WorldWideScience

Sample records for anion exchange chromatography

  1. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  2. Graphene-coated polymeric anion exchangers for ion chromatography

    International Nuclear Information System (INIS)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan; Wu, Shuchao; Zhang, Peimin; Zhi, Mingyu; Zhu, Yan

    2017-01-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  3. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  4. Purification of bacteriophage M13 by anion exchange chromatography.

    Science.gov (United States)

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Effects of arginine on multimodal anion exchange chromatography.

    Science.gov (United States)

    Hirano, Atsushi; Arakawa, Tsutomu; Kameda, Tomoshi

    2015-12-01

    The effects of arginine on binding and elution properties of a multimodal anion exchanger, Capto adhere, were examined using bovine serum albumin (BSA) and a monoclonal antibody against interleukin-8 (mAb-IL8). Negatively charged BSA was bound to the positively charged Capto adhere and was readily eluted from the column with a stepwise or gradient elution using 1M NaCl at pH 7.0. For heat-treated BSA, small oligomers and remaining monomers were also eluted using a NaCl gradient, whereas larger oligomers required arginine for effective elution. The positively charged mAb-IL8 was bound to Capto adhere at pH 7.0. Arginine was also more effective for elution of the bound mAb-IL8 than was NaCl. The results imply that arginine interacts with the positively charged Capto adhere. The mechanism underlying the interactions of arginine with Capto adhere was examined by calculating the binding free energy between an arginine molecule and a Capto adhere ligand in water through molecular dynamics simulations. The overall affinity of arginine for Capto adhere is attributed to the hydrophobic and π-π interactions between an arginine side chain and the aromatic moiety of the ligand as well as hydrogen bonding between arginine and the ligand hydroxyl group, which may account for the characteristics of protein elution using arginine. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Aida, Masao; Okamoto, Makoto; Kakihana, Hidetake

    1980-01-01

    Isotopic plateau displacement chromatography, a useful method for isotope separation is presented. The boric acid band formed in a column of weakly basic anion exchange resin Diaion WA21 can be eluted with pure water. In order to obtain good accumulation of the isotope effect, a series of experiments with different migration length were carried out. The boron-10 enriched part of the boric acid absorbed band was always preceded by the isotopic plateau part, in which the atomic fraction of boron-10 was maintained at its original value. The atomic fraction of boron-10 at the end of the chromatogram increased with migration length, and in the case of 256-m migration, boron-10 was enriched from its original atomic fraction of 19.84 to 91.00%, the separation factor S being constant irrespective of migration length: S = 1.0100 +- 0.0005. (author)

  7. Separation and determination of alditols and sugars by high-pH anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Andersen, Rikke; Sørensen, A.

    2000-01-01

    Carbohydrates such as alditols (polyols or sugar alcohols), monosaccharides and disaccharides are separated as anions by anion-exchange chromatography with a sodium hydroxide eluent, MA1 CarboPac column and pulsed amperometric detection. We report a high-pH anion-exchange chromatographic-pulsed a......Carbohydrates such as alditols (polyols or sugar alcohols), monosaccharides and disaccharides are separated as anions by anion-exchange chromatography with a sodium hydroxide eluent, MA1 CarboPac column and pulsed amperometric detection. We report a high-pH anion-exchange chromatographic......-pulsed amperometric detection (HPAEC-PAD) method that determines all the polyols used as food additives in food products and the most commonly found mono- and disaccharides on a routine basis. The linearity, repeatability, internal reproducibility and accuracy are described. The applicability of the method has been...

  8. Determination of "net carbohydrates" using high-performance anion exchange chromatography.

    Science.gov (United States)

    Lilla, Zach; Sullivan, Darryl; Ellefson, Wayne; Welton, Kevin; Crowley, Rick

    2005-01-01

    For labeling purposes, the carbohydrate content of foods has traditionally been determined by difference. This value includes sugars, starches, fiber, dextrins, sugar alcohols, polydextrose, and various other organic compounds. In some cases, the current method may lack sufficient specificity, precision, and accuracy. These are subsequently quantitated by high performance anion exchange chromatography with pulsed amperometric detection and expressed as total nonfiber saccharides or percent "net carbohydrates." In this research, a new method was developed to address this need. The method consists of enzyme digestions to convert starches, dextrins, sugars, and polysaccharides to their respective monosaccharide components. These are subsequently quantified by high-performance anion exchange chromatography with pulsed amperometric detector and expressed as total nonfiber saccharides or percent "net carbohydrates." Hydrolyzed end products of various novel fibers and similar carbohydrates have been evaluated to ensure that they do not register as false positives in the new test method. The data generated using the "net carbohydrate" method were, in many cases, significantly different than the values produced using the traditional methodology. The recoveries obtained in a fortified drink matrix ranged from 94.9 to 105%. The coefficient of variation was 3.3%.

  9. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    Science.gov (United States)

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Onboard determination of submicromolar nitrate in seawater by anion-exchange chromatography with lithium chloride eluent.

    Science.gov (United States)

    Maruo, Masahiro; Doi, Takashi; Obata, Hajime

    2006-09-01

    Ion-exchange chromatography using a high-capacity anion exchanger with UV detection was applied to the determination of nitrate in seawater. Major ions in seawater samples did not affect the peak shape and the retention time of the nitrate when an alkaline metal cation-chloride solution was used as an eluent at high concentrations (0.5-2 mol/l). At a wavelength of 220 nm, the peak of bromide was very small because of low absorption, while its separation from the nitrate peak was good at high concentrations. Among the eluents tested, lithium chloride gave the best separation of nitrate from bromide. It was estimated that the lithium ion had the least potential for ion-pair formation with nitrate, and its retention time was prolonged compared with the retention times when using other cations; with bromide and nitrite, such an effect was not observed. The results of shipboard seawater nitrate determination by our method in the South Pacific Ocean and Antarctic Sea showed good agreement with those by the conventional photometric method using continuous flow.

  11. Characterisation of brewpub beer carbohydrates using high performance anion exchange chromatography coupled with pulsed amperometric detection.

    Science.gov (United States)

    Arfelli, Giuseppe; Sartini, Elisa

    2014-01-01

    High performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised in order to quantify mannose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose and maltoheptaose content of beer. The method allows the determination of above mentioned oligosaccharides, in a single chromatographic run, without any pre-treatment. Limit of detection and limit of quantification were suitable for beer. Accuracy and repeatability were good for the entire amount considered. Once optimised HPAEC PAD for the specific matrix, the second goal of this research was to verify the possibility to discriminate beers, depending on their style. The carbohydrates content of brewpub commercial beers was very variable, ranging from 19.3 to 1469mg/L (mannose), 34.5 to 2882mg/L (maltose), 141.9 to 20731mg/L (maltotriose), 168.5 to 7650mg/L (maltotetraose), 20.1 to 2537mg/L (maltopentaose), 22.9 to 3295mg/L (maltohexaose), 8.5 to 2492mg/L (maltoeptaose), even in the same style of beer. However, the carbohydrates content was useful, jointed with other compounds amount, to discriminate different styles of beer. As a matter of fact, principal component analysis put in evidence beer differences considering some fermentation conditions and colour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Bicarbonate adsorption band of the chromatography for carbon isotope separation using anion exchangers

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Obanawa, Heiichiro; Hata, Masahisa; Sato, Katsuya

    1985-01-01

    The equilibria of bicarbonate ion between two phases were studied for the carbon isotope separation using anion exchangers. The condition of the formation of a bicarbonate adsorption band was quantitatively discussed. The formation of the adsorption band depends on the difference of S-potential which is the sum of the standard redection chemical potentials and L-potential which is the sum of the reduction chemical potential. The isotopic separation factor observed was about 1.012, independent of the concentrations of acid and alkali in the solutions. The isotopic separation factor was considered to be determined by the reaction of bicarbonate ion on anion exchangers and carbon dioxide dissolved in solutions. The enriched carbon isotope whose isotopic abundance ratio ( 13 C/ 12 C) was 1.258 was obtained with the column packed with anion exchangers. (author)

  13. Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies

    Science.gov (United States)

    Close, Edward J; Salm, Jeffrey R; Iskra, Timothy; Sørensen, Eva; Bracewell, Daniel G

    2013-01-01

    case study where fouling had been observed on an anion exchange chromatography in a monoclonal antibody process. The results suggest the foulant is located on the particle surface, resulting in a minimal decrease in saturation capacity, but having a significant impact on the kinetics of adsorption, severely decreasing protein uptake rate. PMID:23483524

  14. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Itoh, S.; Aida, M.; Okamoto, M.; Nomura, M.; Fujii, Y.

    1985-01-01

    Influences of operating temperatures and concentrations of feed boric acid solutions were examined on the above titled process over the ranges of 25 - 70 0 C and 0.1 - 1.6 mol/dm 3 (M), respectively. The ideal displacement chromatography with a very sharp-cut boundary of the boric acid adsorption band was realized at higher temperatures and lower boric acid concentrations within the experimental conditions. The isotope separation coefficient epsilon was found to decrease with increases in either temperature or the boric acid concentration. The observed values of epsilon at 25 0 C were 0.013, 0.012 and 0.011 corresponding to feed boric acid concentrations of 0.1 M, 0.4 M and 0.8 M, respectively. The epsilon's at 70 0 C were 0.0097 (0.1 M), 0.0086 (0.4 M), 0.0083 (0.8 M) and 0.0073 (1.6 M). A temperature of 40 0 C and 0.4 M of boric acid concentration was considered the optimum operating condition for the production of enriched 10 B. (author)

  15. Cleanup and analysis of sugar phosphates in biological extracts by using solid phase extraction and anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Smith, Hans Peter; Cohen, A.; Buttler, T.

    1998-01-01

    A cleanup method based on anion-exchange solid-phase extraction (SPE) was developed to render biological extracts suitable for the analysis of hexose phosphates with a modified anion-exchange chromatography method and pulsed amperometric detection. The method was applied to cell extracts of Sacch......A cleanup method based on anion-exchange solid-phase extraction (SPE) was developed to render biological extracts suitable for the analysis of hexose phosphates with a modified anion-exchange chromatography method and pulsed amperometric detection. The method was applied to cell extracts...... of Saccharomyces cerevisiae obtained by using cold methanol as quenching agent and chloroform as extraction solvent. It was shown that pretreatment of the cell extract with SPE markedly improved the quality of the liquid chromatography analysis with recoveries of the sugar phosphates close to 100%. Furthermore...

  16. Membrane chromatography: protein purification from E. coli lysate using newly designed and commercial anion-exchange stationary phases.

    Science.gov (United States)

    Bhut, Bharat V; Christensen, Kenneth A; Husson, Scott M

    2010-07-23

    This contribution describes the purification of anthrax protective antigen (PA) protein from Escherichia coli lysate using bind-and-elute chromatography with newly designed weak anion-exchange membranes. Protein separation performance of the new AEX membrane adsorber was compared with the commercial Sartobind D membrane adsorber and HiTrap DEAE FF resin column under preparative scale conditions. Dynamic protein binding capacities of all three stationary phases were determined using breakthrough curve analysis. The AEX membrane showed higher binding capacities than the Sartobind D membrane at equivalent volumetric throughput and higher capacities than the HiTrap DEAE FF resin column at 15 times higher volumetric throughput. Anion-exchange chromatography was performed using all three stationary phases to purify PA protein. Quantitative SDS-PAGE analysis of effluent fractions showed that the purity of PA protein was higher for membrane adsorbers than the HiTrap DEAE FF resin column and was the same for the new AEX membrane and Sartobind D membrane adsorbers. The effects of E. coli lysate load volume and volumetric flow rate on PA protein separation resolution using the membrane adsorbers were minor, and the peak elution profile remained un-changed even under conditions where >75% of the total protein dynamic binding capacity of the membranes had been utilized. PA protein peak resolution was higher using pH-gradient elution than with ionic strength gradient elution. Overall, the results clearly demonstrate that membrane chromatography is a high-capacity, high-throughput, high-resolution separation technique, and that resolution in membrane chromatography can be higher than resin column chromatography under preparative conditions and at much higher volumetric throughput. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Quantitative separation of samarium from neodymium by anion exchange chromatography in dilute nitric acid-methanol

    International Nuclear Information System (INIS)

    Strelow, F.W.E.

    1980-01-01

    A method for the separation of trace amounts of the lanthanides into the light and heavy group and for the quantitative separation of Nd and Sm in amounts up to 100mg or more is described. Optimum experimental conditions were determined for the anion exchange column separation. A solution of 0.06M HNO 3 in 85% methanol with a flow rate of 1.0 +- 0.1 mL/min seemed to result in optimum separation of Sm and Nd. Separation of 75.94 mg of Sm from 69.45 mg of Nd by this method was found to result in only 0.01% Sm in the separated Nd and only 0.0005% Nd in the separated Sm

  18. Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography.

    Science.gov (United States)

    Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan

    2014-08-15

    A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Separation of gold, palladium and platinum in chromite by anion exchange chromatography for inductively coupled plasma atomic emission spectrometric analysis

    International Nuclear Information System (INIS)

    Choi, Kwang Soon; Lee, Chang Heon; Park, Yeong Jae; Joe, Kih Soo; Kim, Won Ho

    2001-01-01

    A study has been carried out on the separation of gold, iridium, palladium, rhodium, ruthenium and platinum in chromite samples and their quantitative determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution condition of the minerals by fusion with sodium peroxide was optimized and chromatographic elution behavior of the rare metals was investigated by anion exchange chromatography. Spectral interference of chromium, a matrix of the minerals, was investigated on determination of gold. Chromium interfered on determination of gold at the concentration of 500 mg/L and higher. Gold plus trace amounts of iridium, palladium, rhodium and ruthenium, which must be preconcentrated before ICP-AES was separated by anion exchange chromatography after reducing Cr(VI) to Cr(III) by H 2 O 2 . AuCl - 4 retained on the resin column was selectively eluted with acetone- HNO 3 -H 2 O as an eluent. In addition, iridium, palladium, rhodium and ruthenium remaining on the resin column were eluted as a group with concentrated HCl. However, platinum was eluted with concentrated HNO 3 . The recovery yield of gold with acetone-HNO 3 -H 2 O was 100.7 ± 2.0 % , and the yields of palladium and platinum with concentrated HCl and HNO 3 were 96.1 ± 1.8% and 96.6 ± 1.3%, respectively. The contents of gold and platinum in a Mongolian chromite sample were 32.6 ± 2.2 μg/g and 1.6 ± 0.14 μg/g, respectively. Palladium was not detected

  20. Radioanalytical determination of 239+240Pu and 241Am in bioassay samples by anion exchange and extraction chromatography: Preliminary considerations about the two methods

    Science.gov (United States)

    Ridone, S.; Arginelli, D.; Berton, G.; Bortoluzzi, S.; Canuto, G.; Montalto, M.; Nocente, M.; Vegro, M.

    2006-01-01

    During the radiation protection surveillance of exposed workers samples of urine and faeces were collected. Anion exchange chromatography was used for the separation of Pu. We investigated a technique to purify and separate Pu and Am isotopes using extraction chromatography with TRU resin. We tested different procedures to dissolve organic matter and eliminate interferences for chromatographic elution. At the end of the proces we have succeeded in electroplating the two radionuclides separately. We have also studied extraction chromatography with UTEVA resin to purify Pu isotopes and separate it from natural uranium radioisotopes, present in some biological samples. We validated a method for the determination of Pu in biological samples and a rather constant chemical yield and resolved peaks were obtained. The preliminary studies on TRU resin have indicated that it is possible to combine extraction and anion-exchange chromatography for analysing separately Pu and Am isotopes from the same sample aliquote.

  1. Reversed-phase liquid chromatography coupled on-line with capillary gas chromatography use of an anion-exchange membrane to remove an ion-pair reagent from the eluent.

    NARCIS (Netherlands)

    Brinkman, U.A.T.; Goosens, E.C.; de Jong, D.; de Jong, G.J.; Beerthuizen, I.M.

    1995-01-01

    In order to enable the coupling of reversed-phase liquid chromatography (RPLC) with capillary gas chromatography (GC), the performance of an anion-exchange micromembrane device has been studied to remove the ion-pair reagent methanesulphonic acid from an acetonitrile/water LC eluent. The regenerant

  2. Simultaneous determination of 13 carbohydrates using high-performance anion-exchange chromatography coupled with pulsed amperometric detection and mass spectrometry.

    Science.gov (United States)

    Zhao, Dan; Feng, Feng; Yuan, Fei; Su, Jin; Cheng, Yan; Wu, Hanqiu; Song, Kun; Nie, Bo; Yu, Lian; Zhang, Feng

    2017-04-01

    A simple, accurate, and highly sensitive method was developed for the determination of 13 carbohydrates in polysaccharide of Spirulina platensis based on high-performance anion-exchange chromatography coupled with pulsed amperometric detection and mass spectrometry. Samples were extracted with deionized water using ultrasonic-assisted extraction, and the ultrasound-assisted extraction conditions were optimized by Box-Behnken design. Then the extracted polysaccharide was hydrolyzed by adding 1 mol/L trifluoroacetic acid before determination by high-performance anion-exchange chromatography coupled with pulsed amperometric detection and confirmed by high-performance anion-exchange chromatography coupled with mass spectrometry. The high-performance anion-exchange chromatography coupled with pulsed amperometric detection method was performed on a CarboPac PA20 column by gradient elution using deionized water, 0.1 mol/L sodium hydroxide solution, and 0.4 mol/L sodium acetate solution. Excellent linearity was observed in the range of 0.05-10 mg/L. The average recoveries ranged from 80.7 to 121.7%. The limits of detection and limits of quantification for 13 carbohydrates were 0.02-0.10 and 0.2-1.2  μg/kg, respectively. The developed method has been successfully applied to ambient samples, and the results indicated that high-performance anion-exchange chromatography coupled with pulsed amperometric detection and mass spectrometry could provide a rapid and accurate method for the simultaneous determination of carbohydrates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Analysis of human milk oligosaccharides using high-performance anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Lie, Aleksander; Pedersen, Lars Haastrup

    Human Milk Oligosaccharides (HMOs) are composed of 5 different monosaccharides: D-glucose, D-galactose, L-fucose, N-acetylneuraminic acid and N-acetylglucosamine. Approximately 200 unique structures have been identified, ranging in the degree of polymerization from 3 to 22. The diversity among......-based molecules necessitates analysis methods that can provide separation and quantification of the common structural constituents mentioned, as well as the disaccharide lactose (Galβ1-4Glc) and oligosaccharides such as lacto-N-triose II (GlcNAcβ1-3Galβ1-4Glc), lacto-N-tetraose (Galβ1-3GlcNAcβ1-3Galβ1-4Glc......) and lacto-N-neotetraose (Galβ1-4GlcNAcβ1-3Galβ1-4Glc), among others. High-performance anion-exchange chromatography (HPAE) with pulsed amperometric detection (PAD) is an analysis method highly suited for carbohydrates. HPAE with alkaline eluents results in retention of neutral carbohydrates depending...

  4. Quantification of genetically modified soya using strong anion exchange chromatography and time-of-flight mass spectrometry.

    Science.gov (United States)

    Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng

    2014-09-01

    Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.

  5. Method for the direct determination of available carbohydrates in low-carbohydrate products using high-performance anion exchange chromatography.

    Science.gov (United States)

    Ellingson, David; Potts, Brian; Anderson, Phillip; Burkhardt, Greg; Ellefson, Wayne; Sullivan, Darryl; Jacobs, Wesley; Ragan, Robert

    2010-01-01

    An improved method for direct determination of available carbohydrates in low-level products has been developed and validated for a low-carbohydrate soy infant formula. The method involves modification of an existing direct determination method to improve specificity, accuracy, detection levels, and run times through a more extensive enzymatic digestion to capture all available (or potentially available) carbohydrates. The digestion hydrolyzes all common sugars, starch, and starch derivatives down to their monosaccharide components, glucose, fructose, and galactose, which are then quantitated by high-performance anion-exchange chromatography with photodiode array detection. Method validation consisted of specificity testing and 10 days of analyzing various spike levels of mixed sugars, maltodextrin, and corn starch. The overall RSD was 4.0% across all sample types, which contained within-day and day-to-day components of 3.6 and 3.4%, respectively. Overall average recovery was 99.4% (n = 10). Average recovery for individual spiked samples ranged from 94.1 to 106% (n = 10). It is expected that the method could be applied to a variety of low-carbohydrate foods and beverages.

  6. Size exclusion and anion exchange high performance liquid chromatography for characterizing metals bound to marine dissolved organic matter

    International Nuclear Information System (INIS)

    García-Otero, Natalia; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-01-01

    Highlights: ► Fractionation methods for assessing metals bound to marine DOM were developed. ► SEC and AEC with UV detection and hyphenated with inductively coupled plasma-mass spectrometry were used. ► SEC-UV showed marine DOM of molecular weights from 16 to 1 kDa. ► Cobalt, manganese, strontium and zinc are bound to marine DOM. - Abstract: Size exclusion chromatography (SEC) followed by anion exchange chromatography (AEC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) was applied for fractionating metals bound to marine dissolved organic matter (DOM). Surface seawater samples (100 L) were subjected to tangential flow ultrafiltration (10,000 Da cut off) for isolating and pre-concentrating dissolved large molecules. The isolated fraction (retentate) consisted of 1 L, which was further freeze-dried and re-dissolved to 250 mL with ultrapure water. After HI Trap desalting of the re-dissolved retentate, SEC with UV detection showed marine DOM ranging from 6.5 kDa (lower than the permeable volume of the SEC column) to 16 kDa. A further characterization of this fraction by AEC with UV detection revealed the existence of four groups of macromolecules exhibiting retention times of 2.3, 2.8, 4.5 and 14.0 min. AEC hyphenated with ICP-MS showed the presence of strontium and zinc in the first AE fraction isolated from the SEC fraction; while manganese was found to be bound to the second AE fraction. Cobalt was found to be bound to molecules comprising the third AE fraction.

  7. Size exclusion and anion exchange high performance liquid chromatography for characterizing metals bound to marine dissolved organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Otero, Natalia; Bermejo-Barrera, Pilar [Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela (Spain); Moreda-Pineiro, Antonio, E-mail: antonio.moreda@usc.es [Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela (Spain)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer Fractionation methods for assessing metals bound to marine DOM were developed. Black-Right-Pointing-Pointer SEC and AEC with UV detection and hyphenated with inductively coupled plasma-mass spectrometry were used. Black-Right-Pointing-Pointer SEC-UV showed marine DOM of molecular weights from 16 to 1 kDa. Black-Right-Pointing-Pointer Cobalt, manganese, strontium and zinc are bound to marine DOM. - Abstract: Size exclusion chromatography (SEC) followed by anion exchange chromatography (AEC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) was applied for fractionating metals bound to marine dissolved organic matter (DOM). Surface seawater samples (100 L) were subjected to tangential flow ultrafiltration (10,000 Da cut off) for isolating and pre-concentrating dissolved large molecules. The isolated fraction (retentate) consisted of 1 L, which was further freeze-dried and re-dissolved to 250 mL with ultrapure water. After HI Trap desalting of the re-dissolved retentate, SEC with UV detection showed marine DOM ranging from 6.5 kDa (lower than the permeable volume of the SEC column) to 16 kDa. A further characterization of this fraction by AEC with UV detection revealed the existence of four groups of macromolecules exhibiting retention times of 2.3, 2.8, 4.5 and 14.0 min. AEC hyphenated with ICP-MS showed the presence of strontium and zinc in the first AE fraction isolated from the SEC fraction; while manganese was found to be bound to the second AE fraction. Cobalt was found to be bound to molecules comprising the third AE fraction.

  8. Water quality monitoring system for determination of ionic nutrients by ion-exclusion chromatography with spectrophotometric detection on cation- and anion-exchange resin columns using water eluent.

    Science.gov (United States)

    Kozaki, Daisuke; Nakatani, Nobutake; Mori, Masanobu; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2012-07-01

    A unified ion-exclusion chromatography (IEC) system for monitoring anionic and cationic nutrients like NH4+, NO2-, NO3-, phosphate ion, silicate ion and HCO3- was developed and applied to several environmental waters. The IEC system consisted of four IEC methodologies, including the IEC with ultraviolet (UV) form connected with detection at 210 nm for determining NH4+ on anion-exchange separation column in OH anion-exchange UV-conversion column in I- form in tandem, the IEC with UV-detection at 210 nm for determining simultaneously NO3- and NO3- on cation-exchange separation column in H+ form, the IEC with UV-detection at 210 nm for determining HCO3- on cation-exchange separation column in H+ form connected with anion-exchange UV-conversion column in I- form in tandem, and the IEC with visible-detection based on molybdenum-blue reaction for determining simultaneously silicate and phosphate ions on cation-exchange separation column in H+ form. These IEC systems were combined through three manually-driven 6-port column selection valves to select each separation column to determine selectively the ionic nutrients. Using this sequential water quality monitoring system, the analytical performances such as calibration linearity, reproducibility, detection limit and recovery were also tested under the optimized chromatographic conditions. This novel water quality monitoring system has been applied successfully for the determination of the ionic eutrophication components in sub-urban river waters.

  9. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography

    Directory of Open Access Journals (Sweden)

    Marino Michael P

    2009-02-01

    Full Text Available Abstract Background During the past twelve years, lentiviral (LV vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols.

  10. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography

    Science.gov (United States)

    Kutner, Robert H; Puthli, Sharon; Marino, Michael P; Reiser, Jakob

    2009-01-01

    Background During the past twelve years, lentiviral (LV) vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU) per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols. PMID:19220915

  11. An improved anion-exchange high-performance liquid chromatography method for measuring oxidized form of LDLs in human plasma.

    Science.gov (United States)

    Kitano, Soichi; Higashimoto, Yuichiro; Harada, Shoji; Sano, Masaru; Kurata, Tsunehiko; Yamaguchi, Yu; Kunitomo, Masaru; Haginaka, Jun; Yamagishi, Sho-ichi

    2010-09-01

    Circulating oxidized low-density lipoproteins (LDLs) (ox-LDLs) could be a sensitive marker to predict future cardiovascular events. However, a method to evaluate oxidized forms of LDLs systemically in human plasma is not yet established. In this study, we developed a novel and convenient high-performance liquid chromatography (HPLC) method for measuring ox-LDL levels in humans. Human plasma lipoproteins were separated by a modified HPLC method using a diethylaminoethyl-type anion-exchange gel column with stepwise elution. Ox-LDLs were detected by postcolumn reaction with a reagent containing cholesterol esterase and cholesterol oxidase. Particle size of each LDL fraction separated by HPLC was determined in 61 healthy subjects. Our HPLC method separated LDLs into three fractions, which were designated as LDL-1, LDL-2 and LDL-3, on the basis of their negative charges, with LDL-3 the most strongly retained fraction migrating fastest in the anodic direction, a property that reflects the net negative charge of the molecule. Western blot analysis revealed that apolipoprotein B100 in LDL-3 fraction was the most fragmented and oxidatively modified. When LDLs were oxidized in vitro by Cu2+ or 2,2-azo-bis (2-aminopropane)-2HCl or modified by various aldehydes, all of the LDL fractions migrated at the position of LDL-3. Further, among three fractions, particle size was smallest in LDL-3 fraction. Here, we developed a convenient HPLC method and identified LDL-3 as oxidized LDL fractions, although ox-LDLs were present in LDL-2 fraction, albeit lesser concentrations than in LDL-3 subfraction. Measuring ox-LDL levels in human plasma by this method may be useful to evaluate atherosclerotic disorders.

  12. Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers.

    Science.gov (United States)

    Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin

    2018-01-01

    In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Separation of biomolecules by micro-high-performance anion-exchange chromatography using a tentacle-like stationary phase.

    Science.gov (United States)

    Marlin, Nicola Dawn; Smith, Norman William

    2005-05-01

    A variety of biomolecules and their variants, which have previously been problematic to separate, have been analysed using a novel anion-exchange resin based on a non-porous polystyrene polymeric support with a hydrophilic coating and grafted tentacular quaternary ammonium functional groups. The hydrophilic coating results in minimal interaction between the support and the biomolecule, while the highly flexible tentacular-like anion-exchange groups increase the ionic interaction potential and act as an umbrella to hold the proteins away from the surface. Because of the removal of silanophilic interactions, minimisation of hydrophobic interactions, and the highly flexible nature of the tentacle-like ion exchangers, ionic interactions can therefore dominate the separation. As such this phase is highly suited to the separation of highly charged biomolecules and their variants. This polymeric strong anion-exchange (SAX) support was packed into a fused-silica capillary column and, using a salt concentration gradient, various recombinant proteins were analysed by micro-HPLC resulting in baseline resolution.

  14. Anion exchange chromatography of 99mTc(Sn)-EHDP complexes: determination of the charge of the components and influence of pH and ligand concentration

    International Nuclear Information System (INIS)

    Huigen, Y.M.; Diender, M.; Gelsema, W.J.; De Ligny, C.L.

    1991-01-01

    The components of a 99m Tc(Sn)-EHDP complex mixture were separated by means of normal pressure and high-pressure anion exchange chromatography. Precautions were taken to prevent the dissociation of the complexes during chromatography. The charges of the components were determined according to the methods of Wilson and Pinkerton (1985) and Russell and Bischoff (1985). The values of the charges obtained with the two methods are not in agreement. Russell and Bischoff's method, in which a reference ion is used, must be preferred. However, even with this method the accuracy of the data obtained is probably limited, due to the difficulty of making corrections for activity coefficients of highly-charge ions at the rather high electrolyte concentrations that must be used in the ion exchange method. So, we think that it is only warranted to conclude that the mean charge of the components of 99m Tc(Sn)-EHDP is about -6 at pH 7, and that the charges of the individual components are in the range of -4 to -9. The influence of pH and ligand concentration in the reaction mixture was determined with high pressure anion exchange chromatography. It was found that a decrease in the pH of the reaction mixture favours the production of complexes with a long retention time, which leads to a slightly higher mean charge. The ligand concentration of the reaction mixture scarcely influenced the relative concentrations of the components. (author)

  15. Evaluation of the separation and purification of 227Th from its decay progeny by anion exchange and extraction chromatography

    International Nuclear Information System (INIS)

    Ivanov, P.I.; Collins, S.M.; Es, E.M. van; García-Miranda, M.; Jerome, S.M.; Russell, B.C.

    2017-01-01

    Thorium-227 is currently undergoing evaluation as a potential radionuclide for targeted cancer therapy, and as such a high chemical purity of the material is required. To establish a reliable procedure for radiochemical isolation of 227 Th from the parent 227 Ac and decay progeny, which includes the radiotherapeutic 223 Ra, the performance of three different separation schemes based on ion-exchange and extraction chromatography have been evaluated. The results suggest that both ion exchange and extraction chromatographic techniques can be successfully used for the separation of 227 Th from its decay progeny, however extraction chromatographic resins demonstrate favourable performance in terms of Th recovery and purification from radionuclide impurities. - Highlights: • Development of a radiochemical separation of 227 Th from residual 227Ac as well as from decay progeny. • Evaluation of ion-exchange and extraction chromatography techniques. • TEVA resin demonstrates favourable performance in terms of Th recovery and purification. • Developed method is applicable to both nuclear medicine and environmental analysis.

  16. High-throughput investigation of single and binary protein adsorption isotherms in anion exchange chromatography employing multivariate analysis.

    Science.gov (United States)

    Field, Nicholas; Konstantinidis, Spyridon; Velayudhan, Ajoy

    2017-08-11

    The combination of multi-well plates and automated liquid handling is well suited to the rapid measurement of the adsorption isotherms of proteins. Here, single and binary adsorption isotherms are reported for BSA, ovalbumin and conalbumin on a strong anion exchanger over a range of pH and salt levels. The impact of the main experimental factors at play on the accuracy and precision of the adsorbed protein concentrations is quantified theoretically and experimentally. In addition to the standard measurement of liquid concentrations before and after adsorption, the amounts eluted from the wells are measured directly. This additional measurement corroborates the calculation based on liquid concentration data, and improves precision especially under conditions of weak or moderate interaction strength. The traditional measurement of multicomponent isotherms is limited by the speed of HPLC analysis; this analytical bottleneck is alleviated by careful multivariate analysis of UV spectra. Copyright © 2017. Published by Elsevier B.V.

  17. Chitosan Derivatives as Important Biorefinery Intermediates. Quaternary Tetraalkylammonium Chitosan Derivatives Utilized in Anion Exchange Chromatography for Perchlorate Removal

    Directory of Open Access Journals (Sweden)

    Shakeela Sayed

    2015-04-01

    Full Text Available There has recently been great interest in the valorization of biomass waste in the context of the biorefinery. The biopolymer chitosan, derived from chitin, is present in large quantities of crustacean waste. This biomass can be converted into value-added products with applications in energy, fuel, chemicals and materials manufacturing. The many reported applications of this polymer can be attributed to its unique properties, such as biocompatibility, chemical versatility, biodegradability and low toxicity. Cost effective water filters which decontaminate water by removal of specific impurities and microbes are in great demand. To address this need, the development of ion exchange resins using environmentally friendly, renewable materials such as biopolymers as solid supports was evaluated. The identification and remediation of perchlorate contaminated water using an easy, inexpensive method has come under the spotlight recently. Similarly, the use of a low cost perchlorate selective solid phase extraction (SPE cartridge that can be rapidly employed in the field is desirable. Chitosan based SPE coupled with colorimetric analytical methods showed promise as a renewable anion exchange support for perchlorate analysis or removal. The polymers displayed perchlorate retention comparable to the commercial standard whereby the quaternized iron loaded polymer TMC-Fe(III displayed the best activity.

  18. Chitosan derivatives as important biorefinery intermediates. Quaternary tetraalkylammonium chitosan derivatives utilized in anion exchange chromatography for perchlorate removal.

    Science.gov (United States)

    Sayed, Shakeela; Jardine, Anwar

    2015-04-23

    There has recently been great interest in the valorization of biomass waste in the context of the biorefinery. The biopolymer chitosan, derived from chitin, is present in large quantities of crustacean waste. This biomass can be converted into value-added products with applications in energy, fuel, chemicals and materials manufacturing. The many reported applications of this polymer can be attributed to its unique properties, such as biocompatibility, chemical versatility, biodegradability and low toxicity. Cost effective water filters which decontaminate water by removal of specific impurities and microbes are in great demand. To address this need, the development of ion exchange resins using environmentally friendly, renewable materials such as biopolymers as solid supports was evaluated. The identification and remediation of perchlorate contaminated water using an easy, inexpensive method has come under the spotlight recently. Similarly, the use of a low cost perchlorate selective solid phase extraction (SPE) cartridge that can be rapidly employed in the field is desirable. Chitosan based SPE coupled with colorimetric analytical methods showed promise as a renewable anion exchange support for perchlorate analysis or removal. The polymers displayed perchlorate retention comparable to the commercial standard whereby the quaternized iron loaded polymer TMC-Fe(III) displayed the best activity.

  19. Effects of pH, conductivity, host cell protein, and DNA size distribution on DNA clearance in anion exchange chromatography media.

    Science.gov (United States)

    Stone, Melani C; Borman, Jon; Ferreira, Gisela; Robbins, P David

    2018-01-01

    Flowthrough anion exchange chromatography is commonly used as a polishing step in downstream processing of monoclonal antibodies and other therapeutic proteins to remove process-related impurities and contaminants such as host cell DNA, host cell proteins, endotoxin, and viruses. DNA with a wide range of molecular weight distributions derived from Chinese Hamster Ovary cells was used to advance the understanding of DNA binding behavior in selected anion exchange media using the resin (Toyopearl SuperQ-650M) and membranes (Mustang® Q and Sartobind® Q) through DNA spiking studies. The impacts of the process parameters pH (6-8), conductivity (2-15 mS/cm), and the potential binding competition between host cell proteins and host cell DNA were studied. Studies were conducted at the least and most favorable experimental conditions for DNA binding based on the anticipated electrostatic interactions between the host cell DNA and the resin ligand. The resin showed 50% higher DNA binding capacity compared to the membrane media. Spiking host cell proteins in the load material showed no impact on the DNA clearance capability of the anion exchange media. DNA size distributions were characterized based on a "size exclusion qPCR assay." Results showed preferential binding of larger DNA fragments (>409 base pairs). © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:141-149, 2018. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  20. Determination of sugar compounds in olive plant extracts by anion-exchange chromatography with pulsed amperometric detection.

    Science.gov (United States)

    Cataldi, T R; Margiotta, G; Iasi, L; Di Chio, B; Xiloyannis, C; Bufo, S A

    2000-08-15

    We describe a chromatographic method that uses isocratic elution and pulsed amperometric detection to determine soluble carbohydrates in plant tissues. Such a method provides a rapid and convenient means to obtain a complete profile of the sugar components of leaves and roots from olive (Olea europaea L. cv. Coratina) plants. A simple purification of plant extracts using pure water was developed, which is far less time-consuming and retains a high level of accuracy. Excellent separation of myo-inositol, galactinol, mannitol, galactose, glucose, fructose, sucrose, raffinose, and stachyose was achieved with an anion-exchange column and 12 mM NaOH spiked with 1 mM barium acetate as an eluent. At a flow rate of 1.0 mL/min, the time of analysis was less than 25 min, and repeatability of the method on the order of 2.2% as RSD or better for retention times and lower than 5.2% for peak areas. Recoveries approximated 100% (range 97.2-104.5%), and the method provided good precision with a coefficient of variation which ranged between 0.9 and 3.3%. Among identified carbohydrates extracted from leaves and roots of olive plants, glucose and mannitol were major compounds. Their molar ratio was estimated to be 1.2+/-0.1 and 2.2+/-0.3 for olive leaves and roots, respectively. The occurrence of soluble galactinol in plant tissues was also validated.

  1. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  2. Determination of total ribonucleotide pool in plant materials by high-pH anion-exchange high-performance liquid chromatography following extraction with potassium hydroxide.

    Science.gov (United States)

    Riondet, Christophe; Morel, Sylvain; Alcaraz, Gérard

    2005-06-10

    A new, improved method that only requires a potassium hydroxide extraction procedure is presented for the analysis of a full nucleotide pool in plant materials. Quantification was performed by high-pH anion-exchange chromatography (HPAEC) with UV detection after a potassium hydroxide extraction, and allowed the quantification of 13 linear ribonucleotides in a single run. The method has been validated by comparison of six extraction methods and also by measurement of the intracellular nucleotide levels of three plant species (cell cultures and leaves). The evolution of the nucleotide pool of Nicotiana tabacum cell culture during growth has also been measured, and showed an increase in the pool until the fifth day, where the growth rate reaches a maximum, after which a decrease was observed.

  3. Determination of sucralose in Splenda and a sugar-free beverage using high-performance anion-exchange chromatography with pulsed amperometric detection.

    Science.gov (United States)

    Hanko, Valoran P; Rohrer, Jeffrey S

    2004-07-14

    Sucralose is a chlorinated carbohydrate nonnutritive sweetener of food and beverage products. The determination of sucralose in food and beverages is important to ensure consistency in product quality. Sucralose was determined in two commercial products without sample preparation using high-performance anion-exchange (HPAE) chromatography coupled with pulsed amperometric detection (PAD). Sucralose was determined with a 10 min isocratic separation. To determine sucralose and other carbohydrates (e.g., dextrose) simultaneously, a gradient separation was developed. The linear range of electrochemical response extended over 3 orders of magnitude, from 0.01 (LOD) to 40 microM (16 microg/mL; 25 microL injection). High precision, high spike recovery, and method ruggedness were observed for both samples.

  4. Polyethylenimine modified poly(ethylene terephthalate) capillary channeled-polymer fibers for anion exchange chromatography of proteins.

    Science.gov (United States)

    Jiang, Liuwei; Jin, Yi; Marcus, R Kenneth

    2015-09-04

    Native poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fibers have been previously studied as stationary phases for reversed phase and affinity protein separations. In this study, surface modified PET C-CP fibers were evaluated for the anion exchange separation of proteins. The native PET C-CP fibers were aminated using polyethylenimine (PEI) followed by a 1,4-butanediol diglycidyl ether (BUDGE) cross-linking step. Subsequent PEI/BUDGE treatments can be employed to further develop the polyamine layer on the fiber surfaces. The PEI densities of the modified fibers were quantified through the ninhydrin reaction, yielding values of 0.43-0.89μmolg(-1). The surface modification impact on column permeability was found to be 0.66×10(-11) to 1.33×10(-11)m(2), depending on the modification time and conditions. The dynamic binding capacities of the modified fiber media were determined to be 1.99-8.54mgmL(-1) bed volume, at linear velocities of 88-438cmmin(-1) using bovine serum albumin as the model protein. It was found that increasing the mobile phase linear velocity (up to 438cmmin(-1)) had no effect on the separation quality for a synthetic protein mixture, reflecting the lack of van Deemter C-term effects for the C-CP fiber phase. The low-cost, easy modification method and the capability of fast protein separation illustrate great potential in the use of PEI/BUDGE-modified PET C-CP fibers for high-throughput protein separation and downstream processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Simultaneous determination of inorganic and organic anions by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  6. Partially hydrolyzed guar gum characterization and sensitive quantification in food matrices by high performance anion exchange chromatography with pulsed amperometric detection--validation using accuracy profile.

    Science.gov (United States)

    Mercier, G; Campargue, C

    2012-11-02

    Interest concerning functional ingredients and especially dietary fibres has been growing in recent years. At the same time, the variety of ingredient accepted as dietary fibres and their mixing at low level in complex matrices have considerably complicated their quantitative analysis by approved AOAC methods. These reasons have led to the specific development of an innovative analytical method performed by high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD) to detect and quantify partially hydrolyzed guar gum (PHGG) in fruit preparation and dairy matrices. The analytical methodology was divided in two steps which could be deployed separately or in conjunction. The first, consists in a complete characterization of PHGG by size exclusion chromatography (SEC) with multi-angle light scattering and refractive index detection and HPAEC-PAD to determine its physico-chemical properties and galactomannans content, and the second step is the development of a new HPAEC-PAD method for PHGG direct quantification in complex matrices (dairy product). Validation in terms of detection and quantification limits, linearity of the analytical range, average accuracy (recovery, trueness) and average uncertainty were statistically carried out with accuracy profile. Overall, this new chromatographic method has considerably improved the possibility to quantify without fractionation treatment, low level of dietary fibres emerging from specific galactomannans, in complex matrices and many foodstuffs. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Analytical Method for Sugar Profile in Pet Food and Animal Feeds by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection.

    Science.gov (United States)

    Ellingson, David J; Anderson, Phillip; Berg, Daniel P

    2016-01-01

    There is a need for a standardized, accurate, rugged, and consistent method to measure for sugars in pet foods and animal feeds. Many traditional standard sugar methods exist for other matrixes, but when applied in collaborative studies there was poor agreement and sources of error identified with those standard methods. The advancement in technology over the years has given us the ability to improve on these standard methods of analysis. A method is described here that addresses these common issues and was subjected to a single-laboratory validation to assess performance on a wide variety of pet foods and animal feeds. Of key importance to the method performance is the sample preparation before extraction, type of extraction solvent, postextraction cleanup, and, finally, optimized chromatography using high-performance anion exchange chromatography with pulsed amperometric detection. The results obtained from the validation demonstrate how typical issues seen with these matrixes can influence performance of sugar analysis. The results also demonstrate that this method is fit-for-purpose and can meet the challenges of sugar analysis in pet food and animal feeds to lay the foundation for a standardized method of analysis.

  8. Preparation of quaternary amine monolithic column for strong anion-exchange chromatography and its application to the separation of Enterovirus 71.

    Science.gov (United States)

    Gu, Huimin; Yin, Dezhong; Ren, Jie; Zhang, Baoliang; Zhang, Qiuyu

    2016-10-15

    Large size virion is unable to diffuse into pores of conventional porous chromatography particles. Therefore, separation of virion by conventional column-packing materials is not quite efficient. To solve this problem, a monolithic column with large convective pores and quaternary amine groups was prepared and was applied to separate Enterovirus 71 (EV71, ≈5700-6000kDa). Cross-section, pore structure, hydrodynamic performance, adsorption property and dynamic binding capacity of prepared monolithic column were determined. Double-pore structures, macropore at 2472nm and mesopore at 5-60nm, were formed. The porosity was up to 63.3%, which enable higher permeability and lower back pressure of the monolithic column than commercial UNO™ Q1 column. Based on the breakthrough curves, the loading capacity of bovine serum albumin was calculated to be 42.0mg per column. In addition, prepared quaternary amine monolithic column was proved to be suitable for the separation of protein mixture by strong anion-exchange chromatography. As a practical application, prepared monolith column presents excellent performance to the separation of EV71 from virus-proteins mixture. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2011-01-01

    is straightforward and less labor intensive as compared with batch-wise anion exchange chromatographic procedures. Besides, the automated method features low consumption of ion-exchanger and reagents for column washing and elution, with the consequent decrease in the generation of acidic waste, thus bearing green...

  10. Separation of human milk oligosaccharides using high-performance anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Lie, Aleksander; Pedersen, Lars Haastrup

    Human Milk Oligosaccharides (HMOs) are composed of 5 different monosaccharides: D-glucose, D galactose, L-fucose, N-acetylneuraminic acid and N-acetylglucosamine. Approximately 200 unique structures have been identified, ranging in degree of polymerization from 3 to 22. The diversity among......) with pulsed amperometric detection (PAD) is an analysis method highly suited for carbohydrates. HPAE with alkaline eluents results in retention of neutral carbohydrates depending on the number of charged groups in the molecule, pH and concentration of competing anions, while PAD has sensitivity...... for carbohydrates in the pmol-range (Lee 1990). In the present study, the aim is to develop analysis methods that can provide separation and quantification of the common structural constituents mentioned, as well as the disaccharide lactose and oligosaccharides such as lacto-N-triose II, lacto-N-tetraose and lacto...

  11. Separation and identification of uranium in the filtrates of diuranates by precipitation chromatography in the system anion exchange resin - hexacyanoferrate

    International Nuclear Information System (INIS)

    Seneda, Jose Antonio; Abrao, Alcidio

    1996-01-01

    The filtrates of sodium and ammonium diuranates usually have uranium at 5-20 mg/L concentration. In this work the separation of uranium (VI) in these filtrates was carried out, after adjusting the pH to 3.0 and percolating the solution on a strong-base anionic resin saturated with hexacyanoferrate (II). In this system the colored uranyl hexacyanoferrate (II) is precipitated in the top of the column and enables the visual observation of the uranium compound. The main operational factors of this process are studied, including the influent solution, formation of uranyl hexacyanoferrate (II) into the resin and uranium elution reagents. Results of the identification of uranium in the eluate and hexacyanoferrate (II)-resin system stability are discussed. (author)

  12. Characterization of oligosaccharides with capillary high performance anion exchange chromatography hyphenated to pulsed amperometric detection and ion trap mass spectrometry : application to the analysis of human lysosomal disorders

    NARCIS (Netherlands)

    Bruggink, Cornelis

    The development of a capillary ion chromatograph is described together with a matching desalter. This desalter made it possible to use on-line a mass spectrometer. The mass spectrometer enables partly to characterize carbohydrates eluting from the anion exchange column. This separation technology is

  13. Cholesterol concentrations in lipoprotein fractions separated by anion-exchange-high-performance liquid chromatography in healthy dogs and dogs with hypercholesterolemia.

    Science.gov (United States)

    Oda, Hitomi; Mori, Akihiro; Hirowatari, Yuji; Takoura, Toshie; Manita, Daisuke; Takahashi, Tomoya; Shono, Saori; Onozawa, Eri; Mizutani, Hisashi; Miki, Yohei; Itabashi, Yukiko; Sako, Toshinori

    2017-10-01

    Anion-exchange (AEX)-high-performance liquid chromatography (HPLC) for measurement of cholesterol can be used to separate serum lipoproteins (high-density lipoprotein (HDL); low-density lipoprotein (LDL); intermediate-density lipoprotein (IDL); very-low-density lipoprotein (VLDL)) in humans. However, AEX-HPLC has not been applied in veterinary practice. We had three objectives: (i) the validation of AEX-HPLC methods including the correlation of serum cholesterol concentration in lipoprotein fraction measured by AEX-HPLC and gel permeation-HPLC (GP-HPLC) in healthy dogs and those with hypercholesterolemia was investigated; (ii) the reference intervals of lipoprotein fractions measured by AEX-HPLC from healthy dogs (n=40) was established; (iii) lipoprotein fractions from the serum of healthy dogs (n=12) and dogs with hypercholesterolemia (n=23) were compared. Analytic reproducibility and precision of AEX-HPLC were acceptable. Positive correlation between serum concentrations of total cholesterol (Total-Chol), HDL cholesterol (HDL-Chol), LDL cholesterol (LDL-Chol)+IDL cholesterol (IDL-Chol), and VLDL cholesterol (VLDL-Chol) was noted for AEX-HPLC and GP-HPLC in healthy dogs and dogs with hypercholesterolemia. Reference intervals measured by AEX-HPLC for serum concentrations of Total-Chol, HDL-Chol, and LDL-Chol were determined to be 2.97-9.32, 2.79-6.57, 0.16-3.28mmol/L (2.5-97.5% interval), respectively. Furthermore, there was significant difference in lipoprotein profiles between healthy and dogs with hypercholesterolemia. These results suggest that AEX-HPLC can be used to evaluate lipoprotein profiles in dogs and could be a new useful indicator of hyperlipidemia in dogs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates

    Science.gov (United States)

    Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1993-01-01

    The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.

  15. Determination of mycophenolic acid in mest products using mixed mode reversed phase-anion exchange clean-up and liquid chromatography-high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Sørensen, Louise Marie; Nielsen, Kristian Fog; Jacobsen, Thomas

    2008-01-01

    A method for determination of mycophenolic acid (MPA) in dry-cured ham, fermented sausage and liver pate is described. MPA was extracted from meat with bicarbonate-acetonitrile, further cleaned-up by mixed mode reversed phase-anion exchange and detected using a LC-MS system with electrospray...... ionisation-time-of-flight detection. The limit of detection was 4 mu g/kg in sausage and 6 mu g/kg in ham and pate. The method was successfully used for quantification of MPA in dry-cured ham and liver pate artificially inoculated with Penicillium brevicompactum. Levels ranged from 190 mu g/kg in centre to I...

  16. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 2: Computer controlled pH gradients in the presence of urea provide improved separation of proteins: Stability influenced anion and cation exchange chromatography.

    Science.gov (United States)

    Hirsh, Allen G; Tsonev, Latchezar I

    2017-04-28

    This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein

  17. Determination of non-ionic and anionic surfactants in industrial products by separation on a weak ion-exchanger, derivatization and liquid chromatography.

    Science.gov (United States)

    Ripoll-Seguer, L; Beneito-Cambra, M; Herrero-Martínez, J M; Simó-Alfonso, E F; Ramis-Ramos, G

    2013-12-13

    A method for the determination of priority surfactants, including fatty alcohol ethoxylates (FAE), alkylether sulfates (AES) and linear alkylbenzene sulfonates (LAS) is described. The samples were diluted with 50% methanol at pH 4 prior to solid-phase extraction on a weak anionic exchanger (WAX). The AES and LAS surfactant classes were retained, whereas the non-ionic components, including most FAE oligomers were eluted. After washing the WAX cartridge to remove cations, the remaining hydrophobic FAE oligomers were eluted using hot 80% methanol at pH 4 (at ca. 50°C). These two eluates were combined to constitute the non-ionic fraction. Then, AES and LAS were eluted using 80% MeOH with 3M NH3 followed by 95% methanol with 0.75M NH3. The two eluates obtained in basic media were combined to constitute the anionic fraction. The solvents were evaporated, the residues were dissolved in 1,4-dioxane, and esterification of the alcohols and transesterification of AES with phthalic anhydride was performed. Separation of the derivatized oligomers was achieved by gradient elution on a C8 column with acetonitrile/water in the presence of 0.1% acetic acid and 0.1M NaClO4. The chromatogram of the non-ionic fraction showed the peaks of the resolved FAE oligomers. The chromatogram of the anionic fraction showed the peaks of the LAS homologues well resolved from those of the AES oligomers. The method was applied to laundry and industrial cleaners, shampoos and a shower gel. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Development of anion-exchange/reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry methods for the speciation of bio-available iodine and bromine from edible seaweed.

    Science.gov (United States)

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2012-05-04

    Anion exchange high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry has been novelly applied to assess inorganic (iodide and iodate) and organic (3-iodotyrosine - MIT, and 3,5-diiodotyrosine - DIT) iodine species in a single chromatographic run. The optimized operating conditions (Dionex IonPac AS7, gradient elution with 175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase and flow rates within the 0.5-1.5 mL min(-1) range) have also been used to perform inorganic bromine speciation analysis (bromide and bromate). The developed method has been applied for determining the bio-available contents of iodine and bromine species in dialyzates from edible seaweed. Reverse phase high performance liquid chromatography (Zorbax Eclipse XDB-C8, gradient elution with 0.2% (m/m) acetic acid, and 0.2% (m/m) acetic acid in methanol, as mobile phases, and a constant flow rate of 0.75 mL min(-1)) also hyphenated with inductively coupled plasma-mass spectrometry was used to confirm the presence of organic iodine species (MIT and DIT) in the dialyzates. The verification of the presence of iodinated amino acids (MIT and DIT) in the extracts was also performed by reverse phase high performance liquid chromatography-electrospray ionization-mass spectrometry (LTQ Orbitrap). The developed methods have provided good repeatability (RSD values lower than 10% for both anion exchange and reverse phase separations) and analytical recoveries within the 90-105% range for all cases. The in vitro bio-availability method consisted of a simulated gastric and an intestinal digestion/dialysis (10 kDa molecular weight cut-off - MWCO) two-stage procedure. Iodide and MIT were the main bio-available species quantified, whereas bromide was the major bromine species found in the extracts. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Radioanalytical determination of plutonium and americium using ion exchange and extraction chromatography technique in urine

    International Nuclear Information System (INIS)

    Santhanakrishnan, V.; Sreedevi, K.R.; Rajaram, S.; Ravi, P.M.

    2011-01-01

    The use of anion exchange chromatography for the separation of Pu and extraction chromatography technique for the separation of Am from urine samples was studied. In the earlier method, Pu separation was carried out by anion exchange chromatography followed by Am separation by cation exchange chromatography. The chemical recovery of Am obtained by cation exchange separation method was inconsistent and low in the range 30-70%. In this study, the average Pu recovery obtained using anion exchange chromatography was 89.2 with standard deviation of 10.4 and the average Am recovery obtained using extraction chromatography with TRU resin was 77.4 with standard deviation of 14.8. Moreover, Am separation could be completed within three hours using the TRU column compared to two days that were required for the cation exchange chromatography. (author)

  20. A tandem laboratory scale protein purification process using Protein A affinity and anion exchange chromatography operated in a weak partitioning mode.

    Science.gov (United States)

    Shamashkin, Michael; Godavarti, Ranga; Iskra, Timothy; Coffman, Jon

    2013-10-01

    A significant consequence of scaling up production of high titer monoclonal antibody (mAb) processes in existing facilities is the generation of in-process pools that exceed the capacity of storage vessels. A semi-continuous downstream process where columns and filters are linked and operated in tandem would eliminate the need for intermediate holding tanks. This study is a bench-scale demonstration of the feasibility of a tandem process for the purification of mAbs employing an affinity Protein A capture step, followed by a flow-through anion-exchange (AEX) step with the possibility of adding an in-line virus filtration step (VF). All three steps were linked sequentially and operated as one continuous process using an ÄKTA FPLC equipped with two pumps and a system of valves and bypasses that allowed the components to be engaged at different stages of the process. The AEX column was operated in a weak partitioning (WP) mode enabled by a precise in-line titration of Protein A effluent. In order to avoid complex control schemes and facilitate validation, quality and robustness were built into the system through selection of buffers based on thermodynamic and empirical models. The tandem system utilized the simplest possible combination of valves, pumps, controls, and automation, so that it could easily be implemented in a clinical or commercial production facility. Linking the purification steps in a tandem process is expected to generate savings in time and production costs and also reduce the size of quality systems due to reduced documentation requirements, microbial sampling, and elimination of hold time validation. Copyright © 2013 Wiley Periodicals, Inc.

  1. Removal of transmissible spongiform encephalopathy prion from large volumes of cell culture media supplemented with fetal bovine serum by using hollow fiber anion-exchange membrane chromatography.

