. The methodology is shown to be versatile and, in future, could be applied more generally in liquid|liquid electroanalysis

  1. Adsorption and ion-pairing interactions of phospholipids in the system of two immiscible electrolyte solutions. Part II: ...

    Czech Academy of Sciences Publication Activity Database

    Jänchenová, Hana; Štulík, K.; Mareček, Vladimír

    2007-01-01

    Roč. 604, č. 2 (2007), s. 109-114 ISSN 0022-0728 R&D Projects: GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503 Keywords : liquid/liquid interfaces * adsorption of phosphodolipids * DPPC * surface-active amines * ion pairing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.580, year: 2007

  2. Ion-pair extraction of [3H]stobadine from biological fluids

    International Nuclear Information System (INIS)

    Scasnar, V.

    1998-01-01

    A simple and specific radiometric assay was developed for the determination of stobadine, a cardioprotective drug, in the serum of experimental animals. The assay is based on a single extraction step of the radioactively labeled drug from serum into the benzene solution of dicarbolide of cobalt followed by quantitation of the extracted radioactivity by using liquid scintillation counting. The extraction mechanism involves the ion-pair formation between the protonized molecule of stobadine and the hydrophobic, negatively charged molecule of dicarbolide of cobalt. The extraction yield of stobadine from 1 ml of serum was 95% in the concentration range from 1 to 6000 ng/ml. The co-extraction of metabolites was less than 5%. The method was applied to the determination of stobadine in serum of dogs and the data obtained were in a good agreement with those obtained by high performance liquid chromatography. (author)

  3. Nonperturbative electromagnetic muon-pair production with capture in peripheral relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Wells, J.C.

    1991-01-01

    We discuss preliminary calculations of impact-parameter-dependent probabilities and cross sections for muon-pair production with capture of the negative muon into the K-shell of the target caused by the time-dependent electromagnetic fields generated in peripheral relativistic heavy-ion collisions. Our approach is nonperturbative in that we calculate probabilities by solving the time-dependent Dirac equation on a three-dimensional Cartesian lattice using the basis-spline collocation method. Use of the axial gauge for the electromagnetic potentials produces an interaction easier to implement on the lattice than the Lorentz gauge. 19 refs., 5 figs

  4. Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox

    Science.gov (United States)

    Zhan, Chun; Yao, Zhenpeng; Lu, Jun; Ma, Lu; Maroni, Victor A.; Li, Liang; Lee, Eungje; Alp, Esen E.; Wu, Tianpin; Wen, Jianguo; Ren, Yang; Johnson, Christopher; Thackeray, Michael M.; Chan, Maria K. Y.; Wolverton, Chris; Amine, Khalil

    2017-12-01

    Anionic redox reactions in cathodes of lithium-ion batteries are allowing opportunities to double or even triple the energy density. However, it is still challenging to develop a cathode, especially with Earth-abundant elements, that enables anionic redox activity for real-world applications, primarily due to limited strategies to intercept the oxygenates from further irreversible oxidation to O2 gas. Here we report simultaneous iron and oxygen redox activity in a Li-rich anti-fluorite Li5FeO4 electrode. During the removal of the first two Li ions, the oxidation potential of O2- is lowered to approximately 3.5 V versus Li+/Li0, at which potential the cationic oxidation occurs concurrently. These anionic and cationic redox reactions show high reversibility without any obvious O2 gas release. Moreover, this study provides an insightful guide to designing high-capacity cathodes with reversible oxygen redox activity by simply introducing oxygen ions that are exclusively coordinated by Li+.

  5. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu; Aly, Shawkat Mohammede; Usman, Anwar; Parida, Manas R.; Del Gobbo, Silvano; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  6. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  7. A importância da qualidade da água reagente no laboratório clínico The importance of water quality in clinical laboratory reagent

    Directory of Open Access Journals (Sweden)

