WorldWideScience

Sample records for anion exchange chromatography

  1. Continuous beds for microchromatography: chromatofocusing and anion exchange chromatography.

    Science.gov (United States)

    Li, Y M; Liao, J L; Zhang, R; Henriksson, H; Hjertén, S

    1999-02-01

    A method was developed for the preparation of continuous beds derivatized with polyethyleneimine (PEI) for chromatofocusing and anion exchange chromatography in the capillary mode. First, a continuous bed activated by epoxy groups was synthesized inside a fused silica capillary and became at the same time covalently attached to the inner wall of the capillary. A PEI solution was then pumped through the continuous bed to allow the imine groups in PEI to react with the epoxy groups in the bed. Efficient immobilization of PEI was indicated by the high-resolution separation of standard proteins (hemoglobins C, S, F, and A) in both chromatofocusing and anion exchange chromatography on a capillary column prepared by this method. Copyright 1999 Academic Press.

  2. A novel silica based click lysine anion exchanger for ion exchange chromatography.

    Science.gov (United States)

    Guo, Hongyue; Chu, Changhu; Li, Yan; Yang, Bingcheng; Liang, Xinmiao

    2011-12-21

    Ion chromatography (IC) is one of the most powerful analysis technologies for the determination of charged compounds. A novel click lysine stationary phase was prepared via Cu(I) catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) and applied to the analysis of inorganic ions. The chromatographic evaluation demonstrated good performance (e.g. the plate number of thiocyanate is ∼50,000 plates m(-1)) and effective separation ability for the common inorganic anions with aqueous Na(2)SO(4) eluent. The separation mechanism was observed to be mainly dominated by ion exchange interaction. The retention of these analytes is highly dependent on the pH value of eluent. Compared with the lysine stationary phase prepared via the conventional manner, the click lysine exchanger demonstrated shorter retention time and better ion separation characteristics under the same chromatographic conditions, which is a great advantage for rapid separation and analysis of inorganic ions.

  3. Purification of Fission 99Mo by AG1-X8 Anion Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    LIANG; Ji-xin; WU; Yu-xuan; YU; Ning-wen; SHEN; Yi-jia; WANG; Qing-gui; GUO; Shu

    2015-01-01

    For the development of 99Mo production procedure,both of recovery yield of 99Mo and the removal of other impurities should be taken into account.Anion exchange chromatography is usually employed for purification of 99Mo from fission products.AG1-X8resin is a kind of strong

  4. Rapid detection of malto-oligosaccharide-forming bacterial amylases by high performance anion-exchange chromatography

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Larsen, K. L.; Zimmermann, W.

    2000-01-01

    High performance anion-exchange chromatography with pulsed amperometric detection was applied for the rapid analysis of malto-oligosaccharides formed by extracellular enzyme preparations from 49 starch-degrading bacterial strains isolated from soil and compost samples. Malto-oligosaccharide-formi...

  5. Evaluation of the thermal effect on separation selectivity in anion-exchange processes using superheated water ion-exchange chromatography.

    Science.gov (United States)

    Shibukawa, Masami; Taguchi, Akihiko; Suzuki, Yusuke; Saitoh, Kazunori; Hiaki, Toshihiko; Yarita, Takashi

    2012-07-07

    The thermal effect on retention and separation selectivity of inorganic anions and aromatic sulfonate ions in anion-exchange chromatography is studied on a quaternized styrene-divinylbenzene copolymer anion-exchange column in the temperature range of 40-120 °C using superheated water chromatography. The selectivity coefficient for a pair of identically charged anions approaches unity as temperature increases provided the ions have the same effective size, such that the retention of an analyte ion decreases with an increase in temperature when the analyte ion has stronger affinity for the ion-exchanger than that of the eluent counterion, whereas it increases when it has weaker affinity. The change in anion-exchange selectivity with temperature observed with superheated water chromatography has been discussed on the basis of the effect of temperature on hydration of the ions. At elevated temperatures, especially in superheated water, the electrostatic interaction or association of the ions with the fixed ion in the resin phase becomes a predominant factor resulting in a different separation selectivity from that obtained at ambient temperature.

  6. Simultaneous determination of NH4+, NO2(-) and NO3(-) by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent.

    Science.gov (United States)

    Mori, Masanobu; Hironaga, Takahiro; Itabashi, Hideyuki; Nakatani, Nobutake; Kozaki, Daisuke; Tanaka, Kazuhiko

    2012-04-01

    Ion-exclusion/anion-exchange chromatography (IEC/AEC) on a combination of a strongly basic anion-exchange resin in the OH(-)-form with basic eluent has been developed. The separation mechanism is based on the ion-exclusion/penetration effect for cations and the anion-exchange effect for anions to anion-exchange resin phase. This system is useful for simultaneous separation and determination of ammonium ion (NH4+), nitrite ion (NO2(-)), and nitrate ion (NO3(-)) in water samples. The resolution of analyte ions can be manipulated by changing the concentration of base in eluent on a polystyrene-divinylbenzene based strongly basic anion-exchange resin column. In this study, several separation columns, which consisted of different particle sizes, different functional groups and different anion-exchange capacities, were compared. As the results, the separation column with the smaller anion-exchange capacity (TSKgel Super IC-Anion) showed well-resolved separation of cations and anions. In the optimization of the basic eluent, lithium hydroxide (LiOH) was used as the eluent and the optimal concentration was concluded to be 2 mmol/L, considering the resolution of analyte ions and the whole retention times. In the optimal conditions, the relative standard deviations of the peak areas and the retention times of NH4+, NO2(-), and NO3(-) ranged 1.28% - 3.57% and 0.54% - 1.55%, respectively. The limits of detection at signal-to-noise of 3 were 4.10 micromol/L for NH4+, 1.87 micromol/L for NO2(-) and 2.83 micromol/L for NO3(-).

  7. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography.

    Science.gov (United States)

    Shchukina, O I; Zatirakha, A V; Smolenkov, A D; Nesterenko, P N; Shpigun, O A

    2015-08-21

    Novel polystyrene-divinylbenzene (PS-DVB) based anion exchangers differing from each other in the structure of the branched functional ion exchange layer are prepared to investigate the role of linker and functional site on ion exchange selectivity. The proposed method of synthesis includes the obtaining of aminated PS-DVB particles by means of their acylation with following reductive amination with methylamine. Further modification of the obtained secondary aminogroups is provided by the alkylation with either 1,4-butanediol diglycidyl ether (1,4-BDDGE) or resorcinol diglycidyl ether (RDGE), which form the linkers of different hydrophobicity, and amination of terminal epoxide rings with trimethylamine (TMA), dimethylethanolamine (DMEA), methyldiethanolamine (MDEA) or triethanolamine (TEA). The variation of the structure and hydrophobicity of the linker and terminal quaternary ammonium sites in the functional layer allows the alteration of selectivity and separation efficiency of the obtained adsorbents. The ion exchange selectivity and separation efficiency of the anion exchangers are evaluated using the model mixtures of anions (F(-), HCOO(-), Cl(-), NO2(-), Br(-), NO3(-), HPO4(2-) and SO4(2-)) in potassium hydroxide eluents. The adsorbents show the decrease of selectivity with increasing the hydrophilicity of the terminal functional site. The anion exchangers having more flexible and hydrophilic 1,4-BDDGE linker provide smaller separation factors for most of the analytes as compared with RDGE-containing adsorbents with the same terminal ion exchange sites, but are characterized with higher column efficiencies and better peak symmetry for polarizable anions. In case of 1,4-BDDGE-modified anion exchangers of the particle size of 3.3μm functionalized with DMEA and MDEA the calculated values of column efficiencies for polarizable NO3(-) and Br(-) are up to 49,000 and 53,000N/m, respectively, which is almost twice higher than the values obtained for the RDGE

  8. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review.

    Science.gov (United States)

    Zatirakha, A V; Smolenkov, A D; Shpigun, O A

    2016-01-21

    In the last decade the developments in the field of ion chromatography (IC) were aimed at increasing the efficiency, sensitivity and rapidity of analysis, as well as on improving separation selectivity. Since selectivity and efficiency to the large extent depend on the surface chemistry of the stationary phase, the development of novel anion exchangers remains one of the priority tasks in modern IC. The exact chemistry of commercially available resins is not known and not many literature data devoted to the procedures of preparing anion exchangers for IC have become available in the last 10-15 years. However, the knowledge about the surface chemistry of anion exchangers can provide understanding of the trends in selectivity and efficiency changes, as well as help with the choice of the stationary phase type suitable for solving a particular analytical task. The current review is devoted to the methods of preparing anion exchangers based on polystyrene-divinylbenzene (PS-DVB) and ethylvinylbenzene-divinylbenzene (EVB-DVB) for IC of inorganic and small organic anions and is aimed at demonstrating the improvement of their performance over the years, which was brought by the development of the new types of stationary phase architecture.

  9. Recent progress and applications of ion-exclusion/ion-exchange chromatography for simultaneous determination of inorganic anions and cations.

    Science.gov (United States)

    Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Tanaka, Kazuhiko

    2012-01-01

    One of the ultimate goals of ion chromatography is to determine both anions and cations found in samples with a single chromatographic run. In the present article, recent progress in ion-exclusion/ion-exchange chromatography for the simultaneous determinations of inorganic anions and cations are reviewed. Firstly, the principle and the control for the simultaneous separation and detection of analyte ions using ion-exclusion/cation-exchange chromatography with a weakly acidic cation-exchange column are outlined. Then, advanced chromatographic techniques in terms of analytical time, selectively and sensitivity are summarized. As a related method, ion-exclusion/anion-exchange chromatography with an anion-exchange column could be used for the simultaneous determination of inorganic nitrogen species, such as ammonium, nitrite and nitrate ions. Their usefulness and applications to water-quality monitoring and related techniques are also described.

  10. Determination of petroleum sulfonates in crude oil by column-switching anion-exchange chromatography

    Institute of Scientific and Technical Information of China (English)

    Liang Zhao; Xu Long Cao; Hong Yan Wang; Xia Liu; Sheng Xiang Jiang

    2008-01-01

    A column-switching anion-exchange chromatography method was described for the separation and determination of petroleum monosulfonates (PMS)and petroleum disulfonates (PDS)in crude oil that was simply diluted with the dichloromethane/methanol (60140).The high performance liquid chromatography (HPLC)system consisted of a clean-up column and an analytical column,which were connected with two six-port switching valves.Detection of petroleum sulfonates was available and repeatable.This method has been successfully applied to determine PMS and PDS in crude oil samples from Shengli oil field.

  11. Mono- and polyprotic buffer systems in anion exchange chromatography of influenza virus particles.

    Science.gov (United States)

    Vajda, Judith; Weber, Dennis; Stefaniak, Sabine; Hundt, Boris; Rathfelder, Tanja; Müller, Egbert

    2016-05-27

    Different ions typically used in downstream processing of biologicals are evaluated for their potential in anion exchange chromatography of an industrially produced, pandemic influenza H1N1 virus. Capacity, selectivity and recovery are investigated based on single step elution parallel chromatography experiments. The inactivated H1N1 feedstream is produced in Madin-Darby Bovine Kidney cells. Interesting effects are found for sodium phosphate and sodium citrate. Both anions are triprotic kosmotropes. Anion exchange chromatography generally offers high scalability to satisfy sudden demands for vaccines, which may occur in case of an emerging influenza outbreak. Appropriate pH conditions for H1N1 adsorption are determined by Zeta potential measurements. The dynamic binding capacity of a salt tolerant polyamine-type resin is up to 6.4 times greater than the capacity of a grafted Q-type resin. Pseudo-affinity interactions of polyamines with the M2 protein of influenza may contribute to the obtained capacity increase. Both resins achieve greater capacity in sodium phosphate buffer compared to Tris/HCl. A recovery of 67% and DNA clearance close to 100% without DNAse treatment are achieved for the Q-type resin. Recovery of the virus from the salt tolerant resin requires the use of polyprotic acids in the elution buffer. 85% of the DNA and 60% of the proteins can be removed by the salt tolerant resin. The presence of sodium phosphate during anion exchange chromatography seems to support stability of the H1N1 particles in presence of hydrophobic cations.

  12. Sequence-dpenedent DNA separation by anion-exchange high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, Hisashi; Higashino, Ken-ich; Ohara, Osamu [Kazusa DNA Research Inst., Chiba (Japan)

    1996-09-05

    High-performance liquid chromatography (HPLC) system with a new nonporous anion-exchange resin, DNA-NPR, made it possible to rapidly separate DNA fragments up to 20 kbp with high resolution. In order to further characterize this chromatographic DNA separation system, we prepared a mixtures of double-stranded DNAs of constant length carrying a fully degenerated 50-bp region and analyzed their chromatographic behavior on the DNA-NPR column. The results indicated that the separation of DNA fragments on the anion-exchange HPLC was governed not only by size, but also by nucleotide sequence: even DNA fragments with the same size and the same base content could be separated on this column. Taking advantage of this characteristic feature of the anion-exchange HPLC, we could readily fractionate human cDNAs with practically acceptable recovery and high resolution. Furthermore, the combination of HPLC and gel electrophoresis realized separation of a mixture of DNA fragments in a two-dimensional pattern. 22 refs., 5 figs., 1 tab.

  13. Simultaneous determination of NH4+, NO2- and NO3- by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent%Simultaneous determination of NH4+,NO2- and NO3- by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent

    Institute of Scientific and Technical Information of China (English)

    Masanobu MORI; Takahiro HIRONAGA; Hideyuki ITABASHI; Nobutake NAKATANI; Daisuke KOZAKI; Kazuhiko TANAKA

    2012-01-01

    Ion-exclusion/anion-exchange chromatography (IEC/AEC) on a combination of a strongly basic anion-exchange resin in the OH--form with basic eluent has been developed.The separation mechanism is based on the ion-exclusion/penetration effect for cations and the anion-exchange effect for anions to anion-exchange resin phase.This system is useful for simultaneous separation and determination of ammonium ion ( NH4+ ),nitrite ion (NO2-),and nitrate ion (NO3-) in water samples.The resolution of analyte ions can be manipulated by changing the concentration of base in eluent on a polystyrene-divinylbenzene based strongly basic anion-exchange resin column.In this study,several separation columns,which consisted of different particle sizes,different functional groups and different anion-exchange capacities,were compared.As the results,the separation column with the smaller anion-exchange capacity (TSKgel Super IC-Anion) showed well-resolved separation of cations and anions,In the optimization of the basic eluent,lithium hydroxide (LiOH) was used as the eluent and the optimal concentration was concluded to be 2 mmol/L,considering the resolution of analyte ions and the whole retention times.In the optimal conditions,the relative standard deviations of the peak areas and the retention times of NH4+,NO2-,and NO3- ranged 1.28% - 3.57% and 0.54% - 1.55%,respectively.The limits of detection at signal-to-noise of 3 were 4.10 μmol/L for NH4+,1.87 μmol/L for NO2- and 2.83 μmol/L for NO3-.

  14. Separation and determination of alditols and sugars by high-pH anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Andersen, Rikke; Sørensen, A.

    2000-01-01

    Carbohydrates such as alditols (polyols or sugar alcohols), monosaccharides and disaccharides are separated as anions by anion-exchange chromatography with a sodium hydroxide eluent, MA1 CarboPac column and pulsed amperometric detection. We report a high-pH anion-exchange chromatographic......-pulsed amperometric detection (HPAEC-PAD) method that determines all the polyols used as food additives in food products and the most commonly found mono- and disaccharides on a routine basis. The linearity, repeatability, internal reproducibility and accuracy are described. The applicability of the method has been...

  15. A new anion-exchange/hydrophobic monolith as stationary phase for nano liquid chromatography of small organic molecules and inorganic anions.

    Science.gov (United States)

    Aydoğan, Cemil

    2015-05-01

    In this study, an anion-exchange/hydrophobic polymethacrylate-based stationary phase was prepared for nano-liquid chromatography of small organic molecules and inorganic anions. The stationary phase was synthesized by in situ polymerization of 3-chloro-2-hydroxypropylmethacrylate and ethylene dimethacrylate inside silanized 100 μm i.d. fused silica capillary. The porogen mixture consisted of toluene and dodecanol. The pore size distrubution profiles of the resulting monolith were determined by mercury intrusion porosimetry and the morphology of the prepared monolith was investigated by scanning electron microscope. Good permeability, stability and column efficiency were observed on the monolithic column with nano flow. The produced monolithic column, which contains reactive chloro groups, was then modified by reaction with N,N-dimethyl-N-dodecylamine to obtain an anion-exchange/hydrophobic monolithic stationary phase. The functionalized monolith contained ionizable amine groups and hydrophobic groups that are useful of anion-exchange/hydrophobic mixed-mode chromatography. The final monolithic column performance with respect to anion-exchange and hydrophobic interactions was assesed by the separation of alkylbenzene derivatives, phenolic compounds and inorganic anions, respectively. Theoretical plate numbers up to 23,000 plates/m were successfully achieved in the separation of inorganic anions.

  16. NASA Li/CF(x) cell problem analysis: Anion exchange chromatography analysis

    Science.gov (United States)

    Bytella, Joseph

    1991-05-01

    An analysis was made of wiper samples used to wipe down lithium/chlorine fluorine battery components and production equipment. These components and equipment were potentially exposed to thionyl chloride vapors. In the presence of moisture, thionyl chloride decomposes to sulfur dioxide and hydrogen chloride. The wiper samples were analyzed for soluble chlorides and fluorides by anion exchange chromatography. During the examination of the test chromatographs, fluoride contamination was discovered in wiper samples from the test equipment. An analytical method to determine fluoride was developed. The first 3 extracts from the potentially exposed and clean wiper samples were tested, and the total fluoride from both groups determined. A comparison of the results from both groups was made to determine the extent of fluoride contamination.

  17. Polystyrene-type resin used for peptide synthesis: application for anion-exchange and affinity chromatography.

    Science.gov (United States)

    Carvalho, Regina S H; Ianzer, Danielle A; Malavolta, Luciana; Rodrigues, Mauricio M; Cilli, Eduardo M; Nakaie, Clovis R

    2005-03-25

    This paper deals with an unusual application for a copolymer of styrene-1% divinylbenzene bearing high amount of aminomethyl groups for anion-exchange and affinity chromatography. The so-called aminomethyl resin (AMR), to date only employed for peptide synthesis, swelled appreciably in water and was used successfully to purify negatively charged peptides. By correlating swelling degree of beads with pH of the media, it was possible to estimate that the AMR amino group pK(a) is approximately 5.5. In addition, the synthesized acetyl-(NANP)3-AMR succeeded in the affinity interaction with large antibody molecules related to malaria transmission and raised previously against this dodecapeptide sequence.

  18. Nanostructured cupric oxide electrode: An alternative to amperometric detection of carbohydrates in anion-exchange chromatography.

    Science.gov (United States)

    Barragan, José T C; Kubota, Lauro T

    2016-02-01

    In this paper, a new and low cost copper/cupric oxide nanostructured electrode is presented as an alternative to the amperometric detection of carbohydrates in high-performance anion exchange chromatography. The modified copper electrodes were prepared by a simple and fast method which resulted in the obtainment of homogeneously distributed nanostructures adhered to the surface with controlled chemical nature. The results, when compared to conventional copper electrodes, exhibited considerable improvements in analytical results, including: 1) Better repeatability in consecutive glucose detections, in which the percent relative standard deviation improved from 15.1% to 0.279%. 2) Significant improvements in the stability of the baseline and a decrease of the stabilization time, going from several hours to approximately 15 min. 3) Considerable increase in the sensitivity towards glucose, from 5.02 nA min mg L(-1) to 25.5 nA min mg L(-1). 4) Improvements in the detectability with limits as low as 1.09 pmol. 5) Wide working range of concentrations (1 × 10(-2) to 1 × 10(4) mg L(-1)). 6) Good linearity with correlation coefficients greater than 0.998. 7) Possibility of detecting different molecules of carbohydrates (lactose, maltose, sucrose cellobiose, sorbitol, fructose, glucose, galactose, manose, arabitol, xylose, ribose and arabnose). In comparison to the electrode that is more employed for this type of application (gold electrode), the low cost, the possibility of detection at constant potential and the equivalent detection limits presented by the new electrode material introduced in this work emerge as characteristics that make this material a powerful alternative considering the detection of carbohydrates in anion exchange chromatography.

  19. Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode.

    Science.gov (United States)

    Iskra, Timothy; Sacramo, Ashley; Gallo, Chris; Godavarti, Ranga; Chen, Shuang; Lute, Scott; Brorson, Kurt

    2015-01-01

    Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow-rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach.

  20. Purification of cell culture-derived influenza A virus via continuous anion exchange chromatography on monoliths.

    Science.gov (United States)

    Fischer, Laura M; Wolff, Michael W; Reichl, Udo

    2017-07-17

    The continuously increasing demand for potent and safe vaccines and the intensifying economic pressure on health care systems underlines the need for further optimization of vaccine manufacturing. Here, we focus on downstream processing of human influenza vaccines, investigating the purification of serum-free cell culture-derived influenza virus (A/PR/8/34 H1N1) using continuous chromatography. Therefore, quaternary amine anion exchange monoliths (CIM® QA) were characterized for their capacity to capture virus particles from animal cells cultivated in different media and their ability to separate virions from contaminating host cell proteins and DNA. The continuous chromatography was implemented as simulated moving bed chromatography (SMB) in a three zone open loop configuration with a detached high salt zone for regeneration. SMBs exploiting 10% and 50% of the monoliths' dynamic binding capacity, respectively, allowed the depletion of >98% of the DNA and >52% of the total protein. Based on the hemagglutination assay (HA assay), the virus yield was higher at 10% capacity use (89% vs. 45%). Both SMB separations resulted in a ratio of total protein to hemagglutinin antigen (based on single radial diffusion assay, SRID assay) below the required levels for manufacturing of human vaccines (less than 100µg of protein per virus strain per dose). The level of contaminating DNA was five-times lower for the 10% loading, but still exceeded the required limit for human vaccines. A subsequent Benzonase® treatment step, however, reduced the DNA contamination below 10ng per dose. Coupled to continuous cultivations for virus propagation, the establishment of integrated processes for fully continuous production of vaccines seems to be feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Retention studies of DNA on anion-exchange monolith chromatography Binding site and elution behavior.

    Science.gov (United States)

    Yamamoto, Shuichi; Nakamura, Masashi; Tarmann, Christina; Jungbauer, Alois

    2007-03-09

    Linear gradient elution experiments were carried out on monolithic anion-exchange chromatography (AEC) with oligo-DNAs of various sizes (4-50mer, molecular weight M(W)=1200-15,000) and compositions in order to investigate the retention mechanism. The binding site (B) values as well as the peak salt elution concentration I(R) values were determined. The B values determined for the monolithic AEC were similar to the values for non-porous AEC and porous AEC. The B value increased linearly with the number of charges (bases) of single-strand DNA when M(W) is less than ca. 3600 (12mer). When M(W) is greater than 6000, the slope of B versus M(W) decreased, and became very small at M(W)>30,000. The I(R) value also increased linearly with M(W) for M(W)10,000. It was shown that a very difficult separation of a single-strand 50mer poly(T) and a double-strand 50mer poly(A) and poly(T) was accomplished within 10 min by using a very shallow gradient at a high initial salt concentration (0.5M) and a high flow-velocity (2.7 cm/min).

  2. Characterisation of brewpub beer carbohydrates using high performance anion exchange chromatography coupled with pulsed amperometric detection.

    Science.gov (United States)

    Arfelli, Giuseppe; Sartini, Elisa

    2014-01-01

    High performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised in order to quantify mannose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose and maltoheptaose content of beer. The method allows the determination of above mentioned oligosaccharides, in a single chromatographic run, without any pre-treatment. Limit of detection and limit of quantification were suitable for beer. Accuracy and repeatability were good for the entire amount considered. Once optimised HPAEC PAD for the specific matrix, the second goal of this research was to verify the possibility to discriminate beers, depending on their style. The carbohydrates content of brewpub commercial beers was very variable, ranging from 19.3 to 1469mg/L (mannose), 34.5 to 2882mg/L (maltose), 141.9 to 20731mg/L (maltotriose), 168.5 to 7650mg/L (maltotetraose), 20.1 to 2537mg/L (maltopentaose), 22.9 to 3295mg/L (maltohexaose), 8.5 to 2492mg/L (maltoeptaose), even in the same style of beer. However, the carbohydrates content was useful, jointed with other compounds amount, to discriminate different styles of beer. As a matter of fact, principal component analysis put in evidence beer differences considering some fermentation conditions and colour.

  3. Anion exchange SPE and liquid chromatography-tandem mass spectrometry in GHB analysis.

    Science.gov (United States)

    Elian, Albert A; Hackett, Jeffery

    2011-12-01

    In this study, the extraction of γ-hydroxybutyrate (GHB) from urine using solid-phase extraction (SPE) is described. SPE was performed on anion exchange columns after samples of urine had been diluted with de-ionized water. After application of the diluted samples containing GHB-d(6) as an internal standard, the sorbent was washed with deionized water and methanol and dried. The GHB was eluted from the SPE column with a solvent consisting of methanol containing 6% glacial acetic acid. The eluent was collected, evaporated to dryness, and dissolved in mobile phase (100 μL) for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in negative multiple reaction monitoring (MRM) mode. Liquid chromatography was performed in gradient mode employing a biphenyl column and a mobile phase consisting of acetontitrile (containing 0.1% formic acid) and 0.1% aqueous formic acid. The total run time for each analysis was less than 5 min. The limits of detection/quantification for this method were determined to be 50 and 100 ng/mL, respectively. The method was found to be linear from 500 ng/mL to 10,000 ng/mL (r(2)>0.995). The recovery of GHB was found to be greater than 75%. In this report, results of authentic urine samples analyzed for GHB by this method are presented. GHB concentrations in these samples were found to be range from less than 500 ng/mL to 5110 ng/mL.

  4. Fast and simple anion-exchange chromatography for large-scale purification of self-complementary oligonucleotides.

    Science.gov (United States)

    Banerjee, A; Bose, H S; Roy, K B

    1991-11-01

    A fast and simple anion-exchange chromatography method is described for large-scale purification of synthetic oligonucleotides. Using a single matrix and aqueous solvent system, the two-step chromatographic procedure can handle complex separation problems of self-complementary or G-rich sequences without the use of urea or formaldehyde. The work also demonstrates the complication encountered, possibly due to hairpin formation, in one of the oligomers.

  5. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  6. Anion-exchange purification of recombinant factor IX from cell culture supernatant using different chromatography supports.

    Science.gov (United States)

    Ribeiro, Daniel A; Passos, Douglas F; Ferraz, Helen C; Castilho, Leda R

    2013-11-01

    Both recombinant and plasma-derived factor IX concentrates are used in replacement therapies for the treatment of haemophilia B. In the present work, the capture step for a recombinant FIX (rFIX) purification process was investigated. Different strong anion-exchange chromatography media (the resins Q Sepharose(®) FF and Fractogel(®) TMAE, the monolith CIM(®) QA and the membrane adsorber Sartobind(®) Q) were tested for their rFIX binding capacity under dynamic conditions. In these experiments, crude supernatant from CHO cells was used, thus in the presence of supernatant contaminants and mimicking process conditions. The highest dynamic binding capacity was obtained for the monolith, which was then further investigated. To study pseudoaffinity elution of functional rFIX with Ca(2+) ions, a design of experiments to evaluate the effects of pH, NaCl and CaCl2 on yield and purification factor was carried out. The effect of pH was not statistically significant, and a combination of no NaCl and 45mM CaCl2 yielded a good purification factor combined with a high yield of active rFIX. Under these conditions, activity yield of rFIX was higher than the mass yield, confirming selective elution of functional, γ-carboxylated rFIX. Scaling-up of this process 8 fold resulted in very similar process performance. Monitoring of the undesired activated FIX (FIXa) revealed that the FIXa/FIX ratio (1.94%) was higher in the eluate than in the loaded sample, but was still within an acceptable range. HCP and DNA clearances were high (1256 and 7182 fold, respectively), indicating that the proposed process is adequate for the intended rFIX capture step. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Strategies for developing design spaces for viral clearance by anion exchange chromatography during monoclonal antibody production.

    Science.gov (United States)

    Strauss, Daniel M; Cano, Tony; Cai, Nick; Delucchi, Heather; Plancarte, Magdalena; Coleman, Daniel; Blank, Gregory S; Chen, Qi; Yang, Bin

    2010-01-01

    The quality-by-design (QbD) regulatory initiative promotes the development of process design spaces describing the multidimensional effects and interactions of process variables on critical quality attributes of therapeutic products. However, because of the complex nature of production processes, strategies must be devised to provide for design space development with reasonable allocation of resources while maintaining highly dependable results. Here, we discuss strategies for the determination of design spaces for viral clearance by anion exchange chromatography (AEX) during purification of monoclonal antibodies. We developed a risk assessment for AEX using a formalized method and applying previous knowledge of the effects of certain variables and the mechanism of action for virus removal by this process. We then use design-of-experiments (DOE) concepts to perform a highly fractionated factorial experiment and show that varying many process parameters simultaneously over wide ranges does not affect the ability of the AEX process to remove endogenous retrovirus-like particles from CHO-cell derived feedstocks. Finally, we performed a full factorial design and observed that a high degree of viral clearance was obtained for three different model viruses when the most significant process parameters were varied over ranges relevant to typical manufacturing processes. These experiments indicate the robust nature of viral clearance by the AEX process as well as the design space where removal of viral impurities and contaminants can be assured. In addition, the concepts and methodology presented here provides a general approach for the development of design spaces to assure that quality of biotherapeutic products is maintained.

  8. Preparation of a weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography stationary phase for protein separation using click chemistry.

    Science.gov (United States)

    Zhao, Kailou; Yang, Fan; Xia, Hongjun; Wang, Fei; Song, Qingguo; Bai, Quan

    2015-03-01

    In this study, 3-diethylamino-1-propyne was covalently bonded to the azide-silica by a click reaction to obtain a novel dual-function mixed-mode chromatography stationary phase for protein separation with a ligand containing tertiary amine and two ethyl groups capable of electrostatic and hydrophobic interaction functionalities, which can display hydrophobic interaction chromatography character in a high-salt-concentration mobile phase and weak anion exchange character in a low-salt-concentration mobile phase employed for protein separation. As a result, it can be employed to separate proteins with weak anion exchange and hydrophobic interaction modes, respectively. The resolution and selectivity of the stationary phase were evaluated in both hydrophobic interaction and ion exchange modes with standard proteins, respectively, which can be comparable to that of conventional weak anion exchange and hydrophobic interaction chromatography columns. Therefore, the synthesized weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography column can be used to replace two corresponding conventional weak anion exchange and hydrophobic interaction chromatography columns to separate proteins. Based on this mixed-mode chromatography stationary phase, a new off-line two-dimensional liquid chromatography technology using only a single dual-function mixed-mode chromatography column was developed. Nine kinds of tested proteins can be separated completely using the developed method within 2.0 h.

  9. Cleanup and analysis of sugar phosphates in biological extracts by using solid phase extraction and anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Smith, Hans Peter; Cohen, A.; Buttler, T.

    1998-01-01

    A cleanup method based on anion-exchange solid-phase extraction (SPE) was developed to render biological extracts suitable for the analysis of hexose phosphates with a modified anion-exchange chromatography method and pulsed amperometric detection. The method was applied to cell extracts of Sacch......A cleanup method based on anion-exchange solid-phase extraction (SPE) was developed to render biological extracts suitable for the analysis of hexose phosphates with a modified anion-exchange chromatography method and pulsed amperometric detection. The method was applied to cell extracts...... of Saccharomyces cerevisiae obtained by using cold methanol as quenching agent and chloroform as extraction solvent. It was shown that pretreatment of the cell extract with SPE markedly improved the quality of the liquid chromatography analysis with recoveries of the sugar phosphates close to 100%. Furthermore...

  10. Microcalorimetric study of adsorption of glycomacropeptide on anion-exchange chromatography adsorbent.

    Science.gov (United States)

    Lira, Rafael A; Minim, Luis A; Bonomo, Renata C F; Minim, Valéria P R; da Silva, Luis H M; da Silva, Maria C H

    2009-05-15

    The adsorption of glycomacropeptide (GMP) from cheese whey on an anion-exchange adsorbent was investigated using isothermal titration microcalorimetry to measure thermodynamic information regarding such processes. Isotherms data were measured at temperatures of 25 and 45 degrees C, pH 8.2 and various ionic strengths (0-0.08 molL(-1) NaCl). The equilibrium data were fit using the Langmuir model and the process was observed to be reversible. Temperature was observed to positively affect the interaction of the protein and adsorbent. Microcalorimetric studies indicated endothermic adsorption enthalpy in all cases, except at 45 degrees C and 0.0 molL(-1) NaCl. The adsorption process was observed to be entropically driven at all conditions studied. It was concluded that the increase in entropy, attributed to the release of hydration waters as well as bounded ions from the adsorbent and protein surface due to interactions of the protein and adsorbent, was a major driving force for the adsorption of GMP on the anion-exchange adsorbent. These results could allow for design of more effective ion-exchange separation processes for proteins.

  11. Separation of alditols of interest in food products by high-performance anion-exchange chromatography with pulsed amperometric detection.

    Science.gov (United States)

    Corradini, C; Canali, G; Cogliandro, E; Nicoletti, I

    1997-12-12

    High-performance anion-exchange chromatography (HPAEC)-pulsed amperometric detection (PAD) employing a CarboPac MA 1 column was investigated with respect to mobile phase composition, linear response characteristics, repeatability, reproducibility and sensitivity with different alditols used as sugar substitutes in food and confectionery products. The energy-reduced bulk sweeteners isomalt and maltitol were well resolved in less than 25 min by isocratic elution with 600 mM sodium hydroxide solution. HPAEC-PAD was also successfully applied to the determination of alditols in sugar-free products and a low-calorie sweetener containing sorbitol, mannitol and fructose at different levels.

  12. Refolding with Simultaneous Purification of Recombinant Human Granulocyte Colony-stimulating Factor from Escherichia coli Using Strong Anion Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    Chao Zhan WANG; Jiang Feng LIU; Xin Du GENG

    2005-01-01

    The urea denatured recombinant human granulocyte colony-stimulating factor (rhGCSF) which was expressed in Escheriachia coli (E. coli) was refolded with simultaneous purification by strong anion exchange chromatography (SAX) in the presence of low concentration of urea. The effect of urea concentration on this refolding process was investigated. The obtained refolded rhG-CSF has a high specific activity of 2.3×108 U/mg, demonstrating that the proteins were completely refolded during the chromatographic process. With only one step by SAX in 40 min, purity and mass recovery of the refolded and purified rhG-CSF were 97% and43%, respectively.

  13. Isotope Fractionation of chlorine in Aqueous System: One Study on Anion-Exchange Chromatography.

    Science.gov (United States)

    Musashi, M.; Oi, T.; Eggenkamp, H.; Van Cappellen, P.

    2001-05-01

    Stable chlorine isotopes such as 37Cl and 35Cl have been paid attention as useful tool identifying the source, and monitoring the transport process and natural fate of chlorinated organic pollutants in air and groundwater. However, it is not established yet whether any isotope effects accompany biodegradation or reductive dehalogenation of the pollutants (Clark and Fritz, 1997). Here we first present an experimental determination of isotope fractionation factor of chlorine in aqueous system by using anion-exchange chromatographic technique. Into the Cl-free anion exchange resin (Muromac, OH- form) packed in a 30 cm long pyrex glass column and controlled temperature at 25 oC, hydrochloric solution was fed with controlling the flow rate constant. Effluent from the column was recovered by an automatic fraction collector and prepared for Cl isotope analysis. The Cl isotope ratio (δ 37Cl vs. SMOC) was measured by IR-MS at the Utrecht University with precision of 0.06 per-mil. Magnitude of the factor obtained was 1.00035 at 25 oC. The result indicates that the lighter isotope (35Cl) was preferably fractionated into the resin phase, while the heavier one (37Cl) was enriched into the aqueous phase. This trend suggests that molecular structure of hydrolysis with Cl in aqueous phase may be more stable than that of Cl ionically bonding with the resin. This result may offer physico-chemical insights into behavior and fate of the pollutants.

  14. Polystyrene-divinylbenzene stationary phases agglomerated with quaternized multi-walled carbon nanotubes for anion exchange chromatography.

    Science.gov (United States)

    Huang, Zhongping; Wu, Hongwei; Wang, Fengli; Yan, Wenwu; Guo, Weiqiang; Zhu, Yan

    2013-06-14

    This work explores the potential of multi-walled carbon nanotubes as an agglomerated material for ion chromatography stationary phases for the separation of inorganic anions. Polyelectrolytes with quaternary ammonium groups were introduced onto the carbon nanotube surface, based on condensation polymerization of 1,4-butanediol diglycidyl ether (BDDE) and methylamine (MA). Quaternized multi-walled carbon nanotubes (Q-MWCNTs) were electrostatically adsorbed onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to generate the anion exchanger, which were confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). A 100mm×4.0mm i.d. column was packed with Q-MWCNTs agglomerated PS-DVB particles, with a capacity of 56μequiv./column. Separation of inorganic anions, such as F(-), Cl(-), NO2(-), Br(-), NO3(-), SO4(2-) and PO4(3-) were performed. The stationary phase was rigid, chemically stable and showed good ion-exchange characteristics.

  15. High performance ion chromatography of haloacetic acids on macrocyclic cryptand anion exchanger.

    Science.gov (United States)

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Horvath, Krisztian; Perrachon, Daniela; Prelle, Ambra; Tófalvi, Renáta; Sarzanini, Corrado; Hajós, Péter

    2008-04-11

    A new high performance ion chromatographic method has been developed for the separation of the nine chlorinated-brominated haloacetic acids (HAAs) that are the disinfection by-products of chlorination of drinking water, using a macrocycle-based adjustable-capacity anion-exchange separator column (IonPac Cryptand A1). A gradient method based on theoretical and experimental considerations has been optimized in which 10 mM NaOH-LiOH step gradient was performed at the third minute of the analysis. The optimized method allowed us to separate the nine HAAs and seven possibly interfering inorganic anions in less than 25 min with acceptable resolution. The minimum concentrations detectable for HAAs were between 8.0 (MBA) and 210 (TBA) microg L(-1), with linearity included between 0.9947 (TBA) and 0.9998 (MBA). To increase sensitivity, a 25-fold preconcentration step on a reversed phase substrate (LiChrolut EN) has been coupled. Application of this method to the analysis of haloacetic acids in real tap water samples is illustrated.

  16. Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography.

    Science.gov (United States)

    Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan

    2014-08-15

    A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture.

  17. Multi-modal applicability of a reversed-phase/weak-anion exchange material in reversed-phase, anion-exchange, ion-exclusion, hydrophilic interaction and hydrophobic interaction chromatography modes.

    Science.gov (United States)

    Lämmerhofer, Michael; Nogueira, Raquel; Lindner, Wolfgang

    2011-06-01

    We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.

  18. Microcalorimetric study of adsorption and disassembling of virus-like particles on anion exchange chromatography media.