    Science.gov (United States)

    Chou, Ming Li; Bailey, Andy; Avory, Tiffany; Tanimoto, Junji; Burnouf, Thierry

    2015-01-01

    Cases of variant Creutzfeldt-Jakob disease in people who had consumed contaminated meat products from cattle with bovine spongiform encephalopathy emphasize the need for measures aimed at preventing the transmission of the pathogenic prion protein (PrPSc) from materials derived from cattle. Highly stringent scrutiny is required for fetal bovine serum (FBS), a growth-medium supplement used in the production of parenteral vaccines and therapeutic recombinant proteins and in the ex vivo expansion of stem cells for transplantation. One such approach is the implementation of manufacturing steps dedicated to removing PrPSc from materials containing FBS. We evaluated the use of the QyuSpeed D (QSD) adsorbent hollow-fiber anion-exchange chromatographic column (Asahi Kasei Medical, Tokyo, Japan) for the removal of PrPSc from cell culture media supplemented with FBS. We first established that QSD filtration had no adverse effect on the chemical composition of various types of culture media supplemented with 10% FBS or the growth and viability characteristics of human embryonic kidney (HEK293) cells, baby hamster kidney (BHK-21) cells, African green monkey kidney (Vero) cells, and Chinese hamster ovary (CHO-k1) cells propagated in the various culture-medium filtrates. We used a 0.6-mL QSD column for removing PrPSc from up to 1000 mL of Dulbecco's modified Eagle's medium containing 10% FBS previously spiked with the 263K strain of hamster-adapted scrapie. The Western blot analysis, validated alongside an infectivity assay, revealed that the level of PrPSc in the initial 200mL flow-through was reduced by 2.5 to > 3 log10, compared with that of the starting material. These results indicate that QSD filtration removes PrPSc from cell culture media containing 10% FBS, and demonstrate the ease with which QSD filtration can be implemented in at industrial-scale to improve the safety of vaccines, therapeutic recombinant proteins, and ex vivo expanded stem cells produced using growth

  2. Removal of transmissible spongiform encephalopathy prion from large volumes of cell culture media supplemented with fetal bovine serum by using hollow fiber anion-exchange membrane chromatography.

    Directory of Open Access Journals (Sweden)

    Ming Li Chou

    Full Text Available Cases of variant Creutzfeldt-Jakob disease in people who had consumed contaminated meat products from cattle with bovine spongiform encephalopathy emphasize the need for measures aimed at preventing the transmission of the pathogenic prion protein (PrPSc from materials derived from cattle. Highly stringent scrutiny is required for fetal bovine serum (FBS, a growth-medium supplement used in the production of parenteral vaccines and therapeutic recombinant proteins and in the ex vivo expansion of stem cells for transplantation. One such approach is the implementation of manufacturing steps dedicated to removing PrPSc from materials containing FBS. We evaluated the use of the QyuSpeed D (QSD adsorbent hollow-fiber anion-exchange chromatographic column (Asahi Kasei Medical, Tokyo, Japan for the removal of PrPSc from cell culture media supplemented with FBS. We first established that QSD filtration had no adverse effect on the chemical composition of various types of culture media supplemented with 10% FBS or the growth and viability characteristics of human embryonic kidney (HEK293 cells, baby hamster kidney (BHK-21 cells, African green monkey kidney (Vero cells, and Chinese hamster ovary (CHO-k1 cells propagated in the various culture-medium filtrates. We used a 0.6-mL QSD column for removing PrPSc from up to 1000 mL of Dulbecco's modified Eagle's medium containing 10% FBS previously spiked with the 263K strain of hamster-adapted scrapie. The Western blot analysis, validated alongside an infectivity assay, revealed that the level of PrPSc in the initial 200mL flow-through was reduced by 2.5 to > 3 log10, compared with that of the starting material. These results indicate that QSD filtration removes PrPSc from cell culture media containing 10% FBS, and demonstrate the ease with which QSD filtration can be implemented in at industrial-scale to improve the safety of vaccines, therapeutic recombinant proteins, and ex vivo expanded stem cells produced

  3. Cleanup and analysis of sugar phosphates in biological extracts by using solid phase extraction and anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Smith, Hans Peter; Cohen, A.; Buttler, T.

    1998-01-01

    of Saccharomyces cerevisiae obtained by using cold methanol as quenching agent and chloroform as extraction solvent. It was shown that pretreatment of the cell extract with SPE markedly improved the quality of the liquid chromatography analysis with recoveries of the sugar phosphates close to 100%. Furthermore...

  4. Separation and quantification of inulin in selected artichoke (Cynara scolymus L.) cultivars and dandelion (Taraxacum officinale WEB. ex WIGG.) roots by high-performance anion exchange chromatography with pulsed amperometric detection.

    Science.gov (United States)

    Schütz, Katrin; Muks, Erna; Carle, Reinhold; Schieber, Andreas

    2006-12-01

    The profile of fructooligosaccharides and fructopolysaccharides in artichoke heads and dandelion roots was investigated. For this purpose, a suitable method for high-performance anion exchange chromatography with pulsed amperometic detection was developed. The separation of monomers, oligomers and polymers up to a chain length of 79 sugar residues was achieved in one single run. Glucose, fructose, sucrose and individual fructooligosaccharides (kestose, nystose, fructofuranosylnystose) were quantified in six different artichoke cultivars and in dandelion roots. The contents ranged from 12.9 g/kg DM to 71.7 g/kg DM for glucose, from 15.8 g/kg DM to 67.2 g/kg DM for fructose, and from 16.8 g/kg DM to 55.2 g/kg DM for sucrose in the artichoke heads. Kestose was the predominant fructooligosaccharide, followed by nystose and fructofuranosylnystose. In four cultivars fructofuranosylnystose was only detectable in traces and reached its maximum value of 3.6 g/kg DM in the cultivar Le Castel. Furthermore, an average degree of polymerization of 5.3 to 16.7 was calculated for the individual artichoke cultivars, which is noticeably lower than hitherto reported. In contrast, the contents of kestose, nystose and fructofuranosylnystose in dandelion root exceeded that of artichoke, reflecting the short chain characteristic of the inulin, which was confirmed by chromatographic analysis. Copyright (c) 2006 John Wiley & Sons, Ltd.

  5. High-performance liquid chromatography separation of cis-trans anthocyanin isomers from wild Lycium ruthenicum Murr. employing a mixed-mode reversed-phase/strong anion-exchange stationary phase.

    Science.gov (United States)

    Jin, Hongli; Liu, Yanfang; Guo, Zhimou; Yang, Fan; Wang, Jixia; Li, Xiaolong; Peng, Xiaojun; Liang, Xinmiao

    2015-01-21

    The cis-trans isomerism is a common phenomenon for acylated anthocyanins. Nevertheless, few studies reported effective methods for the preparation of isomeric anthocyanins from natural products. In this work, a high-performance liquid chromatography (HPLC) method was developed to efficiently purify anthocyanin isomers from Lycium ruthenicum Murr. based on a mixed-mode reversed-phase/strong anion-exchange column (named XCharge C8SAX). Four commercially available columns were evaluated with a pair of isomeric anthocyanins, and the results demonstrated that the XCharge C8SAX column exhibited improved selectivity and column efficiency for the isomers. The chromatographic parameters, including pH, organic content, and ionic strength, were investigated. Optimal separation quality for the anthocyanin isomers was achieved on the XCharge C8SAX column. Six pure anthocyanins, including two pairs of cis-trans isomeric anthocyanins with one new anthocyanin, were purified from L. ruthenicum and identified. All of the results indicated that this method is an effective way to separate anthocyanins, especially for cis-trans isomers.

  6. Anion exchange fractionation of serum proteins versus albumin elimination.

    Science.gov (United States)

    Sahab, Ziad J; Iczkowski, Kenneth A; Sang, Qing-Xiang Amy

    2007-09-01

    Elimination of albumin, constituting more than 50% of total serum proteins, allows increased protein loads on immobilized pH gradient (IPG) gels and better visualization of low-abundance proteins; however, it may result in the loss of albumin-bound low-abundance proteins. In this study, we report the prefractionation of serum proteins by batch anion exchange chromatography into three fractions: one containing proteins with isoelectric points (pI values) higher than the pI of albumin, a second fraction containing proteins with pI values in the same range as the pI of albumin, and a third fraction containing proteins with pI values lower than the pI of albumin. This procedure uses common instrumentation, is carried out under denaturing conditions, and takes less than 30min. We also report the loss of a clinically established prostate cancer serum biomarker, prostate-specific antigen (PSA), after albumin is eliminated using two commercially available albumin elimination kits: one that uses Cibacron Blue F3GA, which achieves albumin depletion through dye-ligand binding, and one that uses specific albumin antibody. The loss of PSA secondary to albumin elimination exceeded that after batch anion exchange serum sample prefractionation.

  7. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Alkaline polymer electrolyte fuel cell; anion exchange membrane; PPO; homogeneous quaterni- zation. 1. Introduction. Presently, alkaline polymer electrolyte fuel cells (APEFCs) using anion exchange membranes have received an immense interest among researchers (Varcoe and Slade. 2005). The advantages of ...

  8. Chromatography of actinides on anion-exchange paper, behaviour of the elements U, Np Pu Am in acid, aqueous and alcohol-water solutions

    International Nuclear Information System (INIS)

    Collin, Michel

    1969-01-01

    A preliminary study of actinide migration on ion exchange paper has been carried out on trace amounts with a view to subsequent application in micro-analysis. The first tests have made it possible to define the factors having an effect on the migrational velocities of aqueous and alcohol-water solutions of HCl and HNO 3 . The behaviour, of actinides has then been studied in non-saline acid solutions. The results obtained for each element separately are interesting from the point of view of their mutual separation. This analytical technique has finally been applied successfully to the migration of 300 μg of uranium deposited from a 1 ml volume of solution. (author) [fr

  9. Ionic Block Copolymers for Anion Exchange Membranes

    Science.gov (United States)

    Tsai, Tsung-Han; Herbst, Dan; Giffin, Guinevere A.; di Noto, Vito; Witten, Tom; Coughlin, E. Bryan

    2013-03-01

    Anion exchange membrane (AEM) fuel cells have regained interest because it allows the use of non-noble metal catalysts. Until now, most of the studies on AEM were based on random polyelectrolytes. In this work, Poly(vinylbenzyltrimethylammonium bromide)-b- (methylbutylene) ([PVBTMA][Br]-b-PMB) was studied by SAXS, TEM and dielectric spectroscopy to understand the fundamental structure-conductivity relationship of ion transport mechanisms within well-ordered block copolymers. The ionic conductivity and the formation of order structure were dependent on the casting solvent. Higher ion exchange capacity (IEC) of the membranes showed higher conductivity at as IEC values below 1.8mmol/g, as above this, the ionic conductivity decreases due to more water uptake leading to dilution of charge density. The humidity dependence of morphology exhibited the shifting of d-spacing to higher value and the alteration in higher characteristic peak of SAXS plot as the humidity increase from the dry to wet state. This phenomenon can be further explained by a newly developed polymer brush theory. Three ionic conduction pathways with different conduction mechanism within the membranes can be confirmed by broadband electric spectroscopy. US Army MURI (W911NF1010520)

  10. Dynamics of anion exchange of lanthanides in aqueous-organic complexing media

    International Nuclear Information System (INIS)

    Sheveleva, I.V.; Bogatyrev, I.O.

    1987-01-01

    Effect of organic solvents (ethanol, acetone, acetonitrile) on change in kinetic parameters of the anion exchange process (anion-exchange column chromatography) of r.e.e. (europium and gadolinium) in complexing nitric acid media has been studied. It is established that complex LnA 4 anion is the only sorbing form of europium and gadolinium on anionite. When the organic component content of the solution being the same, the dynamic parameters of lanthanide exchange have higher values in aqueous-acetonitrile and aqueous-acetone media in comparison with aqueous-enthanol solutions of nitric acid. Lesser mobility of complex lanthanide anions in aqueous-alcoholic solutions can be explained by stronger solvation in the presence of solvents with higher acceptor properties

  11. Serial mixed-mode cation- and anion-exchange solid-phase extraction for separation of basic, neutral and acidic pharmaceuticals in wastewater and analysis by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Lavén, Martin; Alsberg, Tomas; Yu, Yong; Adolfsson-Erici, Margaretha; Sun, Hongwen

    2009-01-02

    A novel solid-phase extraction (SPE) method is presented whereby 15 basic, neutral and acidic pharmaceuticals in wastewater were simultaneously extracted and subsequently separated into different fractions. This was achieved using mixed-mode cation- and anion-exchange SPE (Oasis MCX and MAX) in series. Analysis was performed by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC/QTOF-MS). A fast separation was achieved, with all compounds eluting within 6min, narrow chromatographic peaks, with a peak base width of 6s on average, and a high mass accuracy of quantified wastewater sample ions, with average mass errors in absolute value of 0.7mDa or 2.7ppm. The recovery of the SPE method in the analysis of sewage treatment plant (STP) influent and effluent wastewater was on average 80% and the ion suppression 30%. For less demanding samples Oasis MCX used alone may be an alternative method, although for STP influent waters containing high loads of organic compounds the clean-up achieved using only Oasis MCX was insufficient, leading to unreliable quantitation. Furthermore, serial SPE separation according to molecular charge added an additional degree of analyte confirmation. For quantitation, an approach combining external standard calibration curves, isotopically labelled surrogate standards and single-point standard addition was used. The applicability of the method was demonstrated in the analysis of influent and effluent wastewater from an STP, using small sample volumes (25-50mL). The effluent wastewater had been subjected to three different treatments; activated sludge, activated sludge followed by ozonation, and a membrane bioreactor (MBR). Ozone treatment proved superior in removal of the analysed pharmaceuticals, while the MBR provided higher removal efficiencies than the activated sludge process.

  12. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    Science.gov (United States)

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  13. Ion-Exchange Chromatography: Basic Principles and Application.

    Science.gov (United States)

    Cummins, Philip M; Rochfort, Keith D; O'Connor, Brendan F

    2017-01-01

    Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.

  14. Anion analysis in uranium more concentrates by ion chromatography

    International Nuclear Information System (INIS)

    Badaut, V.

    2009-01-01

    In the present exploratory study, the applicability of anionic impurities or attributing nuclear material to a certain chemical process or origin has been investigated. Anions (e.g., nitrate, sulphate, fluoride, chloride) originate from acids or salt solutions that are used for processing of solutions containing uranium or plutonium. The study focuses on uranium ore concentrates ('yellow cakes') originating from different mines. Uranium is mined from different types of ore body and depending on the type of rock, different chemical processes for leaching, dissolving and precipitating the uranium need to be applied. Consequently, the anionic patterns observed in he products of these processes (the 'ore concentrates') are different. The concentrations of different anionic species were measured by ion chromatography using conductivity detection. The results show clear differences of anion concentrations and patterns between samples from different uranium mines. Besides this, differences between sampling campaigns n a same mine were also observed indicating that the uranium ore is not homogeneous in a mine. These within-mine variations, however, were smaller than the between-mine variations. (author)

  15. Identification of inorganic anions by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sakayanagi, Masataka; Yamada, Yaeko; Sakabe, Chikako; Watanabe, Kunio; Harigaya, Yoshihiro

    2006-03-10

    Inorganic anions were identified by using gas chromatography/mass spectrometry (GC/MS). Derivatization of the anions was achieved with pentafluorobenzyl p-toluenesulphonate (PFB-Tos) as the reaction reagent and a crown ether as a phase transfer catalyst. When PFB-Br was used as the reaction reagent, the retention time of it was close to those of the derivatized inorganic anions and interfered with the analysis. In contrast, the retention time of PFB-Tos differed greatly from the PFB derivatives of the inorganic anions and the compounds of interest could be detected without interference. Although the PFB derivatives of SO4, S2O3, CO3, ClO4, and ClO3 could not be detected, the derivatives of F, Cl, Br, I, CN, OCN, SCN, N3, NO3, and NO2 were detected using PFB-Tos as the derivatizing reagent. The inorganic anions were detectable within 30 ng approximately, which is of sufficient sensitivity for use in forensic chemistry. Accurate mass number was measured for each PFB derivative by high-resolution mass spectrometry (HRMS) within a measurement error of 2 millimass units (mmu), which allowed determination of the compositional formula from the mass number. In addition, actual analysis was performed successively by our method using trial samples of matrix.

  16. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.

    Science.gov (United States)

    Liu, Hui F; McCooey, Beth; Duarte, Tiago; Myers, Deanna E; Hudson, Terry; Amanullah, Ashraf; van Reis, Robert; Kelley, Brian D

    2011-09-28

    purification process employing protein A affinity chromatography, isocratic overloaded cation exchange chromatography using Poros 50HS and anion exchange chromatography using QSFF in flow through mode was compared with the MAb's commercial manufacturing process, which consisted of protein A affinity chromatography, cation exchange chromatography using SPSFF in bind-elute mode and anion exchange chromatography using QSFF in flow through mode. Comparable step yield and impurity clearance were obtained by the two processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. New anion-exchange polymers for improved separations

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.

    1997-01-01

    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials

  18. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    Science.gov (United States)

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Rejuvenation processes applied to 'poisoned' anion exchangers in uranium processing

    International Nuclear Information System (INIS)

    Gilmore, A.J.

    1979-11-01

    The removal of 'poisons' from anion exchangers in uranium processing of Canadian radioactive ores is commonly called rejuvenation or regeneration. The cost of the ion exchange recovery of uranium is adversely affected by a decrease in the capacity and efficiency of the anion exchangers, due to their being 'poisoned' by silica, elemental sulphur, molybdenum and tetrathionates. These 'poisons' have a high affinity for the anion exchangers, are adsorbed in preference to the uranyl complex, and do not desorb with the reagents used normally in the uranyl desorption phase. The frequency of rejuvenation and the reagents required for rejuvenation are determined by the severity of the 'poisoning' accumulated by the exchanger in contact with the uranium leach liquor. Caustic soda (NaOH) at approximately equal to 18 cents/lb is commonly used to remove uranium anion exchangers of tetrathionate ((S 4 0 6 )/-/-) 'poisons'. A potential saving in operating cost would be of consequence if other reagents, e.g. sodium carbonate (Na 2 CO 3 ) at approximately equal to 3.6 cents/lb or calcium hydroxide (Ca(OH) 2 ) at approximately equal to 1.9 cents/lb, were effective in removing (S 4 0 6 )/-/-) from a 'poisoned' exchanger. A rejuvenation process for a test program was adopted after a perusal of the literature

  20. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  1. Inorganic anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Dyer, A.; Jamil, M.A.

    1987-07-01

    Inorganic anion exchangers are evaluated for Tc, I and S isotope removal from aqueous nuclear waste streams. Chemical, thermal, and radiation stabilities were examined. Selected exchangers were examined in detail for their selectivities, kinetics and mechanism of the sorption process (especially in NO 3 - , OH - and BO 3 - environments). Cement encapsulation and leaching experiments were made on the exchangers showing most promise for 'radwaste' treatment. (author)

  2. pH-gradient ion-exchange chromatography: An analytical tool for design and optimization of protein separations

    NARCIS (Netherlands)

    Ahamed, T.; Nfor, B.; Verhaert, P.; Deden, van G.; Wielen, van der L.

    2007-01-01

    This work demonstrates that a highly linear, controllable and wide-ranged pH-gradient can be generated through an ion-exchange chromatography (IEC) column. Such a pH-gradient anion-exchange chromatography was evaluated with 17 model proteins and found that acidic (pI <6) and basic (pI > 8)

  3. Anion exchange separation and purification of neodymium from fission products

    International Nuclear Information System (INIS)

    Ramkumar, K.L.; Raman, V.A.; Khodade, P.S.; Jain, H.C.

    1979-01-01

    Neodymium-148, the stable fission product has been proved to be one of the best monitors for the determination of nuclear fuel burn-up using triple spike isotope dilution mass spectrometry. For the precise and accurate determination of neodymium it is essential to separate it from bulk of other materials and purify from cerium and samarium which would otherwise cause isobaric interferences. A single stage anion exchange procedure for the separation and purification of neodymium from fission products has been developed. This method supercedes the lengthy and time consuming two stage anion exchange procedure normally used and ensures good chemical yield. (author)

  4. Analysis of anions in beer using ion chromatography

    Science.gov (United States)

    Bruce, Jonathan

    2002-01-01

    The majority of anions found in beer are a consequence of impurities derived from the water used during the brewing process. The process of beer manufacture consists of malting, brewing and fermentation followed by maturation before filtration and finally storage. Strict quality control is required because the presence of certain anions outside strictly defined tolerance limits can affect the flavour characteristics of the finished product. The anions present were quantified using the technique of ion chromatography with the Metrohm modular system following sample preparation. The analysis produced a result of the order 200 mg l-1 for chloride, phosphate and sulphate and around 20 mg l-1 for nitrate. If the chloride level exceeds 250 mg l-1, then the sweetness of the beer is enhanced, but yeast flocculation can be hindered. An excess of sulphate can give a sharp, dry edge to hopped beers and excessive amounts of nitrate have been found to harm the yeast metabolism after conversion to the nitrite form. As water is a primary ingredient within beer, its quality and type is a fundamental factor in establishing many of the distinctive regional beers that can be found in the United Kingdom and is thus monitored carefully. PMID:18924733

  5. Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst.

    Science.gov (United States)

    Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2016-09-30

    Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Rejuvenation of the anion exchanger used for uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.-Y.; Espenscheid, W.F.

    1986-01-01

    The present invention is directed to improving the performance of strong base anionic exchange resins used in uranium recovery that exhibit an undesirable decrease in loading capacity and in total exchange capacity. The invention comprises treating an anionic exchange resin to remove physically adsorbed and occluded fouling agents and to remove poisons which may be chemically bound to active ion groups on the resin. The process involves treating the resin, after the uranium ion exchange stage, with an alkaline carbonate solution, preferably treating the resin with an acid eluant first. The acid treatment dissolves insoluble fouling agents which are physically occluded or adsorbed by the resin and that the weak base treatment augments that result and probably removes poisons which are physically or chemically bound to the resin

  7. Organic resin anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Dyer, A.; McGinnes, D.F.

    1988-07-01

    Organic anion exchange resins are evaluated for 99-TcO 4 - (pertechnate) removed from aqueous nuclear waste streams. Chemical, thermal and radiation stabilities were studied. Selected resins were examined in detail for their selectivities in the presence of I - , NO 3 - , SO 4 = , CO 3 = , Cl - and OH - . Ion exchange equilibria and kinetic mechanisms were determined. Preliminary investigations of cement encapsulation in polymer modified form were made and some leach studies carried out. (author)

  8. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  9. Evaluation of Some Anionic Exchange Resins as Potential Tablet ...

    African Journals Online (AJOL)

    Starches, clays, gums and hydrophilic cellulosic polymers have historically ... expand such interesting applications to anionic exchange resins ..... Edition, Revised and. Expanded. New York: Marcel Dekker; 1989; pp 75-. 130. 4. Goyanes A, Souto C, Martíínez-Pacheco R. A comparison of chitosan-silica and sodium starch.

  10. Sample pre-treatment to eliminate cationic methylated arsenic for determining arsenite on an anion-exchange column by high performance liquid chromatography-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Huang, Jen-How; Ilgen, Gunter; Decker, Berryinne

    2008-03-17

    Co-elution of cationic methylated arsenic, e.g. arsenobetaine may interfere with the determination of arsenite on the Hamilton PRP-X100 anion-exchange column using a phosphate buffer isocratically. Therefore, a sample pre-treatment method with self-packed AG MP-50 cation-exchange cartridges was proposed, which enables the arsenite determination in samples containing arsenobetaine on a PRP-X100 column using a phosphate buffer (pH 5.6) isocratically. Methylated arsenic, including dimethylarsinic acid, trimethylarsine oxide, tetramethylarsonium ion, arsenobetaine and arsenocholine, with concentrations below 1000microgAsL(-1), may be completely retained in the AG MP-50 cartridge without any changes of arsenite, arsenate and monomethylarsonic acid speciation. Such retention was independent of the pH and matrix. It is proposed to be based on hydrophobic interaction. With the help of AG MP-50 cartridges, 11 arsenic species were detected in fish (DORM-2), mussels (BCR-477) and red algae (Porphyra tenera) in 10min on the PRP-X100 column using a phosphate buffer isocratically. Arsenite was the only minor species (up to 0.9%) among all water extractable arsenic species in fish, mussel and red algae.

  11. Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using adjacent anion exchange membranes and anion exchange resin

    KAUST Repository

    Wallack, Maxwell J.

    2015-01-01

    Microbial reverse electrodialysis cells (MRECs) combine power generation from salinity gradient energy using reverse electrodialysis (RED), with power generation from organic matter using a microbial fuel cell. Waste heat can be used to distill ammonium bicarbonate into high (HC) and low salt concentration (LC) solutions for use in the RED stack, but nitrogen crossover into the anode chamber must be minimized to avoid ammonia loses, and foster a healthy microbial community. To reduce nitrogen crossover, an additional low concentration (LC) chamber was inserted before the anode using an additional anion exchange membrane (AEM) next to another AEM, and filled with different amounts of anion or cation ion exchange resins. Addition of the extra AEM increased the ohmic resistance of the test RED stack from 103 Ω cm2 (1 AEM) to 295 Ω cm2 (2 AEMs). However, the use of the anion exchange resin decreased the solution resistance of the LC chamber by 74% (637 Ω cm2, no resin; 166 Ω cm2 with resin). Nitrogen crossover into the anode chamber was reduced by up to 97% using 50% of the chamber filled with an anion exchange resin compared to the control (no additional chamber). The added resistance contributed by the use of the additional LC chamber could be compensated for by using additional LC and HC membrane pairs in the RED stack.

  12. A study of model systems in anionic exchange

    International Nuclear Information System (INIS)

    Haegele, R.; Boeyens, J.C.A.

    1977-01-01

    Preliminary experiments are reported on the preparation and characterization of anionic sulphate and chloride complexes of UO 2+ 2 and iron(III), benzyl-trimethylammonium cation being used as a model substance for the simulation of positive sites in an anionic-exchange resin. The structure of (BTMA) 4 [UO 2 CL 3 -O 2 -CL 3 UO 2 ], a binuclear uranyl-peroxocomplex that has not been reported in the literature, was elucidated by single-crystal x-ray examination, and is described and discussed [af

  13. Uranium extraction from sulfuric acid solution using anion exchange resin

    International Nuclear Information System (INIS)

    Sheta, M. E.; Abdel Aal, M. M.; Kandil, A. T.

    2012-12-01

    Uranium is currently recovered from sulfuric acid leach liquor using anion exchange resin as Amberlite IRA 402 (CT). This technology is based on fact that, uranium exists as anionic complexes. This takes place by controlling the pH of the solution, agitation time, temperature and resin to solution ratio (R/S). In this work, batch stirrer tank used for uranium extraction from sulfate medium and after extraction, elution process was done using 1M NaCl solution. After extraction and elution process, the resin was separated from the system and uranium was determined in the solution. (Author)

  14. Fully automated multidimensional reversed-phase liquid chromatography with tandem anion/cation exchange columns for simultaneous global endogenous tyrosine nitration detection, integral membrane protein characterization, and quantitative proteomics mapping in cerebral infarcts.

    Science.gov (United States)

    Quan, Quan; Szeto, Samuel S W; Law, Henry C H; Zhang, Zaijun; Wang, Yuqiang; Chu, Ivan K

    2015-10-06

    Protein tyrosine nitration (PTN) is a signature hallmark of radical-induced nitrative stress in a wide range of pathophysiological conditions, with naturally occurring abundances at substoichiometric levels. In this present study, a fully automated four-dimensional platform, consisting of high-/low-pH reversed-phase dimensions with two additional complementary, strong anion (SAX) and cation exchange (SCX), chromatographic separation stages inserted in tandem, was implemented for the simultaneous mapping of endogenous nitrated tyrosine-containing peptides within the global proteomic context of a Macaca fascicularis cerebral ischemic stroke model. This integrated RP-SA(C)X-RP platform was initially benchmarked through proteomic analyses of Saccharomyces cerevisiae, revealing extended proteome and protein coverage. A total of 27 144 unique peptides from 3684 nonredundant proteins [1% global false discovery rate (FDR)] were identified from M. fascicularis cerebral cortex tissue. The inclusion of the S(A/C)X columns contributed to the increased detection of acidic, hydrophilic, and hydrophobic peptide populations; these separation features enabled the concomitant identification of 127 endogenous nitrated peptides and 137 transmembrane domain-containing peptides corresponding to integral membrane proteins, without the need for specific targeted enrichment strategies. The enhanced diversity of the peptide inventory obtained from the RP-SA(C)X-RP platform also improved analytical confidence in isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses.

  15. The immobilization of anion exchange resins in polymer modified cements

    International Nuclear Information System (INIS)

    Dyer, A.; Morgan, P.D.

    1991-09-01

    Organic anion exchange resins, loaded with 99-Tc as the pertechnate ion, were incorporated into polymer modified cements (Flexocrete Ltd, Preston). BFS/OPC (9:1 mix) also was modified by three polymers from the same source (styrene acrylic (2) styrene butadiene) and loaded with anion exchanger containing the pertechnate. Composites were tested for initial compressive strengths, under water and radiation stability and leach rate. IAEA standard leach testing was with simulated sea and ground waters. Ground water leaching also was carried out on composites subjected to 1.10 9 rads (γ). Leach testing correlated well with compressive strength. Modified composites performed better than the BFS/OPC mix under all conditions studied and were able to encapsulate higher resin loadings. (author)

  16. ANION EXCHANGE METHOD FOR SEPARATION OF METAL VALUES

    Science.gov (United States)

    Hyde, E.K.; Raby, B.A.

    1959-02-10

    A method is described for selectively separating radium, bismuth, poloniums and lead values from a metallic mixture of thc same. The mixture is dissolved in aqueous hydrochloric acid and the acidity is adjusted to between 1 to 2M in hydrochloric acid to form the anionic polychloro complexes of polonium and bismuth. The solution is contacted with a first anion exchange resin such as strong base quaternary ammonia type to selectively absorb the polonium and bismuth leaving the radium and lead in the effluent. The effluent, after treatment in hydrochloric acid to increase the hydrochloric acid concentration to 6M is contacted with a second anion exchange iesin of the same type as the above to selectively adsorb the lead leaving the radium in the effluent. Radium is separately recovered from the effluent from the second exchange column. Lead is stripped from the loaded resin of the second column by treatment with 3M hydrochloric acid solution. The loaded resin of the first column is washed with 8M hydrochloric acid solution to recover bismuth and then treated with strong nitric acid solution to recover polonium.

  17. Anion exchange in mixed solvent systems Part 7

    International Nuclear Information System (INIS)

    Koprda, V.

    1976-01-01

    The diffusion of chlorocomplexes of some corrosion and fission products in anion exchange beads has been studied in mixed solvent media. The effects of variables on the kinetics of the exchange process by the batch and flow technique were examined. The strongly basic anion exchanger Dowex 2x8 in its Cl - form was used in organic solvent-water-hydrochloric acid solutions. The dependence of the exchange rate on temperature, the viscosity of the solution, the mean resin particle diameter and the composition of the solution was studied. Film and particle diffusion coefficients were calculated from the experimental data. The results provide valuable data for the design of separation procedures. The most perspective parameters affecting substantially the kinetics of ion exchange and the dynamic behaviour of ionic species in chromatographic column seem to be temperature temperature, viscosity of solution, resin particle diameter and the quantity of organic solvent in mixed solution. The results of the kinetics of chlorocomplexes of trace radionuclides of corrosion and fission products provide valuable data for the design of separation procedures from mixed solvents. (T.G.)

  18. Design of expanded bed supports for the recovery of plasmid DNA by anion exchange adsorption

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Søndergaard, M.; Thomas, Owen R. T.

    2001-01-01

    and blueprints for improved expanded bed adsorbents have been put forward. The characterisation and testing of small (20-40 mum) high density (>3.7 g cm(-3)) pellicular expanded bed materials functionalised with various anion exchange structures is presented. In studies with calf thymus DNA, dynamic binding......In this study we detail the rational design of new chromatographic adsorbents tailored for the capture of plasmid DNA. Features present on current chromatographic supports that can significantly enhance plasmid binding capacity have been identified in packed bed chromatography experiments...... sensitivity to inter-particle bridging by nucleic acid polymers, gave low DNA recoveries (0.8 mg ml(-1)) capture of plasmid...

  19. An anion-exchange chromatographic study on boron isotopic fractionation at 2 MPa at 293 K.

    Science.gov (United States)

    Musashi, Masaaki; Matsuo, Motoyuki; Oi, Takao; Nomura, Masao

    2006-10-27

    To study boron isotopic fractionation at high pressure, column chromatography operated in the breakthrough manner was performed at 2.0 MPa at 25.0 degrees C. The fractionation factor (S) between boron adsorbed onto strongly basic anion-exchange resin and boron in solution was obtained as 1.013, which was smaller than the values at 0.1 MPa (atmospheric pressure) found in literature. The pressure dependence of S was discussed based on the polymerization of boron in the solution and resin phases and on the occurrence of the pressure dependent isotope effect relating to the molar volume changes of boron species upon isotope substitution.

  20. Anion Exchange Membranes: Current Status and Moving Forward

    Energy Technology Data Exchange (ETDEWEB)

    Hickner, MA; Herring, AM; Coughlin, EB

    2013-10-29

    This short review is meant to provide the reader with highlights in anion exchange membrane research, describe current needs in the field, and point out promising directions for future work. Anion exchange membranes (AEMs) provide one possible route to low platinum or platinum-free fuel cells with the potential for facile oxidation of complex fuels beyond hydrogen and methanol. AEMs and related stable cationic polymers also have applications in energy storage and other electrochemical technologies such as water electrolyzers and redox flow batteries. While anion exchange membranes have been known for a long time in water treatment applications, materials for electrochemical technology with robust mechanical properties in thin film format have only recently become more widely available. High hydroxide and bicarbonate anion conductivity have been demonstrated in a range of AEM formats, but intrinsic stability of the polymers and demonstration of long device lifetime remain major roadblocks. Novel approaches to stable materials have focused on new types of cations that employ delocalization and steric shielding of the positive center to mitigate nucleophilic attack by hydroxide. A number of promising polymer backbones and membrane architectures have been identified, but limited device testing and a lack of understanding of the degradation mechanisms in operating devices is slowing progress on engineered systems with alkaline fuel cell technology. Our objective is to spur more research in this area to develop fuel cell systems that approach the costs of inexpensive batteries for large-scale applications. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1727-1735, 2013

  1. Enantiomer separation of a powerful chiral auxiliary, 2-methoxy-2-(1-naphthyl)propionic acid by liquid chromatography using chiral anion exchanger-type stationary phases in polar-organic mode; investigation of molecular recognition aspects.

    Science.gov (United States)

    Gyimesi-Forrás, Krisztina; Akasaka, Kazuaki; Lämmerhofer, Michael; Maier, Norbert M; Fujita, Takuma; Watanabe, Masataka; Harada, Nobuyuki; Lindner, Wolfgang

    2005-01-01

    The enantiodiscriminating potential of the weak anion exchange-type quinine-based chiral stationary phases (CSPs) for direct enantiomer separation of racemic 2-methoxy-2-(1-naphthyl)propionic acid (selectand, SA) was studied. The influence of structure variations of the selector (SO) in the carbamate functional group and/or in the C6' position of quinoline moiety on retention and enantioselectivity was investigated. Systematic chromatographic studies were made to gain more insight into the overall chiral recognition mechanism for a given mobile phase. In this context, the tert-butylcarbamoyl quinine and the corresponding diisopropylphenyl-derived selector provided the highest resolution and enantioselectivity under polar-organic conditions with the elution order of (R) before the (S) enantiomer. When the bulkiness of the substituents in the C6' position of the SO was increased, the selectivity was decreased in all cases. Alkylation of the nitrogen atom in the carbamate functionality of the SO resulted in the complete loss of enantiomer separation, confirming the crucial importance of the hydrogen-bond formation involved in the stereodiscriminating events. In addition, ten different mono-, bi-, or trivalent acids, necessary as competitor molecules (counter-ions) of the mobile phase, were screened to judge their influence on retention and overall enantioselectivity. Among them, acetic acid, formic acid, N-acetylglycine, and glycolic acid proved to be the most promising counter-ions with R(S) values of 6.35, 6.81, 8.19, and 7.34, respectively. On the basis of chromatographic data, a tentative molecular recognition model was proposed. Simultaneous ion-pairing and hydrogen bonding, in concert with pi-pi stacking and steric interactions, were expected to be responsible for chiral recognition mechanism. This was partially corroborated by structural and/or conformational analysis of the tert-butylcarbamoyl quinine-2-methoxy-2-(1-naphthyl)propionic acid (SO-SA) complex

  2. High-performance liquid chromatography - Ultraviolet method for the determination of total specific migration of nine ultraviolet absorbers in food simulants based on 1,1,3,3-Tetramethylguanidine and organic phase anion exchange solid phase extraction to remove glyceride.

    Science.gov (United States)

    Wang, Jianling; Xiao, Xiaofeng; Chen, Tong; Liu, Tingfei; Tao, Huaming; He, Jun

    2016-06-17

    The glyceride in oil food simulant usually causes serious interferences to target analytes and leads to failure of the normal function of the RP-HPLC column. In this work, a convenient HPLC-UV method for the determination of the total specific migration of nine ultraviolet (UV) absorbers in food simulants was developed based on 1,1,3,3-tetramethylguanidine (TMG) and organic phase anion exchange (OPAE) SPE to efficiently remove glyceride in olive oil simulant. In contrast to the normal ion exchange carried out in an aqueous solution or aqueous phase environment, the OPAE SPE was performed in the organic phase environments, and the time-consuming and challenging extraction of the nine UV absorbers from vegetable oil with aqueous solution could be readily omitted. The method was proved to have good linearity (r≥0.99992), precision (intra-day RSD≤3.3%), and accuracy(91.0%≤recoveries≤107%); furthermore, the lower limit of quantifications (0.05-0.2mg/kg) in five types of food simulants(10% ethanol, 3% acetic acid, 20% ethanol, 50% ethanol and olive oil) was observed. The method was found to be well suited for quantitative determination of the total specific migration of the nine UV absorbers both in aqueous and vegetable oil simulant according to Commission Regulation (EU) No. 10/2011. Migration levels of the nine UV absorbers were determined in 31 plastic samples, and UV-24, UV-531, HHBP and UV-326 were frequently detected, especially in olive oil simulant for UV-326 in PE samples. In addition, the OPAE SPE procedure was also been applied to efficiently enrich or purify seven antioxidants in olive oil simulant. Results indicate that this procedure will have more extensive applications in the enriching or purification of the extremely weak acidic compounds with phenol hydroxyl group that are relatively stable in TMG n-hexane solution and that can be barely extracted from vegetable oil. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Synthesis and Characterization of Stable Anion Exchange Membranes: The Addition of Electron-withdrawing Group

    Directory of Open Access Journals (Sweden)

    Gülşen ALBAYRAK ARI

    2016-10-01

    Full Text Available Anion exchange membranes (AEM based on poly(2,6-dimethyl-1,4-phenylene oxide (PPO were used as polymer electrolyte membrane for fuel cell applications. The membranes were prepared via bromination, quaternization and nitration reactions and their fuel cell-related properties (water uptake, ion exchange capacity, ionic conductivity were determined. Also, the structures and thermal properties were studied with Fourier transform infrared spectroscopy (FTIR, Size exclusion chromatography (SEC and Differential scanning calorimetry (DSC. Nitration of quaternized PPO (Q-PPO leaded to a decrease in water uptake and ion exchange capacity of the AEM. However, Q-PPO membrane treated with nitration reaction (NO2-Q-PPO exhibited a significant alkaline stability compared to quaternized PPO (Q-PPO.   The results indicated that the addition of electron-withdrawing group, such as nitro, into the structure in order to improve in alkaline stability is a promising new route for preparation alkaline stable AEM membranes.

  4. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography.

    Science.gov (United States)

    Zakaria, Philip; Dicinoski, Greg W; Ng, Boon Khing; Shellie, Robert A; Hanna-Brown, Melissa; Haddad, Paul R

    2009-09-18

    The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.

  5. Fixing of metallic acetates on an anion-exchange resin

    International Nuclear Information System (INIS)

    Brigaudeau-Vaissiere, M.

    1966-06-01

    After giving a brief review of the theoretical principles governing the fixation of anionic complexes of metallic elements on an anion exchange resin, we consider the particular case of uranyl acetate. By plotting the partition curves we have been able to calculate the exchange constants in the resin. By studying the changes in the logarithm of the limiting partition coefficient as a function of the logarithm of the free acetate ion concentration, it has been possible to calculate the dissociation constants for the complexes in solution. The fixation of a large number of metallic acetates has been studied. All the tests have been negative except in the case of mercury. For this reason we have been able to consider the possibility of separating uranium from a certain number of elements. Some of these separations are possible even in the presence of interfering anions such as chlorides which have a greater affinity for the resin than have the acetate ions. In the case of water-ethanol and water-isopropanol mixtures, we have improved the conditions under which copper acetate and mercury acetate may be fixed. This study has enabled us to calculate the dissociation constant for the CuAc 3 - complex in the mixtures water +40% (by weight) isopropanol and water +50% (by weight) isopropanol. It should also make it possible to use separation conditions which could not hitherto be applied in aqueous media. (author) [fr

  6. The development of a weak anion micro-capillary film for protein chromatography.

    Science.gov (United States)

    Kouyoumdjian, A J M; Lazar, R A; Slater, N K H

    2016-10-14

    In this study, the surface of a microporous walled micro-capillary film (MMCF) was modified into a weak anion exchanger by coupling cyanuric chloride and 2-diethylaminoethylamine (DEAE) to the ethylene-vinyl alcohol (EVOH) matrix. Fourier transform infrared spectroscopy (FTIR) measurements of modified and unmodified MMCFs confirmed the addition of a triazine ring and DEAE onto the membrane. Binding of bovine serum albumin (BSA) at pH 7.2 was found to follow a Langmuir isotherm with a maximum equilibrium binding of 12.4mg BSA/mL adsorbent and 8.2mg BSA/mL adsorbent under static and flow conditions, respectively. The ion exchange capacity, determined by Mohr's titration of chlorine atoms displaced from the functionalised surface, was found to be 195±21μmol Cl - /mL of adsorber, comparable to commercial ion exchangers. BSA adsorption onto the ion exchanger was strongly pH-dependant, with an observed reduction in binding above pH 8.2. Frontal experiments of a BSA (5mg/mL) and lysozyme (5mg/mL) mixture demonstrated successful separation of BSA from lysozyme at more than 97% purity as verified by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Separation between similarly charged anionic molecules was also achieved using BSA (5mg/mL) and herring sperm DNA (0.25mg/mL). BSA was extracted at 100% purity, demonstrating the ability of MMCF-DEAE to remove significant DNA contamination from a protein solution. These experiments highlight the potential for MMCFs to be used for fast protein purification in preparative chromatography application. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin

    International Nuclear Information System (INIS)

    Cahuzac, S.

    1969-06-01

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO 2 2+ . By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni 2+ - Co 2+ ; Ni 2+ - Co 2+ - Cu 2+ ; UO 2 2+ - Fe 3+ ; UO 2 2+ - Cr 3+ ; UO 2 2+ - Cu 2+ ; UO 2 2+ - Ni 2+ ; UO 2 2+ - Co 2+ ; UO 2 2+ - Mn 2+ and UO 2 2+ - Cd 2+ ), as well as the purification

  8. Alkaline Anion-Exchange Membranes Containing Mobile Ion Shuttles.

    Science.gov (United States)

    Ge, Xiaolin; He, Yubin; Guiver, Michael D; Wu, Liang; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2016-05-01

    A new class of alkaline anion-exchange membranes containing mobile ion shuttles is developed. It is achieved by threading ionic linear guests into poly(crown ether) hosts via host-guest molecular interaction. The thermal- and pH-triggered shuttling of ionic linear guests remarkably increases the solvation-shell fluctuations in inactive hydrated hydroxide ion complexes (OH(-) (H2 O)4 ) and accelerates the OH(-) transport. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highly durable direct hydrazine hydrate anion exchange membrane fuel cell

    Science.gov (United States)

    Sakamoto, Tomokazu; Serov, Alexey; Masuda, Teruyuki; Kamakura, Masaki; Yoshimoto, Koji; Omata, Takuya; Kishi, Hirofumi; Yamaguchi, Susumu; Hori, Akihiro; Horiuchi, Yousuke; Terada, Tomoaki; Artyushkova, Kateryna; Atanassov, Plamen; Tanaka, Hirohisa

    2018-01-01

    The factors influenced on degradation of direct hydrazine hydrate fuel cells (DHFCs) under operation conditions are analyzed by in situ soft X-ray radiography. A durability of DHFCs is significantly improved by multi-step reaction DHFCs (MSR-DHFCs) approach designed to decrease the crossover of liquid fuel. An open circuit voltage (OCV) as well as cell voltage at 5 mA cm-2 of MSR-DHFC construct with commercial anion exchange membrane (AEM) maintained for over of 3500 h at 60 °C. Furthermore, the commercial proton exchange membrane (PEM) is integrated into AEM of MSR-DHFCs resulting in stable power output of MSR-DHFCs for over than 2800 h at 80 °C.

  10. Review of cell performance in anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.

  11. Anion exchange separation of the light lanthanoids with nitric acid-methyl alcohol mixed media at elevated temperature

    International Nuclear Information System (INIS)

    Usuda, S.; Magara, M.

    1987-01-01

    Anion exchange chromatography with nitric acid-methyl alcohol mixed media at elevated temperature was applied to mutual separation of the light lanthanoids, La, Ce, Pr, Nd and Pm. The individual elements could be effectively separated from each other, main fission products and actinoids with 0.01M HNO 3 -90% CH 3 OH or 0.5M HNO 3 -80% CH 3 OH eluent at 90 deg C. (author) 14 refs.; 3 tables

  12. Trace adsorption of positively charged proteins onto Sepharose FF and Sepharose FF-based anion exchangers.

    Science.gov (United States)

    Yu, Lin-Ling; Sun, Yan

    2012-08-31

    Agarose-based matrices have been widely used in ion exchange chromatography (IEC). We have herein observed that positively charged proteins (lysozyme and cytochrome c) are adsorbed on the agarose-based anion-exchangers (Q and DEAE Sepharose FF gels) in a capacity of 10-40 μg/mL. In contrast, negatively charged protein (bovine serum albumin) is not adsorbed to Sepharose FF and SP Sepharose FF gels. Elemental analysis of the gel indicated that the residual anionic sulfate groups in agarose would have worked as the cation exchange groups for the positively charged proteins. The trace adsorption behavior of lysozyme onto Sepharose FF and Sepharose FF-based anion exchangers was studied and the effects of NaCl concentration and cation group density on the adsorption were examined for better understanding of the trace adsorption in chromatographic processes. At NaCl concentrations less than 0.05 mol/L, which is the normal adsorption condition in IEC, the trace adsorption kept at a high level, so this trace adsorption cannot be avoided in the ionic strength range of routine IEC operations. Grafting poly(ethylenimine) (PEI) chain of 60 kDa to a cation group density of 700 mmol/L could reduce the adsorption capacity to about 20 μg/mL, but further reduction was not possible by increasing the cation group density to 1200 mmol/L. Therefore, attentions need to be paid to the phenomenon in protein purification practice using agarose-based matrices. The research is expected to call attentions to the trace adsorption on agarose-based matrices and to the importance in the selection of the suitable solid matrices in the production of high-purity protein products in large-scale bioprocesses. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Removal of 125I from radioactive experimental waste with an anion exchange paper membrane

    International Nuclear Information System (INIS)

    The behavior of radioactive iodide and chloride ions through an anion exchange paper membrane to remove 125 I from radioactive experimental waste has been studied with nonequilibrium thermodynamic analyses. Anion exchange paper membrane was found to be electroconductively more permeable to iodide ion than to chloride ion. The iodide ion bound more strongly to the anion exchange site within a membrane phase than the chloride ion by more than twice. The results suggested that an anion exchange paper membrane was appropriate for the filtration removal system

  14. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  15. Magnetic graphitic carbon nitride anion exchanger for specific enrichment of phosphopeptides.

    Science.gov (United States)

    Zhu, Gang-Tian; He, Xiao-Mei; Chen, Xi; Hussain, Dilshad; Ding, Jun; Feng, Yu-Qi

    2016-03-11

    Anion-exchange chromatography (AEX) is one of the chromatography-based methods effectively being used for phosphopeptide enrichment. However, the development of AEX materials with high specificity toward phosphopeptides is still less explored as compared to immobilized metal affinity chromatography (IMAC) or metal oxide affinity chromatography (MOAC). In this work, magnetic graphitic carbon nitride (MCN) was successfully prepared and introduced as a promising AEX candidate for phosphopeptide enrichment. Due to the extremely abundant content of nitrogen with basic functionality on the surface, this material kept excellent retention for phosphopeptides at pH as low as 1.8. Benefiting from the large binding capacity at such low pH, MCN showed remarkable specificity to capture phosphopeptides from tryptic digests of standard protein mixtures as well as nonfat milk and human serum. In addition, MCN was also applied to selective enrichment of phosphopeptides from the tryptic digests of rat brain lysate and 2576 unique phosphopeptides were successfully identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Determination of trace inorganic anions in weak acids by single-pump column-switching ion chromatography.

    Science.gov (United States)

    Zhu, Haibao; Chen, Huadong; Zhong, Yingying; Ren, Dandan; Qian, Yaling; Tang, Hongfang; Zhu, Yan

    2010-08-01

    Ion chromatography has been proposed for the determination of three common inorganic anions (chloride, nitrate, and sulfate) in nine weak acids (tartaric acid, citric acid, formic acid, acetic acid, metacetonic acid, butyric acid, butanedioic acid, hexafluorophosphoric acid, and salicylic acid) using a single pump, two valves, a single eluent, and a single conductivity detector. The present system uses ion exclusion, concentrator, and anion-exchange columns connected in series via 6-port and 10-port valves in a Dionex ICS-2100 ion chromatograph. The valves were switched for the determination of three inorganic anions from weak acids in a single chromatographic run. Sample matrices of weak acids with a series of concentrations can be investigated. Complete separations of the previously mentioned anions are demonstrated within 40 min. Under the optimum conditions, the relative standard deviation values ranged from 1.3 to 3.8%. The detection limits of the three inorganic anions (S/N = 3) were in the range of 0.3-1.7 microg/L. The recoveries were in the range of 75.2-117.6%. With this system, automation for routine analysis, short analysis time, and low cost can be achieved.

  17. Synthesis and anion exchange reactions of a layered copper-zinc ...

    Indian Academy of Sciences (India)

    Acetate ions can be exchanged with simple inorganic anions such as chloride and nitrate, and organic anions such as benzoate and large surfactant anions such as dodecyl sulphate. Structures of these hydroxysalts are derived from that of Cu2(OH)3NO3 ⋅ H2O with some of the Cu2+ ions being replaced by Zn2+.

  18. Synthesis and anion exchange reactions of a layered copper–zinc ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A mixed-metal hydroxysalt of formula Cu1⋅6Zn0⋅4(OH)3(OAc)⋅H2O has been synthesized by an acetate hydrolysis route. Acetate ions can be exchanged with simple inorganic anions such as chloride and nitrate, and organic anions such as benzoate and large surfactant anions such as dodecyl sulphate. Struc-.

  19. Using solvent extraction to process nitrate anion exchange column effluents

    International Nuclear Information System (INIS)

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses

  20. Using solvent extraction to process nitrate anion exchange column effluents

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses.

  1. Anion-exchange resin-based desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.

    1991-01-01

    The University of Tennessee Space Institute (UTSI) has a Department of Energy grant to further develop the Institute's anion-exchange resin-based flue gas, desulfurization concept. The developmental program proposed includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins' performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics.

  2. Model-based analysis of anion-exchanger positioning in direct methanol fuel cell systems

    Science.gov (United States)

    Kraus, Maik; Schröder, Daniel; Krewer, Ulrike

    2014-09-01

    In this work we present a model based study to investigate the presence of anion exchangers in direct methanol fuel cell (DMFC) systems. It is well known that environmental or fuel impurities lead to accumulation of harmful anions, such as chloride, in the system. However, due to DMFC anodic reaction, a carbonate system is present. These corbanate anions have to be taken into account for the anion exchanger design and placement as well as for the system operation strategy with and without anion exchanger, which is the objective of this study. For this purpose, the expected amount of harmful chloride ions in a DMFC system is estimated, and that of carbonate ions is calculated with a model of the carbonate system in a DMFC system. The predicition of durability and dimensions of an anion exchanger is based on a monovalent anion exchange model. The design of gas liquid separators in the DMFC system has a major influence on the amount of dissolved carbon dioxide, which is crucial for durability and dimension of a system integrated anion exchanger. Finally, feasible positions of anion exchanger in a DMFC system are elaborated to fulfill the needs for long term and stable DMFC operation.

  3. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  4. Radio-iodide uptake by modified poly (glycidyl methacrylate) as anion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Sameh H. [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center; Atomic Energy Authority, Cairo (Egypt). Second Research Reactor; Elbarbary, Ahmed M. [Atomic Energy Authority, Cairo (Egypt). Radiation Research of Polymer Chemistry Dept.; Rashad, Ghada; Fasih, T.W. [Atomic Energy Authority, Cairo (Egypt). Hot Laboratories Center

    2017-03-01

    Poly(glycidyl methacrylate) (PGMA) microspheres were prepared by radiation induced polymerization of glycidyl methacrylate (GMA) monomer. The factors affecting the degree of polymerization and yield (%) of PGMA such as type of solvent, monomer concentration, and irradiation dose were investigated. It was found that the PGMA yield (%) increases with increasing monomer concentration up to 50% and absorbed dose of 5 kGy. The resulting PGMA containing the epoxy group was chemically modified by hydroxyl amine to act as anion-exchange resin for uptake of {sup 131}I{sup -} ions. The modified PGMA (MPGMA) was characterized by Fourier transform infrared (FT-IR) spectrophotometer, thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). I-131 is produced from the fission of U-235 with low-enrichment uranium (LEU) targets in the Egyptian Second Research Reactor (ETRR-2). Separation of iodide from the radioactive solution by batchwise and column techniques was employed to determine the adsorption capacity of the MPGMA. Quality control of {sup 131}I product solution and radiochemical purity was examined by using the ascending paper chromatography method. The uptake behavior of MPGMA towards {sup 131}I{sup -} ions were studied at different experimental conditions and achieved by X-ray fluorescence (XRF). The synthesized MPGMA showed good results as anion-exchange and an effective adsorbent for uptaking {sup 131}I{sup -} ions.

  5. Ion chromatography of anions in the primary and secondary circuit

    International Nuclear Information System (INIS)

    Brandt, F.; Trost, R.

    1984-01-01

    Ion chromatography - though based on the same, well-established basic principles as gas chromatography and high pressure fluid chromatography - has made an actual breakthrough only in recent years. The adaptability of the process permits the measurement of samples of different composition or concentration. Some of the experience which has been accumulated in the laboratory at Goesgen nuclear power station during the last two years, is reported. This relates particularly to the composition of the samples, the need to use extremely pure calibration samples, the choice of special laboratory accessories and the like. (orig.) [de

  6. The k{sub 0}-INAA method for the determination of the anion-exchange capacity of propylpyridium silicas

    Energy Technology Data Exchange (ETDEWEB)

    Auler, Lucia M.L.A.; Menezes, Maria Angela de B.C.; Amaral, Angela Maria [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: aulerlm@cdtn.br; Silva, Cesar R.; Collins, Kenneth E.; Collins, Carol [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica. Lab. de Cromatografia Liquida (LABCROM)]. E-mail: chc@iqm.unicamp.br

    2005-07-01

    The present work describes the k{sub 0}-INAA method as an alternative for determination of the ion-exchange capacity of a propyl pyridinium modified silica, which has been recently employed as stationary phase for anion -exchange chromatography. The exchange capacity of the modified silicas was investigated by determining its exchangeable chloride content with k{sub 0}-Instrumental Neutron Activation Analyses. Irradiation experiments were performed in the reactor TRIGA Mark I IPR-R1 located at CDTN/CNEN (Nuclear Technology Development Center / Nuclear Energy National Commission). The results showed that the exchangeable chloride concentration was successfully determined by this analytical method instead of the conventional potentiometric determination with silver nitrate titrimetry. (author)

  7. A direct ascorbate fuel cell with an anion exchange membrane

    Science.gov (United States)

    Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.

    2017-05-01

    Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.

  8. Anion exchange membrane fuel cells: Current status and remaining challenges

    Science.gov (United States)

    Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles; Bae, Chulsung; Yan, Yushan; Zelenay, Piotr; Kim, Yu Seung

    2018-01-01

    The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. In this perspective article, we describe the current status of AEMFCs as having reached beginning of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. These perspectives may provide useful insights for the development of next-generation of AEMFCs.

  9. Determination of carbohydrates using pulsed amperometric detection combined with anion exchange separations

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.T.; Pohl, C.A.; Rubin, R.

    1987-06-01

    Carbohydrates, including the monosaccharides commonly found in wood and wood pulp hydrolyzates, are separated by anion exchange chromatography using hydroxide and acetate eluants and are determined using pulsed amperometric detection. The detection method is based on oxidizing the sugars in a flow-through electrochemical cell equipped with a gold working electrode. A repeating cycle of three potentials is used: the first to oxidize the carbohydrates and measure the current generated, and two subsequent pulses to clean the electrode surface of oxidation products. The method is fast, sensitive, and requires no pre-column derivatization. It is applied to a sample of hydrolyzed wood pulp, which can be analyzed after minimal sample preparation. Detection limits are of the order of 1 mg/kg for monosaccharides in a 50 micro L injection. (Refs. 8).