    Maria Elizabete Mendes

    2011-06-01

    Full Text Available A água é um reagente utilizado na maioria dos testes laboratoriais e por isso deve seguir um padrão de controle de qualidade rigoroso. O fornecimento urbano de água apresenta moléculas orgânicas, íons inorgânicos, partículas, coloides, gases, bactérias e seus produtos, que podem alterar os resultados dos exames laboratoriais e causar eventuais erros e falhas mecânicas em equipamentos analíticos. Para remover essas impurezas, é necessário recorrer a uma combinação de tecnologias de purificação. Há várias organizações que especificam normas sobre a água reagente, a fim de minimizar sua interferência nos ensaios laboratoriais. A maioria dos laboratórios utiliza as normas estabelecidas pelo Clinical and Laboratory Standards Institute (CLSI que classifica a água em: clinical laboratory reagent water (CLRW, special reagent water (SRW e instrumental feed water (IFW. O monitoramento da qualidade é realizado pela determinação de resistividade, condutividade, carbono orgânico total (TOC, controle microbiológico e endotoxinas. Os parâmetros são avaliados de acordo com a periodicidade estabelecida pela norma utilizada. Neste artigo, discutem-se a importância da água utilizada nos procedimentos laboratoriais, o controle da qualidade e as interferências nos ensaios laboratoriais.Water is a reagent used in most laboratory tests and, therefore, must follow stringent quality control standards. The urban water supply has organic molecules, inorganic ions, particles, colloids, gases, bacteria and their products, which may alter laboratory test results and cause occasional errors and mechanical failures in diagnostic equipment. To remove these impurities, it is necessary to use a combination of purification technologies. There are several organizations that specify reagent water standards to minimize its interference in laboratory assays. Most laboratories set standards established by the Clinical and Laboratory Standards

  8. ANALYSIS OF SULFONATES IN AQUEOUS SAMPLES BY ION-PAIR LC/ESI-MS/MS WITH IN-SOURCE CID FOR ADDUCT PEAK ELIMINATION

    Energy Technology Data Exchange (ETDEWEB)

    OUYANG,S.; VAIRAVAMURTHY,M.A.

    1999-06-13

    Determination of low-molecular-weight organic sulfonates (e.g. taurine and cysteic acid) in aqueous solutions is important in many applications of biological, environmental and pharmaceutical sciences. These compounds are difficult to be determined by commonly used reversed-phase liquid chromatographic separation combined with UV-Visible detection because of their high solubility and the lack chromophoric moieties. Here the authors report a method combining ion-pair liquid chromatography and electrospray ionization tandem mass spectrometry (IPLC/ESI-MS/MS)for determining sulfonates. The ability of low-molecular-weight sulfonates to form ion-pairs with quaternary ammonium cations in aqueous solutions allowed LC separation with a C{sub 18} column. Detection of the sulfonates was accomplished with ESI-MS that lends a universal mode of mass detection for polar, water soluble compounds. An in-source collision induced dissociation (CID) was applied to eliminate the adduct peaks in mass spectra. Characteristic marker ions showed in the second stage mass spectra lent a method for identifying sulfonates.

  9. Plasma-polymerized alkaline anion-exchange membrane: Synthesis and structure characterization

    International Nuclear Information System (INIS)

    Hu Jue; Meng Yuedong; Zhang Chengxu; Fang Shidong

    2011-01-01

    After-glow discharge plasma polymerization was developed for alkaline anion-exchange membranes synthesis using vinylbenzyl chloride as monomer. X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to characterize the chemical structure properties of plasma-polymerized membranes. Ion-exchange capacities of quaternized poly(vinylbenzyl chloride) (QPVBC) membranes were measured to evaluate their capability of hydroxyl ion transport. A mechanism of plasma polymerization using VBC as monomer that accounts for the competitive effects of free radicals polymerization and plasma ablation in the plasma polymerization process was proposed. Our results indicate that plasma discharge power influences the contents of functional groups and the structure of the plasma polymer membranes, which attribute to the coactions of polymerization and ablation. The properties of uniform morphology, good adhesion to the substrate, high thermal stability and satisfying anion conduction level suggest the potential application of QPVBC membrane deposited at discharge power of 20 W in alkaline direct methanol fuel cells.

  10. Partial-depth modulation study of anions and neutrals in low pressure silane plasmas

    International Nuclear Information System (INIS)

    Cozurteille, C.; Dorier, J.L.; Hollenstein, C.; Sansonnens; Howling, A.A.

    1995-10-01

    Partial-depth modulation of the rf power in a capacitive discharge is used to investigate the relative importance of negative ions and neutral radicals for particle formation in low power, low pressure silane plasmas. For less than 85% modulation depth, anions are trapped indefinitely in the plasma and particle formation ensues, whereas the polymerised neutral flux magnitudes and dynamics are independent of the modulation depth and the powder formation. These observations suggest that negative ions could be the particle precursors in plasma conditions where powder appears many seconds after plasma ignition. Microwave interferometry and mass spectrometry were combined to infer an anion density of ≅7.10 9 cm -3 which is approximately twice the free electron density in these modulated plasmas. (author) 6 figs., tabs., refs

  11. Turn-on fluorescent sensor for Zinc and Cadmium ions based on quinolone and its sequential response to phosphate

    International Nuclear Information System (INIS)