    Science.gov (United States)

    Yu, Mengran; Zhang, Songping; Zhang, Yan; Yang, Yanli; Ma, Guanghui; Su, Zhiguo

    2015-04-03

    Chromatographic purification of virus-like particles (VLPs) is important to the development of modern vaccines. However, disassembly of the VLPs on the solid-liquid interface during chromatography process could be a serious problem. In this study, isothermal titration calorimetric (ITC) measurements, together with chromatography experiments, were performed on the adsorption and disassembling of multi-subunits hepatitis B virus surface antigen virus-like particles (HB-VLPs). Two gigaporous ion-exchange chromatography (IEC) media, DEAE-AP-280 nm and DEAE-POROS, were used. The application of gigaporous media with high ligand density led to significantly increased irreversible disassembling of HB-VLPs and consequently low antigen activity recovery during IEC process. To elucidate the thermodynamic mechanism of the effect of ligand density on the adsorption and conformational change of VLPs, a thermodynamic model was proposed. With this model, one can obtain the intrinsic molar enthalpy changes related to the binding of VLPs and the accompanying conformational change on the liquid-solid interface during its adsorption. This model assumes that, when intact HB-VLPs interact with the IEC media, the total adsorbed proteins contain two states, the intact formation and the disassembled formation; accordingly, the apparent adsorption enthalpy, ΔappH, which can be directly measured from ITC experiments, presents the sum of three terms: (1) the intrinsic molar enthalpy change associated to the binding of intact HB-VLPs (ΔbindHintact), (2) the intrinsic molar enthalpy change associated to the binding of HB-VLPs disassembled formation (ΔbindHdis), and (3) the enthalpy change accompanying the disassembling of HB-VLPs (ΔconfHdis). The intrinsic binding of intact HB-VLPs and the disassembled HB-VLPs to both kinds of gigaporous media (each of which has three different ligand densities), were all observed to be entropically driven as indicated by positive values of

  19. Binding and elution behavior of small deoxyribonucleic acid fragments on a strong anion-exchanger multimodal chromatography resin.

    Science.gov (United States)

    Matos, Tiago; Queiroz, João A; Bülow, Leif

    2013-08-09

    The separation behavior of small single-stranded from double-stranded DNA molecules has been determined on a multimodal (mixed-mode) chromatography system. The resin used is a strong anion exchanger which also modulates hydrophobic recognition. The intrinsic differences between single- and double-stranded DNAs concerning charge, hydrophobicity and three-dimensional structure render this form of MMC suitable for separation of the different nucleic acid molecules. All DNAs tested bound strongly to the resin and they could be eluted with increasing NaCl concentrations. Each homopolymeric ssDNA sample resulted in a base-specific elution pattern when using a linear NaCl gradient. The elution order was poly(dA)DNA molecules they could be separated from double-stranded DNAs. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Binding site and elution behavior of DNA and other large biomolecules in monolithic anion-exchange chromatography.

    Science.gov (United States)

    Yamamoto, Shuichi; Yoshimoto, Noriko; Tarmann, Christina; Jungbauer, Alois

    2009-03-27

    Our previous study has shown that there is a good correlation between the number of charges of DNA (from trimer to 50-mer) and the number of binding sites B in electrostatic interaction chromatography (ion-exchange chromatography, IEC). It was also found that high salt (NaCl) concentration is needed to elute large DNAs (>0.6M). In this paper we further performed experiments with large DNAs (up to 95-mer polyT and polyA) and charged liposome particles of different sizes (ca. 30, 50 and 100 nm) with a monolithic anion-exchange disk in order to understand the binding and elution mechanism of very large charged biomolecules or particles. The peak salt (NaCl) concentration increased with increasing DNA length. However, above 50-mer DNAs the value did not increase significantly with DNA length (ca. 0.65-0.70 M). For liposome particles of different sizes the peak salt concentration (ca. 0.62 M) was similar and slightly lower than that for large DNAs (ca. 0.65-0.70 M). The binding site values (ca. 25-30) are smaller than those for large DNAs. When arginine was used as a mobile phase modulator, the elution position of polyA and polyT became very close whereas in NaCl gradient elution polyT appeared after polyA eluted. This was mainly due to suppression of hydrophobic interaction by arginine.

  1. Separation of gold, palladium and platinum in chromite by anion exchange chromatography for inductively coupled plasma atomic emission spectrometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang Soon; Lee, Chang Heon; Park, Yeong Jae; Joe, Kih Soo; Kim, Won Ho [KAERI, Taejon (Korea, Republic of)

    2001-08-01

    A study has been carried out on the separation of gold, iridium, palladium, rhodium, ruthenium and platinum in chromite samples and their quantitative determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution condition of the minerals by fusion with sodium peroxide was optimized and chromatographic elution behavior of the rare metals was investigated by anion exchange chromatography. Spectral interference of chromium, a matrix of the minerals, was investigated on determination of gold. Chromium interfered on determination of gold at the concentration of 500 mg/L and higher. Gold plus trace amounts of iridium, palladium, rhodium and ruthenium, which must be preconcentrated before ICP-AES was separated by anion exchange chromatography after reducing Cr(VI) to Cr(III) by H{sub 2}O{sub 2}. AuCl{sup -}{sub 4} retained on the resin column was selectively eluted with acetone- HNO{sub 3}-H{sub 2}O as an eluent. In addition, iridium, palladium, rhodium and ruthenium remaining on the resin column were eluted as a group with concentrated HCl. However, platinum was eluted with concentrated HNO{sub 3}. The recovery yield of gold with acetone-HNO{sub 3}-H{sub 2}O was 100.7 {+-} 2.0 % , and the yields of palladium and platinum with concentrated HCl and HNO{sub 3} were 96.1 {+-} 1.8% and 96.6 {+-} 1.3%, respectively. The contents of gold and platinum in a Mongolian chromite sample were 32.6 {+-} 2.2 {mu}g/g and 1.6 {+-} 0.14 {mu}g/g, respectively. Palladium was not detected.

  2. CIM(®) monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles.

    Science.gov (United States)

    Adriaenssens, Evelien M; Lehman, Susan M; Vandersteegen, Katrien; Vandenheuvel, Dieter; Philippe, Didier L; Cornelissen, Anneleen; Clokie, Martha R J; García, Andrés J; De Proft, Maurice; Maes, Martine; Lavigne, Rob

    2012-12-20

    The use of anion-exchange chromatography was investigated as an alternative method to concentrate and purify bacterial viruses, and parameters for different bacteriophages were compared. Chromatography was performed with Convective Interactive Media(®) monoliths, with three different volumes and two matrix chemistries. Eleven morphologically distinct phages were tested, infecting five different bacterial species. For each of the phages tested, a protocol was optimized, including the choice of column chemistry, loading, buffer and elution conditions. The capacity and recovery of the phages on the columns varied considerably between phages. We conclude that anion-exchange chromatography with monoliths is a valid alternative to the more traditional CsCl purification, has upscaling advantages, but it requires more extensive optimization.

  3. Improvement of sugar analysis sensitivity using anion-exchange chromatography-electrospray ionization mass spectrometry with sheath liquid interface.

    Science.gov (United States)

    Xu, Xian-Bing; Liu, Ding-Bo; Guo, Xiao Ming; Yu, Shu-Juan; Yu, Pei

    2014-10-31

    A novel interface that enables high-performance anion-exchange chromatography (HPAEC) to be coupled with electrospray ionization (ESI) mass spectrometry (MS) is reported. A sheath liquid consisting of 50mM NH4Ac in isopropanol with 0.05% acetic acid, infused at a flow rate of 3μL/min at the tip of the electrospray probe, requires less ESI source cleaning and promotes efficient ionization of mono- and di-carbohydrates. The results suggest that use of a sheath liquid interface rather than a T-joint allows volatile ammonium salts to replace non-volatile metal salts as modifiers for improving sugar ESI signals. The efficient ionization of mono- and di-carbohydrates in the ESI source is affected by the sheath liquid properties such as buffer concentration and type of organic solvent. HPAEC-ESI-MS was used for the analysis of monocarbohydrates in pectins, particularly co-eluted sugars, and the performance was evaluated. Addition of a make-up solution through the sheath liquid interface proved to be an efficient tool for enhancing the intensities of sugars analyzed using HPAEC-ESI-MS.

  4. Quantification of genetically modified soya using strong anion exchange chromatography and time-of-flight mass spectrometry.

    Science.gov (United States)

    Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng

    2014-09-01

    Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.

  5. Simultaneous clarification of Escherichia coli culture and purification of extracellularly produced penicillin G acylase using tangential flow filtration and anion-exchange membrane chromatography (TFF-AEMC).

    Science.gov (United States)

    Orr, Valerie; Scharer, Jeno; Moo-Young, Murray; Honeyman, C Howie; Fenner, Drew; Crossley, Lisa; Suen, Shing-Yi; Chou, C Perry

    2012-07-01

    Downstream purification often represents the most cost-intensive step in the manufacturing of recombinant proteins since conventional purification processes are lengthy, technically complicated, and time-consuming. To address this issue, herein we demonstrated the simultaneous clarification and purification of the extracellularly produced recombinant protein by Escherichia coli using an integrated system of tangential flow filtration and anion exchange membrane chromatography (TFF-AEMC). After cultivation in a bench-top bioreactor with 1L working volume using the developed host/vector system for high-level expression and effective secretion of recombinant penicillin G acylase (PAC), the whole culture broth was applied directly to the established system. One-step purification of recombinant PAC was achieved based on the dual nature of membrane chromatography (i.e. microfiltration-sized pores and anion-exchange chemistry) and cross-flow operations. Most contaminant proteins in the extracellular medium were captured by the anion-exchange membrane and cells remained in the retentate, whereas extracellular PAC was purified and collected in the filtrate. The batch time for both cultivation and purification was less than 24h and recombinant PAC with high purity (19 U/mg), yield (72% recovery), and productivity (41 mg of purified PAC per liter of culture) was obtained. Due to the nature of the non-selective protein secretion system and the versatility of ion-exchange membrane chromatography, the developed system can be widely applied for effective production and purification of recombinant proteins.

  6. Size exclusion and anion exchange high performance liquid chromatography for characterizing metals bound to marine dissolved organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Otero, Natalia; Bermejo-Barrera, Pilar [Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela (Spain); Moreda-Pineiro, Antonio, E-mail: antonio.moreda@usc.es [Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela (Spain)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer Fractionation methods for assessing metals bound to marine DOM were developed. Black-Right-Pointing-Pointer SEC and AEC with UV detection and hyphenated with inductively coupled plasma-mass spectrometry were used. Black-Right-Pointing-Pointer SEC-UV showed marine DOM of molecular weights from 16 to 1 kDa. Black-Right-Pointing-Pointer Cobalt, manganese, strontium and zinc are bound to marine DOM. - Abstract: Size exclusion chromatography (SEC) followed by anion exchange chromatography (AEC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) was applied for fractionating metals bound to marine dissolved organic matter (DOM). Surface seawater samples (100 L) were subjected to tangential flow ultrafiltration (10,000 Da cut off) for isolating and pre-concentrating dissolved large molecules. The isolated fraction (retentate) consisted of 1 L, which was further freeze-dried and re-dissolved to 250 mL with ultrapure water. After HI Trap desalting of the re-dissolved retentate, SEC with UV detection showed marine DOM ranging from 6.5 kDa (lower than the permeable volume of the SEC column) to 16 kDa. A further characterization of this fraction by AEC with UV detection revealed the existence of four groups of macromolecules exhibiting retention times of 2.3, 2.8, 4.5 and 14.0 min. AEC hyphenated with ICP-MS showed the presence of strontium and zinc in the first AE fraction isolated from the SEC fraction; while manganese was found to be bound to the second AE fraction. Cobalt was found to be bound to molecules comprising the third AE fraction.

  7. Water quality monitoring system for determination of ionic nutrients by ion-exclusion chromatography with spectrophotometric detection on cation- and anion-exchange resin columns using water eluent.

    Science.gov (United States)

    Kozaki, Daisuke; Nakatani, Nobutake; Mori, Masanobu; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2012-07-01

    A unified ion-exclusion chromatography (IEC) system for monitoring anionic and cationic nutrients like NH4+, NO2-, NO3-, phosphate ion, silicate ion and HCO3- was developed and applied to several environmental waters. The IEC system consisted of four IEC methodologies, including the IEC with ultraviolet (UV) form connected with detection at 210 nm for determining NH4+ on anion-exchange separation column in OH anion-exchange UV-conversion column in I- form in tandem, the IEC with UV-detection at 210 nm for determining simultaneously NO3- and NO3- on cation-exchange separation column in H+ form, the IEC with UV-detection at 210 nm for determining HCO3- on cation-exchange separation column in H+ form connected with anion-exchange UV-conversion column in I- form in tandem, and the IEC with visible-detection based on molybdenum-blue reaction for determining simultaneously silicate and phosphate ions on cation-exchange separation column in H+ form. These IEC systems were combined through three manually-driven 6-port column selection valves to select each separation column to determine selectively the ionic nutrients. Using this sequential water quality monitoring system, the analytical performances such as calibration linearity, reproducibility, detection limit and recovery were also tested under the optimized chromatographic conditions. This novel water quality monitoring system has been applied successfully for the determination of the ionic eutrophication components in sub-urban river waters.

  8. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography

    Science.gov (United States)

    Kutner, Robert H; Puthli, Sharon; Marino, Michael P; Reiser, Jakob

    2009-01-01

    Background During the past twelve years, lentiviral (LV) vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU) per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols. PMID:19220915

  9. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Chen, Ming-Luan; Su, Xin; Xiong, Wei; Liu, Jiu-Feng; Wu, Yan; Feng, Yu-Qi; Yuan, Bi-Feng

    2013-01-01

    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.

  10. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Ming-Luan Chen

    Full Text Available Bioactive gibberellins (GAs play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20. An anion exchange/hydrophobic poly([2-(methacryloyloxyethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate(META-co-DVB-co-EDMA monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3 of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m of recombinant GA3-oxidase in Escherichia coli (E. coli cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.

  11. High-Performance Anion-Exchange Chromatography Coupled with Pulsed Electrochemical Detection as a Powerful Tool to Evaluate Carbohydrates of Food Interest: Principles and Applications

    Directory of Open Access Journals (Sweden)

    Claudio Corradini

    2012-01-01

    Full Text Available Specific HPLC approaches are essential for carbohydrate characterization in food products. Carbohydrates are weak acids with pKa values in the range 12–14 and, consequently, at high pH can be transformed into oxyanions, and can be readily separated using highly efficient anion-exchange columns. Electrochemical detection in HPLC has been proven to be a powerful analytical technique for the determination of compounds containing electroactive groups; pulsed amperometric detection of carbohydrates is favourably performed by taking advantage of their electrocatalytic oxidation mechanism at a gold working electrode in a basic media. High-performance Anion Exchange Chromatography (HPAEC at high pH coupled with pulsed electrochemical detection (PED is one of the most useful techniques for carbohydrate determination either for routine monitoring or research application. This technique has been of a great impact on the analysis of oligo- and polysaccharides. The compatibility of electrochemical detection with gradient elution, coupled with the high selectivity of the anion-exchange stationary phases, allows mixtures of simple sugars, oligo- and polysaccharides to be separated with high resolution in a single run. A few reviews have been written on HPAEC-PED of carbohydrates of food interest in the last years. In this paper the recent developments in this field are examined.

  12. Strong anion-exchange fast performance liquid chromatography as a versatile tool for preparation and purification of RNA produced by in vitro transcription.

    Science.gov (United States)

    Koubek, Jiri; Lin, Ku Feng; Chen, Yet Ran; Cheng, Richard Ping; Huang, Joseph Jen Tse

    2013-10-01

    Here we demonstrate the use of strong anion-exchange fast performance liquid chromatography (FPLC) as a simple, fast, and robust method for RNA production by in vitro transcription. With this technique, we have purified different transcription templates from unreacted reagents in large quantities. The same buffer system could be used to readily remove nuclease contamination from the overexpressed pyrophosphatase, the important reagent for in vitro transcription. In addition, the method can be used to monitor in vitro transcription reactions to enable facile optimization of reaction conditions, and we have compared the separation performance between strong and weak anion-exchange FPLC for various transcribed RNAs, including the Diels-Alder ribozyme, the hammerhead ribozyme tRNA, and 4.5S RNA. The functionality of the purified tRNA(Cys) has been confirmed by the aminoacylation assay. Only the purification by strong anion-exchange FPLC has led to the enrichment of the functional tRNA from run-off transcripts as revealed by both enzymatic and electrophoretic analysis.

  13. Anion exchange polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  14. Water quality monitoring system for determination of ionic nutrients by ion-exclusion chromatography with spectrophotometric detection on cationand anion-exchange resin columns using water eluent

    Institute of Scientific and Technical Information of China (English)

    Daisuke KOZAKI; Nobutakc NAKATANI; Masanobu MORI; Nobukazu NAKAGOSHI; Kazuhiko TANAKA

    2012-01-01

    A unified ion-exclusion chromatography(IEC)system for monitoring anionic and cationic nutrients like NH+4,NO-2,NO-3,phosphate ion,silicate ion and HCO-3 was developed and applied to several environmental waters.The IEC system consisted of four IEC methodologies,including the IEC with ultraviolet(UV)detection at 210 nm for determining NH-4 on anion-exchange separation column in OH form connected with anion-exchange UV-conversion column in I-form in tandem,the IEC with UV-detection at 210 nm for determining simultaneously NO-2 and NO-3 on cation-exchange separation column in H+ form,the IEC with UV-detection at 210 nm for determining HCO-3 on cation-exchange separation column in H+ form connected with anionexchange UV-conversion column in I-form in tandem,and the IEC with visible-detection based on molybdenum-blue reaction for determining simultaneously silicate and phosphate ions on cation-exchange separation column in H + form.These IEC systems were combined through three manually-driven 6-port column selection valves to select each separation column to determine selectively the ionic nutrients.Using this sequential water quality monitoring system,the analytical performances such as calibration linearity,reproducibility,detection limit and recovery were also tested under the optimized chromatographic conditions.This novel water quality monitoring system has been applied successfully for the determination of the ionic eutrophication components in sub-urban river waters.

  15. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  16. Survey of inorganic arsenic in marine animals and marine certified reference materials by anion exchange high-performance liquid chromatography-inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Larsen, Erik Huusfeldt; Julshamn, Kåre

    2005-01-01

    A method for the determination of inorganic arsenic in seafood samples using high-performance liquid chromatography-inductively coupled plasma mass spectrometry is described. The principle of the method relied on microwave-assisted alkaline dissolution of the sample, which at the same time oxidized...... arsenite [As(Ill)] to arsenate [As(V)], whereby inorganic arsenic could be determined as the single species As(V). Anion exchange chromatography using isocratic elution with aqueous ammonium carbonate as the mobile phase was used for the separation of As(V) from other coextracted organoarsenic compounds......, including arsenobetaine. The stability of organoarsenic compounds during the sample pretreatment was investigated, and no degradation/conversion to inorganic arsenic was detected. The method was employed for the determination of inorganic arsenic in a variety of seafood samples including fish, crustaceans...

  17. Chitosan Derivatives as Important Biorefinery Intermediates. Quaternary Tetraalkylammonium Chitosan Derivatives Utilized in Anion Exchange Chromatography for Perchlorate Removal

    Science.gov (United States)

    Sayed, Shakeela; Jardine, Anwar

    2015-01-01

    There has recently been great interest in the valorization of biomass waste in the context of the biorefinery. The biopolymer chitosan, derived from chitin, is present in large quantities of crustacean waste. This biomass can be converted into value-added products with applications in energy, fuel, chemicals and materials manufacturing. The many reported applications of this polymer can be attributed to its unique properties, such as biocompatibility, chemical versatility, biodegradability and low toxicity. Cost effective water filters which decontaminate water by removal of specific impurities and microbes are in great demand. To address this need, the development of ion exchange resins using environmentally friendly, renewable materials such as biopolymers as solid supports was evaluated. The identification and remediation of perchlorate contaminated water using an easy, inexpensive method has come under the spotlight recently. Similarly, the use of a low cost perchlorate selective solid phase extraction (SPE) cartridge that can be rapidly employed in the field is desirable. Chitosan based SPE coupled with colorimetric analytical methods showed promise as a renewable anion exchange support for perchlorate analysis or removal. The polymers displayed perchlorate retention comparable to the commercial standard whereby the quaternized iron loaded polymer TMC-Fe(III) displayed the best activity. PMID:25915024

  18. PURIFICATION OF WATER SOLUBLE PROTEINS (2S ALBUMINS EXTRACTED FROM PEANUT DEFATTED FLOUR AND ISOLATION OF THEIR ISOFORMS BY GEL FILTRATION AND ANION EXCHANGE CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    IMÈNE BOUALEG

    2017-06-01

    Full Text Available 2S albumins are water-soluble seed storage proteins present in dicotyledonous plants, including legumes. In peanuts, 2S albumins have been identified as major allergens. In this work, we aimed to study these water soluble allergenic proteins. They were extracted in water from peanut defatted flour (oilcake. It was quantified by Bradford method. The total and insoluble proteins content was determined by Kjeldahl method (% P = N x 6.25. The crude 2S albumins were purified using gel-filtration chromatography. Anion exchange chromatography analysis was applied to isolate their isoforms. The recorded values for total and insoluble proteins are 45.49 % and 36.65 % consecutively. A value of 9.99 % was determined for water soluble proteins content which correspond to 20 % compared to the total proteins. Analysis by Sephadex G-75 chromatography of soluble extract gave two majors peaks in which, the Mr ~ 25 kDa peak was predicted to be pure 2S albumin fraction. Using DAEA-cellulose chromatography, two peaks were appeared from pure 2S albumins, it were predicted that 2S albumin isoforms theoretically represent the peanut major allergens Ara h2 and Ara h6. These approaches are the basis for further studies may involve immunological analysis to understand the impact of these biomolecules on peanut allergenicity.

  19. Role of urea on recombinant Apo A-I stability and its utilization in anion exchange chromatography.

    Science.gov (United States)

    Angarita, Monica; Arosio, Paolo; Müller-Späth, Thomas; Baur, Daniel; Falkenstein, Roberto; Kuhne, Wolfgang; Morbidelli, Massimo

    2014-08-08

    Apolipoprotein A-I (Apo A-I) is an important lipid-binding protein involved in the transport and metabolism of cholesterol. High protein purity, in particular with respect to endotoxins is required for therapeutic applications. The use of urea during the purification process of recombinant Apo A-I produced in Escherichia coli has been suggested so as to provide high endotoxin clearance. In this work, we show that urea can be used as a sole modifier during the ion exchange chromatographic purification of Apo A-I and we investigate the molecular mechanism of elution by correlating the effect of urea on self-association, conformation and adsorption equilibrium properties of a modified model Apo A-I. In the absence of urea the protein was found to be present as a population of oligomers represented mainly by trimers, hexamers and nonamers. The addition of urea induced oligomer dissociation and protein structure unfolding. We correlated the changes in protein association and conformation with variations of the adsorption equilibrium of the protein on a strong anion exchanger. It was confirmed that the adsorption isotherms, described by a Langmuir model, were dependent on both protein and urea concentrations. Monomers, observed at low urea concentration (0.5M), were characterized by larger binding affinity and adsorption capacity compared to both protein oligomers (0M) and unfolded monomers (2-8M). The reduction of both the binding strength and maximum adsorption capacity at urea concentrations larger than 0.5M explains the ability of urea of inducing elution of the protein from the ion exchange resin. The dissociation of the protein complexes occurring during the elution could likely be the origin of the effective clearance of endotoxins originally trapped inside the oligomers.

  20. Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles.

    Science.gov (United States)

    Ladd Effio, Christopher; Hahn, Tobias; Seiler, Julia; Oelmeier, Stefan A; Asen, Iris; Silberer, Christine; Villain, Louis; Hubbuch, Jürgen

    2016-01-15

    Recombinant protein-based virus-like particles (VLPs) are steadily gaining in importance as innovative vaccines against cancer and infectious diseases. Multiple VLPs are currently evaluated in clinical phases requiring a straightforward and rational process design. To date, there is no generic platform process available for the purification of VLPs. In order to accelerate and simplify VLP downstream processing, there is a demand for novel development approaches, technologies, and purification tools. Membrane adsorbers have been identified as promising stationary phases for the processing of bionanoparticles due to their large pore sizes. In this work, we present the potential of two strategies for designing VLP processes following the basic tenet of 'quality by design': High-throughput experimentation and process modeling of an anion-exchange membrane capture step. Automated membrane screenings allowed the identification of optimal VLP binding conditions yielding a dynamic binding capacity of 5.7 mg/mL for human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A mechanistic approach was implemented for radial ion-exchange membrane chromatography using the lumped-rate model and stoichiometric displacement model for the in silico optimization of a VLP capture step. For the first time, process modeling enabled the in silico design of a selective, robust and scalable process with minimal experimental effort for a complex VLP feedstock. The optimized anion-exchange membrane chromatography process resulted in a protein purity of 81.5%, a DNA clearance of 99.2%, and a VLP recovery of 59%.

  1. Fluid dynamics simulation of highly loaded anion-exchange chromatography of Np(IV) based on adsorption isotherm determined by {sup 237+239}Np

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, T. [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan)], E-mail: yamamura@imr.tohoku.ac.jp; Mitsugashira, T. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Shiokawa, Y. [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Aoki, D.; Homma, Y. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2007-10-11

    In order to investigate the optimum condition for anion-exchange chromatography for purification and recovery of actinide(IV) constituting transuranium elements, a convective-diffusion equation model treating mass balance and Langmuir-type kinetics in porous system, which was developed for thorium(IV) by us, was applied to neptunium(IV). Absorption isotherm of neptunium(IV) to anion-exchange (MSA-1) resin was carried out by using {sup 237+239}Np in 6N HNO{sub 3} media and hereby parameters of the Langmuir-type kinetics were determined as k{sub 0} = 2.5 x 10{sup 3} and s{sub max} = 1.0. Accompanied with the fluid dynamics parameters already determined for the column system used for {sup 227+232}Th, elution curves of neptunium(IV) at highly loaded condition were estimated by the numerical calculation. According to the result, the loading of more than 10% of resin capacity leads to rapid breakthrough and severe tailing of neptunium which lowers purity and yield in the purification procedure. This numerical calculation will serve as a valuable measure to figure out column operation conditions for purification and recovery of transuranium elements.

  2. Improved isoelectric focusing chromatography on strong anion exchange media via a new model that custom designs mobile phases using simple buffers.

    Science.gov (United States)

    Choy, Derek Y C; Creagh, A Louise; Haynes, Charles

    2014-03-01

    Isoelectric chromatofocusing (ICF), a mode of chromatography by which proteins are separated based on changes in their charge state with pH, is widely used at analytical scales and finding increasing interest in biologics manufacturing due to its exceptional resolving power. Here, a method is described for using simple monoprotic and diprotic buffers to create stable mobile phases for sample loading on a strong anion exchange column and for achieving an elution pH gradient of desired shape covering any pH range from pH 10.0 to 3. The buffers used are selected to satisfy cost constraints, and to permit facile detection of eluted biologics by UV spectroscopy and mass spectrometry. The method exploits a new model described here that combines multiple-chemical and adsorption-equilibria theory to enable in silico tailoring of elution pH profiles using mixtures of these simple buffers. It is shown to provide a versatile platform for optimizing and conducting ICF of protein mixtures on strong anion exchange media. © 2013 Wiley Periodicals, Inc.

  3. Determination of neomycin sulfate and impurities using high-performance anion-exchange chromatography with integrated pulsed amperometric detection.

    Science.gov (United States)

    Hanko, Valoran P; Rohrer, Jeffrey S

    2007-01-01

    Neomycin B is one of a class of aminoglycoside antibiotics that lack a good chromophore, and is therefore difficult to determine using reversed-phase HPLC with absorbance detection. This is especially true for determining the quantity of each impurity. We show that neomycin sulfate and its major impurities, including neamine (neomycin A), can be separated on a strong anion-exchange column using a weak potassium hydroxide eluent (2.40 mM) at a column temperature of 30 degrees C, and directly detected by integrated pulsed amperometric detection (IPAD). The resolution (United States Pharmacopeia (USP) definition) between neomycin B and the closest major impurity ranged from 6.56 and 7.45 over 10 days of consecutive analysis (7.24+/-0.10, n=836 injections). Due to the difficulty of producing weak hydroxide eluents of the required purity (i.e. carbonate-free), this method depends on automatic eluent generation to ensure method ruggedness. This method exhibited good long-term (10 days, 822 injections) retention time stability with a R.S.D. of 0.6%. Peak area R.S.D. (10 microM) was 1.3%. Method robustness was evaluated by intentionally varying the flow rate, eluent concentration, column temperature, and column. The spike recoveries of neomycin B from extractions of three different topical ointments and cream formulations ranged from 95 to 100%. The measured concentration of neomycin B in these formulations ranged from 119 to 154% of the label concentration. The R.S.D. for the measured concentration of one of the formulations tested over three separate days, n=11 extracts, was 3.2%. Based on the results of these evaluations, we believe this method can be used for neomycin sulfate identity, assay, and purity.

  4. Characterization of phosphoantigens by high-performance anion-exchange chromatography-electrospray ionization ion trap mass spectrometry and nanoelectrospray ionization ion trap mass spectrometry.

    Science.gov (United States)

    Pont, F; Luciani, B; Belmant, C; Fournié, J J

    2001-08-01

    New phosphorylated microbial metabolites referred to as phosphoantigens activate immune responses in humans. Although these molecules have leading applications in medical research, no direct method allows their rapid and unambiguous structural identification. Here, we interfaced online HPAEC (high performance anion-exchange chromatography) with ESI-ITMS (electrospray ionization ion trap mass spectrometry) to identify such pyrophosphorylated molecules. A self-regenerating anion suppressor located upstream of electrospray ionization enabled the simultaneous detection of pyrophosphoester by conductimetry, UV and MS. By HPAEC-ITMS and HPAEC-ITMS2, a single run permitted characterization of reference phosphoantigens and of related structures. Although all compounds were resolved by HPAEC, MS enabled their detection and identification by [M-H]- and fragment ions. Isobaric phosphoantigen analogues were also separated by HPAEC and distinguished by MS2. The relevance of this device was demonstrated for phosphoantigens analysis in human urine and plasma. Furthermore, identification of natural phosphoantigens by automatically generated 2D mass spectra from nano-ESI-ITMS is presented. This last technique permits the simultaneous performance of molecular screening of natural phosphoantigen extracts and their identification.

  5. Simultaneous determination of inorganic and organic anions by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  6. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    Science.gov (United States)

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  7. Preparation of quaternary amine monolithic column for strong anion-exchange chromatography and its application to the separation of Enterovirus 71.

    Science.gov (United States)

    Gu, Huimin; Yin, Dezhong; Ren, Jie; Zhang, Baoliang; Zhang, Qiuyu

    2016-10-15

    Large size virion is unable to diffuse into pores of conventional porous chromatography particles. Therefore, separation of virion by conventional column-packing materials is not quite efficient. To solve this problem, a monolithic column with large convective pores and quaternary amine groups was prepared and was applied to separate Enterovirus 71 (EV71, ≈5700-6000kDa). Cross-section, pore structure, hydrodynamic performance, adsorption property and dynamic binding capacity of prepared monolithic column were determined. Double-pore structures, macropore at 2472nm and mesopore at 5-60nm, were formed. The porosity was up to 63.3%, which enable higher permeability and lower back pressure of the monolithic column than commercial UNO™ Q1 column. Based on the breakthrough curves, the loading capacity of bovine serum albumin was calculated to be 42.0mg per column. In addition, prepared quaternary amine monolithic column was proved to be suitable for the separation of protein mixture by strong anion-exchange chromatography. As a practical application, prepared monolith column presents excellent performance to the separation of EV71 from virus-proteins mixture.

  8. One-step isolation of adenosine triphosphate from crude fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel.

    Science.gov (United States)

    Yun, Junxian; Shen, Shaochuan; Chen, Fang; Yao, Kejian

    2007-12-01

    Adenosine triphosphate (ATP) is an important high-energy compound widely used in biological and therapeutic fields. It can be produced by phosphorylation of adenosine monophosphate (AMP) with microbial cells in industrial scale and the effective isolation of ATP from microbial fermentation broth is a challenging work. In this work, we develop a novel one-step method to directly separate ATP from fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel. The cryogel bed with tertiary amine groups was prepared by grafting N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer chains onto the matrix of a polyacrylamide-based cryogel in a glass column and its properties of liquid dispersion, water permeability, porosity as well as the ligand density were measured. Chromatographic separation of ATP from the fermentation broth by the cryogel was carried out using deionised water and 0.01 M HCl as running buffer, respectively. The breakthrough characteristics and elution performance in the cryogel bed were revealed and analyzed. The purities of the obtained ATP were analyzed quantitatively by high performance liquid chromatography (HPLC). The maximal purity of ATP by the one-step separation method was 95.5% using 0.01 M HCl as running buffer in this work. The corresponding chromatographic behaviors were investigated and analyzed.

  9. Analytical Method for Sugar Profile in Pet Food and Animal Feeds by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection.

    Science.gov (United States)

    Ellingson, David J; Anderson, Phillip; Berg, Daniel P

    2016-01-01

    There is a need for a standardized, accurate, rugged, and consistent method to measure for sugars in pet foods and animal feeds. Many traditional standard sugar methods exist for other matrixes, but when applied in collaborative studies there was poor agreement and sources of error identified with those standard methods. The advancement in technology over the years has given us the ability to improve on these standard methods of analysis. A method is described here that addresses these common issues and was subjected to a single-laboratory validation to assess performance on a wide variety of pet foods and animal feeds. Of key importance to the method performance is the sample preparation before extraction, type of extraction solvent, postextraction cleanup, and, finally, optimized chromatography using high-performance anion exchange chromatography with pulsed amperometric detection. The results obtained from the validation demonstrate how typical issues seen with these matrixes can influence performance of sugar analysis. The results also demonstrate that this method is fit-for-purpose and can meet the challenges of sugar analysis in pet food and animal feeds to lay the foundation for a standardized method of analysis.

  10. Rapid simultaneous analysis of oxyhalides and inorganic anions in aqueous media by ion exchange chromatography with indirect UV detection

    Directory of Open Access Journals (Sweden)

    Mohammadine El Haddad

    2015-01-01

    Best separations have also occured between(Cl-/ClO3- and(Br-/BrO3- with good a resolution. Detections limits (S/N = 3 ofBrO3-,ClO3-andNO3- were 2 and 5 ppm for inorganic anions Cl−, Br− andSO42-. The method had a good linearity (r2 > 0.995 and high precision (relative standard deviation <4%. The main reason for the detector choice was that UV detectors are widespread in educational and low level equipment laboratories. Indirect photometric detection is an attractive and inexpensive approach and the system is versatile.

  11. Ion-exclusion chromatography with the direct UV detection of non-absorbing inorganic cations using an anion-exchange conversion column in the iodide-form.

    Science.gov (United States)

    Mori, Masanobu; Itabashi, Hideyuki; Ikedo, Mikaru; Tanaka, Kazuhiko

    2006-08-15

    An ion-exclusion chromatographic method for the direct UV detection of non-absorbing inorganic cations such as sodium (Na(+)), ammonium (NH(4)(+)) and hydrazine (N(2)H(5)(+)) ions was developed by connecting an anion-exchange column in the I(-)-form after the separation column. For example, NH(4)(+) is converted to a UV-absorbing molecule, NH(4)I, by the anion-exchange column in the I(-)-form after the ion-exclusion separation on anion-exchange column in the OH(-)-form with water eluent. As a result, the direct UV detection of Na(+), NH(4)(+) and N(2)H(5)(+) could be successfully obtained as well as the well-resolved separation. The calibration graphs of the analyte cations detected with UV at 230nm were linear in the range of 0.001-5.0mM. The detection limits at S/N=3 of the cations were below 0.1muM. This method was applied to real water analysis, the determination of NH(4)(+) in river and rain waters, or that of N(2)H(5)(+) in boiler water, with the satisfactory results. This could be applied also to low- or non-absorbing anions such as fluoride or hydrogencarbonate ions by the combination of a weakly acidic cation-exchange resin in the H(+)-form as the separation column and the anion-exchange conversion column.

  12. Short communication: Quantification of carbohydrates in whey permeate products using high-performance anion-exchange chromatography with pulsed amperometric detection.

    Science.gov (United States)

    Lee, Hyeyoung; de MeloSilva, Vitor Luiz; Liu, Yan; Barile, Daniela

    2015-11-01

    A method was developed for the characterization and quantification of the disaccharide lactose and 3 major bovine milk oligosaccharides (BMO) in dairy streams. Based on high-performance anion-exchange chromatography-pulsed amperometric detection (HPAE-PAD), this method is advantageous because it requires minimal sample preparation and achieves good chromatographic separation of oligosaccharide isomers within 30min. The linear dynamic range and limit of detection were 0.1 to 10mg/L and 0.03 to 0.22mg/L, respectively. Mean recoveries of the BMO were excellent and ranged from 98.4 to 100.4%. Without complicated sample preparation procedures, this HPAE-PAD method measured BMO [3'-sialyllactose (3'SL), 6'-sialyllactose (6'SL), and 6'-sialyllactosamine (6'SLN)] and lactose using a single instrument, therefore increasing the accuracy of the measurement and applicability for the dairy industry. In colostrum whey permeate, 3'SL, 6'SL, and 6'SLN were 94, 29, and 46mg/L, respectively. This work is the first to demonstrate that some commercial products, currently marketed for supporting a healthy immune system, contain significant amounts of bioactive BMO and therefore, carry additional bioactivities.

  13. On-line anion exchange solid-phase extraction coupled to liquid chromatography with fluorescence detection to determine quinolones in water and human urine.

    Science.gov (United States)

    Lara, Francisco J; Del Olmo-Iruela, Monsalud; García-Campaña, Ana M

    2013-10-04

    An analytical method based on on-line solid-phase extraction coupled to liquid chromatography with fluorescence detection has been developed to determine quinolones in tap water and human urine. A home-made setup was used to percolate 10 mL of sample through a solid-phase extraction column. Analytes were retained onto the sorbent by an anion exchange mechanism which ensures an optimum compatibility with the subsequent chromatographic separation. A C-18 column containing core-shell particles (2.6 μm) was used to achieve peak efficiencies up to 200,000 plates/m, at a flow rate of 1.2 mL/min and without the need for special pumps. The method allowed the determination of 11 quinolones directly in tap water samples in less than 20 min and with limits of detection ranging between 7 and 110 ng/L. The sensitivity achieved made possible the direct determination of 9 quinolones in human urine without any sample treatment, just dilution with water. Relative recoveries between 94 and 109% were obtained meaning that the matrix effect in human urine is negligible after dilution. Satisfactory results were also obtained in terms of precision since relative standard deviations were always below 13%.

  14. Determination of amino acids in cell culture and fermentation broth media using anion-exchange chromatography with integrated pulsed amperometric detection.

    Science.gov (United States)

    Hanko, Valoran P; Rohrer, Jeffrey S

    2004-01-01

    Cell culture and fermentation broth media are used in the manufacture of biotherapeutics and many other biological materials. Characterizing the amino acid composition in cell culture and fermentation broth media is important because deficiencies in these nutrients can reduce desired yields or alter final product quality. Anion-exchange (AE) chromatography using sodium hydroxide (NaOH) and sodium acetate gradients, coupled with integrated pulsed amperometric detection (IPAD), determines amino acids without sample derivatization. AE-IPAD also detects carbohydrates, glycols, and sugar alcohols. The presence of these compounds, often at high concentrations in cell culture and fermentation broth media, can complicate amino acid determinations. To determine whether these samples can be analyzed without sample preparation, we studied the effects of altering and extending the initial NaOH eluent concentration on the retention of 42 different carbohydrates and related compounds, 30 amino acids and related compounds, and 3 additional compounds. We found that carbohydrate retention is impacted in a manner different from that of amino acid retention by a change in [NaOH]. We used this selectivity difference to design amino acid determinations of diluted cell culture and fermentation broth media, including Bacto yeast extract-peptone-dextrose (yeast culture medium) broth, Luria-Bertani (bacterial culture medium) broth, and minimal essential medium and serum-free protein-free hybridoma medium (mammalian cell culture media). These media were selected as representatives for both prokaryotic and eukaryotic culture systems capable of challenging the analytical technique presented in this paper. Glucose up to 10mM (0.2%, w/w) did not interfere with the chromatography, or decrease recovery greater than 20%, for the common amino acids arginine, lysine, alanine, threonine, glycine, valine, serine, proline, isoleucine, leucine, methionine, histidine, phenylalanine, glutamate, aspartate

  15. +Facile extraction of azide in sartan drugs using magnetized anion-exchange metal-organic frameworks prior to ion chromatography.