  10. Virtual Protein Purification: A Simple Exercise to Introduce pH as A Parameter That Effects Ion Exchange Chromatography

    Science.gov (United States)

    Clark, Daniel D.; Edwards, Daniel J.

    2018-01-01

    This article describes a simple exercise using a free, easy-to-use, established online program. The exercise helps to reinforce protein purification concepts and introduces undergraduates to pH as a parameter that affects anion-exchange chromatography. The exercise was tested with biochemistry majors at California State University-Chico. Given the…

  11. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-01-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K d values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  12. Anion-exchange resin-based desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-01-01

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins' performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  13. Fouling mitigation of anion exchange membrane by zeta potential control.

    Science.gov (United States)

    Park, Jin-Soo; Lee, Hong-Joo; Choi, Seok-Ju; Geckeler, Kurt E; Cho, Jaeweon; Moon, Seung-Hyeon

    2003-03-15

    The feasibility of fouling mitigation of anion exchange membranes (AEMs) in the presence of humate was studied by adding three different types of water-soluble polymers, i.e., poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and poly(ethylene imine) (PEI), during electrodialysis (ED) desalination. Measurement of zeta potential of the humate used in this study showed highly negative potential (about -30 mV), implying that the humate had a strong fouling potential on the AEMs in ED. Of the three water-soluble polymers, PEI showed a positive zeta potential (about +14 mV) and is able to form an interpolymer complex with the humate. PAA and PVA hardly formed interpolymer complexes with humate due to electrostatic repulsion. The PEI-humate mixture with a volume ratio of 1:20 (PEI:humate) showed zero zeta potential, and a complexed humate with zero surface charge was formed, resulting in no fouling effects on the AEMs. Accordingly, the desalting ED experiments with PEI showed improved ED performance. Further, black colloids formed in the mixture did not cause the cell resistance to increase.

  14. Highly conductive side chain block copolymer anion exchange membranes.

    Science.gov (United States)

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  15. Simultaneous Determination of Different Anions in Milk Samples Using Ion Chromatography with Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Gülçin Gümüş Yılmaz

    2016-12-01

    Full Text Available The description of a simple method for simultaneous determination of chloride, nitrate, sulfate, iodide, phosphate, thiocyanate, perchlorate, and orotic acid in milk samples was outlined. The method involves the use of dialysis cassettes for matrix elimination, followed by ion chromatography on a high capacity anion exchange column with suppressed conductivity detection. The novelty of dialysis process was that it did not need any chemical and organic solvent for elimination of macromolecules such as fat, carbohydrates and proteins from milk samples. External standard calibration curves for these analytes were linear with great correlation coefficients. The relative standard deviations of analyte concentrations were acceptable both inter-day and intra-day evaluations. Under optimized conditions, the limit of detection (Signal-to-Noise ratio = 3 for chloride, phosphate, thiocyanate, perchlorate, iodide, nitrate, sulfate, and orotate was found to be 0.012, 0.112, 0.140, 0.280, 0.312, 0.516, 0.520, and 0.840 mg L−1, respectively. Significant results were obtained for various spiked milk samples with % recovery in the range of 93.88 - 109.75 %. The proposed method was successfully applied to milk samples collected from Istanbul markets. The advantages of the method described herein are reagent-free, simple, and reliable.

  16. [Simultaneous determination of 1-sulfo-cyclohexane carboxylic acid and sulfate anion in the by-products of caprolactam by high performance liquid chromatography-indirect photometric analysis].

    Science.gov (United States)

    Yan, Zhixiang; Duan, Zhengkang; Li, Linan; Li, Haitao; Chen, Qiuyun; Peng, Ye

    2013-02-01

    An improved anion-exchange chromatographic method was developed for simultaneous quantification of 1-sulfo-cyclohexane carboxylic acid (SCCA) and sulfate anion in the by-products of caprolactam. An strong anion chromatographic column and an ultraviolet (UV) detector were chosen for the assay of SCCA and sulfate anion. Non-chromophore-containing sulfate anion is not directly adaptable to the commonly used ultraviolet detection of high performance liquid chromatography (HPLC). This paper reports the development and validation of an HPLC assay for SCCA and sulfate anion based on indirect ultraviolet detection. An ultraviolet-absorbing reagent (the probe), phthalic acid (PA), was added to the mobile phase to induce a signal for the compound. The proposed method was qualified based on the performance criteria of repeatability, intermediate precision and linearity. The limits of detection were 1.0 g/L for both the analytes. The linear ranges varied from 0.50 to 40.0 g/L for SCCA and from 0.10 to 10.0 g/L for sulfate anion, with the correlation coefficients of 0. 999 97 and 0.999 14, and the recoveries of 93.33%-97.40% and 98.50%-101.00%, respectively. The established method can be used in practice to determine SCCA and sulfate anion simultaneously with perfect separation selectivity.

  17. Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.

    Science.gov (United States)

    Li, Ming; Li, Yanying; Yu, Linling; Sun, Yan

    2017-02-24

    This work reports poly(allylamine) (PAA), as a polymeric ion-exchange ligand for protein chromatography. Sepharose FF was modified with PAA, and six anion exchangers with ionic capacities (ICs) from 165 to 618mmol/L were prepared. Inverse size exclusion chromatography, adsorption equilibrium, uptake kinetics and column elution were performed. It was found that both the adsorption capacity and effective diffusivity maintained low values in the IC range of 165-373mmol/L, but they started to increase beyond 373mmol/L, and increased by 80% and 23 times, respectively, when the IC reached 618mmol/L. Interestingly, a drastic decrease of pore size was observed around the IC of 373mmol/L. The results suggest that the PAA chains played an important role in protein adsorption by altering the inner pore structure of the gels. It is considered that, PAA chains turn from inextensible states with multipoint-grafting on the pore surface at low coupling densities (IC373mmol/L). These characters of the grafted chains at higher IC values benefit in protein adsorption by three-dimensional binding and encouraged the happening of "chain delivery" of bound proteins on the chains. Besides, the ion exchangers showed favorable adsorption and uptake properties in a wide ionic strength range, 0-500mmol/L NaCl, indicating much better salt tolerance feature than the so-far reported ion exchangers. Moreover, a mild condition of pH 5.0 offered effective recovery of bound proteins in elution chromatography. The results indicate that the PAA-based anion exchanger of a high IC value is promising for high-capacity protein chromatography dealing with feedstock of a wide range of ionic strengths. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ionic Resistance and Permselectivity Tradeoffs in Anion Exchange Membranes

    KAUST Repository

    Geise, Geoffrey M.

    2013-10-23

    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data. © 2013 American Chemical Society.

  19. Ion chromatographic determination of fluoride and chloride in UO2 using microbore anion exchange columns

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Meena, D.L.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    Chemical characterization of nuclear fuels is required to ensure that nuclear fuel meets the technical specifications of the fuel. Trace non- metallic impurities like Cl and F is important as they affect clad corrosion. Their effect is more severe in presence of moisture. Chlorine and Fluorine is routinely analysed by ion selective electrode or conventional ion chromatography after pyrohydrolyzing the sample in moist O 2 atmosphere at 950°. Both the technique generates large quantity of liquid waste. Generally 1 ml/min flow rate required for the separation of F - and Cl - in conventional ion-chromatographic separation of F - and Cl - on 4.6- 4.0 mm id analytical column. The waste produced per sample injection is ∼ 30-40 ml with suppressed conductivity detection in ion chromatography. There is a need to reduce this analytical waste in analyzing the radioactive samples for the determination of F - and Cl - . Waste generation could be effectively reduced by using microbore anion exchange analytical column. Present paper describe the use of Metrosep A Supp 16 - 100/2.0 column with Na 2 CO 3 +NaOH mobile phase for the determination of F - and Cl - in UO 2 samples using suppressed conductivity detection

  20. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  1. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    OpenAIRE

    Siekierka Anna; Bryjak Marek

    2017-01-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity an...

  2. Radiation stability of anion-exchange resins based on epichlorohydrin and vinylpyridines

    International Nuclear Information System (INIS)

    Zainutdinov, S.S.; Dzhalilov, A.T.; Askarov, M.A.

    1983-01-01

    The vigorous development of nuclear technology and atomic energy and the hydrometallurgy of the rare and radioactive metals has made it necessary to create and use ion-exchange materials possessing a high resistance to the action of ionizing radiations and the temperature. In view of this, the necessity has arisen for obtaining ion-exchange materials possessing adequate radiation stability. The results of an investigation of the radiation stability of anion-exchange resins based on the products of spontaneous polymerization in the interaction of epichlorohydrin with vinylpyridines show that they possess higher radiation resistance than the industrial anion-exchange resin AN-31 used at the present time

  3. Sorption of vanillin on highly basic anion exchanger under static conditions

    Science.gov (United States)

    Sholokhova, A. Yu.; Eliseeva, T. V.; Voronyuk, I. V.

    2017-11-01

    The kinetics of the sorption of vanillin by a granulated anion exchanger is studied under static conditions. A comparison of the kinetic curves of the uptake of hydroxybenzaldehyde by gel and macroporous anion exchanger shows that macroporous sorbent has better kinetic characteristics. The effect temperature has on the capacity of an anion exchanger and the time needed to establish sorption equilibrium is found, and the activation energy of vanillin uptake is determined. Studying the effect experimental factors have on the rate of sorption and using the formal kinetics approach, it is established that in the investigated range of concentrations, the limiting stage of the uptake of vanillin by an anion exchanger with the functional groups of a quaternary ammonium base is that of external diffusion. Vanillin sorption by a highly basic anion exchanger in hydroxyl form is characterized by polymolecular uptake best described by a BET isotherm; at the same time, the uptake of sorbate by a chloride form is of a monomolecular character and can be described by a Freindlich isotherm. Structural changes in the anion exchanger sorbed hydroxybenzaldehyde are identified via FTIR spectroscopy.

  4. The mechanism in the poisoning of anion-exchange resins by cobalt cyanide

    International Nuclear Information System (INIS)

    Fleming, C.A.; Hancock, R.D.

    1979-01-01

    The complex responsible for the poisoning of anion-exchange resins is identified as the anionic cobaltic pentacyanide mono aquo species. It is shown that, at high concentration, this species polymerizes in solutions of pH less than 9. A mechanism for poisoning is presented that involves adsorption of anionic cobalt cyanide by a normal ion-exchange process, followed by polymerization within the resin matrix to form complexes that are too large to diffuse readily through the resin pores. The effects of resin structure and functionality on the extent of cobalt poisoning are examined, and the effect of cobalt poisoning on the kinetics and equilibrium loading of uranium is discussed [af

  5. Anion exchanger and the resistance against thermal haemolysis.

    Science.gov (United States)

    Ivanov, I T; Zheleva, A; Zlatanov, I

    2011-01-01

    4,4'-Diiso-thiocyanato stilbene-2,2'-disulphonic acid (DIDS) is a membrane-impermeable, highly specific covalent inhibitor and powerful thermal stabiliser of the anion exchanger (AE1), the major integral protein of erythrocyte membrane (EM). Suspensions of control and DIDS-treated (15 µM, pH 8.2) human erythrocytes were heated from 20° to 70°C using various but constant heating rates (1-8°C/min). The cellular electrolyte leakage exhibited a sigmoidal response to temperature as detected by conductometry. The critical midpoint temperature of leakage, T(mo), extrapolated to low heating rate (0.5°C/min) was used as a measure for EM thermostability. T(mo) was greater for DIDS-treated erythrocytes, 63.2° ± 0.3°C, than for intact erythrocytes, 60.7° ± 0.2°C. The time, t(1/2), for 50% haemolysis of erythrocytes, exposed to 53°C was used as a measure for the resistance of erythrocytes against thermal haemolysis. The t(1/2) was also greater for DIDS-treated erythrocytes, 63 ± 3 min, than for intact erythrocytes, 38 ± 2 min. The fluorescent label N-(3-pyrenyl)maleimide and EPR spin label 3-maleimido-proxyl, covalently bound to sulphydryl groups of major EM proteins, were used to monitor the changes in molecular motions during transient heating. Both labels reported an intensification of the motional dynamics at the denaturation temperatures of spectrin (50°C) and AE1 (67°C), and, surprisingly, immobilisation of a major EM protein, presumably the AE1, at T(mo). The above results are interpreted in favour of the possible involvement of a predenaturational rearrangement of AE1 copies in the EM thermostability and the resistance against thermal haemolysis.

  6. Tools to discover anionic and nonionic polyfluorinated alkyl surfactants by liquid chromatography electrospray ionisation mass spectrometry

    DEFF Research Database (Denmark)

    Trier, Xenia; Granby, Kit; Christensen, Jan H.

    2011-01-01

    A tiered approach is proposed for the discovery of unknown anionic and nonionic polyfluorinated alkyl surfactants (PFASs) by reversed phase ultra high performance liquid chromatography (UHPLC) – negative electrospray ionisation – quadrupole time of flight mass spectrometry (UHPLC–ESI−–QTOF–MS). T......A tiered approach is proposed for the discovery of unknown anionic and nonionic polyfluorinated alkyl surfactants (PFASs) by reversed phase ultra high performance liquid chromatography (UHPLC) – negative electrospray ionisation – quadrupole time of flight mass spectrometry (UHPLC...... such as [M−H+solvent]− and [(M−H)(M−H+Na)n]− were used to confirm the identity of the precursor ions. In relation to quantification of PFASs, we discuss how their surfactancy influence the ESI processes, challenge their handling in solution and choices of precursor-to-product ions for MSMS of e...

  7. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  8. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  9. Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Hamelers, H.V.M.; Rozendal, R.A.; Buisman, C.J.N.

    2009-01-01

    Previous studies have shown that Microbial Electrolysis Cells (MECs) perform better when an anion exchange membrane (AEM) than when a cation exchange membrane (CEM) separates the electrode chambers. Here, we have further studied this phenomenon by comparing two analysis methods for

  10. Anion-exchange membranes containing diamines: preparation and stability in alkaline solution

    NARCIS (Netherlands)

    Komkova, E.N.; Komkova, E.N.; Stamatialis, Dimitrios; Strathmann, H.; Wessling, Matthias

    2004-01-01

    Anion-exchange membranes (AEM) are prepared from chloromethylated polysulfone and a number of diamine compounds. The properties of the new AEM including the water content, ion-exchange capacity, permselectivity and area resistance are thoroughly studied. By varying the amount of diamine into the

  11. Quaternized poly (styrene-co-vinylbenzyl chloride) anion exchange membranes for alkaline water electrolysers

    Science.gov (United States)

    Vengatesan, S.; Santhi, S.; Jeevanantham, S.; Sozhan, G.

    2015-06-01

    In this study, poly (ST-co-VBC) based anion exchange membranes with different styrene to VBC ratios (1: 0.16, 1: 0.33 and 1: 1) have been prepared via chloromethylation-free synthetic route using aromatic vinyl monomers. The synthesized co-polymers are identified by FTIR and 1H-NMR analysis. Hydroxide (OH-) ion conductivity of the anion exchange membrane with styrene to VBC ratio of 1: 0.33 is as high as 6.8 × 10-3 S cm-1 in de-ionised water at 25 °C. The membrane also acquires the ion-exchange capacity of 2.14 meq. g-1, and the water uptake of 127%. Membrane-electrode-assembly (MEA) using the anion exchange membrane and Ni - foam catalyst demonstrate the current density of 40 mA cm-2 at 2.3 V in a water electrolyser cell.

  12. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Directory of Open Access Journals (Sweden)

    Siekierka Anna

    2017-01-01

    Full Text Available Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  13. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Science.gov (United States)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  14. Separation of metal ions by anion exchange in mixtures of hydrochloric acid and hydrofluoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Faris, J.P.

    1978-12-01

    Distribution coefficients were determined for the adsorption of more than 40 elements on anion-exchange resins from mixtures of HCl (0.1 to 12M) and HF (0.1-8M). Two resins, Dowex 1 x 10, 200 to 400 mesh and Dowex 1 x 4, 100 to 200 mesh, were used. Distribution coefficients were also determined for the adsorption of many elements on both resins from 0.1 to 12M HCl and 0.1 to 12M HF. Anion exchange in the presence of HF was found useful for separating impurities from various materials for their subsequent determination, and specific procedures used in our spectrochemical laboratory for this purpose are outlined. The results of a literature search on the use of anion exchange in hydrofluoric acid and fluoride-containing media are presented in an extensive bibliography. 404 references, 9 tables.

  15. Separation of metal ions by anion exchange in mixtures of hydrochloric acid and hydrofluoric acid

    International Nuclear Information System (INIS)

    Faris, J.P.

    1978-12-01

    Distribution coefficients were determined for the adsorption of more than 40 elements on anion-exchange resins from mixtures of HCl (0.1 to 12M) and HF (0.1-8M). Two resins, Dowex 1 x 10, 200 to 400 mesh and Dowex 1 x 4, 100 to 200 mesh, were used. Distribution coefficients were also determined for the adsorption of many elements on both resins from 0.1 to 12M HCl and 0.1 to 12M HF. Anion exchange in the presence of HF was found useful for separating impurities from various materials for their subsequent determination, and specific procedures used in our spectrochemical laboratory for this purpose are outlined. The results of a literature search on the use of anion exchange in hydrofluoric acid and fluoride-containing media are presented in an extensive bibliography. 404 references, 9 tables

  16. Recovery of 238Pu from irradiated 237Np using anion exchange method

    International Nuclear Information System (INIS)

    Zhang Shaoqi; Hu Huaizhong; Zhang Qinfen; Xue Shijin; Tang Xuzhen; Qin Zhongxian; Zhu Shuzhong

    1986-04-01

    A process for recovering and purifying 238 Pu from irradiated NpO 2 target by anion exchange method is described in detail. Related results obtained in the technological experiment for the process are given. First, absorb and desorb behaviour of 237 Np- 239 Pu on the anion exchange columu using 237 Np and 239 Pu, various factors effecting 237 Np/ 239 Pu separation were investigated, then, we selected technical parameters for the four cycles process. Finally, a 'hot' experiment was conducted using an irradiated NpO 2 target. The cross-contamination of 237 Np and 238 Pu is less than 1%, the total recoveries of 237 Np and 238 Pu are respectively 99.6% and 98.1%. The total γ elimination coefficient of 237 Np- 238 Pu obtained in the first anion exchange cycle is 2.4 x 10 3

  17. Anion-exchange Studies of Radioactive Trace Elements in Sulphuric Acid Solutions

    International Nuclear Information System (INIS)

    Samsahl, K.

    1963-01-01

    As part of a chemical group separation procedure used as a pretreatment in gamma spectrometric analysis, a study has been made of the adsorption from sulphuric acid solutions on strongly basic anion exchange resins, prepared in the hydroxide and the sulphate forms, of trace activities of Na, P, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Nb, Mo, Tc, Ag, Cd, In, Cs, Ba, La, Ce, Hf, Ta, W, Ir, Pa and Np. Besides adsorbing some of the trace elements in the solution, the anion exchange resin in the hydroxide form will neutralize the bulk of the sulphuric acid. This makes possible the subsequent sequential separation of chloride complexes on short anion-exchange columns by a stepwise increasing of the HCl concentration of the solution. On the basis of the results obtained in the present and earlier experiments, a new improved chemical group-separation procedure for mixtures of radioactive trace elements is outlined

  18. Methods of uranium isotpic separation by chemical exchange chromatography

    International Nuclear Information System (INIS)

    Pena V, L.A.; Valle M, L.

    1985-01-01

    Chemical exchange chromatography as applied to isotope separation has undergone a constant development during the last few years. The results so far indicate that this method could eventually become commercially useful. This work presents a critical review of the experimental methods presently under study by principal research groups, and which have not get been compared. (Author)

  19. Computerized mathematical model for the anion exchange processing of plutonium(IV)

    International Nuclear Information System (INIS)

    Navratil, J.D.; Proctor, S.G.; Kirkby, L.L.

    1977-01-01

    A computerized mathematical model for anion exchange processing of plutonium(IV) was adopted from a previously written code. The model was verified to predict, within +-30 percent, a profile of plutonium breakthrough for the sorption process on Dowex 1-X4 anion exchange resin. The program was modified to incorporate column washing and elution logic. Experimental washing and elution data were in satisfactory agreement with predicted data. Provisions for changing the flow rate during the course of a run and for plotting capabilities to aid in better presentation of column breakthrough curves also were incorporated into the model

  20. Rapid anion exchange separation of fermium with mineral acid-methyl alcohol mixed media

    International Nuclear Information System (INIS)

    Usuda, S.; Shinohara, N.; Ichikawa, S.; Suzuki, T.

    1987-01-01

    Anion exchange separation of 250 Fm (30 m) synthesized by the 12 C+ 242 Pu and 16 O+ 238 U reactions was investigated with mineral acid-methyl alcohol mixed media at elevated temperature. Fermium was chromatographically separated from the other transplutonium elements, the target materials and an Al catcher foil by anion exchange with mixtures of nitric acid and methyl alcohol. By use of the mixed media of hydrochloric acid and methyl alcohol, Fm together with Cf was separated from Al, Am, Cm, Pu, U and from major fission products. The separation systems are suitable for rapid separation and immediate alpha-counting source preparation of Fm. (author) 22 refs.; 4 figs

  1. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl-/SO42- separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl-/SO42- permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  2. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.

    Science.gov (United States)

    Metzelder, Florian; Schmidt, Torsten C

    2017-05-02

    Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.

  3. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography

    Science.gov (United States)

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-01-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na+), potassium (K+), ammonium (NH4+), chloride (Cl−) and nitrate (NO3−) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906

  4. Absence of transepithelial anion exchange by rabbit OMCD: Evidence against reversal of cell polarity

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Matsuhiko; Schuster, V.L.; Stokes, J.B. (Univ. of Iowa College of Medicine, Iowa City (USA))

    1988-08-01

    In the rabbit cortical collecting duct (CCD), Cl tracer crosses the epithelium predominantly via an anion exchange system that operates in either a Cl-Cl or Cl-HCO{sub 3} exchange mode. In the present study, the authors used the {sup 36}Cl lumen-to-bath rate coefficient (K{sub Cl}, nm/s), a sensitive measurement of CCD transepithelial anion transport, to investigate the nature of Cl transport in the medullary collecting duct dissected from inner stripe, outer medulla (OMCD). The K{sub Cl} in OMCD perfused and bathed in HCO{sub 3}-Ringer solution was low and similar to that value observed in the CCD when anion exchange is inhibited and Cl permeates the epithelium by diffusion. To test the hypothesis that metabolic alkalosis could reverse the polarity of intercalated cells and thus induce an apical Cl-HCO{sub 3} exchanger in H{sup +}-secreting OMCD cells, they measured K{sub Cl} in OMCD from rabbits make alkalotic by deoxycorticosterone and furosemide. Although the base-line K{sub Cl} was slightly higher than in OMCD from control rabbits, the value was still far lower than the K{sub Cl} under comparable conditions in CCD. They conclude (1) Cl transport across the MCD by anion exchange is immeasurably low or nonexistent; (2) unlike the CCD, Cl transport in OMCD is not responsive to cAMP; and (3) metabolic alkalosis does not induce an apical anion exchanger in OMCD, i.e., does not cause epithelial polarity reversal.

  5. Preparation of nuclear grade strongly basic anion exchange resin in hydroxide from

    International Nuclear Information System (INIS)

    Ke Weiqing

    1989-01-01

    The two-step transformation method was used to prepare 90 kg nuclear grade strongly basic anion exchange resins by using the industrial grade baking soda and caustic soda manufacutred by mercury-cathode electrolysis. The chloride and biscarbonate fraction on resin is 0.8% and 1.25% respectively, when the baking soda and caustic soda consumption is 8.6 and 13.7 times the total exchange capacity of the strongly basic resin

  6. Test procedure for anion exchange testing with Argonne 10-L solutions

    International Nuclear Information System (INIS)

    Compton, J.A.

    1995-01-01

    Four anion exchange resins will be tested to confirm that they will sorb and release plutonium from/to the appropriate solutions in the presence of other cations. Certain cations need to be removed from the test solutions to minimize adverse behavior in other processing equipment. The ion exchange resins will be tested using old laboratory solutions from Argonne National Laboratory; results will be compared to results from other similar processes for application to all plutonium solutions stored in the Plutonium Finishing Plant

  7. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics

    Science.gov (United States)

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz

    2015-01-01

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430

  8. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics.

    Science.gov (United States)

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; Rehman, Aziz Ur

    2015-07-08

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy ( ∆G° ), enthalpy ( ∆H° ) and entropy ( ∆S° ) were calculated for the adsorption of congo red, indicating an exothermic process.

  9. Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction.

    Science.gov (United States)

    Xu, You; Wu, Rui; Zhang, Jingfang; Shi, Yanmei; Zhang, Bin

    2013-07-28

    Nanoporous FeP nanosheets are successfully synthesized via the anion-exchange reaction of inorganic-organic hybrid Fe18S25-TETAH (TETAH = protonated triethylenetetramine) nanosheets with P ions. The as-prepared nanoporous FeP nanosheets exhibit high electrochemical hydrogen evolution reaction activity in acidic medium.

  10. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan

    2009-09-01

    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  11. Determination of the ion-exchange capacity of anion-selective membranes

    Czech Academy of Sciences Publication Activity Database

    Karas, F.; Hnát, J.; Paidar, M.; Schauer, Jan; Bouzek, K.

    2014-01-01

    Roč. 39, č. 10 (2014), s. 5054-5062 ISSN 0360-3199 Institutional support: RVO:61389013 Keywords : ion-exchange capacity * anion-selective membranes * titration Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.313, year: 2014

  12. Synthesis and anion exchange reactions of a layered copper–zinc ...

    Indian Academy of Sciences (India)

    Unknown

    629. *For correspondence. Synthesis and anion exchange reactions of a layered copper–zinc hydroxy double salt, Cu1⋅6Zn0⋅4(OH)3(OAc)⋅H2O. JACQUELINE THERESE RAJAMATHI, SYLVIA BRITTO and MICHAEL RAJAMATHI*. Department of Chemistry, St. Joseph's College, Lalbagh Road, Bangalore 560 027, India.

  13. Recovery of 201Tl by ion exchange chromatography from proton bombarded thallium cyclotron targets

    International Nuclear Information System (INIS)

    Walt, T.N. van der; Naidoo, C.

    2000-01-01

    A method based on ion exchange chromatography is presented for the recovery of 201 Tl and its precursor 201 Pb from proton bombarded natural thallium cyclotron targets. After bombardment the target is dissolved in diluted nitric acid. Water, hydrazine and ammonium acetate are added to the solution and the lead radioisotopes separated from the thallium by cation exchange chromatography on a Bio-Rex 70 column. The sorbed lead radioisotopes are eluted with dilute nitric acid and the separation repeated on a second Bio-Rex 70 column. After elution of the remaining thallium the column is left for 32 hours and the 201 Tl formed by decay of 201 Pb is eluted with an ammonium acetate solution. The 201 Tl eluate is acidified with a HNO 3 -HBr-Br 2 mixture and the resulting solution is passed through an AG MP-1 anion exchanger column to remove any remaining lead isotopes. The 201 Tl is eluted with a hydrazine solution, the eluate evaporated to dryness and the 201 Tl finally dissolved in an appropriate solution to produce a 201 TlCl solution suitable for medical use. A high quality 201 Tl product is obtained containing ≤ 0.1 μg of Tl/mCi (37 MBq) 201 Tl. The radionuclidic impurities are less than the maximum values specified by the US Pharmacopoeia and the British Pharmacopoeia. (orig.)

  14. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.

    Science.gov (United States)

    Kröner, Frieder; Hubbuch, Jürgen

    2013-04-12

    pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Determination of anionic concentrations in ground water samples using ion chromatography

    International Nuclear Information System (INIS)

    Prathibha, P.; Saradhi, I.V.; Pandit, G.G.; Puranik, V.D.

    2011-01-01

    Ion chromatography is a powerful separation technique for the quantitative measurement of anions in aqueous samples as well as in soil, sediment and air particulate samples leached in aqueous solutions. Ion chromatographic technique is developed by making use of suppressed ion conductivity detection (Small et.al.,1975) and it is a rapid multi ion analysis technique. The time, processing and effort required for the analysis of anions is much less compared to other techniques available such as ion selective electrode technique. In the present paper ground water samples collected around New BARC campus, Visakhapatnam are analyzed for anions using Ion chromatograph. The data generated will establish the current baseline status of the ionic contaminants in the study area. Groundwater samples are collected at 13 locations around BARC Vizag campus covering 30 km radius in September, 2009, April and July, 2010. The water samples include samples from hand pump and open wells in villages. The water samples are analyzed for fluoride, chloride, nitrate and sulphate using Metrohm make Ion chromatograph. The fluoride concentration in samples varied from 0.22 to 1.26 ppm, chloride from 18.7 to 810.9, nitrate from 1.34 to 378.5 ppm and sulphate from 13.29 to 250.69 ppm. No significant seasonal variations are observed in the samples collected from various locations except chloride at two locations. Ions Chromatograph is found to be a useful tool for simultaneous analysis of environmental samples with good accuracy where the concentrations of anions vary within an order of magnitude among them themselves. (author)

  16. Anion-exchange resin-based desulfurization process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  17. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates

    International Nuclear Information System (INIS)

    Biswick, Timothy; Jones, William; Pacula, Aleksandra; Serwicka, Ewa

    2006-01-01

    Anion exchange reactions of four structurally related hydroxy salts, Cu 2 (OH) 3 NO 3 , Mg 2 (OH) 3 NO 3 , Ni 2 (OH) 3 NO 3 and Zn 3 (OH) 4 (NO 3 ) 2 are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure from one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides. -- Graphical abstract: PXRD patterns of exchange products of (a) Zn 3 (OH) 4 (NO 3 ) 2 (b) Zn 5 (OH) 8 (NO 3 ) 2 .2H 2 O and (c) Cu 2 (OH) 3 NO 3 with benzoate anions

  19. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  20. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  1. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells

    Science.gov (United States)

    Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.

  2. Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection

    Science.gov (United States)

    Levine, L. H.; Judkins, J. E.; Garland, J. L.; Sager, J. C. (Principal Investigator)

    2000-01-01

    A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.

  3. Determination of carbohydrates by high performance anion chromatography-pulsed amperometric detection in mushrooms.

    Science.gov (United States)

    Zhou, Shuai; Tang, Qingjiu; Luo, Xi; Xue, Jun-Jie; Liu, Yanfang; Yang, Yan; Zhang, Jingsong; Feng, Na

    2012-01-01

    A method of detecting carbohydrates (fucose, trehalose, mannitol, arabitol, mannose, glucose, galactose, fructose, and ribose) by high-performance anion chromatography-pulsed amperometric detection (HAPEC-PAD) was established. The conditions are: CarboPac MA1 column, NaOH as the eluent, temperature 30°C, Au working electrode, Ag/AgCl reference electrode, and flow rate 0.4 mL/min. These nine analytes, which yielded high resolution by this method, could be detected in 40 minutes. Mushrooms were tested and good precision, stability, and reproducibility were achieved. This method is suitable for mushroom samples and could support research and development on sugar and sugar alcohol, which contains special effects.

  4. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.

    Science.gov (United States)

    Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori

    2013-01-01

    Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.

  5. Green sample preparation for liquid chromatography and capillary electrophoresis of anionic and cationic analytes.

    Science.gov (United States)

    Wuethrich, Alain; Haddad, Paul R; Quirino, Joselito P

    2015-04-21

    A sample preparation device for the simultaneous enrichment and separation of cationic and anionic analytes was designed and implemented in an eight-channel configuration. The device is based on the use of an electric field to transfer the analytes from a large volume of sample into small volumes of electrolyte that was suspended into two glass micropipettes using a conductive hydrogel. This simple, economical, fast, and green (no organic solvent required) sample preparation scheme was evaluated using cationic and anionic herbicides as test analytes in water. The analytical figures of merit and ecological aspects were evaluated against the state-of-the-art sample preparation, solid-phase extraction. A drastic reduction in both sample preparation time (94% faster) and resources (99% less consumables used) was observed. Finally, the technique in combination with high-performance liquid chromatography and capillary electrophoresis was applied to analysis of quaternary ammonium and phenoxypropionic acid herbicides in fortified river water as well as drinking water (at levels relevant to Australian guidelines). The presented sustainable sample preparation approach could easily be applied to other charged analytes or adopted by other laboratories.

  6. Determination of sulfur anions in spent oil shale leachates by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Niss, N.D.

    1989-07-01

    The leaching and transport of chemical constituents from spent oil shale disposal areas is an area of environmental concern at the present time. Sulfur-containing compounds are prevalent in spent oil shales and have the potential to leach into aqueous systems surrounding disposal sites. Computer modeling has been used in recent years to predict the transport of species in an aqueous environment. The quality of model predictions, however, depends on the validation steps taken in comparing model predictions with laboratory data on ion speciation. Further, the quality of the validation step depends on the reliability of laboratory methods in generating ion speciation data. The purpose of this study was to develop methods to separate and quantify sulfur-containing anions in spent oil shale leachates by suppressed ion chromatography. The anions studied were S{sup 2{minus}} (sulfide), SO{sup 2{minus}}{sub 3} (sulfite), SO{sup 2{minus}}{sub 4} (sulfate), SCN{sup {minus}} (thiocyanate), S{sub 2}O{sup 2{minus}}{sub 3} (thiosulfate), and S{sub 4}O{sup 2{minus}}{sub 6} (tetrathionate). After the separations were developed, a series of method-challenging experiments were performed to test the reliability of the methods and assure the development of an analytically sound product. 24 refs., 7 figs., 5 tabs.

  7. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R; Wilson, Ian D; Somsen, Govert W; de Jong, Gerhardus J

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared

  8. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R.; Wilson, Ian D.; Somsen, Govert W.; de Jong, Gerhardus J.

    2014-01-01

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared

  9. New anion-exchange resins for improved separations of nuclear materials

    International Nuclear Information System (INIS)

    Barr, M.E.; Bartsch, R.A.

    1998-01-01

    'The overall objective of this research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion-exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional-site interactions in order to determine optimal binding-site characteristics. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials: Efficient Separations and Processing; Plutonium; Plumes; Mixed Waste; High-Level Tank Waste. Sites within the DOE complex which would benefit from the improved anion-exchange technology include Hanford, INEL, Los Alamos, Oak Ridge, and Savannah River. As of April 1998, this report summarizes work after 1.6 years of a 3-year project. The authors technical approach combines empirical testing with theoretical modeling (applied in an iterative mode) in order to determine optimal binding-site characteristics. They determine actinide-complex speciation in specific media, then develop models for the metal complex/functional-site interactions Synthesis and evaluation of multi-functionalized extractants and ion-exchange materials that implement key features of the optimized binding site provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The implementation of the bifunctionality concept involves N-derivatization of pyridinium units from a base poly(4-vinylpyridine) resin with a second cationic site such that the two anion-exchange sites are linked by spacer arms of varying

  10. Use of Anion Exchange Resins for One-Step Processing of Algae from Harvest to Biofuel

    OpenAIRE

    Jessica Jones; Cheng-Han Lee; James Wang; Martin Poenie

    2012-01-01

    Some microalgae are particularly attractive as a renewable feedstock for biodiesel production due to their rapid growth, high content of triacylglycerols, and ability to be grown on non-arable land. Unfortunately, obtaining oil from algae is currently cost prohibitive in part due to the need to pump and process large volumes of dilute algal suspensions. In an effort to circumvent this problem, we have explored the use of anion exchange resins for simplifying the processing of algae to biofuel...

  11. Cross-linked comb-shaped anion exchange membranes with high base stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, NW; Wang, LZ; Hickner, M

    2014-01-01

    A unique one-step cross-linking strategy that connects quaternary ammonium centers using Grubbs II-catalyzed olefin metathesis was developed. The cross-linked anion exchange membranes showed swelling ratios of less than 10% and hydroxide conductivities of 18 to 40 mS cm(- 1). Cross-linking improved the membranes' stability to hydroxide degradation compared to their non-cross-linked analogues.

  12. Removing uranium from drinking water by metal hydroxides and anion-exchange resin

    International Nuclear Information System (INIS)

    Lee, S.Y.; Bondietti, E.A.

    1983-01-01

    Results of bench-scale testing on uranium removal from a natural water that was chosen as a good representative of uranium-bearing waters indicated that conventional coagulant and lime softening treatment removes more than 85 percent of dissolved uranium (83 μg U/L) when an optimum pH and dosage were provided. A strong base anion-exchange column is a recommended option for the treatment of private well waters containing uranium at higher than desirable levels

  13. Two-step ion-exchange chromatographic purification combined with reversed-phase chromatography to isolate C-peptide for mass spectrometric analysis.

    Science.gov (United States)

    Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V

    2016-02-01

    A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A basic study for the boron thermal regeneration system using anion exchange resins

    International Nuclear Information System (INIS)

    Frantiesek, P.; Kotaka, Masahiro; Okamoto, Makoto; Kakihana, Hidetake.

    1979-01-01

    For the boron thermal regeneration system (BTRS), the basic characteristics of commercial anion exchange resin have been investigated on the swelling characteristics, absorption, desorption and temperature coefficient of exchange capacity for boric acid. The equilibrium capacity increases as decrease of temperature and depends strongly on the degrees of cross linking having a maximum point at about 7% of DVB. The temperature coefficient of equilibrium capacity of boric acid is also a function of the concentration of external solution and of the cross linking having a maximum point around 7% of DVB. (author)

  15. Alkaline anion exchange membrane fuel cells for cogeneration of electricity and valuable chemicals

    Science.gov (United States)

    Pan, Z. F.; Chen, R.; An, L.; Li, Y. S.

    2017-10-01

    Alkaline anion exchange membrane fuel cells (AAEMFCs) have received ever-increasing attentions due to the enhanced electrochemical kinetics and the absence of precious metal electrocatalysts, and thus great progress has been made in recent years. The alkaline anion exchange membrane based direct alcohol fuel cells, one type of alkaline anion exchange membrane fuel cells utilizing liquid alcohols as fuel that can be obtained from renewable biomass feedstocks, is another attractive point due to its ability to provide electricity with cogeneration of valuable chemicals. Significant development has been made to improve the selectivity towards high added-value chemicals and power output in the past few years. This review article provides a general description of this emerging technology, including fuel-cell setup and potential reaction routes, summarizes the products, performance, and system designs, as well as introduces the application of this concept in the removal of heavy-metal ions from the industrial wastewater. In addition, the remaining challenges and perspectives are also highlighted.

  16. Russian studies of the safety of anion exchange in nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, M.L.; Bartenev, S.A.; Lazarev, L.N. [and others

    1997-07-01

    Synthetic ion exchange resins came into use in the Soviet Union in the 1950`s, and domestic anion exchange resins based on quaternary amine groups have long been used in the Russian nuclear industry. These resins are similar to resins used in the West, and include pyridine-based resins, as well as the more conventional aryl polymers with substituted methyl amines. (Slide 1) The sensitivity of these amines to reaction with nitric acid and other oxidants has been a concern in Russia as in the West, and numerous laboratory studies have been conducted on the reactions involved. Several incidents involving pressure or temperature excursions have provided incentives for such studies. (Slide 2) This report briefly summarizes this work. A report by the Russian authors of this paper providing greater detail is to be issued as a U.S. Dept. of Energy document. Additionally, a second report by these authors, describing new studies on anion exchange resin safety, will also be issued as a DOE report. The separation of plutonium, neptunium, etc. from other materials by ion exchange requires rather strong nitric acid (6-8 M). In some systems, such as the processing of {sup 238}Pu, intense ionizing radiation may also be present during ion exchange separation. As a result, it is necessary to consider not only thermal hydrolysis and oxidation and their effects on the resin, but also radiolysis. All of these were investigated in the Russian studies.

  17. Magnesium isotope fractionation in cation-exchange chromatography

    International Nuclear Information System (INIS)

    Oi, T.; Yanase, S.; Kakihana, H.

    1987-01-01

    Band displacement chromatography of magnesium has been carried out successfully for the purpose of magnesium isotope separation by using a strongly acidic cation-exchange resin and the strontium ion as the replacement ion. A small but definite accumulation of the heavier isotopes ( 25 Mg, 26 Mg) has been observed at the front parts of the magnesium chromatograms. The heavier isotopes have been fractionated preferentially into the solution phase. The single-stage separation factors have been calculated for the 25 Mg/ 24 Mg and 26 Mg/ 24 isotopic pairs at 25 0 C. The reduced partition function ratios of magnesium species involved in the present study have been estimated

  18. Applications of pressurized cation exchange chromatography for fission yield determination

    International Nuclear Information System (INIS)

    Yan Shuheng; Lin Fa; Zhang Hongdi; Li Xueliang; Zhang Shulan

    1988-01-01

    In order to determine the fission yields of lanthanides precisely, lanthanides with carriers of 1-2 mg per element are separated from each other by means of pressurized cation exchange chromatography - αHIBA concentration gradient elution. The effect of initial loading technique, concentration gradient, flow rate, and temperature on separation were investigated in detail. Under the optimum conditions adapted according to the results given in this work, all the lanthanides can be completely separated within about 90 minutes with a recovery of more than 95% and purity higher than 99%. (author) 3 refs.; 6 figs

  19. Isotopic enrichment of 15N by ionic exchange chromatography

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.

    1979-01-01

    The present paper presents some studies on production of 15 N-enriched ammonium sulphate with 5% atoms by ionic exchange chromatography method. Two systems are described of columns of resin, where experiments were conducted by eluition of NH 4 + bands with sodium hydroxide solution. Analyses were made of the cost of production of 15 N-enriched ammonium sulphate 5% atoms and, based on the experiments developed, a cost was obtained which was compatible with the international price of the product. The isotopic analyses of nitrogen were made by mass spectrometry. (Author) [pt

  20. Calcium isotope fractionation in ion-exchange chromatography

    International Nuclear Information System (INIS)

    Russell, W.A.; Papanastassiou, D.A.

    1978-01-01

    Significant fractionation of the isotopes of calcium has been observed during elution through short ion-exchange columns packed with Dowex 50W-X8 resin. A double isotopic tracer was used to provide correction for instrumental fractionation effects. The absolute 40 Ca/ 44 Ca ratio is determined by this method to 0.05% and provides a measure of the fractionation of all Ca isotopes. It is found that the lighter isotopes are preferentially retained by the resin, with variations in 40 Ca/ 44 Ca between the first and last fractions of up to 1.1%. An estimate of the separation factor between batch solute and resin gives epsilon = 2.1 x 10 -4 . Details of the chemical or physical mechanisms causing isotope fractionation of Li, Na, Ca, and other elements during ion-exchange chromatography are not yet clear

  1. New Anion-Exchange Resins for Improved Separations of Nuclear Materials

    International Nuclear Information System (INIS)

    Bartsch, Richard A.; Barr, Mary E.

    2001-01-01

    Improved separations of nuclear materials will have a significant impact upon a broad range of DOE activities. DOE-EM Focus Areas and Crosscutting Programs have identified improved methods for the extraction and recovery of radioactive metal ions from process, waste, and environmental waters as critical needs for the coming years. We propose to develop multifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the field of ion-specific chelating ligands with robust, commercial ion-exchange technology to provide materials which exhibit superior selectivity and kinetics of sorption and desorption. The following Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new material: Efficient Separations and Processing - radionuclide removal from aqueous phases; Plutonium - Pu, Am or total alpha removal to meet regulatory requirement s before discharge to the environment; Plumes - U and Tc in groundwater, U, Pu, Am, and Tc in soils; Mixed Waste - radionuclide partitioning; High-Level Tank Waste - actinide and Tc removal from supernatants and/or sludges. The basic scientific issues which need to be addressed are actinide complex speciation along with modeling of metal complex/functional site interactions in order to determine optimal binding-site characteristics. Synthesis of multifunctionalized extractants and ion-exchange materials that implement key features of the optimized binding site, and testing of these materials, will provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The long-range implications of this research, however, go far beyond the nuclear complex. This new methodology of ''facilitated uptake'' could revolutionize ion-exchange technology

  2. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.

    2013-09-17

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  3. Rapid analysis of carbohydrates in aqueous extracts and hydrolysates of biomass using a carbonate-modified anion-exchange column.

    Science.gov (United States)

    Sevcik, Richard S; Mowery, Richard A; Becker, Christopher; Chambliss, C Kevin

    2011-03-04

    Quantitative liquid-chromatography techniques used to characterize carbohydrates present in biomass samples can suffer from long analysis times, limited analyte resolution, poor stability, or a combination of these factors. The current manuscript details a novel procedure enabling resolution of glucose, xylose, arabinose, galactose, mannose, fructose, and sucrose via isocratic elution in less than 5 min. Equivalent conditions also enable analysis of cellobiose and maltose with a minimal increase in chromatographic run time (ca. 3 and 6 min, respectively). Noted chromatographic performance requires that a commercially available anion-exchange column be modified with carbonate prior to analysis. Analytical performance of a modified column was assessed over a 5-day period via repeated analyses of 4 samples, resulting from aqueous extraction or quantitative saccharification of a potential biofuel feedstock (i.e., corn stover or switchgrass). A simple solid phase extraction procedure was utilized to clean up each sample prior to analysis. Analytical accuracy of the extraction protocol was assessed by evaluation of matrix spike recoveries which typically ranged from 84% to 98%. The instrumental variability of measured concentrations in real samples over the 5-day period was generally less than 5% RSD for all detected analytes, independent of sample type. Finally, it is important to note that the modified column exhibited exceptional stability over approximately 800 injections of biofeedstock-based samples. These data demonstrate that a carbonate-modified anion-exchange column can be employed for rapid determination of carbohydrates in biomass samples of lignocellulosic origin. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Ion exchange behaviour of citrate and EDTA anions on strong and weak base organic ion exchangers

    International Nuclear Information System (INIS)

    Askarieh, M.M.; White, D.A.

    1988-01-01

    The exchange of citrate and EDTA ions with two strong base and two weak base exchangers is considered. Citrate and EDTA analysis for this work was performed using a colorimetric method developed here. The ions most selectively exchanged on the resins are H 2 cit - and H 2 EDTA 2- , though EDTA is generally less strongly sorbed on strong base resins. In contact with weak base resins, deprotonation of the resin occurs during ion exchange with a noticeable drop in solution pH. Although EDTA sorption can be reversed by nitric acid, citrate ions are significantly held on the resin at low pH. The exchange of citrate can be made reversible if bicarbonate is added to the initial solutions. Alkaline regeneration of exchangers loaded with EDTA proved to be very effective. (author)

  5. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  6. Chiral ligand exchange countercurrent chromatography: Enantioseparation of amino acids.

    Science.gov (United States)

    Xiong, Qing; Jin, Jing; Lv, Liqiong; Bu, Zhisi; Tong, Shengqiang

    2018-03-01

    This work deals with the enantioseparation of α-amino acids by chiral ligand exchange high-speed countercurrent chromatography using N-n-dodecyl-l-hydroxyproline as a chiral ligand and copper(II) as a transition metal ion. A biphasic solvent system composed of n-hexane/n-butanol/aqueous phase with different volume ratios was selected for each α-amino acid. The enantioseparation conditions were optimized by enantioselective liquid-liquid extractions, in which the main influence factors, including type of chiral ligand, concentration of chiral ligand and transition metal ion, separation temperature, and pH of the aqueous phase, were investigated for racemic phenylalanine. Altogether, we tried to enantioseparate 15 racemic α-amino acids by the analytical countercurrent chromatography, of which only five of them could be successfully enantioseparated. Different elution sequence for phenylalanine enantiomer was observed compared with traditional liquid chromatography and the proposed interactions between chiral ligand, transition metal ion (Cu 2+ ), and enantiomer are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Isotope effects of neodymium in different ligands exchange systems studied by ion exchange displacement chromatography

    Directory of Open Access Journals (Sweden)

    Ibrahim Ismail

    2013-03-01

    Full Text Available The isotope effects of neodymium in Nd-glycolate ligand exchange system were studied by using ion exchange chromatography. The separation coefficients of neodymium isotopes, ε’s, were calculated from the observed isotopic ratios at the front and rear boundaries of the neodymium adsorption band. The values of separation coefficients of neodymium isotopes, ε’s, for the Nd-glycolate ligand exchange system were compared with those of Nd-malate and Nd-citrate, which indicated that the isotope effects of neodymium as studied by the three ligands takes the following direction Malate > Citrate > Glycolate. This order agrees with the number of available sites for complexation of each ligand. The values of the plate height, HETP of Nd in Nd-ligand exchange systems were also calculated.

  8. Synthesis and Characterization of Imidazolium Linear Bisphenol Polycarbonate Hydroxides for Anion Exchange Membrane.

    Science.gov (United States)

    Jang, Hohyoun; Hossain, Md Awlad; Lee, Soonho; Ha, Jaesung; Yoo, Jihoo; Kim, Kyungchul; Kim, Whangi

    2015-11-01

    A novel anion exchange membrane of imidazolium functionalized bisphenol polycarbonate was prepared for application in alkaline fuel cell. Di-imidazolium polycarbonate anionic membrane was synthesized by sequential interfacial polymerization, chloromethylation, substitution with 1-methylimidazole and ion exchange with 1.0 M KOH. Chloromethylation reaction was quantitative to achieve a high content of hydroxide ions. Introduction of conjugated imidazole ring in polymer plays an important role to improve both thermal and chemical stability. Bisphenol polycarbonate is a flexible polymer and shows a good solubility in polar organic solvent. The alkaline imidazolium bisphenol polycarbonate rendered an elevated molecular weight with excellent solubility in polar aprotic solvent. Different levels of substitution and ion exchange were investigated; the resulting membranes showed high ion exchange capacities (IECs) of up to 2.15 mmol g(-1). The imidazolium-functionalized copolymer membranes showed lower water affinity (14.2-42.8% at 30 degrees C) that satisfied an essential criterion for fuel cell application. The chemical structure of the imidazolium functionalized polycarbonate membrane was confirmed by 1H NMR spectroscopy, and also the membrane properties were evaluated by thermogravimetric analysis (TGA) and water uptake (WU), IEC and conductivity assessment. They exhibited hydroxide conductivity above 10(-2) S cm(-1) at room temperature and good chemical stability for up to five days without significant losses of ion conductivity.

  9. Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water.

    Science.gov (United States)

    Kanazawa, Nobuhiro; Urano, Kohei; Kokado, Naohiro; Urushigawa, Yoshikuni

    2001-06-01

    The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.

  10. Unfolding of a model protein on ion exchange and mixed mode chromatography surfaces.

    Science.gov (United States)

    Gospodarek, Adrian M; Hiser, Diana E; O'Connell, John P; Fernandez, Erik J

    2014-08-15

    Recent studies with proteins indicate that conformational changes and aggregation can occur during ion exchange chromatography (IEC). Such behavior is not usually expected, but could lead to decreased yield and product degradation from both IEC and multi mode chromatography (MMC) that has ligands of both hydrophobic and charged functionalities. In this study, we used hydrogen exchange mass spectrometry to investigate unfolding of the model protein BSA on IEC and MMC surfaces under different solution conditions at 25°C. Increased solvent exposure, indicating greater unfolding relative to that in solution, was found for protein adsorbed on cationic IEC and MMC surfaces in the pH range of 3.0 to 4.5, where BSA has decreased stability in solution. There was no effect of anionic surfaces at pH values in the range from 6.0 to 9.0. Differences of solvent exposure of whole molecules when adsorbed and in solution suggest that adsorbed BSA unfolds at lower pH values and may show aggregation, depending upon pH and the surface type. Measurements on digested peptides showed that classifications of stability can be made for various regions; these are generally retained as pH is changed. When salt was added to MMC systems, where electrostatic interactions would be minimized, less solvent exposure was seen, implying that it is the cationic moieties, rather than the hydrophobic ligands, which cause greater surface unfolding at low salt concentrations. These results suggest that proteins of lower stability may exhibit unfolding and aggregation during IEC and MMC separations, as they can with hydrophobic interaction chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.

    Science.gov (United States)

    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min

    2016-03-01

    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.

  12. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals

    Science.gov (United States)

    Maltseva, T. V.; Kolomiets, E. O.; Dzyazko, Yu. S.; Scherbakov, S.

    2018-02-01

    Organic-inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of the embedded particles. The approach is based on Ostwald-Freundlich equation, which was adapted to deposition in ion exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modification, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution (50 µg dm-3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.

  13. Characterization of anion exchange ionomers in hybrid polymer electrolyte fuel cells.

    Science.gov (United States)

    Unlü, Murat; Zhou, Junfeng; Anestis-Richard, Irene; Kohl, Paul A

    2010-12-17

    Anion exchange ionomers (AEI) synthesized here were characterized by use of a novel fuel cell configuration. The new analysis method involves assembling the AEI electrode of interest as the cathode in a hybrid, acid/alkaline, fuel cell configuration. The hybrid cell includes a conventional proton conducting anode/membrane half-cell along with the anionic conductor of interest at the cathode. Electrochemical impedance spectroscopy and voltammetry were used to evaluate the performance of the hybrid AEI-containing fuel cell with H₂ and O₂. In particular, the AEI electrode response in impedance spectroscopy was easily identified because the contributions from other components are largely minimized in the presented hybrid cell configuration. The properties of ionomers used in the AEI electrode were shown to have a substantial effect on the electrode performance. Low catalyst utilization, due to high water uptake and low conductivity, was identified as the major causes of poor performance in AEI electrodes.

  14. Preparation and performance evaluation of novel alkaline stable anion exchange membranes

    Science.gov (United States)

    Irfan, Muhammad; Bakangura, Erigene; Afsar, Noor Ul; Hossain, Md. Masem; Ran, Jin; Xu, Tongwen

    2017-07-01

    Novel alkaline stable anion exchange membranes are prepared from various amounts of N-methyl dipicolylamine (MDPA) and brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO). The dipicolylamine and MDPA are synthesized through condensation reaction and confirmed by 1H NMR spectroscopy. The morphologies of prepared membranes are investigated by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy and scanning electron microscopy (SEM). The electrochemical and physical properties of AEMs are tested comprising water uptake (WU), ion exchange capacity (IEC), alkaline stability, linear expansion ratio (LER), thermal stability and mechanical stability. The obtained hydroxide conductivity of MDPA-4 is 66.5 mS/cm at 80 °C. The MDPA-4 membrane shows good alkaline stability, high hydroxide conductivity, low methanol permeability (3.43 × 10-7 cm2/s), higher selectivity (8.26 × 107 mS s/cm3), less water uptake (41.1%) and lower linear expansion (11.1%) despite of high IEC value (1.62 mmol/g). The results prove that MDPA membranes have great potential application in anion exchange membrane fuel cell.

  15. Adsorption behavior of benzenesulfonic acid by novel weakly basic anion exchange resins.

    Science.gov (United States)

    Sun, Yue; Zuo, Peng; Luo, Junfen; Singh, Rajendra Prasad

    2017-04-01

    Two novel weakly basic anion exchange resins (SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene (Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid (BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution pH, temperature and coexisting competitive inorganic salts (Na 2 SO 4 and NaCl) on adsorption behavior were investigated and the optimum desorption agent was obtained. Adsorption isotherms of BA were found to be well represented by the Langmuir model. Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by NaCl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1 possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1 for potential industrial application. Copyright © 2016. Published by Elsevier B.V.

  16. Bovine plasma protein fractionation by ion exchange chromatography.

    Science.gov (United States)

    Moure, F; Rendueles, M; Díaz, M

    2004-12-01

    An ion exchange chromatography process was developed to separate the main protein fractions of bovine blood plasma using a composite material, Q-HyperD resin, and a gel material, DEAE-Sepharose. The experiments were carried out at semipreparative scale. It was necessary to establish analytical methods of electrophoresis and HPLC to identify the fractionated proteins. Results show that these materials are able to adequately fractionate different protein groups from the raw blood plasma. This method may be used to avoid chemical fractionation using agents such as ethanol or PEG and, thus, decrease protein denaturation of the different fractions to be used for research or pharmaceutical purposes. The Q-HyperD resin presents a better retention capacity for plasma protein than DEAE-Sepharose under the experimental conditions employed.

  17. Anion-exchange enrichment and spectrophotometric determination of uranium in sea-water

    International Nuclear Information System (INIS)

    Kuroda, Rokuro; Oguma, Koichi; Mukai, Noriko; Iwamoto, Masatoshi

    1987-01-01

    A method is proposed for the determination of uranium in sea-water. The uranium is strongly sorbed on a strongly basic anion-exchange resin (Cl - form) from acidified sea-water containing sodium azide (0.3M) and is easily eluted with 1M hydrochloric acid. Uranium in the effluent can be determined spectrophotometrically with Arsenazo III. The combined method allows easy and selective determination of uranium in sea-water without using a sophisticated adsorbent. The overall recovery and precision are satisfactory at the 3 μg/1. level. (author)

  18. Industrial tests and application of porous AN-21 anion exchanger for rhenium extraction

    International Nuclear Information System (INIS)

    Lebedev, K.B.; Mekler, L.I.; Kryukova, Eh.I.; Pinegina, N.D.; Sandler, E.K.