    Liu, Xiaoyan; Wang, Peng; Fu, Jiaxin; Yao, Kun; Xue, Kun; Xu, Kuoxi

    2017-01-01

    Sequential fluorescence sensing of Zn 2+ /Cd 2+ ions and phosphate anion by new quinoline based sensors(L1 and L2) have been presented. Sensors exhibit highly selective fluorescence “turn-on” sensing properties to Zn 2+ /Cd 2+ ions in CH 3 OH/H 2 O(1/1, v/v, Tris, 10 mol·L −1 , pH 7.4) solution with a 1:1 binding stoichiometry. The complexes display high selectivity to H 2 PO 4 - and HPO 4 2- anions through fluorescence “turn-off” respond. The results of Zn 2+ /Cd 2+ ions and phosphate anion sequential recognition via fluorescence changes make sensors L1 and L2 have potential utility for Zn 2+ / Cd 2+ ions and phosphate anion detection in aqueous media. - Graphical abstract: Sequential fluorescence sensing of Zn 2+ /Cd 2+ ions and phosphate anion by new quinoline based sensors (L1 and L2) have been presented. Sensors exhibit highly selective and sensitive fluorescence “turn-on” sensing properties to Zn 2+ /Cd 2+ ions in CH 3 OH/H 2 O(1/1, v/v, Tris, 10 mM, pH 7.4) solution with a 1:1 binding stoichiometry. The complexes display high selectivity to H 2 PO 4 - and HPO 4 2- anions through fluorescence “turn-off” respond. Zn 2+ /Cd 2+ ions and phosphate anion sequential recognition via fluorescence changes make sensors L1 and L2 have potential utility for Zn 2+ / Cd 2+ ions and phosphate anion detection in aqueous media.

  12. A study of sorption of pertechnetate anion on chitosan

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Rajec, P.; Galambos, M.

    2015-01-01

    Chitosan is one of the natural materials of biological origin. The sorption of pertechnetate anions from aqueous solutions on chitosan was studied in a batch system. This work was aimed to study influence of the contact time, effect of pH and effect of different ions on sorption of pertechnetate anions on chitosan. This sorbent was characterized by BET-surface area and potentiometric titration. The point of zero charge (pH pzc ) was at pH=7.15. The highest percentage of technetium sorption on chitosan was near pH 3. The adsorption capacity of chitosan decreased with increase in pH value above 3. In the initial pH range of 4-10, final pHs are the same. The selectivity of chitosan for these cations with concentration above 1·10 -3 mol·dm -3 was in the order Na + > Ca 2+ > Fe 3+ > Fe 2+ . The competition effect of (SO 4 ) 2- towards TcO 4 - sorption was stronger than the competition effect (ClO 4 ) - of ions. (authors)

  13. Method of solidifying radioactive ion exchange resin

    International Nuclear Information System (INIS)

    Minami, Yuji; Tomita, Toshihide

    1989-01-01

    Spent anion exchange resin formed in nuclear power plants, etc. generally catch only a portion of anions in view of the ion exchange resins capacity and most of the anions are sent while possessing activities to radioactive waste processing systems. Then, the anion exchange resins increase the specific gravity by the capture of the anions. Accordingly, anions are caused to be captured on the anion exchange resin wastes such that the specific gravity of the anion exchange resin wastes is greater than that of the thermosetting resins to be mixed. This enables satisfactory mixing with the thermosetting resins and, in addition, enables to form integral solidification products in which anion exchange resins and cation exchange resins are not locallized separately and which are homogenous and free from cracks. (T.M.)

  14. 21 CFR 866.3500 - Rickettsia serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rickettsia serological reagents. 866.3500 Section... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3500 Rickettsia serological reagents. (a) Identification. Rickettsia serological reagents are devices that consist of antigens...

  15. 21 CFR 866.3405 - Poliovirus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Poliovirus serological reagents. 866.3405 Section... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3405 Poliovirus serological reagents. (a) Identification. Poliovirus serological reagents are devices that consist of antigens...