    Science.gov (United States)

    Zhang, Sainan; Han, Peipei; Xia, Yan

    2017-09-08

    Quaternary amine functionalized metal-organic framework MIL-101(Cr) (MIL-101(Cr)-NMe3) was prepared as the sorbent for the magnetic solid-phase extraction (MSPE) of azide from sartan drugs before ion chromatography determination. Magnetization of MIL-101-NMe3 were achieved concurrently by adding MIL-101-NMe3 and Fe3O4@SiO2 to the sample solution under ultrasonication. The prepared Fe3O4@SiO2/MIL-101-NMe3 gave the adsorption capacity of 37.5mgg(-1). The developed method had a detection limit of 0.24μgL(-1) and quantitation limit of 0.79μgL(-1) for azide. The relative standard deviations for the intra-day retention time and peak area were 0.52% and 0.36% (n=5), respectively. The developed method was successfully applied for the determination of azide in sartan drugs with the recoveries from 96.5% to 100.5%. Copyright © 2017. Published by Elsevier B.V.

  16. Characterization of oligosaccharides with capillary high performance anion exchange chromatography hyphenated to pulsed amperometric detection and ion trap mass spectrometry : application to the analysis of human lysosomal disorders

    NARCIS (Netherlands)

    Bruggink, Cornelis

    2013-01-01

    The development of a capillary ion chromatograph is described together with a matching desalter. This desalter made it possible to use on-line a mass spectrometer. The mass spectrometer enables partly to characterize carbohydrates eluting from the anion exchange column. This separation technology is

  17. Simultaneous separation and quantitative determination of monosaccharides, uronic acids, and aldonic acids by high performance anion-exchange chromatography coupled with pulsed amperometric detection in corn stover prehydrolysates

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2012-11-01

    Full Text Available A method for simultaneous separation and quantitative determination of arabinose, galactose, glucose, xylose, xylonic acid, gluconic acid, galacturonic acid, and glucuronic acid was developed by using high performance anion-exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD. The separation was performed on a CarboPacTM PA-10 column (250 mm × 2 mm with a various gradient elution of NaOH-NaOAc solution as the mobile phase. The calibration curves showed good linearity (R2 ≥ 0.9993 for the monosaccharides, uronic acids, and aldonic acids in the range of 0.1 to 12.5 mg/L. The detection limits (LODs and the quantification limits (LOQs were 4.91 to 18.75 μg/L and 16.36 to 62.50 μg/L, respectively. Relative standard deviations (RSDs of the retention times and peak areas for the seven consecutive determinations of an unknown amount of mixture were 0.15% to 0.44% and 0.22% to 2.31%, respectively. The established method was used to separate and determine four monosaccharides, two uronic acids, and two aldonic acids in the prehydrolysate from dilute acid steam-exploded corn stover within 21 min. The spiked recoveries of monosaccharides, uronic acids, and aldonic acids ranged from 91.25% to 108.81%, with RSDs (n=3 of 0.04% ~ 6.07%. This method was applied to evaluate the quantitative variation of sugar and sugar acid content in biomass prehydrolysates.

  18. Stability study of As(III), As(V), MMA and DMA by anion exchange chromatography and HG-AFS in wastewater samples

    Energy Technology Data Exchange (ETDEWEB)

    Segura, Marta; Munoz, Juan; Madrid, Yolanda; Camara, Carmen [Departamento de Quimica Analitica, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain)

    2002-10-01

    The stability of arsenic species {l_brace}arsenate [As(V)], monomethylarsonate [MMA], dimethylarsinate [DMA] and arsenite [As(III)]{r_brace} in two types of urban wastewater samples (raw and treated) was evaluated. Water samples containing a mixture of the different arsenic species were stored in the absence of light at three different temperatures: +4 C, +20 C and +40 C. At regular time intervals, arsenic species were determined by high performance liquid chromatography (HPLC)-hydride generation (HG)-atomic fluorescence spectrometry (AFS). The experimental conditions for the separation of arsenic species by HPLC and their determination by AFS were directly optimised from wastewater samples. As(III), As(V), MMA and DMA were separated on an anion exchange column using phosphate buffer (pH 6.0) as the mobile phase. Under these conditions the four arsenic species were separated in less than 10 min. The detection limits were 0.6, 0.9, 0.9 and 1.8 {mu}g L{sup -1} for As(III), DMA, MMA and As(V), respectively. As(V), MMA and DMA were found stable in the two types of urban wastewater samples over the 4-month period at the three different temperatures tested, while the concentration of As(III) in raw wastewater sample decreased after 2 weeks of storage. A greater stability of As(III) was found in the treated urban wastewater sample. As(III) remained unaltered in this matrix at pH 7.27 over the period studied, while at lower pH (1.6) losses of As(III) were detected after 1 month of storage. The results show that the decrease in As(III) concentration with time was accompanied by an increase in As(V) concentration. (orig.)

  19. Chiral mobile phase in ligand-exchange chromatography of amino acids: exploring the copper(II) salt anion effect with a computational approach.

    Science.gov (United States)

    Sardella, Roccaldo; Macchiarulo, Antonio; Carotti, Andrea; Ianni, Federica; Rubiño, Maria Eugenia García; Natalini, Benedetto

    2012-12-21

    With the use of a chiral ligand-exchange chromatography (CLEC) system operating with the O-benzyl-(S)-serine [(S)-OBS] [1,2] as the chiral mobile phase (CMP) additive to the eluent, the effect of the copper(II) anion type on retention (k) and separation (α) factors was evaluated, by rationally changing the following experimental conditions: salt concentration and temperature. The CLEC-CMP analysis was carried out on ten amino acidic racemates and with nine different cupric salts. While the group of analytes comprised both aliphatic (leucine, isoleucine, nor-leucine, proline, valine, nor-valine, and α-methyl-valine) and aromatic (1-aminoindan-1,5-dicarboxylic acid, phenylglycine, and tyrosine) species, representative organic (formate, methanesulfonate, and trifluoroacetate) and inorganic (bromide, chloride, fluoride, nitrate, perchlorate, and sulfate) Cu(II) salts were selected as the metal source into the eluent. This route of investigation was pursued with the aim of identifying analogies among the employed Cu(II) salts, by observing the variation profile of the selected chromatographic parameters, upon a change of the above experimental conditions. All the data were collected and analyzed through a statistical approach (PCA and k-means clustering) that revealed the presence of two behavioral classes of cupric salts, sharing the same variation profile for k and α values. Interestingly, this clustering can be explained in terms of ESP (electrostatic surface potential) balance (ESP(bal)) values, obtained by an ab initio calculation operated on the cupric salts. The results of this appraisal could aid the rational choice of the most suitable eluent system, to succeed in the enantioseparation of difficult-to-resolve compounds, along with the eventual scale-up to a semi-preparative level.

  20. Assessment of capillary anion exchange ion chromatography tandem mass spectrometry for the quantitative profiling of the phosphometabolome and organic acids in biological extracts.

    Science.gov (United States)

    Kvitvang, Hans F N; Kristiansen, Kåre A; Bruheim, Per

    2014-11-28

    Metabolic profiling has become an important tool in biological research, and the chromatographic separation of metabolites coupled with mass spectrometric detection is the most frequently used approach for such studies. The establishment of robust chromatographic methods for comprehensive coverage of the anionic metabolite pool is especially challenging. In this study, the development of a capillary ion exchange chromatography (capIC) - negative ESI tandem mass spectrometry (MS/MS) workflow for the quantitative profiling of the phosphometabolome (e.g., sugar phosphates and nucleotides) is presented. The chromatographic separation and MS/MS conditions were optimized, and the precision of repetitive injections and accuracy in terms of error percentage to true concentration were assessed. The precision is excellent for a capillary flow system with an average CV% of 8.5% for a 50-fmol standard injection and in the lower 2.4-4.4% range for higher concentrations (500-7,500 fmol). The limit of detection (LOD) ranges from 1 to 100 nM (5-500 fmol injected on column), and the limit of quantitation (LOQ) ranges from 1 to 500 nM (5-2,500 fmol injected on column). A fast gradient method with the injection of 50% methanol in water between analytical samples is needed to eliminate carry-over and ensure optimal re-equilibration of the column. Finally, the quantitative applicability of the system was tested on real biological matrices using the constant-volume standard addition method (SAM). Extracts of the human kidney Hek293 cell line were spiked with increasing concentrations of standards to determine the concentration of each metabolite in the sample. Forty-four metabolites were detected with an average uncertainty of 4.1%. Thus, the capIC-MS/MS method exhibits excellent selectivity, sensitivity and precision for the quantitative profiling of the phosphometabolome.

  1. Determination of nitric oxide metabolites, nitrate and nitrite, in Anopheles culicifacies mosquito midgut and haemolymph by anion exchange high-performance liquid chromatography: plausible mechanism of refractoriness

    Directory of Open Access Journals (Sweden)

    Adak Tridibesh

    2008-04-01

    Full Text Available Abstract Background The diverse physiological and pathological role of nitric oxide in innate immune defenses against many intra and extracellular pathogens, have led to the development of various methods for determining nitric oxide (NO synthesis. NO metabolites, nitrite (NO2- and nitrate (NO3- are produced by the action of an inducible Anopheles culicifacies NO synthase (AcNOS in mosquito mid-guts and may be central to anti-parasitic arsenal of these mosquitoes. Method While exploring a plausible mechanism of refractoriness based on nitric oxide synthase physiology among the sibling species of An. culicifacies, a sensitive, specific and cost effective high performance liquid chromatography (HPLC method was developed, which is not influenced by the presence of biogenic amines, for the determination of NO2- and NO3- from mosquito mid-guts and haemolymph. Results This method is based on extraction, efficiency, assay reproducibility and contaminant minimization. It entails de-proteinization by centrifugal ultra filtration through ultracel 3 K filter and analysis by high performance anion exchange liquid chromatography (Sphereclone, 5 μ SAX column with UV detection at 214 nm. The lower detection limit of the assay procedure is 50 pmoles in all midgut and haemolymph samples. Retention times for NO2- and NO3- in standards and in mid-gut samples were 3.42 and 4.53 min. respectively. Assay linearity for standards ranged between 50 nM and 1 mM. Recoveries of NO2- and NO3- from spiked samples (1–100 μM and from the extracted standards (1–100 μM were calculated to be 100%. Intra-assay and inter assay variations and relative standard deviations (RSDs for NO2- and NO3- in spiked and un-spiked midgut samples were 5.7% or less. Increased levels NO2- and NO3- in midguts and haemolymph of An. culicifacies sibling species B in comparison to species A reflect towards a mechanism of refractoriness based on AcNOS physiology. Conclusion HPLC is a sensitive

  2. Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Jixin, E-mail: jixin.qiao@risoe.d [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Hou Xiaolin; Roos, Per [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Miro, Manuel [Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, Carretera de Valldemossa km. 7.5, E-07122 Palma de Mallorca, Illes Balears (Spain)

    2011-01-31

    This paper reports an automated analytical method for rapid determination of plutonium isotopes ({sup 239}Pu and {sup 240}Pu) in environmental solid extracts. Anion exchange chromatographic columns were incorporated in a sequential injection (SI) system to undertake the automated separation of plutonium from matrix and interfering elements. The analytical results most distinctly demonstrated that the crosslinkage of the anion exchanger is a key parameter controlling the separation efficiency. AG 1-x4 type resin was selected as the most suitable sorbent material for analyte separation. Investigation of column size effect upon the separation efficiency revealed that small-sized (2 mL) columns sufficed to handle up to 50 g of environmental soil samples. Under the optimum conditions, chemical yields of plutonium exceeded 90% and the decontamination factors for uranium, thorium and lead ranged from 10{sup 3} to 10{sup 4}. The determination of plutonium isotopes in three standard/certified reference materials (IAEA-375 soil, IAEA-135 sediment and NIST-4359 seaweed) and two reference samples (Irish Sea sediment and Danish soil) revealed a good agreement with reference/certified values. The SI column-separation method is straightforward and less labor intensive as compared with batch-wise anion exchange chromatographic procedures. Besides, the automated method features low consumption of ion-exchanger and reagents for column washing and elution, with the consequent decrease in the generation of acidic waste, thus bearing green chemical credentials.

  3. Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel

    2011-01-31

    This paper reports an automated analytical method for rapid determination of plutonium isotopes ((239)Pu and (240)Pu) in environmental solid extracts. Anion exchange chromatographic columns were incorporated in a sequential injection (SI) system to undertake the automated separation of plutonium from matrix and interfering elements. The analytical results most distinctly demonstrated that the crosslinkage of the anion exchanger is a key parameter controlling the separation efficiency. AG 1-×4 type resin was selected as the most suitable sorbent material for analyte separation. Investigation of column size effect upon the separation efficiency revealed that small-sized (2 mL) columns sufficed to handle up to 50 g of environmental soil samples. Under the optimum conditions, chemical yields of plutonium exceeded 90% and the decontamination factors for uranium, thorium and lead ranged from 10(3) to 10(4). The determination of plutonium isotopes in three standard/certified reference materials (IAEA-375 soil, IAEA-135 sediment and NIST-4359 seaweed) and two reference samples (Irish Sea sediment and Danish soil) revealed a good agreement with reference/certified values. The SI column-separation method is straightforward and less labor intensive as compared with batch-wise anion exchange chromatographic procedures. Besides, the automated method features low consumption of ion-exchanger and reagents for column washing and elution, with the consequent decrease in the generation of acidic waste, thus bearing green chemical credentials.

  4. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates

    Science.gov (United States)

    Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1993-01-01

    The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.

  5. Using ion exchange chromatography to purify a recombinantly expressed protein.

    Science.gov (United States)

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment.

  6. Determination of mycophenolic acid in mest products using mixed mode reversed phase-anion exchange clean-up and liquid chromatography-high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Sørensen, Louise Marie; Nielsen, Kristian Fog; Jacobsen, Thomas

    2008-01-01

    A method for determination of mycophenolic acid (MPA) in dry-cured ham, fermented sausage and liver pate is described. MPA was extracted from meat with bicarbonate-acetonitrile, further cleaned-up by mixed mode reversed phase-anion exchange and detected using a LC-MS system with electrospray...... ionisation-time-of-flight detection. The limit of detection was 4 mu g/kg in sausage and 6 mu g/kg in ham and pate. The method was successfully used for quantification of MPA in dry-cured ham and liver pate artificially inoculated with Penicillium brevicompactum. Levels ranged from 190 mu g/kg in centre to I...

  7. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 2: Computer controlled pH gradients in the presence of urea provide improved separation of proteins: Stability influenced anion and cation exchange chromatography.

    Science.gov (United States)

    Hirsh, Allen G; Tsonev, Latchezar I

    2017-04-28

    This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein

  8. Trace enrichment and characterization of polyphenols in Bistort Rhizoma using weak anion-exchange solid phase extraction and high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Shao-Teng; Yang, Hua; Gao, Wen; Li, Hui-Jun; Li, Ping

    2016-02-05

    The analysis of trace constituents in herbal medicines has always been a challenge due to complex matrices and structural diversities. In this work, a pH-sensitive solid phase extraction (SPE) procedure capable of enriching trace polyphenols in Bistort Rhizoma (BR) was proposed and preliminary chemical characterization was accomplished by high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOF MS). A weak anion-exchange SPE column packed with divinylbenzene/vinylpyrrolidone bonding quaternary amine group was employed for anionic extraction, and the target fraction was obtained by eluting with acidic methanol (apparent pH 1.9). On the other hand, the MS/MS fragmentation rules of four reference polyphenols in negative ion mode were outlined. Using these rules, a total of 31 polyphenols including 20 benzoyl derivatives and 11 caffeoyl derivatives were screened out from BR extract, of which 26 trace members were found for the first time in this herb. Those findings demonstrated that the anion-exchange SPE could enhance the detection capability and selectivity for plant polyphenols in the LC-MS analysis and the strategy for deducing structures could be applied for analysis of polyphenols in BR and other herbal medicines.

  9. An enzymatic method for the determination of fructans in foods and food products - Comparison of the results by high performance anion exchange chromatography with pulsed amperemetric detection

    DEFF Research Database (Denmark)

    Andersen, Rikke; Sørensen, A.

    1999-01-01

    effects than the fructanase reported as normally used. The method is tested on ten standard substances and five fructan products, and nine foods and food products are also analysed. The enzymatic measurement of the released sugars is confirmed by measurements done by high performance anion exchange......We report a new and non-equipment demanding method of measuring the content of fructans as well as the contents of free glucose, free fructose and sucrose in foods and food products enzymatically. This method comprises hydrolysis of fructans into D-glucose and D-fructose enzymatically...... and measurement of the released sugars enzymatically. Sucrose is hydrolysed by alpha-glucosidase instead of beta-fructosidase, which is normally used. In addition, sucrose is measured in the form of D-fructose instead of the typical D-glucose form, and the fructanase used to hydrolyse the fructans has fewer side...

  10. Selective determination of ammonium ions by high-speed ion-exclusion chromatography on a weakly basic anion-exchange resin column.

    Science.gov (United States)

    Mori, Masanobu; Tanaka, Kazuhiko; Helaleh, Murad I H; Xu, Qun; Ikedo, Mikaru; Ogura, Yutaka; Sato, Shinji; Hu, Wenzhi; Hasebe, Kiyoshi

    2003-05-16

    This paper describes an ion-exclusion chromatographic system for the rapid and selective determination of ammonium ion. The optimized ion-exclusion chromatographic system was established with a polymethacrylate-based weakly basic anion-exchange resin column (TSKgel DEAE-5PW) as the separation column, an aqueous solution containing 0.05 mM tetramethylammonium hydroxide (pH 9.10) as eluent with conductimetric detection for the analyte determination. Under the optimum chromatographic conditions, ammonium ion was determined within 2.3 min with a detection limit (S/N=3) better than 0.125 microM. Ammonium ion in rain and river waters was precisely determined using this ion-exclusion chromatographic system.

  11. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    Science.gov (United States)

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation.

  12. Application of high-performance anion-exchange chromatography with pulsed amperometric detection and statistical analysis to study oligosaccharide distributions--a complementary method to investigate the structure and some properties of alginates.

    Science.gov (United States)

    Ballance, Simon; Holtan, Synnøve; Aarstad, Olav Andreas; Sikorski, Pawel; Skjåk-Braek, Gudmund; Christensen, Bjørn E

    2005-11-04

    Alginates comprised of essentially alternating units of mannuronic (M) acid-guluronic (G) acid (MG-alginate), and G-blocks isolated from a seaweed where subjected to partial acid hydrolysis at pH 3.5 The chain-length distribution of oligosaccharides in the hydrolysate were investigated by statistical analysis after their separation with high-performance anion-exchange chromatography and pulsed amperometric detection (HPAEC-PAD). Simulated depolymerisation of the MG-alginate provided an estimate of the ratio between two acid hydrolysis rate constants (p=8.3+/-1) and the average distribution of the MM linkages in the original sample of polysaccharide chains. In conclusion, we found HPAEC-PAD together with statistical analysis was a useful method to investigate the fine structure and some properties of binary polysaccharides.

  13. 阴离子交换色谱法一步分离牛初乳中的sIgA%Single-step purification of sIgA from bovine colostrums by anion-exchange chromatography

    Institute of Scientific and Technical Information of China (English)

    章飞燕; 叶鹏程; 任其龙

    2011-01-01

    利用强碱3对所获免疫球蛋白A产品纯度的影响,获得从牛初乳中分离免疫球蛋白A的最优条件为pH 7.0,离子强度为0.03mol/L的磷酸盐缓冲液,最终可获得纯度为91.24%的免疫球蛋白A,回收率达到47%.因此,利用以强碱3#树脂为基质的阴离子交换色谱分离牛初乳中的免疫球蛋白A具有很好的发展潜力.%A fraction containing slgA (slgA-rich fraction)was prepared from bovine colostrum by anion exchange chromatography using alkali resin.The effect of changing buffer properties( pH and ionic strength)on purity of slgA was studied.The best result was slgA purity increasing from 16.31% in bovine colostrum solution to 91.24% in the eluting fraction with a recovery of 47% at the condition of pH 7.0,0.03mol/L sodium phosphate.These results suggested that the anion exchange chromatography using alkali resin was a potential process for slgA purification from bovine colostrum.

  14. Borate-aided anion exchange high-performance liquid chromatography of uridine diphosphate-sugars in brain, heart, adipose and liver tissues.

    Science.gov (United States)

    Oikari, Sanna; Venäläinen, Tuula; Tammi, Markku

    2014-01-03

    In this paper we describe a method optimized for the purification of uridine diphosphate (UDP)-sugars from liver, adipose tissue, brain, and heart, with highly reproducible up to 85% recoveries. Rapid tissue homogenization in cold ethanol, lipid removal by butanol extraction, and purification with a graphitized carbon column resulted in isolation of picomolar quantities of the UDP-sugars from 10 to 30mg of tissue. The UDP-sugars were baseline separated from each other, and from all major nucleotides using a CarboPac PA1 anion exchange column eluted with a gradient of acetate and borate buffers. The extraction and purification protocol produced samples with few unidentified peaks. UDP-N-acetylglucosamine was a dominant UDP-sugar in all the rat tissues studied. However, brain and adipose tissue showed high UDP-glucose levels, equal to that of UDP-N-acetylglucosamine. The UDP-N-acetylglucosamine showed 2.3-2.7 times higher levels than UDP-N-acetylgalactosamine in all tissues, and about the same ratio was found between UDP-glucose and UDP-galactose in adipose tissue and brain (2.6 and 2.8, respectively). Interestingly, the UDP-glucose/UDP-galactose ratio was markedly lower in liver (1.1) and heart (1.7). The UDP-N-acetylglucosamine/UDP-glucuronic acid ratio was also constant, between 9.7 and 7.7, except in liver with the ratio as low as 1.8. The distinct UDP-glucose/galactose ratio, and the abundance of UDP-glucuronic acid may reflect the specific role of liver in glycogen synthesis, and metabolism of hormones and xenobiotics, respectively, using these UDP-sugars as substrates.

  15. Removal of transmissible spongiform encephalopathy prion from large volumes of cell culture media supplemented with fetal bovine serum by using hollow fiber anion-exchange membrane chromatography.

    Science.gov (United States)

    Chou, Ming Li; Bailey, Andy; Avory, Tiffany; Tanimoto, Junji; Burnouf, Thierry

    2015-01-01

    Cases of variant Creutzfeldt-Jakob disease in people who had consumed contaminated meat products from cattle with bovine spongiform encephalopathy emphasize the need for measures aimed at preventing the transmission of the pathogenic prion protein (PrPSc) from materials derived from cattle. Highly stringent scrutiny is required for fetal bovine serum (FBS), a growth-medium supplement used in the production of parenteral vaccines and therapeutic recombinant proteins and in the ex vivo expansion of stem cells for transplantation. One such approach is the implementation of manufacturing steps dedicated to removing PrPSc from materials containing FBS. We evaluated the use of the QyuSpeed D (QSD) adsorbent hollow-fiber anion-exchange chromatographic column (Asahi Kasei Medical, Tokyo, Japan) for the removal of PrPSc from cell culture media supplemented with FBS. We first established that QSD filtration had no adverse effect on the chemical composition of various types of culture media supplemented with 10% FBS or the growth and viability characteristics of human embryonic kidney (HEK293) cells, baby hamster kidney (BHK-21) cells, African green monkey kidney (Vero) cells, and Chinese hamster ovary (CHO-k1) cells propagated in the various culture-medium filtrates. We used a 0.6-mL QSD column for removing PrPSc from up to 1000 mL of Dulbecco's modified Eagle's medium containing 10% FBS previously spiked with the 263K strain of hamster-adapted scrapie. The Western blot analysis, validated alongside an infectivity assay, revealed that the level of PrPSc in the initial 200mL flow-through was reduced by 2.5 to > 3 log10, compared with that of the starting material. These results indicate that QSD filtration removes PrPSc from cell culture media containing 10% FBS, and demonstrate the ease with which QSD filtration can be implemented in at industrial-scale to improve the safety of vaccines, therapeutic recombinant proteins, and ex vivo expanded stem cells produced using growth

  16. Removal of transmissible spongiform encephalopathy prion from large volumes of cell culture media supplemented with fetal bovine serum by using hollow fiber anion-exchange membrane chromatography.

    Directory of Open Access Journals (Sweden)

    Ming Li Chou

    Full Text Available Cases of variant Creutzfeldt-Jakob disease in people who had consumed contaminated meat products from cattle with bovine spongiform encephalopathy emphasize the need for measures aimed at preventing the transmission of the pathogenic prion protein (PrPSc from materials derived from cattle. Highly stringent scrutiny is required for fetal bovine serum (FBS, a growth-medium supplement used in the production of parenteral vaccines and therapeutic recombinant proteins and in the ex vivo expansion of stem cells for transplantation. One such approach is the implementation of manufacturing steps dedicated to removing PrPSc from materials containing FBS. We evaluated the use of the QyuSpeed D (QSD adsorbent hollow-fiber anion-exchange chromatographic column (Asahi Kasei Medical, Tokyo, Japan for the removal of PrPSc from cell culture media supplemented with FBS. We first established that QSD filtration had no adverse effect on the chemical composition of various types of culture media supplemented with 10% FBS or the growth and viability characteristics of human embryonic kidney (HEK293 cells, baby hamster kidney (BHK-21 cells, African green monkey kidney (Vero cells, and Chinese hamster ovary (CHO-k1 cells propagated in the various culture-medium filtrates. We used a 0.6-mL QSD column for removing PrPSc from up to 1000 mL of Dulbecco's modified Eagle's medium containing 10% FBS previously spiked with the 263K strain of hamster-adapted scrapie. The Western blot analysis, validated alongside an infectivity assay, revealed that the level of PrPSc in the initial 200mL flow-through was reduced by 2.5 to > 3 log10, compared with that of the starting material. These results indicate that QSD filtration removes PrPSc from cell culture media containing 10% FBS, and demonstrate the ease with which QSD filtration can be implemented in at industrial-scale to improve the safety of vaccines, therapeutic recombinant proteins, and ex vivo expanded stem cells produced

  17. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  18. Determination of trace inorganic anions in anionic surfactants by single-pump column-switching ion chromatography

    Institute of Scientific and Technical Information of China (English)

    Jia Jie Zhang; Hai Bao Zhu; Yan Zhu

    2012-01-01

    An ion chromatography method has been proposed for the determination of three common inorganic anions (chloride,nitrate and sulfate) in anionic surfactants using a single pump system.The new system consists of an ion exclusion column,a concentrator column,and an anion exchange column connected in series via two 6-ports valves in a Dionex ICS-2000 ion chromatograph.The valves were switched several times for removing surfactants,concentrating and separating the three anions.The chromatographic conditions were optimized.Detection limits (S/N =3) were in the range of 0.10-0.68 μg/L.The relative standard deviations (RSDs)of peak area were less than 4.6%.The recoveries were in the range of 84.1-112.6%.

  19. Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst.

    Science.gov (United States)

    Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2016-09-30

    Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested.

  20. Separation and quantification of inulin in selected artichoke (Cynara scolymus L.) cultivars and dandelion (Taraxacum officinale WEB. ex WIGG.) roots by high-performance anion exchange chromatography with pulsed amperometric detection.

    Science.gov (United States)

    Schütz, Katrin; Muks, Erna; Carle, Reinhold; Schieber, Andreas

    2006-12-01

    The profile of fructooligosaccharides and fructopolysaccharides in artichoke heads and dandelion roots was investigated. For this purpose, a suitable method for high-performance anion exchange chromatography with pulsed amperometic detection was developed. The separation of monomers, oligomers and polymers up to a chain length of 79 sugar residues was achieved in one single run. Glucose, fructose, sucrose and individual fructooligosaccharides (kestose, nystose, fructofuranosylnystose) were quantified in six different artichoke cultivars and in dandelion roots. The contents ranged from 12.9 g/kg DM to 71.7 g/kg DM for glucose, from 15.8 g/kg DM to 67.2 g/kg DM for fructose, and from 16.8 g/kg DM to 55.2 g/kg DM for sucrose in the artichoke heads. Kestose was the predominant fructooligosaccharide, followed by nystose and fructofuranosylnystose. In four cultivars fructofuranosylnystose was only detectable in traces and reached its maximum value of 3.6 g/kg DM in the cultivar Le Castel. Furthermore, an average degree of polymerization of 5.3 to 16.7 was calculated for the individual artichoke cultivars, which is noticeably lower than hitherto reported. In contrast, the contents of kestose, nystose and fructofuranosylnystose in dandelion root exceeded that of artichoke, reflecting the short chain characteristic of the inulin, which was confirmed by chromatographic analysis.

  1. High-performance liquid chromatography separation of cis-trans anthocyanin isomers from wild Lycium ruthenicum Murr. employing a mixed-mode reversed-phase/strong anion-exchange stationary phase.

    Science.gov (United States)

    Jin, Hongli; Liu, Yanfang; Guo, Zhimou; Yang, Fan; Wang, Jixia; Li, Xiaolong; Peng, Xiaojun; Liang, Xinmiao

    2015-01-21

    The cis-trans isomerism is a common phenomenon for acylated anthocyanins. Nevertheless, few studies reported effective methods for the preparation of isomeric anthocyanins from natural products. In this work, a high-performance liquid chromatography (HPLC) method was developed to efficiently purify anthocyanin isomers from Lycium ruthenicum Murr. based on a mixed-mode reversed-phase/strong anion-exchange column (named XCharge C8SAX). Four commercially available columns were evaluated with a pair of isomeric anthocyanins, and the results demonstrated that the XCharge C8SAX column exhibited improved selectivity and column efficiency for the isomers. The chromatographic parameters, including pH, organic content, and ionic strength, were investigated. Optimal separation quality for the anthocyanin isomers was achieved on the XCharge C8SAX column. Six pure anthocyanins, including two pairs of cis-trans isomeric anthocyanins with one new anthocyanin, were purified from L. ruthenicum and identified. All of the results indicated that this method is an effective way to separate anthocyanins, especially for cis-trans isomers.

  2. High-performance anion-exchange chromatography using on-line electrolytic eluent generation for the determination of more than 25 intermediates from energy metabolism of mammalian cells in culture.

    Science.gov (United States)

    Ritter, Joachim B; Genzel, Yvonne; Reichl, Udo

    2006-11-07

    In this work, we present an improved method for the determination of a wide range of intracellular metabolites from mammalian cells by anion-exchange chromatography. The analysis includes the measurement of intermediates from glycolysis and tricarboxylic acid cycle as well as several additional nucleotides and sugar nucleotides. The use of an electrolytic on-line eluent generation device made the method highly convenient, reliable and prone to errors. Due to short delay times of the eluent generator, rapid KOH gradient changes could be applied to improve separation and to speed up elution. Suppressed conductivity and UV in series was used for detection. The detection wavelength of the UV detector was switched from 220 to 260 nm during the elution for a more selective signal depending on the absorption of analytes. Standards from more than 50 metabolites of major cellular pathways were chromatographically tested and compared to chromatograms from extraction samples of Madin-Darby canine kidney (MDCK) and BHK21 cells. A validation for most substances was performed. Detection limits were below the micromolar range and the coefficient of correlation (R(2)) was above 0.99 for most analytes. Working ranges were between 0.125-3.875 and 4.5-139.5 microM. Sample pH had a major impact on the quantification of several metabolites, but measurements were robust within a pH range of 6.5-9.0.

  3. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    Science.gov (United States)

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method.

  4. Selective anion exchange with nanogated isoreticular positive metal-organic frameworks.

    Science.gov (United States)

    Zhao, Xiang; Bu, Xianhui; Wu, Tao; Zheng, Shou-Tian; Wang, Le; Feng, Pingyun

    2013-01-01

    Crystalline porous materials, especially inorganic porous solids such as zeolites, usually have negative frameworks with extra-framework mobile cations and are widely used for cation exchange. It is highly desirable to develop new materials with positive frameworks for selective anion exchange and separation or storage and delivery. Recent advances in metal-organic framework synthesis have created new opportunities in this direction. Here we report the synthesis of a series of positive indium metal-organic frameworks and their utilization as a platform for the anion exchange-based separation process. This process is capable of size- or charge-selective ion-exchange of organic dyes and may form the basis for size-selective ion chromatography. Ion-exchange dynamics of a series of organic dyes and their selective encapsulation and release are also studied, highlighting the advantages of metal-organic framework compositions for designing host materials tailored for applications in anion separation and purification.

  5. Enhanced conductivity detection of common inorganic anions in electrostatic ion chromatography using water eluent

    Institute of Scientific and Technical Information of China (English)

    Daisuke KOZAKI; Chao-Hong SHI; Kazuhiko TANAKA; Nobutake NAKATANI

    2012-01-01

    To enhance the conductivity detection sensitivity of common anions (Na-anions) in electrostatic ion chromatography (EIC) by elution with water,a conductivity enhancement column packed with strong acid cation exchange resin in the H-form was inserted between an octadecyl silane (ODS)-silica separation column modified with zwitterionic surfactant ( CHAPS:3- { ( 3-cholamidopropyl ) -dimethylammonio } propanesulfonate ) and a conductivity detector.Specifically,the Na-anion pairing is converted to H-anion pairing after the EIC separation and then detected sensitively by the conductivity detector.The effects of conductivity enhancement and suppression in the EIC by the enhanced conductivity detection were characterized for the common strong acid anions such as SO42-,Cl-,NO3-,I- and ClO4- and weak acid anions such as F-,NO2-,HCOO-,CH3COO- and HCO3-.For the conductivity enhancement effect in the EIC,it is found that the conductivity of measured for all strong acid anions (Na-anions) was enhanced acording to the theoretical conductivity predicted for H-anions and that of the measured for weak acid anions was suppressed depending on their pKa of H-anions.For the calibration linearity in the EIC,the strong acid anions were linear (r2 =0.99 - 1.00) because the degree of dissociation is almost 1.0 over all the concentration range and that of the weak acid anions was non-linear because the degree of dissociation decreased by increasing the concentration of the weak acid anions.In conclusion,the EIC by enhanced conductivity detection was recognized to be useful only for the strong acid anions in terms of conductivity detection and calibration linearity.

  6. Tunable separation of anions and cations by column switching in ion chromatography.

    Science.gov (United States)

    Amin, Muhammad; Lim, Lee Wah; Takeuchi, Toyohide

    2007-03-15

    A convenient ion chromatography method has been proposed for the routine and simple determination of anions (Cl(-), SO(4)(2-) and NO(3)(-)) and/or cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) using a single pump, a single eluent and a single detector. The present system used cation-exchange and anion-exchange columns connected in series via two 6-port switching valves or a single 10-port valve. The connection order of the ion-exchange columns could be varied by switching the valve(s). The present system therefore allowed the separation of either cations or anions in a single chromatographic run. While one ion-exchange column is being operated, the other ion-exchange column is being conditioned, i.e., the columns are always ready for analysis at any time. When 2.4mM 5-sulfosalicylic acid was used as the eluent, the three anions and the five cations could be separated on the anion-exchange column and cation-exchange column, respectively. In order to obtain the separations of the target ions, the injection valve was placed between the two columns. Complete separations of the above anions or cations were demonstrated within 10min each. The detection limits at S/N=3 were 19-50ppb (mug/l) for cations and 10-14ppb for anions. The relative standard deviations of the analyte ions were less than 1.1, 2.9 and 2.8% for retention time, peak area and peak height, respectively. This proposed technique was applied to the determination of common anions and cations in river water samples.

  7. Ion Exchange and Liquid Column Chromatography.

    Science.gov (United States)

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  8. Thin Robust Anion Exchange Membranes for Fuel Cell Applications

    Science.gov (United States)

    2014-01-01

    provide inexpensive compact power from a wider variety of fuels than is possible with a proton exchange membrane (PEM) fuel cell, has continued to...in aqueous solution. Interestingly though, while the proton transfer events in the anion exchange membrane are more frequent as would be ECS...release; distribution is unlimited. (Invited) Thin Robust Anion Exchange Membranes for Fuel Cell Applications The views, opinions and/or findings

  9. Development and validation of a solid-phase extraction method using anion exchange sorbent for the analysis of cannabinoids in plasma and serum by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Gasse, Angela; Pfeiffer, Heidi; Köhler, Helga; Schürenkamp, Jennifer

    2016-07-01

    The aim of this work was to develop and validate a solid-phase extraction (SPE) method for the analysis of cannabinoids with emphasis on a very extensive and effective matrix reduction in order to ensure constant good results in selectivity and sensitivity regardless of the applied measuring technology. This was obtained by the use of an anion exchange sorbent (AXS) and the purposive ionic interaction between matrix components and this sorbent material. In a first step, the neutral cannabinoids ∆9-tetrahydrocannabinol (THC) and 11-hydroxy-∆9-tetrahydrocannabinol (11-OH-THC) were eluted, leaving 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH) and the main interfering matrix components bound to the AXS. In a second step, exploiting differences in pH and polarity, it was possible to separate matrix components and THC-COOH, thereby yielding a clean elution of THC-COOH into the same collecting tube as THC and 11-OH-THC. Even when using a simple measuring technology like gas chromatography with single quadrupole mass spectrometry, this two-step elution allows for an obvious decrease in number and intensity of matrix interference in the chromatogram. Hence, in both plasma and serum, the AXS extracts resulted in very good selectivity. Limits of detection and limits of quantification were below 0.25 and 0.35 ng/mL for the neutral cannabinoids in both matrices, 2.0 and 3.0 ng/mL in plasma and 1.6 and 3.3 ng/mL in serum for THC-COOH. The recoveries were ≥79.8 % for all analytes. Interday and intraday imprecisions ranged from 0.8 to 6.1 % relative standard deviation, and accuracy bias ranged from -12.6 to 3.6 %.

  10. Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry.

    Science.gov (United States)

    Chen, Ming-Xue; Cao, Zhao-Yun; Jiang, Yan; Zhu, Zhi-Wei

    2013-01-11

    A novel method was developed for the direct, sensitive, and rapid determination of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), in fruit and vegetable samples by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography (HILIC/WAX) coupled with electrospray tandem mass spectrometry (ESI-MS/MS). Homogenized samples were extracted with water, without derivatization or further clean-up, and the extracts were injected directly onto the Asahipak NH2P-50 4E column (250 mm × 4.6 mm i.d., 5 μm). The best results were obtained when the column was operated under mixed-mode HILIC/WAX elution conditions. An initial 10-min washing step with acetonitrile/water (10:90, v/v) in HILIC mode was used to remove potentially interfering compounds, and then the analytes were eluted in WAX mode with acetonitrile and water containing 0.1 molL(-1) ammonium hydroxide under gradient elution for the ESI analysis in negative ion mode. Limits of quantification of glyphosate and AMPA were 5 μgkg(-1) and 50 μgkg(-1), respectively, with limits of detection as low as 1.2 μgkg(-1) for glyphosate and 15 μgkg(-1) for AMPA. The linearity was satisfactory, with correlation coefficients (r)>0.9966. Recovery studies were carried out on spiked matrices (6 vegetables, 3 fruits) with glyphosate at four concentrations and AMPA at three concentrations. The mean recoveries for glyphosate and AMPA were 75.3-110% and 76.1-110%, respectively, with relative standard deviations in the range of 1.1-13.8%. The intra-day precision (n=7) for glyphosate and AMPA in vegetable and fruit samples spiked at an intermediate level between 5.9% and 7.5%, and the inter-day precision over 11 days (n=11) was between 7.0% and 13%.

  11. Anionic Forensic Signatures for Sample Matching of Potassium Cyanide Using High Performance Ion Chromatography and Chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Carlos G.; Farmer, Orville T.; Carman, April J.