    1976-01-01

    Replacing a gel-type anion-exchange resin AN-21S6g with a highly porous resin AN-21x16p during the 2nd stage of Re extention from a soda desorbate doubled the approximate capacity, decreased the recirculating solution volume, improved Re recovery, and increased the sorbent capacity until the breakthrough. Using the porous sorbent gave complete Re extention in 1 cycle, decreased the eluant and NH 4 OH consumption and the rich eluate volume, doubled the Re concentration in eluates while decreasing the eluate evaporation, and shortened the process time

  19. Alkaline degradation studies of anion exchange polymers to enable new membrane designs

    Science.gov (United States)

    Nunez, Sean Andrew

    Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co

  20. Synergistic desorption of molybdenum from the strong base anion exchange resin by molybdnum fouling

    International Nuclear Information System (INIS)

    Zhang Guowei; Zhao Guirong

    1988-01-01

    In this paper the synerglstic desorption of molybdenum from the strong base anion exchange resin is studied using ammonium hydroxide and ammonium sulfate, sodium hydroxide and sodium sulfate or sodium hydroxide and sodium chloride mixed chloride mixed desorbents. The coefficients of synergistlc desorption for various mixed desorbents are obtained. The experimental results show that the desorption efficiency of the mixed desorbent containing ammonium hydroxide and ammonium sulfate is so high that it can substitute for the mixed desorbent used in the plant. The harmful affect of the chloride ion on production can be eliminated if this mixed desorbent is used for the plant

  1. Design of expanded bed supports for the recovery of plasmid DNA by anion exchange adsorption

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Søndergaard, M.; Thomas, Owen R. T.

    2001-01-01

    and blueprints for improved expanded bed adsorbents have been put forward. The characterisation and testing of small (20-40 mum) high density (>3.7 g cm(-3)) pellicular expanded bed materials functionalised with various anion exchange structures is presented. In studies with calf thymus DNA, dynamic binding...... capacities of 1.2 and 3.4 mg ml(-1) were recorded for prototype diethylaminoethyl-and polyethylene imine-linked adsorbents which were respectively 25 and 70 fold higher than those of equivalently derivatised commercial expanded bed materials. The prototype polyethylene imine-coupled material exhibited severe...

  2. Determination of anions in pure and commercial phosphoric acid by ion chromatography and manual of 792 basic IC

    International Nuclear Information System (INIS)

    Al-Kabani, F.; Abdulbaki, M. K.

    2007-01-01

    A method for determination of anions in pure and concentrated phosphoric and samples (85%) and commercial phosphoric acid ion chromatography was developed, in order to control the specification of phosphoric acid produced in the pilot plant for phosphoric acid purification. The accuracy of the method was studied and the standard deviation was found to be between 0.09 and 0.10. Operation instructions of 792 Basic IC was described. (author)

  3. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    Directory of Open Access Journals (Sweden)

    Wataru Aoyagi

    2016-06-01

    Full Text Available An ionic polymer-metal composite (IPMC actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  4. Golgi-associated anion exchanger, AE2:identification, cell type specific targeting and structural role in the Golgi complex

    OpenAIRE

    Holappa, K. (Katja)

    2004-01-01

    Abstract Anion exchanger 2 (AE2) is a member of the anion exchanger gene family, which includes three additional members, AE1, AE3, and AE4. They are also known as Na+-independent Cl-/HCO3- exchangers, and their major function is to regulate intracellular pH and chloride concentration. All four isoforms have several N-terminally truncated variants that are often expressed cell type specifically. Red blood cells express the full-length AE1 isoform that interacts with ankyrin, an adapter pro...

  5. A series of poly(butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes

    Science.gov (United States)

    Ouadah, Amina; Xu, Hulin; Luo, Tianwei; Gao, Shuitao; Wang, Xing; Fang, Zhou; Jing, Chaojun; Zhu, Changjin

    2017-12-01

    A new series of ionic liquid functionalized copolymers for anion exchange membranes (AEM) is prepared. Poly(butylvinylimidazolium)(b-VIB) is copolymerized with para-methyl styrene (p-MS) by the radical polymerization formed block copolymers b-VIB/p-MS, which is crosslinked with poly(diphenylether bibenzimidazole) (DPEBI) providing the desired materials b-VIB/p-MS/DPEBI. Structures are characterized via H1NMR, FTIR spectra and elemental analysis. The b-VIB blocks offer the anion conduction function while DPEBI moieties contribute to enhancing other properties. The prepared membranes display chloride conductivity as high as 19.5 mS/cm at 25 °C and 69.2 mS/cm at 100 °C-higher than that of the commercial membrane tokuyuama A201-. Their hydroxide conductivity reaches 35.7 Scm-1 at 25 °C and 73.1 Scm-1 at 100 °C. The membranes showed a linear Arrhenius behavior in the anion conduction, low activation energies and distinguished nanophase separation of hydrophilic/hydrophobic regions by the transmission electron microscopy (TEM) studies. Thermal investigations using TGA and DSC confirm that the membranes are stable up to 250 °C. Particularly, drastically alkaline stability due to no decrease in the hydroxide conductivity after 168 h of treatment with 2M KOH.

  6. Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances

    Science.gov (United States)

    Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia

    2018-05-01

    This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g‑1) and large pore volume (0.87 cm3 g‑1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g‑1 at 1 A g‑1), good rate capability (74.3% capacitance retention from 1 to 20 A g‑1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

  7. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    Directory of Open Access Journals (Sweden)

    Zhengwen Xu

    2014-01-01

    Full Text Available As new emerging pollutants, phthalic acid monoesters (PAMs pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP onto two macroporous base anion-exchange resins (D-201 and D-301 was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the adsorption mechanisms for DBP onto D-201 were ion exchange. However, the obtained enthalpy values indicate that the sorption process of MBP onto D-301 is physical adsorption. The equilibrium adsorption capacities and adsorption rates of DBP on two different resins increased with the increasing temperature of the solution. D-301 exhibited a higher adsorption capacity of MBP than D-201. These results proved that D-301, as an effective sorbent, can be used to remove phthalic acid monoesters from aqueous solution.

  8. Diclofenac removal in urine using strong-base anion exchange polymer resins.

    Science.gov (United States)

    Landry, Kelly A; Boyer, Treavor H

    2013-11-01

    One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol-water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings

  9. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    International Nuclear Information System (INIS)

    Gilchrist, Elizabeth S.; Nesterenko, Pavel N.; Smith, Norman W.; Barron, Leon P.

    2015-01-01

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks

  10. Effects of Cationic Pendant Groups on Ionic Conductivity for Anion Exchange Membranes: Structure Conductivity Relationships

    Science.gov (United States)

    Kim, Sojeong; Choi, Soo-Hyung; Lee, Won Bo

    Anion exchange membranes(AEMs) have been widely studied due to their various applications, especially for Fuel cells. Previous proton exchange membranes(PEMs), such as Nafions® have better conductivity than AEMs so far. However, technical limitations such as slow electrode kinetics, carbon monoxide (CO) poisoning of metal catalysts, high methanol crossover and high cost of Pt-based catalyst detered further usages. AEMs have advantages to supplement its drawbacks. AEMs are environmentally friendly and cost-efficient. Based on the well-defined block copolymer, self-assembled morphology is expected to have some relationship with its ionic conductivity. Recently AEMs based on various cations, including ammonium, phosphonium, guanidinium, imidazolium, metal cation, and benzimidazolium cations have been developed and extensively studied with the aim to prepare high- performance AEMs. But more fundamental approach, such as relationships between nanostructure and conductivity is needed. We use well-defined block copolymer Poly(styrene-block-isoprene) as a backbone which is synthesized by anionic polymerization. Then we graft various cationic functional groups and analysis the relation between morphology and conductivity. Theoretical and computational soft matter lab.

  11. Use of Anion Exchange Resins for One-Step Processing of Algae from Harvest to Biofuel

    Directory of Open Access Journals (Sweden)

    Martin Poenie

    2012-07-01

    Full Text Available Some microalgae are particularly attractive as a renewable feedstock for biodiesel production due to their rapid growth, high content of triacylglycerols, and ability to be grown on non-arable land. Unfortunately, obtaining oil from algae is currently cost prohibitive in part due to the need to pump and process large volumes of dilute algal suspensions. In an effort to circumvent this problem, we have explored the use of anion exchange resins for simplifying the processing of algae to biofuel. Anion exchange resins can bind and accumulate the algal cells out of suspension to form a dewatered concentrate. Treatment of the resin-bound algae with sulfuric acid/methanol elutes the algae and regenerates the resin while converting algal lipids to biodiesel. Hydrophobic polymers can remove biodiesel from the sulfuric acid/methanol, allowing the transesterification reagent to be reused. We show that in situ transesterification of algal lipids can efficiently convert algal lipids to fatty acid methyl esters while allowing the resin and transesterification reagent to be recycled numerous times without loss of effectiveness.

  12. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    Science.gov (United States)

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. This journal is © the Owner Societies 2012

  13. Novel fluoropolymer anion exchange membranes for alkaline direct methanol fuel cells.

    Science.gov (United States)

    Zhang, Yanmei; Fang, Jun; Wu, Yongbin; Xu, Hankun; Chi, Xianjun; Li, Wei; Yang, Yixu; Yan, Ge; Zhuang, Yongze

    2012-09-01

    A series of novel fluoropolymer anion exchange membranes based on the copolymer of vinylbenzyl chloride, butyl methacrylate, and hexafluorobutyl methacrylate has been prepared. Fourier transform infrared (FT-IR) spectroscopy and elemental analysis techniques are used to study the chemical structure and chemical composition of the membranes. The water uptake, ion-exchange capacity (IEC), conductivity, methanol permeability, and chemical stability of the membranes are also determined. The membranes exhibit high anionic conductivity in deionized water at 65 °C ranging from 3.86×10(-2) S cm(-1) to 4.36×10(-2) S cm(-1). The methanol permeability coefficients of the membranes are in the range of 4.21-5.80×10(-8) cm(2) s(-1) at 65 °C. The novel membranes also show good chemical and thermal stability. An open-circuit voltage of 0.7 V and a maximum power density of 53.2 mW cm(-2) of alkaline direct methanol fuel cell (ADMFC) with the membrane C, 1 M methanol, 1 M NaOH, and humidified oxygen are achieved at 65 °C. Therefore, these membranes have great potential for applications in fuel cell systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Rapid separation of plutonium in environmental samples using an anion exchange resin disk

    International Nuclear Information System (INIS)

    Miura, T.; Oikawa, S.; Kishimoto, T.; Banba, S.; Morimoto, T.

    2001-01-01

    A rapid analytical method of Pu in environmental samples by alpha-ray spectrometry and high-resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) using a 3M Empore TM anion exchange resin disk for solid phase extraction has been developed. A trace amount of Pu was quantitatively adsorbed with an Empore TM anion exchange resin disk (47 mm diam.) at a flow rate of 150-200 ml/min from 8 M HNO 3 sample solution. The disk was washed with 10 ml of 8 M HNO 3 and 12 ml of 9 M HCl and then the Pu was quantitatively eluted with 15 ml of 1 M HNO 3 /0.03 M ascorbic acid solution. The time needed to separate Pu from the sample solution with the present method was about 20 minutes. The separated Pu was determined with alpha-ray spectrometry and HR-ICP-MS. The method was applied to the determination of Pu in the certified reference material (IAEA-135) and the environmental soil sample. The analytical results were almost in good agreement with the literature values. (author)

  15. Development of nanoscale zirconium molybdate embedded anion exchange resin for selective removal of phosphate.

    Science.gov (United States)

    Bui, Trung Huu; Hong, Sung Pil; Yoon, Jeyong

    2018-05-01

    Development of a selective adsorbent with an enhanced removal efficiency for phosphate from wastewater is urgently needed. Here, a hybrid adsorbent of nanoscale zirconium molybdate embedded in a macroporous anion exchange resin (ZMAE) is proposed for the selective removal of phosphate. The ZMAE consists of a low agglomeration of zirconium molybdate nanoparticles (ZM NPs) dispersed within the structure of the anion exchange (AE) resin. As major results, the phosphate adsorption capacity of the ZMAE (26.1 mg-P/g) in the presence of excess sulfate (5 mM) is superior to that of the pristine AE resin (1.8 mg-P/g) although their phosphate uptake capacity was similar in the absence of sulfate and these results were supported by the high selectivity coefficient of the ZMAE toward phosphate over sulfate (S PO4/SO4 ) more than 100 times compared to the pristine AE resin. This superior selective performance of the ZMAE for phosphate in the presence of sulfate ions is well explained by the role of the ZM NPs that contributed to 69% of the phosphate capacity which is based on an observation that the phosphate adsorption capacity of the ZM NPs is not affected by the presence of sulfate. In addition, the behavior of the selective phosphate removal by the ZMAE was well demonstrated by not only in the batch mode experiment with simulated Mekong river water and representative wastewater effluent but also in a column test. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Qualification of Reillex{trademark} HPQ anion exchange resin for use in SRS processes

    Energy Technology Data Exchange (ETDEWEB)

    Crooks, W.J. III

    2000-05-18

    The Phase 2 portion of the HB-Line facility was built in the early 1980's to process plutonium and neptunium from nitric acid solutions into oxide suitable for storage in a vault. Although the other portions of HB-Line were started up in the mid 1980's and have operated since that time, the anion exchange and precipitation processes in Phase 2 were never started up. As part of the material stabilization efforts, Phase 2 is currently being started up. A new anion exchange resin is needed because the resins that were proposed for use 10 years ago are limited by performance characteristics, disposal requirements, or are no longer commercially available. SRTC is responsible for qualifying all resins prior to their use in Nuclear Materials Stabilization and Storage (NMSS) processes. Qualification consists of both process suitability and thermal stability with nitric acid. This report describes the thermal stability qualification of Reillex{trademark} HPQ, the new resin proposed for processing plutonium and neptunium in the HB Line facility.

  17. Use of the miniature anion exchange centrifugation technique to isolate Trypanosoma evansi from goats.

    Science.gov (United States)

    Gutierrez, Carlos; Corbera, Juan A; Doreste, Francisco; Büscher, Philippe

    2004-10-01

    DEAE (anion exchanger diethylaminoethyl)-cellulose and mini Anion Exchange Centrifugation Technique (mAECT) allow salivarian trypanosomes to be separated from the blood of affected animals. The purpose of this study was to assess the mAECT in goats infected with T. evansi. Five adult Canary goats were inoculated intravenously with at least 1 x 10(5) T. evansi isolated from a dromedary camel in the Canary Islands. The goats were monitored for specific antibodies and parasite detection. The inoculated goats became infected and the parasitemia remained very low but was persistent. For mAECT columns, the DEAE gel was equilibrated with phosphate-buffered saline glucose. T. evansi was detected by its mobility with a microscope at low magnification (10 x 10). The mAECT proved to be more sensitive than blood smear and buffy coat but less sensitive than mouse inoculation. We conclude that in cases of very low parasitemia in goats, mAECT can be used when other parasite-detection tests have failed.

  18. Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins.

    Science.gov (United States)

    Wawrzkiewicz, Monika; Hubicki, Zbigniew

    2009-05-30

    The removal of tartrazine from aqueous solutions onto the strongly basic polystyrene anion exchangers of type 1 (Amberlite IRA-900) and type 2 (Amberlite IRA-910) was investigated. The experimental data obtained at 100, 200, 300 and 500 mg/dm(3) initial concentrations at 20 degrees C were applied to the pseudo-first order, pseudo-second order and Weber-Morris kinetic models. The calculated sorption capacities (q(e,cal)) and the rate constant of the first order adsorption (k(1)) were determined. The pseudo-second order kinetic constants (k(2)) and capacities were calculated from the plots of t/q(t) vs. t, 1/q(t) vs. 1/t, 1/t vs. 1/q(t) and q(t)/t vs. q(t) for type 1, type 2, type 3 and type 4 of the pseudo-second order expression, respectively. The influence of phase contact time, solution pH and temperature on tartrazine removal was also discussed. The FTIR spectra of pure anion exchangers and those loaded with tartrazine were recorded, too.

  19. Anion exchange HPLC isolation of high-density lipoprotein (HDL and on-line estimation of proinflammatory HDL.

    Directory of Open Access Journals (Sweden)

    Xiang Ji

    Full Text Available Proinflammatory high-density lipoprotein (p-HDL is a biomarker of cardiovascular disease. Sickle cell disease (SCD is characterized by chronic states of oxidative stress that many consider to play a role in forming p-HDL. To measure p-HDL, apolipoprotein (apo B containing lipoproteins are precipitated. Supernatant HDL is incubated with an oxidant/LDL or an oxidant alone and rates of HDL oxidation monitored with dichlorofluorescein (DCFH. Although apoB precipitation is convenient for isolating HDL, the resulting supernatant matrix likely influences HDL oxidation. To determine effects of supernatants on p-HDL measurements we purified HDL from plasma from SCD subjects by anion exchange (AE chromatography, determined its rate of oxidation relative to supernatant HDL. SCD decreased total cholesterol but not triglycerides or HDL and increased cell-free (cf hemoglobin (Hb and xanthine oxidase (XO. HDL isolated by AE-HPLC had lower p-HDL levels than HDL in supernatants after apoB precipitation. XO+xanthine (X and cf Hb accelerated purified HDL oxidation. Although the plate and AE-HPLC assays both showed p-HDL directly correlated with cf-Hb in SCD plasma, the plate assay yielded p-HDL data that was influenced more by cf-Hb than AE-HPLC generated p-HDL data. The AE-HPLC p-HDL assay reduces the influence of the supernatants and shows that SCD increases p-HDL.

  20. The effect of protein A cycle number on the performance and lifetime of an anion exchange polishing step.

    Science.gov (United States)

    Iskra, Timothy; Bolton, Glen R; Coffman, Jonathan L; Godavarti, Ranga

    2013-04-01

    Most mAb platform purification processes consist of an affinity capture step followed by one or two polishing steps. An understanding of the performance linkages between the unit operations can lead to robust manufacturing processes. In this study, a weak-partitioning anion-exchange chromatography polishing step used in a mAb purification process was characterized through high-throughput screening (HTS) experiments, small-scale experiments including a cycling study performed on qualified scale-down models, and large-scale manufacturing runs. When material from a Protein A column that had been cycled Protein A resin increased, the capacity of the subsequent AEX step increased. Different control strategies were considered for preventing impurity breakthrough and improving AEX resin lifetimes. Depth filtration of the Protein A peak pool significantly improved the AEX resin capacity, robustness, and lifetime. Further, the turbidity of the Protein A pool has the potential for use as an in-process control parameter for monitoring the performance of the AEX step. Copyright © 2012 Wiley Periodicals, Inc.

  1. Catalysis of deuterium transfer between liquid chloroform and water by anion-exchange resins

    International Nuclear Information System (INIS)

    Symons, E.A.; Bonnett, J.D.

    1985-01-01

    Anion-exchange resins in the hydroxide form have been successfully utilized for catalysis of deuterium transfer between water and liquid chloroform under stirred three-phase slurry conditions. In-solution rate constants for CDCl 3 /H 2 O exchange obtained at 15-35 0 C with liquid chloroform and 0.10 mol/liter NaOH solution under stirred conditions are in good agreement with literature data measured in the absence of bulk chloroform. At 25 0 C the resins tested, Rexyn 201(OH) and Ionac ASB-1P(OH), are ∼25x more effective per mole of - OH present than NaOH when they are used as whole beads. A further improvement is observed if the beads are crushed, but the latter state would be less suitable for commercial-scale application. The solubility of chloroform in the aqueous phase under isotope-exchange conditions was required to calculate the in-solution rate constants for exchange. A method was developed to obtain chloroform solubilities in 0.10 mol/liter NaOH solution and aqueous resin slurries; equilibrated solution samples were treated with 1 mol/liter NaOH to hydrolyze the dissolved CHCl 3 to chloride ion, which was then analyzed by specific ion electrode. 25 references, 2 figures, 1 table

  2. Studies on the thermal and radiolytic resistance of an anion exchanger with benzimidazole functional groups in nitric acid solution

    International Nuclear Information System (INIS)

    Iwasa, Satoru; Murata, Kiyoshi; Takeda, Kunihiko; Arai, Tsuyoshi; Wei, Y.Z.; Kumagai, Mikio

    2001-01-01

    Thermal and radiolytic resistance of AR-01R anion exchanger containing benzimidazole groups as exchange sites in nitric acid solution has been studied. Changes in its exchange capacity (EC), structure and shape were investigated and compared with those of a commercial Amberlite IRA-900 anion exchanger with quaternary ammonium group. Compared to the IRA-900, the AR-01R anion exchanger showed significantly higher thermal resistance and its decrease in EC was less than 10% after immersion in 9 mol·dm -3 solution for 72 h. On the other hand, it was found that the EC decrease of these two anion exchangers induced by γ-ray irradiation was almost the same; their EC decreased by 20-25% after irradiation in 9 mol·dm -3 HNO 3 solution at room temperature with absorption dose of 3.0 MGy. The change of the strong-base benzimidazole group to weak-base benzimidazole group in AR-01 was found to be the main damage by heat and γ-ray irradiation. (author)

  3. Efficient Separation of Lanthanides Using Poly (Styrene-Divinyl Benzene) Aminated Anion Exchanger

    International Nuclear Information System (INIS)

    Borai, E.H.; Hassan, R.S.; El- Dessouky, M.I.; Ghonem, A.

    2008-01-01

    New chromatographic method was developed for the determination and separation of lanthanides using AS4A anionic column. The behavior of the column towards lanthanides was studied through many parameters, From the data obtained it is found that, affinity of the column toward investigated ions increase by increasing eluent concentration and it decrease retention factors. With the two investigated eluent (oxalic and citric acids), elution order for lanthanide elements was obtained in their atomic number from La to Lu. Retention times and retention orders obtained at these conditions clearly show that, lanthanides in AS4A are displaced according to anion exchange mechanism. More over separation of lanthanides using AS4A was studied using isocratic and gradient elution programs. Light and the first intermediate lanthanide elements were separated successfully by applying a gradient program containing 70% oxalic acid (100 mM) and 30% water. The problem of separation for heavy and the last intermediate lanthanide elements was solved using 100 mM alpha hydroxy isobutyric acid (α-HIBA)

  4. Synthesis and Structure-Property Relationships of Poly(sulfone)s for Anion Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, JL; Moore, HD; Hibbs, MR; Hickner, MA

    2013-10-05

    Membranes based on cationic polymers that conduct anions are important for enabling alkaline membrane fuel cells and other solid-state electrochemical devices that operate at high pH. Anion exchange membranes with poly(arylene ether sulfone) backbones are demonstrated by two routes: chloromethylation of commercially available poly(sulfone)s or radical bromination of benzylmethyl moieties in poly(sulfone)s containing tetramethylbisphenol A monomer residues. Polymers with tethered trimethylbenzyl ammonium moieties resulted from conversion of the halomethyl groups by quaternization with trimethyl amine. The water uptake of the chloromethylated polymers was dependent on the type of poly(sulfone) backbone for a given IEC. Bisphenol A-based Udel (R) poly(sulfone) membranes swelled in water to a large extent while membranes from biphenol-based Radel (R) poly(sulfone), a stiffer backbone than Udel, only showed moderate water uptake. The water uptake of cationic poly(sulfone)s was further reduced by synthesizing tetramethylbisphenol A and 4,4-biphenol-containing poly(sulfone) copolymers where the ionic groups were clustered on the tetramethylbisphenol A residues. The conductivity of all samples scaled with the bulk water uptake. The hydration number of the membranes could be increased by casting membranes from the ionic form polymers versus converting the halomethyl form cast polymers to ionic form in the solid state. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1790-1798, 2013

  5. Perchlorate adsorption and desorption on activated carbon and anion exchange resin.

    Science.gov (United States)

    Yoon, In-Ho; Meng, Xiaoguang; Wang, Chao; Kim, Kyoung-Woong; Bang, Sunbaek; Choe, Eunyoung; Lippincott, Lee

    2009-05-15

    The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.

  6. Concentration and separation of trace metals from seawater using a single anion exchange bead

    International Nuclear Information System (INIS)

    Koide, M.; Lee, D.S.; Stallard, M.O.

    1984-01-01

    A technique has been developed for the quantitative adsorption of trace metals onto a single anion exchange bead. The application to the assay of trace metals in seawater was explored with the following radionuclides: 109 Cd, 103 Pd, 192 Ir, 195 Au, 237 Pu, and /sup 99m/Tc. The major ions, Na + , K + , Mg 2+ , and Ca 2+ exist primarily as positively charged species in seawater under nearly all conditions and did not interfere in the adsorption of anionic forms of trace metals onto the single bead. Three types of applications of the technique were investigated: (A) determination of metals in seawater by the direct adsorption onto a single bead without prior concentration, with or without a subsequent desorption from the bead (e.g., Cd, Zn); (B) determination of metals in seawater by the adsorption onto a single bead after a preconcentration step from several liters of seawater (e.g., Pd, Au, Ir), and (C) increasing the yield of Pu and Tc onto a single bead for improved sensitivity in mass spectrometric analyses

  7. Anion-exchange membranes derived from quaternized polysulfone and exfoliated layered double hydroxide for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Liang, Na; Peng, Pai; Qu, Rong; Chen, Dongzhi; Zhang, Hongwei, E-mail: hanqiujiang@163.com

    2017-02-15

    Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10{sup −2} S cm{sup −1} at 60 °C. - Graphical abstract: Anion-exchange membrane based on quaternized polysulfone and exfoliated layered double hydroxide is optically transparent and has good ionic properties.

  8. An improved, computer-based, on-line gamma monitor for plutonium anion exchange process control

    International Nuclear Information System (INIS)

    Pope, N.G.; Marsh, S.F.

    1987-06-01

    An improved, low-cost, computer-based system has replaced a previously developed on-line gamma monitor. Both instruments continuously profile uranium, plutonium, and americium in the nitrate anion exchange process used to recover and purify plutonium at the Los Alamos Plutonium Facility. The latest system incorporates a personal computer that provides full-feature multichannel analyzer (MCA) capabilities by means of a single-slot, plug-in integrated circuit board. In addition to controlling all MCA functions, the computer program continuously corrects for gain shift and performs all other data processing functions. This Plutonium Recovery Operations Gamma Ray Energy Spectrometer System (PROGRESS) provides on-line process operational data essential for efficient operation. By identifying abnormal conditions in real time, it allows operators to take corrective actions promptly. The decision-making capability of the computer will be of increasing value as we implement automated process-control functions in the future. 4 refs., 6 figs

  9. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    Science.gov (United States)

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Fast kinetic and efficient removal of As(V) from aqueous solution using anion exchange resins

    International Nuclear Information System (INIS)

    Donia, Ahmed M.; Atia, Asem A.; Mabrouk, Dalia H.

    2011-01-01

    Glycidyl methacrylate/methelenebisacrylamide resin with immobilized tetraethylenepentamine ligand was prepared. This pentamine containing resin was transformed to two anion exchange resins through treatment by glycidyl trimethylammonium chloride to give (RI) or hydrochloric acid giving (RII). The resins were used to adsorb As(V) at different experimental conditions using batch and column methods. Kinetics and thermodynamic properties as well as the mechanism of interaction between As(V) and resin active sites were discussed. The maximum adsorption capacities of As(V) on RI and RII were found to be 1.83 and 1.12 mmol/g, respectively. The regeneration and the durability of the loaded resin towards the successive reuse were also investigated.

  11. Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating

    Science.gov (United States)

    Agarwal, Rahul; Krook, Nadia M.; Ren, Ming-Liang; Tan, Liang Z.; Liu, Wenjing; Rappe, Andrew M.; Agarwal, Ritesh

    2018-03-01

    Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials which are difficult to synthesize otherwise. We report high-temperature vapor phase anion exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials phase and composition at the nanoscale allowing synthesis of novel materials.

  12. Synthesis and Properties of Anion Exchangers Derived from Chloromethyl Styrene Codivinylbenzene and Their Use in Water Treatment

    Directory of Open Access Journals (Sweden)

    Hesham A. Ezzeldin

    2010-01-01

    Full Text Available Amination of vinylbenzyl chloride-divinylbenzene (VBC-DVB copolymers is an effective method for preparation of ion-exchange resins. Conventionally, the starting polymer is produced by chloromethylation of a styrene-divinylbenzene copolymer that utilizes chloromethyl methyl ether, a known carcinogen. An alterative approach is to copolymerize vinylbenzyl chloride with divinylbenzene to generate the necessary VBC-DVB. This method provides precise control over the density of the ion-exchange groups. The regiochemistry of the vinylbenzyl chloride methods was realized using solvent-ion exchange groups. In this investigation, an improved solvent system was found for the preparation of anion exchange resins by the vinylbenzyl chloride route. The effectiveness of amination of the intermediate VBC-DVB polymers with a variety of trimethylamine reagents was investigated, and ethanolic trimethylamine produced the highest degree of amination. These resulting ion-exchange polymers were characterized by a variety of techniques such as analytical titrations, nitrogen analysis, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Testing of these copolymers for breakthrough was performed. The results indicate that these anion exchangers have a meaningful increase in thermal stability over commercial anionic exchange beads.

  13. Combined Yamamoto approach for simultaneous estimation of adsorption isotherm and kinetic parameters in ion-exchange chromatography.

    Science.gov (United States)

    Rüdt, Matthias; Gillet, Florian; Heege, Stefanie; Hitzler, Julian; Kalbfuss, Bernd; Guélat, Bertrand

    2015-09-25

    Application of model-based design is appealing to support the development of protein chromatography in the biopharmaceutical industry. However, the required efforts for parameter estimation are frequently perceived as time-consuming and expensive. In order to speed-up this work, a new parameter estimation approach for modelling ion-exchange chromatography in linear conditions was developed. It aims at reducing the time and protein demand for the model calibration. The method combines the estimation of kinetic and thermodynamic parameters based on the simultaneous variation of the gradient slope and the residence time in a set of five linear gradient elutions. The parameters are estimated from a Yamamoto plot and a gradient-adjusted Van Deemter plot. The combined approach increases the information extracted per experiment compared to the individual methods. As a proof of concept, the combined approach was successfully applied for a monoclonal antibody on a cation-exchanger and for a Fc-fusion protein on an anion-exchange resin. The individual parameter estimations for the mAb confirmed that the new approach maintained the accuracy of the usual Yamamoto and Van Deemter plots. In the second case, offline size-exclusion chromatography was performed in order to estimate the thermodynamic parameters of an impurity (high molecular weight species) simultaneously with the main product. Finally, the parameters obtained from the combined approach were used in a lumped kinetic model to simulate the chromatography runs. The simulated chromatograms obtained for a wide range of gradient lengths and residence times showed only small deviations compared to the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The Effect of Ambient Carbon Dioxide on Anion-Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Ziv, Noga; Mustain, William E; Dekel, Dario R

    2018-01-27

    Over the past 10 years, there has been a surge of interest in anion-exchange membrane fuel cells (AEMFCs) as a potentially lower cost alternative to proton-exchange membrane fuel cells (PEMFCs). Recent work has shown that AEMFCs achieve nearly identical performance to that of state-of-the-art PEMFCs; however, much of that data has been collected while feeding CO 2 -free air or pure oxygen to the cathode. Usually, removing CO 2 from the oxidant is done to avoid the detrimental effect of CO 2 on AEMFC performance, through carbonation, whereby CO 2 reacts with the OH - anions to form HCO 3 - and CO 3 2- . In spite of the crucial importance of this topic for the future development and commercialization of AEMFCs, unfortunately there have been very few investigations devoted to this phenomenon and its effects. Much of the data available is widely spread out and there currently does not exist a resource that researchers in the field, or those looking to enter the field, can use as a reference text that explains the complex influence of CO 2 and HCO 3 - /CO 3 2- on all aspects of AEMFC performance. The purpose of this Review is to summarize the experimental and theoretical work reported to date on the effect of ambient CO 2 on AEMFCs. This systematic Review aims to create a single comprehensive account of what is known regarding how CO 2 behaves in AEMFCs, to date, as well as identify the most important areas for future work in this field. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  16. Spectrophotometric determination of trace niobium in tantalum with sulfochlorophenol S following anion-exchange separation

    International Nuclear Information System (INIS)

    Hashitani, Hiroshi; Adachi, Takeo

    1975-01-01

    A sensitive photometric method for the determination of trace of niobium in tantalum with sulfochlorophenol S is proposed. Tantalum was quantitatively separated by an anion-exchange method from nitric acid-hydrofluoric acid medium. Prior to the color development, these acids were removed by fuming with perchloric acid. Sulfuric acid (0.04 to 0.2M) was necessary for the color development. A maximum absorbance was obtained when the solution was kept for 60 minutes at room temperature, or 5 minutes at 60 0 C. Niobium down to 1 ppm in tantalum can be determined (epsilon=4.2x10 4 ) according to the following procedure. Not more than 1 g of tantalum is dissolved in 8 ml of hydrofluoric acid (1:1) and 2 ml of nitric acid (1:1) by heating. The solution is transferred to a column containing 10 ml of strongly basic anion-exchange resin (Diaion SA No.100) in a polyethylene tube, with three 10-ml portions of a mixture of 1M nitric acid-5M hydrofuluoric acid. Niobium is eluted with 100 ml of a mixture of 5M nitric acid-0.2M hydrofluoric acid. The effluent is evaporated to fumes with 1.5 ml of perchloric acid in the presence of 2 ml of sulfuric acid (1:19). The solution is transferred to a volumetric flask with 5 ml of hydrochloric acid (1:1) and small portions of water. Two ml of 0.05% sulfochlorophenol S solution and 2.5 ml of acetone are then added, and the resulting solution is diluted to 25 ml with water. After 60 minutes, the absorbance is measured at 650 nm with a blank as reference. (auth.)

  17. Poly(vinylbenzylchloride) Based Anion-Exchange Blend Membranes (AEBMs): Influence of PEG Additive on Conductivity and Stability.

    Science.gov (United States)

    Kerres, Jochen A; Krieg, Henning M

    2017-06-16

    In view of the many possible applications such as fuel cells and electrolysers, recent interest in novel anion exchange membranes (AEMs) has increased significantly. However, their low conductivity and chemical stability limits their current suitability. In this study, the synthesis and characterization of several three- and four-component anion exchange blend membranes (AEBMs) is described, where the compositions have been systematically varied to study the influence of the AEBM's composition on the anion conductivities as well as chemical and thermal stabilities under strongly alkaline conditions. It was shown that the epoxide-functionalized poly(ethylene glycol)s that were introduced into the four-component AEBMs resulted in increased conductivity as well as a marked improvement in the stability of the AEBMs in an alkaline environment. In addition, the thermal stability of the novel AEBMs was excellent showing the suitability of these membranes for several electrochemical applications.

  18. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Science.gov (United States)

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  19. THE SORPTION EXTRACTION FEATURES OF KARMOAZONATE MERCURY(I COMPLE X BY ANION EXCHANGER AV-17-8 SURFACE

    Directory of Open Access Journals (Sweden)

    Н. M. Guzenko

    2014-11-01

    Full Text Available The dynamic and kinetic curves were analyzed, they were obtained by karmoazonate mercury(I complex extraction by anion exchanger AV-17-8 surface, and also calculated values of sorption process speed factor have allowed to establish the features of the adsorption layers formation on the resin surface.

  20. Guidelines for selecting weak-base versus strong-base anion-exchange resins for the recovery of chromate from cooling tower blowdown

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J.; Reed, L.W.

    1980-01-01

    Guidelines for selecting weak-base versus strong-base anion-exchange resins for the recovery of chromate from cooling tower blowdown are given, together with actual operating data on large-scale industrial systems based on strong-base anion-exchange resins, data from a similar pilot system based on weak-base anion resin, and the chemical costs for operating both systems for a cooling tower blowdown containing 2500 ppm total dissolved solids and 20 ppm chromata.

  1. Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts.

    Science.gov (United States)

    Han, Bing; Liu, Wen; Li, Jingwen; Wang, Jin; Zhao, Dongye; Xu, Rui; Lin, Zhang

    2017-09-01

    We prepared a new class of anion-exchange-resin supported Pd catalysts for efficient hydrodechlorination of triclosan in water. The catalysts were prepared through an initial ion-exchange uptake of PdCl 4 2- and subsequent reduction of Pd(II) to Pd(0) nanoparticles at ambient temperature. Two standard strong-base anion exchange resins (IRA-900 and IRA-958) with different matrices (polystyrene and polyacrylic) were chosen as the supports. SEM and TEM images showed that Pd(0) nanoparticles were evenly attached on the resin surface with a mean size of 3-5 nm. The resin supported Pd catalysts (Pd@IRA-900 and Pd@IRA-958) were able to facilitate rapid and complete hydrodechlorination of triclosan. At a Pd loading of 2.0 wt.%, the observed pseudo first-order rate constant (k obs ) was 1.25 ± 0.06 and 1.6 ± 0.1 L/g/min for Pd@IRA-900 and Pd@IRA-958, respectively. The catalysts were more resistant to Cl - poisoning and natural organic matter fouling than other supported-Pd catalysts. The presence of 10 mM NaCl suppressed the k obs value by 31% and 23% for Pd@IRA-900 and Pd@IRA-958, whereas the presence of humic acid at 30 mg/L as TOC lowered the rates by 28% and 27%, respectively. The better performance of Pd@IRA-958 was attributed to the polymeric matrix properties (i.e., hydrophobicity, pore size, and surface area) as well as Pd particle size. GC/MS analyses indicated that very low concentrations of chlorinated intermediates were detected in the early stage of the hydrodechlorination process, with 2-phenoxyphenol being the main byproduct. The catalysts can be repeatedly used in multiple operations without significant bleeding. The catalysts eliminate the need for calcination in preparing conventional supported catalysts, and the resin supports conveniently facilitate control of Pd loading and material properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Progress in liquid ion exchangers

    International Nuclear Information System (INIS)

    Nakagawa, Genkichi

    1974-01-01

    Review is made on the extraction with anion exchangers and the extraction with liquid cation exchangers. On the former, explanation is made on the extraction of acids, the relation between anion exchange and the extraction of metals, the composition of the metallic complexes that are extracted, and the application of the extraction with anion exchangers to analytical chemistry. On the latter, explanation is made on the extraction of metals and its application to analytical chemistry. The extraction with liquid ion exchangers is suitable for the operation in chromatography, because the distribution of extracting agents into aqueous phase is small, and extraction equilibrium is quickly reached, usually within 1 to several minutes. The separation by means of anion exchangers is usually made from hydrochloric acid solution. For example, Brinkman et al. determined Rf values for more than 50 elements by thin layer chromatography. Tables are given for showing the structure of the liquid ion exchangers and the polymerized state of various amines. (Mori, K.)

  3. New system applying image processor to automatically separate cation exchange resin and anion exchange resin for condensate demineralizer

    International Nuclear Information System (INIS)

    Adachi, Tsuneyasu; Nagao, Nobuaki; Yoshimori, Yasuhide; Inoue, Takashi; Yoda, Shuji

    2014-01-01

    In PWR plant, condensate demineralizer is equipped to remove corrosive ion in condensate water. Mixed bed packing cation exchange resin (CER) and anion exchange resin (AER) is generally applied, and these are regenerated after separation to each layer periodically. Since the AER particle is slightly lighter than the CER particle, the AER layer is brought up onto the CER layer by feeding water upward from the bottom of column (backwashing). The separation performance is affected by flow rate and temperature of water for backwashing, so normally operators set the proper condition parameters regarding separation manually every time for regeneration. The authors have developed the new separation system applying CCD camera and image processor. The system is comprised of CCD camera, LED lamp, image processor, controller, flow control valves and background color panel. Blue color of the panel, which is corresponding to the complementary color against both ivory color of AER and brown color of CER, is key to secure the system precision. At first the color image of the CER via the CCD camera is digitized and memorized by the image processor. The color of CER in the field of vision of the camera is scanned by the image processor, and the position where the maximum difference of digitized color index is indicated is judged as the interface. The detected interface is able to make the accordance with the set point by adjusting the flow rate of backwashing. By adopting the blue background panel, it is also possible to draw the AER out of the column since detecting the interface of the CER clearly. The system has provided the reduction of instability factor concerning separation of resin during regeneration process. The system has been adopted in two PWR plants in Japan, it has been demonstrating its stable and precise performance. (author)

  4. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans.

    Directory of Open Access Journals (Sweden)

    Katia Urso

    Full Text Available Anion exchanger 2 (Ae2; gene symbol, Slc4a2 is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated.

  5. The critical relation between chemical stability of cations and water in anion exchange membrane fuel cells environment

    Science.gov (United States)

    Dekel, Dario R.; Willdorf, Sapir; Ash, Uri; Amar, Michal; Pusara, Srdjan; Dhara, Shubhendu; Srebnik, Simcha; Diesendruck, Charles E.

    2018-01-01

    Anion exchange membrane fuel cells can potentially revolutionize energy storage and delivery; however, their commercial development is hampered by a significant technological impedance: the chemical decomposition of the anion exchange membranes during operation. The hydroxide anions, while transported from the cathode to the anode, attack the positively charged functional groups in the polymer membrane, neutralizing it and suppressing its anion-conducting capability. In recent years, several new quaternary ammonium salts have been proposed to address this challenge, but while they perform well in ex-situ chemical studies, their performance is very limited in real fuel cell studies. Here, we use experimental work, corroborated by molecular dynamics modeling to show that water concentration in the environment of the hydroxide anion, as well as temperature, significantly impact its reactivity. We compare different quaternary ammonium salts that have been previously studied and test their stabilities in the presence of relatively low hydroxide concentration in the presence of different amounts of solvating water molecules, as well as different temperatures. Remarkably, with the right amount of water and at low enough temperatures, even quaternary ammonium salts which are considered "unstable", present significantly improved lifetime.

  6. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Iowa State Univ., Ames, IA (United States)

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  7. A comprehensive molecular dynamics approach to protein retention modeling in ion exchange chromatography.

    Science.gov (United States)

    Lang, Katharina M H; Kittelmann, Jörg; Dürr, Cathrin; Osberghaus, Anna; Hubbuch, Jürgen

    2015-02-13

    In downstream processing, the underlying adsorption mechanism of biomolecules to adsorbent material are still subject of extensive research. One approach to more mechanistic understanding is simulating this adsorption process and hereby the possibility to identify the parameters with strongest impact. So far this method was applied with all-atom molecular dynamics simulations of two model proteins on one cation exchanger. In this work we developed a molecular dynamics tool to simulate protein-adsorber interaction for various proteins on an anion exchanger and ran gradient elution experiments to relate the simulation results to experimental data. We were able to show that simulation results yield similar results as experimental data regarding retention behavior as well as binding orientation. We could identify arginines in case of cation exchangers and aspartic acids in case of anion exchangers as major contributors to binding. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effect of Oxalate on the Recycle of Neptunium Filtrate Solution by Anion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E

    2004-11-18

    A series of laboratory column runs has been performed that demonstrates the recovery of neptunium (Np) containing up to 0.05 M oxalate. Np losses were generally less than one percent to the raffinate for feed solutions that contained 2 to 10 g Np/L. Up to 16 percent Np losses were observed with lower Np feed concentrations, but those losses were attributed to the shortened residence times rather than the higher oxalate to Np ratios. Losses in the plant are expected to be significantly less due to the lower cross-section flowrate possible with existing plant pumps. Elimination of the permanganate treatment of filtrates appears to be reasonable since the amount of Np in those filtrates does not appear to be practical to recover. Combination of untreated filtrates with other actinide rich solutions is not advisable as precipitation problems are likely. If untreated filtrates are kept segregated from other actinide rich streams, the recovery of the remaining Np is probably still possible, but could be limited due to the excessively high oxalate to Np ratio. The persistence of hydrazine/hydrazoic acid in filtrate solutions dictates that the nitrite treatment be retained to eliminate those species from the filtrates prior to transfer to the canyon. Elimination of the permanganate treatment of precipitator flushes and recovery by anion exchange does not appear to be limited by the oxalate effect on anion exchange. Np from solutions with higher oxalate to Np molar ratios than expected in precipitator flushes was recovered with low to modest losses. Solubility problems appear to be unlikely when the moles of oxalate involved are less than the total number of moles of Np due to complexation effects. The presence of significant concentrations of iron (Fe) in the solutions will further decrease the probability of Np oxalate precipitation due the formation of Fe oxalate complexes. Np oxalate solubility data in 8 M HNO{sub 3} with from one to six times as much oxalate as Np have

  9. Development and characterization of direct ethanol fuel cells using alkaline anion-exchange membranes

    Science.gov (United States)

    Lim, Peck Cheng

    2009-08-01

    Alkaline membrane fuel cell (AMFC) is a relatively new fuel cell technology that is generating considerable interests. It offers the electrocatalytic advantages of conventional alkaline fuel cells, and the manufacturing and cost advantages of solid polymer electrolyte fuel cells. This project was carried out to develop and characterize high performance membrane electrode assemblies (MEAs) for all-solid-state AMFCs. The primary fuel of interests is ethanol, but hydrogen was used in the development stages to facilitate the diagnostic and evaluation of the fuel cell performance. In the preliminary investigation, AMFC was assembled using off-the-shelf electrodes and anion-exchange membrane (AEM). It was found that the performance of AMFC operating on ethanol fuel was limited by a large high-frequency resistance (HFR) value. The advantage of using non-toxic ethanol fuel was also compromised by the need to add hydrazine and potassium hydroxide to the fuel blend. Subsequently, a high performance MEA was developed for an all-solid-state AMFC, in which liquid electrolyte or other additives were not required during the operation of the fuel cell. Ionomer was incorporated in the formulation of catalyst ink, and the catalyst ink was directly coated on the anion-exchange membrane (AEM). An ionomer content of 20 wt.% was found to be the optimum amount required in the catalyst layers. It was demonstrated that the AMFC generated a maximum power density of 365 mW/cm2 and 213 mW/cm 2 with the use of hydrogen/oxygen and hydrogen/pure air, respectively. The performance of the AMFC was also found to be influenced by exposure to carbon dioxide in the air. Hence, the CCMs were pre-treated in potassium hydroxide solution and pure oxygen was used to condition the fuel cell to maximize the power output from the AMFCs. Although satisfactory performance was demonstrated in the AMFC, its stability during cell operation remains a major issue. The poor stability was attributed to degradation of

  10. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  11. Rational methods for predicting human monoclonal antibodies retention in protein A affinity chromatography and cation exchange chromatography. Structure-based chromatography design for monoclonal antibodies.

    Science.gov (United States)

    Ishihara, Takashi; Kadoya, Toshihiko; Yoshida, Hideaki; Tamada, Taro; Yamamoto, Shuichi

    2005-11-04

    Rational methods for predicting the chromatographic behavior of human monoclonal antibodies (hMabs) in protein A affinity chromatography and cation exchange chromatography from the amino acid sequences information were proposed. We investigated the relation between the structures of 28 hMabs and their chromatographic behavior in protein A affinity chromatography and cation exchange chromatography using linear gradient elution experiments. In protein A affinity chromatography, the elution pH of the hMabs was correlated with not only the structure of the Fc region (subclass), but also that of the variable region. The elution pH of hMabs that have LYLQMNSL sequences in between the CDR2 and CDR3 regions of the heavy chain became lower among the same subclass of hMabs. In cation exchange chromatography, the peak salt concentrations IR of hMabs that have the same sequences of variable regions (or that have a structural difference in their Fc region, which puts them into a subclass) were similar. The IR values of hMabs were well correlated with the equilibrium association constant Ke, and also with the surface positive charge distribution of the variable region of the heavy chain (corrected surface net positive charge (cN) of the VH region). Based on these findings, we developed rational methods for predicting the retention behavior, which were also tested with eight additional hMabs. By considering the information on the number of binding sites associated with protein adsorption as determined experimentally, and the surface positive charge distribution from the three-dimensional structure of Mab A, we hypothesized that hMabs is separated by cation exchange chromatography as the surface positive charge distribution of the VH region is recognized.

  12. Oxygen isotope fractionation in phosphates: the role of dissolved complex anions in isotope exchange.

    Science.gov (United States)

    Zheng, Yong-Fei

    2016-01-01

    Oxygen isotope fractionation factors for phosphates were calculated by means of the increment method. The results suggest that Ag3PO4 and BiPO4 are enriched in (18)O relative to AgPO4, and the three phosphates are consistently depleted in (18)O relative to Ba3[PO4]2; fluorapatite and chlorapatite exhibit a similar behaviour of oxygen isotope fractionation with consistent enrichment of (18)O relative to hydroxyapatite. The valence, radii and coordination of metal cations play a quantitative role in dictating the (18)O/(16)O partitioning in these phosphates of different compositions. The calculated fractionation factors for the Ag3PO4-H2O system are in agreement with experimental determinations derived from enzyme-catalysed isotope exchange between dissolved inorganic phosphate and water at the longest reaction durations at low temperatures. This demonstrates that the precipitated Ag3PO4 has completely captured the oxygen isotope fractionation in the dissolved inorganic phosphate. The calculated fractionation factors for the F/Cl-apatite-water systems are in agreement with the enzyme-catalysed experimental fractionations for the dissolved phosphate-water system at the longest reaction durations but larger than fractionations derived from bacteria-facilitated exchange and inorganic precipitation experiments as well as natural observations. For the experimental calibrations of oxygen isotope fractionation involving the precipitation of dissolved phosphate species from aqueous solutions, the fractionation between precipitate and water is primarily dictated by the isotope equilibration between the dissolved complex anions and water prior to the precipitation. Therefore, the present results provide a quantitative means to interpret the temperature dependence of oxygen isotope fractionation in inorganic and biogenic phosphates.

  13. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    International Nuclear Information System (INIS)

    Duangtum, Natapol; Junking, Mutita; Sawasdee, Nunghathai; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2011-01-01

    Highlights: → Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). → The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. → The co-localization between kAE and KIF3B was detected in human kidney tissues. → A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. → KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl - /HCO 3 - exchange and the failure of proton (H + ) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells.

  14. Rifampicin Induces Bicarbonate-Rich Choleresis in Rats: Involvement of Anion Exchanger 2.

    Science.gov (United States)

    Wang, Wei; Ren, Xiaofei; Cai, Yi; Chen, Lihong; Zhang, Weiping; Xu, Jianming

    2016-01-01

    Previous studies have shown that rifampicin induced choleresis, the mechanisms of which have not been described. The aim of this study was to investigate the mechanisms underlying in vivo rifampicin-induced choleresis. In one experimental set, rats were treated chronically with rifampicin on days 1, 3 and 7. Serum and biliary parameters were assayed, and mRNA and protein levels, as well as the locations of the hepatic export transporters were analyzed by real-time PCR, western blot and immunofluorescence. Ductular mass was evaluated immunohistochemically. In another experimental set, rats received an acute infusion of rifampicin. The amount of rifampicin in bile was detected using HPLC. Biliary parameters were monitored following intrabiliary retrograde fluxes of the Cl(-)/HCO3 (-) exchange inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) in the infused rats. Biliary bicarbonate output increased in parallel to the augmented bile flow in response to rifampicin, and this effect was abolished with intrabiliary administration of DIDS, but not NPPB. The biliary secretion of rifampicin with increases in bile flow and biliary rifampicin in response to different infused doses of the antibiotic show no significant correlations. After rifampicin treatment, the expression level of anion exchanger 2 (AE2) increased, while the location of hepatic transporters did not change. However, RIF treatment did not increase ductular mass significantly. These results indicate that the increase in bile flow induced by rifampicin is mainly due to increased HCO3 (-) excretion mediated by increased AE2 protein expression and activity.

  15. Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism.

    Science.gov (United States)

    Ficici, Emel; Faraldo-Gómez, José D; Jennings, Michael L; Forrest, Lucy R

    2017-12-04

    The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct α-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation. © 2017 Ficici et al.

  16. Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism

    Science.gov (United States)

    Faraldo-Gómez, José D.

    2017-01-01

    The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct α-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation. PMID:29167180

  17. Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, DY; Hickner, MA

    2012-11-01

    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by H-1 NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 degrees C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 degrees C but much lower stability at 80 degrees C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  18. PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.; King, W.; O' Rourke, P.

    2012-07-26

    Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

  19. Recyclable cross-linked anion exchange membrane for alkaline fuel cell application

    Science.gov (United States)

    Hou, Jianqiu; Liu, Yazhi; Ge, Qianqian; Yang, Zhengjin; Wu, Liang; Xu, Tongwen

    2018-01-01

    Cross-linking can effectively solve the conductivity-swelling dilemma in anion exchange membranes (AEMs) but will generate solid wastes. To address this, we developed an AEM cross-linked via disulfide bonds, bearing quaternary ammonium groups, which can be easily recycled. The membrane (RC-QPPO) with IEC of 1.78 mmol g-1, when cross-linked, showed enhanced mechanical properties and good hydroxide conductivity (24.6 mS cm-1 at 30 °C). Even at higher IEC value (2.13 mmol g-1), it still has low water uptake, low swelling ratio and delivers a peak power density of 150 mW cm-2 at 65 °C. Exploiting the formation of disulfide bonds from -SH groups, the membrane can be readily cross-linked in alkaline condition and recycled by reversibly breaking disulfide bonds with dithiothreitol (DTT). The recycled membrane solution can be directly utilized to cast a brand-new AEM. By washing away the residual DTT with water and exposure to air, it can be cross-linked again and this process is repeatable. During the recycling and cross-linking processes, the membrane showed a slight IEC decrease of 5% due to functional group degradation. The strategy presented here is promising in enhancing AEM properties and reducing the impact of artificial polymers on the environment.

  20. Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells

    Science.gov (United States)

    Lu, Yaxiang; Wang, Lianqin; Preuß, Kathrin; Qiao, Mo; Titirici, Maria-Magdalena; Varcoe, John; Cai, Qiong

    2017-12-01

    Developing the low-cost, highly active carbonaceous materials for oxygen reduction reaction (ORR) catalysts has been a high-priority research direction for durable fuel cells. In this paper, two novel N-doped carbonaceous materials with flaky and rod-like morphology using the natural halloysite as template are obtained from urea nitrogen source as well as glucose (denoted as GU) and furfural (denoted as FU) carbon precursors, respectively, which can be directly applied as metal-free electrocatalysts for ORR in alkaline electrolyte. Importantly, compared with a benchmark Pt/C (20wt%) catalyst, the as-prepared carbon catalysts demonstrate higher retention in diffusion limiting current density (after 3000 cycles) and enhanced methanol tolerances with only 50-60mV negative shift in half-wave potentials. In addition, electrocatalytic activity, durability and methanol tolerant capability of the two N-doped carbon catalysts are systematically evaluated, and the underneath reasons of the outperformance of rod-like catalysts over the flaky are revealed. At last, the produced carbonaceous catalysts are also used as cathodes in the single cell H2/O2 anion exchange membrane fuel cell (AEMFC), in which the rod-like FU delivers a peak power density as high as 703 mW cm-2 (vs. 1106 mW cm-2 with a Pt/C benchmark cathode catalyst).

  1. The properties of anion-exchange resines in mixtures of organic solvents and water

    International Nuclear Information System (INIS)

    Naveh, J.

    1978-02-01

    The behaviour of anion-exchange resins in water and mixtures of organic solvents and water was studied with special reference to the swelling of the polymer and to the density and enthalpy changes accompanying the swelling. A linear dependence was found between the swelling of dry resin and 1/X (X being the nominal cross-linking percent of the polymer). This dependence is interpreted theoretically. The nominal cross-linking percent,defined by the quantity ratio of the components, is corrected for real cross-linking percent. For the swelling of the resin in dilute aqueous alcohols, a preference for the alcohol was found which is enhanced as the molecular weight of the alcohol increases. Moreover, for certain mole fractions, the preference of the perchlorate form of the resin is greater than that of the chloride form. The temperature dependence of the swelling was measured and the invasion of an electrolyte (LiCl), dissolved in the aqueous-organic phase, into the resine phase was determined. Contrary to what usually happens in pure aqueous phase, where the electrolyte is rejected in accordance with the Donnan law, an almost total invasion of the electrolyte into the resin phase occurs. (author)

  2. Anion Capture and Exchange by Functional Coatings: New Routes to Mitigate Steel Corrosion in Concrete Infrastructure.

    Science.gov (United States)

    Falzone, Gabriel; Balonis, Magdalena; Bentz, Dale; Jones, Scott; Sant, Gaurav

    2017-11-01

    Chloride-induced corrosion is a major cause of degradation of reinforced concrete infrastructure. While the binding of chloride ions (Cl - ) by cementitious phases is known to delay corrosion, this approach has not been systematically exploited as a mechanism to increase structural service life. Recently, Falzone et al. [ Cement and Concrete Research 72 , 54-68 (2015)] proposed calcium aluminate cement (CAC) formulations containing NO 3 -AFm to serve as anion exchange coating s that are capable of binding large quantities of Cl - ions, while simultaneously releasing corrosion-inhibiting NO 3 - species. To examine the viability of this concept, Cl - binding isotherms and ion-diffusion coefficients of a series of hydrated CAC formulations containing admixed Ca(NO 3 ) 2 (CN) are quantified. This data is input into a multi-species Nernst-Planck (NP) formulation, which is solved for a typical bridge-deck geometry using the finite element method (FEM). For exposure conditions corresponding to seawater, the results indicate that Cl - scavenging CAC coatings (i.e., top-layers) can significantly delay the time to corrosion (e.g., 5 ≤ d f ≤ 10, where d f is the steel corrosion initiation delay factor [unitless]) as compared to traditional OPC-based systems for the same cover thickness; as identified by thresholds of Cl - /OH - or Cl - /NO 3 - (molar) ratios in solution. The roles of hindered ionic diffusion, and the passivation of the reinforcing steel rendered by NO 3 - are also discussed.