  16. A Model for Negative Ion Chemistry in Titan’s Ionosphere

    Science.gov (United States)

    Mukundan, Vrinda; Bhardwaj, Anil

    2018-04-01

    We developed a one-dimensional photochemical model for the dayside ionosphere of Titan for calculating the density profiles of negative ions under steady-state photochemical equilibrium condition. We concentrated on the T40 flyby of the Cassini orbiter and used the in situ measurements from instruments on board Cassini as input to the model. Using the latest available reaction rate coefficients and dissociative electron attachment cross sections, the densities of 10 anions are calculated. Our study shows CN‑ as the dominant anion, followed by C3N‑, which agrees with the results of previous calculations. We suggest that H‑ could be an important anion in Titan’s ionosphere and is the second most abundant anion at altitudes greater than 1200 km. The main production channel of the major ion CN‑ is the reaction of H‑ with HCN. The H‑ also play a major role in the production of anions C2H‑, C6H‑, and OH‑. We present a comparison of the calculated ion density profiles with the relative density profiles derived using recently reported Cassini CAPS/ELS observations.

  17. Structure and size of ions electrochemically doped in conducting polymer

    Science.gov (United States)

    Kaneto, Keiichi; Hata, Fumito; Uto, Sadahito

    2018-05-01

    Among electroactive polymers (EAPs) for softactuators, conducting polymers have been intensively studied because of the large strain and stress caused by a low voltage operation. A larger deformation is desirable to extend their cycle life by reducing the operation voltage, and this is advantageous for their potential use in wider applications. The deformation is generated by the insertion of ions by electrochemical oxidation; hence, the magnitude of the strain depends on the bulkiness of the ions in the electrolytes. It is important, therefore, to clarify the structure and size of the ions during the electrochemical cycle, in order to achieve better performance of actuation. Anion and cation sizes (radii) in polypyrrole (PPy) film have been estimated using the precise measurement of strain against the amount of charge injected during the electrochemical cycles, assuming isotropic deformation of the film. The anion size was estimated using an anion-drive film, which was electrodeposited in TBABF4/methyl benzoate. The film was electrochemically cycled in sodium electrolytes, and the strain was measured simultaneously using a laser displacement meter. The cation size was obtained using a cation-drive film, being electropolymerized in aqueous dodecylbenzene sulfonic (DBS) acid. The cation-drive film was cycled in chloride electrolytes and measured the strain. The Cl-, Br-, NO3- , BF4- , and ClO4- radii were found to be approximately 235, 245, 250, 270 and 290 pm, respectively. The radii of K+, Na+ and Li+ were approximately 230, 237 and 274 pm, respectively. The results were discussed and took the crystalline ion radius and hydrated ion radius (Stokes radius) into consideration. It was found that the structure and size of the anions were slightly larger than the crystalline ion radius. Contrary to the anions, the cation radii were close to the hydrated ion radius, being larger than the crystalline ion radius.

  18. Complementary b/y fragment ion pairs from post-source decay of metastable YahO for calibration of MALDI-TOF-TOF-MS/MS

    Science.gov (United States)

    Complementary b/y fragment ion pairs from post-source decay (PSD) of metastable YahO protein ion were evaluated for use in the calibration of MALDI-TOF-TOF for tandem mass spectrometry (MS/MS). The yahO gene from pathogenic Escherichia coli O157:H7 strain EDL933 was cloned into a pBAD18 plasmid vect...

  19. Functionalized Calixpyrroles

    DEFF Research Database (Denmark)

    Vargas-Zúñiga, Gabriela; Sessler, Jonathan; Bähring, Steffen

    2016-01-01

    This chapter covers advances in the development of anion and ion pair recognition systems based on calix[4]pyrrole. The intention of this manuscript is to provide of an overview of promising systems for the sensing of relevant analytes, such as the toxic fluoride anion, phosphate anions, as well...

  20. Increasing Hydrogen Density with the Cation-Anion Pair BH4−-NH4+ in Perovskite-Type NH4Ca(BH43

    Directory of Open Access Journals (Sweden)

    Pascal Schouwink

    2015-08-01

    Full Text Available A novel metal borohydride ammonia-borane complex Ca(BH42·NH3BH3 is characterized as the decomposition product of the recently reported perovskite-type metal borohydride NH4Ca(BH43, suggesting that ammonium-based metal borohydrides release hydrogen gas via ammonia-borane-complexes. For the first time the concept of proton-hydride interactions to promote hydrogen release is applied to a cation-anion pair in a complex metal hydride. NH4Ca(BH43 is prepared mechanochemically from Ca(BH42 and NH4Cl as well as NH4BH4 following two different protocols, where the synthesis procedures are modified in the latter to solvent-based ball-milling using diethyl ether to maximize the phase yield in chlorine-free samples. During decomposition of NH4Ca(BH43 pure H2 is released, prior to the decomposition of the complex to its constituents. As opposed to a previously reported adduct between Ca(BH42 and NH3BH3, the present complex is described as NH3BH3-stuffed α-Ca(BH42.