    2011-01-30

    Potassium cyanide, a known poison, was used a model compound to determine the feasibility of using anionic impurities as a forensic signature for matching KCN samples back to their source. In this study, portions of eight KCN stocks originating from four countries were separately dissolved in water and analyzed by high performance ion chromatography (HPIC) using an anion exchange column and conductivity detection. Sixty KCN aqueous samples were produced from the eight stocks and analyzed for 11anionic impurities. Hierarchal cluster analysis and principal component analysis were used to demonstrate that KCN samples cluster according to source based on the concentrations of their anionic impurities. The F-ratio method and degree-of-class separation (DCS) were used for feature selection on a training set of KCN samples in order to optimize sample clustering. The optimal subset of anions needed for sample classification was determined to be sulfate, oxalate, phosphate, and an unknown anion named unk5. Using K-nearest neighbors (KNN) and the optimal subset of anions, KCN test samples from different KCN stocks were correctly determined to be manufactured in the United States. In addition, KCN samples from stocks manufactured in Belgium, Germany, and the Czech Republic were all correctly matched back to their original stocks because each stock had a unique anionic impurity profile. The application of the F-ratio method and DCS for feature selection improved the accuracy and confidence of sample classification by KNN.

  12. Anionic forensic signatures for sample matching of potassium cyanide using high performance ion chromatography and chemometrics.

    Science.gov (United States)

    Fraga, Carlos G; Farmer, Orville T; Carman, April J

    2011-01-30

    Potassium cyanide was used as a model toxicant to determine the feasibility of using anionic impurities as a forensic signature for matching cyanide salts back to their source. In this study, portions of eight KCN stocks originating from four countries were separately dissolved in water and analyzed by high performance ion chromatography (HPIC) using an anion exchange column and conductivity detection. Sixty KCN aqueous samples were produced from the eight stocks and analyzed for 11 anionic impurities. Hierarchal cluster analysis and principal component analysis were used to demonstrate that KCN samples cluster according to source based on the concentrations of their anionic impurities. The Fisher-ratio method and degree-of-class separation (DCS) were used for feature selection on a training set of KCN samples in order to optimize sample clustering. The optimal subset of anions needed for sample classification was determined to be sulfate, oxalate, phosphate, and an unknown anion named unk5. Using K-nearest neighbors (KNN) and the optimal subset of anions, KCN test samples from different KCN stocks were correctly determined to be manufactured in the United States. In addition, KCN samples from stocks manufactured in Belgium, Germany, and the Czech Republic were all correctly matched back to their original stocks because each stock had a unique anionic impurity profile. The application of the Fisher-ratio method and DCS for feature selection improved the accuracy and confidence of sample classification by KNN. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Ion-Exchange Chromatography: Basic Principles and Application.

    Science.gov (United States)

    Cummins, Philip M; Rochfort, Keith D; O'Connor, Brendan F

    2017-01-01

    Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.

  14. High-throughput sequential injection method for simultaneous determination of plutonium and neptunium in environmental solids using macroporous anion-exchange chromatography, followed by inductively coupled plasma mass spectrometric detection.

    Science.gov (United States)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel

    2011-01-01

    This paper reports an automated analytical method for rapid and simultaneous determination of plutonium and neptunium in soil, sediment, and seaweed, with detection via inductively coupled plasma mass spectrometry (ICP-MS). A chromatographic column packed with a macroporous anion exchanger (AG MP-1 M) was incorporated in a sequential injection (SI) system for the efficient retrieval of plutonium, along with neptunium, from matrix elements and potential interfering nuclides. The sorption and elution behavior of plutonium and neptunium onto AG MP-1 M resin was compared with a commonly utilized AG 1-gel-type anion exchanger. Experimental results reveal that the pore structure of the anion exchanger plays a pivotal role in ensuring similar separation behavior of plutonium and neptunium along the separation protocol. It is proven that plutonium-242 ((242)Pu) performs well as a tracer for monitoring the chemical yield of neptunium when using AG MP-1 M resin, whereby the difficulties in obtaining a reliable and practicable isotopic neptunium tracer are overcome. An important asset of the SI setup is the feasibility of processing up to 100 g of solid substrates using a small-sized (ca. 2 mL) column with chemical yields of neptunium and plutonium being ≥79%. Analytical results of three certified/standard reference materials and two solid samples from intercomparison exercises are in good agreement with the reference values at the 0.05 significance level. The overall on-column separation can be completed within 3.5 h for 10 g of soil samples. Most importantly, the anion-exchange mini-column suffices to be reused up to 10-fold with satisfactory chemical yields (>70%), as demanded in environmental monitoring and emergency scenarios, making the proposed automated assembly well-suited for unattended and high-throughput analysis.

  15. Poly(ethylene oxide)-bonded stationary phase for separation of inorganic anions in capillary ion chromatography.

    Science.gov (United States)

    Linda, Roza; Lim, Lee Wah; Takeuchi, Toyohide

    2013-06-14

    A tosylated-poly(ethylene oxide) (PEO) reagent was reacted with primary amino groups of an aminopropylsilica packing material (TSKgel NH2-60) in acetonitrile to form PEO-bonded stationary phase. The reaction was a single and simple step reaction. The prepared stationary phase was able to separate inorganic anions. The retention behavior of six common inorganic anions on the prepared stationary phase was examined under various eluent conditions in order to clarify its separation/retention mechanism. The elution order of the tested anions was iodate, bromate, bromide, nitrate, iodide, and thiocyanate, which was similar as observed in common ion chromatography. The retention of inorganic anions could be manipulated by ion exchange interaction which is expected that the eluent cation is coordinated among the PEO chains and it works as the anion-exchange site. Cations and anions of the eluent therefore affected the retention of sample anions. We demonstrated that the retention of the analyte anions decreased with increasing eluent concentration. The repeatability of retention time for the six anions was satisfactory on this column with relative standard deviation values from 1.1 to 4.3% when 10mM sodium chloride was used as the eluent. Compared with the unmodified TSKgel NH2-60, the prepared stationary phase retained inorganic anions more strongly and the selectivity was also improved. The present stationary phase was applied for the determination of inorganic anions contained in various water samples.

  16. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    Science.gov (United States)

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  17. Anion exchange purification of plasmid DNA using expanded bed adsorption.

    Science.gov (United States)

    Ferreira, G N; Cabral, J M; Prazeres, D M

    2000-01-01

    Recent developments in gene therapy with non-viral vectors and DNA vaccination have increased the demand for large amounts of pharmaceutical-grade plasmid DNA. The high viscosity of process streams is of major concern in the purification of plasmids, since it can cause high back pressures in column operations, thus limiting the throughput. In order to avoid these high back pressures, expanded bed anion exchange chromatography was evaluated as an alternative to fixed bed chromatography. A Streamline 25 column filled with 100 ml of Streamline QXL media, was equilibrated with 0.5 M NaCl in TE (10 mM Tris, 1 mM EDTA, pH = 8.0) buffer at an upward flow of 300 cmh-1, E. coli lysates (obtained from up to 3 liters of fermentation broth) were injected in the column. After washing out the unbound material, the media was allowed to sediment and the plasmid was eluted with 1 M NaCl in TE buffer at a downward flow of 120 cmh-1. Purification factors of 36 +/- 1 fold, 26 +/- 0.4 plasmid purity, and close to 100% yields were obtained when less than one settled column volume of plasmid feed was injected. However, both recovery yield and purity abruptly decreased when larger amounts were processed-values of 35 +/- 2 and 5 +/- 0.7 were obtained for the recovery yield and purity, respectively, when 250 ml of feedstock were processed. In these cases, gel clogging and expansion collapse were observed. The processing of larger volumes, thus larger plasmid quantities, was only possible by performing an isopropanol precipitation step prior to the chromatographic step. This step led to an enhancement of the purification step.

  18. Determination of inorganic anions in papermaking waters by ion chromatography

    Directory of Open Access Journals (Sweden)

    DARJA ŽARKOVIĆ

    2009-03-01

    Full Text Available A suppressed ion chromatography (IC method for the determination of inorganic anions in process water from paperboard production was developed and validated. Common inorganic anions (Cl-, NO3-, PO43- and SO42- were detected in fresh and process water samples collected from a paperboard production system at 16 characteristic points. It was shown that the use of an IonPac®-AS14 column under isocratic conditions with Na2CO3/NaHCO3 as the eluent and a suppression device proved to be a reliable analytical solution for the separation of the inorganic anions present in papermaking waters. This IC method is quite satisfactory concerning selectivity and sensitivity, and enables the determination of several inorganic anions over a wide concentration range. According to the obtained results, the total amount of analyzed inorganic anions was below 0.1 g/L, i.e., below the critical value which may trigger operational problems in paper production.

  19. pH-gradient ion-exchange chromatography: An analytical tool for design and optimization of protein separations

    NARCIS (Netherlands)

    Ahamed, T.; Nfor, B.; Verhaert, P.; Deden, van G.; Wielen, van der L.

    2007-01-01

    This work demonstrates that a highly linear, controllable and wide-ranged pH-gradient can be generated through an ion-exchange chromatography (IEC) column. Such a pH-gradient anion-exchange chromatography was evaluated with 17 model proteins and found that acidic (pI <6) and basic (pI > 8) pro

  20. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.

    Science.gov (United States)

    Zhang, Huichun; Shields, Anthony J; Jadbabaei, Nastaran; Nelson, Maurice; Pan, Bingjun; Suri, Rominder P S

    2014-07-01

    Ionic organic contaminants (OCs) are a growing concern for water treatment and the environment and are removed inefficiently by many existing technologies. This study examined removal of anionic OCs by anion exchange resins (AXRs) as a promising alternative. Results indicate that two polystyrene AXRs (IRA910 and IRA96) have higher sorption capacities and selectivity than a polyacrylate resin (A860). For the polystyrene resins, selectivity follows: phenolates ≥ aromatic dicarboxylates > aromatic monocarboxylates > benzenesulfonate > aliphatic carboxylates. This trend can be explained based on hydration energy, the number of exchange groups, and aromaticity and hydrophobicity of the nonpolar moiety (NPM) of the anions. For A860, selectivity only varies within a narrow range (0.13-1.64). Despite the importance of the NPM of the anions, neutral solutes were sorbed much less, indicating synergistic combinations of electrostatic and nonelectrostatic interactions in the overall sorption. By conducting multiple linear regression between Abraham's descriptors and nature log of selectivity, induced dipole-related interactions and electrostatic interactions were found to be the most important interaction forces for sorption of the anions, while solute H-bond basicity has a negative effect. A predictive model was then developed for carboxylates and phenolates based on the poly parameter linear free energy relationships established for a diverse range of 16 anions and 5 neutral solutes, and was validated by accurate prediction of sorption of five test solutes within a wide range of equilibrium concentrations and that of benzoate at different pH.

  1. Anion-exchange membranes in electrochemical energy systems

    NARCIS (Netherlands)

    Antanassov, Plamen B.; Dekel, Dario R.; Herring, Andrew M.; Hickner, Michael A.; Kohl, Paul A.; Kucernak, Anthony R.; Mustain, William E.; Nijmeijer, Kitty; Scott, Keith; Varcoe, John R.; Xu, Tongwen; Zhuang, Lin

    2014-01-01

    This article provides an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells). The aim is to highlight key concepts, misconceptions, the current stat

  2. Separation of parasite antigens by molecular exclusion, anion exchange, and chromatofocusing utilizing FPLC protein fractionation systems.

    Science.gov (United States)

    Zimmerman, G L; Clark, C R

    1986-03-01

    Excretory-secretory products (ESP) were harvested from balanced salt solutions in which adult Fasciola hepatica had been incubated for 4-6 h at 37 degrees C. The ESP was fractionated by standard low pressure molecular exclusion chromatography and FPLC (fast protein liquid chromatography) using the principles of molecular exclusion, anion exchange, and chromatofocusing. The dot-enzyme-linked immunosorbent assay (Dot-ELISA) was used to demonstrate the immunoreactivity of eluted fractions. Compared to Sephacryl S-200, separation by Superose-6 (FPLC) was faster and resolved more peaks (four with Sephacryl S-200 and nine with Superose-6). Peaks from Sephacryl S-200 were resolved by the first anion exchange (Mono Q) separation into seven peaks; when these peaks were subjected to a second anion exchange, 15 peaks were resolved. Thirty-eight peaks were resolved by chromatofocusing (Mono P) in the pH range 7-4. Immunoreactive fractions from narrow-range (single pH unit) chromatofocusing were identified by the Dot-ELISA. The FPLC system proved to be a means of rapid and high resolution separation of F. hepatica antigens.

  3. Chromatographic separation of vanadium, tungsten and molybdenum with a liquid anion-exchanger.

    Science.gov (United States)

    Fritz, J S; Topping, J J

    1971-09-01

    In acidic solution only molybdenum(VI), tungsten(VI), vanadium(V), niobium(V) and tantalum(V) form stable, anionic complexes with dilute hydrogen peroxide. This fact has been used in developing an analytical method of separating molybdenum(VI), tungsten(VI) and vanadium(V) from other metal ions and from each other. Preliminary investigations using reversed-phase paper chromatography and solvent extraction led to a reversed-phase column Chromatographic separation technique. These metal-peroxy anions are retained by a column containing a liquid anion-exchanger (General Mills Aliquat 336) in a solid support. Then molybdenum(VI), tungsten(VI) and vanadium(V) are selectively eluted with aqueous solutions containing dilute hydrogen peroxide and varying concentrations of sulphuric acid.

  4. Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using adjacent anion exchange membranes and anion exchange resin

    KAUST Repository

    Wallack, Maxwell J.

    2015-01-01

    Microbial reverse electrodialysis cells (MRECs) combine power generation from salinity gradient energy using reverse electrodialysis (RED), with power generation from organic matter using a microbial fuel cell. Waste heat can be used to distill ammonium bicarbonate into high (HC) and low salt concentration (LC) solutions for use in the RED stack, but nitrogen crossover into the anode chamber must be minimized to avoid ammonia loses, and foster a healthy microbial community. To reduce nitrogen crossover, an additional low concentration (LC) chamber was inserted before the anode using an additional anion exchange membrane (AEM) next to another AEM, and filled with different amounts of anion or cation ion exchange resins. Addition of the extra AEM increased the ohmic resistance of the test RED stack from 103 Ω cm2 (1 AEM) to 295 Ω cm2 (2 AEMs). However, the use of the anion exchange resin decreased the solution resistance of the LC chamber by 74% (637 Ω cm2, no resin; 166 Ω cm2 with resin). Nitrogen crossover into the anode chamber was reduced by up to 97% using 50% of the chamber filled with an anion exchange resin compared to the control (no additional chamber). The added resistance contributed by the use of the additional LC chamber could be compensated for by using additional LC and HC membrane pairs in the RED stack.

  5. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    Science.gov (United States)

    2015-01-15

    capacities (IECs). Solution cast membranes were thermally cross- linked to form anion exchange membranes. Cross-linking was achieved by taking advantage...distribution is unlimited. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers The views...Box 12211 Research Triangle Park, NC 27709-2211 Anion Exchnage Membrane, Polymer synthesis, Morphology, Anion Conductivity REPORT DOCUMENTATION PAGE

  6. Cholangiocyte anion exchange and biliary bicarbonate excretion

    Institute of Scientific and Technical Information of China (English)

    Jesús M Banales; Jesús Prieto; Juan F Medina

    2006-01-01

    Primary canalicular bile undergoes a process of fluidization and alkalinization along the biliary tract that is influenced by several factors including hormones, innervation/neuropeptides, and biliary constituents. Theexcretion of bicarbonate at both the canaliculi and the bile ducts is an important contributor to the generation of the so-called bile-salt independent flow. Bicarbonate is secreted from hepatocytes and cholangiocytes through parallel mechanisms which involve chloride efflux through activation of Cl- channels, and further bicarbonate secretion via AE2/SLC4A2-mediated Cl-/HCO3-exchange. Glucagon and secretin are two relevant hormones which seem to act very similarly in their target cells (hepatocytes for the former and cholangiocytes for the latter). These hormones interact with their specific G protein-coupled receptors, causing increases in intracellular levels of cAMP and activation of cAMP-dependent Cl- and HCO3- secretory mechanisms. Both hepatocytes and cholangiocytes appear to have cAMP-responsive intracellular vesicles in which AE2/SLC4A2 colocalizes with cell specific Cl- channels (CFTR in cholangiocytes and not yet determined in hepatocytes) and aquaporins (AQP8 in hepatocytes and AQP1 in cholangiocytes). cAMP-induced coordinated trafficking of these vesicles to either canalicular or cholangiocyte lumenal membranes and further exocytosis results in increased osmotic forces and passive movement of water with net bicarbonate-rich hydrocholeresis.

  7. Preparation of Anion-exchange Polymer-based Monolithic Column and Its Application in Ion Chromatography%阴离子交换聚合物整体柱的制备及其在离子色谱中的应用

    Institute of Scientific and Technical Information of China (English)

    李晶; 周琰春; 张嘉捷; 朱岩

    2012-01-01

    An anion-exchange monolithic column was prepared by a polymerization inside a stainless steel tube( 150 mm x 4. 6 i. d. mm) , taking glycidyl methacrylate( GMA) as functional monomer, ethylene dimethacrylate ( EDMA) as cross-linking agent and in the presence of 1, 4-butanediol, 1 -propanol and water as the porogen solvents and azobisisobutyronitrile ( AIBN) as a suitable initiator. Introduction of anion-exchange sites were achieved by reacting with tirmethylamine. Under the optimized reaction conditions and the modified conditions, the chromatographic characteristics of the prepared anion-exchange columns were further studied, and the separation of 5 common anions ( such as, acetate, bromate, nitrite, bromide, nitrate) on the prepared anion-exchange column was investigated. The prepared column exhibits more advantages such as simple preparation and low cost, and could be coupled with a commercial ion chromatography system directly, which will be favorable for more applications and investigations.%以偶氮二异丁腈( AIBN)为自由基引发剂,将甲基丙烯酸缩水甘油酯(GMA)单体和亚乙基二甲基丙烯酸酯(EDMA)交联剂通过原位聚合的方法,在不锈钢管柱(150 mm ×4.6 i.d.mm)中合成为具有一定机械性能和一定孔径结构的聚合物整体色谱柱;利用三甲胺动态修饰反应将整体柱改性为具有阴离子交换功能的整体型离子色谱分离柱.实验优化了制备条件和改性修饰条件,考察了相关离子交换容量、流体动力学参数和色谱性能等.采用直接紫外检测的方法,在205 nm检测波长下,常规阴离子乙酸根、溴酸根、亚硝酸根、溴离子、硝酸根均能得到较好的分离检测.结果表明,该阴离子交换整体色谱柱制备方法简便,成本较低,可以方便地与常规色谱系统进行联用,具有一定分析实用价值和较大的开发前景.

  8. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    Science.gov (United States)

    2013-06-25

    Bicarbonate Ion Transport in Alk Block 13: Supplementary Note © 2013 . Published in Journal of the Electrochemical Society , Vol. Ed. 0 160, (9) (2013...for public release; distribution is unlimited. ... 60325.7-CH-II F994 Journal of The Electrochemical Society , 160 (9) F994-F999 (2013) 0013-4651/2013...160(9)/F994/6/$31.00 © The Electrochemical Society Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes Andrew M. Kiss,a

  9. Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers.

    Science.gov (United States)

    Liu, Chia-Hung; Wu, Jeng-Shiou; Chiu, Hsin-Chieh; Suen, Shing-Yi; Chu, Khim Hoong

    2007-04-01

    Two commercial anion exchange membranes, strong basic (SB6407) and weak basic (DE81), were evaluated for the removal of anionic reactive dyes, Cibacron blue 3GA (three sulfonic acid groups per dye molecule) and Cibacron red 3BA (four sulfonic acid groups per dye molecule), from water in this study. The adsorption isotherm results show that the Langmuir maximum adsorption capacities of Cibacron blue 3GA (31.5mg/cm(3) for SB6407 and 25.5mg/cm(3) for DE81) were greater than those of Cibacron red 3BA (24.5mg/cm(3) for SB6407 and 18.5mg/cm(3) for DE81). For each reactive dye, the capacity for SB6407 was higher than DE81 based on the same membrane volume. However, consideration of the number of ion exchange sites interacting with a dye molecule indicates that the DE81 results are close to the theoretical values while the SB6407 membrane had some unused binding sites. In addition, Cibacron red 3BA demonstrated faster and stronger binding with both anion exchange membranes than Cibacron blue 3GA. Both dyes could bind with strong basic SB6407 more quickly and stronger. In the batch desorption process, different desorption solutions were tested and the mixtures of salt, acid, or base in methanol solution (e.g. 1N KSCN in 60% methanol or 1N HCl in 60% methanol) achieved better performance. Finally, in the flow process with one piece of anion exchange membrane (initial dye concentration of 0.05g/L), SB6407 was found superior to DE81 in dye recovery and both membranes retained their original uptake capacities over three cycles of adsorption, washing, and desorption.

  10. [Chromatographic separation of plasmid DNA by anion-exchange cryogel].

    Science.gov (United States)

    Guo, Yantao; Shen, Shaochuan; Yun, Junxian; Yao, Kejian

    2012-08-01

    Plasmid DNA (pDNA) is used as an important vector for gene therapy, and its wide application is restricted by the purity and yield. To obtain high-purity pDNA, a chromatographic method based on anion-exchange supermacroporous cryogel was explored. The anion-exchange cryogel was prepared by grafting diethylaminoethyl-dextran to the epoxide groups of polyacrylamide-based matrix and pUC19 plasmid was used as a target to test the method. The plasmid was transferred into Escherichia coli DH5alpha, cultivated, harvested and lysed. The obtained culture was centrifuged and the supernatant was used as the plasmid feedstock, which was loaded into the anion-exchange cryogel bed for chromatographic separation. By optimizing the pH of running buffer and the elution conditions, high-purity pDNA was obtained by elution with 0.5 mol/L sodium chloride solution at pH 6.6. Compared to the traditional methods for purification of pDNA, animal source enzymes and toxic reagents were not involved in the present separation process, ensuring the safety of both the purification operations and the obtained pDNA.

  11. High-performance liquid chromatography - Ultraviolet method for the determination of total specific migration of nine ultraviolet absorbers in food simulants based on 1,1,3,3-Tetramethylguanidine and organic phase anion exchange solid phase extraction to remove glyceride.

    Science.gov (United States)

    Wang, Jianling; Xiao, Xiaofeng; Chen, Tong; Liu, Tingfei; Tao, Huaming; He, Jun

    2016-06-17

    The glyceride in oil food simulant usually causes serious interferences to target analytes and leads to failure of the normal function of the RP-HPLC column. In this work, a convenient HPLC-UV method for the determination of the total specific migration of nine ultraviolet (UV) absorbers in food simulants was developed based on 1,1,3,3-tetramethylguanidine (TMG) and organic phase anion exchange (OPAE) SPE to efficiently remove glyceride in olive oil simulant. In contrast to the normal ion exchange carried out in an aqueous solution or aqueous phase environment, the OPAE SPE was performed in the organic phase environments, and the time-consuming and challenging extraction of the nine UV absorbers from vegetable oil with aqueous solution could be readily omitted. The method was proved to have good linearity (r≥0.99992), precision (intra-day RSD≤3.3%), and accuracy(91.0%≤recoveries≤107%); furthermore, the lower limit of quantifications (0.05-0.2mg/kg) in five types of food simulants(10% ethanol, 3% acetic acid, 20% ethanol, 50% ethanol and olive oil) was observed. The method was found to be well suited for quantitative determination of the total specific migration of the nine UV absorbers both in aqueous and vegetable oil simulant according to Commission Regulation (EU) No. 10/2011. Migration levels of the nine UV absorbers were determined in 31 plastic samples, and UV-24, UV-531, HHBP and UV-326 were frequently detected, especially in olive oil simulant for UV-326 in PE samples. In addition, the OPAE SPE procedure was also been applied to efficiently enrich or purify seven antioxidants in olive oil simulant. Results indicate that this procedure will have more extensive applications in the enriching or purification of the extremely weak acidic compounds with phenol hydroxyl group that are relatively stable in TMG n-hexane solution and that can be barely extracted from vegetable oil.

  12. Design of expanded bed supports for the recovery of plasmid DNA by anion exchange adsorption

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Søndergaard, M.; Thomas, Owen R. T.

    2001-01-01

    In this study we detail the rational design of new chromatographic adsorbents tailored for the capture of plasmid DNA. Features present on current chromatographic supports that can significantly enhance plasmid binding capacity have been identified in packed bed chromatography experiments...... and blueprints for improved expanded bed adsorbents have been put forward. The characterisation and testing of small (20-40 mum) high density (>3.7 g cm(-3)) pellicular expanded bed materials functionalised with various anion exchange structures is presented. In studies with calf thymus DNA, dynamic binding...

  13. Development of ion chromatography methods for the determination of trace anions in ultra pure water from power plants

    Directory of Open Access Journals (Sweden)

    DRAGANA CICKARIC

    2005-07-01

    Full Text Available A suppressed ion chromatography (IC technique, using a carbonate/hydrogen carbonate or a hydroxide eluent, has been evaluated as a monitoring tool for the detection ofmajor anions (F-, Cl-, NO3-, PO4 3- and SO4 2- in ultra pure water and condensed steam from thermal power plants. An electrical conductivity detector with an anion-exchange column (IonPac AS14, an auto self-regenerating suppressor (ASRS, and an isocratic high-pressure pump system were used for the detection of low concentrations of inorganic anions. It was shown that the suppressed IC technique provides a suitable means for preventing possible damage to generating equipment in power plants. The detection limits of the method for the anions of interest were < 0.3 mg/L.

  14. Synthesis and Characterization of Stable Anion Exchange Membranes: The Addition of Electron-withdrawing Group

    Directory of Open Access Journals (Sweden)

    Gülşen ALBAYRAK ARI

    2016-10-01

    Full Text Available Anion exchange membranes (AEM based on poly(2,6-dimethyl-1,4-phenylene oxide (PPO were used as polymer electrolyte membrane for fuel cell applications. The membranes were prepared via bromination, quaternization and nitration reactions and their fuel cell-related properties (water uptake, ion exchange capacity, ionic conductivity were determined. Also, the structures and thermal properties were studied with Fourier transform infrared spectroscopy (FTIR, Size exclusion chromatography (SEC and Differential scanning calorimetry (DSC. Nitration of quaternized PPO (Q-PPO leaded to a decrease in water uptake and ion exchange capacity of the AEM. However, Q-PPO membrane treated with nitration reaction (NO2-Q-PPO exhibited a significant alkaline stability compared to quaternized PPO (Q-PPO.   The results indicated that the addition of electron-withdrawing group, such as nitro, into the structure in order to improve in alkaline stability is a promising new route for preparation alkaline stable AEM membranes.

  15. Characterization of Hardwood-Derived Carboxymethylcellulose by High pH Anion Chromatography Using Pulsed Amperometric Detection

    OpenAIRE

    2010-01-01

    An approach for the quantitative analysis of substituent distribution in carboxymethylcellulose (CMC) is presented. In short, the high-pH anion-exchange chromatography method, coupled to pulsed amperometric detection (PAD), is introduced. Each of the seven derivatives in CMC is presented by a single peak on the PAD trace, thus enabling an easy quantification. New inside information on monomer composition is obtained by this novel method, which is essential for understanding the structure vers...

  16. Application of cellulose anion-exchangers to separation of palladium from platinum or iridium with glycine as complexing agent and atomic-absorption spectrometry for detection.

    Science.gov (United States)

    Brajter, K; Słonawska, K

    1983-07-01

    The use of glycine as complexing agent for chromatographie separation of palladium from platinum, or palladium from iridium, on cellulose anion-exchangers has been investigated and found possible over a wide range of concentration ratios. The method can be used for analysis of Pd-Ir alloys. The nature of the complexes taking part in the ion-exchange has been identified.

  17. Determination of S-2-(N,N-diisopropylaminoethyl)- and S-2-(N,N-diethylaminoethyl) methylphosphonothiolate, nerve agent markers, in water samples using strong anion-exchange disk extraction, in vial trimethylsilylation, and gas chromatography-mass spectrometry analysis.

    Science.gov (United States)

    Subramaniam, Raja; Åstot, Crister; Juhlin, Lars; Nilsson, Calle; Östin, Anders

    2012-03-16

    Since the establishment of the Chemical Weapons Convention in 1997, the development of analytical methods for unambiguous identification of large numbers of chemicals related to chemical warfare agents has attracted increased interest. The analytically challenging, zwitterionic S-2-(N,N-diisopropylaminoethyl) methylphosphonothiolate (EA-2192), a highly toxic degradation marker of the nerve agent VX, has been reported to resist trimethylsilylation or to result in an unacceptably high limit of detection in GC-MS analysis. In the present study, the problem is demonstrated to be associated with the presence of salt, which hinders trimethysilylation. EA-2192 was extracted from aqueous samples by use of a strong anion-exchange disk, derivatized as a trimethylsilyl derivative via in vial solid-phase trimethylsilylation and identified by GC-MS. The limits of detection were 10 ng/mL and 100 ng/mL (in a water sample) for SIM and SCAN mode respectively. The analytical method was found to be repeatable with relative standard deviation VX and Russian VX, namely S-2-(N,N-diethylaminoethyl) methylphosphonothiolate, ethyl methylphosphonic acid, methylphosphonic acid, and isobutyl methylphosphonic acid. For the synthesis of reference compounds, EA-2192 and its analog from degradation of the Russian VX isomer, the present methods were improved by using a polymer-bound base, resulting in >90% purity based on (1)H NMR. Based on the current results and earlier work on alkylphosphonic acids using the same method, we conclude that the method is a viable choice for the simultaneous determination of a wide range of degradation products of nerve agents - zwitterionic, monoacid, diacid, and monothioacid chemicals - with excellent performance.

  18. Optimization of an anion-exchange high performance liquid chromatography-inductively coupled plasma-mass spectrometric method for the speciation analysis of oxyanion-forming metals and metalloids in leachates from cement-based materials.

    Science.gov (United States)

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Lund, Walter

    2010-10-01

    A method was developed for the speciation analysis of the oxyanions of As(III), As(V), Cr(VI), Mo(VI), Sb(III), Sb(V), Se(IV), Se(VI) and V(V) in leachates from cement-based materials, based on anion-exchange HPLC coupled with ICP-MS. The method was optimized in a two-step multivariate approach: the effect of sample pH and mobile phase composition on resolution, peak symmetry and analysis time was studied. Optimum conditions were then identified for the significant experimental factors by studying their interdependence. A mobile phase composition of 20 mM ammonium nitrate, 50 mM ammonium tartrate and pH 9.5 was found to be a compromise optimum for the separation of the target analytes using isocratic elution. The optimum condition provided separation of the analytes in less than 6 min, at a mobile phase flow rate of 1.0 mL/min. The signal intensities of the analytes were improved by adding 1% methanol to the mobile phase. The limit of detection of the method was in the range 0.2-2.2 μg/L for the various species. The effect of sample constituents was studied using spiked concrete leachates. The method was used to determine the target oxyanionic species in leachates generated from a concrete material in the pH range 3.5-12.4; CrO(4)(2-), MoO(4)(2-) and VO(4)(3-) were detected in most of the leachates.

  19. Predicting Carbonate Ion Transport in Alkaline Anion Exchange Materials

    Science.gov (United States)

    2012-01-01

    Electrochemical Society , 2013. 2. Wilson K. S. Chiu, "Part 1. Role of the 3-D Electrode Microstructure on Charge Transfer, Mass Transfer, and Electrochemical Reactions in Solid Oxide Fuel Cells; Part 2. Ion and Water Transport in Alkaline Anion Exchange Membranes," technical seminar for the Army Research Laboratory (host: Dr. Deryn Chu), Adelphi, MD, August 13, 2012. (c) Presentations Number of Presentations: 2.00 Non Peer-Reviewed Conference Proceeding publications (other than abstracts): Received Paper TOTAL: Number of Non Peer-Reviewed

  20. Anion exchange selectivity of surfactant modified clinoptilolite-rich tuff for environmental remediation.

    Science.gov (United States)

    de Gennaro, Bruno; Catalanotti, Lilia; Bowman, Robert S; Mercurio, Mariano

    2014-09-15

    Lately, the functionalization of industrial minerals with high technological properties, such as natural zeolites, is shaping as a promising approach in environmental sphere. In fact, under the specific conditions, the surface functionalization via adsorption of cationic surfactants reverses the surface charge of the mineral, enabling zeolites to simultaneously interact either with organic contaminants or inorganic anions. This aspect allows zeolites to be used in the remediation of contaminated fluids. The present research shed new light on some still not fully understood aspects concerning exchange kinetics such as anion-exchange mechanisms and selectivity of surface modified minerals. For this purpose the mineralogical characterization and the surface properties evaluation (X Ray Powder Diffraction, chemical analysis, thermal analysis, ECEC and AEC) of a clinoptilolite-rich tuff were performed, and the anion exchange isotherms of the sample, modified with hexadecyltrimethylammonium chloride or bromide (HDTMA-Cl/-Br), were determined. Ion-exchange equilibrium data of uni-uni valent reaction were obtained by solutions containing Br(-), Cl(-), NO3(-) or ClO4(-). Liquid phase was analysed via high performance liquid chromatography. Thermodynamic quantities (Ka and ΔG(0)) were determined and compared with the Hofmeister series. The value of the ECEC, calculated in batch conditions, was about 137 mmol/kg, in good agreement with that evaluated in dynamic conditions, while the AEC data were different for the SMNZ-Br and -Cl samples, amounting to 137 and 106 mmol/kg, respectively, thus indicating a different compactness of the bilayer formed in the two cases. Moreover, the anion isotherm results and the mathematical evaluation of the thermodynamic parameters, demonstrated the good affinity of SMNZ-Br towards chloride, nitrate and perchlorate, and of SMNZ-Cl for nitrate and perchlorate, also endorsing the possibility of using the same thermodynamic approach developed to

  1. Solid phase extraction of lactic acid from fermentation broth by anion-exchangeable silica confined ionic liquids.

    Science.gov (United States)

    Bi, Wentao; Zhou, Jun; Row, Kyung Ho

    2011-01-15

    Three anion-exchangeable, silica-confined ionic liquids were synthesized for solid phase extraction of lactic acid from fermentation broth, followed by high-performance liquid chromatography coupled to ultraviolet detection. By comparing the adsorption isotherms of lactic acid on different silica-confined ionic liquids, interactions between the lactic acid and sorbents were investigated. The adsorbed amounts were then fitted into different adsorption isotherm equations; finally, the Langmuir equation was selected. Then the imidazolium silica with the highest adsorption capacity of lactic acid was packed into a cartridge for solid phase extraction. The loading volume of the cartridge was optimized by the Langmuir equation and geometry. After washing with distilled water and eluting with 0.25 mol L(-1) of an HCl solution, the lactic acid was separated from interference with a recovery yield of 91.9%. Furthermore, this kind of anion-exchangeable material exhibited potential for industrial applications and separation of other anionic bioactive compounds.

  2. Comparison among three anion exchange chromatographic supports to capture erythropoietin from cell culture supernatant

    Institute of Scientific and Technical Information of China (English)

    Lourdes HERNNDEZ; Diobel STEWART; Lourdes ZUMALACRREGUI; Daniel AMARO

    2015-01-01

    Affinity and ion exchange conventional chromatography have been used to capture erythropoietin ( EPO)from mammalian cell culture supernatant. Currently,chromatographic adsorbent perfusion is available, however a limited number of applications have been found in the literature. In this work,three anion exchange chromatographic supports( gel,membrane and monolithic)were evaluated in the capture step of the recombi-nant erythropoietin purification process. The influences of load and flow rate on each support performance were analyzed. Also the purity of the EPO molecules was determined. A productivity analysis,as a decision tool for larger scale implementation,was done. As a conclusion,the evaluated supports are technically suitable to cap-ture EPO with adequate recovery and good purity. However,the monolithic column admits high operating velocity,showing the highest adsorption capacity and productivity.

  3. Investigation of Polyacrylate Anion-Exchangers for Separation of Rare Earth Element Complexes with EDTA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The rare earth complexes with EDTA, Ln(edta), show an unusual sequence of affinity for the anion-exchangers. The sorption and chromatographic separation of Y3+ for Nd3+ complexes with EDTA was studied by using the strongly basic gel and macroporous polyacrylate anion-exchangers, Amberlite IRA 458 and Amberlite 958, and the weakly basic gel polyacrylate anion-exchanger, Amberlite IRA-68. The investigations on sorption and separation of rare earth complexes with EDTA on the polyacrylate anion-exchangers applied mainly in the environment protection so far indicate that they can be applied in anionexchange separation of lanthanide complexes with aminopolycarboxylic acids. It was shown that the weakly basic polyacrylate gel anion-exchanger Amberlite IRA-68 is the most effective in purification of Y3+ from Nd3+ in comparison with the strongly basic anion-exchangers of this type.

  4. Computer simulation of methanol exchange dynamics around cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Santanu; Dang, Liem X.

    2016-03-03

    In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occurs at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  5. Trace adsorption of positively charged proteins onto Sepharose FF and Sepharose FF-based anion exchangers.

    Science.gov (United States)

    Yu, Lin-Ling; Sun, Yan

    2012-08-31

    Agarose-based matrices have been widely used in ion exchange chromatography (IEC). We have herein observed that positively charged proteins (lysozyme and cytochrome c) are adsorbed on the agarose-based anion-exchangers (Q and DEAE Sepharose FF gels) in a capacity of 10-40 μg/mL. In contrast, negatively charged protein (bovine serum albumin) is not adsorbed to Sepharose FF and SP Sepharose FF gels. Elemental analysis of the gel indicated that the residual anionic sulfate groups in agarose would have worked as the cation exchange groups for the positively charged proteins. The trace adsorption behavior of lysozyme onto Sepharose FF and Sepharose FF-based anion exchangers was studied and the effects of NaCl concentration and cation group density on the adsorption were examined for better understanding of the trace adsorption in chromatographic processes. At NaCl concentrations less than 0.05 mol/L, which is the normal adsorption condition in IEC, the trace adsorption kept at a high level, so this trace adsorption cannot be avoided in the ionic strength range of routine IEC operations. Grafting poly(ethylenimine) (PEI) chain of 60 kDa to a cation group density of 700 mmol/L could reduce the adsorption capacity to about 20 μg/mL, but further reduction was not possible by increasing the cation group density to 1200 mmol/L. Therefore, attentions need to be paid to the phenomenon in protein purification practice using agarose-based matrices. The research is expected to call attentions to the trace adsorption on agarose-based matrices and to the importance in the selection of the suitable solid matrices in the production of high-purity protein products in large-scale bioprocesses.

  6. Anion-exchangeable inorganic-organic hybrid materials synthesized without using templates

    Institute of Scientific and Technical Information of China (English)

    XU Xianzhu; SONG Jiangwei; LI Defeng; XIAO Fengshou

    2004-01-01

    Inorganic-organic hybrid materials have been obtained at room temperature in aqueous solution without using the templates of surfactants. The materials are care fully characterized by anion-exchange measurement, elements analysis, X-ray diffraction, and infrared spectroscopy. Notably, the anion-exchange capacity of the samples (3.9 Interestingly, both small and large anions could be easily exchanged into the samples due to the plasticity of the sam pies, along with the phase transition.

  7. Tungstate and Carbonate Ions Sorption Using Anion Exchangers AV-17-8 and Purolite A400

    Directory of Open Access Journals (Sweden)

    Chegrintsev S.

    2016-01-01

    Full Text Available The current paper shows the results of tungstate and carbonate ion sorption using strongly basic anion exchangers AV-17-8 and Purolite A400. It has been established that anion exchanger AV-17-8 in the chloride form with parameters of 168 g of tungstate ion and 157 g of carbonate ion per 1 kg of anion exchanger has the maximum capacity for the tungstate and carbonate ions.