  3. Anion-exchange method of ammonium paratungstate production from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Kholmogorov, A.G.; Vaneeva, T.D.; Yurkevich, T.N.

    1978-01-01

    An anion exchange method is suggested for producing ammonium paratungstate from soda solutions for industrial testing. The suggested method allows the process cycle ot be reduced as a result of sorption of tungsten on anionite, followed by desorption of tungsten in form of ammonium tungstate, and by the recovery of the anionite by the solution of a mineral acid. The sorption of tungsten has been carried out in columns having the counter-flow gravitational motion, the desorption in a suspended layer of ionite. It has been established that for the sorption of tungsten it is desirable to use AN-80 P anionite, and that it is expedient to carry out the process with the use of solutions having pH=4 to 2.5. The apparatus flowsheet is presented of an enlarged setup for the production of ammonium paratugstate from the solutions of sodium tungstate. As compared with the deposition method, an increase in the yield of tungsten is achieved by a value of 1.3 to 1.5%. The economical efficiency of the developed method amounts to about 330 rubles per ton of tungsten anhydride

  4. Separation of Fluoride Ions in an Electrolytic Cell by Using an AnionExchange Membrane

    International Nuclear Information System (INIS)

    Fathurrachman; Sunardi

    2000-01-01

    Separation of fluoride ions in an electrolytic cell with an anionexchange membrane which is so-called an electrodialysis process has beenperformed. The experiment have been taken place in room temperature in anelectrolytic cell made by plexiglas consisted on anode and cathode chambersseparated by an anion exchange membrane in dimension of 4 x 4 cm. The carbonand stainless steel are applied as an anode and platinum as s' cathode. Theanolyte is a HNO 3 0.3 M solution, while a solution of NaF 0.3 M, and amixture of NaF 0.3 M containing uranyl nitrate solution for separating offluoride ions and uranium are used as a catholyte. The distance between theelectrode and the membrane is 1.5 cm and this distance is kept constant. Theparameters observed are the current voltage, cathode applied, and uraniumconcentration. For the solution without uranium, the results show that thefluoride ions transferred are around 50 % using carbon as a cathode for 3hours and the voltage of 10 volts, while for SS as a cathode are around 93 %.For the solution containing uranium, the fluoride ions transferred are around78 % for 3.5 hours and the uranium ions remain in the catholyte in which mostof them are as 8 yellow deposit of Na 2 U 2 O 7 on the cathode surface andothers are as a white precipitate of NaUF 5 on the bottom of the cathodechamber. (author)

  5. The determination of Plutonium content in urine using anion exchange resin method

    International Nuclear Information System (INIS)

    Mukh-Syaifudin

    1996-01-01

    The possibility of internal contamination by plutonium is usually determined through urine analysis. The technique involved the co-precipitation of plutonium with rhodizonic acid by the addition of sodium hydroxide, the re-extraction of Pu into concentrated HCl, dissolution of Pu in 8 N HCI + Cl 2 solution, and the purification of plutonium through AGI-X8 anion exchange resin in columns with a diameter of 4 and 7 mm. The eluent was evaporated and the residu was dissolved in 8 N HCI and then deposited directly onto a Lexan slide or electrodeposited onto a stainless steel disc and the alpha emission of Pu was counted by using alpha spectrometry. The results showed that the recoveries of Pu-242 tracer by using column 7 mm and direct deposition and electrodeposition methods were 28.783% and 16.444%, respectively. The recoveries of Pu-242 by using column 4 mm and direct deposition and electrodeposition methods were 64.834% and 55.661%, respectively. From the percentage of recovery, it can be concluded that the direct deposition method was relatively better than the electrodeposition method. The recovery of Pu-242 by using column of 4 mm in diameter was higher than that of column 7 mm

  6. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  7. Carbon Supported Ag Nanoparticles as High Performance Cathode Catalyst for Anion Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Le eXin

    2013-09-01

    Full Text Available A solution phase-based nanocapsule method was successfully developed to synthesize non-precious metal catalyst - carbon supported Ag nanoparticles (Ag/C. XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm and narrow size distribution (2-9 nm are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR on the Ag/C and commercial Pt/C were investigated using rotating ring disc electrode (RRDE tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80 oC.

  8. Expression of Anion Exchanger 1 Sequestrates p16 in the Cytoplasm in Gastric, Colonic Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Wei-Wei Shen

    2007-10-01

    Full Text Available p16INK4A (p16 binds to cyclin-dependent kinase 4/6, negatively regulates cell growth. Recent studies have led to an understanding of additional biologic functions for p16; however, the detailed mechanisms involved are still elusive. In this article, we show an unexpected expression of anion exchanger 1 (AEi in the cytoplasm in poorly, moderately differentiated gastric, colonic adenocarcinoma cells, in its interaction with p16, thereby sequestrating the protein in the cytoplasm. Genetic alterations of p16, AEi were not detectable. Forced expression of AEi in these cells sequestrated more p16 in the cytoplasm, whereas small interfering RNA-mediated silencing of AEi in the cells induced the release of p16 from the cytoplasm to the nucleus, leading to cell death, growth inhibition of tumor cells. By analyzing tissue samples obtained from patients with gastric, colonic cancers, we found that 83.33% of gastric cancers, 56.52% of colonic cancers coexpressed AEi, p16 in the cytoplasm. We conclude that AEi plays a crucial role in the pathogenesis of gastric, colonic adenocarcinoma, that p16 dysfunction is a novel pathway of carcinogenesis.

  9. A study of ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Indion-830 (Type 1)

    Science.gov (United States)

    Lokhande, R. S.; Singare, P. U.; Patil, A. B.

    2007-12-01

    A study of the thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br- and uni-divalent Cl-/SO{4/2-}, Cl-/C2O{4/2-} reaction systems was carried out using ion exchange resin Indion-830 (Type 1). The equilibrium constant K was calculated by taking into account the activity coefficients of ions both in solution and in the resin phase. For uni-univalent ion exchange reaction systems, the equilibrium constants K' were also calculated from the mole fraction of ions in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems increased as the temperature grew, indicating the endothermic character of the exchange reactions with enthalpies of 38.2, 32.3, 7.6, and 11.4 kJ/mol, respectively.

  10. An Anion-Exchange Method for the Separation of P-32 Activity in Neutron-Irradiated Biological Material

    International Nuclear Information System (INIS)

    Samsahl, K.

    1964-06-01

    Strong hydrochloric-acid solutions containing small amounts of orthophosphoric and citric acid and radioactive tracers of the elements Na, P, K, Ca, Se, Cr, Mn, Ni, Rb, Sr, Cs, Ba, La, and Ce were titrated with a water suspension of strongly basic anion-exchange resin in the hydroxide form. The titration was carried out to pH = 3.0. It was followed by filtration of the mixture on the top of a small anion-exchange column in the chloride form and a final washing with water. Phosphorus was quantitatively adsorbed by the resin and the scandium retention was better than 96 per cent. The remaining elements passed quantitatively into the effluent, with the exception of nickel, which was adsorbed to a very small extent

  11. Detection of Reactive Oxygen Species in Anion Exchange Membrane Fuel Cells using In Situ Fluorescence Spectroscopy.

    Science.gov (United States)

    Zhang, Yunzhu; Parrondo, Javier; Sankarasubramanian, Shrihari; Ramani, Vijay

    2017-08-10

    The objectives of this study were: 1) to confirm superoxide anion radical (O 2 .- ) formation, and 2) to monitor in real time the rate of O 2 .- generation in an operating anion exchange membrane (AEM) fuel cell using in situ fluorescence spectroscopy. 1,3-Diphenlisobenzofuran (DPBF) was used as the fluorescent molecular probe owing to its selectivity and sensitivity toward O 2 .- in alkaline media. The activation energy for the in situ generation of O 2 .- during AEM fuel cell operation was estimated to be 18.3 kJ mol -1 . The rate of in situ generation of O 2 .- correlated well with the experimentally measured loss in AEM ion-exchange capacity and ionic conductivity attributable to oxidative degradation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application.

    Science.gov (United States)

    Xia, Xinhui; Zhu, Changrong; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Ng, Chin Fan; Zhang, Hua; Fan, Hong Jin

    2014-02-26

    Metal sulfides are an emerging class of high-performance electrode materials for solar cells and electrochemical energy storage devices. Here, a facile and powerful method based on anion exchange reactions is reported to achieve metal sulfide nanoarrays through a topotactical transformation from their metal oxide and hydroxide preforms. Demonstrations are made to CoS and NiS nanowires, nanowalls, and core-branch nanotrees on carbon cloth and nickel foam substrates. The sulfide nanoarrays exhibit superior redox reactivity for electrochemical energy storage. The self-supported CoS nanowire arrays are tested as the pseudo-capacitor cathode, which demonstrate enhanced high-rate specific capacities and better cycle life as compared to the powder counterparts. The outstanding electrochemical properties of the sulfide nanoarrays are a consequence of the preservation of the nanoarray architecture and rigid connection with the current collector after the anion exchange reactions.

  13. A simple topological identification method for highly (3,12)-connected 3D MOFs showing anion exchange and luminescent properties.

    Science.gov (United States)

    Yang, Qing-Yuan; Li, Kang; Luo, Jian; Pan, Mei; Su, Cheng-Yong

    2011-04-14

    Reaction of a semi-rigid tripodal ligand 1,1',1''-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene)tripyridinium-4-olate) (TTP) with Ln(3+) (Ln = Eu, Gd) afforded rare (3,12)-connected metal-organic frameworks (MOFs). A topological simplification of such highly connected 3D MOFs on the basis of 2D CdI(2) (3,6)-nets is proposed. The luminescent and anion exchange properties of the compounds were determined.

  14. Evaluation of ferrocyanide anion exchange resins regarding the uptake of Cs{sup +} ions and their regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Mooon, Jei Kwon; Jung, Chong Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Won Yang [Kangwon University, Chuncheon (Korea, Republic of)

    2008-10-15

    Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake Cs{sup +} ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the Cs{sup +} ion of the surrogate soil decontamination solution, and resin- KCoFC showed the best Cs{sup +} ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the Cs{sup +} ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the Fe{sup 2+} ion in the reduction step could also be reduced by adding the K{sup +} ion.

  15. The isotope separation by ion exchange chromatography. Application to the lithium isotopes separation

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1993-01-01

    In this work is described the used study step to demonstrate the industrial feasibility of a lithium isotopes separation process by ion exchange chromatography. After having recalled how is carried out the exchange reaction between the lithium isotopes bound on the cations exchanger resin and those which are in solution and gave the ion exchange chromatography principle, the authors establish a model which takes into account the cascade theory already used for enriched uranium production. The size parameters of this model are: the isotopic separation factor (which depends for lithium of the ligands nature and of the coordination factor), the isotopic exchange kinetics and the mass flow (which depends of the temperature, the lithium concentration, the resins diameter and the front advance). The way they have to be optimized and the implementation of the industrial process are given. (O.M.)

  16. Pentafluorobenzyl bromide-A versatile derivatization agent in chromatography and mass spectrometry: I. Analysis of inorganic anions and organophosphates.

    Science.gov (United States)

    Tsikas, Dimitrios

    2017-02-01

    Pentafluorobenzyl bromide (PFB-Br) is a versatile derivatization agent. It is widely used in chromatography and mass spectrometry since several decades. The bromide atom is largely the single leaving group of PFB-Br. It is substituted by wide a spectrum of nucleophiles in aqueous and non-aqueous systems to form electrically neutral, in most organic solvents soluble, generally thermally stable, volatile, strongly electron-capturing and ultraviolet light-absorbing derivatives. Because of these greatly favoured physicochemical properties, PFB-Br emerged an ideal derivatization agent for highly sensitive analysis of endogenous and exogenous substances including various inorganic and organic anions by electron capture detection or after electron-capture negative-ion chemical ionization in GC-MS. The present article attempts an appraisal of the utility of PFB-Br in analytical chemistry. It reviews and discusses papers dealing with the use of PFB-Br as the derivatization reagent in the qualitative and quantitative analysis of endogenous and exogenous inorganic anions in various biological samples, notably plasma, urine and saliva. These analytes include nitrite, nitrate, cyanide and dialkyl organophosphates. Special emphasis is given to mass spectrometry-based approaches and stable-isotope dilution techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    International Nuclear Information System (INIS)

    Daud, M.; Khan, Z.; Ashgar, A.; Danish, M. I.; Qazi, I. A.

    2015-01-01

    This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, ph, temperature, and contact time were determined for removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudo first-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at ph 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at ph 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater removal efficiency due to the small particle size, extremely large surface area (627 m 2 /g), and high adsorption capacity.

  18. Determination of iridium in the Bering Sea and Arctic Ocean seawaters by anion exchange preconcentration-neutron activation analysis

    International Nuclear Information System (INIS)

    Li Shihong; Mao Xueying; Chai Zhifang

    2004-01-01

    Anion exchange method is investigated to separate and enrich iridium in seawater by radiotracer 192 Ir. The adsorption of Ir in the resin increases with the decreasing acidity in the 0.05-1.2 mol/L HCl media, The recovery of iridium in pH=1.5 seawater reaches 89% by a single anion-exchange column. The polyethylene container of acidity of pH=1.5 are suitable for storing trace Ir in seawater. An anion exchange preconcentration-neutron activation analysis procedure is developed to determine iridium in seawaters sampled from the Bering Sea and Arctic Ocean at different depth. The reagent blank value of the whole procedures is (0.18-0.20) x 10 -12 g Ir. The iridium concentrations in the Bering Sea and Arctic Ocean seawater samples are (0.85-3.58) x 10 -12 g/L (0-3504 m) and (1.26-1.97) x 10 -12 g/L (25-1900 m), respectively

  19. Effect of the chemical structure of anion exchange resin on the adsorption of humic acid: behavior and mechanism.

    Science.gov (United States)

    Shuang, Chendong; Wang, Jun; Li, Haibo; Li, Aimin; Zhou, Qing

    2015-01-01

    Polystyrenic (PS) anion-exchange resin and polyacrylic (PA) anion-exchange resin were used to investigate the effect of resin chemical structure on the adsorption of humic acid (HA). Due to the rearrangement of HA to form layers that function as barricades to further HA diffusion, PS resin exhibited 12.4 times slower kinetics for the initial adsorption rate and 8.4 times for the diffusion constant in comparison to that of the PA resin. An HA layer and a spherical cluster of HA can be observed on the surface of the PS and PA resins after adsorption, respectively. The considerable difference in HA adsorption between the PS and PA resins was due to the difference in molecule shape for interaction with different resin structures, which can essentially be explained by the hydrophobicity and various interactions of the PS resin. A given amount of HA occupies more positively charged sites and hydrophobic sites on the PS resin than were occupied by the same amount of HA on the PA resin. Increased pH resulted in an increase of HA adsorption onto the PA resin but a decrease in adsorption onto PS resin, as the non-electrostatic adsorption led to electrostatic repulsion between the HA attached to the resin and the HA dissolved in solution. These results suggest higher rates of adsorption and higher regeneration efficiency for interaction of HA with more hydrophilic anion exchange materials. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Synthesis of tunable-band-gap "Open-Box" halide perovskites by use of anion exchange and internal dissolution procedures.

    Science.gov (United States)

    Wu, Zhengcui; Wang, Baohua; He, Jian; Chen, Tao

    2016-01-01

    We demonstrate the synthesis of cuboid MAPbBr3 (MA=CH3NH3) microcrystals and subsequent conversion into open-box-like MAPb(Br(1-x)I(x))3 (0⩽x⩽1) microcrystals by anion exchange in MAI solution. During the substitution of Br(-) with I(-), the initial cuboid framework of MAPbBr3 crystals is retained. The preferential internal dissolution of MAPbBr3 due to the surface coverage and protection of MAPb(Br(1-x)I(x))3 induces voids inside the cuboid crystals, finally leading to open-box-like iodide-rich MAPb(Br(1-x)I(x))3. By controlling the degree of anion exchange, the intense light absorption of the product is able to be tuned in specific wavelengths throughout the visible range. This solution-phase anion exchange approach provides a synthetic strategy in designing sophisticated organolead halide perovskites structures as well as tuning the band gaps for further applications across a range of possible domains. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Radiochemical study of Re/W adsorption behavior on a strongly basic anion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Gott, Matthew D. [Los Alamos National Laboratory, Los Alamos, NM (United States). Chemistry Div.; Missouri Univ., Columbia, MO (United States). Dept. of Chemistry; Ballard, Beau D.; Redman, Lindsay N. [Los Alamos National Laboratory, Los Alamos, NM (United States). Chemistry Div.; and others

    2014-07-01

    Rhenium-186g is a radionuclide with a high potential for therapeutic applications. It emits therapeutic β{sup -} particles accompanied by low energy γ-rays, which allows for in-vivo tracking of the radiolabeled compound and dosimetry estimates. The current reactor production pathway {sup 185}Re(n,γ){sup 186g}Re produces low specific activity {sup 186g}Re, thereby limiting its therapeutic application. Work is underway to develop an accelerator-based, charged particle induced production method for high specific activity {sup 186g}Re from targets of enriched {sup 186}W. To optimize the chemical {sup 186g}Re recovery method, batch studies have been performed to characterize the adsorption behavior of Re and W on a strongly basic anion exchange resin. An in-depth physicochemical profile was developed for the interaction of Re with resin material, which showed the reaction to be endothermic and spontaneous. Basic (NaOH) and acidic (HNO{sub 3}) matrices were used to determine the equilibrium distribution coefficients for Re and W. The resin exhibits the best affinity for Re at slightly basic conditions and little affinity above moderately acidic concentrations. Tungsten has low affinity for the resin above moderately basic concentrations. A study was performed to examine the effect of W concentration on Re adsorption, which showed that even a high ionic WO{sub 4}{sup 2-} strength of up to 1.9 mol kg{sup -1} does not significantly compromise ReO{sub 4}{sup -} retention on the resin. (orig.)

  2. The importance of OH − transport through anion exchange membrane in microbial electrolysis cells

    KAUST Repository

    Ye, Yaoli

    2018-01-11

    In two-chamber microbial electrolysis cells (MECs) with anion exchange membranes (AEMs), a phosphate buffer solution (PBS) is typically used to avoid increases in catholyte pH as Nernst equation calculations indicate that high pHs adversely impact electrochemical performance. However, ion transport between the chambers will also impact performance, which is a factor not included in those calculations. To separate the impacts of pH and ion transport on MEC performance, a high molecular weight polymer buffer (PoB), which was retained in the catholyte due to its low AEM transport and cationic charge, was compared to PBS in MECs and abiotic electrochemical half cells (EHCs). In MECs, catholyte pH control was less important than ion transport. MEC tests using the PoB catholyte, which had a higher buffer capacity and thus maintained a lower catholye pH (<8), resulted in a 50% lower hydrogen production rate (HPR) than that obtained using PBS (HPR = 0.7 m3-H2 m−3 d−1) where the catholyte rapidly increased to pH = 12. The main reason for the decreased performance using PoB was a lack of hydroxide ion transfer into the anolyte to balance pH. The anolyte pH in MECs rapidly decreased to 5.8 due to a lack of hydroxide ion transport, which inhibited current generation by the anode, whereas the pH was maintained at 6.8 using PBS. In abiotic tests in ECHs, where the cathode potential was set at −1.2 V, the HPR was 133% higher using PoB than PBS due to catholyte pH control, as the anolyte pH was not a factor in the performance. These results show that maintaining charge transfer to control anolyte pH is more important than obtaining a more neutral pH catholyte.

  3. A weak-base fibrous anion exchanger effective for rapid phosphate removal from water.

    Science.gov (United States)

    Awual, Md Rabiul; Jyo, Akinori; El-Safty, Sherif A; Tamada, Masao; Seko, Noriaki

    2011-04-15

    This work investigated that weak-base anion exchange fibers named FVA-c and FVA-f were selectively and rapidly taken up phosphate from water. The chemical structure of both FVA-c and FVA-f was the same; i.e., poly(vinylamine) chains grafted onto polyethylene coated polypropylene fibers. Batch study using FVA-c clarified that this preferred phosphate to chloride, nitrate and sulfate in neutral pH region and an equilibrium capacity of FVA-c for phosphate was from 2.45 to 6.87 mmol/g. Column study using FVA-f made it clear that breakthrough capacities of FVA-f were not strongly affected by flow rates from 150 to 2000 h(-1) as well as phosphate feed concentration from 0.072 to 1.6mM. Under these conditions, breakthrough capacities were from 0.84 to 1.43 mmol/g indicating high kinetic performances. Trace concentration of phosphate was also removed from feeds containing 0.021 and 0.035 mM of phosphate at high feed flow rate of 2500 h(-1), breakthrough capacities were 0.676 and 0.741 mmol/g, respectively. The column study also clarified that chloride and sulfate did not strongly interfere with phosphate uptake even in their presence of equimolar and fivefold molar levels. Adsorbed phosphate on FVA-f was quantitatively eluted with 1M HCl acid and regenerated into hydrochloride form simultaneously for next phosphate adsorption operation. Therefore, FVA-f is able to use long time even under rigorous chemical treatment of multiple regeneration/reuse cycles without any noticeable deterioration. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Facile preparation of salt-tolerant anion-exchange membrane adsorber using hydrophobic membrane as substrate.

    Science.gov (United States)

    Fan, Jinxin; Luo, Jianquan; Chen, Xiangrong; Wan, Yinhua

    2017-03-24

    In this study, a polyvinylidene fluoride (PVDF) hydrophobic membrane with high mechanical property was used as substrate to prepare salt-tolerant anion-exchange (STAE) membrane adsorber. Effective hydrophilization and functionalization of PVDF membrane was realized via polydopamine (PDA) deposition, thus overcoming the drawbacks of hydrophobic substrates including poor water permeability, inert property as well as severe non-specific adsorption. The following polyallylamine (PAH) coupling was carried out at pH 10.0, where unprotonated amine groups on PAH chains were more prone to couple with PDA. This membrane adsorber could remain 75% of protein binding capacity when NaCl concentration increased from 0 to 150mM, while its protein binding capacity was independent of flow rate from 10 to 100 membrane volume (MV)/min due to its high mechanical strength (tensile strength: 43.58±2.30MPa). With 200mM NaCl addition at pH 7.5, high purity (above 99%) and high recovery (almost 100%) of Immunoglobulin G (IgG) were obtained when using the STAE membrane adsorber to separate IgG/human serum albumin (HSA) mixture, being similar to that without NaCl at pH 6.0 (both under the flow rate of 10-100MV/min). Finally, the reliable reusability was confirmed by five reuse cycles of protein binding and elution operations. In comparison with commercial membrane adsorber, the new membrane adsorber exhibited a better mechanical property, higher IgG polishing efficiency and reusability, while the protein binding capacity was lower due to less NH 2 density on the membrane. The outcome of this work not only offers a facile and effective approach to prepare membrane adsorbers based on hydrophobic membranes, but also demonstrates great potential of this new designed STAE membrane adsorbers for efficient monoclonal antibody (mAb) polishing. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.; King, W.

    2012-04-25

    Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after {approx}4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

  6. Quaternized dimethylaminoethyl methacrylate strong base anion exchange fibers for As(V) adsorption

    International Nuclear Information System (INIS)

    Kavaklı, Cengiz; Akkaş Kavaklı, Pınar; Turan, Burcu Dila; Hamurcu, Aslı; Güven, Olgun

    2014-01-01

    N,N-Dimethylaminoethyl methacrylate (DMAEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fibers (DMAEMA-g-PE/PP) was prepared by radiation-induced graft polymerization. DMAEMA graft chains on nonwoven fibers were quaternized with dimethyl sulfate solution for the preparation of strong base anion exchange fibers (QDMAEMA-g-PE/PP). Fiber structures were characterized by FTIR, XPS and SEM techniques. The effect of solution pH, contact time, initial As(V) ion concentration and coexisting ions on the As(V) adsorption capacity of the QDMAEMA-g-PE/PP fibers were investigated by performing batch adsorption experiments. The adsorption of As(V) by QDMAEMA-g-PE/PP fibers was found to be independent on solution pH in the range 4.00–10.00. Kinetic experiments show that the As(V) adsorption rate was rapid and As(V) adsorption follows pseudo second-order kinetic model. As(V) adsorption equilibrium data were analyzed using Langmuir and Freundlich adsorption isotherm model equations. Langmuir and Freundlich adsorption isotherm models fitted the experimental data well. The maximum adsorption capacity (q max ) calculated from Langmuir isotherm was found to be 83.33 mg As(V)/g polymer at pH 7.00. The adsorbent was used for three cycles without significant loss of adsorption capacity. The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution. - Highlights: • QDMAEMA-g-PE/PP fibers have high adsorption capacity for As(V) ions. • Adsorption of As(V) is independent on the solution pH over a wide range (4−10). • As(V) adsorption rate of QDMAEMA-g-PE/PP fibers is considerably fast. • The maximum adsorption capacity (q max ) was found to be 83.33 mg As(V)/g polymer

  7. Ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Duolite A-102 D

    Directory of Open Access Journals (Sweden)

    R.S. Lokhande

    2008-04-01

    Full Text Available The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems was observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 13.7, 38.0, 23.9, 22.9 kJ/mol, respectively.

  8. Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC

    International Nuclear Information System (INIS)

    Singare, P.U.

    2015-01-01

    Radio isotopic tracer technique as one of the versatile nondestructive technique is employed to evaluate the performance of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC. The evaluation was made on the basis of ion-isotopic exchange reaction kinetics by using 131 I and 82 Br radioactive tracer isotopes. It was observed that for both the resins, the values of specific reaction rate (min -1 ), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) were calculated to be lower for bromide ion-isotopic exchange reaction than that for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction under identical experimental conditions of 30.0 C, 1.000 g of ion exchange resins and 0.001 mol/L labeled iodide ion solution, the values of specific reaction rate (min -1 ), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were calculated as 0.377, 0.212, 0.080 and 15.5 respectively for Dowex SBR LC resin, which was higher than 0.215, 0.144, 0.031 and 14.1 respectively as that obtained for Tulsion A23 resins. Also at a constant temperature of 30.0 C, as the concentration of labeled iodide ion solution increases from 0.001 mol/L to 0.004 mol/L, the percentage of iodide ions exchanged increases from 84.75 % to 90.20 % for Dowex SBR LC resins which was higher than increases from 57.66 % to 62.38 % obtained for Tulsion A23 resins. The identical trend was observed for the two resins during bromide ion-isotopic exchange reaction. The overall results indicate superior performance of Dowex SBR LC over Tulsion A23 resins under identical experimental conditions.

  9. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ions...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  10. The role of polymer nanolayer architecture on the separation performance of anion-exchange membrane adsorbers: I. Protein separations.

    Science.gov (United States)

    Bhut, Bharat V; Weaver, Justin; Carter, Andrew R; Wickramasinghe, S Ranil; Husson, Scott M

    2011-11-01

    This contribution describes the preparation of strong anion-exchange membranes with higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the surfaces of macroporous membrane supports. A focus of this study was to better understand the role of polymer nanolayer architecture on protein binding. Membranes were prepared with different polymer chain graft densities using a newly developed surface-initiated polymerization protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and immunoglobulin G were used to measure binding capacities of proteins with different size. Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain density on the accessibility of large size protein to binding sites within the polyelectrolyte nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly with increasing polymer chain density, which suggests that the spacing between polymer chains is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via convection. Overall, this research provides clear evidence that the dynamic binding capacities of large biologics can be higher for well-designed macroporous membrane adsorbers than commercial membrane or resin ion-exchange products. Specifically, using controlled polymerization leads to anion-exchange membrane adsorbers with high binding capacities that are independent of flow rate, enabling high throughput. Results of this work should help to accelerate the broader implementation of membrane adsorbers in bioprocess purification steps. Copyright © 2011 Wiley Periodicals, Inc.

  11. Subzero temperature chromatography for reduced back-exchange and improved dynamic range in amide hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Venable, John D; Okach, Linda; Agarwalla, Sanjay; Brock, Ansgar

    2012-11-06

    Amide hydrogen/deuterium exchange is a commonly used technique for studying the dynamics of proteins and their interactions with other proteins or ligands. When coupled with liquid chromatography and mass spectrometry, hydrogen/deuterium exchange provides several unique advantages over other structural characterization techniques including very high sensitivity, the ability to analyze proteins in complex environments, and a large mass range. A fundamental limitation of the technique arises from the loss of the deuterium label (back-exchange) during the course of the analysis. A method to limit loss of the label during the separation stage of the analysis using subzero temperature reversed-phase chromatography is presented. The approach is facilitated by the use of buffer modifiers that prevent freezing. We evaluated ethylene glycol, dimethyl formamide, formamide, and methanol for their freezing point suppression capabilities, effects on peptide retention, and their compatibilities with electrospray ionization. Ethylene glycol was used extensively because of its good electrospray ionization compatibility; however, formamide has potential to be a superior modifier if detrimental effects on ionization can be overcome. It is demonstrated using suitable buffer modifiers that separations can be performed at temperatures as low as -30 °C with negligible loss of the deuterium label, even during long chromatographic separations. The reduction in back-exchange is shown to increase the dynamic range of hydrogen/deuterium exchange mass spectrometry in terms of mixture complexity and the magnitude with which changes in deuteration level can be quantified.

  12. Spontaneous formation of wurzite-CdS/zinc blende-CdTe heterodimers through a partial anion exchange reaction.

    Science.gov (United States)

    Saruyama, Masaki; So, Yeong-Gi; Kimoto, Koji; Taguchi, Seiji; Kanemitsu, Yoshihiko; Teranishi, Toshiharu

    2011-11-09

    Ion exchange of ionic semiconductor nanoparticles (NPs) is a facile method for the synthesis of type-II semiconductor heterostructured NPs with staggered alignment of band edges for photoelectric applications. Through consideration of the crystallographic orientation and strain at the heterointerface, well-designed heterostructures can be constructed through ion exchange reactions. Here we report the selective synthesis of anisotropically phase-segregated cadmium sulfide (CdS)/ cadmium telluride (CdTe) heterodimers via a novel anion exchange reaction of CdS NPs with an organic telluride precursor. The wurtzite-CdS/zinc blende-CdTe heterodimers in this study resulted from spontaneous phase segregation induced by the differences in the crystal structures of the two phases, accompanying a centrosymmetry breaking of the spherical CdS NPs. The CdS/CdTe heterodimers exhibited photoinduced spatial charge separation because of their staggered band-edge alignment.

  13. APLIKASI PENGOLAHAN POLUTAN ANION KHROM(VI DENGAN MENGGUNAKAN AGEN PENUKAR ION HYDROTALCIT ZN-AI-SO4 (Synthesis of and its Application to Treat Chrom(VI Pollutant Using Hydrotalcite Zn-Al_SO4 as Anion Exchanger

    Directory of Open Access Journals (Sweden)

    Roto Roto

    2009-03-01

    Full Text Available ABSTRAK Keberadaan logam khrom di dalam sistem perairan bersifat polutan yang harus ditangani dengan baik, dan untuk khrom (Vl yang sering dijumpai dalam bentuk anion dapat diolah dengan menggunakan mekanisme pertukaran ion. Suatu agen penukar anion telah dibuat berupa senyawa hidrotalsit Zn-Al-SOa melalui proses sintesis, karakterisasi serta dilakukan pula pengujian aplikasinya untuk pengurangan polutant anion khrom (VI dalam bentuk ion dikromat. Sintesis hidrotalsit Zn-Al-SOa dilakukan dengan metode stoikiometri pada pH 8 dan perlakuan hidrotermal. Aplikasi pertukaran dikromat dengan anion sulfat dalam antar lapis hidrotalsit serta uji regenerasi bahan diamati dengan bantuan analisis struktur dan analisis kinetika reaksi pertukaran. Produk pertukaran ion dikarakterisasi dengan XRD, spektrofotometri IR dan spektrometri serapan atom. Rumus kimia hidrotalsit produk diketahui adalah Zn0,74Al0,26(OH1,74(SO40,13.0,52H2O. Anion dikromat dapat menukar sulfat dalam antarlapis hidrotalsit yang ditunjukkan dalam spektra IR dan pola XRD. Kapasitas pertukaran anion untuk dikromat diketahui 216,84 mek/100 g, sedangkan kinetika reaksi pertukaran ion mengikuti orde dua dengan k = 3 x 10-8 ppm-1.detik-1. Hasil menunjukkan Zn-Al-Cr2O7 dapat mudah diregenerasi.    ABSTRACT  Chrom as pollutant in aquatics system usually establishes as crom (VI and should be worked with special treatment and as an example is ion exchanger. Material Zn-Al-SO4 hydrotalcite product have been synthesized and its application as anion exchanger for dichromate have been studied. Synthesis of Zn-Al-SO4 hydrotalcite was carried out by stoichiometric method at pH 8 and hydrothermal treatment. Sulphate in hydrotalcite interlayer was exchanged by dichromate. Kinetics of ion exchange was also investigated. The product of ion exchange was characterized by XRD, IR spectrophotometry and atomic adsorption  spectrometry. The chemical formula of the  hydrotalcite is Zn0.74Al0.26(OH1.74(SO4 0

  14. Behavior of cationic, anionic and colloidal species of titanium, zirconium and thorium in presence of ion exchange resins

    International Nuclear Information System (INIS)

    Souza Filho, G. de; Abrao, A.

    1976-01-01

    The distribution of titanium, zirconium and thorium is aqueous and resin phases has been studied using strong cationic resin in the R-NH 4 form. Solutions of the above elements in perchloric, nitric, hydrochloric and suphuric media were used. Each set of experiments was made by separately varying one of the five parameters - type of anion present, acidity of solution, temperature of percolation, age of solution and concentration of the element. It was found that, depending on the particular balance of these parameters, the elements investigated may be found in acidic solutions either as cationic, anionic or colloidal species. It is emphasized that the colloidal species of titanium, zirconium or thorium are not retained by the ion exchangers, and from this property a method for the separation and purification of the above elements has been outlined [pt

  15. Anion exchange removal of Al3+ from Li+-Al3+ aqueous solution (originating from lithium recovery from brine

    Directory of Open Access Journals (Sweden)

    Anissa Somrani

    2014-06-01

    Full Text Available The purpose of this study is to separate aluminum(III ion from an aqueous solution containing Li+ at 25°C. Al3+ was transferred into [Al(C2O43]3- by means of complexation and removed by an anion exchange resin. This resin was anionic type Amberlite IRA 402 regenerated by sodium chloride. Hence, a theoretical study based on speciation diagrams was carried out to determine the best pH domain for separation. The complexation of aluminum ions by ammonium oxalate was studied. The motar ratio of Ox/Al and pH was investigated. Optimum values of these factors were found to be 3 and 4 respectively. In this case, the remaining lithium is 98.5%.

  16. High-performance ion-exchange chromatography of alkali metals with conductivity detection

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, A.R.

    1981-01-01

    High-performance ion-exchange chromatography of alkali metal and ammonium ions was studied using a conductivity meter as detector. Elution with 0.003 N mitric acid gave excellent resolution. Sensitivity levels, for a 200 micro litre injection, vary from 5 ppm for potassium to 0.1 ppm for lithium. A method to decrease retention times by reducing the exchange capacity of the cation exchange column used by loading it with calciumions, without affecting the resolation, has been described. Application of the method to water, soil and uranium dioxide samples has been demonstrated. (author)

  17. Ra/Ca separation by ion exchange chromatography

    International Nuclear Information System (INIS)

    Flores Mendoza, J.

    1990-01-01

    Ra/Ca separation by ion exchange. The objective of this work was to acquire knowledge of the chromatographic behaviour of the alkaline earth cations calcium, barium and radium and the obtention of well-defined alpha spectra of 226 Ra. Three cationic ion exchange resins (Dower 50 W-X8, AG 50W-XB and Merck I) and three complexing agents (ethylenediaminetetraacetic acid, citric acid and tartaric acid) at various pH values have been investigated. The three types of ions are fixed on the resins at pH 4.8; calcium is eluted at pH between 5 and 6 depending on the resin; barium and radium are eluted at pH values from 8 to 11. Radium is also eluted with a 2 M nitric acid solution, from which it can be electrodeposited on a stainless steel disk potassium fluoride as electrolyte at pH 14. The electrolysis is conducted for 18 hours with a current of mA. Under these conditions high resolution alpha spectra were obtained for 226 Ra, which was practically free from radioactive contaminants (Author)

  18. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, October 1, 1991--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.

    1991-12-31

    The University of Tennessee Space Institute (UTSI) has a Department of Energy grant to further develop the Institute`s anion-exchange resin-based flue gas, desulfurization concept. The developmental program proposed includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics.

  19. Dynamic separation of Szilard-Chalmers reaction products applied to the trioxalatochromium ion adsorbed on anionic exchange resin

    International Nuclear Information System (INIS)

    Silva, J.B.S.

    1979-01-01

    A method of dynamic elution of recoiled 51 Cr +3 , formed by the Szilard-Chalmers reaction during the irradiation of trioxalatochromium ion adsorbed on anionic exchange resin is presented. The influence of some factors on the separation yield of chromium-51, such as: composition, concentration and flow rate of eluent, mesh size of the resin and irradiation time are studied. The results are compardd with those obtained by the static method, in which the recoiled atom is separated from the target after irradiation. Because of the high separation yield of chromium-51, the method of dynamic separation is proposed for routine production of this elemnt, with high specific activities. (author) [pt

  20. Study of plutonium IV elution from macromolecular anion exchange resin by 0.5 M nitric acid

    International Nuclear Information System (INIS)

    Nadkarni, M.N.; Mayankutty, P.C.; Pillai, N.S.; Shinde, S.S.

    1976-01-01

    Preliminary studies indicated that macroreticular resins possess more or less the same capacities and absorption characteristics for thorium, uranium and plutonium from nitric acid solutions as the conventional resins. Detailed studies were, then, conducted. It was found that Pu(IV) can be loaded on the macroreticular anion exchange resin, Amberlyst A-26 from 7.2 M nitric acid in much the same way as Dowex 1x4. It was also observed that the elution of Pu(IV) from Amberlyst A-26 by 0.5 M nitric acid is much more rapid and quantitative than from Dowex 1x4. (author)

  1. Evidence for F-/SiO- anion exchange in the framework of As-synthesized all-silica zeolites

    KAUST Repository

    Liu, Xiaolong

    2011-05-12

    Not everything changes: Charge-compensating anions can be exchanged in as-synthesized zeolite frameworks with changes in both the density of defect sites and of the hydrophobic character of the zeolite. The reversible transformation occurs without dissolution/recrystallization of the zeolite and preserves the size and shape of the crystals (see picture). Fluoride removal is not possible in all-silica D4R units, for which fluoride ions play a structure-directing role. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies.

    Science.gov (United States)

    Koscher, Brent A; Bronstein, Noah D; Olshansky, Jacob H; Bekenstein, Yehonadav; Alivisatos, A Paul

    2016-09-21

    Ion-exchange transformations allow access to nanocrystalline materials with compositions that are inaccessible via direct synthetic routes. However, additional mechanistic insight into the processes that govern these reactions is needed. We present evidence for the presence of two distinct mechanisms of exchange during anion exchange in CsPbX3 nanocrystals (NCs), ranging in size from 6.5 to 11.5 nm, for transformations from CsPbBr3 to CsPbCl3 or CsPbI3. These NCs exhibit bright luminescence throughout the exchange, allowing their optical properties to be observed in real time, in situ. The iodine exchange presents surface-reaction-limited exchanges allowing all anionic sites within the NC to appear chemically identical, whereas the chlorine exchange presents diffusion-limited exchanges proceeding through a more complicated exchange mechanism. Our results represent the first steps toward developing a microkinetic description of the anion exchange, with implications not only for understanding the lead halide perovskites but also for nanoscale ion exchange in general.

  3. Chiral ligand exchange high-speed countercurrent chromatography: mechanism, application and comparison with conventional liquid chromatography in enantioseparation of aromatic α-hydroxyl acids

    OpenAIRE

    Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates co...

  4. High pH reversed-phase chromatography with fraction concatenation as an alternative to strong-cation exchange chromatography for two-dimensional proteomic analysis

    OpenAIRE

    Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2012-01-01

    Orthogonal high-resolution separations are critical for attaining improved analytical dynamic range and protein coverage in proteomic measurements. High pH reversed-phase liquid chromatography (RPLC) followed by fraction concatenation affords better peptide analysis than conventional strong-cation exchange (SCX) chromatography applied for the two-dimensional proteomic analysis. For example, concatenated high pH reversed-phase liquid chromatography increased identification for peptides (1.8-fo...

  5. Chromatography.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  6. Ion-Exchange Sample Displacement Chromatography as a Method for Fast and Simple Isolation of Low- and High-Abundance Proteins from Complex Biological Mixtures

    Directory of Open Access Journals (Sweden)

    Martina Srajer Gajdosik

    2014-01-01

    Full Text Available Sample displacement chromatography (SDC in reversed phase and ion-exchange modes was introduced at the end of 1980s. This chromatographic method was first used for preparative purification of synthetic peptides, and subsequently adapted for protein fractionation, mainly in anion-exchange mode. In the past few years, SDC has been successfully used for enrichment of low- and medium-abundance proteins from complex biological fluids on both monolithic and bulk chromatographic supports. If aqueous mobile phase is used with the application of mild chromatographic conditions, isolated proteins are not denatured and can also keep their biological activity. In this paper, the use of SDC in anion-exchange mode on a high-capacity chromatographic resin for separation of proteins from complex biological mixtures such as human plasma is demonstrated. By use of three and more columns coupled in series during sample application, and subsequent parallel elution of detached columns, additional separation of bound proteins was achieved. Highly enriched human serum albumin fraction and a number of physiologically active medium- and low-abundance proteins could be fractionated and detected by electrospray ionization tandem mass spectrometry (ESI-MS/MS and matrix assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS. The use of the aforementioned columns that can be sanitized with 1 M sodium hydroxide for further application of SDC in biotechnology and food technology was discussed.

  7. Characterization of synthetic dyes by comprehensive two-dimensional liquid chromatography combining ion-exchange chromatography and fast ion-pair reversed-phase chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Knip, Jitske; van Bommel, Maarten R; Schoenmakers, Peter J

    2016-03-04

    In the late 19th century, newly invented synthetic dyes rapidly replaced the natural dyes on the market. The characterization of mixtures of these so-called early synthetic dyes is complicated through the occurrence of many impurities and degradation products. Conventional one-dimensional liquid chromatography does not suffice to obtain fingerprints with sufficient resolution and baseline integrity. Comprehensive two-dimensional liquid chromatography (LC×LC) is employed in this study, with ion-exchange chromatography in the first dimension and fast ion-pair liquid chromatography in the second. Retention in the first dimension is largely determined by the number of charges, while the selection of a small ion-pair reagent (tetramethylammonium hydroxide) in the second dimension causes retention to be largely determined by the molecular structure of the dye. As a result, there is a high degree of orthogonality of the two dimensions, similar to the values typically encountered in GC×GC. The proposed LC×LC method shows a theroretical peak capacity of about 2000 in an analysis time of about three hours. Clear, informative fingerprints are obtained that open a way to a more efficient characterization of dyes used in objects of cultural heritage. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ion-Isotopic Exchange Reaction Kinetics using Anion Exchange Resins Dowex 550A LC and Indion-930A

    Directory of Open Access Journals (Sweden)

    P.U. Singare

    2014-06-01

    Full Text Available The present paper deals with the characterization of ion exchange resins Dowex 550A LC and Indion-930A based on kinetics of ion-isotopic exchange reactions for which the short lived radioactive isotopes 131I and 82Br were used as a tracers. The study was performed for different concentration of ionic solution varying from 0.001 mol/L to 0.004 mol/L and temperature in the range of 30.0 °C to 45.0 °C. The results indicate that as compared to bromide ion-isotopic exchange reaction, iodide exchange reaction take place at the faster rate. For both the ion-isotopic exchange reactions, under identical experimental conditions, the values of specific reaction rate increases with increase in the ionic concentration and decreases with rise in temperature. It was observed that at 35.00C, 1.000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution for iodide ion-isotopic exchange reaction, the values of specific reaction rate (min-1, amount of ion exchanged (mmol, initial rate of ion exchange (mmol/min and log Kd were 0.270, 0.342, 0.092 and 11.8 respectively for Dowex 550A LC resin, which was higher than the respective values of 0.156, 0.241, 0.038 and 7.4 as that obtained for Indion-930A resins. From the results, it appears that Dowex 550A LC resins show superior performance over Indion-930A resins under identical experimental conditions.

  9. Fast enantiomeric separation of uniconazole and diniconazole by electrokinetic chromatography using an anionic cyclodextrin: application to the determination of analyte-selector apparent binding constants for enantiomers

    OpenAIRE

    Martín Biosca, Yolanda; García Ruiz, Carmen; Marina Alegre, María Luisa

    2000-01-01

    The enantiomeric resolution of the fungicides uniconazole and diniconazole was performed using electrokinetic chromatography with cyclodextrins as pseudostationary phase (CD-EKC). A systematic evaluation of several chiral selectors was made. The anionic derivative carboxymethylated-gamma-cyclodextrin (CM-gamma-CD) was found to be the most appropriate for the enantioseparation of fungicides among all cyclodextrins tested. The influence of some experimental conditions such as nature and buffer ...

  10. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis.

    Science.gov (United States)

    Haggie, Peter M; Phuan, Puay-Wah; Tan, Joseph-Anthony; Zlock, Lorna; Finkbeiner, Walter E; Verkman, A S

    2016-06-01

    Pendrin (SLC26A4) is a Cl(-)/anion exchanger expressed in the epithelium of inflamed airways where it is thought to facilitate Cl(-) absorption and HCO3 (-) secretion. Studies using pendrin knockout mice and airway epithelial cells from hearing-impaired subjects with pendrin loss of function suggest involvement of pendrin in inflammatory lung diseases, including cystic fibrosis (CF), perhaps by regulation of airway surface liquid (ASL) volume. Here we identified small-molecule pendrin inhibitors and demonstrated their efficacy in increasing ASL volume. A cell-based, functional high-throughput screen of ∼36,000 synthetic small molecules produced 3 chemical classes of inhibitors of human pendrin. After structure-activity studies, tetrahydropyrazolopyridine and pyrazolothiophenesulfonamide compounds reversibly inhibited pendrin-facilitated Cl(-) exchange with SCN(-), I(-), NO3 (-), and HCO3 (-) with drug concentration causing 50% inhibition down to ∼2.5 μM. In well-differentiated primary cultures of human airway epithelial cells from non-CF and CF subjects, treatment with IL-13, which causes inflammation with strong pendrin up-regulation, strongly increased Cl(-)/HCO3 (-) exchange and the increase was blocked by pendrin inhibition. Pendrin inhibition significantly increased ASL depth (by ∼8 μm) in IL-13-treated non-CF and CF cells but not in untreated cells. These studies implicate the involvement of pendrin-facilitated Cl(-)/HCO3 (-) in the regulation of ASL volume and suggest the utility of pendrin inhibitors in inflammatory lung diseases, including CF.-Haggie, P. M., Phuan, P.-W., Tan, J.-A., Zlock, L., Finkbeiner, W. E., Verkman, A. S. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis. © FASEB.

  11. Feasibility and kinetics study on the direct bio-regeneration of perchlorate laden anion-exchange resin.

    Science.gov (United States)

    Wang, Chao; Lippincott, Lee; Meng, Xiaoguang

    2008-11-01

    Anion exchange is one of the most promising treatment technologies for the removal of low levels of perchlorate. The spent anion-exchange resins, however, need to be disposed of or regenerated because they contain high contents of perchlorate. This study investigated the feasibility and kinetics of a direct bio-regeneration method. The method accomplished resin regeneration and biological perchlorate destruction concurrently, by directly contacting the spent resin with the perchlorate-reducing bacteria (PRB). The results indicated that the method was effective in regeneration of perchlorate and nitrate loaded resin and the resin could be repeatedly regenerated with the method. The regenerated resin was effective, stable, and durable in the filtration treatment of perchlorate in well water from the Saddle River area, NJ. Moreover, the method was also effective in regeneration of the spent A-530E resin, which had high perchlorate affinity and was yet very difficult for regeneration with the conventional brine desorption technique. Besides, the results further suggested that the perchlorate and nitrate desorption from the loaded resin coupling with their subsequent biological reduction could be the direct bio-regeneration mechanism. No biofilm was formed on the regenerated resin surface according to a scanning electron microscopy (SEM) analysis.

  12. The influence of plutonium concentration and solution flow rate on the effective capacity of macroporous anion exchange resin

    International Nuclear Information System (INIS)

    Marsh, S.F.; Gallegos, T.D.

    1987-07-01

    The principal aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. Previous studies with gel-type anion exchange resin have shown an inverse relationship between plutonium concentration in the feed solution and the optimum flow rate for this process. Because gel-type resin has been replaced with macroporous resin at Los Alamos, the relationship between plutonium concentration and solution flow rate was reexamined with the selected Lewatit MP-500-FK resin using solutions of plutonium in nitric acid and in nitric acid with high levels of added nitrate salts. Our results with this resin differ significantly from previous data obtained with gel-type resin. Flow-rate variation from 10 to 80 liters per hour had essentially no effect on the measured quantities of plutonium sorbed by the macroporous resin. However, the effect of plutonium concentration in the feed solutions was pronounced, as feed solutions that contained the highest concentrations of plutonium also produced the highest resin loadings. The most notable effect of high concentrations of dissolved nitrate salts in these solutions was an increased resin capacity for plutonium at low flow rates. 16 refs., 7 figs., 2 tabs

  13. The degradation of strong basic anion exchange resins and mixed-bed ion-exchange resins: Effect of degradation products on radionuclide speciation

    International Nuclear Information System (INIS)

    Loon, L.R. van; Hummel, W.

    1999-01-01

    The most important water-soluble products of the radiolytic degradation of anion exchange resins in a cementitious environment are ammonia and methylamines. These ligands do not form complexes with most radionuclides. Exceptions are Ni, Ag, and Pd, which form strong complexes with amines. Other degradation products of anion and mixed-bed ion-exchange resins are of no importance concerning the complexation of trivalent radionuclides. This is shown indirectly by adsorption experiments: The degradation products do not have a significant effect on the adsorption of Eu(III) on calcite. The effect of ammonia and methylamines on the complexation of Ni, Ag, and Pd is investigated by chemical modeling. For Ni and Ag, rather reliable predictions can be made using available thermodynamic data. In the case of Pd, large uncertainties are encountered due to unreliable data and gaps in the set of important species. The system Pd(II)-ammonia-water is explored in detail. Predominant species are inferred by chemical analogy, and their thermodynamic data are estimated. The uncertainty in these estimated and measured but unreliable data is bound by qualitative and quantitative chemical reasoning

  14. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei, E-mail: kwgao@yahoo.com

    2017-05-15

    Highlights: • Zn-Al LDHs film loaded nitrate anions has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method. • The Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs film were obtained based on anion-exchange mechanism. • The Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs film could effectively protect magnesium alloy. - Abstract: Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO{sub 3} LDHs, Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  15. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane

    Science.gov (United States)

    Peng, Jing; Roy, Asa L.; Greenbaum, Steve G.; Zawodzinski, Thomas A.

    2018-03-01

    We report the measured water uptake, density, ionic conductivity and water transport properties in Tokuyama A201 membrane in OH-, HCO3- and Cl- forms. The water uptake of the AEM varies with anion type in the order λ(OH-) > λ(HCO3-) > λ(Cl-) for samples equilibrated with the same water vapor activity (aw). The conductivity of the AEM is reduced by absorption of CO2. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were utilized to characterize the diffusivity of water and HCO3- ion. The anion diffusion coefficient and membrane conductivity are used to probe the applicability of the Nernst-Einstein equation in these AEMs.

  16. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  17. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    Dye, J.L.

    1979-01-01

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M + with crown-ethers and cryptands and of the alkali metal anion, M - , were made. The first crystalline salt of an alkali metal anion, Na + Cryptand [2.2.2]Na - was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  18. Ligand exchange chromatography for analysis and preparative separation of tritium-labelled amino acids

    International Nuclear Information System (INIS)

    Zolotarev, Yu.A.; Zaitsev, D.A.; Penkina, V.I.; Dostavalov, I.N.; Myasoedov, N.F.

    1988-01-01

    Racemic tritium-labelled amino acids were separated into optical isomers by chromatography on a chiral polyacrylamide sorbent filled with copper ions. The polyacrylamide sorbent is synthesized by Mannich's reaction through the action of formaldehyde and L-phenylalanine upon polyacrylamide Biogel P-4 in an alkali phosphate buffer. Tritium-labelled amino acids are eluted by a weak alkali solution of ammonium carbonate. Data are presented on the ligand exchange chromatography of amino acids depending on the degree to which the sorbent is filled with copper ions and on the eluent concentration. Amino acids are isolated from the eluent on short columns filled with sulfonated cation exchanger in the H + form. HPLC on modified silica gel sorbents is also used for the analysis of tritium-labelled optically active amino acids. Amino acids are eluted by a weakly acidic water-methanol solution containing ammonium acetate. UV and scintillation flow type detectors are used. (author) 7 refs.; 8 figs

  19. Strong Cation Exchange Chromatography in Analysis of Posttranslational Modifications: Innovations and Perspectives

    Science.gov (United States)

    Edelmann, Mariola J.

    2011-01-01

    Strong cation exchange (SCX) chromatography has been utilized as an excellent separation technique that can be combined with reversed-phase (RP) chromatography, which is frequently used in peptide mass spectrometry. Although SCX is valuable as the second component of such two-dimensional separation methods, its application goes far beyond efficient fractionation of complex peptide mixtures. Here I describe how SCX facilitates mapping of the protein posttranslational modifications (PTMs), specifically phosphorylation and N-terminal acetylation. The SCX chromatography has been mainly used for enrichment of these two PTMs, but it might also be beneficial for high-throughput analysis of other modifications that alter the net charge of a peptide. PMID:22174558

  20. Characteristics of competitive uptake between Microcystin-LR and natural organic matter (NOM) fractions using strongly basic anion exchange resins.

    Science.gov (United States)

    Dixit, Fuhar; Barbeau, Benoit; Mohseni, Madjid

    2018-03-29

    Microcystins are the most commonly occurring cyanotoxins, and have been extensively studied across the globe. In the present study, a strongly basic anion exchange resin was employed to investigate the removal of Microcystin-LR (MCLR), one of the most toxic microcystin variants. Factors influencing the uptake behavior included the MCLR and resin concentrations, resin dosage, and natural organic matter (NOM) characteristics, specifically, the charge density and molecular weight distribution of source water NOM. Equivalent background concentration (EBC) was employed to evaluate the competitive uptake between NOM and MCLR. The experimental data were compared with different mathematical and physical models and pore diffusion was determined as the rate-limiting step. The resin dose/solute concentration ratio played a key role in the MCLR uptake process and MCLR removal was attributed primarily to electrostatic attractions. Charge density and molecular weight distribution of the background NOM fractions played a major role in MCLR removal at lower resin dosages (200 mg/L ∼ 1 mL/L and below), where a competitive uptake was observed due to the limited exchange sites. Further, evidences of pore blockage and site reduction were also observed in the presence of humics and larger molecular weight organic fractions, where a four-fold reduction in the MCLR uptake was observed. Comparable results were obtained for laboratory studies on synthetic laboratory water and surface water under similar conditions. Given their excellent performance and low cost, anion exchange resins are expected to present promising potentials for applications involving the removal of removal of algal toxins and NOM from surface waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Heterometallic modular metal-organic 3D frameworks assembled via new tris-β-diketonate metalloligands: nanoporous materials for anion exchange and scaffolding of selected anionic guests.

    Science.gov (United States)

    Carlucci, Lucia; Ciani, Gianfranco; Maggini, Simona; Proserpio, Davide M; Visconti, Marco

    2010-11-02

    -48% of the cell volume and include the anions and many guest solvent molecules. The guest solvent molecules can be reversibly removed by thermal activation with retention of the framework structure, which proved to be stable up to about 270°C, as confirmed by TGA and powder XRD monitoring. The anions could be easily exchanged in single-crystal to single-crystal processes, thereby allowing the insertion of selected anions into the framework channels.

  2. Illustrating Chromatography with Colorful Proteins

    Science.gov (United States)

    Lefebvre, Brian G.; Farrell, Stephanie; Dominiak, Richard S.

    2007-01-01

    Advances in biology are prompting new discoveries in the biotechnology, pharmaceutical, medical technology, and chemical industries. This paper presents a detailed description of an anion exchange chromatography experiment using a pair of colorful proteins and summarizes the effect of operating parameters on protein separation. This experiment…

  3. Do TFSA Anions Slither? Pressure Exposes the Role of TFSA Conformational Exchange in Self-Diffusion.

    Science.gov (United States)

    Suarez, Sophia N; Rúa, Armando; Cuffari, David; Pilar, Kartik; Hatcher, Jasmine L; Ramati, Sharon; Wishart, James F

    2015-11-19

    Multinuclear ((1)H, (2)H, and (19)F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent (2)H T1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, as shown by their respective activation volumes (28.8 ± 2.5 cm(3)/mol for TFSA vs 14.6 ± 1.3 cm(3)/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV(‡)) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis. In addition, (2)H T1 data suggest increased ordering with increasing pressure, with two T1 regimes observed for the MD3 and D2 isotopologues between 0.1-100 and 100-250 MPa, respectively. The activation volumes for T1 were 21 and 25 cm(3)/mol (0-100 MPa) and 11 and 12 cm(3)/mol (100-250 MPa) for the MD3 and D2 isotopologues, respectively.

  4. An integrated precipitation and ion-exchange chromatography process for antibody manufacturing: Process development strategy and continuous chromatography exploration.

    Science.gov (United States)

    Großhans, Steffen; Wang, Gang; Fischer, Christian; Hubbuch, Jürgen

    2018-01-19

    In the past decades, research was carried out to find cost-efficient alternatives to Protein A chromatography as a capture step in monoclonal antibody (mAb) purification processes. In this work, polyethylene glycol (PEG) precipitation has shown promising results in the case of mAb yield and purity. Especially with respect to continuous processing, PEG precipitation has many advantages, like low cost of goods, simple setup, easy scalability, and the option to handle perfusion reactors. Nevertheless, replacing Protein A has the disadvantage of renouncing a platform unit operation as well. Furthermore, PEG precipitation is not capable of reducing high molecular weight impurities (HMW) like aggregates or DNA. To overcome these challenges, an integrated process strategy combining PEG precipitation with cation-exchange chromatography (CEX) for purification of a mAb is presented. This work discusses the process strategy as well as the associated fast, easy, and material-saving process development platform. These were implemented through the combination of high-throughput methods with empirical and mechanistic modeling. The strategy allows the development of a common batch process. Additionally, it is feasible to develop a continuous process. In the presented case study, a mAb provided from cell culture fluid (HCCF) was purified. The precipitation and resolubilization conditions as well as the chromatography method were optimized, and the mutual influence of all steps was investigated. A mAb yield of over 95.0% and a host cell protein (HCP) reduction of over 99.0% could be shown. At the same time, the aggregate level was reduced from 3.12% to 1.20% and the DNA level was reduced by five orders of magnitude. Furthermore, the mAb was concentrated three times to a final concentration of 11.9mg/mL. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Synthesis and characterisation of alkaline anionic-exchange membranes for direct alcohol fuel cells

    CSIR Research Space (South Africa)

    Nonjola, P

    2007-12-01

    Full Text Available , but the most important being proton exchange membrane fuel cell (PEMFC), which uses an acidic membrane like Nafion (sulfonated fluorocarbon polymers) as an electrolyte. The use of polymer electrolytes represents an interesting path to pursue...

  6. Ion mobility spectrometry-hydrogen deuterium exchange mass spectrometry of anions: part 1. Peptides to proteins.

    Science.gov (United States)

    Donohoe, Gregory C; Khakinejad, Mahdiar; Valentine, Stephen J

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  7. Hybrid organic-inorganic anion-exchange pore-filled membranes for the recovery of nitric acid from highly acidic aqueous waste streams.

    Science.gov (United States)

    Chavan, Vivek; Agarwal, Chhavi; Adya, V C; Pandey, Ashok K

    2018-04-15

    Recycling of acid from aqueous waste streams is highly important not only from the environmental point of view but also for developing the sustainable technology. One of the effective ways to recover acid from aqueous waste streams is the anion-exchange membrane based diffusion-dialysis. The work presents the synthesis and characterization of anion-exchange pore-filled membranes for the objective of recovery of high concentration of acid by diffusion dialysis. The membranes were prepared by anchoring the guest organic-inorganic anionic gel in the pores of the host poly(propylene) membrane by in situ UV-initiator induced polymerization of the appropriate monomers along with cross-linker. The removal of nitric acid in the presence of different representative monovalent, divalent and trivalent nitrates and the leakage of these ions through anion exchange membrane have been studied by DD technique for optimizing the chemical composition of the membrane. The nitric acid permeation rate of the membrane with the optimized composition has been found to be considerably faster than the commercial Selemion membrane without sacrificing salt leakage. The performance of the optimized pore-filled anion exchange membranes has been found to be independent of the acid concentration, nature of the anion and substrate and has been observed to be solely dependent on the guest inorganic-organic hybrid anionic gel component. The membranes have been found to be stable and reusable for the acid recovery. Removal of nitric acid as high as 90% from the simulated high level nuclear waste with the optimized grafted pore-filled membrane has been achieved with negligible salt transport. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Study of operating conditions and cell design on the performance of alkaline anion exchange membrane based direct methanol fuel cells

    Science.gov (United States)

    Prakash, G. K. Surya; Krause, Frederick C.; Viva, Federico A.; Narayanan, S. R.; Olah, George A.

    2011-10-01

    Direct methanol fuel cells using an alkaline anion exchange membrane (AAEM) were prepared, studied, and optimized. The effects of fuel composition and electrode materials were investigated. Membrane electrode assemblies fabricated with Tokuyama® AAEM and commercial noble metal catalysts achieved peak power densities between 25 and 168 mW cm-2 depending on the operating temperature, fuel composition, and electrode materials used. Good electrode wettability at the anode was found to be very important for achieving high power densities. The performance of the best AAEM cells was comparable to Nafion®-based cells under similar conditions. Factors limiting the performance of AAEM MEAs were found to be different from those of Nafion® MEAs. Improved electrode kinetics for methanol oxidation in alkaline electrolyte at Pt-Ru are apparent at low current densities. At high current densities, rapid CO2 production converts the hydroxide anions, necessary for methanol oxidation, to bicarbonate and carbonate: consequently, the membrane and interfacial conductivity are drastically reduced. These phenomena necessitate the use of aqueous potassium hydroxide and wettable electrode materials for efficient hydroxide supply to the anode. However, aqueous hydroxide is not needed at the cathode. Compared to AAEM-based fuel cells, methanol fuel cells based on proton-conducting Nafion® retain better performance at high current densities by providing the benefit of carbon dioxide rejection.

  9. Liquid–liquid anion exchange extraction studies of samarium(III from salicylate media using high molecular weight amine

    Directory of Open Access Journals (Sweden)

    Aniruddha M. Mandhare

    2015-07-01

    Full Text Available Liquid–liquid extraction and separation of samarium(III were carried out by using 0.025 mol dm−3 2-octylaminopyridine(2-OAP in xylene at 298 K. The extraction behavior of samarium was studied as a function of pH, weak acid concentration, extractant concentration, diluent, and equilibration time. Samarium was quantitatively extracted at pH 7.5 to 10.0 from 0.01 mol dm−3 sodium salicylate solution with 0.025 mol dm−3 2-OAP. The possible composition of the extracted species in organic phase has been determined by using model of slope analysis method and extraction mechanism was found to proceed via an anion exchange mechanism. The stripping efficiency was found to be quantitative in HNO3, HCl and CH3COOH. The robustness of the procedure was demonstrated by the average recoveries obtained (>99.6% for samarium(III extraction in the presence of several cations and anions which are commonly associated with it. The proposed method facilitates the separation and determination of samarium(III from binary and synthetic mixtures. The various thermodynamic functions like free energy (ΔG, enthalpy (ΔH and entropy (ΔS of extraction mechanism were discussed.

  10. Anion-exchange separation and estimation of thorium in niobite-tantalite type minerals: a new approach

    Energy Technology Data Exchange (ETDEWEB)

    Premadas, A. (Chemical Lab., Bangalore (India). Div. of Atomic Minerals)

    1993-08-01

    A simple, rapid and quantitative anion-exchange separation of microgram to milligram quantities of thorium has been achieved from milligram quantities of niobium, tantalum, and titanium in citric acid-nitric acid medium. This method is successfully applied for the separation and estimation of thorium in niobite-tantalite type minerals. Sample (0.500 g) is fused with ca. 8 g KHSO[sub 4] and is taken in ca. 7% citric acid medium. To a suitable aliquot ca. 8 M (1 M=1 mol dm[sup -3]) nitric acid acidity is maintained in ice cold condition, and is passed through a column of Dowex-lX8 (100-200 mesh size). Thorium is eluted with ca. 6 M CHl and estimated spectrophotometrically with arsenazo III. The RSD obtained by this method is 2-3%. (author).

  11. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    -erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes...... in both chicken embryo fibroblasts and the QT6 quail cell line. The results show that the vector is capable of producing high titers of Neor virus from stably integrated proviruses. These proviruses express a balanced ratio of genome length to spliced transcripts which are efficiently translated...... into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion...

  12. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    A retrovirus vector was constructed from the genome of avian erythroblastosis virus ES4. The v-erbA sequences of avian erythroblastosis virus were replaced by those coding for neomycin phosphotransferase, creating a gag-neo fusion protein which provides G418 resistance as a selectable marker. The v...... into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion......-erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes...

  13. Separation of plutonium on the anion exchanger BIO-RAD 1-X2 and its application to radiochemical analysis

    International Nuclear Information System (INIS)

    Bajo, S.; Gann, C.; Eikenberg, J.; Wyer, L.; Beer, H.; Ruethi, M.; Jaeggi, M.; Zumsteg, I.

    2007-12-01

    The element Pu (Z = 94) is a member of the actinide series of the elements (Z = 89 -103). The actinides have similar chemical properties and are also similar to the lanthanides (Z = 57 -71). Sixteen isotopes of Pu have been synthesized, all of which are radioactive. The Pu present in the environment originates from the atmospheric nuclear tests from 1950 to 1963, which produced the so-called 'global fallout'. As a result, 6.5 · 10 15 Bq 239 Pu (2.8 tons), 4.4 · 10 15 Bq 240 Pu (0.52 tons), and 3.7 · 10 4 Bq 241 Pu (0.04 tons) were dispersed over the world. A contribution also to the global fallout was the ignition of the satellite SWAP 9A in the atmosphere in 1964, equipped with a battery powered by 6.3 · 10 14 Bq (1 kg) of 238 Pu. In addition to these sources, nuclear reactors, reprocessing plants and radioactive waste facilities may contribute with their emissions to increase locally the Pu concentration in their environment. In the PSI laboratory, we are confronted with the determination of traces of 238 Pu, 239 Pu and 240 Pu in environmental and biological materials. Because of the low quantity of Pu in the analyzed samples, which is usually below 100 mBq, it is mandatory to separate the Pu from all other accompanying elements. The separated Pu is then measured by alpha spectrometry. In this work, the anion exchanger BIO-RAD AG 1 is extensively used for the separation of Pu from different matrices. This exchanger is superior when only Pu is determined in the sample. In addition, it is also very suitable when other actinides, such as Am and Cm, are also determined. No preconcentration step is necessary for the Pu separation. The resins introduced by the company Eichrom Industries in the 90's, which allow the separation of the actinides from the major environmental elements and from each other, requires relatively small volumes of sample solution. This report describes the extensive utilization of the classical anion exchanger BIO-RAD 1-X2 in 8 molar nitric

  14. Complexation or uranyl ion. II. Complexation of uranyl ion in the VP-IAp anion exchanger phase during sorption from carbonate media

    International Nuclear Information System (INIS)

    Stupin, N.P.; Kakhaeva, T.V.; Buskina, I.A.; Rodionov, V.V.; Vodolazov, L.I.; Zhukova, N.G.

    1987-01-01

    The complicated process of increased uranium sorption from carbonate medium by the strongly basic anion exchanger VP-1Ap after additional treatment with alkaline solution was studied by IR spectroscopy. The process is related to the formation of certain complex forms of uranyl, differing in degree of polymerization, in which polynuclear forms predominate

  15. Synthesis of biodiesel using local natural zeolite as heterogeneous anion exchange catalyst

    Science.gov (United States)

    Hartono, R.; Wijanarko, A.; Hermansyah, H.

    2018-04-01

    Production of biodiesel using homogen catalyst: alkaline catalysts, acid catalysts, biocatalysts, and supercritical methanol are very inefficient, because these catalysts have a very high cost production of biodiesel and non-ecofriendly. The heterogeneous catalyst is then used to avoid adverse reaction of biodiesel production. The heterogeneous catalysts used is ion exchanger using natural zeolit catalists bayah banten (ZABBrht) and macroporous lewatit that can be used to produce biodiesel in the solid phase so that the separation is easier and can be used repeatedly. The results of biodiesel reach its optimum in engineering ion exchange catalyst natural zeolit bayah and macroporous lewatit which has been impregnated and calcinated at temperature 60 °C at reaction time 2 hours, are 94.8% and 95.24%, using 100 gr.KOH/100 mL Aquadest.

  16. Studies on the absorption of uranium and plutonium on macroporous anion-exchange resins from mixed solvent media

    International Nuclear Information System (INIS)

    Chetty, K.V.; Mapara, P.M.; Godbole, A.G.; Swarup, Rajendra

    1995-01-01

    The ion-exchange studies on uranium and plutonium using macroporous anion-exchange resins from an aqueous-organic solvent mixed media were carried out to develop a method for their separation. Out of the several water miscible organic solvents tried, methanol and acetone were found to be best suited. Distribution data for U(VI) and Pu(IV) for three macroporous resins Tulsion A-27(MP) (strong base), Amberlyst A-26(MP) (strong base) and Amberlite XE-270(MP) (weak base) as a function of (i) nitric acid concentration (ii) organic solvent concentration were obtained. Based on the data separation factors for Pu/U were calculated. Column experiments using Tulsion A-27(MP) from a synthetic feed (HNO 3 - methanol and HNO 3 - acetone) containing Pu and U in different ratios were carried out. Plutonium was recovered from the bulk of the actual solution generated during the dissolution of plutonium bearing fuels. The method has the advantage of loading plutonium from as low as 1M nitric acid in presence of methanol or acetone and could be used satisfactorily for its recovery from solutions containing plutonium and uranium. (author). 11 refs., 4 figs., 16 tabs

  17. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    Science.gov (United States)

    2015-01-15

    ionomer layer for interfacing with catalysts . PI-ran-P[VBTMA][Cl] ionomers have a polymer backbone similar to the quaternized polystyrene-block-poly...renewed interest over the past decade as an alternative to proton exchange membranes (PEMs) for fuel cell applications. AEM fuel cells offer several...advantages over PEM fuel cells .1−3 One of the major advantages are the faster electrokinetics under alkaline conditions for oxygen reduction and fuel

  18. Chromium (VI removal from aqueous solutions by purolite base anion-exchange resins with gel structure

    Directory of Open Access Journals (Sweden)

    Balan Catalin

    2013-01-01

    Full Text Available The removal of Cr (VI from aqueous solution using two strong base anionic resins with gel structure, Purolite A-400 (styrene-divinylbenzene matrix and Purolite A-850 (acrylic matrix was investigated in batch technique. The sorption efficiency was determined as a function of phases contact time, solution pH, resin dose, temperature and initial Cr (VI concentration. The percentage of Cr (VI removed reaches maximum values (up to 99 % in the pH range 4 - 5.3 under a resin dose of 6 g/L and of Cr (VI concentration up to 100 mg/L. An increase in temperature has a positive effect on the Cr (VI sorption process. The equilibrium sorption data were fitted with the Freundlich, Langmuir and Dubinin-Radushkevich isotherm models, using both linear and nonlinear regression method. The Langmuir model very well verifies the experimental data and gives the maximum sorption capacity of 120.55 mg Cr (VI/g and 95.82 mg Cr (VI/g for A-400 and A-850 resins, respectively. The thermodynamic study and mean free energy of sorption values calculated using Dubinin-Radushkevich equation indicated the sorption is a chemical endothermic process. The kinetic data were well described by pseudo-second order kinetic equation and the sorption process is controlled by external (film diffusion and intraparticle diffusion.

  19. Structure and protein adsorption mechanisms of clean and fouled tentacle-type anion exchangers used in a monoclonal antibody polishing step.

    Science.gov (United States)

    Corbett, Rachel; Carta, Giorgio; Iskra, Timothy; Gallo, Christopher; Godavarti, Ranga; Salm, Jeffrey R

    2013-02-22

    The properties of Fractogel(®) EMD TMAE HiCap (M), a tentacle-type anion exchange resin used for a polishing step in a monoclonal antibody (mAb) purification process, were investigated for both virgin and used samples to determine the influence of process related fouling. Inverse size exclusion chromatography indicated a bimodal distribution of pore sizes consisting mostly of small pores, 4-5 nm in radius and likely associated with the grafted tentacles. Similar results were obtained for resin samples fouled by process use, indicating that the core structure of these particles is unchanged. Transmission electron micrographs showed that the resin backbone matrix has a microgranular structure. However, a dense skin layer, 0.2-0.5 μm thick, was also seen at the exterior surface of the fouled particles. The binding capacity attained for BSA after 90 min of contact was 165 ± 4 mg/mL for both virgin and fouled samples, close to the equilibrium capacity of 178 ± 2 mg/mL attained after 24h. On the other hand, the capacities attained at 90 min for the much larger thyroglobulin were only 90 ± 4 and 25 ± 2 mg/mL, respectively, for virgin and fouled samples. The BSA adsorption kinetics was also slower for the fouled resin, but much larger kinetic differences between virgin and fouled resin were seen for thyroglobulin. Based on the shape of intraparticle protein concentration profiles determined by confocal laser scanning microscopy (CLSM), the protein transport mechanism is consistent with solid diffusion for both virgin and fouled resin samples and proteins. However, transport is hindered by the foulant layer to a much greater extent for thyroglobulin as a result of its larger size. Additional measurements indicated that the foulant layer is consistent with mAb aggregates irreversibly bound at the particle exterior surface. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Separation of metallic elements using anion exchange resins. I. Study of the fixation of several chloride complexes

    International Nuclear Information System (INIS)

    Tremillon, Bernard

    1961-01-01

    Elements forming anionic complexes may be fixed in an anion exchange resin and, among these elements, zinc, cadmium and mercury chlorides, which fixation have been quantitatively studied. The element may pass in the resin under the form of three main complexes species, MCl 2 , MCl 3 - et MCl 4 2- . Fixation of MCl 2 in the resin notably results from a partition by Donnan equilibrium. Considering the various equilibrium involved, it appears that the element fixation is maximum when its proportion, in the initial aqueous solution, in the form of the non charged non charge MCl 2 complex, is maximum. This point is correctly verified by experiments. Curves representing the concentration of the element in the resin have been established as a function of the solution concentration for various sodium chloride concentrations. The interpretation of these curves show that cadmium is fixed in the resin quasi-exclusively in the form CdCl 4 2- ; zinc is fixed in the both forms ZnCl 3 - and ZnCl 4 2- , however much less energetically; the transformation of mercury in the form HgCl 2 enables a much more energetic fixation than for the two others. Fixation of an element may be predicted knowing the formation reactions of complexes in solution. The use of a mixed water-acetone solvent, with its lower dielectric constant, stabilizes the complexes and facilitates the fixation of the element in the resin. Zinc chloride is fixed much more energetically in the presence of acetone, mainly in the form ZnCl 4 2- . Split curves enable to find the split coefficient values observed in the conditions of elution. Reprint of a paper published in 'Bulletin de la Societe Chimique de France', 1961, p. 275-281 [fr

  1. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  2. Layered rare-earth hydroxide nanocones with facile host composition modification and anion-exchange feature: topotactic transformation into oxide nanocones for upconversion.

    Science.gov (United States)

    Zhong, Yishun; Chen, Gen; Liu, Xiaohe; Zhang, Dan; Zhang, Ning; Li, Junhui; Liang, Shuquan; Ma, Renzhi; Qiu, Guanzhou

    2017-06-22

    Conical structures with hollow interiors, namely, nanocones (NCs), may exhibit better carrier transport properties than nanorods or nanotubes, which make them promising candidates for potential applications in optical/display devices, electronics and optoelectronics. Generally, conical structures belong to a metastable state between lamellar and tubular forms due to the extreme curvature causing the increase of internal strain energy. Therefore, it is very difficult to prepare NCs in high yield and purity under mild conditions. Here we firstly demonstrate a general strategy for the synthesis of layered rare-earth hydroxide (LRH) NCs intercalating dodecyl sulfate anions (C 12 H 25 SO 4 - , DS - ) using hexamethylenetetramine (C 6 H 12 N 4 , HMT) hydrolysis. The rare-earth cations (RE 3+ ) in the host layer can be conveniently modified and/or doped, resulting in a large family of monometallic (Y, Tb, Er), bi- (Y-Tb, Y-Er) and even tri-metallic (Y-Yb-Er) LRH NCs with adjustable ratios. Moreover, the DS - -intercalated LRH NCs can be readily modified with various inorganic or organic anions (e.g., NO 3 - , Cl - , and CH 3 COO - , etc.) through a conventional anion-exchange procedure, and the original conical morphology can be perfectly maintained. The anion-exchanged product, for example, NO 3 - -intercalated NCs, can be more easily and topotactically transformed into oxide NCs than the original DS - -intercalated form, exempt from the formation of rare-earth oxysulfates induced by the combustion of interlayer DS anions. Taking advantage of this protocol, tri-metallic (Y-Yb-Er) LRH NCs were anion-exchanged into the NO 3 - -intercalated form and subsequently calcined into Y 2 O 3 :Yb,Er oxide NCs, which showed efficient upconversion photoluminescence properties. The current strategy may become a general method for the designed synthesis of other related hydroxide and oxide NCs for a wide range of potential applications.

  3. Strong cation-exchange chromatography of proteins on a sulfoalkylated monolithic cryogel.

    Science.gov (United States)

    Perçin, Işık; Khalaf, Rushd; Brand, Bastian; Morbidelli, Massimo; Gezici, Orhan

    2015-03-20

    A new strong cation exchanger (SCX) monolithic column was synthesized by at-line surface modification of a cryogel prepared by copolymerization of 2-hydroxyethylmethacrylate (HEMA) and glycidylmethacrylate (GMA). Sodium salt of 3-Mercaptopropane sulfonic acid (3-MPS) was used as the ligand to transform the surface of the monolith into a strong cation exchanger. The obtained material was characterized in terms of elemental analysis, infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) N2 adsorption, and used as a stationary phase for strong-cation exchange chromatography of some proteins, such as α-chymotrypsinogen, cytochrome c and lysozyme. Water permeability of the column was calculated according to Darcy's law (2.66×10(-13)m(2)). The performance of the monolithic cryogel column was evaluated on the basis of Height Equivalent to a Theoretical Plate (HETP). Retention behavior of the studied proteins was modeled on the basis of Yamamoto model to understand the role of the ion-exchange mechanism in retention behaviors. The considered proteins were successfully separated, and the obtained chromatogram was compared with that obtained with a non-functionalized cryogel column. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Single-Crystal-to-Single-Crystal Anion Exchange in a Gadolinium MOF: Incorporation of POMs and [AuCl4]−

    Directory of Open Access Journals (Sweden)

    Javier López-Cabrelles

    2016-04-01

    Full Text Available The encapsulation of functional molecules inside porous coordination polymers (also known as metal-organic frameworks, MOFs has become of great interest in recent years at the field of multifunctional materials. In this article, we present a study of the effects of size and charge in the anion exchange process of a Gd based MOF, involving molecular species like polyoxometalates (POMs, and [AuCl4]−. This post-synthetic modification has been characterized by IR, EDAX, and single crystal diffraction, which have provided unequivocal evidence of the location of the anion molecules in the framework.

  5. Determination of trace level anions in reactor cooling water by ion chromatography using a resin of low capacity

    International Nuclear Information System (INIS)

    1988-01-01

    In the field of nuclear technology, IC has been found to be one of the most versatile and efficient analytical technique because of its ability to provide a fast and sensitive analysis of anions. In this work, a separater column packed with a resin of very low capacity was used with a concentration column for the determination of low level of anions present as traces in reactor cooling water. The results of retention times and detection limits were determined using 2.4 mM Na2CO3 / 3mM NaHCO3 mixture as eluent. The interferences of cations and anions such as (Ca)2+, (UO2)2+, (SO4)2+, have been investigated

  6. Enantioseparations by high-performance liquid chromatography based on chiral ligand-exchange.

    Science.gov (United States)

    Natalini, Benedetto; Sardella, Roccaldo; Ianni, Federica

    2013-01-01

    Chiral ligand-exchange chromatography (CLEC) first described in the late 1960s to early 1970s by Davankov and Rogozhin can be still considered as an elective choice for the direct enantioseparation of compounds endowed with chelating moieties. Among the numerous chelating species that have been evaluated as chiral selectors in ligand-exchange (LE) chromatography, a special role is played by a group of amino acids including proline, hydroxyproline, cysteine, phenylalanine, and penicillamine. More to the point, relevant chromatographic performances are also provided by amino alcohol-based chiral selectors, among which, those carrying a leucinol residue as the basic scaffold are worth to be mentioned. Among the various enantiomer chromatographic separation techniques, CLEC has been exploited in all the main techniques including a chiral mobile phase (CMP), a covalently bound chiral stationary phase (B-CSP), and a coated chiral stationary phase (C-CSP). It is the objective of this chapter to describe selected CLEC applications dealing with the above three distinct approaches.

  7. Ion exchange separation of nitrate from uranium compounds and its determination by spectrophotometry and ion chromatography

    International Nuclear Information System (INIS)

    Pires, M.A.F.; Atalla, L.T.; Abrao, A.

    1985-11-01

    A procedure for the separation of nitrate from uranium compounds by retaintion of uranyl ion on a cationic ion exchanger and its determination in the effluent is described. Nitrate is analysed by the spectrometric method with 1-phenol-2,4-dissulphonic acid. This determination covers the 1 to 10 μg NO - 3 /mL range and requires an amount of 10 to 100 μg NO - 3 . The main interference is uranium (VI) due its own intense yellow color. This difficulty is overcome by the complete separation of UO 2 ++ with the cationic resin. Alternatively, the ion chromatography technique is used for the determination of nitrate in the effluent of the cationic resin. The determination was easily made by the comparison of the nitrate peak hights of the analyte and the standard solutions. The ion chromatography method is very sensitive (0,3 μg NO - 3 /mL), reproducible and suitable for routine analysis and permits the determination of fraction of part per million of nitrate in uranium. The results of nitrate determination using both spectrophotometric and ion chromatography techniques are compared. The method is being routinely applied for the quality control of uranium compounds in the fuel cycle, specially uranium oxide, ammonium diuranate, uranium peroxide and ammonium uranyl tricarbonate. (Author) [pt

  8. Sub-Zero Temperature Chromatography for Reduced Back-Exchange and Improved Dynamic Range in Amide Hydrogen Deuterium Exchange Mass Spectrometry

    OpenAIRE

    Venable, John D.; Okach, Linda; Agarwalla, Sanjay; Brock, Ansgar

    2012-01-01

    Amide hydrogen/deuterium exchange is a commonly used technique for studying the dynamics of proteins and their interactions with other proteins or ligands. When coupled with liquid chromatography and mass spectrometry, hydrogen/deuterium exchange provides several unique advantages over other structural characterization techniques including very high sensitivity, the ability to analyze proteins in complex environments, and a large mass range. A fundamental limitation of the technique arises fr...

  9. Raman spectroscopic study of the aging and nitration of actinide processing anion-exchange resins in concentrated nitric acid

    International Nuclear Information System (INIS)

    Buscher, C. T.; Donohoe, R. J.; Mecklenburg, S. L.; Berg, J. M.; Tait, C. D.; Huchton, K. M.; Morris, D. E.

    1999-01-01

    Degradation of two types of anion exchange resins, Dowex 11 and Reillex HPQ, from the action of concentrated nitric acid (4 to 12 M) and radiolysis [from depleted uranium as UO 2 2+ nitrate species and 239 Pu as Pu(IV) nitrate species] was followed as a function of time with Raman vibrational spectroscopy. Elevated temperatures (∼50 degree sign C) were used in the absence of actinide metal loading to simulate longer exposures of the resin to a HNO 3 process stream and waste storage conditions. In the absence of actinide loading, only minor changes in the Dowex resin at acid concentrations ≤10 M were observed, while at 12 M acid concentration, the emergence of a Raman peak at 1345 cm-1 indicates the addition of nitro functional groups to the resin. Similar studies with the Reillex resin show it to be more resistant to nitric acid attack at all acid concentrations. Incorporation of weakly radioactive depleted uranium as the UO 2 2+ nitrate species to the ion-exchange sites of Dowex 11 under differing nitric acid concentrations (6 to 12 M) at room temperature showed no Raman evidence of resin degradation or nitration, even after several hundred days of contact. In contrast, Raman spectra for Dowex 11 in the presence of 239 Pu as Pu(IV) nitrate species reveal numerous changes indicating resin alterations, including a new mode at 1345 cm-1 consistent with a Pu(IV)-nitrate catalyzed addition of nitro groups to the resin backbone. (c) 2000 Society for Applied Spectroscopy

  10. Determination of γ-hydroxybutyrate in human urine samples by ion exclusion and ion exchange two-dimensional chromatography system.

    Science.gov (United States)

    Liu, Junwei; Deng, Zhifen; Zhu, Zuoyi; Wang, Yong; Wang, Guoqing; Sun, Yu-An; Zhu, Yan

    2017-12-15

    A two-dimensional ion chromatography system was developed for the determination of γ-hydroxybutyrate (GHB) in human urine samples. Ion exclusion chromatography was used in the first dimensional separation for elimination of urine matrices and detection of GHB above 10mgL -1 , ion exchange chromatography was used in the second dimensional separation via column-switching technique for detection of GHB above 0.08mgL -1 . Under the optimized chromatographic conditions, the ion exclusion and ion exchange chromatography separation system exhibited satisfactory repeatability (RSDchromatography system was convenient and practical for the determination of GHB in human urine samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater.

    Science.gov (United States)

    Fan, Jun; Li, Haibo; Shuang, Chendong; Li, Wentao; Li, Aimin

    2014-08-01

    This study investigated the removal of dissolved organic matter (DOM) from real dyeing bio-treatment effluents (DBEs) with the use of a novel magnetic anion exchange resin (NDMP). DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight (MW) (50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254 absorbance (SUVA254), and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon (DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon (PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%, whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC, NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants, with selected concentrations of 10% NaCl (m/m)/1% NaOH (m/m), could improve desorption efficiency. Copyright © 2014. Published by Elsevier B.V.

  12. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H]3- and [M - 5H]5- insulin ions produced a single conformer type with respective collision cross sections of 528 ± 5 Å2 and 808 ± 2 Å2. [M - 4H]4- ions were comprised of more compact (Ω = 676 ± 3 Å2) and diffuse (i.e., more elongated, Ω = 779 ± 3 Å2) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H]4- and [M - 5H]5- ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis.

  13. Kinetics and mechanism of the sorption of some aromatic amines onto amberlite IRA-904 anion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, A.B.; El-Sheikh, M.Y.; Evans, J.; El-Safty, S.A.

    2000-01-01

    The kinetics of the sorption of aromatic amines such as o-aminophenol (o-AP), o-phenylenediamine (o-PDA), and p-phenylenediamine (p-PDA) onto Amberlite anion-exchange resin in chloride form was investigated in batch experiments spectrophotometrically at different temperatures. The sorption rate is zero order in all amines sorbed, increasing directly in the order: p-PDA < o-PDA < o-AP, which corresponds to the sequence of the electrostatic contributions to the sorption interactions. The attainments of sorption equilibrium of aromatic amines is seen to be similar. The diffusion coefficients (D) have been calculated by using Fick's equation from the second portions of the sorption/desorption curves; D values ranged from 0.7 to 2.8 x 10{sup {minus}9} cm{sup 2}/s. These results, reflecting the diffusion mechanism, were ascribed to intraparticle diffusion. Arrhenius parameters for the diffusion process and the thermodynamic quantities for the process of equilibrium sorption have been estimated. The effect of a chemical oxidation reaction on intraparticle diffusion was investigated by measuring the intraparticle diffusion of amines during the redox reaction.

  14. Kinetics and Mechanism of the Sorption of Some Aromatic Amines onto Amberlite IRA-904 Anion-Exchange Resin.

    Science.gov (United States)

    Zaki; El-Sheikh; Evans; El-Safty

    2000-01-01

    The kinetics of the sorption of aromatic amines such as o-aminophenol (o-AP), o-phenylenediamine (o-PDA), and p-phenylenediamine (p-PDA) onto Amberlite anion-exchange resin in chloride form was investigated in batch experiments spectrophotometrically at different temperatures. The sorption rate is zero order in all amines sorbed, increasing directly in the order: p-PDA

  15. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application.

    Science.gov (United States)

    Peng, Hui; Ma, Guofu; Sun, Kanjun; Mu, Jingjing; Zhang, Zhe; Lei, Ziqiang

    2014-12-10

    Two-dimensional mesoporous carbon nanosheets (CNSs) have been prepared via simultaneous activation and catalytic carbonization route using macroporous anion-exchange resin (AER) as carbon precursor and ZnCl2 and FeCl3 as activating agent and catalyst, respectively. The iron catalyst in the skeleton of the AER may lead to carburization to form a sheetlike structure during the carbonization process. The obtained CNSs have a large number of mesopores, a maximum specific surface area of 1764.9 m(2) g(-1), and large pore volume of 1.38 cm(3) g(-1). As an electrode material for supercapacitors application, the CNSs electrode possesses a large specific capacitance of 283 F g(-1) at 0.5 A g(-1) and excellent rate capability (64% retention ratio even at 50 A g(-1)) in 6 mol L(-1) KOH. Furthermore, CNSs symmetric supercapacitor exhibits specific energies of 17.2 W h kg(-1) at a power density of 224 W kg(-1) operated in the voltage range of 0-1.8 V in 0.5 mol L(-1) Na2SO4 aqueous electrolyte, and outstanding cyclability (retains about 96% initial capacitance after 5000 cycles).

  16. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  17. Electrocatalytic oxidation of meso-erythritol in anion-exchange membrane alkaline fuel cell on PdAg/CNT catalyst

    Science.gov (United States)

    Benipal, Neeva; Qi, Ji; McSweeney, Ryan F.; Liang, Changhai; Li, Wenzhen

    2018-01-01

    C-C bond cleavage during electrocatalytic oxidation of glycerol and C3+ polyols often occurs and can significantly affect the Faradaic efficiency, fuel utilization, and output power density of a direct polyol fuel cell, although this has not been deeply investigated. With the goal of acquiring new knowledge of C-C bond breaking of polyols, this study examines the electrocatalytic oxidation of a C4 polyol meso-erythritol on carbon nanotube supported Pd-based catalysts (Pd/CNT, PdAg/CNT, and PdAg3/CNT) in an anion-exchange membrane fuel cell (AEMFC). Our results show that PdAg/CNT improves the fuel efficiency of meso-erythritol oxidation by contributing to the C-C bond cleavage of meso-erythritol in C3 and C2 chemicals. Based on the analysis of electro-oxidation products and half-cell cyclic voltammetry (CV) of intermediates, a meso-erythritol electro-oxidation pathway has been proposed to demonstrate that Ag is likely to assist Pd to promote the cleavage of C-C bonds of meso-erythritol.

  18. Anion-exchange resin-based desulfurization process. Annual technical progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-12-31

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  19. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s

    Science.gov (United States)

    Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun

    2018-01-01

    Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.

  20. Construction of porous CuCo2S4nanorod arrays via anion exchange for high-performance asymmetric supercapacitor.

    Science.gov (United States)

    Cheng, Siyi; Shi, Tielin; Chen, Chen; Zhong, Yan; Huang, Yuanyuan; Tao, Xiangxu; Li, Junjie; Liao, Guanglan; Tang, Zirong

    2017-07-27

    To push the energy density limit of supercapacitors, proper pseudocapacitive materials with favorable nanostructures are urgently pursued. Ternary transition metal sulfides are promising electrode materials due to the better conductivity and higher electrochemical activity in comparison to the single element sulfides and transition metal oxides. In this work, we have successfully synthesized porous CuCo 2 S 4 nanorod array (NRAs) on carbon textile through a stepwise hydrothermal method, including the growth of the Cu-Co precursor nanowire arrays and subsequent conversion into CuCo 2 S 4 NRAs via anion exchange reaction. The CuCo 2 S 4 NRAs electrode exhibits a greatly enhanced specific capacitance and an outstanding cycling stability. Moreover, an asymmetric supercapacitor using the CuCo 2 S 4 NRAs as positive electrode and activated carbon as negative electrode delivers a high energy density of 56.96 W h kg -1 . Such superior performance demonstrate that the CuCo 2 S 4 NRAs are promising materials for future energy storage applications.

  1. Mitigating arsenic crisis in the developing world: role of robust, reusable and selective hybrid anion exchanger (HAIX).

    Science.gov (United States)

    German, Michael; Seingheng, Hul; SenGupta, Arup K

    2014-08-01

    In trying to address the public health crisis from the lack of potable water, millions of tube wells have been installed across the world. From these tube wells, natural groundwater contamination from arsenic regularly puts at risk the health of over 100 million people in South and Southeast Asia. Although there have been many research projects, awards and publications, appropriate treatment technology has not been matched to ground level realities and water solutions have not scaled to reach millions of people. For thousands of people from Nepal to India to Cambodia, hybrid anion exchange (HAIX) resins have provided arsenic-safe water for up to nine years. Synthesis of HAIX resins has been commercialized and they are now available globally. Robust, reusable and arsenic-selective, HAIX has been in operation in rural communities over numerous cycles of exhaustion-regeneration. All necessary testing and system maintenance is organized by community-level water staff. Removed arsenic is safely stored in a scientifically and environmentally appropriate manner to prevent future hazards to animals or people. Recent installations have shown the profitability of HAIX-based arsenic treatment, with capital payback periods of only two years in ideal locations. With an appropriate implementation model, HAIX-based treatment can rapidly scale and provide arsenic-safe water to at-risk populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Continuous biodiesel production in a fixed bed reactor packed with anion-exchange resin as heterogeneous catalyst.

    Science.gov (United States)

    Ren, Yanbiao; He, Benqiao; Yan, Feng; Wang, Hong; Cheng, Yu; Lin, Ligang; Feng, Yaohui; Li, Jianxin

    2012-06-01

    A continuous biodiesel production from the transesterification of soybean oil with methanol was investigated in a fixed bed reactor packed with D261 anion-exchange resin as a heterogeneous catalyst. The conversion to biodiesel achieved 95.2% within a residence time 56 min under the conditions: reaction temperature of 323.15K, n-hexane/soybean oil weight rate of 0.5, methanol/soybean oil molar ratio of 9:1 and feed flow rate of 1.2 ml/min. The resin can be regenerated in-situ and restored to the original activity to achieve continuous production after the resin deactivation. The product obtained was mainly composed of methyl esters. No glycerol in the product was detected due to the resin adsorbing glycerol in the fixed bed, which solved the issue of glycerol separation from biodiesel. It is believed that the fixed bed reactor with D261 has a potential commercial application in the transesterification of triglyceride. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Combining size-exclusion chromatography with differential hydrogen-deuterium exchange to study protein conformational changes.

    Science.gov (United States)

    Makarov, Alexey A; Helmy, Roy

    2016-01-29

    Methods for protein characterization are being actively developed based on the growing importance of protein therapies and applications. The goal of this study was to demonstrate the use of size-exclusion chromatography (SEC) in combination with differential hydrogen-deuterium exchange (HDX) to compare protein global conformational changes at different solution conditions. Using chaotropic mobile phase additive, differential HDX was used to detect a number of solvent accessible labile protons of protein on-column at pH and temperature conditions which provided unrestricted intrinsic H/D exchange (all-or-nothing approach). Varying SEC on-column conditions allowed for protein conformational changes to be observed. Temperature and pressure were independently studied with regards to their effect on the proteins' (insulin, cytochrome C, ubiquitin, and myoglobin) conformational changes in the solution. The obtained ΔHDX profiles revealed protein conformational changes in solution under varied conditions manifested as the difference in the number of protons exchanged to deuterons, or vice-versa. The approach described in this manuscript could prove useful for protein batch-to-batch comparisons, for optimization of chemical reactions with enzyme as catalyst or for protein chemical modification reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Separation of 1,3-Propanediol from Aqueous Solutions by Ion Exchange Chromatography

    Directory of Open Access Journals (Sweden)

    Rukowicz Beata

    2014-06-01

    Full Text Available 1,3-propanediol is a promising monomer with many applications and can be produced by bioconversion of renewable resources. The separation of this product from fermentation broth is a difficult task. In this work, the application of cation exchange resin for the separation of 1,3-propanediol from model aqueous solution was examined. The best effect of separation of 1,3-propanediol from glycerol using sorption method was obtained for H+ resin form, although the observed partition coefficient of 1,3-propanediol was low. On the basis of the results of the sorption of 1,3-propanediol, the ionic forms of the resin were selected and used in the next experiments (H+, Ca2+, Ag+, Na+, Pb2+, Zn2+. The best results in ion exchange chromatography were obtained for cation exchange resin in H+ and Ca2+ form. The use of smaller particle size of resin and a longer length of the column allows to obtain better separation of mixtures.

  5. Combination of Na-modified zeolite and anion exchange resin for advanced treatment of a high ammonia-nitrogen content municipal effluent.

    Science.gov (United States)

    Zhang, Haiyun; Li, Aimin; Zhang, Wei; Shuang, Chendong

    2016-04-15

    In this study, the exchange equilibrium and kinetic experiments of ammonia-nitrogen on the Na-form zeolite were conducted. The results indicated that the presence of humic acid have a negative effect on the equilibrium exchange capacity but have limited influence on the equilibrium time except shorten the sole intra-particle diffusion control time. The exchange equilibrium data could be well fitted by Freundlich model in the absence of humic acid but Langmuir model in the presence of humic acid. While the exchange kinetic data could be well described by pseudo-second-order kinetic model in both situations. An anion exchange resin exhibited high removal efficiency to humic acid and dissolved organic matter through kinetic results and fluorescence excitation-emission matrix (EEM) spectroscopy results. The use of the anion exchange resin prior to the Na-form zeolite improved the ammonia-nitrogen removal efficiency from 78% to 95% and increased the treatment volume of the Na-form zeolite from 51 BV (bed volume) to 76 BV. Both the resin and the Na-form zeolite could be successfully regenerated by the combination of alkaline and sodium chloride. Complete elution of ammonia-nitrogen was achieved when the mass percentage of sodium chloride and alkaline was 10% and 0.6% respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Analysis of anions in aqueous samples by ion chromatography and capillary electrophoresis. A comparative study of peak modeling and validation criteria.

    Science.gov (United States)

    Tamisier-Karolak, S L; Le Potier, I; Barlet, O; Czok, M

    1999-08-13

    The object of this study is the comparison of two methods for the quantitative analysis of anions in aqueous samples: ion chromatography with conductimetric detection, and capillary zone electrophoresis with indirect photometric detection. The comparison includes modeling of experimental peaks as well as statistical validation criteria according to the recommendations of the International Conference on Harmonisation. In ion chromatography, peak shapes are Gaussian or exponentially modified Gaussian, and the number of theoretical plates calculated using the appropriate mathematical relations correspond well to those obtained from statistical moments. Peaks in capillary electrophoresis, however, do not follow the same models. A different model, treating the peaks as right angle triangles, has been studied. Equations corresponding to this model permit a good estimation of plate numbers. The statistical validation of these methods includes detection limits, linearity, accuracy and precision. Overall, ion chromatography yields better validation results than capillary electrophoresis. In the latter method the injection mode plays an important role, with voltage injection giving lower detection limits than hydrodynamic injection.

  7. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results

    Directory of Open Access Journals (Sweden)

    Shirley Nakagaki

    2016-02-01

    Full Text Available Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic. These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs and Layered Hydroxide Salts (LHSs, published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1 and intercalated with different anions (CO32− or NO3−. The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  8. A comparison of two methods for direct tunneling dynamics: Hydrogen exchange in the glycolate anion as a test case

    Science.gov (United States)

    Smedarchina, Zorka; Fernandez-Ramos, Antonio; Rios, Miguel A.

    1997-03-01

    Two methods for studying tunneling dynamics are compared, namely the instanton model and the approach of Truhlar and co-workers, which are based on the direct output of electronic structure calculations and thus are parameter free. They are employed to evaluate the zero-level tunneling splitting due to intramolecular hydrogen exchange in the glycolate anion. The first method was developed in a series of recent studies and presents a combination of the instanton theory with quantum-chemically computed potentials and force fields. For the compound at hand, which has 21 internal degrees of freedom, a complete potential-energy surface is generated in terms of the normal modes of the transition-state configuration. It is made up of the potential-energy curve along the tunneling coordinate and harmonic force fields at the stationary points. The level of theory used is HF/6-31++G**. All modes that are displaced between the equilibrium configuration and the transition state are linearly coupled to the tunneling mode, the couplings being proportional to the displacements in dimensionless units. These couplings affect the instanton trajectory profoundly and, depending on the symmetry of the skeletal modes, can enhance or suppress the tunneling. In the glycolate anion all modes have such displacements and thus are included in the calculation. Based on the similarity with malonaldehyde, it is argued that tunneling prevails in the studied process, and the zero-level tunneling splitting is predicted. The latter is found within the computational scheme developed earlier, which avoids explicit evaluation of the instanton path and thus greatly simpli-fies the tunneling dynamics. These results are tested by the method of large-curvature tunneling of Truhlar and co-workers implemented in a dual-level scheme. The potential energy surface needed for the dynamics calculations is generated at the semiempirical PM3 level of theory and then corrected by interpolation with high-level HF/6

  9. Evaluating the effect of in-process material on the binding mechanisms of surrogate viral particles to a multi-modal anion exchange resin.

    Science.gov (United States)

    Brown, Matthew R; Burnham, Michael S; Johnson, Sarah A; Lute, Scott C; Brorson, Kurt A; Roush, David J

    2018-02-10

    Bacteriophage binding mechanisms to multi-modal anion exchange resin may include both anion exchange and hydrophobic interactions, or the mechanism can be dominated by a single moiety. However, previous studies have reported binding mechanisms defined for simple solutions containing only buffer and a surrogate viral spike (i.e. bacteriophage ΦX174, PR772, and PP7). We employed phage spiked in-process monoclonal antibody (mAb) pools to model binding under bioprocessing conditions. These experiments allow the individual contributions of the mAb, in-process impurities, and buffer composition on mechanistic removal of phages to be studied. PP7 and PR772 use synergetic binding by the positively charged quaternary amine and the hydrophobic aromatic phenyl group to bind multi-modal resin. ΦX174's binding mechanism remains inconclusive due to operating conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Structural and microstructural changes during anion exchange of CoAl layered double hydroxides: an in situ X-ray powder diffraction study

    DEFF Research Database (Denmark)

    Johnsen, Rune; Krumeich, Frank; Norby, Poul

    2010-01-01

    Anion-exchange processes in cobalt-aluminium layered double hydroxides (LDHs) were studied by in situ synchrotron X-ray powder diffraction (XRPD). The processes investigated were CoAl-CO3 CoAl-Cl CoAl-CO3, CoAl-Cl CoAl-NO3 and CoAl-CO3 CoAl-SO4. The XRPD data show that the CoAl-CO3 CoAl-Cl process...

  11. Selenium speciation in pretreated human urine by ion-exchange chromatography and ICP-MS detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jons, O.; Bendahl, L.

    2001-01-01

    and a peak in front were obtained in the crown ether extracted urine. In both systems, two of the peaks co-eluted with selenomethionine (SeMet) and the trimethylselenonium ion (TMSe). None of the signals co-eluted with either selenocystine or selenoethionine. Urine samples from different individuals showed......Urine samples were extracted by benzo-15-crown-5-ether to remove sodium and potassium. More than 90% of the sodium and potassium content of the urine was removed with this extraction. In a cation-exchange system based on oxalic acid at pH 3, chromatography of an untreated urine pool resulted...... in a large peak in the front together with three small peaks. In the crown ether treated pool at least five signals were obtained. When the eluent was ammonium formate at pH 3, two small signals together with a large signal in the front were obtained in untreated urine, while three more distinct peaks...

  12. The removal of uranium from acidic media using ion exchange and/or extraction chromatography

    International Nuclear Information System (INIS)

    FitzPatrick, J.R.; Schake, B.S.; Murphy, J.; Holmes, K.; West, M.H.

    1996-06-01

    The separation and purification of uranium from either nitric acid or hydrochloric acid media can be accomplished by using either solvent extraction or ion-exchange. Over the past two years at Los Alamos, emerging programs are focused on recapturing the expertise required to do limited, small-quantity processing of enriched uranium. During this period of time, we have been investigating ion-addition, waste stream polishing is associated with this effort in order to achieve more complete removal of uranium prior to recycle of the acid. Extraction chromatography has been demonstrated to further polish the uranium from both nitric and hydrochloric acid media thus allowing for a more complete recovery of the actinide material and creation of less waste during the processing steps

  13. Comparison between an anionic exchanger of chitosan quaternary ammonium salt and a commercial exchanger in the extraction of available phosphorus in soils; Comparacao entre um trocador anionico de sal de amonio quaternario de quitosana e um trocador comercial na extracao de fosforo disponivel em solos

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves Junior, Affonso Celso; Nacke, Herbert, E-mail: herbertnacke@hotmail.co [Universidade Estadual do Oeste do Parana, Marechal Rondon, PR (Brazil). Centro de Ciencias Agrarias; Favere, Valfredo Tadeu de [Universidade Federal de Santa Catarina (DQ/UFSC), RS (Brazil). Dept. de Quimica; Gomes, Gilmar Divino [Faculdade de Tecnologia Internacional, Curitiba, PR (Brazil)

    2010-07-01

    The present work aimed modify chemically the chitosan (QTS) surface to obtain a reticulate chitosan quaternary ammonium salt (SAQQR), and compare this anionic exchanger with an commercial ion exchanger in the extraction of available phosphorus in soils. The results showed that the two exchangers are identical, extracting similar and proportional quantities of available phosphorus in the studied soils, and the anionic exchanger of SAQQR provides a high chemical stability, not affected by the pH difference of soils. (author)

  14. Research of thermal stability of ion exchangers

    International Nuclear Information System (INIS)

    Stuchlik, S.; Srnkova, J.

    1983-01-01

    Prior to the fixation of radioactive ion exchangers into bitumen these exchangers have to be dried. The resulting gaseous products may generate explosive mixtures. An analysis was made of the thermal stability of two types of ion exchangers, the cation exchanger KU-2-8 cS and the anion exchanger AV-17-8 cS which are used in the V-1 nuclear power plant at Jaslovske Bohunice. The thermal stability of the anion exchangers was monitored using gas chromatography at temperatures of 100, 120, 140, 160 and 180 degC and by measuring weight loss by kiln-drying at temperatures of 120, 140, 160 and 180 degC. The ion exchanger was heated for 6 hours and samples were taken continuously at one hour intervals. The thermal stability of the cation exchanger was monitored by measuring the weight loss. Gas chromatography showed the release of trimethylamine from the anion exchanger in direct dependence on temperature. The measurement of weight losses, however, only showed higher losses of released products which are explained by the release of other thermally unstable products. The analysis of the thermal stability of the cation exchanger showed the release of SO 2 and the weight loss (following correction for water content) was found only after the fourth hour of decomposition. The experiment showed that the drying of anion exchanger AV-17-8 cS may cause the formation of explosive mixtures. (J.P.)

  15. Separation profiles of Sr from irradiated Yttrium matrix using different eluants by ion-exchange chromatography

    International Nuclear Information System (INIS)

    Ashok Kumar, G.V.S.; Vithya, J.; Kumar, R.; VenkataSubramani, C.R.

    2014-01-01

    89 Sr (a pure β - emitter, T 1/2 = 50.5d) is used in palliative care of bone metastases and was produced using the 89 Y(n,p) 89 Sr reaction in Fast Breeder Test Reactor (FBTR), Kalpakkam. The irradiated yttria target was dissolved in nitric acid and bulk separation of yttrium carried out by solvent extraction using TBP-HNO 3 followed by ion exchange chromatography of the aqueous phase with nitric acid as an eluting agent to obtain the pure fraction of 89 Sr. This paper discusses about the feasibility of separation of 89 Sr with other eluting agents in ion exchange chromatography vis-a-vis nitric acid. As this nuclide is injected as the chloride, the purified fraction of Sr in nitric acid medium is finally converted into HCI medium which is the preferred medium of source for its final application. In order to simplify the conversion, HCI medium can be used directly in the purifying stage making the process faster and simpler. Hence the separation profile using HCI was obtained. In addition, the elution pattern using another reagent tri sodium tri meta phosphate (SMP) was also determined. Purification of 89 Sr fraction using the eluants HCI and SMP was established. However, the elution with SMP yielded the 89 Sr fraction in a small volume and shorter period i.e. ∼ 9 h in comparison with 15 h and 22 h in the case of HCI and HNO 3 medium respectively and also generated less liquid waste. This study established that SMP can be a more favoured elution agent for the purification of 89 Sr source during the chemical processing of the bulk irradiated yttria target material. However the direct separation of Sr using the Sr selective crown ether i.e.ditert.butyl dicyclohexano 18 Crown 6, is much preferred over this method which is in progress

  16. The influence of salt type on the retention of bovine serum albumin in ion-exchange chromatography

    DEFF Research Database (Denmark)

    Al-Jibbouri, Sattar

    2007-01-01

    In this paper, an analysis of the influence of the salt types, NaCl, NaCH"3COO, Na"2SO"4 and Na"3C"6H"5O"7, on the isocratic retention behaviour of bovine serum albumin (BSA) on two anion-exchangers media (Source 30Q and TSK Gel Super Q 5 PW) has been presented. The retention data demonstrated...

  17. Chromatography

    Science.gov (United States)

    ... that are bonded together. For example, water is a chemical bond of oxygen and hydrogen. Proteins are another type of chemical compound. There are different kinds of chromatography. These include gas, high pressure liquid, or ion ...

  18. Fast enantiomeric separation of uniconazole and diniconazole by electrokinetic chromatography using an anionic cyclodextrin: application to the determination of analyte-selector apparent binding constants for enantiomers.

    Science.gov (United States)

    Martín-Biosca, Y; García-Ruiz, C; Marina, M L

    2000-09-01

    The enantiomeric resolution of the fungicides uniconazole and diniconazole was performed using electrokinetic chromatography with cyclodextrins as pseudostationary phase (CD-EKC). A systematic evaluation of several chiral selectors was made. The anionic derivative carboxymethylated-gamma-cyclodextrin (CM-gamma-CD) was found to be the most appropriate for the enantioseparation of fungicides among all cyclodextrins tested. The influence of some experimental conditions such as nature and buffer pH, chiral selector concentration, and temperature on the enantiomeric separation of the compounds studied was also investigated. The use of a 50 mM phosphate buffer (pH 6.5) containing 5 mM CM-gamma-CD and a temperature of 50 degrees C enabled the baseline enantioresolution of mixtures of uniconazole and diniconazole in less than 5 min. In addition, apparent binding constants for each enantiomer-CM-gamma-CD pair at several temperatures, as well as thermodynamic parameters for binding were calculated.

  19. Homogeneous Coating with an Anion-Exchange Ionomer Improves the Cycling Stability of Secondary Batteries with Zinc Anodes.

    Science.gov (United States)

    Stock, Daniel; Dongmo, Saustin; Walther, Felix; Sann, Joachim; Janek, Jürgen; Schröder, Daniel

    2018-03-14

    Limited cycling stability of secondary cells with zinc anodes arises mainly from the high solubility of oxidized zinc species in the alkaline electrolyte resulting in electrode shape change and loss of active material during repeated discharge and charge. We propose and successfully employ a homogeneous coating with an anion-exchange ionomer (AEI) on model electrodes with electron-conductive host structures to confine the oxidized zinc species. Ideally, the confinement of oxidized zinc species reduces the shape change of the electrode and keeps the active material as close as possible at its place of origin. In this work, the confinement concept for the oxidized zinc species is elucidated by means of electrochemical studies and X-ray photoelectron spectroscopy: as intended, an interlayer of zinc oxide forms between the AEI and the surface of the zinc electrode. This interlayer implies that the hydroxide ions are able to pass and react as intended, whereas the migration of oxidized zinc species into the bulk electrolyte is hindered. The coating with an AEI yields a higher amount of restored zinc during electrodeposition in comparison to an uncoated zinc electrode-applying an AEI coating increases the achievable cycle number by up to six times. We investigate the morphology of the cycled electrodes and derive thereby the needs for further material classes that might be employed in the confinement concept. This approach demonstrates the benefit of ion-selective coatings, allowing for the permeation of hydroxide ions but not of oxidized zinc species, a concept which improves rechargeable batteries with zinc anodes, such as zinc-oxygen batteries.