  8. The development of a weak anion micro-capillary film for protein chromatography.

    Science.gov (United States)

    Kouyoumdjian, A J M; Lazar, R A; Slater, N K H

    2016-10-14

    In this study, the surface of a microporous walled micro-capillary film (MMCF) was modified into a weak anion exchanger by coupling cyanuric chloride and 2-diethylaminoethylamine (DEAE) to the ethylene-vinyl alcohol (EVOH) matrix. Fourier transform infrared spectroscopy (FTIR) measurements of modified and unmodified MMCFs confirmed the addition of a triazine ring and DEAE onto the membrane. Binding of bovine serum albumin (BSA) at pH 7.2 was found to follow a Langmuir isotherm with a maximum equilibrium binding of 12.4mg BSA/mL adsorbent and 8.2mg BSA/mL adsorbent under static and flow conditions, respectively. The ion exchange capacity, determined by Mohr's titration of chlorine atoms displaced from the functionalised surface, was found to be 195±21μmol Cl(-)/mL of adsorber, comparable to commercial ion exchangers. BSA adsorption onto the ion exchanger was strongly pH-dependant, with an observed reduction in binding above pH 8.2. Frontal experiments of a BSA (5mg/mL) and lysozyme (5mg/mL) mixture demonstrated successful separation of BSA from lysozyme at more than 97% purity as verified by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Separation between similarly charged anionic molecules was also achieved using BSA (5mg/mL) and herring sperm DNA (0.25mg/mL). BSA was extracted at 100% purity, demonstrating the ability of MMCF-DEAE to remove significant DNA contamination from a protein solution. These experiments highlight the potential for MMCFs to be used for fast protein purification in preparative chromatography application.

  9. Optimized anion exchange membranes for vanadium redox flow batteries.

    Science.gov (United States)

    Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan

    2013-08-14

    In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance.

  10. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  11. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    Science.gov (United States)

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  12. Liquid anion-exchange separation of vanadium from malonate media

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R.R.; Khopkar, S.M. (Indian Inst. of Technology, Dept. of Chemistry, Bombay (India))

    1992-06-01

    Vanadium (IV) and (V) can be quantitatively extracted with 0.2 mol/l Amberlite LA-2 in xylene at pH 3.0 from 0.02 mol/l malonic acid, stripped with 0.5 mol/l hydrochloric acid, and determined spectrophotometrically. Five other liquid anion exchangers (Amberlite LA-1, Primene JM-T, Aliquat 336S, TOA and TIOA) were examined as possible extractants. The extraction of vanadium(IV) was found to be quantitative only with Amberlite LA-2, while that of vanadium(V) was quantitative with Amberlite LA-1 and LA-2, Primene JM-T and Aliquat 336S. Eight common solvents were tested as diluents; of these hexane, cyclohexane, benzene, and xylene were found to be satisfactory. Vanadium was separated from elements that do not form anionic complexes with malonic acid by selective extraction, from those that form weak complexes by washing the organic extract with water, and from metals that form strong malonato complexes by selective stripping with hydrochloric, nitric, or sulphuric acid. The method has been applied to the determination of vanadium in steel, coal fly ash and fuel oil. The precision of measurement is within {+-}5% and the detection limit of the method for vanadium is 0.5 mg/kg. (orig.).

  13. Alkaline direct alcohol fuel cells using an anion exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsuoka, Masao [Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2005-10-04

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323K, which was about 100-200mV higher than that for a DMFC using Nafion{sup R}. The maximum power densities were in the order of ethylene glycol>glycerol>methanol>erythritol>xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode. (author)

  14. Radiation-induced decomposition of anion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Baidak, Aliaksandr [Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556 (United States); LaVerne, Jay A., E-mail: laverne.1@nd.ed [Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556 (United States) and Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2010-12-31

    Radiation-induced degradation of the strongly basic anion exchange resin Amberlite{sup TM} IRA400 in NO{sub 3}{sup -}, Cl{sup -} and OH{sup -} forms has been studied. The research focused on the formation of molecular hydrogen in the gamma-radiolysis of water slurries of these quaternary ammonium resins with varying water content. Extended studies with various electron scavengers (NO{sub 3}{sup -}, N{sub 2}O and O{sub 2}) prove an important role of e{sub solv}{sup -} in the formation of H{sub 2} from these resins. An excess production of H{sub 2} in these systems at about 85% water weight fraction was found to be due to trimethylamine, dimethylamine and other compounds that leach from the resin to the aqueous phase. Irradiations with 5 MeV {sup 4}He ions were performed to simulate the effects of {alpha}-particles.

  15. New monolith technology for automated anion-exchange purification of nucleic acids.

    Science.gov (United States)

    Thayer, J R; Flook, K J; Woodruff, A; Rao, S; Pohl, C A

    2010-04-15

    Synthetic nucleic acid analysis often employs pellicular anion-exchange (AE) chromatography because it supports very high efficiency separations while offering means to control secondary structure, retention and resolution by readily modifiable chromatographic conditions. However, these pellicular anion-exchange (pAE) phases do not offer capacity sufficient for lab-scale oligonucleotide (ON) purification. In contrast, monolithic phases produce fast separations at capacities exceeding their pellicular counterparts, but do not exhibit capacities typical of fully porous, bead-based, anion-exchangers. In order to further increase monolith capacity and obtain the selectivity and mass transfer characteristics of pellicular phases, a surface-functionalized monolith was coated with pAE nanobeads (latexes) usually employed on the pellicular DNAPac phase. The nanobead-coated monolith exhibited chromatographic behaviors typical of polymer AE phases. Based on this observation the monolithic substrate surface porosity and latex diameters were co-optimized to produce a hybrid monolith harboring capacity similar to that of fully porous bead-based phases and peak shape approaching that of the pAE phases. We tested the hybrid monolith on a variety of previously developed pAE capabilities including control of ON selectivity, resolution of derivatized ONs, the ability to resolve RNA ONs harboring aberrant linkages at different positions in a single sequence and separation of phosphorothioate diastereoisomers. We compared the yield and purity of an 8 mg ON sample purified on both the new hybrid monolith and a benchmark AE column based on fully porous monodisperse beads. This comparison included an assessment of the relative selectivities of both columns. Finally, we demonstrated the ability to couple AE ON separations with ESI-MS using an automated desalting protocol. This protocol is also useful for preparing ONs for other assays, such as enzyme treatments, that may be sensitive to

  16. Radio-iodide uptake by modified poly (glycidyl methacrylate) as anion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Sameh H. [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center; Atomic Energy Authority, Cairo (Egypt). Second Research Reactor; Elbarbary, Ahmed M. [Atomic Energy Authority, Cairo (Egypt). Radiation Research of Polymer Chemistry Dept.; Rashad, Ghada; Fasih, T.W. [Atomic Energy Authority, Cairo (Egypt). Hot Laboratories Center

    2017-03-01

    Poly(glycidyl methacrylate) (PGMA) microspheres were prepared by radiation induced polymerization of glycidyl methacrylate (GMA) monomer. The factors affecting the degree of polymerization and yield (%) of PGMA such as type of solvent, monomer concentration, and irradiation dose were investigated. It was found that the PGMA yield (%) increases with increasing monomer concentration up to 50% and absorbed dose of 5 kGy. The resulting PGMA containing the epoxy group was chemically modified by hydroxyl amine to act as anion-exchange resin for uptake of {sup 131}I{sup -} ions. The modified PGMA (MPGMA) was characterized by Fourier transform infrared (FT-IR) spectrophotometer, thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). I-131 is produced from the fission of U-235 with low-enrichment uranium (LEU) targets in the Egyptian Second Research Reactor (ETRR-2). Separation of iodide from the radioactive solution by batchwise and column techniques was employed to determine the adsorption capacity of the MPGMA. Quality control of {sup 131}I product solution and radiochemical purity was examined by using the ascending paper chromatography method. The uptake behavior of MPGMA towards {sup 131}I{sup -} ions were studied at different experimental conditions and achieved by X-ray fluorescence (XRF). The synthesized MPGMA showed good results as anion-exchange and an effective adsorbent for uptaking {sup 131}I{sup -} ions.

  17. Gamma radiation effect on gas production in anion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Traboulsi, A. [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France); Labed, V., E-mail: veronique.labed@cea.fr [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Dauvois, V. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91191 Gif sur Yvette Cedex (France); Dupuy, N.; Rebufa, C. [E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France)

    2013-10-01

    Radiation-induced decomposition of Amberlite IRA400 anion exchange resin in hydroxide form by gamma radiolysis has been studied at various doses in different atmospheres (anaerobic, anaerobic with liquid water, and aerobic). The effect of these parameters on the degradation of ion exchange resins is rarely investigated in the literature. We focused on the radiolysis gases produced by resin degradation. When the resin was irradiated under anaerobic conditions with liquid water, the liquid phase over the resin was also analyzed to identify any possible water-soluble products released by degradation of the resin. The main products released are trimethylamine (TMA), molecular hydrogen (H{sub 2g}) and carbon dioxide (CO{sub 2g}). TMA and H{sub 2g} are produced in all the irradiation atmospheres. However, TMA was in gaseous form under anaerobic and aerobic conditions and in aqueous form in presence of liquid water. In the latter conditions, TMA{sub aq} was associated with aqueous dimethylamine (DMA{sub aq}), monomethylamine (MMA{sub aq}) and ammonia (NH{sub 4}{sup +}{sub aq}). CO{sub 2g} is formed in the presence of oxygen due to oxidation of organic compounds present in the system, in particular the degradation products such as TMA{sub g}.

  18. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  19. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  20. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  1. Determination of free and total myo-inositol in infant formula and adult/pediatric nutritional formula by high- performance anion exchange chromatography with pulsed amperometric detection, including a novel total extraction using microwave-assisted acid hydrolysis and enzymatic treatment: first action 2012.12.

    Science.gov (United States)

    Ellingson, David; Pritchard, Ted; Foy, Pamela; King, Kathryn; Mitchell, Barbara; Austad, John; Winters, Doug; Sullivan, Darryl; Dowell, Dawn

    2013-01-01

    After an assessment of data generated from a single-laboratory validation study published in J. AOAC Int. 95, 1469-1478 (2012), a method for determining total myo-inositol in infant formula and adult/ pediatric nutritional formula by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including extraction by using microwave-assisted acid hydrolysis and enzymatic treatment was presented for consideration by AOAC during the AOAC Annual Meeting held in Las Vegas, NV, from September 30 to October 3, 2012. The Expert Review Panel on Infant Formula and Adult Nutritionals concluded that the method met the criteria set by the standard method performance requirements (SMPRs) for the determination of free myo-inositol and approved the method as AOAC Official First Action. The method also determines total myo-inositol, but includes bound sources that the SMPRs exclude. The method involves using HPAEC-PAD for free myo-inositol and a total myo-inositol determination by two different techniques. The first technique uses the conventional acid hydrolysis with 6 h incubation in an autoclave. The second uses a microwave-assisted acid hydrolysis with enzymatic treatment that decreases the extraction time.

  2. Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gab-Jin; Bong, Soo-Yeon; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Lim, Soo-Gon [Energy and Machinery Korea Co., Ltd., Changwon (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan (Korea, Republic of)

    2015-09-15

    An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098x10{sup -2} -7.0x10{sup -2}S cm{sup -1}. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

  3. DETERMINATION OF ION EXCHANGE EQUILIBRIUM CONSTANTS FOR THE WEAK ACID CATION AND THE WEAK BASE ANION EXCHANGE RESINS

    Institute of Scientific and Technical Information of China (English)

    TAOZuyi; WANGChangshou

    1992-01-01

    The general procedure based on the potentiometric titration has developed.According to the procedure,the rational equilibrium constants of the ion exchange reactions RH/Na,RH/Ca,RH/Sr,RH/Ba for the weak acid cation exchange resin D725 and ROH/Cl for the weak base anion exchange resin D705 have been determined.

  4. Durability and Performance of Polystyrene-b-Poly(vinylbenzyl trimethylammonium) Diblock Copolymer and Equivalent Blend Anion Exchange Membranes

    Science.gov (United States)

    2015-01-01

    SECURITY CLASSIFICATION OF: Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion transport in fuel cells. In this study... Anion Exchange Membranes The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official...Copolymer and Equivalent Blend Anion Exchange Membranes Report Title Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion

  5. Improved immunoadsorption procedure with anion-exchange bacterial cell columns.

    Science.gov (United States)

    McKinney, R M; Thacker, L; Wong, M C; Hebert, G A

    1978-01-01

    Bacterial cell columns for immunoadsorption were prepared with Streptococcus cells and triethylaminoethyl cellulose (Cellex-T) matrix material as a model system. Good column flow properties and satisfactory retention of the cells were obtained with ratios as high as 2 ml of packed cells/3 g dry weight of cellulose. Anion-exchange fractionation of whole serum by the Cellex-T was prevented by using 0.25 M NaCl in the developing buffer. Antibodies were adsorbed directly from whole serum and recovered in high yield by desorption at pH 2.3. Pre-exposing bacterial cells to formalin and washing them with acetone was necessary to ensure that they remained on the columns. One strain of Streptococcus salivarius (SS 908) was satisfactorily retained on a column only after cells were labeled with fluorescein isothiocyanate and washed with acetone. The means by which Cellex-T retains bacterial cells appears to be a combination of electronic attraction and physical entrapment.

  6. [Determination of organic acids and inorganic anions by gradient ion chromatography].

    Science.gov (United States)

    Liu, Z; Liu, K; Shen, D; Song, Q; Mou, S; Feng, Y

    1997-07-01

    The chromatographic conditions for separation and detection of organic acids and inorganic anions by gradient ion chromatography with suppressed conductivity detection were studied. The optimized gradient programs were established. Ion chromatography were performed with a DX-100 chromatograph (DIONEX). The separation column is IonPac-AS11. Compared with NaHCO3/Na2CO3 and Na2B4O7, NaOH was the optimal eluent. The effect of organic modifier was also studied. Among methanol, 2-propanol and acetonitrile, methanol can make ion pairs such as malate and succinate, malonate and tartrate gaining baseline resolution. By using ion exchange separation, Cl-, NO3-, malate, succinate, malonate, tartrate, SO4(2-), oxalate were eluted between 5 mmol/L NaOH-16% CH3OH and 10 mmol/L NaOH-16% CH3OH in 25 min. A mobile phase composed of 30 mmol/L NaOH, 50% CH3OH and D.I. water was chosen to elute two groups of organic acids and inorganic anions: (1) quinate, formate, Cl-, malate, malonate, oxalate, citrate, isocitrate, aconitate; (2) lactate, Cl-, SO4(2-), tartrate, PO4(3-), citrate, isocitrate, aconitate. The detection limits (S/N = 3) were 0.1625 (quinate), 0.0691 (formate), 0.0115 (Cl-), 0.0886 (malate), 0.0591 (malonate), 0.0263 (oxalate), 0.1147 (citrate), 0.2017 (isocitrate), 0.3656 (cis-aconitate), 0.1045 (trans-aconitate), 0.1950 (lactate), 0.0729 (tartrate), 0.0224 (SO4(2-)) and 0.0692 (PO4(3-)) mg/L. The relative standard deviations were lower than 11.9% (n = 7) and the correlation coefficients ranged from 0.9212 for Cl- to 0.9999 for formate. The method was applied to determine the organic acids and inorganic anions of beverages and citric acids fermenting-medium. The results were satisfactory.

  7. Analysis of anions in geological brines using ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, R.M.

    1985-03-01

    Ion chromatographic procedures for the determination of the anions bromide, sulfate, nitrite, nitrate, phosphate, and iodide in brine samples have been developed and are described. The techniques have been applied to the analysis of natural brines, and geologic evaporites. Sample matrices varied over a range from 15,000 mg/L to 200,000 mg/L total halogens, nearly all of which is chloride. The analyzed anion concentrations ranged from less than 5 mg/L in the cases of nitrite, nitrate, and phosphate, to 20,000 mg/L in the case of sulfate. A technique for suppressing chloride and sulfate ions to facilitate the analysis of lower concentration anions is presented. Analysis times are typically less than 20 minutes for each procedure and the ion chromatographic results compare well with those obtained using more time consuming classical chemical analyses. 10 references, 14 figures.

  8. Anion Transport in a Chemically Stable, Sterically Bulky alpha-C Modified Imidazolium Functionalized Anion Exchange Membrane

    Science.gov (United States)

    2014-06-24

    comparison of benzyltrimethylammonium and 1-benzyl-3-methylimidazolium cationic groups with the same poly( ethylene -co-tetrafluoroethylene) (ETFE...12) Simone, P. M.; Lodge, T. P. Phase Behavior and Ionic Conductivity of Concentrated Solutions of Polystyrene-Poly( Ethylene Oxide) Diblock Copolymers...1514515144 Herring, A. M. Preparation and Characterization of an Alkaline Anion Exchange Membrane from Chlorinated Poly (Propylene) Aminated with

  9. Detection of anionic energetic material residues in enhanced fingermarks on porous and non-porous surfaces using ion chromatography.

    Science.gov (United States)

    Love, Catherine; Gilchrist, Elizabeth; Smith, Norman; Barron, Leon

    2013-09-10

    The ability to link criminal activity and identity using validated analytical approaches can be of great value to forensic scientists. Herein, the factors affecting the recovery and detection of inorganic and organic energetic material residues within chemically or physically enhanced fingermarks on paper and glass substrates are presented using micro-bore anion exchange chromatography with suppressed conductivity detection. Fingermarks on both surfaces were enhanced using aluminium powder or ninhydrin after spiking with model test mixtures or through contact with black-powder substitutes. A quantitative study of the effects of environmental/method interferences, the sweat matrix, the surface and the enhancement technique on the relative anion recovery of forensically relevant species is presented. It is shown that the analytical method could detect target analytes at the nanogram level even within excesses of enhancement reagents and their reaction products when using solid phase extraction and/or microfiltration. To our knowledge, this work demonstrates for the first time that ion chromatography can detect anions in energetic materials within fingermarks on two very different surfaces, after operational enhancement techniques commonly used by forensic scientists and police have been applied.

  10. Mineral Separation in a CELSS by Ion-exchange Chromatography

    Science.gov (United States)

    Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1982-01-01

    Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.

  11. Ionic Resistance and Permselectivity Tradeoffs in Anion Exchange Membranes

    KAUST Repository

    Geise, Geoffrey M.

    2013-10-23

    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data. © 2013 American Chemical Society.

  12. Ionic resistance and permselectivity tradeoffs in anion exchange membranes.

    Science.gov (United States)

    Geise, Geoffrey M; Hickner, Michael A; Logan, Bruce E

    2013-10-23

    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data.

  13. Synthesis of porous carbon fibers with strong anion exchange functional groups.

    Science.gov (United States)

    Zheng, Weihua; Hu, Jingtian; Han, Zheshen; Wang, Zixing; Zheng, Zhen; Langer, James; Economy, James

    2015-06-18

    Hybrid porous carbon fibers with strong anion-exchangeable functional groups (HACAX) were synthesized by alkylation of pyrolyzed polyacrylonitrile. HACAX exhibits generic stable positively charged functional groups. This expands the applications of porous carbon media for interacting with anions without adjusting pH, such as Cr(vi) adsorption at natural pH.

  14. Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.

    Science.gov (United States)

    Li, Ming; Li, Yanying; Yu, Linling; Sun, Yan

    2017-02-24

    This work reports poly(allylamine) (PAA), as a polymeric ion-exchange ligand for protein chromatography. Sepharose FF was modified with PAA, and six anion exchangers with ionic capacities (ICs) from 165 to 618mmol/L were prepared. Inverse size exclusion chromatography, adsorption equilibrium, uptake kinetics and column elution were performed. It was found that both the adsorption capacity and effective diffusivity maintained low values in the IC range of 165-373mmol/L, but they started to increase beyond 373mmol/L, and increased by 80% and 23 times, respectively, when the IC reached 618mmol/L. Interestingly, a drastic decrease of pore size was observed around the IC of 373mmol/L. The results suggest that the PAA chains played an important role in protein adsorption by altering the inner pore structure of the gels. It is considered that, PAA chains turn from inextensible states with multipoint-grafting on the pore surface at low coupling densities (IC373mmol/L). These characters of the grafted chains at higher IC values benefit in protein adsorption by three-dimensional binding and encouraged the happening of "chain delivery" of bound proteins on the chains. Besides, the ion exchangers showed favorable adsorption and uptake properties in a wide ionic strength range, 0-500mmol/L NaCl, indicating much better salt tolerance feature than the so-far reported ion exchangers. Moreover, a mild condition of pH 5.0 offered effective recovery of bound proteins in elution chromatography. The results indicate that the PAA-based anion exchanger of a high IC value is promising for high-capacity protein chromatography dealing with feedstock of a wide range of ionic strengths.

  15. Modeling of protein-anion exchange resin interaction for the human growth hormone charge variants.

    Science.gov (United States)

    Lapelosa, Mauro; Patapoff, Thomas W; Zarraga, Isidro E

    2015-12-01

    Modeling ion exchange chromatography (IEC) behavior has generated significant interest because of the wide use of IEC as an analytical technique as well as a preparative protein purification process; indeed there is a need for better understanding of what drives the unique behavior of protein charge variants. We hypothesize that a complex protein molecule, which contains both hydrophobic and charged moieties, would interact strongly with an in silico designed resin through charged electrostatic patches on the surface of the protein. In the present work, variants of recombinant human growth hormone that mimic naturally-occurring deamidation products were produced and characterized in silico. The study included these four variants: rhGH, N149D, N152D, and N149D/N152D. Poisson-Boltzmann calculations were used to determine surface electrostatic potential. Metropolis Monte Carlo simulations were carried out with the resulting variants to simulate IEC systems, examining the free energy of the interaction of the protein with an in silico anion exchange column represented by polylysine polypeptide. The results show that the charge variants have different average binding energies and the free energy of interaction can be used to predict the retention time for the different variants.

  16. ANALYSIS OF ELECTROLESS NICKEL SOLUTIONS BY ANION CHROMATOGRAPHY

    Science.gov (United States)

    The principal appeal of ion chromatography (IC) as analytical technique lies in the ability to rapidly analyze a mixture of ions of widely varying concentrations and properties in a single elution. It is therefore not surprising that IC has been hampered by the similar ion exchan...

  17. Determination of phytate in high molecular weight, charged organic matrices by two-dimensional size exclusion-ion chromatography

    Science.gov (United States)

    A two-dimensional chromatography method for analyzing anionic targets (specifically phytate) in complex matrices is described. Prior to quantification by anion exchange chromatography, the sample matrix was prepared by size exclusion chromatography, which removed the majority of matrix complexities....

  18. Preparation of methacrylate-based anion-exchange monolithic microbore column for chromatographic separation of DNA fragments and oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Sabarudin, Akhmad, E-mail: sabarjpn@ub.ac.id [Division of Nano-materials Science, EcoTopia Science Institute, Nagoya University, Furu-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan); Department of Chemistry, Faculty of Science, Brawijaya University, Jl Veteran Malang 65145 (Indonesia); Huang, Junchao; Shu, Shin; Sakagawa, Shinnosuke [Division of Nano-materials Science, EcoTopia Science Institute, Nagoya University, Furu-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan); Umemura, Tomonari, E-mail: umemura@apchem.nagoya-u.ac.jp [Division of Nano-materials Science, EcoTopia Science Institute, Nagoya University, Furu-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan)

    2012-07-29

    Highlights: Black-Right-Pointing-Pointer Microbore-scale (1 mm i.d.) anion-exchange monolithic column. Black-Right-Pointing-Pointer Potentially preparative applications. Black-Right-Pointing-Pointer Separation of oligodeoxythymidylic acids and DNA fragments. - Abstract: In this paper, we report on the preparation of a microbore-scale (1 mm i.d.) anion-exchange monolithic column suitable not only for analytical purposes but also for potentially preparative applications. In order to meet the conflicting requirements of high permeability and good mechanical strength, the following two-step procedure was applied. First, an epoxy-containing monolith was synthesized by in situ copolymerization of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) within the confines of a silicosteel tubing of 1.02 mm i.d. and 1/16 Double-Prime o.d. in the presence of a ternary porogenic mixture of 1-propanol, 1,4-butanediol, and water. The monolithic matrix was subsequently converted into weak anion-exchanger via the ring-opening reaction of epoxy group with diethyl amine. The dynamic binding capacity was 21.4 mg mL{sup -1} for bovine serum albumin (BSA) at 10% breakthrough. The morphology and porous structure of this monolith were assessed by scanning electron microscope (SEM) and inverse size exclusion chromatography (ISEC). To optimize the separation efficiency, the effects of various chromatographic parameters upon the separation of DNA fragments were investigated. The resulting monolithic anion exchanger demonstrated good potential for the separation of both single- and double-stranded DNA molecules using a gradient elution with NaCl in Tris-HCl buffer (20 mM). Oligodeoxythymidylic acids (dT{sub 12}-dT{sub 18}) were successfully resolved at pH 8, while the fragments of 20 bp DNA ladder, 100 bp DNA ladder, and pBR322-HaeIII digest were efficiently separated at pH 9.

  19. A step-wise approach to define binding mechanisms of surrogate viral particles to multi-modal anion exchange resin in a single solute system.

    Science.gov (United States)

    Brown, Matthew R; Johnson, Sarah A; Brorson, Kurt A; Lute, Scott C; Roush, David J

    2017-07-01

    Multi-modal anion exchange resins combine properties of both anion exchange and hydrophobic interaction chromatography for commercial protein polishing and may provide some viral clearance as well. From a regulatory viral clearance claim standpoint, it is unclear if multi-modal resins are truly orthogonal to either single-mode anion exchange or hydrophobic interaction columns. To answer this, a strategy of solute surface assays and High Throughput Screening of resin in concert with a scale-down model of large scale chromatography purification was employed to determine the predominant binding mechanisms of a panel of bacteriophage (i.e., PR772, PP7, and ϕX174) to multi-modal and single mode resins under various buffer conditions. The buffer conditions were restricted to buffer environments suggested by the manufacturer for the multi-modal resin. Each phage was examined for estimated net charge expression and relative hydrophobicity using chromatographic based methods. Overall, PP7 and PR772 bound to the multimodal resin via both anionic and hydrophobic moieties, while ϕX174 bound predominantly by the anionic moiety. Biotechnol. Bioeng. 2017;114: 1487-1494. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    Science.gov (United States)

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  1. Anion Exchange on Cationic Surfactant Micelles, and a Speciation Model for Estimating Anion Removal on Micelles during Ultrafiltration of Water.

    Science.gov (United States)

    Chen, Ming; Jafvert, Chad T

    2017-07-05

    Surfactant micelles combined with ultrafiltration can partially, or sometimes nearly completely, separate various ionic and nonionic pollutants from water. To this end, the selectivity of aqueous micelles composed of either cetyltrimethylammonium (CTA(+)) bromide or cetylpyridinium (CP(+)) chloride toward many environmentally relevant anions (IO3(-), F(-), Cl(-), HCO3(-), NO2(-), Br(-), NO3(-), H2PO4(-), HPO4(2-), SO4(2-), and CrO4(2-)) was investigated. Selectivity coefficients of CTA(+) micelles (with respect to Br(-)) and CP(+) micelle (with respect to Cl(-)) for these anions were evaluated using a simple thermodynamic ion exchange model. The sequence of anion affinity for the CTA(+) micelles and for the CP(+) micelles were the same, with decreasing affinity occurring in the order of: CrO4(2-) > SO4(2-) > HPO4(2-) > NO3(-) > Br(-) > NO2(-) > Cl(-) > HCO3(-) > H2PO4(-) ≈ F(-). From the associated component mass balance and ion exchange (i.e., mass action) equations, an overall speciation model was developed to predict the distribution of all anions between the aqueous and micellar pseudophase for complex ionic mixtures. Experimental results of both artificial and real surface waters were in good agreement to model predictions. Further, the results indicated that micelles combined with ultrafiltration may be a potential technology for nutrient and other pollutant removal from natural or effluent waters.

  2. Mechanism of Polysulfone-Based Anion Exchange Membranes Degradation in Vanadium Flow Battery.

    Science.gov (United States)

    Yuan, Zhizhang; Li, Xianfeng; Zhao, Yuyue; Zhang, Huamin

    2015-09-02

    The stability of hydrocarbon ion exchange membranes is one of the critical issues for a flow battery. However, the degradation mechanism of ion exchange membranes has been rarely investigated especially for anion exchange membranes. Here, the degradation mechanism of polysulfone based anion exchange membranes, carrying pyridine ion exchange groups, under vanadium flow battery (VFB) medium was investigated in detail. We find that sp(2) hybrid orbital interactions between pyridinic-nitrogen in 4,4'-bipyridine and benzylic carbon disrupt the charge state balance of pristine chloromethylated polysulfone. This difference in electronegativity inversely induces an electrophilic carbon center in the benzene ring, which can be attacked by the lone pair electron on the vanadium(V) oxygen species, further leading to the degradation of polymer backbone, while leaving the 4,4'-bipyridine ion exchange groups stable. This work represents a step toward design and construction of alternative type of chemically stable hydrocarbon ion exchange membranes for VFB.

  3. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    Science.gov (United States)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  4. Separation of whey proteins for chromatography liquid

    OpenAIRE

    Abraham D. Giraldo Zuñiga; Edwin E.García Rojas; Jane S. R. Coimbra; Wilmer E. Luera Peña

    2010-01-01

    This paper describes and compares three chromatographic methods for the analysis and quantification of most abundant proteins in cheese whey, -lactalbumin and -lactoglobulin. The methods were: Reverse-phase high performance liquid chromatography, anion Exchange chromatography and size-exclusion chromatography. The reverse- phase liquid chromatography led to a better separation of whey proteins than size-exclusion chromatography and anion exchange chromatography, this method offered an excel...

  5. The anion exchanger Ae2 is required for enamel maturation in mouse teeth

    NARCIS (Netherlands)

    Lyaruu, D.M.; Bronckers, A.L.J.J.; Mulder, L.; Mardones, P.; Medina, J.F.; Kellokumpu, S.; Oude Elferink, R.P.J.; Everts, V.

    2008-01-01

    One of the mechanisms by which epithelial cells regulate intracellular pH is exchanging bicarbonate for Cl-. We tested the hypothesis that in ameloblasts the anion exchanger-2 (Ae2) is involved in pH regulation during maturation stage amelogenesis. Quantitative X-ray microprobe mineral content analy

  6. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    Science.gov (United States)

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  7. Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Hamelers, H.V.M.; Rozendal, R.A.; Buisman, C.J.N.

    2009-01-01

    Previous studies have shown that Microbial Electrolysis Cells (MECs) perform better when an anion exchange membrane (AEM) than when a cation exchange membrane (CEM) separates the electrode chambers. Here, we have further studied this phenomenon by comparing two analysis methods for bio-electrochemic

  8. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    Science.gov (United States)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-04-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  9. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide.

    Science.gov (United States)

    Sahoo, Pathik; Ishihara, Shinsuke; Yamada, Kazuhiko; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Eisaku, Nii; Sasai, Ryo; Labuta, Jan; Ishikawa, Daisuke; Hill, Jonathan P; Ariga, Katsuhiko; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke; Iyi, Nobuo

    2014-10-22

    The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.

  10. Recent advances in polymer monoliths for ion-exchange chromatography.

    Science.gov (United States)

    Nordborg, Anna; Hilder, Emily F

    2009-05-01

    The use of polymeric materials in ion-exchange chromatography applications is advantageous because of their typically high mechanical stability and tolerance of a wide range of pH conditions. The possibility of using polymeric monoliths in ion-exchange chromatography is therefore obvious and many of the same strategies developed for polymeric particles have been adapted for use with polymeric monoliths. In this review different strategies for the synthesis of polymeric monoliths with ion-exchange functionality are discussed. The incorporation of ion-exchange functionality by co-polymerization is included, as also are different post-polymerization alterations to the monolith surface such as grafting. The formulations and strategies presented include materials intended for use in analytical separations in ion-exchange chromatography, sample pre-treatment or enrichment applications, and materials for capillary electrochromatography. Finally, examples of the use of polymeric monoliths in ion-exchange chromatography applications are included with examples published in the years 2003 to 2008.

  11. Significance of anion exchange in pentachlorophenol sorption by variable-charge soils.

    Science.gov (United States)

    Hyun, Seunghun; Lee, Linda S; Rao, P Suresh C

    2003-01-01

    Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides.

  12. Determination of arsenate in water by anion selective membrane electrode using polyurethane-silica gel fibrous anion exchanger composite.

    Science.gov (United States)

    Khan, Asif Ali; Shaheen, Shakeeba

    2014-01-15

    Polyurethane (PU)-silica (Si gel) based fibrous anion exchanger composites were prepared by solid-gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU-Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1×10(-8)M to 1×10(-1)M), response time (45s) and working pH range (5-8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO4(3-)) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  13. Preparation and application of a novel magnetic anion exchange resin for selective nitrate removal

    Institute of Scientific and Technical Information of China (English)

    Yang Zhou; Chen Dong Shuang; Qing Zhou; Man Cheng Zhang; Peng Hui Li; Ai Min Li

    2012-01-01

    A novel magnetic anion exchange resin NDM-1 was prepared through suspension polymerization and then functionalized with ammonolysis and alkylating agents.Its application for selective removal of nitrate was performed in comparison with MIEX(R).The results demonstrated that NDM-1 achieved higher efficiency in nitrate removal than MIEX(R) did,with or without the existence of competing anion SO42-ascribed to its longer alkyl chains on exchange sites.Combined with the advantage of easy separation due to γ-Fe2O3 implanted,the magnetic anion exchange resin NDM-1 was considered to be superior to MIEX(R) for nitrate removal in practical application.

  14. Separation of metal ions by anion exchange in mixtures of hydrochloric acid and hydrofluoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Faris, J.P.

    1978-12-01

    Distribution coefficients were determined for the adsorption of more than 40 elements on anion-exchange resins from mixtures of HCl (0.1 to 12M) and HF (0.1-8M). Two resins, Dowex 1 x 10, 200 to 400 mesh and Dowex 1 x 4, 100 to 200 mesh, were used. Distribution coefficients were also determined for the adsorption of many elements on both resins from 0.1 to 12M HCl and 0.1 to 12M HF. Anion exchange in the presence of HF was found useful for separating impurities from various materials for their subsequent determination, and specific procedures used in our spectrochemical laboratory for this purpose are outlined. The results of a literature search on the use of anion exchange in hydrofluoric acid and fluoride-containing media are presented in an extensive bibliography. 404 references, 9 tables.

  15. Instrumentation: Ion Chromatography.

    Science.gov (United States)

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  16. Simultaneous quantification of sinigrin, sinalbin, and anionic glucosinolate hydrolysis products in Brassica juncea and Sinapis alba seed extracts using ion chromatography.

    Science.gov (United States)

    Popova, Inna E; Morra, Matthew J

    2014-11-01

    Although mustards such as Sinapis alba and Brassica juncea contain glucosinolates (sinalbin and sinigrin, respectively) that hydrolyze to form biopesticidal products, routine quality control methods to measure active ingredients in seed and seed meals are lacking. We present a simple and fast ion chromatography method for the simultaneous quantification of sinigrin, sinalbin, and anionic hydrolysis products in mustard seed to assess biological potency. Optimum conditions include isocratic elution with 100 mM NaOH at a flow rate of 0.9 mL/min on a 4 × 210 mm hydroxide-selective anion-exchange column. All anion analytes including sinigrin, sinalbin, SO4(2-), and SCN(-) yielded recoveries ranging from 83 to 102% and limits of detection ≤0.04 mM, with samples displaying little interference from plant matrix components. Sample preparation is minimized and analysis times are shortened to <90 min as compared with previous methods that took days and multiple instruments.

  17. Ion exchange liquid chromatography method for the direct determination of small ribonucleic acids.

    Science.gov (United States)

    McGinnis, A Cary; Cummings, Brian S; Bartlett, Michael G

    2013-10-17

    Bioanalysis of siRNAs is challenging due to their size (5-14 kDa) and negative charge across the backbone, which complicates both sample preparation and chromatography. We present here a one step sample preparation combined with non-denaturing anion exchange chromatography with UV detection for the quantitation of siRNA and its chain shortened metabolites. The sample preparation uses a novel lysis buffer with proteinase K to effectively isolate siRNA from cells and formulated media with greater than 95% recovery. The ion exchange chromatography allows for a lower limit of quantitation of 6 ng mL(-1) in cells and media equivalent to 6 ng/200,000 cells. This method is applied to study the uptake of siRNA in prostate cancer cells and the disappearance in the media and siRNA metabolism. siRNA metabolites are identified by matching the retention time of standards to metabolite peaks. Identification is further confirmed by mass spectrometry. To our knowledge this is the first ion exchange method reported for the quantitation of siRNA from a biological matrix. It is also the first non-denaturing chromatographic method reported for siRNA quantitation.

  18. Development of a Direct Ethanol Fuel Cell System with Anion Exchange Membranes

    Science.gov (United States)

    2015-01-15

    Fuel Cell System with Anion Exchange Membranes Report Title Based on the Phase I research results, we identified that carbon supported Pd-based catalysts...Report 22-0ct-2012- 21-Jan-2013 4. 1ITLE AND SUBTITLE 5a CONTRACT NUMBER Development of a Direct Ethanol Fuel Cell System with Anion Exchange...14. ABSTRACT Based on the Phase I research results, we identified that carbon supported Pd-based catalysts, such as Pd/C and PdRu!C, had better

  19. Zonal rate model for stacked membrane chromatography part II: characterizing ion-exchange membrane chromatography under protein retention conditions.

    Science.gov (United States)

    Francis, Patrick; von Lieres, Eric; Haynes, Charles

    2012-03-01

    The Zonal Rate Model (ZRM) has previously been shown to accurately account for contributions to elution band broadening, including external flow nonidealities and radial concentration gradients, in ion-exchange membrane (IEXM) chromatography systems operated under nonbinding conditions. Here, we extend the ZRM to analyze and model the behavior of retained proteins by introducing terms for intra-column mass transfer resistances and intrinsic binding kinetics. Breakthrough curve (BTC) data from a scaled-down anion-exchange membrane chromatography module using ovalbumin as a model protein were collected at flow rates ranging from 1.5 to 20 mL min(-1). Through its careful accounting of transport nonidealities within and external to the membrane stack, the ZRM is shown to provide a useful framework for characterizing putative protein binding mechanisms and models, for predicting BTCs and complex elution behavior, including the common observation that the dynamic binding capacity can increase with linear velocity in IEXM systems, and for simulating and scaling separations using IEXM chromatography. Global fitting of model parameters is used to evaluate the performance of the Langmuir, bi-Langmuir, steric mass action (SMA), and spreading-type protein binding models in either correlating or fundamentally describing BTC data. When combined with the ZRM, the bi-Langmuir, and SMA models match the chromatography data, but require physically unrealistic regressed model parameters to do so. In contrast, for this system a spreading-type model is shown to accurately predict column performance while also providing a realistic fundamental explanation for observed trends, including an observed increase in dynamic binding capacity with flow rate.

  20. Denatured Thermodynamics of Proteins in Weak Cation-exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    LI Rong; CHEN Guo-Liang

    2003-01-01

    The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(ΔH0, ΔS0) of those proteins were determined by means of Vant Hoff relationship(lnk-1/T). According to standard entropy change(ΔS0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between ΔH0 and ΔS0 can be used to evaluate "compensation temperature"(β) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.

  1. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl‑/SO42‑ separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl‑/SO42‑ permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  2. Adsorption Mechanisms of Heavy Metal Ions from Drinking Water by Weakly Basic Anion Exchange Resins

    Institute of Scientific and Technical Information of China (English)

    赵璇; 何仕均; 杨磊

    2002-01-01

    Heavy metal micro-contaminants can be removed from water sources technologies. Weakly basic anion exchange resins offer the best ability to remove trace amounts of heavy metals with high selectivity. This paper discusses how weakly basic resins adsorb heavy metals using two different approaches. The removal of mercury, cadmium, and lead ions is based on the fundamental theory of coordination chemistry. The mechanism is not ion exchange but extractive adsorption of heavy metal salts. However, the marked preferential adsorption of chromate by weakly basic anion exchange can be explained using the traditional theory of ion exchange. A lab-scale study produced positive results for the removal of trace amounts of heavy metal ions from drinking water.

  3. [Determination of inorganic anions and gluconate by two-dimensional ion chromatography].

    Science.gov (United States)

    Chen, Ailian; Ding, Hui; Fang, Linmei; Shi, Chaoou

    2015-12-01

    A new two-dimensional ion chromatography method was developed to parallelly analyze two different types of samples with the application of valve switching technology-suppressed conductivity and pulsed amperometric analysis system, for concurrent determination of chloride, nitrite, sulfate, nitrate four inorganic anions and gluconate. The first dimensional chromatography was using Ionpac AG18+Ionpac AS18 anion analysis columns with a suppressed conductivity detector for the separation and detection of Cl-, NO2-, SO4(2-) and NO3-. Respectively, the elution was 5 and 20 mmol/L NaOH at an isocratic flow rate of 1.0 mL/min and sample injection volume of 25 μL. The second dimensional chromatography was utilizing two guard columns, CarboPac PA1 and CarboPac PA20, with 90 mmol/L NaOH solution for the isocratic eluent of 0.8 mL/min. Gluconate was enriched by an AG15 column and switched into the pulsed amperometric detector. The results showed that: each inorganic anion in 0. 1-5.0 mg/L and gluconate in 0.085 6-4.282 5 mg/L had a good linear relationship (R2 ≥ 0.994 5). The RSDs of the peak areas were between 1.05%-1.94%. The limits of detection were 0.61-2.17 μg/L for the anions and 24.24 μg/L for the gluconate. The recoveries were between 90.3% - 102.8%. The two detection modes parallelly have good separation efficiency, detection accuracy and the precision of the separation and are suitable for the analysis of complex samples.

  4. Subtle anion effects on anion exchange and thermolysis: Square supra-channels via array of sinusoidal coordination polymers

    Science.gov (United States)

    Moon, So Yun; Park, Min Woo; Noh, Tae Hwan; Jung, Ok-Sang

    2013-12-01

    Self-assembly of AgX (X=ClO4-,BF4-) with a new diethylbis(4-pyridyl)silane (L) ligand basically gives rise to a one-dimensional (1D) sinusoidal structure. Weak C-H⋯π interactions between ethyl and pyridyl groups result in the formation of infinite square supra-channel structures via a molecular array of four sinusoidal chains. The supra-channel size is 10.1-10.7 Å with a void cross-section of 2.1-3.1 Å for [Ag(L)](ClO4) and 9.9-10.5 Å with a void cross-section of 2.0-3.0 Å for [Ag(L)](BF4). The supra-channels are occupied by each counteranion. Anion exchange of [Ag(L)](BF4) with NaClO4 occurs smoothly, whereas the reverse anion exchange of [Ag(L)](ClO4) with NaBF4 does not. Calcination of [Ag(L)](ClO4) crystals at 400 °C produces a circle morphology with evolving burned organics, and, at 600 °C, forms network circles consisting of a silver(0)/silver chloride (chlorargyrite)/silicon(IV) oxide composite with a micro-sized convexo-concave surface. In contrast, calcination of [Ag(L)](BF4) crystals at 600 °C produces silver(0) materials without silicon(IV) oxide.

  5. Anion exchange kinetics of nanodimensional layered metal hydroxides: use of isoconversional analysis.

    Science.gov (United States)

    Majoni, Stephen; Hossenlopp, Jeanne M

    2010-12-16

    Anion exchange reactions of nanodimensional layered metal hydroxide compounds are utilized to create materials with targeted physical and chemical properties and also as a means for controlled release of intercalated anions. The kinetics of this important class of reaction are generally characterized by model-based approaches. In this work, a different approach based on isothermal, isoconversional analysis was utilized to determine effective activation energies with respect to extent of reaction. Two different layered metal hydroxide materials were chosen for reaction with chloride anions, using a temperature range of 30-60 °C. The concentrations of anions released into solution and the changes in polycrystalline solid phases were evaluated using model-based (Avrami-Erofe'ev nucleation-growth model) and model-free (integral isoconversional) methods. The results demonstrate the utility of the isoconversional approach for identifying when fitting to a single model is not appropriate, particularly for characterizing the temperature dependence of the reaction kinetics.

  6. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan

    2009-09-01

    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  7. Preparation of Anion Exchange Membrane Based on Imidazolium Functionalized Poly(arylene ether ketone)

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hao; ZHANG Na; MA Wen-jia; ZHAO Cheng-ji; NA Hui

    2013-01-01

    The authors presented a novel synthetic route for the imidazolium functionalized poly(arylene ether ketone)s,derived from an engineering plastics polymer,a poly(arylene ether ketone) with 3,3',5,5'-tetramethyl-4,4'-dihydroxybiphenyl moiety(PAEK-TM).The preparation of anion exchange membranes comprised converting benzylic methyl groups to bromomethyl groups by a radical reaction,followed by the functionalization of bromomethylated PAEK with alkyl imidazoles,i.e.,methyl,butyl or vinyl imidazole.The structure of imidazolium functionalized PAEK was proved by 1H NMR spectra.A class of flexible and tough membranes was then achieved by subsequent film-forming and anion exchange processes.The water uptake and hydroxide conductivities of membranes are comparable or superior to those of quaternary ammonium(QA) anion exchange membranes.This work demonstrated a new route for non-QA anion exchange membrane design,avoiding the chloromethylation reagent and precisely controlling the degree and location of imidazolium groups.

  8. Anion-exchange resin-based desulfurization process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  9. Anion-exchange resin-based desulfurization process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  10. Facile modification of multi-walled carbon nanotubes-polymeric ionic liquids-coated solid-phase microextraction fibers by on-fiber anion exchange.

    Science.gov (United States)

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2015-05-08

    In situ anion exchange has been proved to be an efficient method for facile modification of polymeric ionic liquids (PILs)-based stationary phases. In this work, an on-fiber anion exchange process was utilized to tune the extraction performance of a multi-walled carbon nanotubes (MWCNTs)-poly(1-vinyl-3-octylimidazolium bromide) (poly(VOIm(+)Br(-)))-coated solid-phase microextraction (SPME) fiber. MWCNTs were first coated onto the stainless steel wire through a layer-by-layer fabrication method and then the PILs were coated onto the MWCNTs physically. Anion of the MWCNTs-poly(VOIm(+)Br(-)) fiber was changed into bis(triflroromethanesulfonyl)imide (NTf2(-)) and 2-naphthalene-sulfonate (NapSO3(-)) by on-fiber anion exchange. Coupled to gas chromatography, the MWCNTs-poly(VOIm(+)Br(-)) fiber showed acceptable extraction efficiency for hydrophilic and hydrogen-bonding-donating alcohols, with limits of detection (LODs) in the range of 0.005-0.05μgmL(-1); after the anion exchange with NTf2(-), the obtained MWCNTs-poly(VOIm(+)NTf2(-)) fiber brought wide linear ranges for hydrophobic n-alkanes with correlation coefficient (R) ranging from 0.994 to 0.997; aromatic property of the fiber was enhanced by aromatic NapSO3(-) anions to get sufficient extraction capacity for phthalate esters and halogenated aromatic hydrocarbons. The MWCNTs-poly(VOIm(+)NapSO3(-)) fiber was finally applied to determine several halogenated aromatic hydrocarbons in groundwater of industrial park. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Sanqin, Wu [School of Materials Sciences and Technology, China University of Geosciences, No. 29 Xueyuan Road, Beijing, 100083 (China); Zepeng, Zhang, E-mail: unite508@163.com [School of Materials Sciences and Technology, China University of Geosciences, No. 29 Xueyuan Road, Beijing, 100083 (China); Yunhua, Wang [Zhejiang Fenghong New Material Co., Ltd. (China); Libing, Liao [School of Materials Sciences and Technology, China University of Geosciences, No. 29 Xueyuan Road, Beijing, 100083 (China); Jiansheng, Zhang [Tangshan College, Tangshan 063000 (China)

    2014-11-15

    Graphical abstract: This picture shows the distribution of organic modifier (CTAB and SDS) in Mt interlayer and the basal spacing changes of Mt modified by CTAB and SDS. Organic modifier molecule in Mt interlayer is more and more orderly. The basal spacing of Mt is from 1.5 nm to 5 nm as modifier added. - Highlights: • The d{sub 001} of Ca-Mt, R-Na-Mt, Na-Mt modified by CTAB and SDS can reach 5 nm. • It is easier to get cation–anion OMt with greater d{sub 001} if CEC is lower. • The organic molecules distribution in cation–anion OMt was analyzed. • The influence mechanism of Ca-Mt CEC on the d{sub 001} was discussed. - Abstract: With cationic and anionic surfactants cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (SDS) as modifiers, Ca-montmorillonites (Ca-Mt), artificial Na-montmorillonites (R-Na-Mt) and natural Na-montmorillonites (Na-Mt) with different cation exchange capacity (CEC) were modified by solution intercalation method, respectively. Then cation–anion organo-montmorillonites (OMt) were prepared. The influence of CEC on the basal spacing of cation–anion OMt and the influence mechanism were discussed by X-ray diffraction (XRD) and zeta potential testing. The results indicate that the basal spacing of cation–anion OMt is related to CEC. For the same type montmorillonites, the basal spacing of cation–anion OMt decreases with the increase of CEC and it is easier to get cation–anion OMt with greater basal spacing when CEC is lower. Moreover, the CEC of Na-Mt has the greatest influence on the basal spacing of cation–anion OMt.

  12. Separation and characterisation of beta2-microglobulin folding conformers by ion-exchange liquid chromatography and ion-exchange liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Bertoletti, Laura; Regazzoni, Luca; Aldini, Giancarlo; Colombo, Raffaella; Abballe, Franco; Caccialanza, Gabriele; De Lorenzi, Ersilia

    2013-04-10

    In this work we present for the first time the use of ion-exchange liquid chromatography to separate the native form and a partially structured intermediate of the folding of the amyloidogenic protein beta2-microglobulin. Using a strong anion-exchange column that accounts for the differences in charge exposure of the two conformers, a LC-UV method is initially optimised in terms of mobile phase pH, composition and temperature. The preferred mobile phase conditions that afford useful information were found to be 35 mM ammonium formate, pH 7.4 at 25°C. The dynamic equilibrium of the two species is demonstrated upon increasing the concentration of acetonitrile in the protein sample. Then, the chromatographic method is transferred to MS detection and the respective charge state distributions of the separated conformers are identified. The LC-MS results demonstrate that one of the conformers is partially unfolded, compared with the native and more compact species. The correspondence with previous results obtained in free solution by capillary electrophoresis suggest that strong ion exchange LC-MS does not alter beta2-microglobulin conformation and maintains the dynamic equilibrium already observed between the native protein and its folding intermediate.

  13. Study of Sorption Properties of Anion Exchangers with Long-Chained Cross-Linking Agents for Tungsten Hydrometallurgy

    Institute of Scientific and Technical Information of China (English)

    O.N.Kononova; S.V.Kachin; O.P.Kalyakina; G.L.Pashkov; A.G.Kholmogorov

    2000-01-01

    The macroporous anion exchangers with long-chained cross-linking agents were investigated for the tungsten recovery from salt solutions. The physical-chemical characteristics of these sorbents were studied by means of sorption-desorption experiment aswell as electron and IR-spectroscopy. The anion exchangers on the basis of macroporous copolymers of methylacrylate and divinyl-ester of diethyleneglycol or tetravinyl-ester of pentaerythritol possess the exchange capacity to tungsten 2--5 times greater than the porous anion exchangers on the basis of styrene and divinylbenzene, therefore they can be used for selective tungsten recovery from comulex salt solutions.

  14. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.

    Science.gov (United States)

    Akkerman, Quinten A; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato

    2015-08-19

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl(-) or I(-) ions and reinsertion of Br(-) ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles.

  15. Perchlorate Selectivity of Anion Exchange Resins as Evaluated Using Ion-Selective Electrodes.

    Science.gov (United States)

    Yamamoto, Kenji; Mitsuda, Shin'ya; Ohtake, Naomi; Murashige, Natsuki; Ohmuro, Satoshi; Yuchi, Akio

    2017-01-01

    The selectivity coefficients reported for perchlorate of the high selectivity on anion exchange resins (AXRs) have not been consistent with one another. Possible errors by the unique use of four parameters (concentrations of two anions in two phases) were experimentally verified. The concentrations of perchlorate buffered at low levels (10(-6) - 10(-4) mol L(-1)) by two forms of AXRs were successfully determined by potentiometry with a perchlorate ion-selective electrode. This gave reasonable coefficients. The coefficients for perchlorate on several AXRs were independent of the relative exchange (RE), in contrast to the previous reports. On the other hand, the coefficients for fluoride of the low selectivity that were examined for comparison decreased with an increase in RE, and the dependency was more remarkable for the resins of large exchange capacity.

  16. 高效阴离子交换色谱-脉冲安培法检测低聚异麦芽糖%Determination of Isomaltooligosaccharides by High Performance Anion Exchange Chromatography Coupled with Pulsed Amperometric Detection (HPAEC-PAD)

    Institute of Scientific and Technical Information of China (English)

    张晓萍; 段钢

    2012-01-01

    建立了高效阴离子交换色谱-脉冲安培检测法定量分析低聚异麦芽糖的方法。采用Carbo PakTM PA10色谱柱,配合安培检测器,以NaOH及醋酸钠为洗脱剂。采用此方法不仅一次性实现了低聚异麦芽糖常规组分中葡萄糖、麦芽糖、麦芽三糖、异麦芽糖、异麦芽三糖,潘糖的有效分离,也实现了异麦芽四糖、异麦芽五糖、异麦芽六糖、异麦芽七糖、海藻糖、麦芽酮糖、曲二糖、黑曲霉糖高聚合度糖及二糖同分异构体间的分离及检测。以不同浓度的标准糖混合溶液建立了校正曲线,此方法中,各组分在0.032~25.975mg/L间具有良好的线性关系,各物质的检测限和定量限分别在0.008~0.022mg/L和0.027—0.073mg/L,样品加标回收率为82.02%~116.37%。%A one-step method for quantitatively determination of isomahooligosaccharides (IMO) was developed using high performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). The method was built on a CarboPakTM PAl0 column using NaOH and NaAC as eluents. Using this method, besides conventional components of isomahose, isomaltotriose, panose and some saccharides with higher DP were identified from IMO syrup, other transglycosylation saccharides such as trehalose, kojibiose, nigerose and maltulose were also detected from the syrup. Calibration was carried out by dissolving 15 kinds of standard samples containing glucose, fructose, maltose, maltotriose, isomaltose, isomaltotriose, isomaltotetraose, isomaltopentaose, isomaltohexaose, iso- maltoheptaose, panose, trehalose, maltulose, kojibiose, and nigerose into a mixed solution. The standard solution was diluted to a calibration range from 0. 032 to 25. 975 mg/L. The calibration curves showed good linearity of IMO within this range. The detection limits (LODs) and the quatification limits (LQD) were 0. 008 - 0. 022 mg/L and 0. 027 -0

  17. Anions Analysis in Ground and Tap Waters by Sequential Chemical and CO2-Suppressed Ion Chromatography

    Directory of Open Access Journals (Sweden)

    Glen Andrew D. De Vera

    2011-06-01

    Full Text Available An ion chromatographic method using conductivity detection with sequential chemical and CO2 suppression was optimized for the simultaneous determination of fluoride, chloride, bromide, nitrate,phosphate and sulfate in ground and tap water. The separation was done using an anion exchange column with an eluent of 3.2 mM Na2CO3 and 3.2 mM NaHCO3 mixture. The method was linear in the concentration range of 5 to 300 μg/L with correlation coefficients greater than 0.99 for the six inorganic anions. The method was also shown to be applicable in trace anions analysis as given by the low method detection limits (MDL. The MDL was 1μg/L for both fluoride and chloride. Bromide, nitrate, phosphate and sulfate had MDLs of 7 μg/L, 10 μg/L, 9 μg/L and 2 μg/L, respectively. Good precision was obtained as shown in the relative standard deviation of 0.1 to 12% for peak area and 0.1 to 0.3% for retention time. The sensitivity of the method improved with the addition of CO2 suppressor to chemical suppression as shown in the lower background conductivity and detection limits. The recoveries of the anions spiked in water at 300 μg/L level ranged from 100 to 104%. The method was demonstrated to be sensitive, accurate and precise for trace analysis of the six anions and was applied in the anions analysis in ground and tap waters in Malolos, Bulacan. The water samples were found to contain high concentrations of chloride of up to 476 mg/L followed by sulfate (38 mg/L, bromide (1 mg/L, phosphate (0.4 mg/L, fluoride (0.2 mg/L and nitrate (0.1 mg/L.

  18. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.

    Science.gov (United States)

    Kröner, Frieder; Hubbuch, Jürgen

    2013-04-12

    pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods.

  19. Ion exchange and intercalation properties of layered double hydroxides towards halide anions.

    Science.gov (United States)

    Costantino, Umberto; Vivani, Riccardo; Bastianini, Maria; Costantino, Ferdinando; Nocchetti, Morena

    2014-08-14

    A layered double hydroxide (LDH) obtained by the urea method, having an empirical formula [Zn(0.61)Al(0.39)(OH)2](CO3)(0.195)·0.50H2O, has been converted into the corresponding chloride form [Zn(0.61)Al(0.39)(OH)2]Cl(0.39)·0.47H2O by making the solid come into contact with a suitable HCl solution. The intercalation of the other halide anions (X(-) = F(-), Br(-), I(-)) via the Cl(-)/X(-) anion exchange has been attained and the respective anion exchange isotherms have been obtained with the batch method. The analysis of the isotherms indicates that the selectivity of LDH towards the halides decreases with the increase of the X(-) ionic radius, the selectivity order being F(-) > Cl(-)≥ Br(-) > I(-). The CO3(2-)/Cl(-) isotherm has also been reported to highlight the extraordinary selectivity of LDH towards carbonate anions. Samples taken from the isotherms at different exchange degrees were analyzed by X-ray diffraction, thermogravimetry and thermodiffractometry to obtain information about the ion exchange mechanism. The Cl(-)/Br(-) and the reverse Br(-)/Cl(-) exchanges occur with the formation of solid solutions, very likely because of the similar ionic radius of the exchanging anions. In contrast, in the Cl(-)/F(-) and Cl(-)/I(-) exchange, the co-existence of the Cl(-) and F(-) (or I(-)) phases in the same sample was detected, indicating the occurrence of a first order phase transition, in which the starting phase is transformed into the final phase, as the process goes on. The variation of the interlayer distances of ZnAl-X intercalation compounds with the hydration degree has been interpreted with a structural model based on the nesting of the guest species into the trigonal pockets of the brucite-like layer surface. Rietveld refinements of the phases with the maximum F(-), Br(-) and I(-) content were also performed and compared with the above model, giving indications of the arrangement and order/disorder of the halide anions in the interlayer region.

  20. Tools to discover anionic and nonionic polyfluorinated alkyl surfactants by liquid chromatography electrospray ionisation mass spectrometry

    DEFF Research Database (Denmark)

    Trier, Xenia; Granby, Kit; Christensen, Jan H.

    2011-01-01

    A tiered approach is proposed for the discovery of unknown anionic and nonionic polyfluorinated alkyl surfactants (PFASs) by reversed phase ultra high performance liquid chromatography (UHPLC) – negative electrospray ionisation – quadrupole time of flight mass spectrometry (UHPLC......–ESI−–QTOF–MS). The chromatographic separation, ionisation and detection of PFASs mixtures, was achieved at high pH (pH=9.7) with NH4OH as additive. To distinguish PFASs from other chemicals we used the characteristic negative mass defects of PFASs, their specific losses of 20Da (HF) and the presence of series of chromatographic...

  1. THE TESTS AND MECHANISM ABOUT SODIUM IONS FROM AN ANION EXCHANGER

    Institute of Scientific and Technical Information of China (English)

    ZhuXingbao; YuJinchun; 等

    1996-01-01

    There exists a universal phenomena that sodium ions are leaked from the strong basic anion exdchanger in operation,which has been puzzling the researchers working in the field of water treatment for years.It is well known that the leakage of sodium ions will seriously affect the pruity of effluent.On the basis of lots of laboratory and industrial experiments,the mechanism of the sodium ions leaked from an anion exchanger has been preliminarily made out and some new chemical reaction equations as well as some improving measures have been put forward in this article.

  2. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography.

    Science.gov (United States)

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-04-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na(+)), potassium (K(+)), ammonium (NH4 (+)), chloride (Cl(-)) and nitrate (NO3 (-)) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples.

  3. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability.

    Science.gov (United States)

    Chubar, Natalia; Gilmour, Robert; Gerda, Vasyl; Mičušík, Matej; Omastova, Maria; Heister, Katja; Man, Pascal; Fraissard, Jacques; Zaitsev, Vladimir

    2017-07-01

    This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are

  4. Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations.

    Science.gov (United States)

    Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan

    2014-11-28

    The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion.

  5. Integrating tunable anion exchange with reverse osmosis for enhanced recovery during inland brackish water desalination.

    Science.gov (United States)

    Smith, Ryan C; SenGupta, Arup K

    2015-05-01

    For inland brackish water desalination by reverse osmosis or RO, concentrate or reject disposal poses a major challenge. However, enhanced recovery and consequent reduction in the reject volume using RO processes is limited by the solubility of ions present in the feedwater. One of the most common and stubborn precipitate formed during desalination is calcium sulfate. Reducing or eliminating the presence of sulfate would allow the process to operate at higher recoveries without threat to membrane scaling. In this research, this goal is accomplished by using an appropriate mixture of self-regenerating anion exchange resins that selectively remove and replace sulfate by chloride prior to the RO unit. Most importantly, the mixed bed of anion exchange resins is self-regenerated with the reject brine from the RO process, thus requiring no addition of external chemicals. The current work demonstrates the reversibility of the hybrid ion exchange and RO (HIX-RO) process with 80% recovery for a brackish water composition representative of groundwater in San Joaquin Valley in California containing approximately 5200 mg/L of total dissolved solids or TDS. Consequently, the reject volume can be reduced by 50% without the threat of sulfate scaling and use of antiscaling chemicals can be eliminated altogether. By appropriately designing or tuning the mixed bed of anion exchange resins, the process can be extended to nearly any composition of brackish water for enhanced recovery and consequent reduction in the reject volume.

  6. Design of Anion Exchange Membranes and Electrodialysis Studies for Water Desalination

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Khan

    2016-05-01

    Full Text Available Anion exchange membranes are highly versatile and nowadays have many applications, ranging from water treatment to sensing materials. The preparation of anion exchange membranes (AEMs from brominated poly(2,6-dimethyl-1,6-phenylene oxide (BPPO and methyl(diphenylphosphine (MDPP for electrodialysis was performed. The physiochemical properties and electrochemical performance of fabricated membranes can be measured by changing MDPP contents in the membrane matrix. The influence of a quaternary phosphonium group associated with the removal of NaCl from water is discussed. The prepared membranes have ion exchange capacities (IEC 1.09–1.52 mmol/g, water uptake (WR 17.14%–21.77%, linear expansion ratio (LER 7.96%–11.86%, tensile strength (TS 16.66–23.97 MPa and elongation at break (Eb 485.57%–647.98%. The prepared anion exchange membranes were employed for the electrodialytic removal of 0.1 M NaCl aqueous solution at a constant applied voltage. It is found that the reported membranes could be the promising candidate for NaCl removal via electrodialysis.

  7. Microsystems for anion exchange separation of radionuclides in nitric acid media

    Energy Technology Data Exchange (ETDEWEB)

    Losno, M.; Brennetot, R.; Mariet, C. [DEN/Service d' Etudes Analytiques et de Reactivite des Surfaces - SEARS, CEA, Centre de Saclay, Universite Paris-Saclay, F-91191, Gif sur Yvette (France); Ferrante, I.; Descroix, S. [MMBM Group, Institut Curie Research Center, CNRS UMR 168, Paris (France)

    2016-07-01

    An efficient and reproducible photo-polymerized poly(ethylene glycol methacrylate methacrylate-co- allyl methacrylate) monolith was synthesized and a photo-grafting process based on the ene-thiol click-chemistry has been performed to give anion exchange properties to the monolith. Since their introduction in the early 1990's polymethacrylate monoliths have emerged as a powerful alternative for microscale separations or sample treatment. Their relatively simple implementation in columns with small internal diameters makes them particularly attractive for the new chromatographic challenges of complex matrices analysis and on-chip separations. Despite their relatively poor ion-exchange capacity due to their highly porous structure, their use as anion exchangers is of large interest for nuclear analysis as numerous separations are based on this process. This paper presents a systematic study of the synthesis of the polymeric porous monolith and the versatile and robust functionalization method developed for the specific strong acidic media used in radiochemical procedures. The robustness of the stationary phase was tested in concentrated nitric acid. It appears that the C-S bond formed via thiol-ene chemistry is strong enough to be used to graft function of interest for separation in strong nitric acid medium. The photo-grafted anion exchanger, a quaternary ammonium, presents sufficient resistance to be used for radionuclide separation in [HNO{sub 3}]=5 mol.L{sup -1}so the next step is its integration in the cyclo olefin copolymer (COC) micro-system.

  8. Determination of trace anions in liquefied petroleum gas using liquid absorption and electrokinetic migration for enrichment followed by ion chromatography.

    Science.gov (United States)

    Li, Meilan; Yang, Jianmin; Li, Hai-Fang; Lin, Jin-Ming

    2012-06-01

    A simple sample enrichment technique, electrokinetic migration enrichment in single phase using a designed device, coupled with ion chromatography is presented for the determination of four anions (H(2)PO(4)(-), Cl(-), NO(3)(-), and SO(4)(2-)) in liquefied petroleum gas by liquid adsorption. The electrokinetic migration enrichment is based on the phenomenon of ion electrokinetic migration to the opposite electrode. When the anions migrated to the anode in a smaller volume chamber under the electric field, the concentration was realized. The main parameters affecting enrichment efficiency of applied voltage and enrichment time were investigated. The ion chromatography condition for anions separation was also studied. Under the optimal electrokinetic migration enrichment and ion chromatography conditions, the four anions were detected simultaneously with good linear relationship (r(2) = 0.9908-0.9968) and high precisions (less than 5% of the relative standard deviations of peak areas). The limits of detection of anions (S/N of 3) were in the range of 8-600 μg L(-1). The enrichment factors of the four anions ranged from 3.1 to 5.8. The established method was successfully applied to the analysis of the trace anions in liquefied petroleum gas by liquid adsorption with satisfactory results. The advantages of this method are simple operation and low cost.

  9. Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides.

    Science.gov (United States)

    Motoyama, Akira; Xu, Tao; Ruse, Cristian I; Wohlschlegel, James A; Yates, John R

    2007-05-15

    Shotgun proteomics typically uses multidimensional LC/MS/MS analysis of enzymatically digested proteins, where strong cation-exchange (SCX) and reversed-phase (RP) separations are coupled to increase the separation power and dynamic range of analysis. Here we report an on-line multidimensional LC method using an anion- and cation-exchange mixed bed for the first separation dimension. The mixed-bed ion-exchange resin improved peptide recovery over SCX resins alone and showed better orthogonality to RP separations in two-dimensional separations. The Donnan effect, which was enhanced by the introduction of fixed opposite charges in one column, is proposed as the mechanism responsible for improved peptide recovery by producing higher fluxes of salt cations and lower populations of salt anions proximal to the SCX phase. An increase in orthogonality was achieved by a combination of increased retention for acidic peptides and moderately reduced retention of neutral to basic peptides by the added anion-exchange resin. The combination of these effects led to approximately 100% increase in the number of identified peptides from an analysis of a tryptic digest of a yeast whole cell lysate. The application of the method to phosphopeptide-enriched samples increased by 94% phosphopeptide identifications over SCX alone. The lower pKa of phosphopeptides led to specific enrichment in a single salt step resolving acidic phosphopeptides from other phospho- and non-phosphopeptides. Unlike previous methods that use anion exchange to alter selectivity or enrich phosphopeptides, the proposed format is unique in that it works with typical acidic buffer systems used in electrospray ionization, making it feasible for online multidimensional LC/MS/MS applications.

  10. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.

    Science.gov (United States)

    Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi

    2007-08-24

    We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.

  11. Comprehensive analysis of pharmaceutical products using simultaneous mixed-mode (ion-exchange/reversed-phase) and hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett

    2014-08-01

    Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks.

  12. Ultrasensitive anion detection by NMR spectroscopy: a supramolecular strategy based on modulation of chemical exchange rate.

    Science.gov (United States)

    Perruchoud, Loïse H; Hadzovic, Alen; Zhang, Xiao-An

    2015-06-08

    NMR spectroscopy is a powerful tool for monitoring molecular interactions and is widely used to characterize supramolecular systems at the atomic level. NMR is limited for sensing purposes, however, due to low sensitivity. Dynamic processes such as conformational changes or binding events can induce drastic effects on NMR spectra in response to variations in chemical exchange (CE) rate, which can lead to new strategies in the design of supramolecular sensors through the control and monitoring of CE rate. Here, we present an indirect NMR anion sensing technique in which increased CE rate, due to anion-induced conformational flexibility of a relatively rigid structure of a novel sensor, allows ultrasensitive anion detection as low as 120 nM.

  13. Ion exchange, chromatofocusing and size exclusion high-performance liquid chromatography of the human uterine progesterone receptor.

    Science.gov (United States)

    Holmes, S D; Smith, R G

    1985-12-01

    The human uterine progesterone receptor was subjected to high-performance liquid chromatography on size exclusion, anion exchange and chromatofocusing columns. For the rapid isolation of the receptor, recovery of [3H]progesterone as well as protein from the columns was essential. The size exclusion columns (G2000 SW and G3000 SW) as well as Mono P HR 5/20 chromatofocusing column adsorbed [3H]progesterone and thus were not useful for separation purposes. The anion exchange (polyanion SI-17) and chromatofocusing columns, AX500, and IEX 540 DEAE gave very good recoveries of protein (greater than 90%) and [3H]progesterone; 80, 66 and 88% respectively. These columns gave rapid and reproducible separation of the progesterone receptor from other cytosol proteins.

  14. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles.

    Science.gov (United States)

    Pan, Bingcai; Xu, Jingsheng; Wu, Bing; Li, Zhigang; Liu, Xitong

    2013-08-20

    Here we fabricated a novel nanocomposite HZO-201, an encapsulated nanosized hydrous zirconium oxide (HZO) within a commercial porous polystyrene anion exchanger D201, for highly efficient defluoridation of water. HZO-201 exhibited much higher preference than activated alumina and D201 toward fluoride removal when competing anions (chloride, sulfate, nitrate, and bicarbonate) coexisted at relatively high levels. Fixed column adsorption indicated that the effective treatable volume of water with HZO-201 was about 7-14 times as much as with D201 irrespective of whether synthetic solution or groundwater was the feeding solution. In addition, HZO-201 could treat >3000 BV of the acidic effluent (around 3.5 mg F(-)/L) per run at pH 3.5, compared to only ∼4 BV with D201. The exhausted HZO-201 could be regenerated by NaOH solution for repeated use without any significant capacity loss. Such attractive performance of HZO-201 resulted from its specific hybrid structure, that is, the host anion exchanger D201 favors the preconcentration of fluoride ions inside the polymer based on the Donnan principle, and the encapsulated nanosized HZO exhibits preferable sequestration of fluoride through specific interaction, as further demonstrated by XPS spectra. The influence of solution pH, competitive anions, and contact time was also examined. The results suggested that HZO-201 has a great potential in efficient defluoridation of groundwater and acidic mine drainage.

  15. Effects of Polar Organic Solvent on Separation of Y(edta)-/Nd(edta)- Complexes on Polyacrylic Anion Exchangers

    Institute of Scientific and Technical Information of China (English)

    Halina Hubicka; Dorota Kolodynska

    2005-01-01

    The use of polar organic solvents for the separations of rare earth elements (Ⅲ) is effective especially for their extensive separations despite the solubility limitations. The study shows that polyacrylate anion exchangers, particularly the weakly basic, gel anion exchanger Amberlite IRA 68, can be applied to the separation of rare earth complexes with EDTA in H2O-methanol and H2O-ethanol systems. In most cases the determined distribution coefficients of Ln3+ complexes with EDTA in mixed media like water-methanol on polyacrylate anion exchangers are larger than those in pure water media.

  16. Chromatographic separation of cytidine triphosphate from fermentation broth of yeast using anion-exchange cryogel.

    Science.gov (United States)

    Wang, Lianghua; Shen, Shaochuan; Yun, Junxian; Yao, Kejian; Yao, Shan-Jing

    2008-03-01

    A novel separation method was developed to isolate directly cytidine triphosphate (CTP) from fermentation broth of yeast using anion-exchange supermacroporous cryogel. The anion-exchange cryogel with tertiary amine groups was prepared by graft polymerization. The breakthrough characteristics and elution performance of pure CTP in the cryogel bed were investigated experimentally and the CTP binding capacity was determined. Then the separation experiments of CTP from crude fermentation broth of yeast using the cryogel column were carried out using deionized water and 0.01 M HCl as washing buffer, respectively. The chromatographic behavior was monitored and analyzed. The purity and concentration of the obtained CTP in these processes were determined quantitatively by HPLC. The maximal purity of CTP obtained at the condition of 0.01 M HCl as washing buffer and 0.5 M NaCl in 0.01 M HCl as elution buffer reached 93%.

  17. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    OpenAIRE

    Zhengwen Xu; Yunlong Zhao; Jing Shi; Jiangang Lu; Ling Cheng; Mindong Chen

    2014-01-01

    As new emerging pollutants, phthalic acid monoesters (PAMs) pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP) onto two macroporous base anion-exchange resins (D-201 and D-301) was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the ad...

  18. Anion exchange membranes for fuel cells and flow batteries : transport and stability of model systems

    OpenAIRE

    Marino, Michael G

    2015-01-01

    Polymeric anion exchange materials in membrane form can be key components in emerging energy storage and conversions systems such as the alkaline fuel cell and the RedOx flow battery. For these applications the membrane properties need to include good ionic conductivity and sufficient chemical stability, two aspects, that are not sufficiently understood in terms of materials science. Materials fulfilling both criteria are currently not available. The transport of ions and water in a model...

  19. Cross-linked comb-shaped anion exchange membranes with high base stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, NW; Wang, LZ; Hickner, M

    2014-01-01

    A unique one-step cross-linking strategy that connects quaternary ammonium centers using Grubbs II-catalyzed olefin metathesis was developed. The cross-linked anion exchange membranes showed swelling ratios of less than 10% and hydroxide conductivities of 18 to 40 mS cm(- 1). Cross-linking improved the membranes' stability to hydroxide degradation compared to their non-cross-linked analogues.

  20. ELECTROCHEMICAL STABILITY OF STRONG BASIC ANION EXCHANGE MEMBRANES IN CONDITIONS OF HIGH INTENSIVE ELECTRODIALYSIS PROCESS

    OpenAIRE

    Zabolotskiy V. I.; Sharafan M. V.; Chermit R. H.; Vasilieva V. I.

    2014-01-01

    The stability of strongly basic anion-exchange membranes MA-41-2P (JSC "Schekino-Nitrogen", Russia) and AMX (Tokuyama Soda, Japan) under intensive current regimes was investigated in the current study. The process of water molecules dissociation at current densities above the limiting one in 0.01 M sodium chloride solution was studied in detail. The length of the electroconvective instability at the membrane / solution interface at currents exceeding the limiting current was measured by laser...

  1. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    Science.gov (United States)

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  2. Advantages of ion-exchange chromatography for oligonucleotide analysis.

    Science.gov (United States)

    Cook, Ken; Thayer, Jim

    2011-05-01

    The rapid development of therapeutic oligonucleotides (ONs) has created a need for in-depth characterization of ONs, beyond previous requirements. The natural migration to LC-MS requires the use of chromatography with MS-compatible eluents to introduce the large, highly charged biopolymers into the mass spectrometer. Most frequently this employs ion-pair reversed-phase liquid chromatography, which may leave gaps in the characterization, but these can be filled with the use of high-resolution ion-exchange chromatography. Several classes of isobaric isomers are among the impurities that will require further separation prior to MS analysis. This review shows how the use of ion exchange as an additional orthogonal analytical method can be used as standalone or interfaced with MS to achieve the highest possible analytical coverage in the characterization and quantification of impurities present in single- and double-stranded ON formulations. Some of these techniques have been in use for some time and the importance of others is just being recognized.

  3. Alkaline anion exchange membrane fuel cells for cogeneration of electricity and valuable chemicals

    Science.gov (United States)

    Pan, Z. F.; Chen, R.; An, L.; Li, Y. S.

    2017-10-01

    Alkaline anion exchange membrane fuel cells (AAEMFCs) have received ever-increasing attentions due to the enhanced electrochemical kinetics and the absence of precious metal electrocatalysts, and thus great progress has been made in recent years. The alkaline anion exchange membrane based direct alcohol fuel cells, one type of alkaline anion exchange membrane fuel cells utilizing liquid alcohols as fuel that can be obtained from renewable biomass feedstocks, is another attractive point due to its ability to provide electricity with cogeneration of valuable chemicals. Significant development has been made to improve the selectivity towards high added-value chemicals and power output in the past few years. This review article provides a general description of this emerging technology, including fuel-cell setup and potential reaction routes, summarizes the products, performance, and system designs, as well as introduces the application of this concept in the removal of heavy-metal ions from the industrial wastewater. In addition, the remaining challenges and perspectives are also highlighted.

  4. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis.

    Science.gov (United States)

    Guler, Enver; Zhang, Yali; Saakes, Michel; Nijmeijer, Kitty

    2012-11-01

    Reverse electrodialysis (RED) or blue energy is a non-polluting, sustainable technology for generating power from the mixing of solutions with different salinity, that is, seawater and river water. A concentrated salt solution (e.g., seawater) and a diluted salt solution (e.g., river water) are brought into contact through an alternating series of polymeric anion-exchange membranes (AEMs) and cation-exchange membranes (CEMs), which are either selective for anions or cations. Currently available ion-exchange membranes are not optimized for RED, whereas successful RED operation notably depends on the used ion-exchange membranes. We designed such ion-exchange membranes and for the first time we show the performance of tailor-made membranes in RED. More specifically, we focus on the development of AEMs because these are much more complex to prepare. Herein we propose a safe and more environmentally friendly method and use halogenated polyethers, such as polyepichlorohydrin (PECH) as the starting material. A tertiary diamine (1,4-diazabicyclo[2.2.2]octane, DABCO) was used to introduce the ion-exchange groups by amination and for simultaneous cross-linking of the polymer membrane. Area resistances of the series of membranes ranged from 0.82 to 2.05 Ω cm² and permselectivities from 87 to 90 %. For the first time we showed that tailor-made ion-exchange membranes can be applied in RED. Depending on the properties and especially membrane thickness, application of these membranes in RED resulted in a high power density of 1.27 W m⁻², which exceeds the power output obtained with the commercially available AMX membranes. This shows the potential of the design of ion-exchange membranes for a viable blue energy process.

  5. Derivatization patterns among starch chain populations assessed by ion-exchange chromatography: a model system approach.

    Science.gov (United States)

    Hong, Jung Sun; Huber, Kerry C

    2015-05-20

    Reaction patterns of wheat starch derivatized with a fluorescent probe (model reaction system) were investigated over the course of a reaction period (0.5, 4, 12, or 24h). Debranched derivatives were fractionated into three populations (Unbound, Bound-1, Bound-2) based on charge density via anion-exchange chromatography, with each ion-exchanged fraction further analyzed by size-exclusion chromatography (refractive index [RI] and fluorescence [FL] detection) to assess proportions and patterns of reaction on amylose (AM) and amylopectin (AP) long (LC), medium (MC), and short (SC) branch chains. Approximately 11-12% of the total chains accounted for 63-75% of the FL recovered in the two bound fractions. FL peaks representing AM, AP-LC, AP-MC, AP-SC, and intermediate material (eluted with AM based on molecular size, but reacted more akin to AP-LC) were monitored over the reaction period. Fractionation behaviors varied amongst starch chains, attributable to the impact of the granule structure on molecular reaction patterns.

  6. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts.

  7. Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites.