  20. Improved purification process of β- and α-trypsin isoforms by ion-exchange chromatography

    Directory of Open Access Journals (Sweden)

    Alexandre Martins Costa Santos

    2008-08-01

    Full Text Available The purpose of this work was to improve the separation and yield of pure β- and α-trypsin isoforms by ion-exchange chromatography and to characterize some physical-chemical properties of these isoforms. Purification of trypsin isoforms was performed by ion-exchange chromatography in 0.1 mol/L tris-HC buffer, pH 7.10 at 4ºC. The sample loading, salt concentration, flow rate and pH of mobile phase were varied to determine their effects on the resolution of the separation. The resolution was optimized mainly between β- and α-trypsin. Pure isoforms were obtained by chromatographying 100 mg of commercial trypsin during seven days, yielding 51 mg of high purity β-trypsin and 13 mg of α-trypsin partially pure, with small amounts of contaminating of ψ-trypsin. Thus, time and resolution of purification were optimized yielding large amounts of pure active enzymes that are useful for several research areas and biotechnology.O propósito deste trabalho foi melhorar a separação e o rendimento das isoformas puras β- e α-tripsina por meio de cromatografia de troca iônica e caracterizar algumas propriedades físico-químicas dessas isoformas. A purificação de isoformas de tripsina foi realizada em SE Sephadex, com tampão tris-HCl, pH 7,10 a 4ºC. A quantidade de amostra, a concentração salina, o fluxo e o pH da fase móvel foram variados para determinar o efeito sobre a resolução da separação. A resolução foi otimizada principalmente entre β- e α-tripsina, utilizando o pH 7,10 a 4ºC. Isoformas puras foram obtidas a partir de 100 mg de tripsina comercial bovina depois de sete dias de cromatografia, fornecendo 51,0 mg de β-tripsina totalmente pura e 13,0 mg de α-tripsina parcialmente pura, com quantidades pequenas de contaminação por ψ-Tripsina. Assim, tempo e resolução da purificação foram otimizados redendo grandes quantidades de enzimas puras e ativas que são úteis em várias áreas de pesquisa e ciências biotecnológicas.

  1. Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV-visible spectrophotometer.

    Science.gov (United States)

    Pehlivan, E; Cetin, S

    2009-04-15

    The sorption of Cr(VI) from aqueous solutions with macroporous resins which contain quarternary amine groups (Lewatit MP 64 and Lewatit MP 500) was studied at varying Cr(VI) concentration, adsorbent dose, pH, contact time and temperature. Batch shaking sorption experiments were carried out to evaluate the performance of Lewatit MP 64 and Lewatit MP 500 anion exchange resins in the removal of Cr(VI) from aqueous solutions. The concentration of Cr(VI) in aqueous solution was determined by UV-visible spectrophotometer. The ion exchange process, which is dependent on pH, showed maximum removal of Cr(VI) in the pH range 3-7 for an initial Cr(VI) concentration of 1x10(-3) M. The optimum pH for Cr(VI) adsorption was found as 5.0 for Lewatit MP 64 and 6.0 for Lewatit MP 500. The maximum Cr(VI) adsorption at pH 5.0 is 0.40 and 0.41 mmol/g resin for Lewatit MP 64 and Lewatit MP 500 anion exchangers, respectively. The maximum chromium sorption occurred at approximately 60 min for Lewatit MP 64 and 75 min for Lewatit MP 500. The suitability of the Freundlich and Langmuir adsorption models was also investigated for each chromium-sorbent system. The uptake of Cr(VI) by the anion exchange resins was reversible and so it has good potential for the removal of Cr(VI) from aqueous solutions. Both ion exchangers had high bonding constants but Lewatit MP 500 showed stronger binding. The rise in the temperature caused a slight decrease in the value of the equilibrium constant (K(c)) for the sorption of Cr(VI) ion.

  2. Sodium citrate-assisted anion exchange strategy for construction of Bi{sub 2}O{sub 2}CO{sub 3}/BiOI photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    2015-02-15

    Highlights: • Heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi{sub 2}O{sub 2}CO{sub 3}/BiOI composites show high visible light photocatalytic activity. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3}/BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi{sub 2}O{sub 2}CO{sub 3} in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO{sub 3}{sup 2−} in the hydrothermal process. Citrate anion plays a key role in controlling the morphology and composition of the products. The Bi{sub 2}O{sub 2}CO{sub 3}/BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi{sub 2}O{sub 2}CO{sub 3} towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi{sub 2}O{sub 2}CO{sub 3}, which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA.

  3. Synthesis of Isotactic-block-Syndiotactic Poly(methyl Methacrylate via Stereospecific Living Anionic Polymerizations in Combination with Metal-Halogen Exchange, Halogenation, and Click Reactions

    Directory of Open Access Journals (Sweden)

    Naoya Usuki

    2017-12-01

    Full Text Available Isotactic (it- and syndiotactic (st- poly(methyl methacrylates (PMMAs form unique crystalline stereocomplexes, which are attractive from both fundamental and application viewpoints. This study is directed at the efficient synthesis of it- and st-stereoblock (it-b-st- PMMAs via stereospecific living anionic polymerizations in combination with metal-halogen exchange, halogenation, and click reactions. The azide-capped it-PMMA was prepared by living anionic polymerization of MMA, which was initiated with t-BuMgBr in toluene at –78 °C, and was followed by termination using CCl4 as the halogenating agent in the presence of a strong Lewis base and subsequent azidation with NaN3. The alkyne-capped st-PMMA was obtained by living anionic polymerization of MMA, which was initiated via an in situ metal-halogen exchange reaction between 1,1-diphenylhexyl lithium and an α-bromoester bearing a pendent silyl-protected alkyne group. Finally, copper-catalyzed alkyne-azide cycloaddition (CuAAC between these complimentary pairs of polymers resulted in a high yield of it-b-st-PMMAs, with controlled molecular weights and narrow molecular weight distributions. The stereocomplexation was evaluated in CH3CN and was affected by the block lengths and ratios.

  4. Selective isolation of β-glucan from corn pericarp hemicelluloses by affinity chromatography on cellulose column.

    OpenAIRE

    Yoshida, Tomoki; Honda, Yoichi; Tsujimoto, Takashi; Uyama, Hiroshi; Azuma, Jun-ichi

    2014-01-01

    A combination of anion-exchange chromatography and affinity chromatography on a cellulose column was found to be effective for the isolation of β-(1, 3;1, 4)-glucan (BG) from corn pericarp hemicelluloses (CPHs). CPHs containing 6.6% BG were extracted from corn pericarp with 6M urea-2 wt% NaOH solution and initially fractionated into neutral and acidic parts by anion exchange chromatography to remove acidic arabinoxylan consisting of arabinose (35.6%) and xylose (50.9%). The neutral fraction (...

  5. Determination of tropane alkaloids by heart cutting reversed phase - Strong cation exchange two dimensional liquid chromatography.

    Science.gov (United States)

    Long, Zhen; Zhang, Yanhai; Gamache, Paul; Guo, Zhimou; Steiner, Frank; Du, Nana; Liu, Xiaoda; Jin, Yan; Liu, Xingguo; Liu, Lvye

    2018-01-01

    Current Chinese Pharmacopoeia (ChP) standards apply liquid extraction combined with one dimensional liquid chromatography (1DLC) method for determining alkaloids in herbal medicines. The complex pretreatments lead to a low analytical efficiency and possible component loss. In this study, a heart cutting reversed phase - strong cation exchange two dimensional liquid chromatography (RP - SCX 2DLC) approach was optimized for simultaneously quantifying tropane alkaloids (anisodine, scopolamine and hyoscyamine) in herbal medicines and herbal medicine tablets without further treatment of the filtered extract. The chromatographic conditions were systematically optimized in terms of column type, mobile phase composition and flow rate. To improve peak capacity and obtain symmetric peak shape of alkaloids, a polar group embedded C18 column combined with chaotropic salts was used in the first dimension. To remove the disturbance of non-alkaloids, achieve unique selectivity and acquire symmetric peak shape of alkaloids, an SCX column combined with phosphate buffer was used in the second dimension. Method validation was performed in terms of linearity, precision (0.54-0.82%), recovery (94.1-105.2%), limit of detection (LOD) and limit of quantification (LOQ) of the three analytes varied between 0.067-0.115mgL -1 and 0.195-0.268mgL -1 , respectively. The method demonstrated superiority over 1DLC method in respect of resolution (less alkaloid co-eluted), sample preparation (no pretreatment procedure) and transfer rate (minimum component loss). The optimized RP - SCX 2DLC approach was subsequently applied to quantify target alkaloids in five herbal medicines and herbal medicine tablets from three different manufactures. The results demonstrated that the developed heart cutting RP - SCX 2DLC approach represented a new, strategically significant methodology for the quality evaluation of tropane alkaloid in related herbal medicines that involve complex chemical matrix. Copyright

  6. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Unknown

    trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange properties together with surface basicity making them materials of importance ...

  7. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange ...

  8. Structural and microstructural changes during anion exchange of CoAl layered double hydroxides. An in situ X-ray powder diffraction study

    International Nuclear Information System (INIS)

    Johnsen, Rune E.; Krumeich, Frank; Norby, Poul

    2010-01-01

    Anion-exchange processes in cobalt-aluminium layered double hydroxides (LDHs) were studied by in situ synchrotron X-ray powder diffraction (XRPD). The processes investigated were CoAl-CO 3 →CoAl-Cl →CoAl-CO 3 , CoAl-Cl→CoAl-NO 3 and CoAl-CO 3 →CoAl-SO 4 . The XRPD data show that the CoAl-CO 3 →CoAl-Cl process is a two-phase transformation, where the amount of the CoAl-CO 3 phase decreases exponentially while that of the CoAl-Cl phase increases exponentially. Energy-dispersive X-ray spectroscopy (EDXS) studies of a partially chloride-exchanged CoAl-CO 3 LDH sample along with in situ XRPD data suggested that the individual particles in the CoAl-CO 3 sample are generally anion-exchanged with chloride one at a time. In contrast with the CoAl-CO 3 →CoAl-Cl transformation, the XRPD data show that the reverse CoAl-Cl→CoAl-CO 3 process is a one-phase transformation. Rietveld refinements indicate that the occupancy factors of the carbon and oxygen sites of the carbonate group increase, while that of the chloride site decreases. In the CoAl-Cl→CoAl-NO 3 anion-exchange reaction, the XRPD patterns reveal the existence of two intermediate phases in addition to the initial CoAl-Cl and final CoAl-NO 3 phases. The in situ data indicate that one of these intermediates is a mixed nitrate- and chloride-based LDH phase, where the disorder decreases as the nitrate content increases. The XRPD data of the partial CoAl-CO 3 →CoAl-SO 4 anion-exchange reaction show that the process is a two-phase transformation involving a sulfate-containing LDH with a 1H polytype structure. (orig.)

  9. Dependence of chlorine isotope separation in ion exchange chromatography on the nature and concentration of the eluent

    International Nuclear Information System (INIS)

    Heumann, K.G.; Baier, K.

    1980-01-01

    In a heterogeneous electrolyte system of a strongly basic anion exchanger and solutions of NaBF 4 or NaClO 4 we established the influence of the nature and concentration of the eluent in chromatographic experiments on chlorine isotope separation. Results show that when the elctrolyte concentration is increased the degree of isotope separation decreases. With NaBF 4 the separation factor is greater than with NaClO 4 under conditions which are otherwise the same. For electrolyte solutions containing ClO 4 -, NO 3 - and BF 4 - there is a linear relation between the separation factor of the chlorine isotopes and the logarithm of the heat of anion hydration of the elution electrolyte. (orig.)

  10. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  11. Improved recovery of trace amounts of gold (III), palladium (II) and platinum (IV) from large amounts of associated base metals using anion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, I. [Lab. of Chemistry, Tokyo Women' s Medical Univ. (Japan); Takeda, Y.; Ishida, K. [Lab. of Chemistry, Nippon Medical School, Kawasaki-shi, Kanagawa-ken (Japan)

    2000-02-01

    The adsorption and desorption behaviors of gold (III), palladium (II) and platinum (IV) were surveyed in column chromatographic systems consisting of one of the conventional anion-exchange resins of large ion-exchange capacity and dilute thiourea solutions. The noble metals were strongly adsorbed on the anion-exchange resins from dilute hydrochloric acid, while most base metals did not show any marked adsorbability. These facts made it possible to separate the noble metals from a large quantity of base metals such as Ag (I), Al (III), Co (II), Cu (II), Fe (III), Mn (II), Ni (II), Pb (II), and Zn (II). Although it used to be very difficult to desorb the noble metals from the resins used, the difficulty was easily overcome by use of dilute thiourea solutions as an eluant. In the present study, as little as 1.00 {mu}g of the respective noble metals was quantitatively separated and recovered from as much as ca. 10 mg of a number of metals on a small column by elution with a small amount of dilute thiourea solution. The present systems should be applicable to the separation, concentration and recovery of traces of the noble metals from a number of base metals coexisting in a more extended range of amounts and ratios. (orig.)

  12. Optimized anion exchange column isolation of zirconium-89 ( 89 Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform

    Energy Technology Data Exchange (ETDEWEB)

    O’Hara, Matthew J.; Murray, Nathaniel J.; Carter, Jennifer C.; Morrison, Samuel S.

    2018-04-01

    Zirconium-89 (89Zr), produced by the (p,n) reaction from naturally monoisotopic yttrium (natY), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its ability to quantitatively capture Zr from a load solution that is high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>105) and has been shown to separate Fe, an abundant contaminant in Y foils, from the 89Zr elution fraction. Finally, the performance of the method was evaluated using cyclotron bombarded Y foil targets. The separation method was shown to achieve >95% recovery of the 89Zr present in the foils. The 89Zr eluent, however, was in a chemical matrix not immediately conducive to labeling onto proteins. The main intent of this study was to develop a tandem column 89Zr purification process, wherein the anion exchange column method described here is the first separation in a dual-column purification process.

  13. Application of the two-film theory to the determination of mass transfer coefficients for bovine serum albumin on anion-exchange columns

    DEFF Research Database (Denmark)

    Hansen, Ernst; Mollerup, Jørgen

    1999-01-01

    by fitting the two film model to the experimentally determined flux. The two film model is compared with two apparent over-all driving force models: The apparent over-all mobile phase driving force model and the apparent over-all solid phase driving force model. The experiments show that the apparent over......-all driving force models fail to describe the flux correctly and this is substantiated by the theory. Results obtained with BSA on the anion exchange media Q HyperD, Source, and Poros show that the external film resistance is significant for Reynolds numbers less than one. The experimental Sherwood numbers...

  14. Complexation of uranyl ions. III. Investigation of the sorption of uranium of the VP-1Ap anion exchanger from carbonate media by x-ray spectrometric microanalysis

    International Nuclear Information System (INIS)

    Komarova, N.I.; Kakhaeva, T.V.; Kvaratskheli, Yu.K.; Vodolazov, L.I.; Rodionov, V.V.

    1987-01-01

    The spatial distribution of uranium in granules of the VP-1Ap anion exchanger during heightened sorption from carbonate media has been investigated by x-ray spectroscopic microanalysis. Variation of the form of the concentration profile as a function of the extent of sorption from a uniform profile across the diameter, then to a meniscus-shaped profile, and finally to a smoothed profile with an increase in the coefficient of nonuniformity of the distribution of uranium in the granules from 0.026 to 0.045 has been established

  15. Dialysis is superior to anion exchange for removal of dissolved inorganic nitrogen from freshwater samples prior to dissolved organic nitrogen determination

    DEFF Research Database (Denmark)

    Graeber, Daniel; Gücker, Björn; Zwirnmann, Elke

    2012-01-01

    Dissolved organic nitrogen (DON) is usually determined as the difference between total dissolved nitrogen (TDN) and dissolved inorganic nitrogen (DIN). When applying this approach to samples with high DIN concentrations, there is a risk, that small relative errors in TDN and DIN measurements may...... propagate into high absolute errors of the determined DON concentration. To reduce such errors, two pretreatment methods have been suggested for the removal of DIN prior to the determination of DON: anion-exchange pretreatment (AEP) and dialysis pretreatment (DP). In this study, we tested the suitability...

  16. Molecular rheology of branched polymers: Decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling

    KAUST Repository

    Van Ruymbeke, Evelyne

    2014-01-01

    An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched

  17. A high-throughput 2D-analytical technique to obtain single protein parameters from complex cell lysates for in silico process development of ion exchange chromatography.

    Science.gov (United States)

    Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen

    2013-11-29

    The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The kinetics and mechanism of bromide ion isotope exchange reaction in strongly basic anion-exchange resin duolite A-162 determined by the radioactive tracer technique

    Science.gov (United States)

    Lokhande, R. S.; Singare, P. U.; Karthikeyan, P.

    2007-11-01

    In the present investigation, 82Br radioactive isotope was used as a tracer to study the kinetics and mechanism of exchange reaction between an ion exchange resin and an external bromide ion solution. In an attempt to study the reversible bromide ion isotopic exchange reaction kinetics, it was expected that whether the initial step was the exchange of radioactive bromide ions from the solution into the ion exchange resin (forward reaction) or from the ion exchange resin into the solution (reverse reaction), two ion isotopic exchange reactions should occur simultaneously, which was further confirmed by the experimental specific reaction rates of 0.130 and 0.131 min-1, respectively. The results can be used to standardize process parameters so as to optimize the utilization of ion exchange resins in various industrial applications.

  19. Non Destructive Application of Radioactive Tracer Technique for Characterization of Industrial Grade Anion Exchange Resins Indio GS-300 and Indion-860

    International Nuclear Information System (INIS)

    Singare, P. U.

    2014-01-01

    The paper deals with the application of radio isotopic non-destructive technique in the characterization of two industrial grade anion exchange resins Indion GS-300 and Indion-860. For the characterization of the two resins, 131 I and 82 Br were used as tracer isotopes to trace the kinetics of iodide and bromide ion-isotopic exchange reactions. It was observed that the values of specific reaction rate (min -1 ), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were calculated as 0.328, 0.577, 0.189 and 19.7 respectively for Indion GS-300 resin, which was higher than the respective values of 0.180, 0.386, 0.070 and 17.0 calculated for Indion-860 resins when measured under identical experimental conditions. Also at a constant temperature of 40.0 .deg. C, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 75.16 % to 78.36 % for Indion GS-300 resins, which was higher than the increases from 49.65 % to 52.36 % compared to that obtained for Indion-860 resins. The overall results indicate that under identical experimental conditions, Indion GS-300 resins show superior performance over Indion-860 resins

  20. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L; Hansen, S H; Gammelgaard, Bente

    2001-01-01

    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...... capillaries was (4.9+/-0.1) x 10(-4) cm2V(-1)s(-1) in a pH-range of 2-10 (ionic strength = 30 mM). When alkaline compounds were used as test substances intracapillary and intercapillary migration time variations (n = 6) were less than 1% relative standard deviation (RSD) and 2% RSD, respectively in the entire...... pH range. The coating was fairly stable in the presence of sodium dodecyl sulfate, and this made it possible to perform fast MEKC separations at low pH. When neutral compounds were used as test substances, the intracapillary migration time variations (n = 6) were less than 2% RSD in a pH range of 2...

  1. Hydrogen-deuterium exchange of the anionic group 6B transition-metal hydrides. Convenient, in-situ-deuterium transfer reagents

    International Nuclear Information System (INIS)

    Gaus, P.L.; Kao, S.C.; Darensbourg, M.Y.; Arndt, L.W.

    1984-01-01

    The facile exchange of hydrogen for detuerium in the anionic group 6B carbonyl hydrides HM(CO) 4 L - (M = Cr, W; L = CO P(OMe) 3 ) has been studied in THF 4 (tetrahydrofuran) with CH 3 OD, D 2 O, and CH 3 CO 2 D. This has provided a synthesis of the deuterides, DM(CO) 4 L - , as well as a convenient in situ source of deuteride reducing reagents for organic halides. A number of such reductions are described, using 2 H NMR to demonstrate both selectivity and stereospecificity for certain systems. The carbonyl region of the infrared spectra of the hydrides is not affected by deuteration of the hydrides, suggesting that the M-H or M-D vibrational modes are not coupled significantly to CO vibrations in these hydrides. The mechanism of the H/D exchange and of a related H 2 elimination reaction is discussed

  2. Determination of Sudan I-IV in candy using ionic liquid/anionic surfactant aqueous two-phase extraction coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Yu, Wei; Liu, Zhongling; Li, Qiang; Zhang, Hanqi; Yu, Yong

    2015-04-15

    Ionic liquid/anionic surfactant aqueous two-phase system was developed and applied for the extraction of Sudan I-IV. High-performance liquid chromatography was applied to the determination of the analytes. The aqueous two-phase system (ATPS) was formed in the present of C4[MIM]BF4, sodium dodecyl benzene sulphonate and (NH4)2SO4. The parameters affecting the extraction efficiency, such as volume of ionic liquid, amount of sodium dodecyl benzene sulphonate, ionic strength, pH value of system, extraction time and temperature were investigated. The limits of detection for Sudan I, II, III and IV were 5.45, 4.66, 3.68, 4.20 μg kg(-1), respectively. When the present method was applied to the analysis of candy samples, the recoveries of the analytes ranged from 82.3% to 112.1% and relative standard deviations were lower than 7.41%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A two level hierarchical model of protein retention in ion exchange chromatography.

    Science.gov (United States)

    Salvalaglio, Matteo; Paloni, Matteo; Guelat, Bertrand; Morbidelli, Massimo; Cavallotti, Carlo

    2015-09-11

    Predicting protein retention in ion exchange chromatography (IEX) from first principles is a fascinating perspective. In this work a two level hierarchical modeling strategy is proposed in order to calculate protein retention factors. Model predictions are tested against experimental data measured for Lysozyme and Chymotrypsinogen A in IEX columns as a function of ionic strength and pH. At the highest level of accuracy Molecular Dynamics (MD) simulations in explicit water are used to determine the interaction free energy between each of the two proteins and the IEX stationary phase for a reference pH and ionic strength. At a lower level of accuracy a linear response model based on an implicit treatment of solvation and adopting a static protein structure is used to calculate interaction free energies for the full range of pHs and ionic strengths considered. A scaling coefficient, determined comparing MD and implicit solvent simulations, is then introduced in order to correct the linear response model for errors induced by the adoption of a static protein structure. The calculated free energies are then used to compute protein retention factors, which can be directly compared with experimental data. The possibility to introduce a third level of accuracy is explored testing the predictions of a semiempirical model. A quantitative agreement between the predicted and measured protein retention factors is obtained using the coupled MD-linear response models, supporting the reliability of the proposed approach. The model allows quantifying the electrostatic, van der Waals, and conformational contributions to the interaction free energies. A good agreement between experiments and model is obtained also using the semiempirical model that, although requiring parameterization over higher level models or experimental data, proves to be useful in order to rapidly determine protein retention factors across wide pH and ionic strength ranges as it is computationally inexpensive

  4. Performance evaluation of anion exchange resins Purolite NRW-5050 and Duolite A-611 by application of radioisotopic techniques

    International Nuclear Information System (INIS)

    Singare, P.U.

    2014-01-01

    Radioanalytical techniques using 131 I and 82 Br as tracer isotopes were applied to study the kinetics of iodide and bromide ion-isotopic exchange reactions taking place between the external labeled ionic solution and the resin surface. The results indicate low values of specific reaction rate (min -1 ), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) for bromide ion-isotopic exchange reaction as compared to that obtained for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction performed at 35.0 C, 1 000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution, the values of specific reaction rate (min -1 ), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.340, 0.394, 0.134 and 20.2 respectively for Purolite NRW-5050 resin, which was higher than the respective values of 0.216, 0.290, 0.063 and 18.2 as that obtained by using Duolite A-611. The results of present investigation indicate that during the two ion-isotopic exchange reactions, for both the resins, there exists a strong positive linear correlation between amount of ions exchanged and concentration of ionic solution; and strong negative correlation between amount of ions exchanged and temperature of exchanging medium. From the results it appears that as compared to Duolite A-611 resins, Purolite NRW-5050 resins shows superior performance under identical experimental conditions.

  5. Chiral ligand exchange high-speed countercurrent chromatography: mechanism, application and comparison with conventional liquid chromatography in enantioseparation of aromatic α-hydroxyl acids

    Science.gov (United States)

    Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742

  6. A simple and rapid method for isotopic analysis of nickel, copper, and zinc in seawater using chelating extraction and anion exchange.

    Science.gov (United States)

    Takano, Shotaro; Tanimizu, Masaharu; Hirata, Takafumi; Shin, Ki-Cheol; Fukami, Yusuke; Suzuki, Katsuhiko; Sohrin, Yoshiki

    2017-05-15

    Stable isotope ratios of nickel, copper, and zinc are powerful tools for elucidating the biogeochemical cycling of trace metals in the ocean. However, analytical difficulties have impeded isotopic studies of these metals. We present a simple and rapid method for simultaneous analysis of Ni, Cu, and Zn isotope ratios in seawater using NOBIAS Chelate-PA1 resin and anion exchange resin. A NOBIAS Chelate-PA1 resin column was used to quantitatively collect Ni, Cu, and Zn from seawater and thoroughly remove the seawater matrix. Subsequent anion exchange purified and separated the Ni, Cu, and Zn from each other. The blanks used in this method (0.22 ng for Ni, 0.29 ng for Cu, and 0.53 ng for Zn) were sufficiently low to determine the isotope ratios of Ni, Cu, and Zn in surface seawater. Using this method, we analyzed GEOTRACES reference seawater samples (i.e., SAFe D1 and SAFe D2), National Research Council Canada certified materials (i.e., CASS-5 and NASS-6), and seawater samples collected from different depths in the subarctic South Pacific. The results were consistent with previously reported values. This method is expected to accelerate isotopic research and contribute to our understanding of biogeochemical cycling in the ocean. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Efficient in situ separation and production of L-lactic acid by Bacillus coagulans using weak basic anion-exchange resin.

    Science.gov (United States)

    Zhang, Yitong; Qian, Zijun; Liu, Peng; Liu, Lei; Zheng, Zhaojuan; Ouyang, Jia

    2018-02-01

    To get rid of the dependence on lactic acid neutralizer, a simple and economical approach for efficient in situ separation and production of L-lactic acid was established by Bacillus coagulans using weak basic anion-exchange resin. During ten tested resins, the 335 weak basic anion-exchange resins demonstrated the highest adsorption capacity and selectivity for lactic acid recovery. The adsorption study of the 335 resins for lactic acid confirmed that it is an efficient adsorbent under fermentation condition. Langmuir models gave a good fit to the equilibrium data at 50 °C and the maximum adsorption capacity for lactic acid by 335 resins was about 402 mg/g. Adsorption kinetic experiments showed that pseudo-second-order kinetics model gave a good fit to the adsorption rate. When it was used for in situ fermentation, the yield of L-lactic acid by B. coagulans CC17 was close to traditional fermentation and still maintained at about 82% even after reuse by ten times. These results indicated that in situ separation and production of L-lactic acid using the 335 resins were efficient and feasible. This process could greatly reduce the dosage of neutralizing agent and potentially be used in industry.

  8. Novel tentacle-type polymer stationary phase grafted with anion exchange polymer chains for open tubular CEC of nucleosides and proteins.

    Science.gov (United States)

    Aydoğan, Cemil; Çetin, Kemal; Denizli, Adil

    2014-08-07

    A novel and simple method for preparation of a tentacle-type polymer stationary phase grafted with polyethyleneimine (PEI) anion exchanger was developed for open tubular capillary electrochromatography (OT-CEC) of nucleosides and proteins. The polymeric stationary phase was prepared using 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl)-based reactive monomer. The preparation procedure included pretreatment of the capillary inner wall, silanization, in situ graft polymerization with HPMA-Cl and PEI modification. To compare with the tentacle-type capillary column with PEI functionalization, a monolayer capillary column without PEI functionalization was also prepared. The electrochromatographic characterization of the prepared open tubular column was performed using alkylbenzenes. The electroosmotic flow (EOF) with regard to PEI concentrations and the running buffer pH was investigated. The separation conditions of the nucleosides and the proteins were optimized. The modified tentacle-type column with high anion exchange capacity has proven to afford better retention and resolution for the separation of nucleosides and proteins. The PEI functionalization column can also provide long-term stable use for biomolecule separation using a single capillary with relative standard deviation values of retention times of less than 2%. The results indicate that the present method for open tubular capillary preparation with a HPMA-Cl-based reactive monomer is promising for OT-CEC biomolecule separation.

  9. Feasibility of wavelength dispersive X-ray fluorescence spectrometry for a simplified analysis of bromine in water samples with the aid of a strong anion exchange disk

    International Nuclear Information System (INIS)

    An, Jinsung; Jung, Hyeyeon; Bae, Jo-Ri; Yoon, Hye-On; Seo, Jungju

    2014-01-01

    The feasibility of wavelength dispersive X-ray fluorescence spectrometry (WDXRF) for a simplified analysis of bromine (Br) in water samples with the aid of strong anion exchange (SAX) disk was assessed in this study. Dissolved Br in the water sample was pre-concentrated on the SAX disk and directly analyzed by WDXRF without an elution step. The SAX disk was capable of fully adsorbing both bromide (Br − ) and bromate (BrO 3 − ) on its surface owing to their anionic properties, regardless of the pH level of environmental samples. The SAX–WDXRF system was examined using calibration standards (i.e., SAX disks with specific amounts of Br retained; 1, 10, 50, 100 and 500 μg), and a determination coefficient of R 2 = 0.9999 was yielded. The system had a low detection limit for Br (limit of detection = 0.253 μg for Br on the SAX disk) with good reproducibility (relative standard error (RSE) = 4–7%). Spike and inter-comparison tests were performed to confirm the accuracy of the proposed SAX–WDXRF method. Both tests exhibited reasonable accuracy (RSE = 3–6%). The method is simple and easy, indicating a great possibility of application in various environmental sample types, especially for which a simplified analytical system for the determination of Br is urgently required. - Highlights: • Bromide and bromate were entirely retained on a strong anion exchange (SAX) disk. • The SAX disk was used to pre-concentrate dissolved Br species from water samples. • The SAX disk adsorbing dissolved Br was directly analyzed by WDXRF. • The accuracy of the SAX–WDXRF method was confirmed by spike and inter-comparison tests. • Rapid and sensitive Br analysis can be achieved using the proposed SAX–WDXRF method

  10. Contamination of commercial cane sugars by some organic acids and some inorganic anions.

    Science.gov (United States)

    Wojtczak, Maciej; Antczak, Aneta; Lisik, Krystyna

    2013-01-01

    The aim of the paper was the identification and the quantitative evaluation of the following inorganic anions: chloride, phosphate, nitrate, nitrite, sulphate and the following organic acids: lactic, acetic, formic, malic and citric in commercial "unrefined" brown cane sugars and in cane raw sugars. The determination was carried out by high performance anion exchange chromatography with conductivity detector HPAEC-CD. The conducted analyses have shown that the content of some inorganic anions and organic acids in cane sugars may be an important criterion of the quality of commercial "unrefined" brown cane sugars. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Multiple applications of ion chromatography oligosaccharide fingerprint profiles to solve a variety of sugar and sugar-biofuel industry problems

    Science.gov (United States)

    Sugar crops contain a broad variety of carbohydrates used for human consumption and the production of biofuels and bioproducts. Ion chromatography with integrated pulsed amperometric detection (IC-IPAD), also known as high performance anion exchange chromatography (HPAEC), can be used to simultaneo...

  12. tRNA separation by high-performance liquid chromatography using an aggregate of ODS-Hypersil and trioctylmethylammonium chloride

    NARCIS (Netherlands)

    Bischoff, Rainer; Graeser, E.; Mclaughlin, L.W.

    1983-01-01

    High-performance liquid chromatography on a reversed-phase support treated with a tetraalkylammonium salt was used to separate tRNAs from baker's yeast. While resolution by this column appears to result from both anion-exchange and reversed-phase chromatography, it is the hydrophobic interactions

  13. Application of a strong anion exchange material in electrostatic repulsion-hydrophilic interaction chromatography for selective enrichment of glycopeptides.

    Science.gov (United States)

    Cao, Liwei; Yu, Long; Guo, Zhimou; Li, Xiuling; Xue, Xinya; Liang, Xinmiao

    2013-07-19

    Glycoproteins are involved in various cellular activities, including inter- and extracellular signaling. However, glycopeptide signals are significantly suppressed by coeluting non-glycosylated peptides in mass spectrometry-based analysis. For detailed elucidation of the biological functions of glycoproteins, selective enrichment of glycopeptides from non-glycosylated peptides is crucial. In the present study, a SAX material, XCharge SAX, was used in a column in the ERLIC mode with the aim of specifically enriching glycopeptides. Enrichment conditions were initially optimized, and selectivity, glycosylation heterogeneity coverage and detection sensitivity of XCharge SAX were subsequently assessed. In the selectivity assessment, glycopeptides were effectively isolated from a peptide mixture (human serum immunoglobulin G (IgG) and human serum albumin digests) and a tryptic digest of human serum using XCharge SAX. In the evaluation of glycosylation heterogeneity coverage, five glycosites and eleven glycopeptides from horseradish peroxidase were identified after enrichment with XCharge SAX. In detection sensitivity assessment, glycopeptides within four orders of magnitude were identified after enrichment with XCharge SAX. In addition, volatile solvents were used in the loading and eluting buffers so that desalting was not necessary for ERLIC fractions. Our results collectively support the utility of XCharge SAX as a suitable chromatographic material for global glycosylation site analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. P61-S Multidimensional Liquid Chromatography of Proteins Using Monolithic Weak Anion Exchange and Reversed-Phase Columns

    OpenAIRE

    Sneekes, E.; van Ling, R.; de Haan, B.; Dolman, B.; Swart, R.; van Gils, M.

    2007-01-01

    Recent developments in monolithic column technology have yielded significant improvements in the biopolymer analysis field. Monolithic columns offer several advantages over particulate columns due to their macroporous structure, which provides fast mass transfer, low back pressure and high resolution. Polystyrene divinylbenzene (PS-DVB) monolithic columns are chemically inert; they offer high pH stability and excellent chromatographic performance in reversed-phase LC. While the application of...

  15. Speciation of eight arsenic compounds in human urine by high performance liquid chromatography with inductively coupled plasma mass spectrometric detection using antimonate for internal chromatographic standardization

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Pritzl, G.; Hansen, S. H.

    1993-01-01

    to arsenate in urine but was stable after at least 4-fold dilution of the urine with water. Arsenite was unstable in both urine samples and standard mixtures when diluted with the basic (pH 10.3) mobile phase used for anion chromatography. This could not be prevented by adding ascorbic acid as antioxidant......Four anionic and four cationic arsenic compounds in urine were separated by anion- and cation-exchange high-performance liquid chromatography and detected by inductively coupled plasma mass spectrometry (ICP-MS) at m/z 75. The species were the anions arsenite, arsenate, monomethylarsonate...

  16. Ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry inhibitors fishing assay: a novel method for simultaneously screening of xanthine oxidase inhibitor and superoxide anion scavenger in a single analysis.

    Science.gov (United States)

    Liu, Shu; Xing, Junpeng; Zheng, Zhong; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2012-02-17

    Xanthine oxidase (XOD) inhibitors and superoxide anion scavengers play an important role in the treatment of gout and the inhibition of many diseases related to superoxide anion. The respective quantitation of uric acid and superoxide anion by traditional spectroscopic methods is routine in XOD inhibitors and superoxide anion scavengers screening at laboratories worldwide. In the present study, we established an ultrahigh performance liquid chromatography and triple quadrupole mass spectrometry (UHPLC-TQ-MS) method of higher accuracy and speed that combines screening of superoxide anion scavenger and XOD inhibitor in a single analysis by adding WST-1 (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium sodium salt) to the enzymatic reaction. We applied the established method to determine the XOD inhibitory activities and superoxide scavenging activities of some herbal extracts and compounds from natural products, which could be classified into six groups based on the results of the assay. Our innovative protocol is fast, accurate and robust. Moreover, it can eliminate false positive and false negative results which may occur in the traditional spectroscopic methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Use of water as displacing agent in ion exchange chromatographic separation of isotope of boron using weak base ion exchange resin

    International Nuclear Information System (INIS)

    Sharma, B.K.; Mohanakrishnan, G.; Anand Babu, C.; Krishna Prabhu, R.

    2008-01-01

    Experiments were undertaken to study the feasibility of using weakly basic anion exchange resin for enrichment of isotopes of boron by ion exchange chromatography and water as eluent. The results of experiments carried out to determine total chloride capacity (TCC), strong base capacity (SBC) of the resin at different concentrations of boric acid and enrichment profiles are reported in this paper. (author)

  18. LAB-SCALE DEMONSTRATION OF PLUTONIUM PURIFICATION BY ANION EXCHANGE, PLUTONIUM (IV) OXALATE PRECIPITATION, AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, M.; Pierce, R.

    2012-08-22

    H-Canyon and HB-Line are tasked with the production of PuO{sub 2} from a feed of plutonium metal. The PuO{sub 2} will provide feed material for the MOX Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, the solution will be transferred to HB-Line for purification by anion exchange. Subsequent unit operations include Pu(IV) oxalate precipitation, filtration and calcination to form PuO{sub 2}. This report details the results from SRNL anion exchange, precipitation, filtration, calcination, and characterization tests, as requested by HB-Line1 and described in the task plan. This study involved an 80-g batch of Pu and employed test conditions prototypical of HB-Line conditions, wherever feasible. In addition, this study integrated lessons learned from earlier anion exchange and precipitation and calcination studies. H-Area Engineering selected direct strike Pu(IV) oxalate precipitation to produce a more dense PuO{sub 2} product than expected from Pu(III) oxalate precipitation. One benefit of the Pu(IV) approach is that it eliminates the need for reduction by ascorbic acid. The proposed HB-Line precipitation process involves a digestion time of 5 minutes after the time (44 min) required for oxalic acid addition. These were the conditions during HB-line production of neptunium oxide (NpO{sub 2}). In addition, a series of small Pu(IV) oxalate precipitation tests with different digestion times were conducted to better understand the effect of digestion time on particle size, filtration efficiency and other factors. To test the recommended process conditions, researchers performed two nearly-identical larger-scale precipitation and calcination tests. The calcined batches of PuO{sub 2} were characterized for density, specific surface area (SSA), particle size, moisture content, and impurities. Because the 3013 Standard requires that the calcination (or stabilization) process eliminate organics, characterization of PuO{sub 2} batches monitored the

  19. Isolation of radioactive strontium from natural samples. Separation of strontium from alkaline and alkaline earth elements by means of mixed solvent anion exchange

    International Nuclear Information System (INIS)

    Grahek, Z.; Kosutic, K.; Lulic, S.; Kvastek, K.; Eskinja, I.

    1999-01-01

    This paper presents the results of studies which led to the procedures for the chromatographic separation of radioactive strontium from alkaline, earth-alkaline and other elements in natural samples, on columns filled with strong base anion exchangers using alcoholic solutions of nitric acid as eluents. It has been shown that potassium, caesium, calcium, barium, yttrium and strontium can be adsorbed on strong base anion exchangers of the Dowex and Amberlite type, which contain the quaternary ammonium group with nitrate as counter-ion, from solutions of nitric acid in alcohol. Adsorption strength increases in the order methanol 3 in methanol, while they are adsorbed from ethanol and propanol. The adsorption strength is influenced by the polarity of alcohol, by the concentration of nitrate and by pH. The strength with which strontium adsorbs on the exchangers increases in the interval from 0 to 0.25M NH 4 NO 3 in methanol, after which it starts to decrease. Strontium adsorbs to the exchangers from the alcoholic solution of ammonium nitrate twice as strongly as from the alcoholic solution of nitric acid, while a fraction of water in pure alcohol exceeding 10% prevents adsorption. In the mixture of alcohol and nitric acid, the adsorption strength for calcium and strontium increases with the increase of the volume fraction of alcohol with a lower dielectric constant. The rate and strength of adsorption of ions on the exchanger also increase in the series 0.25M HNO 3 in methanol 3 in ethanol 3 in 1-propanol for each individual ion, as well as in the Ca 3 in methanol, 0.25M HNO 3 in ethanol and 0.25M HNO 3 in propanol. Separation is also possible from alcohol mixtures. Strontium separation is most difficult from calcium, while the efficiency of separation increases with a decrease of the polarity of the used alcohol or alcohol mixture. The first group elements of the periodic table are not separated from each other in this way, while the elements of the second group are

  20. Electrokinetically-driven cation-exchange chromatography of proteins and its comparison with pressure-driven high-performance liquid chromatography.

    Science.gov (United States)

    Xu, W; Regnier, F E

    1999-08-20

    This paper examines protein ion-exchange behavior in electrokinetically-driven open-tubular chromatography with columns produced by immobilization of poly(aspartic acid) on capillary walls. Retention and selectivity are similar in the electrokinetic elution mode to that observed in HPLC. The separation mechanism was found to depend on the relationship of mobile phase pH to that of protein pI and ionic strength. Column efficiency in the electrokinetic elution mode was found to be 10-100-times higher than in HPLC. The best separations were achieved at intermediate ionic strength and high pH. The great advantage of these low-phase-ratio, high-efficiency open tubular columns is that isocratic separations in the electrokinetic elution mode were equivalent to gradient elution in the HPLC mode. Low phase ratio has the net effect of collapsing the chromatogram into a narrow elution window while the very high efficiency produces the requisite resolution.

  1. Distribution of 14 elements from two solutions simulating Hanford HLW Tank 102-SY (acid-dissolved sludge and acidified supernate) on four cation exchange resins and five anion exchange resins having different functional groups

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-01-01

    As part of the Tank Waste Remediation System program at Los Alamos, we evaluated a series of cation exchange and anion exchange resins for their ability to remove hazardous components from radioactive high-level waste (HLW). The anion exchangers were Reillex TM HPQ, a polyvinyl pyridine resin, and four strong-base polystyrene resins having trimethyl, tri ethyl, tri propyl, and tributyl amine as their respective functional groups. The cation exchange resins included Amberlyst TM 15 and Amberlyst tM XN-1010 with sulfonic acid functionality, Duolite TM C-467 with phosphonic acid functionality, and poly functional Diphonix TM with di phosphonic acid, sulfonic acid, and carboxylic acid functionalities. We measured the distributions of 14 elements on these resins from solutions simulating acid-dissolved sludge (pH 0.6) and acidified supernate (pH 3.5) from underground storage tank 102-SY at the Hanford Reservation near Richland, Washington, USA. To these simulants, we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U, Pu, and Am), and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr). For each of the 252 element/resin/solution combinations, distribution coefficients (Kds) were measured for dynamic contact periods of 30 minutes, 2 hours, and 6 hours to obtain information about sorption kinetics from these complex media. Because we measured the sorption of many different elements, the tabulated results indicate which unwanted elements are most likely to interfere with the sorption of elements of special interest. On the basis of these 756 measured Kd values, we conclude that some of the tested resins appear suitable for partitioning hazardous components from Hanford HLW. (author). 10 refs., 11 tabs

  2. Quantification of the Pyrrolizidine Alkaloid Jacobine in Crassocephalum crepidioides by Cation Exchange High-Performance Liquid Chromatography.

    Science.gov (United States)

    Rozhon, Wilfried; Kammermeier, Lukas; Schramm, Sebastian; Towfique, Nayeem; Adebimpe Adedeji, N; Adesola Ajayi, S; Poppenberger, Brigitte

    2018-01-01

    Pyrrolizidine alkaloids (PAs) are secondary plant metabolites with considerable hepatoxic, tumorigenic and genotoxic potential. For separation, reversed phase chromatography is commonly used because of its excellent compatibility with detection by mass spectrometry. However, reversed phase chromatography has a low selectivity for PAs. The objective of this work was to investigate the suitability of cation exchange chromatography for separation of PAs and to develop a rapid method for quantification of jacobine in Crassocephalum crepidioides that is suitable for analysis of huge sample numbers as required for mutant screening procedures. We demonstrate that cation exchange chromatography offers excellent selectivity for PAs allowing their separation from most other plant metabolites. Due to the high selectivity, plant extracts can be directly analysed after simple sample preparation. Detection with UV at 200 nm instead of mass spectrometry can be applied, which makes the method very simple and cost-effective. The recovery rate of the method exceeded 95%, the intra-day and inter-day standard deviations were below 7% and the limit of detection and quantification were 1 mg/kg and 3 mg/kg, respectively. The developed method is sufficiently sensitive for reproducible detection of jacobine in C. crepidioides. Simple sample preparation and rapid separation allows for quantification of jacobine in plant material in a high-throughput manner. Thus, the method is suitable for genetic screenings and may be applicable for other plant species, for instance Jacobaea maritima. In addition, our results show that C. crepidioides cannot be considered safe for human consumption. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Online coupling of hydrophilic interaction/strong cation exchange/reversed-phase liquid chromatography with porous graphitic carbon liquid chromatography for simultaneous proteomics and N-glycomics analysis.

    Science.gov (United States)

    Zhao, Yun; Law, Henry C H; Zhang, Zaijun; Lam, Herman C; Quan, Quan; Li, Guohui; Chu, Ivan K

    2015-10-09

    In this study we developed a fully automated three-dimensional (3D) liquid chromatography methodology-comprising hydrophilic interaction separation as the first dimension, strong cation exchange fractionation as the second dimension, and low-pH reversed-phase (RP) separation as the third dimension-in conjunction downstream with additional complementary porous graphitic carbon separation, to capture non-retained hydrophilic analytes, for both shotgun proteomics and N-glycomics analyses. The performance of the 3D system alone was benchmarked through the analysis of the total lysate of Saccharomyces cerevisiae, leading to improved hydrophilic peptide coverage, from which we identified 19% and 24% more proteins and peptides, respectively, relative to those identified from a two-dimensional hydrophilic interaction liquid chromatography and low-pH RP chromatography (HILIC-RP) system over the same mass spectrometric acquisition time; consequently, the 3D platform also provided enhanced proteome and protein coverage. When we applied the integrated technology to analyses of the total lysate of primary cerebellar granule neurons, we characterized a total of 2201 proteins and 16,937 unique peptides for this primary cell line, providing one of its most comprehensive datasets. Our new integrated technology also exhibited excellent performance in the first N-glycomics analysis of cynomolgus monkey plasma; we successfully identified 122 proposed N-glycans and 135 N-glycosylation sites from 122 N-glycoproteins, and confirmed the presence of 38 N-glycolylneuraminic acid-containing N-glycans, a rare occurrence in human plasma, through tandem mass spectrometry for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Air quality status in Kinshasa as determined by instrumental neutron activation analysis, atomic absorption spectrometry and ion-exchange chromatography

    International Nuclear Information System (INIS)

    Lobo, K.K.

    1991-01-01

    Three independent analytical techniques - instrumental neutron activation analysis. Atomic absorption spectrometry and ion-exchange chromatography - were applied to airborne particulate collected on filters and to atmospheric acid gases collected in carbonate buffer solutions. 20 trace elements and 7 acid gases and acid aerosols were determined. Results were compared with those observed elsewhere and showed that air pollution is low in Kinshasa and does not give rise to anxieties. The main known sources of pollutants are: vehicle exhaust and aeolian process on stripped soils. (author). 13 refs, 2 figs, 6 tabs

  5. Preparation and characterization of anion exchange resin decorated with magnetite nanoparticles for removal of p-toluic acid from aqueous solution

    Science.gov (United States)

    Davarpanah, Morteza; Ahmadpour, Ali; Rohani Bastami, Tahereh

    2015-02-01

    Polystyrene resin was covalently functionalized with diethanolamine and then decorated with magnetite nanoparticles by a novel and simple co-precipitation method using iron(II) sulfate as precursor. The products were characterized by Fourier transform infrared spectroscopy, elemental analysis, X-ray diffraction, Mössbauer spectroscopy, field-emission scanning electron microscopy and vibrating sample magnetometer. Adsorption of p-toluic acid (p-TA) onto magnetite-decorated polystyrene (MAG-PS) was studied and compared with that of diethanolamine-functionalized polystyrene and a commercial anion exchange resin. Results showed that the magnetite nanoparticles with an average size of 20.4 nm were successfully formed on the surface of polystyrene resin, and MAG-PS was exhibited high affinity for the removal of p-TA.

  6. Optimization of SHINE Process: Design and Verification of Plant-Scale AG 1 Anion-Exchange Concentration Column and Titania Sorbent Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Abdul, Momen [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    Argonne National Laboratory has developed a Mo-recovery and -purification system for the SHINE medical technologies process, which uses a uranyl sulfate solution for the accelerator-driven production of Mo-99. The objective of this effort is to reduce the processing time for the acidification of the Mo-99 product prior to loading onto a concentration column and concentration of the Mo-99 product solution. Two methods were investigated: (1) the replacement of the titania concentration column by an anion-exchange column to decrease processing time and increase the radioiodine-decontamination efficiency and (2) pretreatment of the titania sorbent to improve its effectiveness for the Mo-recovery and -concentration columns. Promising results are reported for both methods.

  7. Ethylene glycol dimethacrylate cross-linking anion exchange resin as phosphate binder: effects on rat gut and digestion by small intestine contents.

    Science.gov (United States)

    Inoue, H

    2001-06-01

    In the present study, ethylene glycol dimethacrylate cross-linking 4-vinylpyridinium anion exchange resin (EGDMA-4VP) effectively bound dietary phosphate in normal rats. However, EGDMA-4VP induced more adverse effects in rat gut than cellulose or Dowex 1X2 (both of which have higher water content), and caused damage to the intestine. In order to resolve this seeming paradox, digestion of EGDMA-4VP with rat small intestine content (S-9 fraction) and carboxyl esterase was investigated in vitro to examine the stability of the resin under conditions it would be subjected to as an orally administered medicine. EGDMA-4VP was digested by small intestinal enzymes, with the exception of carboxyl esterase, and the degradation product ethylene glycol (EG) caused reversible relaxation of longitudinal muscle (but not circular muscle) in rat small intestine. Degradation products increased uptake of 3H2O into primary cultured rat small intestinal muscle cells, but the increase was not significant.

  8. Complexation ion-exchange chromatography of some metal ions on papers impregnated with Ti(IV)-based inorganic ion exchangers.

    Science.gov (United States)

    Sharma, S D; Gupta, R

    2000-02-01

    The chromatographic behavior of 40 metal ions is studied on titanium (IV) arsenate, titanium (IV) phosphate-, titanium (IV) molybdate-, titanium(IV) tungstate-, and titanium(IV) selenite-impregnated papers in 0.1M oxalic, citric, and tartaric acid as mobile phases. Similar studies are carried out on Whatman No. 1 papers for comparison. The ion-exchange capacity of these papers is determined, and their selectivity for different cations is discussed. The mechanism of migration is explained in terms of ion-exchange, precipitation, and adsorption. The prediction of elution sequence from RF values is also checked. The average Ri is found to be almost linearly dependent on the charge of the metal ions. The effect of the pKa of complexing acids on average RF values of 3d series metal ions is explained. A number of binary and ternary separations are achieved.

  9. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. III. An anion-exchange resin technique for sampling and preservation of sulfoxyanions in natural waters

    Directory of Open Access Journals (Sweden)

    Ball James W

    2003-06-01

    Full Text Available A sampling protocol for the retention, extraction, and analysis of sulfoxyanions in hydrothermal waters has been developed in the laboratory and tested at Yellowstone National Park and Green Lake, NY. Initial laboratory testing of the anion-exchange resin Bio-Rad™ AG1-X8 indicated that the resin was well suited for the sampling, preservation, and extraction of sulfate and thiosulfate. Synthetic solutions containing sulfate and thiosulfate were passed through AG1-X8 resin columns and eluted with 1 and 3 M KCl, respectively. Recovery ranged from 89 to 100%. Comparison of results for water samples collected from five pools in Yellowstone National Park between on-site IC analysis (U.S. Geological Survey mobile lab and IC analysis of resin-stored sample at SUNY-Stony Brook indicates 96 to 100% agreement for three pools (Cinder, Cistern, and an unnamed pool near Cistern and 76 and 63% agreement for two pools (Sulfur Dust and Frying Pan. Attempts to extract polythionates from the AG1-X8 resin were made using HCl solutions, but were unsuccessful. Bio-Rad™ AG2-X8, an anion-exchange resin with weaker binding sites than the AG1-X8 resin, is better suited for polythionate extraction. Sulfate and thiosulfate extraction with this resin has been accomplished with KCl solutions of 0.1 and 0.5 M, respectively. Trithionate and tetrathionate can be extracted with 4 M KCl. Higher polythionates can be extracted with 9 M hydrochloric acid. Polythionate concentrations can then be determined directly using ion chromatographic methods, and laboratory results indicate recovery of up to 90% for synthetic polythionate solutions using AG2-X8 resin columns.

  10. Selective adsorption and ion exchange of metal cations and anions with silico-titanates and layered titanates

    International Nuclear Information System (INIS)

    Anthony, R.G.; Philip, C.V.

    1993-01-01

    Metal ions may be removed from aqueous wastes from metal processing plants and from refineries. They may also be used in concentrating radioactive elements found in dilute, aqueous, nuclear wastes. A new series of silico-titanates and alkali titanates are shown to have specific selectivity for cations of lead, mercury, and cadmium and the dichromate anion in solutions with low and high pH. Furthermore, one particular silico-titanate, TAM-5, was found to be highly selective for Cs + and Sr 2+ in solutions of 5.7 M Na + and 0.6 M Oh - . A high potential exists for these materials for removing Cs + and Sr 2+ from radioactive aqueous wastes containing high concentrations of Na + at high and low pH

  11. A versatile method for stable carbon isotope analysis of carbohydrates by high-performance liquid chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Boschker, H.T.S.; Moerdijk-Poortvliet, T.C.W.; Van Breugel, P.; Houtekamer, M.J.; Middelburg, J.J.

    2008-01-01

    We have developed a method to analyze stable carbon isotope (13C/12C) ratios in a variety of carbohydrates using high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS). The chromatography is based on strong anion-exchange columns with low strength NaOH eluents. An eluent

  12. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    Science.gov (United States)

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  14. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-05-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  15. Single particle electron microscopy analysis of the bovine anion exchanger 1 reveals a flexible linker connecting the cytoplasmic and membrane domains.

    Directory of Open Access Journals (Sweden)

    Jiansen Jiang

    Full Text Available Anion exchanger 1 (AE1 is the major erythrocyte membrane protein that mediates chloride/bicarbonate exchange across the erythrocyte membrane facilitating CO₂ transport by the blood, and anchors the plasma membrane to the spectrin-based cytoskeleton. This multi-protein cytoskeletal complex plays an important role in erythrocyte elasticity and membrane stability. An in-frame AE1 deletion of nine amino acids in the cytoplasmic domain in a proximity to the membrane domain results in a marked increase in membrane rigidity and ovalocytic red cells in the disease Southeast Asian Ovalocytosis (SAO. We hypothesized that AE1 has a flexible region connecting the cytoplasmic and membrane domains, which is partially deleted in SAO, thus causing the loss of erythrocyte elasticity. To explore this hypothesis, we developed a new non-denaturing method of AE1 purification from bovine erythrocyte membranes. A three-dimensional (3D structure of bovine AE1 at 2.4 nm resolution was obtained by negative staining electron microscopy, orthogonal tilt reconstruction and single particle analysis. The cytoplasmic and membrane domains are connected by two parallel linkers. Image classification demonstrated substantial flexibility in the linker region. We propose a mechanism whereby flexibility of the linker region plays a critical role in regulating red cell elasticity.

  16. Anion exchange behaviour of Zr, Hf, Nb, Ta and Pa as homologues of RF and Db in fluoride medium

    Energy Technology Data Exchange (ETDEWEB)

    Monroy G, F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Trubert, D.; Brillard, L.; Hussonnois, M.; Constantinescu, O.; Le Naour, C., E-mail: fabiola.monroy@inin.gob.m [Institut de Physique Nucleaire, F-91406 Orsay, France (France)

    2010-07-01

    Studies of the chemical property of trans actinide elements are very difficult due to their short half-lives and extremely small production yields. However it is still possible to obtain considerable information about their chemical properties, such as the most stable oxidation states in aqueous solution, complexing ability, etc., comparing their behaviour with their lighter homologous in the periodic table. In order to obtain a better knowledge of the behaviour of rutherfordium, RF (element 104), dub nium, Db (element 105) in HF medium, the sorption properties of Zr, Hf, Nb, Ta an Pa, homologues of RF and Db, were studied in NH{sub 4}F/HClO{sub 4} medium in this work. Stability constants of the fluoride complexes of these elements were experimentally obtained from K{sub d} obtained at different F{sup -} and H{sup +} concentrations. The anionic complexes: [Zr(Hf)F{sub 5}]{sup -}, [Zr(Hf)F{sub 6}]{sup 2-}, [Zr(Hf)F{sub 7}]{sup 3-}, [Ta(Pa)F{sub 6}]{sup -}, [Ta(Pa)F{sub 7}]{sup 2-}, [Ta(Pa)F{sub 8}]{sup 3-}, [NbOF{sub 4}]{sup -} and [NbOF{sub 5}]{sup 2-} are present as predominant species in the HF range over investigation. (Author)

  17. Anion exchange behaviour of Zr, Hf, Nb, Ta and Pa as homologues of RF and Db in fluoride medium

    International Nuclear Information System (INIS)

    Monroy G, F.; Trubert, D.; Brillard, L.; Hussonnois, M.; Constantinescu, O.; Le Naour, C.