    Science.gov (United States)

    Omana, Dileep A; Wang, Jiapei; Wu, Jianping

    2010-07-01

    Efficient isolation of egg white components is desired due to its potential uses. Existing methods mainly targeted on one specific protein; an attempt has been made in the study to co-extract all the valuable egg white components in a continuous process. Ovomucin was first isolated by our newly developed two-step method; the resultant supernatant obtained after ovomucin isolation was used as the starting material for ion-exchange chromatography. Anion-exchange chromatography of 100 mM supernatant yielded a flow-through fraction and three other fractions representing ovotransferrin, ovalbumin and flavoproteins. The flow-through fraction was further separated into ovoinhibitor, lysozyme, ovotransferrin and an unidentified fraction which represents 4% of total egg white proteins. Chromatographic separation of 500 mM supernatant resulted in fractions representing lysozyme, ovotransferrin and ovalbumin. This co-extraction protocol represents a global recovery of 71.0% proteins.

  8. Study on the Retention Behavior of Aromatic Carboxylic and Sulfonic acid on a New Anion Exchange Column

    Institute of Scientific and Technical Information of China (English)

    SHI,Ya-Li; CAI,Ya-Qi; MOU,Shi-Fen

    2008-01-01

    Ion chromatography (IC) has gradually developed into a preferred method for the determination of inorganic anions. And in recent years some low molecular aliphatic acid can be also separated in the ion exchange column with the development of stationary phase. But for the determination of aromatic ionic compounds there are some problems. The aromatic anions show enhanced retention due to interaction with the π electrons of the aromatic backbone. Although the addition of an organic modifier can alleviate the difficulty, it is not the ultimate solution.IonPac AS20 column was developed using a unique polymer bonding technology and its substrate coating is aliphatic backbone. The polymer is completely free of any π electron-containing substituents in the AS20 column. In this paper, the retention behavior of aromatic carboxylic and sulfonic acid on two hydroxide-selective columns,IonPac AS11-HC, AS16, and the new column AS20 was also studied. The result showed that the retentions of ten compounds on three columns were different with each other because of their different column characteristics.Among them 4-chlorobenzene sulfonic acid, 3,5-dihydric benzoic acid and salicylic acid obviously exhibited the weakest retention on the IonPac AS20. It was showed that π-π bond function between anion and stationary phases was weakened in AS20 column because its polymer was completely free of any π electron-containing substituents.So in this paper the AS20 was selected as an analytical column to separate ten aromatic ionic compounds, fumaric acid with conjugate bond included. The retention behavior, separation of the ten compounds and effect of temperature on their retention in the anion-exchange column AS20 (2 mm) were studied. The result showed that those compounds could be separated with each other when running in gradient program and the organic modifier was unnecessary during the separation. So it is showed that AS20 column can be used as a separating column because its

  9. Two-step ion-exchange chromatographic purification combined with reversed-phase chromatography to isolate C-peptide for mass spectrometric analysis.

    Science.gov (United States)

    Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V

    2016-02-01

    A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed.

  10. Sodium-Zinc Exchange Selectivity on Wyoming Montmorillonite in Different Background Anion Solutions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of background anion on cation exchange reactions, such as Na-Ca and Na-Cu exchange reac-tions, on montmorillonites has been studied, but the results are not always clear and discrepancies exist inthe literature. In this study, the exchange of zinc (Zn2+) for sodium (Na+) on Wyoming montmorillonitewas investigated at 298 .K using Cl-, ClO4-, NO-3, OAc-, and SO42- solution media at a constant totalmetal charge concentration of 0.0200 molc L-1. Results indicated that the clay CEC values were essentialsimilar for Cl-, ClO-4, NO-3 and SO42- solution media with an average CEC of 0.856 ±0.008 molc kg-1; inan OAc- solution the clay CEC was much higher than that in other anion media. The specific adsorption ofZn (SAZn), as defined by the extraction of Zn using 0.05 mol L-1 Na2-EDTA, was different in the variousbackground solutions. The highest value for SAZn was 0.359±0.0350 molc kg-1, which occurred in OAc-solution. There was essentially no difference in the total apparent adsorbed metals (the sum of adsorbedequivalents of Na and Zn per kilogram of clay, Q) among the various background solutions. The average Q forall anion media was 0.807±0.011 mole kg-1 and was independent of exchanger composition. Experimentalresults indicated that there were no significant monovalent cation complexes such as ZnCl+ or ZnNO3+ thatwere adsorbed by montmorillonite. The Na-Zn exchange isotherms indicated that there was an adsorptionpreference for Zn over Na on Wyoming montmorillonite.

  11. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.

    2013-09-17

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  12. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions.

    Science.gov (United States)

    Gilchrist, Elizabeth S; Nesterenko, Pavel N; Smith, Norman W; Barron, Leon P

    2015-03-20

    There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5-50 mM hydroxide with 0-80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20-45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30-40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks.

  13. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  14. Media selection in ion-exchange chromatography in a single microplate.

    Science.gov (United States)

    Cabanne, Charlotte; Santarelli, Xavier

    2014-01-01

    High-throughput process development is more and more used in chromatography. Limitations are the tools provided by the manufacturers. Here, we describe a method to select chromatographic media for ion-exchange chromatography using a 96-well filter microplate.

  15. Cation- and anion-exchanges induce multiple distinct rearrangements within metallosupramolecular architectures.

    Science.gov (United States)

    Riddell, Imogen A; Ronson, Tanya K; Clegg, Jack K; Wood, Christopher S; Bilbeisi, Rana A; Nitschke, Jonathan R

    2014-07-01

    Different anionic templates act to give rise to four distinct Cd(II)-based architectures: a Cd2L3 helicate, a Cd8L12 distorted cuboid, a Cd10L15 pentagonal prism, and a Cd12L18 hexagonal prism, which respond to both anionic and cationic components. Interconversions between architectures are driven by the addition of anions that bind more strongly within a given product framework. The addition of Fe(II) prompted metal exchange and transformation to a Fe4L6 tetrahedron or a Fe10L15 pentagonal prism, depending on the anionic templates present. The equilibrium between the Cd12L18 prism and the Cd2L3 triple helicate displayed concentration dependence, with higher concentrations favoring the prism. The Cd12L18 structure serves as an intermediate en route to a hexafluoroarsenate-templated Cd10L15 complex, whereby the structural features of the hexagonal prism preorganize the system to form the structurally related pentagonal prism. In addition to the interconversion pathways investigated, we also report the single-crystal X-ray structure of bifluoride encapsulated within a Cd10L15 complex and report solution state data for J-coupling through a CH···F(-) hydrogen bond indicating the strength of these interactions in solution.

  16. Determination of neomycin in water samples by high performance anion chromatography with pulsed amperometric detection

    Institute of Scientific and Technical Information of China (English)

    Bin Guan; Dong Xing Yuan

    2007-01-01

    A simple, fast and reliable method, using high performance anion chromatography with pulsed amperometric detection, had been developed for the analysis of neomycin in water samples. The elution and separation were carried out with an isocratic mobile phase, containing 10 mmol/L NaOH. The influence of the concentration and pH of the mobile phase on the separation and detection was investigated. A quadruple-potential waveform used for the detection was optimized. The detection limit of neomycin was down to 0.027 μg/mL. The linearity of neomycin calibration curve ranged from 0.050 to 0.505 μg/mL with correlation coefficient of0.9997. R.S.D. (n= 11) was 4.0%.

  17. A green approach for preparing anion exchange membrane based on cardo polyetherketone powders

    Science.gov (United States)

    Hu, Jue; Zhang, Chengxu; Zhang, Xiaodong; Chen, Longwei; Jiang, Lin; Meng, Yuedong; Wang, Xiangke

    2014-12-01

    Anion exchange membranes (AEMs) have attracted great attention due to their irreplaceable role in platinum-free fuel cell applications. The majority of AEM preparations have been performed in two steps: the grafting of functional groups and quaternization. Here, we adopted a simpler, more eco-friendly approach for the first time to prepare AEMs by atmospheric-pressure plasma-grafting. This approach enables the direct introduction of anion exchange groups (benzyltrimethylammonium groups) into the polymer matrix, overcoming the need for toxic chloromethyl ether and quaternization reagents. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and 1H NMR spectroscopy results demonstrate that benzyltrimethylammonium groups have been successfully grafted into the cardo polyetherketone (PEK-C) matrix. Thermogravimetric analysis reveals that the plasma-grafting technique is a facile and non-destructive method able to improve the thermal stability of the polymer matrix due to the strong preservation of the PEK-C backbone structure and the cross-linking of the grafted side chains. The plasma-grafted PG-NOH membrane, which shows satisfactory alcohol resistance (ethanol permeability of 6.3 × 10-7 cm2 s-1), selectivity (1.2 × 104 S s cm-3), thermal stability (safely used below 130 °C), chemical stability, anion conductivity (7.7 mS cm-1 at 20 °C in deionized water) and mechanical properties is promising for the construction of high-performance fuel cells.

  18. Organic acids and inorganic anions in Bayer liquors by ion chromatography after solid-phase extraction

    Institute of Scientific and Technical Information of China (English)

    ZHONG Fu-jin; CHEN Xiao-qing; ZHANG Shu-chao; LI Yue-ping

    2007-01-01

    A method for the simultaneous separation and determination of organic acids and inorganic anions in Bayer liquors was developed by gradient ion chromatography with suppressed conductivity detection. Formate, acetate, propionate, oxalate, succinate,glutarate, fluoride, chloride and sulfate were separated and determined in 33 min. The samples were pretreated with solid-phase extraction, which has high selectivity for removing a large number of metallic ions in the Bayer liquors, and filtered with a 0.45 μm filter membrane before being injected into the ion chromatographic system. The separation of six organic acids and three inorganic anions was achieved on an IonPac AS11-HC column with KOH as the eluent, and the detection was performed by a conductivity detection mode. No interference is found in the presence of fluorate, chlorate and sulphate when organic acids are determined. The calibration graphs of peak area for all the analytes are linear over a wide range. The relative standard derivation of the peak area of analytes is less than 2.14%. Under optimum conditions the detection ranges from 0.2 to 100.0 mg/L. The average recoveries of the added standards are between 94.3% and 102.8%.

  19. Determination of sulfur anions in spent oil shale leachates by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Niss, N.D.

    1989-07-01

    The leaching and transport of chemical constituents from spent oil shale disposal areas is an area of environmental concern at the present time. Sulfur-containing compounds are prevalent in spent oil shales and have the potential to leach into aqueous systems surrounding disposal sites. Computer modeling has been used in recent years to predict the transport of species in an aqueous environment. The quality of model predictions, however, depends on the validation steps taken in comparing model predictions with laboratory data on ion speciation. Further, the quality of the validation step depends on the reliability of laboratory methods in generating ion speciation data. The purpose of this study was to develop methods to separate and quantify sulfur-containing anions in spent oil shale leachates by suppressed ion chromatography. The anions studied were S{sup 2{minus}} (sulfide), SO{sup 2{minus}}{sub 3} (sulfite), SO{sup 2{minus}}{sub 4} (sulfate), SCN{sup {minus}} (thiocyanate), S{sub 2}O{sup 2{minus}}{sub 3} (thiosulfate), and S{sub 4}O{sup 2{minus}}{sub 6} (tetrathionate). After the separations were developed, a series of method-challenging experiments were performed to test the reliability of the methods and assure the development of an analytically sound product. 24 refs., 7 figs., 5 tabs.

  20. Adsorption of Ce(Ⅳ) Anionic Nitrato Complexes onto Anion Exchangers and Its Application for Ce(Ⅳ) Separation from Rare Earths(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ce(Ⅳ) nitrato complexes were adsorbed on two anion exchangers based on polyvinyl pyridine (PVP) and quaternized PVP incorporated into porous silica matrix. The effect of nitric acid concentration (0.5~6 mol·L-1) and temperature (278~318 K) on Ce(Ⅳ) sorption efficiency was investigated. Sorption increased with increasing nitric acid concentration, indicating that [Ce(NO3)6]2- complex is the main adsorbed Ce(Ⅳ) species. Oxidation of sorbents by adsorbed Ce(Ⅳ) species resulting in Ce(Ⅲ) release to the solution was observed. Pyridine based anion exchangers exhibited higher oxidation stability compared to the commercial strong base anion exchanger. Ce(Ⅳ) reduction was temperature dependent and obeyed pseudo-first-order reaction kinetics. Column separation of Ce(Ⅳ) from La(Ⅲ) and Y(Ⅲ) was carried out from 6 mol·L-1 nitric acid with PVP based anion exchanger. Reasonable Ce(Ⅳ) breakthrough capacity (0.7 mol·kg-1 PVP) was achieved. No remarkable decrease of capacity was observed within 3 consequent runs. In contrast, Ce(Ⅲ) leakage due to reduction decreased and breakthrough capacity slightly increased. This effect was more pronounced with increasing temperature. Regeneration with 0.1 mol·L-1 nitric acid was successful (recovery 100%±4%) and Ce solution of high purity (>99.97%) with respect to La and Y content was gained.

  1. Unfolding of a model protein on ion exchange and mixed mode chromatography surfaces.

    Science.gov (United States)

    Gospodarek, Adrian M; Hiser, Diana E; O'Connell, John P; Fernandez, Erik J

    2014-08-15

    Recent studies with proteins indicate that conformational changes and aggregation can occur during ion exchange chromatography (IEC). Such behavior is not usually expected, but could lead to decreased yield and product degradation from both IEC and multi mode chromatography (MMC) that has ligands of both hydrophobic and charged functionalities. In this study, we used hydrogen exchange mass spectrometry to investigate unfolding of the model protein BSA on IEC and MMC surfaces under different solution conditions at 25°C. Increased solvent exposure, indicating greater unfolding relative to that in solution, was found for protein adsorbed on cationic IEC and MMC surfaces in the pH range of 3.0 to 4.5, where BSA has decreased stability in solution. There was no effect of anionic surfaces at pH values in the range from 6.0 to 9.0. Differences of solvent exposure of whole molecules when adsorbed and in solution suggest that adsorbed BSA unfolds at lower pH values and may show aggregation, depending upon pH and the surface type. Measurements on digested peptides showed that classifications of stability can be made for various regions; these are generally retained as pH is changed. When salt was added to MMC systems, where electrostatic interactions would be minimized, less solvent exposure was seen, implying that it is the cationic moieties, rather than the hydrophobic ligands, which cause greater surface unfolding at low salt concentrations. These results suggest that proteins of lower stability may exhibit unfolding and aggregation during IEC and MMC separations, as they can with hydrophobic interaction chromatography.

  2. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R; Wilson, Ian D; Somsen, Govert W; de Jong, Gerhardus J

    2014-01-01

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared t

  3. Selective removal of nitrate by using a novel macroporous acrylic anion exchange resin

    Institute of Scientific and Technical Information of China (English)

    Hai Ou Song; Yang Zhou; Ai Min Li; Sandra Mueller

    2012-01-01

    An anion exchange resin NDP-5 has been prepared successfully and applied on the selective removal of nit-ate from SO42-/NO3- binary co-existence system.The composition and morphology of NDP-5 were confirmed by FT-IR and SEM.The NDP-5 resin exhibits the completely different behavior on the adsorption capacity,adsorption kinetic and the effect of the completing anion in the absence or presence of sulfate,compared to D213.And,the resultants of kinetic are well fitted by the pseudo-first-order and pseudo-second-order models.These results are very important to develop novel resins with great features.

  4. Hybrid Anion Exchange Hollow Fiber Membrane for Delivery of Ionic Drugs

    Directory of Open Access Journals (Sweden)

    Na Wang

    2012-01-01

    Full Text Available Hybrid anion exchange hollow fiber membranes (HAEHFMs based on bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide (BPPO are proposed as potential drug carriers for four anionic model drugs, including the sodium salts of benzoate (NaBS, salicylate (NaSA, meta-amino salicylate (NaMAS, and loxoprofen (NaLS. The results of the static loading and release experiments suggest that electrostatic interaction, hydrogen bonding, and hydrophobic interaction are the main interaction patterns between the membrane and the drugs. And they are directly influenced by the external phase conditions and the drug physicochemical characteristics, such as structure, molecular weight, dissociation (pKa, and hydrogen bonding capability. Among the four different drugs, NaSA and NaMAS appear to be the most suitable for controlled release by the HAEHFM due to their excellent adsorption/release behaviors.

  5. Study on Separation of Lanthanum from Praseodymium Complexes with IMDA by Gel and Macroporous Anion-Exchangers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    During our studies on separation of rare earth complexes with aminopolycarboxylic acids on anion-exchangers, it is found that the affinity series of these elements with IMDA (Ln3+:IMDA=1:2) for the anion-exchanger Dowex 1 in the acetate and IMDA forms is non-typical: Dy3+> Ho3+> Gd3+>Eu3+>Er3+>Y3+>Sm3+>Tm3+>Nd3+>Pr3+>>La3+. In the affinity series La3+ is characterised as the lowest affinity in omparison with other rare earth elements, which indicates possibility ofpurification of La3+ from all remaining lanthanides as well as Pr3+ in the macro-micro systems by the frontal analysis technique. In the investigations strongly basic gel anion-exchangers Dowex 1×8 (type 1) and Dowex 2×8 (type 2) and strongly basic and weakly basic macroporous anion-exchangers Dowex MSA-1 and Dowex MWA-1 were used. Macroporous ion-exchangers have a sponge-like matrix which contains pores larger than molecules in size and the exchange of large ions is faster. The studies indicate that both the gel and macroporous anion-exchangers are useful for purification of La3+ from Pr3+ complexes with iminodiacetic acid.

  6. Incorporation of multi-walled carbon nanotubes in microspheres used as anion exchange resin via suspension polymerization

    Science.gov (United States)

    Fathy, Mahmoud; Abdel Moghny, Th.; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.

    2014-06-01

    Amination of vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers is an effective method for preparation of anion-exchange resins. Conventionally, the starting polymer is produced by chloromethylation of a styrene-divinylbenzene copolymer that utilizes chloromethyl methyl ether, a known carcinogen. An alterative approach is to copolymerize vinylbenzyl chloride with divinylbenzene to generate the necessary VBC-DVB. This method provides precise control over the density of the ion-exchange groups. The regiochemistry of the vinylbenzyl chloride methods was realized using solvent-ion exchange groups. These resulting anion-exchange polymers were characterized by a variety of techniques such as analytical titrations, transform infrared spectroscopy and thermal gravimetric analysis. Testing of these copolymers for breakthrough was performed. The results indicate that these anion exchangers have a meaningful increase in thermal stability over commercial anionic exchange beads. Resins containing MWCNTs achieved anion exchange capacity value of 323.6 meq/100 g over than that of copolymer resins and that useful in water desalination or treatment.

  7. Separation of Y(dcta– complexes from Nd(dcta– and Sm(dcta– complexes on polyacrylate anion-exchangers

    Directory of Open Access Journals (Sweden)

    DOROTA KOLODYNSKA

    2003-03-01

    Full Text Available The formation of anion rare earth element complexes with aminopolycarboxylic acids gives new possibilities for the separation of these elements on anion-exchangers. The higher affinity of the Nd(dcta- and Sm(dcta- complexes for the anion-exchangers compared to Y(dcta- complexes indicates the possibility of yttrium purification as a macrocomponent from the former by frontal analysis. The weakly basic polyacrylate gel anion-exchanger Amberlite IRA 68 was more effective in the purification of Y(III from Nd(III and Sm(III complexes with DCTA than the strongly basic anion-exchangers of this type.

  8. Investigation of Electrochemical and Morphological Properties of Mixed Matrix Polysulfone-Silica Anion Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Khoiruddin

    2016-02-01

    Full Text Available Mixed matrix anion exchange membranes (AEMs were synthesized using dry-wet phase inversion. The casting solutions were prepared by dispersing finely ground anion-exchange resin particles in N,N-dimethylacetamide (DMAc solutions of polysulfone (PSf. Subsequently, nanosilica particles were introduced into the membranes. The results show that evaporation time (tev and solution composition contributed to membrane properties formation. A longer tev produces membranes with reduced void fraction inside the membranes, thus the amount of water adsorbed and membrane conductivity are reduced. Meanwhile, the permselectivity was improved by increasing tev, since a longer tev produces membranes with a narrower channel for ion migration and more effective Donnan exclusion. The incorporation of 0.5 %-wt nanosilica particles into the polymer matrix led to conductivity improvement (from 2.27 to 3.41 mS.cm-1. This may be associated with additional pathway formation by hydroxyl groups on the silica surface that entraps water and assists ion migration. However, at further silica loading (1.0 and 1.5 %-wt, these properties decreased (to 1.9 and 1.4 mS.cm-1 respectively, which attributed to inaccessibility of ion-exchange functional groups due to membrane compactness. It was found from the results that nanosilica contributes to membrane formation (increases casting solution viscosity then reduces void fraction and membrane functional group addition (provides hydroxyl groups.

  9. The Drosophila Anion Exchanger (DAE lacks a detectable interaction with the spectrin cytoskeleton

    Directory of Open Access Journals (Sweden)

    Base Christine

    2010-06-01

    Full Text Available Abstract Background Current models suggest that the spectrin cytoskeleton stabilizes interacting ion transport proteins at the plasma membrane. The human erythrocyte anion exchanger (AE1 was the first membrane transport protein found to be associated with the spectrin cytoskeleton. Here we evaluated a conserved anion exchanger from Drosophila (DAE as a marker for studies of the downstream effects of spectrin cytoskeleton mutations. Results Sequence comparisons established that DAE belongs to the SLC4A1-3 subfamily of anion exchangers that includes human AE1. Striking sequence conservation was observed in the C-terminal membrane transport domain and parts of the N-terminal cytoplasmic domain, but not in the proposed ankyrin-binding site. Using an antibody raised against DAE and a recombinant transgene expressed in Drosophila S2 cells DAE was shown to be a 136 kd plasma membrane protein. A major site of expression was found in the stomach acid-secreting region of the larval midgut. DAE codistributed with an infolded subcompartment of the basal plasma membrane of interstitial cells. However, spectrin did not codistribute with DAE at this site or in anterior midgut cells that abundantly expressed both spectrin and DAE. Ubiquitous knockdown of DAE with dsRNA eliminated antibody staining and was lethal, indicating that DAE is an essential gene product in Drosophila. Conclusions Based on the lack of colocalization and the lack of sequence conservation at the ankyrin-binding site, it appears that the well-characterized interaction between AE1 and the spectrin cytoskeleton in erythrocytes is not conserved in Drosophila. The results establish a pattern in which most of the known interactions between the spectrin cytoskeleton and the plasma membrane in mammals do not appear to be conserved in Drosophila.

  10. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    Science.gov (United States)

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials.

  11. Synthesis and characterization of quaternized poly(phthalazinone ether sulfone ketone) for anion-exchange membrane

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chloromethylated regent. CMPPESK was soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc) and chloroform. Quatemized poly(phthalazinone ether sulfone ketone) (QAPPESK) was prepared from CMPPESK by quaternization. QAPPESK had excellent solvent resistance,which was only partly soluble in sulfuric acid (98%) and swollen in N,N-dimethylformamide (DMF). The vanadium redox flow battery (V-RFB) using QAPPESK anion-exchange membrane had better performance with 88.3% of overall energy efficiency.

  12. ELECTROCHEMICAL STABILITY OF STRONG BASIC ANION EXCHANGE MEMBRANES IN CONDITIONS OF HIGH INTENSIVE ELECTRODIALYSIS PROCESS

    Directory of Open Access Journals (Sweden)

    Zabolotskiy V. I.

    2014-12-01

    Full Text Available The stability of strongly basic anion-exchange membranes MA-41-2P (JSC "Schekino-Nitrogen", Russia and AMX (Tokuyama Soda, Japan under intensive current regimes was investigated in the current study. The process of water molecules dissociation at current densities above the limiting one in 0.01 M sodium chloride solution was studied in detail. The length of the electroconvective instability at the membrane / solution interface at currents exceeding the limiting current was measured by laser interferometry

  13. STUDIES ON THE POLYMERIZATION OF ACRYLONITRILE INITIATED BY METAVANADATE- CONTAINING ANION EXCHANGER-THIOUREA REDOX SYSTEM

    Institute of Scientific and Technical Information of China (English)

    YANG Chaoxiong; WU Jinyuan; WU Yuxian

    1991-01-01

    The polymerization of acrylonitrile (AN) in aqueous nitric acid initiated by metavanadate-containing anion exchange resin (PV)-thiourea (TU) redox system at 20- 40 ℃. has been investigated. The overall rate of polymerization (Rp) is given by Rp= 1.92 × 104 e -6,860/RT [AN]1.2[PV]0.44[TU]1.0[HNO3]1.0 The kinetic parameters differed from those of V5+-TU system indicated that the generation of the primary radicals is mainly a difffusion-controlled reaction . The effect of macromolecular field arisen from the polymer matrix exerts a great influence on the polymerization process.

  14. Microcalorimetric study of the adsorption of native and mono-PEGylated bovine serum albumin on anion-exchangers.

    Science.gov (United States)

    Blaschke, Tim; Werner, Albert; Hasse, Hans

    2013-02-15

    The adsorption of native bovine serum albumin (BSA) and 12 kDa-PEG-BSA on 12 different commercially available strong and weak anion-exchange resins is studied at 25 °C and pH 7. The resins differ in their base matrix material, their functional groups and the type of polymer modification. A combination of equilibrium measurements and microcalorimetric experiments is used to determine the specific enthalpy of adsorption of the proteins. From these data, the entropic contributions to the specific Gibbs energy of adsorption are determined. The results strongly differ for different resins. They also depend on the loadings. The adsorption of BSA on strong (Q) anion-exchangers is exothermic and enthalpy-driven. The adsorption of BSA on weak (DEAE) anion-exchangers is endothermic and entropy-driven. The adsorption of PEG-BSA on strong (Q) anion-exchangers is exothermic or endothermic, depending on the resin, while the adsorption of PEG-BSA on weak (DEAE) anion-exchangers is exothermic for all studied resins. The present study provides a large body of new experimental data that contribute to the understanding of the nature of protein adsorption on ion exchange resins and the influence of the resin properties and polymer modification of the proteins on this process.

  15. Exchange of interlayer terephthalate anions from a Mg Al layered double hydroxide: formation of intermediate interstratified phases

    Science.gov (United States)

    Kaneyoshi, Masami; Jones, William

    1998-10-01

    The exchange of interlayer terephthalate (TA) anions from a Mg-Al layered double hydroxide (LDH) by carbonate, sulfate, chloride and nitrate anions is reported. It is shown that TA is readily exchanged by CO 32- and SO 42- but only partly by Cl - and NO 3-. We demonstrate that during the exchange process interstratified phases are observed. Such interstratification has previously been reported only for directly synthesised materials. The origin of the interstratification is believed to be associated with two preferred orientations of TA anions within the layers, i.e. vertical or horizontal to the clay sheets. Two models for the possible exchange mechanism which is operating in these systems are proposed.

  16. Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell

    Science.gov (United States)

    Hu, Jue; Zhang, Chengxu; Cong, Jie; Toyoda, Hirotaka; Nagatsu, Masaaki; Meng, Yuedong

    2011-05-01

    Plasma grafting is employed to prepare alkaline anion-exchange membranes in this study. The attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis demonstrate that the benzyltrimethylammonium cationic groups are successfully introduced into the polyvinyl chloride matrix via plasma grafting, quaternization and alkalization. The plasma-grafted alkaline anion-exchange membrane exhibits a satisfactory ionic exchange capacity (1.01 mmol g-1), thermal stability, mechanical property, ionic conductivity (0.0145 S cm-1) and methanol permeability (9.59 × 10-12 m2 s-1), suggesting a great potential for application in direct alcohol fuel cells. The open circuit voltage of air-breathing ADAFC using plasma-grafted alkaline anion-exchange membrane is 0.796 V with 1 M EtOH solution at ambient temperature.

  17. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    Directory of Open Access Journals (Sweden)

    Wataru Aoyagi

    2016-06-01

    Full Text Available An ionic polymer-metal composite (IPMC actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  18. [Development of metal ions analysis by ion chromatography].

    Science.gov (United States)

    Yu, Hong; Wang, Yuxin

    2007-05-01

    Analysis of metal ions by ion chromatography, including cation-exchange ion chromatography, anion-exchange ion chromatography and chelation ion chromatography, is reviewed. The cation-exchange ion chromatography is a main method for the determination of metal ions. Stationary phases in cation-exchange ion chromatography are strong acid cation exchanger (sulfonic) and weak acid cation exchanger (carboxylic). Alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth metal ions, ammonium ions and amines can be analyzed by cation-exchange ion chromatography with a suitable detector. The anion-exchange ion chromatography is suitable for the separation and analysis of alkaline earth metal ions, transition metal ions and rare earth metal ions. The selectivity for analysis of metal ions with anion-exchange ion chromatography is good. Simultaneous determination of metal ions and inorganic anions can be achieved using anion-exchange ion chromatography. Chelation ion chromatography is suitable for the determination of trace metal ions in complex matrices. A total of 125 references are cited.

  19. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    Directory of Open Access Journals (Sweden)

    Zhengwen Xu

    2014-01-01

    Full Text Available As new emerging pollutants, phthalic acid monoesters (PAMs pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP onto two macroporous base anion-exchange resins (D-201 and D-301 was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the adsorption mechanisms for DBP onto D-201 were ion exchange. However, the obtained enthalpy values indicate that the sorption process of MBP onto D-301 is physical adsorption. The equilibrium adsorption capacities and adsorption rates of DBP on two different resins increased with the increasing temperature of the solution. D-301 exhibited a higher adsorption capacity of MBP than D-201. These results proved that D-301, as an effective sorbent, can be used to remove phthalic acid monoesters from aqueous solution.

  20. Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange.

    Science.gov (United States)

    Jensen, Mark P; Neuefeind, Jörg; Beitz, James V; Skanthakumar, S; Soderholm, L

    2003-12-17

    The structure and stoichiometry of the lanthanide(III) (Ln) complexes with the ligand 2-thenoyltrifluoroacetone (Htta) formed in a biphasic aqueous room-temperature ionic liquid system have been studied by complementary physicochemical methods. Equilibrium thermodynamics, optical absorption and luminescence spectroscopies, high-energy X-ray scattering, EXAFS, and molecular dynamics simulations all support the formation of anionic Nd(tta)4(-) or Eu(tta)4(-) complexes with no water coordinated to the metal center in 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C4mim+Tf2N(-)), rather than the hydrated, neutral complexes, M(tta)(3)(H2O)n)(n = 2 or 3), that form in nonpolar molecular solvents, such as xylene or chloroform. The presence of anionic lanthanide complexes in C4mim+Tf2N(-) is made possible by the exchange of the ionic liquid anions into the aqueous phase for the lanthanide complex. The resulting complexes in the ionic liquid phase should be thought of as weak C4mim+Ln(tta)4(-) ion pairs which exert little influence on the structure of the ionic liquid phase.

  1. Mechanisms of metal ion transfer into room-temperature ionic liquids : the role of anion exchange.

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. P.; Neuefeind, J.; Beitz, J. V.; Skanthakumar, S.; Soderholm, L.; Chemistry

    2003-12-17

    The structure and stoichiometry of the lanthanide(III) (Ln) complexes with the ligand 2-thenoyltrifluoroacetone (Htta) formed in a biphasic aqueous room-temperature ionic liquid system have been studied by complementary physicochemical methods. Equilibrium thermodynamics, optical absorption and luminescence spectroscopies, high-energy X-ray scattering, EXAFS, and molecular dynamics simulations all support the formation of anionic Nd(tta){sub 4}{sup -} or Eu(tta){sub 4}{sup -} complexes with no water coordinated to the metal center in 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C{sub 4}mim{sup +}Tf{sub 2}N{sup -}), rather than the hydrated, neutral complexes, M(tta){sub 3}(H{sub 2}O){sub n} (n = 2 or 3), that form in nonpolar molecular solvents, such as xylene or chloroform. The presence of anionic lanthanide complexes in C{sub 4}mim{sup +}Tf{sub 2}N{sup -} is made possible by the exchange of the ionic liquid anions into the aqueous phase for the lanthanide complex. The resulting complexes in the ionic liquid phase should be thought of as weak C{sub 4}mim{sup +}Ln(tta){sub 4}{sup -} ion pairs which exert little influence on the structure of the ionic liquid phase.

  2. Improved and selective platinum recovery from spent alpha-alumina supported catalysts using pretreated anionic ion exchange resin.

    Science.gov (United States)

    Shams, K; Goodarzi, F

    2006-04-17

    Improved and selective recovery of platinum from a spent dehydrogenation platinum alpha-alumina supported catalyst using a strong basic ion exchange resin is reported. Platinum and other precious metal group (PMG) complexes are leached using concentrated hydrochloric acid along with about 0.20 vol.% nitric acid as an oxidizing agent from de-coked and crushed spent catalyst. Effects of hydrochloric acid concentration, time, and temperature in leaching stage are investigated. The strong basic anionic resin is treated by sodium hydroxide solution to replace chloride anion by hydroxyl group ion. The supernatant of the leaching process is passed through a fixed column of hydroxylated strong base anionic resin. The treated resin on which the platinum complex is adsorbed is dried and burned in an oxidizing atmosphere at 750-800 degrees C. The recovered gray metallic powder is mainly platinum. Results compared with those obtained from untreated anionic resin show that adsorption of platinum complexes onto the treated anionic resin is more selective and the yield of separation is considerably improved. The breakthrough curves of the pretreated anion exchanger and that of untreated exchange resin reveals that the capacity of the hyroxilated resin is decreased by about 14%. These breakthrough curves can be used for calculation of height of a practical exchange plate (HPEP) for design purposes.

  3. ANION EXCHANGE CAPACITY OF CHROMATE ON MODIFIED ZEOLITE CLINOPTILOLITE WITH HDTMA-Br AND ITS REGENERATION

    Directory of Open Access Journals (Sweden)

    Widajanti Wibowo

    2011-04-01

    Full Text Available Zeolite Clinoptilolite from Lampung, located in South of Sumatra, had been modified with surfactanthexadecyltrimethylammonium bromide (HDTMA-Br as chromate anion exchanger. Surfactant modified zeolite (SMZClinoptilolite in particle size range of 1.5 - 2.0 mm, which contained 196.7 mmol HDTMA-Br/kg zeolite, was used foranion exchange of chromate at neutral pH. This experiment was conducted in a glass column filled with 5 gram SMZ.The breakthrough chromate exchange capacity was found 1.262 mg/g SMZ, while the total capacity was found 2.107mg/g SMZ. The regeneration of SMZ saturated with chromate was conducted using a mixed solutions of 0.28 MNa2CO3 and 0.5 M NaOH, compared with using a solution of 0.01 M Na2S2O4. The desorption of chromate achieved92% with the mixed solutions of Na2CO3 and NaOH and 90% with the Na2S2O4 solution. The regenerated SMZ withNa2CO3-NaOH solutions was prior washed with HCl solution to remove the carbonate from SMZ, before being used forchromate sorption again. Its breakthrough capacity was reduced to 1.074 mg/g SMZ, and to 0.724 mg/g SMZ whenregenerated with Na2S2O4 solution. These results indicated that regeneration of SMZ affected its exchange capacity foranion chromate. However, it is still could be acceptable, when Na2CO3/NaOH solutions were used for the regenerationof SMZ saturated with anion chromate.

  4. Factors influencing the separation of oligonucleotides using reversed-phase/ion-exchange mixed-mode high performance liquid chromatography columns.

    Science.gov (United States)

    Biba, Mirlinda; Jiang, Eileen; Mao, Bing; Zewge, Daniel; Foley, Joe P; Welch, Christopher J

    2013-08-23

    New mixed-mode columns consisting of reversed-phase and ion-exchange separation modes were evaluated for the analysis of short RNA oligonucleotides (∼20mers). Conventional analysis for these samples typically involves using two complementary methods: strong anion-exchange liquid chromatography (SAX-LC) for separation based on charge, and ion-pair reversed-phase liquid chromatography (IP-RPLC) for separation based on hydrophobicity. Recently introduced mixed-mode high performance liquid chromatography (HPLC) columns combine both reversed-phase and ion-exchange modes, potentially offering a simpler analysis by combining the benefits of both separation modes into a single method. Analysis of a variety of RNA oligonucleotide samples using three different mixed-mode stationary phases showed some distinct benefits for oligonucleotide separation and analysis. When using these mixed-mode columns with typical IP-RPLC mobile phase conditions, such as ammonium acetate or triethylammonium acetate as the primary ion-pair reagent, the separation was mainly based on the IP-RPLC mode. However, when changing the mobile phase conditions to those more typical for SAX-LC, such as salt gradients with NaCl or NaBr, very different separation patterns were observed due to mixed-mode interactions. In addition, the Scherzo SW-C18 and SM-C18 columns with sodium chloride or sodium bromide salt gradients also showed significant improvements in peak shape.

  5. Use of Anion Exchange Resins for One-Step Processing of Algae from Harvest to Biofuel

    Directory of Open Access Journals (Sweden)

    Martin Poenie

    2012-07-01

    Full Text Available Some microalgae are particularly attractive as a renewable feedstock for biodiesel production due to their rapid growth, high content of triacylglycerols, and ability to be grown on non-arable land. Unfortunately, obtaining oil from algae is currently cost prohibitive in part due to the need to pump and process large volumes of dilute algal suspensions. In an effort to circumvent this problem, we have explored the use of anion exchange resins for simplifying the processing of algae to biofuel. Anion exchange resins can bind and accumulate the algal cells out of suspension to form a dewatered concentrate. Treatment of the resin-bound algae with sulfuric acid/methanol elutes the algae and regenerates the resin while converting algal lipids to biodiesel. Hydrophobic polymers can remove biodiesel from the sulfuric acid/methanol, allowing the transesterification reagent to be reused. We show that in situ transesterification of algal lipids can efficiently convert algal lipids to fatty acid methyl esters while allowing the resin and transesterification reagent to be recycled numerous times without loss of effectiveness.

  6. Hydrolysis of fish oil by hyperactivated Rhizomucor miehei lipase immobilized by multipoint anion exchange.

    Science.gov (United States)

    Filice, Marco; Marciello, Marzia; Betancor, Lorena; Carrascosa, Alfonso V; Guisan, Jose M; Fernandez-Lorente, Gloria

    2011-07-01

    Rhizomucor miehei lipase (RML) is greatly hyperactivated (around 20- to 25-fold toward small substrates) in the presence of sucrose laurate. Hyperactivation appears to be an intramolecular process because it is very similar for soluble enzymes and covalently immobilized derivatives. The hyperactivated enzyme was immobilized (in the presence of sucrose laurate) on cyanogen bromide-activated Sepharose (very mild covalent immobilization through the amino terminal residue), on glyoxyl Sepharose (intense multipoint covalent immobilization through the region with the highest amount of Lys residues), and on different anion exchangers (by multipoint anionic exchange through the region with the highest density of negative charges). Covalent immobilization does not promote the fixation of the hyperactivated enzyme, but immobilization on Sepharose Q retains the hyperactivated enzyme even in the absence of a detergent. The hydrolysis of fish oils by these hyperactivated enzyme derivatives was sevenfold faster than by covalently immobilized derivatives and three and a half times faster than by the enzyme hyperactivated on octyl-Sepharose. The open structure of the hyperactivated lipase is fairly exposed to the medium, and no steric hindrance should interfere with the hydrolysis of large substrates. These new hyperactivated derivatives seem to be more suitable for hydrolysis of oils by RML immobilized inside porous supports. In addition, the hyperactivated derivatives are fairly stable against heat and organic cosolvents.

  7. Qualification of Reillex{trademark} HPQ anion exchange resin for use in SRS processes

    Energy Technology Data Exchange (ETDEWEB)

    Crooks, W.J. III

    2000-05-18

    The Phase 2 portion of the HB-Line facility was built in the early 1980's to process plutonium and neptunium from nitric acid solutions into oxide suitable for storage in a vault. Although the other portions of HB-Line were started up in the mid 1980's and have operated since that time, the anion exchange and precipitation processes in Phase 2 were never started up. As part of the material stabilization efforts, Phase 2 is currently being started up. A new anion exchange resin is needed because the resins that were proposed for use 10 years ago are limited by performance characteristics, disposal requirements, or are no longer commercially available. SRTC is responsible for qualifying all resins prior to their use in Nuclear Materials Stabilization and Storage (NMSS) processes. Qualification consists of both process suitability and thermal stability with nitric acid. This report describes the thermal stability qualification of Reillex{trademark} HPQ, the new resin proposed for processing plutonium and neptunium in the HB Line facility.