    2010-01-01

    Studies of the chemical property of trans actinide elements are very difficult due to their short half-lives and extremely small production yields. However it is still possible to obtain considerable information about their chemical properties, such as the most stable oxidation states in aqueous solution, complexing ability, etc., comparing their behaviour with their lighter homologous in the periodic table. In order to obtain a better knowledge of the behaviour of rutherfordium, RF (element 104), dub nium, Db (element 105) in HF medium, the sorption properties of Zr, Hf, Nb, Ta an Pa, homologues of RF and Db, were studied in NH 4 F/HClO 4 medium in this work. Stability constants of the fluoride complexes of these elements were experimentally obtained from K d obtained at different F - and H + concentrations. The anionic complexes: [Zr(Hf)F 5 ] - , [Zr(Hf)F 6 ] 2- , [Zr(Hf)F 7 ] 3- , [Ta(Pa)F 6 ] - , [Ta(Pa)F 7 ] 2- , [Ta(Pa)F 8 ] 3- , [NbOF 4 ] - and [NbOF 5 ] 2- are present as predominant species in the HF range over investigation. (Author)

  18. A polyaniline-magnetite nanocomposite as an anion exchange sorbent for solid-phase extraction of chromium(VI) ions

    International Nuclear Information System (INIS)

    Rezvani, Mehdi; Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Shekari, Nafiseh

    2014-01-01

    This work describes a novel polyaniline-magnetite nanocomposite and its application to the preconcentration of Cr(VI) anions. The material was obtained by oxidative polymerization of aniline in the presence of magnetite nanoparticles. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Extraction time, amount of magnetic sorbent and pH value were selected as the main factors affecting sorption. The sorption capacity of the sorbent for Cr(VI) is 54 mg g −1 . The type, volume and concentration of the eluents, and the elution time were selected as main factors in the optimization study of the elution step. Following sorption and elution, the Cr(VI) ions were reacted with diphenylcarbazide, and the resulting dye was quantified by HPLC with optical detection at 546 nm. The limit of detection is 0.1 μg L −1 , and all the relative standard deviations are <6.3 %. The nanocomposite was successfully applied to the rapid extraction and determination of trace quantities of Cr(VI) ions in spiked water samples. (author)

  19. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography.

    Science.gov (United States)

    Persson, Oliver; Andersson, Niklas; Nilsson, Bernt

    2018-01-05

    Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants.

    Science.gov (United States)

    Zaggia, Alessandro; Conte, Lino; Falletti, Luigi; Fant, Massimo; Chiorboli, Andrea

    2016-03-15

    In recent years abnormally high levels of perfluoroalkylated substances (PFAS) have been detected both in surface and underground water sampled in an area covering approximately 150 square kilometers in the Veneto region (Italy) indicating the presence of a pollution point source (fluorochemicals production plant). Adsorption on granular activated carbon is an emergency measure which is poorly effective requiring frequent replacement. This work focuses on the application of three strong anion exchange resins (Purolite® A520E, A600E and A532E) for the removal of traces of PFOA, PFOS, PFBA and PFBS (concentration of hundreds of ng L(-1)) from drinking water. This technology is attractive for the possibility of reusing resins after an in-situ regeneration step. A strong relationship between the hydrophobicity of the exchange functional group of the resin and its capacity in removing PFAS exists. A600E (non hydrophobic) and A520E (fairly hydrophobic) show a reduced sorption capacity compared to A532E (highly hydrophobic). While A600E and A520E can be regenerated with solvent-less dilute solutions of non-toxic NH4Cl and NH4OH, A532E requires concentrated solutions of methanol or ethanol and 1% NH4Cl and for the sake of this work it was regarded as non-regenerable. The volume of regeneration effluents requiring incineration can be efficiently reduced by more than 96.5% by using reverse osmosis coupled with under-vacuum evaporation. Transmission electron analysis on saturated resins showed that large molecular macro-aggregates of PFAS can form in the intraparticle pores of resin indicating that ion exchange is not the only mechanism involved in PFAS removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Application of anion-exchange techniques to the determination of traces of molybdenum in sea-water

    International Nuclear Information System (INIS)

    Kiriyama, T.; Kuroda, R.

    1984-01-01

    A combined ion-exchange spectrophotometric method has been developed for the determination of molybdenum in sea-water. Molybdenum is sorbed strongly on Amberlite CG 400 (Cl - ) at pH 3 from sea-water containing ascorbic acid and is easily eluted with 6 M nitric acid. Molybdenum in the effluent can be determined spectrophotometrically with potassium thiocyanate and stannous chloride. The combined method allows selective and sensitive determination of traces of molybdenum in sea-water. The precision of the method is 2% at a molybdenum level of approx. 10 μg/l. (author)

  2. Kinetics, stoichiometry, and anion selectivity of cAMP-stimulated Cl-HCO3 exchange in rabbit cortical collecting tubule (CCT)

    International Nuclear Information System (INIS)

    Schuster, V.L.

    1986-01-01

    Cyclic AMP stimulates net HCO 3 secretion in rabbit CCT (Schuster, JCI 75:2056). Because cAMP induces Cl-independent (electrogenic) HCO 3 secretion in several epithelia, I studied the anion dependence of the CCT cAMP effect. Tubules were perfused in vitro with lumen amiloride; bath cAMP was continuously present to stimulate HCO 3 secretion. First, the dependence of HCO 3 secretion on lumen [Cl] was determined. With bath [Cl]=O mM, perfusate [Cl] was varied (2-150 mM, gluconate substitution). Mean lumen [Cl] was determined either by a silver electrode in the collected fluid (2-12 mM perfusate) or by 36 Cl (12-150 mM). Total bath-to-lumen HCO 3 flux, J/sup Ib//sub HCO3/, was measured (bath HCO 3 =25 mM, perfusate HCO 3 =O), Passive J/sub HCO3/ was estimated from the GHK equation using a previously-determined HCO 3 permeability = 1.9 x 10 -6 cm/s. Mediated J/sub HCO3/ vs. mean lumen [Cl] showed saturation kinetics, apparent K/sub m/ = 5.8 mM and V/sub max/ = 8.7 pmol/mm/min. Second, the stoichiometry was estimated. When bath HCO 3 was replaced by HEPES at various perfusate [Cl] (12-150 mM), ΔJ/sub HCO3/ varied linearly with ΔJ/sup Ib/sub Cl/ (slope = .85 +- .27). Third, in anion selectivity studies Br supported HCO 3 secretion (89% rate with Cl) but I - and SO 4 /sup =/ did not. In rabbit CCT, as opposed to several other HCO 3 -secreting epithelia, cAMP stimulates 1:1 Cl-HCO 3 exchange

  3. Transport properties of anion exchange membranes in contact with organic ions. Part 2. Influence of the size of the aromatic chain; Proprietes de transport de membranes echangeuses d'anions en presence d'ions organiques. Partie 2. Influence de la taille de la chaine aromatique

    Energy Technology Data Exchange (ETDEWEB)

    Delimi, R. [Lab. de Traitement des eaux, Institut de Chimie, Universite de Badji Mokhtar, Annaba (Algeria); Sandeaux, J.; Sandeaux, R.; Pourcelly, G. [Montpellier-2 Univ., Institut Europeen des Mambranes, UMR 5635, 34 (France)

    2000-12-01

    Electrodialysis (process using ion exchange membranes and an electric field) is used for the treatment of waters and industrial effluents. In this work, the physico-chemical properties of an anion exchange membrane (ADS, Solvay) were studied in aqueous solutions containing both a mineral salt (10{sup -1} M NaCl) and an organic salt (10{sup -2} to 10{sup -1} M). The organic salt was a sodium carboxylate or sulfonate bearing one or two aromatic rings. Measurements of ion exchange, water content, electric resistance, self-diffusion and electro-diffusion fluxes were performed. According to the concentration, the organic anions with highly hydrophobic character can induce a poisoning of the membrane. (authors)

  4. Protein adsorption characteristics of porous and tentacle anion-exchange membrane prepared by radiation-induced graft polymerization

    Science.gov (United States)

    Tsuneda, Satoshi; Saito, Kyoichi; Sugo, Takanobu; Makuuchi, Keizo

    1995-08-01

    A polymer chain containing a diethylamino group was grafted onto the pore surface of a porous hollow-fiber membrane by radiation-induced graft polymerization. Dependence of the protein binding capacity of the membrane on environmental parameters such as salt concentration, pH and temperature was investigated. Saturation capacity of protein bound onto the graft chain containing ion-exchange group was governed by the conformation of the graft chain and the intensity of ion-exchange interaction. The conformation of the graft chain was investigated based on the pore radius of the membrane estimated from the permeation flux of a buffer solution through the membrane. By sufficiently permeating a bovine serum albumin (BSA) solution within the concentration range of 0.2-10 mg-BSA/ml through the membrane, the BSA binding capacity was determined. With increasing salt concentration or pH of the protein buffer solution, the graft chain shrank and BSA binding capacity decreased. On the other hand, the BSA binding capacity slightly increased with increasing temperature, and the conformation of the graft chain was insensitive to temperature in the range from 278 to 303 K. The bound BSA could be quantitatively eluted by permeating a buffer solution containing 0.5 M NaCl, and no deterioration in the BSA binding capacity was observed during five cycles of adsorption, elution and conditioning.

  5. Ligand-exchange chromatography of aromatic amines on resin-bound cobalt ion

    Energy Technology Data Exchange (ETDEWEB)

    Pehlivan, E.; Vural, U.S.; Ayar, A.; Yildiz, S. [Selcuk Univ., Konya (Turkey)

    1996-06-01

    The use of cobalt metal for the selective separation of aromatic amines is completed with a chemically bonded diamine and glyoxime functional groups onto Lycopodium clavatum. Oximes and amines are excellent complexing agents for transition metal ions. Cobalt(II) metal ions can easily be immobilized on bis-diaminoethyl-glyoximated sporopollenin (bDAEG-sporopollenin). The ligand-exchange behavior of modified Lycopodium clavatum with respect to aromatic amines was investigated. This will permit the evaluation of bDAEG-sporopollenin ligand exchangers for their utilization as sorbents in the recovery, pollution control, and elimination of amines from wastewater.

  6. A simple and reliable anion-exchange resin method for sulfate extraction and purification suitable for multiple O- and S-isotope measurements.

    Science.gov (United States)

    Le Gendre, Erwann; Martin, Erwan; Villemant, Benoit; Cartigny, Pierre; Assayag, Nelly

    2017-01-15

    The O- and S-isotope compositions of sulfates can be used as key tracers of the fate and sink of sulfate in both terrestrial and extra-terrestrial environments. However, their application remains limited in those geological systems where sulfate occurs in low concentrations. Here we present a simple and reliable method to extract, purify and concentrate sulfate from natural samples. The method allows us to take into account the separation of nitrate, which is known to be an issue in O-isotope analysis. The separation and concentration of sulfate from other anions in any aqueous solution are performed within a few hours via anion-exchange resin. The possible O- (δ 18 O and Δ 17 O) and S- (δ 34 S, Δ 33 S and Δ 36 S) isotope exchanges, fractionations and/or contaminations are for the first time monitored during the whole procedure using initial O- and S-mass-dependent and mass-independent sulfate solutions. After elution in HCl, pure sulfate is fully retrieved and precipitated into BaSO 4 , which is suitable for O- and S-isotopic measurements using established techniques. The analysis of retrieved barite presents no variation within 2σ uncertainties: ±0.5‰ and ±0.1‰ in O- (δ 18 O, Δ 17 O) and ±0.2‰, ±0.02‰ and ±0.09‰ in S- (δ 34 S, Δ 33 S and Δ 36 S) isotope ratios, respectively. This study shows that the resin method for sulfate extraction and purification, in addition to being cheap, simple and quick, is applicable for the measurements of all O- and S-isotopic ratios in sulfates (including the Δ 17 O, Δ 33 S and Δ 36 S values). Therefore, this method can be easily used for a high range of natural samples in which sulfate occurs in low concentration including aerosols, ice cores, sediments, volcanic deposits, (paleo)soils and rainwater, and thus it can be a key to our understanding of the sulfur cycle on Earth. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. In-situ anion exchange fabrication of porous ZnO/ZnSe heterostructural microspheres with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Hu, Yanchun [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); He, Xia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); Jia, Husheng, E-mail: jia_husheng@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang; Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China)

    2015-11-25

    Porous ZnO microspheres were fabricated by an ultrasonic irradiation technique. Subsequently, through a facile in-situ anion exchange reaction between the ZnO microsphere and sodium selenite, spherical ZnO/ZnSe heterostructures with different ratios of the two components were fabricated. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV–vis spectrometry. The results reveal that the secondary ZnSe nanoparticles are grown on the surface of pre-grown ZnO microspheres. Compared with pure ZnO microspheres, the ZnO/ZnSe hetero-microspheres show enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. Photoluminescent spectra further indicate that the ZnO/ZnSe heterostructures greatly suppress the charge recombination of photogenerated electron–hole pairs, which would be beneficial to improve their photocatalytic activity. Finally, the photocatalytic mechanism of the ZnO/ZnSe heterostructures is proposed. - Graphical abstract: Porous ZnO/ZnSe heterostructures with different ratios of the two components were fabricated and present enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. - Highlights: • Spherical ZnO/ZnSe porous composites were fabricated by in-situ anion exchange. • ZnO/ZnSe composites exhibited enhanced visible-light photocatalytic activity. • The matching band gap improves the separation of

  8. Deuterium Exchange in Ethyl Acetoacetate: An Undergraduate GC-MS [Gas Chromatography-Mass Spectroscopy] Experiment

    Science.gov (United States)

    Heinson, C. D.; Williams, J. M.; Tinnerman, W. N.; Malloy, T. B.

    2005-01-01

    The role of ethanol O-d in nullifying the deuterolysis may be demonstrated by determining that transesterification of methyl acetoacetate of the ethyl ester occurs as well as deuterium exchange of the five acetoacetate hydrogens. The significant acidity of the methylene protons in the acetoacetate group, the efficacy of base catalysis, the role of…

  9. Use of pressure in reversed-phase liquid chromatography to study protein conformational changes by differential deuterium exchange.

    Science.gov (United States)

    Makarov, Alexey A; Schafer, Wes A; Helmy, Roy

    2015-02-17

    The market of protein therapeutics is exploding, and characterization methods for proteins are being further developed to understand and explore conformational structures with regards to function and activity. There are several spectroscopic techniques that allow for analyzing protein secondary structure in solution. However, a majority of these techniques need to use purified protein, concentrated enough in the solution to produce a relevant spectrum. In this study, we describe a novel approach which uses ultrahigh pressure liquid chromatography (UHPLC) coupled with mass-spectrometry (MS) to explore compressibility of the secondary structure of proteins under increasing pressure detected by hydrogen-deuterium exchange (HDX). Several model proteins were used for these studies. The studies were conducted with UHPLC in isocratic mode at constant flow rate and temperature. The pressure was modified by a backpressure regulator up to about 1200 bar. It was found that the increase of retention factors upon pressure increase, at constant flow rate and temperature, was based on reduction of the proteins' molecular molar volume. The change in the proteins' molecular molar volume was caused by changes in protein folding, as was revealed by differential deuterium exchange. The degree of protein folding under certain UHPLC conditions can be controlled by pressure, at constant temperature and flow rate. By modifying pressure during UHPLC separation, it was possible to achieve changes in protein folding, which were manifested as changes in the number of labile protons exchanged to deuterons, or vice versa. Moreover, it was demonstrated with bovine insulin that a small difference in the number of protons exchanged to deuterons (based on protein folding under pressure) could be observed between batches obtained from different sources. The use of HDX during UHPLC separation allowed one to examine protein folding by pressure at constant flow rate and temperature in a mixture of

  10. N-Decyl-S-trityl-(R)-cysteine, a new chiral selector for "green" ligand-exchange chromatography applications.

    Science.gov (United States)

    Carotti, Andrea; Ianni, Federica; Camaioni, Emidio; Pucciarini, Lucia; Marinozzi, Maura; Sardella, Roccaldo; Natalini, Benedetto

    2017-09-10

    In search for new enantioselectivity profiles, the N-decyl-S-trityl-(R)-cysteine [C 10 -(R)-STC] was synthesized through a one-step procedure and then hydrophobically adsorbed onto an octadecylsilica surface to generate a stable chiral stationary phase for ligand-exchange chromatography (CLEC-CSP) applications. The CLEC analysis was carried out on underivatized amino acids, by using a Cu(II) sulphate (1.0mM) containing aqueous eluent system. Most of the analysed compounds (34 out of 45) were enantiodiscriminated by the C 10 -(R)-STC-based CSP, with resolution factor (R S ) values up to 8.86. Conformationally rigid and hydrophobic ligands often experienced the largest enantioselectivity effects. A high loadability emerged from the analysis of rac-NorVal (selected as prototype test compound): up to 20mg/mL were efficiently enantioseparated with the CLEC-CSP. Two in-line hand-made cartridges filled with a strong cation-exchange resin allowed the effective catching of Cu(II) ions after the semi-preparative enantioseparation. The quantitative recovery of the rac-NorVal enantiomers was made possible by flowing through the cartridge a 5% (v) ammonia solution. The CLEC phase proved successful in the enantioselective analysis of a commercially available (S)-Leu containing tablet. Furthermore, in order to understand the molecular basis for a successful use of the C 10 -(R)-STC-based CLEC system, a descriptive structure-separation relationship study was performed. As a result, all compounds with a MEAN-QPlogS (a hydrophilicity descriptor) value lower than 0.373 can be most likely enantioseparated with the CLEC system under investigation. In the work, the numerous aspects complying with the principles of green chromatography are highlighted and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Microchemical determination of nine rare earth elements in silicate rocks by cation-exchange preconcentration - ion-interaction chromatography

    International Nuclear Information System (INIS)

    Oguma, K.; Sato, K.; Kuroda, R.

    1993-01-01

    A method of applying ion-interaction chromatography to the determination of the rare earth elements in silicate rocks on a 100 to 200 mg sample basis has been developed. The rare earths are first separated as a group from matrices by cation-exchange chromatography in hydrochloric acid-thiocyanate media and isolated in a small, defined volume (3.00 ml). Using fractions of this, on-column concentration of the rare earths on a C-18 bonded phase silica coated with 1-octanesulfonate and a subsequent concentration gradient elution with glycolate (0.05 to 0.35 M) at pH 3.5 allows the respective separation of La, Ce, Pr, Nd, and Y (100 μl aliquot used) and of Er, Tm, Yb, and Lu (2.00 ml aliquot used). Sm, Eu, Gd, Tb, and Dy elute together, and Ho is not sufficiently well resolved from these middle rare earth elements. The eluted rare earth elements are detected and quantified by post-column reaction with Arsenazo III photometrically, using a UV-VIS spectrophotometer at a wavelength of 650 nm. The method is shown to be capable of determining nine of the rare earth elements in a variety of international reference rock samples with good precision and accuracy. (orig.)

  12. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    Science.gov (United States)

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane.

    Science.gov (United States)

    Yang, Cheng; Li, Li; Shi, Jialu; Long, Chao; Li, Aimin

    2015-03-02

    Strict regulations are forcing dyeing factory to upgrade existing waste treatment system. In this study, advanced treatment of dyeing secondary effluent by magnetic anion exchange resin (NDMP) was investigated and compared with ultrafiltration (UF); NDMP as a pre-treatment of reverse osmosis (RO) was also studied. NDMP resin (20 mL/L) gave higher removal of dissolved organic carbon (DOC) (83.9%) and colority (94.9%) than UF with a cut-off of 10 kDa (only 48.6% and 44.1%, respectively), showing that NDMP treatment was effective to meet the stringent discharge limit of DOC and colority. Besides, NDMP resin (20 mL/L) as a pretreatment of RO increased the permeate flux by 12.5% and reduced irreversible membrane fouling by 6.6%, but UF pretreatment did not mitigate RO membrane fouling. The results of excitation-emission matrix fluorescence spectra and resin fractions showed that NDMP had more efficient removal than UF for transphilic acid and hydrophilic fraction, such as protein-like organic matters and soluble microbial products, which contributed to a significant proportion of RO membrane fouling. In sum, NDMP resin treatment not only gave effective removal of DOC and colority of dyeing secondary effluent, but exhibited some improvement for RO membrane flux and irreversible fouling. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Durability and performance of polystyrene- b -poly(vinylbenzyl trimethylammonium) diblock copolymer and equivalent blend anion exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Vandiver, Melissa A. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Caire, Benjamin R. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Poskin, Zach [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Li, Yifan [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden Colorado 80401; Seifert, Sönke [X-Ray Science Division, Argonne National Laboratory, Argonne Illinois 60439; Knauss, Daniel M. [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden Colorado 80401; Herring, Andrew M. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Liberatore, Matthew W. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401

    2014-11-01

    Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion transport in fuel cells. In this study, a polystyrene-b-poly(vinylbenzyl trimethylammonium) diblock copolymer was evaluated as potential AEM and compared with the equivalent homopolymer blend. The diblock had a 92% conversion of reactive sites with an IEC of 1.72 ± 0.05 mmol g-1, while the blend had a 43% conversion for an IEC of 0.80 ± 0.03 mmol g-1. At 50°C and 95% relative humidity, the chloride conductivity of the diblock was higher, 24–33 mS cm-1, compared with the blend, 1–6 mS cm-1. The diblock displayed phase separation on the length scale of 100 nm, while the blend displayed microphase separation (~10 μm). Mechanical characterization of films from 40 to 90 microns thick found that elasticity and elongation decreased with the addition of cations to the films. At humidified conditions, water acted as a plasticizer to increase film elasticity and elongation. While the polystyrene-based diblock displayed sufficient ionic conductivity, the films' mechanical properties require improvement, i.e., greater elasticity and strength, before use in fuel cells. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41596.

  15. La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance

    Science.gov (United States)

    Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; Ngo, Chilan; Cadigan, Christopher A.; Bender, Guido; Richards, Ryan M.; O'Hayre, Ryan; Pylypenko, Svitlana

    2018-01-01

    This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 °C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ∼50% increase when compared to the highest performing composite with undoped carbon at the same loading.

  16. Impact of ozonation, anion exchange resin and UV/H2O2 pre-treatments to control fouling of ultrafiltration membrane for drinking water treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-06-01

    The effects of ozonation, anion exchange resin (AER) and UV/H 2 O 2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H 2 O 2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H 2 O 2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.

  17. Cross-Linked Quaternized Poly(styrene-b-(ethylene-co-butylene)-b-styrene) for Anion Exchange Membrane: Synthesis, Characterization and Properties.

    Science.gov (United States)

    Dai, Pei; Mo, Zhao-Hua; Xu, Ri-Wei; Zhang, Shu; Wu, Yi-Xian

    2016-08-10

    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) triblock copolymer (SEBS) was selected for functionalization and cross-linking reaction to prepare the anion exchange membrane. The cross-linked quaternized SEBS (QSEBS-Cn) membranes were synthesized by simultaneous of quaternization and cross-linking of chloromethylated SEBS with α,ω-difunctional tertiary amines. The spacer groups of (-CH2-)n in diamines did affect the functionalization, micromorphology and properties of the resulting QSEBS-Cn membranes. The ionic conductivity of QSEBS-Cn membranes greatly increased and methanol resistance slightly decreased with increasing the length of spacer groups in the cross-linked structures from -(CH2)- to -(CH2)6-. Compared to the un-cross-linked QSEBS, the QSEBS-Cn membranes behaved much higher mechanical property, service temperature, chemical stability and thermal stability. Moreover, the hybrid composite membrane of QSEBS-C6 with 0.5% of graphene oxide could also be in situ prepared. This hybrid membrane had both relatively high ionic conductivity of 2.0 × 10(-2) S·cm(-1) and high selectivity of 7.6 × 10(4) S·s·cm(-3) at 60 °C due to its low methanol permeability.

  18. Improving the Energy Efficiency of Direct Formate Fuel Cells with a Pd/C-CeO2 Anode Catalyst and Anion Exchange Ionomer in the Catalyst Layer

    Directory of Open Access Journals (Sweden)

    Hamish Andrew Miller

    2018-02-01

    Full Text Available This article describes the development of a high power density Direct Formate Fuel Cell (DFFC fed with potassium formate (KCOOH. The membrane electrode assembly (MEA contains no platinum metal. The cathode catalyst is FeCo/C combined with a commercial anion exchange membrane (AEM. To enhance the power output and energy efficiency we have employed a nanostructured Pd/C-CeO2 anode catalyst. The activity for the formate oxidation reaction (FOR is enhanced when compared to a Pd/C catalyst with the same Pd loading. Fuel cell tests at 60 °C show a peak power density of almost 250 mW cm−2. The discharge energy (14 kJ, faradic efficiency (89% and energy efficiency (46% were determined for a single fuel charge (30 mL of 4 M KCOOH and 4 M KOH. Energy analysis demonstrates that removal of the expensive KOH electrolyte is essential for the future development of these devices. To compensate we apply for the first time a polymeric ionomer in the catalyst layer of the anode electrode. A homopolymer is synthesized by the radical polymerization of vinyl benzene chloride followed by amination with 1,4-diazabicyclo[2.2.2]octane (DABCO. The energy delivered, energy efficiency and fuel consumption efficiency of DFFCs fed with 4 M KCOOH are doubled with the use of the ionomer.

  19. Preparation and characterization of anion exchange resin decorated with magnetite nanoparticles for removal of p-toluic acid from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Davarpanah, Morteza, E-mail: Davarpanah.morteza@gmail.com; Ahmadpour, Ali; Rohani Bastami, Tahereh

    2015-02-01

    Polystyrene resin was covalently functionalized with diethanolamine and then decorated with magnetite nanoparticles by a novel and simple co-precipitation method using iron(II) sulfate as precursor. The products were characterized by Fourier transform infrared spectroscopy, elemental analysis, X-ray diffraction, Mössbauer spectroscopy, field-emission scanning electron microscopy and vibrating sample magnetometer. Adsorption of p-toluic acid (p-TA) onto magnetite-decorated polystyrene (MAG-PS) was studied and compared with that of diethanolamine-functionalized polystyrene and a commercial anion exchange resin. Results showed that the magnetite nanoparticles with an average size of 20.4 nm were successfully formed on the surface of polystyrene resin, and MAG-PS was exhibited high affinity for the removal of p-TA. - Highlights: • .Polystyrene resin was covalently functionalized with diethanolamine. • .The functionalized adsorbents were decorated with magnetite nanoparticles (∼20 nm). • .Proposed magnetization procedure was high-efficient and relatively simple. • .Magnetic adsorbent was presented high affinity for removal of p-toluic acid.

  20. Phenolphthalein-based Poly(arylene ether sulfone nitrile)s Multiblock Copolymers As Anion Exchange Membranes for Alkaline Fuel Cells.

    Science.gov (United States)

    Lai, Ao Nan; Wang, Li Sha; Lin, Chen Xiao; Zhuo, Yi Zhi; Zhang, Qiu Gen; Zhu, Ai Mei; Liu, Qing Lin

    2015-04-22

    A series of phenolphthalein-based poly(arylene ether sulfone nitrile)s (PESN) multiblock copolymers containing 1-methylimidazole groups (ImPESN) were synthesized to prepare anion exchange membranes (AEMs) for alkaline fuel cells. The ion groups were introduced selectively and densely on the unit of phenolphthalein as the hydrophilic segments, allowing for the formation of ion clusters. Strong polar nitrile groups were introduced into the hydrophobic segments with the intention of improving the dimensional stability of the AEMs. A well-controlled multiblock structure was responsible for the well-defined hydrophobic/hydrophilic phase separation and interconnected ion-transport channels, as confirmed by atomic force microscopy and small angle X-ray scattering. The ImPESN membranes with low swelling showed a relatively high water uptake, high hydroxide ion conductivity together with good mechanical, thermal and alkaline stability. The ionic conductivity of the membranes was in the range of 3.85-14.67×10(-2) S·cm(-1) from 30 to 80 °C. Moreover, a single H2/O2 fuel cell with the ImPESN membrane showed an open circuit voltage of 0.92 V and a maximum power density of 66.4 mW cm(-2) at 60 °C.

  1. Ion-exchange chromatography/electrospray mass spectrometry for the identification of organic and inorganic species in topiramate tablets.

    Science.gov (United States)

    Xiang, X; Ko, C Y; Guh, H Y

    1996-11-01

    An ion-exchange chromatograph/electrospray ionization mass spectrometer (IC/ESI-MS) was used successfully to identify organic and inorganic species present in topiramate tablets. An ion suppressor is placed between the column and detectors to replace sodium ions in the mobile phase with hydrogen ions supplied by the suppressor. The ensuing combination of the hydrogen ions with the mobile phase hydroxide ions produces water and thus allows simultaneous ion detection by an ion conductivity detector and a mass spectrometer. Analytes, including lactate, glycolate, chloride, formate, sulfate, and oxalate, were unambiguously identified by matching the mass spectra and retention times with those of the authentic compounds. Due to its capability of detecting positive and negative as well as neutral species, ESI-MS provides valuable information which is not available with ion conductivity detection alone. Though the coupling of ion-exchange chromatography to mass spectrometry has been reported previously, this is the first demonstration of IC/ESI-MS for the identification of unknown species in real samples. Finally, with the use of deuterium/carbon-13 labeling and MS/MS techniques, we have confirmed that oxalic acid (HOOC-COOH) is formed from formic acid (HCOOH) at the electrospray interface in the presence of the electric field. This observation not only confirms the identity of an unknown peak, but it also provides new insight into chemistry that can take place during electrospray ionization.

  2. Microscopic insight into role of protein flexibility during ion exchange chromatography by nuclear magnetic resonance and quartz crystal microbalance approaches.

    Science.gov (United States)

    Hao, Dongxia; Ge, Jia; Huang, Yongdong; Zhao, Lan; Ma, Guanghui; Su, Zhiguo

    2016-03-18

    Driven by the prevalent use of ion exchange chromatography (IEC) for polishing therapeutic proteins, many rules have been formulated to summarize the different dependencies between chromatographic data and various operational parameters of interest based on statically determined interactions. However, the effects of the unfolding of protein structures and conformational stability are not as well understood. This study focuses on how the flexibility of proteins perturbs retention behavior at the molecular scale using microscopic characterization approaches, including hydrogen-deuterium (H/D) exchange detected by NMR and a quartz crystal microbalance (QCM). The results showed that a series of chromatographic retention parameters depended significantly on the adiabatic compressibility and structural flexibility of the protein. That is, softer proteins with higher flexibility tended to have longer retention times and stronger affinities on SP Sepharose adsorbents. Tracing the underlying molecular mechanism using NMR and QCM indicated that an easily unfolded flexible protein with a more compact adsorption layer might contribute to the longer retention time on adsorbents. The use of NMR and QCM provided a previously unreported approach for elucidating the effect of protein structural flexibility on binding in IEC systems. Copyright © 2016. Published by Elsevier B.V.

  3. Ion-Exchange Membrane Chromatography as an Alternative Method of Separation of Potato y Virus

    Directory of Open Access Journals (Sweden)

    Treder Krzysztof

    2015-12-01

    Full Text Available Procedures of separation of virus particles from a plant material are multistage. Furthermore often they are difficult in terms of methodology and require use of expensive, highly specialist equipment and yield of separation is often low. The antigen obtained is often degraded and contains admixtures of other proteins. Therefore, generation of high quality and specificity antibodies based on such antigen is very difficult and quality of the antibodies has impact on reliability, sensitivity and unambiguity of results of immunodiagnostic tests (e.g. ELISA that are currently conventionally used to detect vegetable viruses. In this study three conventionally-performed methods of separation of potato virus Y (PVY were compared and a method of separation based on membrane chromatography, as an alternative separation technique, has been presented. It has been demonstrated that in proper process conditions good quality virus preparation can be obtained.

  4. NMR spectroscopic evidence for the intermediacy of XeF(3)(-) in XeF(2)/F(-) exchange, attempted syntheses and thermochemistry of XeF(3)(-) salts, and theoretical studies of the XeF(3)(-) anion.

    Science.gov (United States)

    Vasdev, Neil; Moran, Matthew D; Tuononen, Heikki M; Chirakal, Raman; Suontamo, Reijo J; Bain, Alex D; Schrobilgen, Gary J

    2010-10-04

    The existence of the trifluoroxenate(II) anion, XeF(3)(-), had been postulated in a prior NMR study of the exchange between fluoride ion and XeF(2) in CH(3)CN solution. The enthalpy of activation for this exchange, ΔH(⧧), has now been determined by use of single selective inversion (19)F NMR spectroscopy to be 74.1 ± 5.0 kJ mol(-1) (0.18 M) and 56.9 ± 6.7 kJ mol(-1) (0.36 M) for equimolar amounts of [N(CH(3))(4)][F] and XeF(2) in CH(3)CN solvent. Although the XeF(3)(-) anion has been observed in the gas phase, attempts to prepare the Cs(+) and N(CH(3))(4)(+) salts of XeF(3)(-) have been unsuccessful, and are attributed to the low fluoride ion affinity of XeF(2) and fluoride ion solvation in CH(3)CN solution. The XeF(3)(-) anion would represent the first example of an AX(3)E(3) valence shell electron pair repulsion (VSEPR) arrangement of electron lone pair and bond pair domains. Fluorine-19 exchange between XeF(2) and the F(-) anion has also been probed computationally using coupled-cluster singles and doubles (CCSD) and density functional theory (DFT; PBE1PBE) methods. The energy-minimized geometry of the ground state shows that the F(-) anion is only weakly coordinated to XeF(2) (F(2)Xe---F(-); a distorted Y-shape possessing C(s) symmetry), while the XeF(3)(-) anion exists as a first-order transition state in the fluoride ion exchange mechanism, and is planar and Y-shaped (C(2v) symmetry). The molecular geometry and bonding of the XeF(3)(-) anion has been described and rationalized in terms of electron localization function (ELF) calculations, as well as the VSEPR model of molecular geometry. Quantum-chemical calculations, using the CCSD method and a continuum solvent model for CH(3)CN, accurately reproduced the transition-state enthalpy observed by (19)F NMR spectroscopy, and showed a negative but negligible enthalpy for the formation of the F(2)Xe---F(-) adduct in this medium.

  5. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.

    Science.gov (United States)

    Kluters, Simon; Wittkopp, Felix; Jöhnck, Matthias; Frech, Christian

    2016-02-01

    The mobile phase pH is a key parameter of every ion exchange chromatography process. However, mechanistic insights into the pH influence on the ion exchange chromatography equilibrium are rare. This work describes a mechanistic model capturing salt and pH influence in ion exchange chromatography. The pH dependence of the characteristic protein charge and the equilibrium constant is introduced to the steric mass action model based on a protein net charge model considering the number of amino acids interacting with the stationary phase. This allows the description of the adsorption equilibrium of the chromatographed proteins as a function of pH. The model parameters were determined for a monoclonal antibody monomer, dimer, and a higher aggregated species based on a manageable set of pH gradient experiments. Without further modification of the model parameters the transfer to salt gradient elution at fixed pH is demonstrated. A lumped rate model was used to predict the separation of the monoclonal antibody monomer/aggregate mixture in pH gradient elution and for a pH step elution procedure-also at increased protein loadings up to 48 g/L packed resin. The presented model combines both salt and pH influence and may be useful for the development and deeper understanding of an ion exchange chromatography separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A study of ion-exchange chromatography in an expanded bed for bovine albumin recovery

    Directory of Open Access Journals (Sweden)

    João Batista Severo Jr.

    2009-04-01

    Full Text Available In the present work, the effect of bed expansion on BSA adsorption on Amberlite IRA 410 ion-exchange resin was studied. The hydrodynamic behavior of an expanded bed adsorption column on effects of the biomolecules and salt addition and temperature were studied to optimize the conditions for BSA recovery on ion-exchange resin. Residence time distribution showed that HEPT, axial dispersion and the Pecletl number increased with temperature and bed height, bed voidage and linear velocity. The binding capacity of the resin increased with bed height. The Amberlite IRA 410 ion-exchange showed an affinity for BSA with a recovery yield of 78.36 % of total protein.No presente trabalho foi estudado o efeito da expansão do leito sobre a adsorção de BSA na resina de troca iônica Amberlite IRA 410. O comportamento hidrodinâmico de uma coluna de adsorção em leito expandido sob efeito da adição de biomoléculas, sal e variação da temperatura também foi estudado para obter as condições ótimas de recuperação da BSA sob a resina de troca iônica. A distribuição do tempo de residência mostrou que a HEPT, a dispersão axial e o número de Pecletl aumentaram com a temperatura, altura do leito, porosidade do leito e velocidade linear. A capacidade de ligação da resina aumentou com a expansão do leito. A resina de troca iônica Amberlite IRA 410 mostrou ter afinidade pela BSA, com uma recuperação de 78,36 % da proteína total.

  7. Basolateral chloride loading by the anion exchanger type 2: role in fluid secretion by the human airway epithelial cell line Calu-3.

    Science.gov (United States)

    Huang, Junwei; Shan, Jiajie; Kim, Dusik; Liao, Jie; Evagelidis, Alexandra; Alper, Seth L; Hanrahan, John W

    2012-11-01

    Anion exchanger type 2 (AE2 or SLC4A2) is an electroneutral Cl(-)/HCO(3)(-) exchanger expressed at the basolateral membrane of many epithelia. It is thought to participate in fluid secretion by airway epithelia. However, the role of AE2 in fluid secretion remains uncertain, due to the lack of specific pharmacological inhibitors, and because it is electrically silent and therefore does not contribute directly to short-circuit current (I(sc)). We have studied the role of AE2 in Cl(-) and fluid secretion by the airway epithelial cell line Calu-3. After confirming expression of its mRNA and protein, a knock-down cell line called AE2-KD was generated by lentivirus-mediated RNA interference in which AE2 mRNA and protein levels were reduced 90%. Suppressing AE2 increased the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) by ∼70% without affecting the levels of NKCC1 (Na(+)-K(+)-2Cl(-) cotransporter) or NBCe1 (Na(+)-nHCO(3)(-) cotransporter). cAMP agonists stimulated fluid secretion by parental Calu-3 and scrambled shRNA cells >6.5-fold. In AE2-KD cells this response was reduced by ∼70%, and the secreted fluid exhibited elevated pH and [HCO(3)(-)] as compared with the control lines. Unstimulated equivalent short-circuit current (I(eq)) was elevated in AE2-KD cells, but the incremental response to forskolin was unaffected. The modest bumetanide-induced reductions in both I(eq) and fluid secretion were more pronounced in AE2-KD cells. Basolateral Cl(-)/HCO(3)(-) exchange measured by basolateral pH-stat in cells with permeabilized apical membranes was abolished in AE2-KD monolayers, and the intracellular alkalinization resulting from basolateral Cl(-) removal was reduced by ∼80% in AE2-KD cells. These results identify AE2 as a major pathway for basolateral Cl(-) loading during cAMP-stimulated secretion of Cl(-) and fluid by Calu-3 cells, and help explain the large bumetanide-insensitive component of fluid secretion reported previously in

  8. Modacrylic anion-exchange fibers for Cr(VI) removal from chromium-plating rinse water in batch and flow-through column experiments.

    Science.gov (United States)

    Lee, Seung-Chan; Kang, Jin-Kyu; Sim, Eun-Hye; Choi, Nag-Choul; Kim, Song-Bae

    2017-11-10

    The aim of this study was to investigate Cr(VI) removal from chromium-plating rinse water using modacrylic anion-exchange fibers (KaracaronTM KC31). Batch experiments were performed with synthetic Cr(VI) solutions to characterize the KC31 fibers in Cr(VI) removal. Cr(VI) removal by the fibers was affected by solution pH; the Cr(VI) removal capacity was the highest at pH 2 and decreased gradually with a pH increase from 2 to 12. In regeneration and reuse experiments, the Cr(VI) removal capacity remained above 37.0 mg g -1 over five adsorption-desorption cycles, demonstrating that the fibers could be successfully regenerated with NaCl solution and reused. The maximum Cr(VI) removal capacity was determined to be 250.3 mg g -1 from the Langmuir model. In Fourier-transform infrared spectra, a Cr = O peak newly appeared at 897 cm -1 after Cr(VI) removal, whereas a Cr-O peak was detected at 772 cm -1 due to the association of Cr(VI) ions with ion-exchange sites. X-ray photoelectron spectroscopy analyses demonstrated that Cr(VI) was partially reduced to Cr(III) after the ion exchange on the surfaces of the fibers. Batch experiments with chromium-plating rinse water (Cr(VI) concentration = 1178.8 mg L -1 ) showed that the fibers had a Cr(VI) removal capacity of 28.1-186.4 mg g -1 under the given conditions (fiber dose = 1-10 g L -1 ). Column experiments (column length = 10 cm, inner diameter = 2.5 cm) were conducted to examine Cr(VI) removal from chromium-plating rinse water by the fibers under flow-through column conditions. The Cr(VI) removal capacities for the fibers at flow rates of 0.5 and 1.0 mL min -1 were 214.8 and 171.5 mg g -1 , respectively. This study demonstrates that KC31 fibers are effective in the removal of Cr(VI) ions from chromium-plating rinse water.

  9. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A)

    International Nuclear Information System (INIS)

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2010-01-01

    Research highlights: → Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. → Adaptor-related protein complex 1 μ1A (AP-1 mu1A) was firstly reported to interact with kAE1. → The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. → AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. → AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl - ) and bicarbonate (HCO 3 - ) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl - /HCO 3 - exchange at the basolateral membrane and failure of proton (H + ) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells.

  10. Online Simultaneous Hydrogen/Deuterium Exchange of Multitarget Gas-Phase Molecules by Electrospray Ionization Mass Spectrometry Coupled with Gas Chromatography.

    Science.gov (United States)

    Jeong, Eun Sook; Cha, Eunju; Cha, Sangwon; Kim, Sunghwan; Oh, Han Bin; Kwon, Oh-Seung; Lee, Jaeick

    2017-11-21

    In this study, a hydrogen/deuterium (H/D) exchange method using gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) was first investigated as a novel tool for online H/D exchange of multitarget analytes. The GC and ESI source were combined with a homemade heated column transfer line. GC-ESI/MS-based H/D exchange occurs in an atmospheric pressure ion source as a result of reacting the gas-phase analyte eluted from GC with charged droplets of deuterium oxide infused as the ESI spray solvent. The consumption of the deuterated solvent at a flow rate of 2 μL min -1 was more economical than that in online H/D exchange methods reported to date. In-ESI-source H/D exchange by GC-ESI/MS was applied to 11 stimulants with secondary amino or hydroxyl groups. After H/D exchange, the spectra of the stimulants showed unexchanged, partially exchanged, and fully exchanged ions showing various degrees of exchange. The relative abundances corrected for naturally occurring isotopes of the fully exchanged ions of stimulants, except for etamivan, were in the range 24.3-85.5%. Methylephedrine and cyclazodone showed low H/D exchange efficiency under acidic, neutral, and basic spray solvent conditions and nonexchange for etamivan with an acidic phenolic OH group. The in-ESI-source H/D exchange efficiency by GC-ESI/MS was sufficient to determine the number of hydrogen by elucidation of fragmentation from the spectrum. Therefore, this online H/D exchange technique using GC-ESI/MS has potential as an alternative method for simultaneous H/D exchange of multitarget analytes.

  11. A SLC4-like anion exchanger from renal tubules of the mosquito (Aedes aegypti): evidence for a novel role of stellate cells in diuretic fluid secretion.

    Science.gov (United States)

    Piermarini, Peter M; Grogan, Laura F; Lau, Kenneth; Wang, Li; Beyenbach, Klaus W

    2010-03-01

    Transepithelial fluid secretion across the renal (Malpighian) tubule epithelium of the mosquito (Aedes aegypti) is energized by the vacuolar-type (V-type) H(+)-ATPase and not the Na(+)-K(+)-ATPase. Located at the apical membrane of principal cells, the V-type H(+)-ATPase translocates protons from the cytoplasm to the tubule lumen. Secreted protons are likely to derive from metabolic H(2)CO(3), which raises questions about the handling of HCO(3)(-) by principal cells. Accordingly, we tested the hypothesis that a Cl/HCO(3) anion exchanger (AE) related to the solute-linked carrier 4 (SLC4) superfamily mediates the extrusion of HCO(3)(-) across the basal membrane of principal cells. We began by cloning from Aedes Malpighian tubules a full-length cDNA encoding an SLC4-like AE, termed AeAE. When expressed heterologously in Xenopus oocytes, AeAE is both N- and O-glycosylated and mediates Na(+)-independent intracellular pH changes that are sensitive to extracellular Cl(-) concentration and to DIDS. In Aedes Malpighian tubules, AeAE is expressed as two distinct forms: one is O-glycosylated, and the other is N-glycosylated. Significantly, AeAE immunoreactivity localizes to the basal regions of stellate cells but not principal cells. Concentrations of DIDS that inhibit AeAE activity in Xenopus oocytes have no effects on the unstimulated rates of fluid secretion mediated by Malpighian tubules as measured by the Ramsay assay. However, in Malpighian tubules stimulated with kinin or calcitonin-like diuretic peptides, DIDS reduces the diuretic rates of fluid secretion to basal levels. In conclusion, Aedes Malpighian tubules express AeAE in the basal region of stellate cells, where this transporter may participate in producing diuretic rates of transepithelial fluid secretion.

  12. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode.

    Science.gov (United States)

    Dybczyński, Rajmund S; Kulisa, Krzysztof; Pyszynska, Marta; Bojanowska-Czajka, Anna

    2015-03-20

    Separation of Y from other rare earth elements (REE) is difficult because of similarity of its ionic radius to ionic radii of Tb, Dy and Ho. In the new RP-HPLC system with C18 column, tetra-n-butyl ammonium hydroxide (TBAOH) as an ion interaction reagent (IIR), nitrilotriacetic acid (NTA) as a complexing agent at pH=2.8-3.5, and post column derivatization with Arsenazo III, yttrium is eluted in the region of light REE, between Nd and Sm and is base line separated from Nd and Sm and even from promethium. Simple model employing literature data on complex formation of REE with NTA and based on anion exchange mechanism was developed to foresee the order of elution of individual REE. The model correctly predicted that lanthanides up to Tb will be eluted in the order of increasing Atomic Number (At.No.) but all heavier REE will show smaller retention factors than Tb. Concurrent UV/VIS detection at 658nm and the use of radioactive tracers together with γ-ray spectrometric measurements made possible to establish an unique elution order of elution of REE: La, Ce, Pr, Nd, Pm, Y, Sm, Er, Ho, Tm, Yb, Eu, Lu, Dy+Gd, Tb, Sc. The real place of Y however, in this elution series differs from that predicted by the model (Y between Sm and Eu). The method described in this work enables selective separation of Y from La, Ce, Pr, Nd, Pm, Sm and all heavier REE treated as a group. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Stability of a Cu0.7Co2.3O4 electrode during the oxygen evolution reaction for alkaline anion-exchange membrane water electrolysis

    Science.gov (United States)

    Kang, Kyoung Eun; Kim, Chi Ho; Lee, Myung Sup; Jung, Chang Wook; Kim, Yang Do; Lee, Jae Ho

    2018-01-01

    The electrode materials for oxygen evolution, especially non-platinum group metal oxides, have attracted increasing attention. Among the spinel-type transition metal oxides, Cu0.7Co2.3O4 powders were evaluated as a potential replacement for expensive dimensionally stabilized anode materials. Cu0.7Co2.3O4 powder for use as an electrode material for oxygen evolution in an alkaline anion-exchange membrane water electrolyzer was prepared using a thermal decomposition method. The Cu0.7Co2.3O4 powders heat-treated at 250 °C exhibited the same X-ray diffraction patterns without any secondary phases as the Co3O4 spinel structure did. The Cu0.7Co2.3O4 powders heat-treated at 250 °C for 30 minutes showed the smallest mean particle size of approximately 376 nm with the powders having a homogeneous shape and size distribution. The fine powders with a relatively homogeneous size distribution showed a higher current density during the oxygen evolution reaction. The lifetime of the Cu0.7Co2.3O4 electrode was relatively long at a low current density, but was quickly shortened due to physical detachment of the Cu0.7Co2.3O4 powders as the current density was increased. This study showed that the efficiency and the stability of Cu0.7Co2.3O4 powders during the oxygen evolution reaction were related directly to the active electrode area.

  14. Looking for new hybrid polymer fillers: synthesis of nanosized α-type Zr(IV) organophosphonates through an unconventional topotactic anion exchange reaction.

    Science.gov (United States)

    Pica, Monica; Donnadio, Anna; Troni, Elisabetta; Capitani, Donatella; Casciola, Mario

    2013-07-01

    Gels of α-type zirconium(IV) phosphate alkylphosphonates, ZP(Cn)x, were prepared by reacting, at room temperature, propanol intercalated nanosized α-zirconium phosphate (α-ZrP) with propanol solutions of alkylphosphonic acids (H2Cn, n = number of carbon atoms in the alkyl chain = 4, 5, 6), with (H2Cn/Zr) molar ratios in the range 0.4-4.0. (31)P MAS NMR showed the presence of resonances due to the phosphate and phosphonate groups bonded to the Zr atoms mainly by three oxygen atoms, as in the α-type layer. The composition of the ZP(Cn)x materials, obtained by thermogravimetric analysis, ranges from x ≈ 0.2 to x ≈ 1.1. On the basis of the NMR data and of the analysis of the X-ray patterns of gels and powders, it is inferred that the ZP(Cn)x compounds have an α-type layered structure and that the reaction between α-ZrP and H2Cn is a topotactic anion exchange process. The evolution of the X-ray patterns during propanol deintercalation is consistent with a random distribution of the alkylphosphonate groups on the α-type layers which gives rise to porous pathways in the interlayer region. To test the possibility of using ZP(Cn)x as mechanical reinforcement of a polymer matrix, a starch membrane filled with 5 wt % ZP(C6)0.54 was prepared and characterized by stress-strain mechanical tests. Besides an excellent flexibility, this membrane exhibited a proportional increase of the Young's modulus by 230% in comparison with neat starch.

  15. Model-based high-throughput design of ion exchange protein chromatography.

    Science.gov (United States)

    Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo

    2016-08-12

    This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process

  16. An on-line monitor for cation exchange elution chromatography using lithium silicate glass beads as solid scintillator

    International Nuclear Information System (INIS)

    Zhu Rongbao; Yang Liucheng; Wei Liansheng; Ji Liqiang; Zhang Zengrui

    1988-03-01

    A new type of on-line monitoring system used to monitor radioactive nuclides with α or soft β radiation in the effluent from a high pressure ion exchange column is described. The beads made of cerium-impregnated lithium silicate glass are used as scientillation material. They are filled into a quartz glass tube to form a flow cell. By reducing the diameter of glass beads to more closly approximate the average range of α or soft β radiation in solution, the absolute counting efficiency for 241 Am, 242 Cm α radiation have reached and 85.8% and 92.8% respectively, for 14 C, 90 Sr- 90 Y β radiation, 62.1% and 88.6% respectively. These values can be comparable to those achieved with on-line liquid scientillation technique. When the total amount of 241 Am added into column is decreased to 7.4 Bq it is still possible to obtain a clear chromatography peak (half peak width = 0.22 mL)

  17. Simplified in vitro refolding and purification of recombinant human granulocyte colony stimulating factor using protein folding cation exchange chromatography.

    Science.gov (United States)

    Vemula, Sandeep; Dedaniya, Akshay; Thunuguntla, Rahul; Mallu, Maheswara Reddy; Parupudi, Pavani; Ronda, Srinivasa Reddy

    2015-01-30

    Protein folding-strong cation exchange chromatography (PF-SCX) has been employed for efficient refolding with simultaneous purification of recombinant human granulocyte colony stimulating factor (rhG-CSF). To acquire a soluble form of renatured and purified rhG-CSF, various chromatographic conditions, including the mobile phase composition and pH was evaluated. Additionally, the effects of additives such as urea, amino acids, polyols, sugars, oxidizing agents and their amalgamations were also investigated. Under the optimal conditions, rhG-CSF was efficaciously solubilized, refolded and simultaneously purified by SCX in a single step. The experimental results using ribose (2.0M) and arginine (0.6M) combination were found to be satisfactory with mass yield, purity and specific activity of 71%, ≥99% and 2.6×10(8)IU/mg respectively. Through this investigation, we concluded that the SCX refolding method was more efficient than conventional methods which has immense potential for the large-scale production of purified rhG-CSF. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. [Sulfonation modification-assisted enrichment and identification of histidine-containing peptides by strong cation exchange chromatography and mass spectrometry].

    Science.gov (United States)

    Cao, Dong; Zhou, Chunxi; Zhang, Yangjun; Han, Chunguang; Deng, Yulin; Qian, Xiaohong

    2009-03-01

    By the sulfonation at the N-terminal of peptides, the charge state of histidine-containing peptides is different from that of other peptides in pH sulfonated histidine-containing peptides from tryptic digest of proteins by strong cation exchange (SCX) chromatography and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF MS/MS). Using the standard proteins containing histidines as the model, the methodology was evaluated. The results show that sulfonated histidine-containing peptides were efficiently enriched by SCX, and the N-terminal sulfonation of the peptides simplifies the interpretation of the acquired mass spectra and facilitates the sequencing of histidine-containing peptides by producing consecutive and predominant ions in positive mode MS2 spectra, which is thought to be the result of the charge neutralization of b ions by the N-terminal sulfonic acid group. The discrimination of b ions and y ions can greatly enhance the confidence in peptide and subsequent protein identification. It is feasible to isolate and enrich the histidine-containing peptides by using this method which has the potential applications in proteomics.

  19. Cation-exchange high-performance liquid chromatography for variant hemoglobins and HbF/A2: What must hematopathologists know about methodology?

    OpenAIRE

    Sharma, Prashant; Das, Reena

    2016-01-01

    Cation-exchange high-performance liquid chromatography (CE-HPLC) is a widely used laboratory test to detect variant hemoglobins as well as quantify hemoglobins F and A2 for the diagnosis of thalassemia syndromes. It’s versatility, speed, reproducibility and convenience have made CE-HPLC the method of choice to initially screen for hemoglobin disorders. Despite its popularity, several methodological aspects of the technology remain obscure to pathologists and this may have consequences in spec...

  20. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests.

    Science.gov (United States)

    McCleaf, Philip; Englund, Sophie; Östlund, Anna; Lindegren, Klara; Wiberg, Karin; Ahrens, Lutz

    2017-09-01

    Poly- and perfluoroalkyl substances (PFASs) have been detected in drinking water at relatively high concentrations throughout the world which has led to implementation of regulatory guidelines for specific PFASs in drinking water in several European countries and in the U.S. The Swedish National Food Agency has determined that the drinking water of over one third of the country's municipal consumers is at risk or already affected by PFAS contamination. The present study investigated the effects of perfluorocarbon chain length, functional group and isomer structure (branched or linear) on removal of multiple PFASs using granular activated carbon (GAC, Filtrasorb ® 400) and anion exchange (AE, Purolite ® A600) column experiments. The removal of 14 different PFASs, i.e. the C 3 C 11 , C 14 perfluoroalkyl carboxylic acids (PFCAs) (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA), perfluorooctane sulfonamide (FOSA), and the C 4 , C 6 , C 8 perfluoroalkyl sulfonic acids (PFSAs) (PFBS, PFHxS, PFOS), was monitored for a 217 day period. The results indicate the selective nature of PFAS removal as the absorbents are loaded with PFASs and dissolved organic carbon (DOC). A clear relationship between perfluorocarbon chain length and removal efficiency of PFASs using GAC and AE was found while PFASs with sulfonate functional groups displayed greater removal efficiency than those with carboxylate groups. Similarly, time to column breakthrough increased with increasing perfluorocarbon chain length and was greater for the PFSAs than the PFCAs for both GAC and AE. Shorter carbon chained PFASs such as PFBA, PFPeA, PFHxA showed desorption behavior and long-chained PFASs showed increased removal towards the end of the experiment indicating agglomeration or micelle development. Linear isomers of PFOS, PFHxS, and perfluorooctane sulfonamide (FOSA) had greater column removal efficiencies using GAC (and also for AE at greater bed volume throughput) than the branched