  8. A novel self-adaptive microalgae photobioreactor using anion exchange membranes for continuous supply of nutrients.

    Science.gov (United States)

    Fu, Qian; Chang, Hai-Xing; Huang, Yun; Liao, Qiang; Zhu, Xun; Xia, Ao; Sun, Ya-Hui

    2016-08-01

    A novel self-adaptive microalgae photobioreactor using anion exchange membranes (AEM-PBR) for continuous supply of nutrients was proposed to improve microalgae biomass production. The introduction of anion exchange membranes to the PBR can realize continuous supply of nutrients at desired rates, which is beneficial to the growth of microalgae. The results showed that the maximum biomass concentration obtained in the AEM-PBR under continuous supply of nitrogen at an average rate of 19.0mgN/L/d was 2.98g/L, which was 129.2% higher than that (1.30g/L) in a PBR with all the nitrogen supplied in batch at initial. In addition, the feeding rates of nitrogen and phosphorus were optimized in the AEM-PBR to maximize biomass production. The maximum biomass concentration of 4.38g/L was obtained under synergistic regulation of nitrogen and phosphorus feeding rates at 19.0mgN/L/d and 4.2mgP/L/d. The AEM-PBR demonstrates a promising approach for high-density cultivation of microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins.

    Science.gov (United States)

    Wawrzkiewicz, Monika; Hubicki, Zbigniew

    2009-05-30

    The removal of tartrazine from aqueous solutions onto the strongly basic polystyrene anion exchangers of type 1 (Amberlite IRA-900) and type 2 (Amberlite IRA-910) was investigated. The experimental data obtained at 100, 200, 300 and 500 mg/dm(3) initial concentrations at 20 degrees C were applied to the pseudo-first order, pseudo-second order and Weber-Morris kinetic models. The calculated sorption capacities (q(e,cal)) and the rate constant of the first order adsorption (k(1)) were determined. The pseudo-second order kinetic constants (k(2)) and capacities were calculated from the plots of t/q(t) vs. t, 1/q(t) vs. 1/t, 1/t vs. 1/q(t) and q(t)/t vs. q(t) for type 1, type 2, type 3 and type 4 of the pseudo-second order expression, respectively. The influence of phase contact time, solution pH and temperature on tartrazine removal was also discussed. The FTIR spectra of pure anion exchangers and those loaded with tartrazine were recorded, too.

  10. Anion exchange HPLC isolation of high-density lipoprotein (HDL and on-line estimation of proinflammatory HDL.

    Directory of Open Access Journals (Sweden)

    Xiang Ji

    Full Text Available Proinflammatory high-density lipoprotein (p-HDL is a biomarker of cardiovascular disease. Sickle cell disease (SCD is characterized by chronic states of oxidative stress that many consider to play a role in forming p-HDL. To measure p-HDL, apolipoprotein (apo B containing lipoproteins are precipitated. Supernatant HDL is incubated with an oxidant/LDL or an oxidant alone and rates of HDL oxidation monitored with dichlorofluorescein (DCFH. Although apoB precipitation is convenient for isolating HDL, the resulting supernatant matrix likely influences HDL oxidation. To determine effects of supernatants on p-HDL measurements we purified HDL from plasma from SCD subjects by anion exchange (AE chromatography, determined its rate of oxidation relative to supernatant HDL. SCD decreased total cholesterol but not triglycerides or HDL and increased cell-free (cf hemoglobin (Hb and xanthine oxidase (XO. HDL isolated by AE-HPLC had lower p-HDL levels than HDL in supernatants after apoB precipitation. XO+xanthine (X and cf Hb accelerated purified HDL oxidation. Although the plate and AE-HPLC assays both showed p-HDL directly correlated with cf-Hb in SCD plasma, the plate assay yielded p-HDL data that was influenced more by cf-Hb than AE-HPLC generated p-HDL data. The AE-HPLC p-HDL assay reduces the influence of the supernatants and shows that SCD increases p-HDL.

  11. Anion Exchange HPLC Isolation of High-Density Lipoprotein (HDL) and On-Line Estimation of Proinflammatory HDL

    Science.gov (United States)

    Ji, Xiang; Xu, Hao; Zhang, Hao; Hillery, Cheryl A.; Gao, Hai-qing; Pritchard, Kirkwood A.

    2014-01-01

    Proinflammatory high-density lipoprotein (p-HDL) is a biomarker of cardiovascular disease. Sickle cell disease (SCD) is characterized by chronic states of oxidative stress that many consider to play a role in forming p-HDL. To measure p-HDL, apolipoprotein (apo) B containing lipoproteins are precipitated. Supernatant HDL is incubated with an oxidant/LDL or an oxidant alone and rates of HDL oxidation monitored with dichlorofluorescein (DCFH). Although apoB precipitation is convenient for isolating HDL, the resulting supernatant matrix likely influences HDL oxidation. To determine effects of supernatants on p-HDL measurements we purified HDL from plasma from SCD subjects by anion exchange (AE) chromatography, determined its rate of oxidation relative to supernatant HDL. SCD decreased total cholesterol but not triglycerides or HDL and increased cell-free (cf) hemoglobin (Hb) and xanthine oxidase (XO). HDL isolated by AE-HPLC had lower p-HDL levels than HDL in supernatants after apoB precipitation. XO+xanthine (X) and cf Hb accelerated purified HDL oxidation. Although the plate and AE-HPLC assays both showed p-HDL directly correlated with cf-Hb in SCD plasma, the plate assay yielded p-HDL data that was influenced more by cf-Hb than AE-HPLC generated p-HDL data. The AE-HPLC p-HDL assay reduces the influence of the supernatants and shows that SCD increases p-HDL. PMID:24609013

  12. Poly(2,6-dimethyl-1,4-phenylene oxide) Blended with Poly (vinylbenzyl chloride)-b-polystyrene for the Formation of Anion Exchange Membranes

    Science.gov (United States)

    2014-08-14

    documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Anion ...functionalization reached high conversion as characterized by ion exchange capacity (IEC) measurements. The PPO blend anion exchange membranes (AEMs...vinylbenzyl chloride)‑b‑polystyrene for the Formation of Anion Exchange Membranes Yifan Li,† Aaron C. Jackson,‡ Frederick L. Beyer,‡ and Daniel M

  13. Determination of sulfur anions by ion chromatography-postcolumn derivation and UV detection

    Institute of Scientific and Technical Information of China (English)

    Mei Lan Chen; Ming Li Ye; Xue Ling Zeng; Yun Chang Fan; Zhu Yan

    2009-01-01

    A novel method for determination of formaldehyde sulfoxylate, sulfite, thiocyanate, and thiosulfate in foodstuffs by ion chromatography separation with postcolumn derivation and UV detection has been developed. All species are separated at Dionex IonPac AG22A and AS22Awith mobile phase of a mixture of 4.5 mmol/L sodium carbonate and 0.8 mmol/L sodium bicarbonate at a flow-rate of 1.0 mL/min. The postcolumn derivation solution was 0.24% iodine in 0.2% phosphate acid and the detection wavelength was set at 288 nm. The detection limits (LOD, signal-to-noise ratio of 3) of formaldehyde sulfoxylate, sulfite, thiocyanate, and thiosulfate were 0.004, 0.006, 0.006, and 0.007 mg/L, respectively. Within-day relative standard deviations (RSD, n = 10) of formaldehyde sulfoxylate, sulfite, thiocyanate, and thiosulfate were 3.24%, 3.76%, 2.68%, and 2.07%, respectively. The recoveries of the four anions were in the range of 67.2-116.5%.

  14. Simultaneous determination of three chloroacetic acids, three herbicides, and 12 anions in water by ion chromatography.

    Science.gov (United States)

    Luo, Ximing; Chen, Liang; Zhao, Yanqing

    2015-09-01

    An ion chromatography method was developed for the simultaneous detection of three soluble herbicides (glyphosate, bentazone and picloram), three chlorine disinfection byproducts (monochloroacetic acid, dichloroacetic acid and trichloroacetic acid) and 12 anions in water (Cl(-), Br(-), SO4(2-), CO3(2-), ClO3(-), ClO4(-), BrO3(-), PO4(3-), NO2(-), NO3(-), CH3COO(-) and COO(-)). High linearity (r(2) > 0.996) was observed for all target analytes for each respective concentration range. The limit of detection and limit of quantitation were between 0.21-0.85 and 0.06-25.46 μg/L, respectively. However, the interference effect of Cl(-), NO3(-) , SO4 (2-) and CO3(2-) on some target analytes must be considered during the analysis. Sample pre-treatment by a hydrogen column (H-column) required to reduce the negative effect of CO3(2-). Additionally, sample pre-treatment by a sliver-hydrogen column (Ag-H-column) is required when Cl(-) > 100 mg/L and SO4(2-) 100 mg/L and SO4(2-) > 50 mg/L. When Cl(-) > 100 mg/L, SO4(2-) > 50 mg/L and CO3(2-) > 20 mg/L, the sample pre-treatment by either an Ag-H-Ba-column or an Ag-H-column and Ba-column is required to minimize interference.

  15. Analysis of oxyhalide disinfection by-products and other anions of interest in drinking water by ion chromatography.

    Science.gov (United States)

    Hautman, D P; Bolyard, M

    1992-06-01

    The US Environmental Protection Agency is developing regulations for various drinking water disinfection by-products (DBPs). This effort involves developing analytical methods for the DBPs formed as a result of different disinfection treatments and collecting occurrence data for these species. Ion chromatography is one method being used to analyze drinking water samples for the following inorganic DBPs: chlorite, chlorate and bromate. These anions, however, are difficult to separate from common interfering anions of chloride, carbonate and nitrate. A method is therefore presented by which tetraborate/boric acid is used to separate these anions. Method detection limits of the order of 10 micrograms/l, using conductivity and UV detection were obtained. Stability studies of chlorite showing the effectiveness of ethylenediamine as a preservative and summary data for an occurrence of nitrite, nitrate and the DBP precursor bromide are presented.

  16. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-01

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV).

  17. Influence of surface modification on protein retention in ion-exchange chromatography. Evaluation using different retention models.

    Science.gov (United States)

    Bruch, Thomas; Graalfs, Heiner; Jacob, Lothar; Frech, Christian

    2009-02-06

    A large number of different stationary phases for ion-exchange chromatography (IEC) from different manufacturers are available, which vary significantly in a number of chemical and physical properties. As a consequence, binding mechanisms may be different as well. In the work reported here, the retention data of model proteins (alpha-lactalbumin, beta-lactoglobulin A, bovine serum albumin and alcohol dehydrogenase) were determined for three anion-exchange adsorbents based on synthetic copolymer beads with differences in the functional group chemistry. Fractogel EMD DEAE and Fractoprep DEAE consist of functional groups bound to the surface via "tentacles", ToyopearlDEAE by a short linker. Three models which describe chromatographic retention were used to analyse the characteristic parameters of the protein/stationary-phase interactions. The number of electrostatic interaction between the stationary phase and the model proteins, the protein specific surface charge densities and the interacting surface of the proteins with the adsorptive layer of the chromatographic media depend on the surface modification as well as on the molecular mass of the model proteins. In general, protein retention of the model proteins on the weak anion exchangers was found to be greater if the stationary phase carries tentacles and protein mass is above 60 kDa.

  18. The influence of retention on the plate height in ion-exchange chromatography

    DEFF Research Database (Denmark)

    Hansen, Ernst; Mollerup, Jørgen

    2004-01-01

    The plate heights for the amino acid tyrosine (anion exchange) and the polypeptide aprotinin (cation exchange) were determined on a porous media (Resource 15) and a get filled media (HyperD 20) at salt concentrations ranging from weak to strong retention. At a constant velocity, measurements show...

  19. Determination of UV active inorganic anions in potable and high salinity water by ion pair reversed phase liquid chromatography.

    Science.gov (United States)

    Sadiq Khan, Sadaf; Riaz, M

    2014-05-01

    Reversed phase column was dynamically modified into anion exchange column using various types of tetraalkylammonium salts as ion pair reagents (IPRs) for the separation and quantification of toxic anions such as nitrite, bromate, bromide and nitrate in potable and high salinity water. Various chromatographic parameters such as types and concentration of IPRs, concentration of organic modifier, phosphate buffer and mobile phase pH were optimized for the base-line separation of anions. The lowest detection limits (LDLs) were 0.2 for nitrate and nitrite, 0.6 µg ml(-1)for bromate and bromide respectively for potable water samples. NaCl and Na₂SO₄ were incorporated in the mobile phase for the analysis of high salinity water samples to minimize matrix interferences. This has resulted in change in elution order of anions, better tolerance of matrix anions such as chloride and sulphate. The developed method was successfully utilized for analysis of anions in potable, high salinity and sea water samples.

  20. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Gilchrist, Elizabeth S. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Nesterenko, Pavel N. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart 7001 (Australia); Smith, Norman W. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Barron, Leon P., E-mail: leon.barron@kcl.ac.uk [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom)

    2015-03-20

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks.

  1. RECOVERY OF URANIURN FROM CARBONATE SOLUTIONS USING STRONGLY BASIC ANION EXCHANGER 3.THE MECHANISMS OF RECOVERY PROCESSES

    Institute of Scientific and Technical Information of China (English)

    SongYinjie; ZhangHui; 等

    1997-01-01

    A moving boundary model under considering the volume change of spherical resin beads during ion exchange processes was employed to recognize the mechanisms of reecovering uranium from carbonate solutions using strongly basic anion exchanger.Two important factors,swelling and ion exchange,which directly affect the violume of ion exchangers were taken into account.An ion exchange mechanism has been found for the forward reaction PCl/[UO2(CO3)3]4-,and is partical diffusion governing at high concentration of the complex anion.The mechanism of RCl/U(VI) at pH 5.5-7.5 is a chemical reaction taking place at the moving boundary of the unreacted nucleus.For the reverse reaction RnU/NaCl,the uranyl tricarbonate complex anion in the resin phase is replaced by Cl- ions with an ion exchange mechanism alway determined by particle diffusion.The other forms of uranium in the solid phase loaded on the resin at pH5.5-7.5 should belong to non-exchangeable uranium.The mechanism of the reverse reaction RnU/HCl is always chemical reaction which is not restricted to the moving boundary of the unreacted core.

  2. Synthesis and Properties of Anion Exchangers Derived from Chloromethyl Styrene Codivinylbenzene and Their Use in Water Treatment

    Directory of Open Access Journals (Sweden)

    Hesham A. Ezzeldin

    2010-01-01

    Full Text Available Amination of vinylbenzyl chloride-divinylbenzene (VBC-DVB copolymers is an effective method for preparation of ion-exchange resins. Conventionally, the starting polymer is produced by chloromethylation of a styrene-divinylbenzene copolymer that utilizes chloromethyl methyl ether, a known carcinogen. An alterative approach is to copolymerize vinylbenzyl chloride with divinylbenzene to generate the necessary VBC-DVB. This method provides precise control over the density of the ion-exchange groups. The regiochemistry of the vinylbenzyl chloride methods was realized using solvent-ion exchange groups. In this investigation, an improved solvent system was found for the preparation of anion exchange resins by the vinylbenzyl chloride route. The effectiveness of amination of the intermediate VBC-DVB polymers with a variety of trimethylamine reagents was investigated, and ethanolic trimethylamine produced the highest degree of amination. These resulting ion-exchange polymers were characterized by a variety of techniques such as analytical titrations, nitrogen analysis, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Testing of these copolymers for breakthrough was performed. The results indicate that these anion exchangers have a meaningful increase in thermal stability over commercial anionic exchange beads.

  3. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application

    Science.gov (United States)

    Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik

    2017-09-01

    A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.

  4. Adsorption characteristics of thorium on silica-based anion exchange resins

    Institute of Scientific and Technical Information of China (English)

    陈彦良; 赵龙; 韦悦周; 何林锋; 唐方东

    2015-01-01

    To isolate and separate thorium from nitric acid solutions, three silica-based anion exchange resins were synthesized. Batch experiments were carried out to investigate adsorption behavior of thorium in nitric acid solutions. Adsorption at different concentrations of nitric acid and thorium, influence of contact time and coex-isting metal ions, and effect of NO–3 were investigated in detail. It was found that at high HNO3 concentrations, the resins exhibited higher adsorption capacity and better affinity towards thorium. The adsorption kinetics could be described by the pseudo-second order model equation, while the adsorption isotherms were well cor-related by the Langmuir model. The maximum capacity towards thorium species on SiPyR-N4 was evaluated at 27–28 mg/g-resin. The thermodynamic parameters indicated the adsorption was an exothermic reaction. The presence of NO–3 was found to promote the retention of the thorium species.

  5. REMOVAL OF GLUCORAPHENIN FROM THE EXTRACT OF RADISH PIGMENT BY ANION EXCHANGE RESIN 201×7

    Institute of Scientific and Technical Information of China (English)

    ZhouXiaohua; ChenQi

    1998-01-01

    A method for removimg glucoraphenin from the extract of Radish pigment by anion exchange resin 201×7 was studied.The adsorption capacity of 201×7 resin for glucoraphenin was 72.8mg/ml resin,the equilibrium time 55 minutes,and the optinum pH5.5.All glucoraphenin that had been adsorbed on 201×7 resin was eluted by 1.5BV.hr-1, eluent in whinc concentration of NaOH was 0.05mol·L-1 at the flow rate of 1.5BV/h.Extracting solution of deglucoraphenin was enriched by vacuum and spray drying.A powder product of Radish pigment was obtained and E1cm1%=4.30.

  6. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays.

    Science.gov (United States)

    Yao, Feng; Hu, Hao; Xu, Sailong; Huo, Ruijie; Zhao, Zhiping; Zhang, Fazhi; Xu, Fujian

    2015-02-25

    We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.

  7. SORPTION OF PHENOL AND P-NITROPHENOL ONTO A WEAKLY ANION EXCHANGER: XPS ANALYSIS AND MECHANISM

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    X-ray photoelectron spectroscopy (XPS ) was adopted to elucidate sorption mechanism of phenol and p-nitrophenol onto a weakly anion exchanger D301. The distribution of specific forms of tertiary amino group on D301 was obtained and effect of free tertiary amino group on phenol sorption onto D301 was discussed. The result indicated that the percent of the protonated tertiary amine group on polymeric matrix was much lower than the reference compound N,N-dimethylbenzylamine at an identical pH value in solution due to the much lower activity degree of hydrogen ion in inner resin phase than in the external solution. Less free amino group on D301 results in less sorption capacity of phenol and p-nitrophenol in an acidic solution. Under the experimental conditions both phenol sorption onto D301 can be explained as solid extraction and the distribution coefficient varies linearly with the content of free amino group on D301.

  8. The direct formate fuel cell with an alkaline anion exchange membrane

    Science.gov (United States)

    Bartrom, Amy M.; Haan, John L.

    2012-09-01

    We demonstrate for the first time an operating Direct Formate Fuel Cell employing formate salts as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, and metal catalysts at the anode and cathode. Operation of the DFFC at 60 °C using 1 M KOOCH and 2 M KOH as the anode fuel and electrolyte and oxygen gas at the cathode produces 144 mW cm-2 of peak power density, 181 mA cm-2 current density at 0.6 V, and an open circuit voltage of 0.931 V. This performance is competitive with alkaline Direct Liquid Fuel Cells (DLFCs) previously reported in the literature and demonstrates that formate fuel is a legitimate contender with alcohol fuels for alkaline DLFCs. A survey of the literature shows that a formate-oxygen fuel cell has a high theoretical potential, and the safe, renewable formate fuel does not poison the anode catalyst.

  9. Controllable Synthesis of Mn6+ Doped Nanoparticles by a Facile Anion Exchange Method

    Science.gov (United States)

    Zhang, Xiaowen; Li, Yang; Liao, Chenxing; Chen, Zhi; Qiu, Jianrong

    2017-01-01

    Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1400 nm) is attracting extensive attention. Mn6+ doped BaSO4 with broadband emission from 900 nm to 1400 nm is emerging as a new class of NIR phosphor for fluorescence imaging. Manganese has diverse valence states, thus it is difficult to prevent valence change of Mn6+ during traditional synthesis process. In this work, BaSO4:Mn6+ nanoparticles with uniform size and morphology were first successfully prepared through a fast liquid-solid solution route at room temperature. The nanoparticles exhibit broadband NIR emission from Mn6+ when excited by 808 nm lasers. This convenient strategy, based on an efficient anion exchange reaction, is proved effective for synthesizing nano-sized materials. The results reveal that our strategy has great potential in fabricating special valence state ion doped nanomaterials.

  10. Ion-exchange chromatography: basic principles and application to the partial purification of soluble mammalian prolyl oligopeptidase.

    Science.gov (United States)

    Cummins, Philip M; Dowling, Oonagh; O'Connor, Brendan F

    2011-01-01

    Ion-exchange chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline protocols necessary to partially purify a serine peptidase from bovine whole brain cytosolic fraction, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described. The target serine peptidase, prolyl oligopeptidase (POP, EC3.4.21.26), is an 80-kDa enzyme with endopeptidase activity towards peptide substrates of ≤30 amino acids. POP is a ubiquitous post-proline cleaving enzyme with particularly high expression levels in the mammalian brain, where it participates in the metabolism of neuroactive peptides and peptide-like hormones (e.g. thyroliberin, gonadotropin-releasing hormone).

  11. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  12. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger.

    Science.gov (United States)

    Cai, Jianguo; Zhang, Yanyang; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2016-10-01

    Water decontamination from fluoride is still a challenging task of global concern. Recently, Al-based layered double hydroxides (LDHs) have been extensively studied for specific fluoride adsorption from water. Unfortunately, they cannot be readily applied in scaled-up application due to their ultrafine particles as well as the regeneration issues caused by their poor stability at alkaline pHs. Here, we developed a novel (LDH)-based hybrid adsorbent, i.e., LALDH-201, by impregnating nanocrystalline Li/Al LDHs (LADLH) inside a commercial polystyrene anion exchanger D201. TEM image and XRD spectra of the resultant nanocomposite confirmed that the LDHs particles were nanosized inside the pores of D201 of highly crystalline nature and well-ordered layer structure. After impregnation, the chemical and mechanical stability of LALDH were significantly improved against pH variation, facilitating its application at a wide pH range (3.5-12). Fluoride adsorption onto LALDH-201 was compared to D201 and activated alumina, evidencing the preferable removal fluoride of LALDH-201. Fluoride adsorption onto LALDH-201 followed pseudo-second-order model, with the maximum capacity (62.5 mg/g from the Sips model) much higher than the other two adsorbents. Fixed-bed adsorption run indicated the qualified treatable volume of the fluoride contaminated groundwater (4.1 mg/L initially) with LALDH-201 was about 11 times as much as with the anion exchanger D201 when the breakthrough point was set as 1.5 mg/L. The capacity of LALDH-201 could be effectively refreshed for continuous column operation without observable loss by using the mixed solution of 0.01 M NaOH + 1 M NaCl. The above results suggested that the hybrid adsorbent LALDH-201 is very promising for water defluoridation in scaled-up application.

  13. Simultaneous determination of peroxydisulfate and conventional inorganic anions by ion chromatography with the column-switching technique.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Wang, Fengli; Zhu, Zuoyi; Subhani, Qamar; Wang, Muhua; Zhu, Yan

    2014-02-01

    The application of ion chromatography with the column-switching technique for the simultaneous analysis of peroxydisulfate and conventional inorganic anions in a single run is described. With this method, conventional inorganic anions were separated by consecutive elution through both the guard column and separation column, but peroxydisulfate that only passed through the guard column had a good peak shape and short retention time. A series of standard solutions consisting of target anions of various concentrations from 0.01 to 75 mg/L were analyzed, with a correlation coefficient (r) ≥ 0.9990. The limits of detection were in the range of 0.49-9.84 μg/L based on the S/N of 3 and a 25 μL injection volume. RSDs for retention time, peak area, and peak height were all <1.77%. A spiking study was performed with satisfactory recoveries between 97.6 and 103.4% for all anions. The quantitative determination of peroxydisulfate and conventional inorganic anions in surface waters was accomplished within 18 min by this column-switching technique.

  14. Ion-exchange chromatography for the characterization of biopharmaceuticals.

    Science.gov (United States)

    Fekete, Szabolcs; Beck, Alain; Veuthey, Jean-Luc; Guillarme, Davy

    2015-09-10

    Ion-exchange chromatography (IEX) is a historical technique widely used for the detailed characterization of therapeutic proteins and can be considered as a reference and powerful technique for the qualitative and quantitative evaluation of charge heterogeneity. The goal of this review is to provide an overview of theoretical and practical aspects of modern IEX applied for the characterization of therapeutic proteins including monoclonal antibodies (Mabs) and antibody drug conjugates (ADCs). The section on method development describes how to select a suitable stationary phase chemistry and dimensions, the mobile phase conditions (pH, nature and concentration of salt), as well as the temperature and flow rate, considering proteins isoelectric point (pI). In addition, both salt-gradient and pH-gradient approaches were critically reviewed and benefits as well as limitations of these two strategies were provided. Finally, several applications, mostly from pharmaceutical industries, illustrate the potential of IEX for the characterization of charge variants of various types of biopharmaceutical products.

  15. Preparation of Two-Layer Anion-Exchange Poly(ethersulfone Based Membrane: Effect of Surface Modification

    Directory of Open Access Journals (Sweden)

    Lucie Zarybnicka

    2016-01-01

    Full Text Available The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride surface layer was covalently attached onto the poly(ethersulfone support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.

  16. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.

    Science.gov (United States)

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi

    2006-08-15

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.

  17. Combined Yamamoto approach for simultaneous estimation of adsorption isotherm and kinetic parameters in ion-exchange chromatography.

    Science.gov (United States)

    Rüdt, Matthias; Gillet, Florian; Heege, Stefanie; Hitzler, Julian; Kalbfuss, Bernd; Guélat, Bertrand

    2015-09-25

    Application of model-based design is appealing to support the development of protein chromatography in the biopharmaceutical industry. However, the required efforts for parameter estimation are frequently perceived as time-consuming and expensive. In order to speed-up this work, a new parameter estimation approach for modelling ion-exchange chromatography in linear conditions was developed. It aims at reducing the time and protein demand for the model calibration. The method combines the estimation of kinetic and thermodynamic parameters based on the simultaneous variation of the gradient slope and the residence time in a set of five linear gradient elutions. The parameters are estimated from a Yamamoto plot and a gradient-adjusted Van Deemter plot. The combined approach increases the information extracted per experiment compared to the individual methods. As a proof of concept, the combined approach was successfully applied for a monoclonal antibody on a cation-exchanger and for a Fc-fusion protein on an anion-exchange resin. The individual parameter estimations for the mAb confirmed that the new approach maintained the accuracy of the usual Yamamoto and Van Deemter plots. In the second case, offline size-exclusion chromatography was performed in order to estimate the thermodynamic parameters of an impurity (high molecular weight species) simultaneously with the main product. Finally, the parameters obtained from the combined approach were used in a lumped kinetic model to simulate the chromatography runs. The simulated chromatograms obtained for a wide range of gradient lengths and residence times showed only small deviations compared to the experimental data.

  18. Ionic polymer-metal composite actuators obtained from radiation-grafted cation- and anion-exchange membranes.

    Science.gov (United States)

    Park, Jong Hyuk; Han, Man Jae; Song, Dae Seock; Jho, Jae Young

    2014-12-24

    Two series of ionic polymer-metal composites (IPMCs), one cationic and one anionic, are designed and prepared from radiation-grafted ion-exchange membranes. Through examination of the properties of the membranes synthesized from the two grafting monomers and the two base polymers, acrylic acid-grafted poly(vinylidene fluoride-co-hexafluoropropylene) and quarternized 4-vinylpyridine-grafted poly(ethylene-co-tetrafluoroethylene) with the appropriate amount of ionic groups are employed for the fabrication of cation and anion IPMCs, respectively. The bending displacement of the cation IPMC is comparable to Nafion-based IPMC under direct- and alternating-current voltage, but back-relaxation is not observed. The actuation performance of the anion IPMC is highly improved over those reported earlier in the literature for the other anion IPMCs.

  19. Extraction of catechol violet, chrome azurol S and eriochrome cyanine R with chloroform solutions of liquid anion-exchangers.

    Science.gov (United States)

    Przeszlakowski, S; Wydra, H

    1984-06-01

    The extraction of Catechol Violet, Chrome Azurol S and Eriochrome Cyanine R with chloroform solutions of tri-n-octylamine (TOA), TOA hydrochloride and Aliquat 336 has been investigated. From the extraction isotherms, absorption spectra of the organic phases and dependence of the extraction coefficients on extractant concentration, it was found that the singly-charged anions HL(-) are extracted preferentially, but acidic groups other than sulphonate can also form ion-pairs with alkylammonium cations at higher pH values of the aqueous phase, and at high acidity these dyes can be extracted other than by an anion-exchange reaction. The three dyes (especially Eriochrome Cyanine R and Chrome Azurol S) were strongly extracted with the liquid anion-exchanger used and Aliquat 336 was a better extractant than TOA or TOA hydrochloride. The absorption spectra for the organic phases containing Chrome Azurol S and Eriochrome Cyanine R depended on the extractant used.

  20. Magnetic cellulose ionomer/layered double hydroxide: An efficient anion exchange platform with enhanced diclofenac adsorption property.

    Science.gov (United States)

    Hossein Beyki, Mostafa; Mohammadirad, Mosleh; Shemirani, Farzaneh; Saboury, Ali Akbar

    2017-02-10

    Polymeric ionomers with anion exchange capability are considered to be classes of environmentally friendly compounds as combination of them with anionic layered hydroxides constitute emerging advance materials. Biosorption by polymeric ionomer - layered double hydroxide (LDH) hybrid material exhibits an attractive green, low cost and low toxic - clean way. As a result, a novel anion exchange platform has been developed by the reaction of CaAl - LDH with Fe(2+), cellulose solution, epichlorohydrin and pyridine. Magnetite cellulose - LDH (MCL) and the ionomer were used for efficient biosorption of diclofenac sodium (DF). Results showed that ionomer has more efficiency for DF adsorption relative to MCL. Magnetite ionomer showed fast equilibrium time (2min) with maximum uptake of 268mgg(-1). Isotherm and Kinetic models were also studied. Regeneration of the sorbent was performed with a mixture of methanol -NaOH (2.0molL(-1)) solution.

  1. A dication cross-linked composite anion-exchange membrane for all-vanadium flow battery applications.

    Science.gov (United States)

    Zhang, Fengxiang; Zhang, Huamin; Qu, Chao

    2013-12-01

    We report the fabrication and properties of a high-performance, inexpensive, composite, anion-exchange membrane (AEM) for an all-vanadium flow battery (VFB) application. The AEM was fabricated by dication cross-linking without the involvement of trimethylamine, and shows well-balanced anion conductivity and robustness due to imidazolium and imidazolium-ammonium functionalities, as well as a concomitantly achieved semi-interpenetrating network structure. The VFB single cell yielded a Coulombic efficiency of 99 % and an energy efficiency of 84 % at 80 mA cm(-2) , and operated for over 900 charge/discharge cycles. This work demonstrates the combined use of several favorable AEM design rationales, such as incorporating abundant and efficient anion-exchange groups, constructing a swelling- and oxidation-resistant structure, and facile fabrication; it provides an effective way of developing high-performance, low-cost AEMs for VFB applications.

  2. An easy method for the preparation of anion exchange membranes: Graft-polymerization of ionic liquids in porous supports

    NARCIS (Netherlands)

    Merle, Geraldine; Chairuna, Annisa; Ven, van de Erik; Nijmeijer, Kitty

    2013-01-01

    A novel way for anion exchange membrane (AEM) preparation has been investigated, avoiding the use of expensive and toxic chemicals. This new synthetic approach to prepare AEMs was based on the use of a porous polybenzylimidazole membrane as support in which functionalized ILs were introduced and sub

  3. Mechanism of sorption sulpho-derivative organic chelating agents on strong base anion exchanger Amberlite IRA-402 by FT-IR/PAS and DRS methods

    Science.gov (United States)

    Wronski, G.; Pasieczna-Patkowska, S.; Hubicki, Z.

    2008-02-01

    In the paper, strong base anion exchanger Amberlite IRA-402 was modified by using sulpho-derivative organic chelating agents as: Brilliant Yellow, Xylenol Orange, Bromophenyl Blue. The investigations exhibited, that anion exchanger Amberlite IRA-402 is modified very simply by organic chelating agents (working capacity 0.25 0.5 g/cm3).

  4. Selection of magnetic anion exchange resins for the removal of dissolved organic and inorganic matters

    Institute of Scientific and Technical Information of China (English)

    Qiongjie Wang; Aimin Li; Jinnan Wang; Chengdong Shuang

    2012-01-01

    Four magnetic anion exchange resins (MAERs) were used as adsorbents to purify drinking water.The effect of water quality (pH,temperature,ionic strength,etc.) on the performance of MAER for the removal of dissolved organic matter (DOM) was also investigated.Among the four studied MAERs,the strong base resin named NDMP-1 with high water content and enhanced exchange capacity exhibited the highest removal rate of dissolved organic carbon (DOC) (48.9% removal rate) and UV-absorbing substances (82.4% removal rate) with a resin dose of 10 mL/L after 30 min of contact time.The MAERs could also effectively remove inorganic matter such as sulfate,nitrate and fluoride.Because of the higher specific UV absorbance (SUVA) value,the DOM in the raw water was found to be removed more effectively than that in the clarified water by NDMP resin.The temperature showed a weak influence on the removal of DOC from 6 to 26℃,while a relatively strong one at 36℃.The removal of DOM by NDMP was also affected to some extent by the pH value.Moreover,increasing the sulfate concentration in the raw water could decrease the removal rates of DOC and UV-absorbing substances.

  5. L(+-Lactic acid recovery from cassava bagasse based fermented medium using anion exchange resins

    Directory of Open Access Journals (Sweden)

    Rojan P. John

    2008-12-01

    Full Text Available The properties of the ion exchange resins, Amberlite IRA 402, a strong anion exchange resin and IRA 67, a weak anion exchange resin were determined to evaluate their comparative suitability for lactic acid recovery from fermented cassava bagasse. Data on binding capacities and recovery proved that weak base resin in chloride form was the most favourable ones for lactic acid recovery from aqueous solutions and fermentation media. Fermented media obtained through simultaneous saccharification and fermentation of cassava bagasse starch hydrolysate based medium were used for lactic acid recovery study using weak base resin column. Amberlite IRA 67 had much more efficiency than Amberlite IRA 402 to recover lactic acid. Like in other reports, due to the presence of nutrients and ions other than lactate, the binding capacity was slightly lesser while using fermented media (~93% instead of aqueous lactic acid solutions (~98%.As propriedades das resinas de troca iônica, da Amberlite IRA 402, uma resina de troca aniônica forte, e da IRA 67, uma resina de troca aniônica fraca, foram determinadas para se avaliar a adequabilidade comparativa delas à obtenção de ácido lático de bagaço de mandioca fermentado. Dados sobre a capacidade de ligação e sobre a obtenção provaram que a resina de base fraca na forma de cloreto era a mais adequada para a obtenção de ácido lático em soluções aquosas e meios de fermentação. Os meios de fermentação obtidos da sacarificação e da fermentação simultâneas de meios baseados hidrolisados de fécula de bagaço de mandioca foram usados para o estudo da obtenção de ácido lático usando uma coluna de resina de base fraca. A Amberlite IRA 67 mostrou-se muito mais eficaz do que a Amberlite IRA 402 para a obtenção de ácido lático. Como em outros relatórios, devido à presença de nutrientes e íons que não lactatos, a capacidade de ligação foi ligeiramente inferior enquanto se utilizavam meios

  6. Determination of anions using monolithic capillary column ion chromatography with end-to-end differential contactless conductometric detectors under resonance approach.

    Science.gov (United States)

    Zhang, Zhenli; Li, Dongdong; Liu, Xueyong; Subhani, Qamar; Zhu, Yan; Kang, Qi; Shen, Dazhong

    2012-06-21

    An end-to-end differential measurement approach with capacitively coupled contactless conductivity detection (C(4)D) was applied to anion-exchange monolithic capillary column ion chromatography. The column was prepared by thermally initiated radical polymerization of poly(glycidyl methacrylate) in a fused-silica capillary of 320 μm i.d. and modified by quaternary ammonium latex surface coating. Two C(4)Ds were placed near both ends of the capillary column and the output difference between them was measured. With 15 mM potassium hydrogen phthalate used as the eluent, good separation of a mixture of inorganic anions (F(-), Cl(-), NO(2)(-), NO(3)(-)) was achieved. The detection limits of conventional C(4)D are 1.6, 0.28, 0.53, and 0.47 mg L(-1) for F(-), Cl(-), NO(2)(-), and NO(3)(-), respectively. To further enhance the sensitivity, the capacitive impedance from C(4)D was neutralized by an inductive impedance from a piezoelectric resonator. An increase in sensitivity by a factor of 7-8 was achieved in the resonating C(4)D in comparison with the conventional C(4)D. The detection limits of the resonating C(4)D are 0.23, 0.041, 0.065, and 0.059 mg L(-1) for F(-), Cl(-), NO(2)(-), and NO(3)(-), respectively. The response of the resonating C(4)D was analyzed based on an equivalent circuit model.

  7. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans.

    Directory of Open Access Journals (Sweden)

    Katia Urso

    Full Text Available Anion exchanger 2 (Ae2; gene symbol, Slc4a2 is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated.

  8. Purification of a recombinant baculovirus of Autographa californica M nucleopolyhedrovirus by ion exchange membrane chromatography.

    Science.gov (United States)

    Grein, Tanja A; Michalsky, Ronald; Vega López, Maria; Czermak, Peter

    2012-08-01

    Significant progress in the application of viral vectors for gene delivery into mammalian cells and the use of viruses as biopesticides requires downstream processing that can satisfy application-specific demands on performance. In the present work the stability and ion exchange membrane chromatography of a recombinant of Autographa californica M nucleopolyhedrovirus is studied. To adjust the degree of purification the effect of ionic conductivity or pH on the viral infectivity was assessed (0.77-78.00mS/cm, pH 3-8). Infectivity decreased rapidly by several orders of magnitude at below 5mS/cm (i.e., 0.49MPa osmotic pressure change) or at below pH 5.5 (rationalized with particle aggregation). The virus was concentrated and purified via adsorption (0.2-1.1×10(16)pfu/m(3) chromatographic bed volume, 0.6-1.1×10(12)pfu/m(2) membrane area facing the incident fluid flow) and elution at pH 6.1 and 6.35mS/cm from three strong anion exchange membranes. Virus recovery and concentration in accord with the volume reduction were obtained using a polyether sulfone-based membrane with quaternary ammonium ligands. The level of host cell protein (down to below the detection limit) and suspended DNA (below 93pg DNA per 10(6)pfu) are reported for each membrane employed, for the purpose of comparability, under equal adsorption or elution conditions respectively.

  9. High-pH anion-exchange chromatographic analysis of phosphorylated compounds: application to isolation and characterization of nonpeptide mycobacterial antigens.

    Science.gov (United States)

    Poquet, Y; Constant, P; Peyrat, M A; Poupot, R; Halary, F; Bonneville, M; Fournié, J J

    1996-12-01

    A rapid and sensitive high-pH anion-exchange chromatography (HPAEC) method for the separation and quantification of phosphorylated antigens in mycobacterial extracts has been developed. This method provides the separation of mono-, di-, or triphosphonucleotides and of various other phosphorylated molecules. Dual detection by conductimetry and UV absorption downstream of a chemical suppressor constitute nondegradative and highly sensitive tools for the physical detection and the quantification of phosphorylated compounds in biological samples. The lower limit of accurate quantification is around 1 nmol per sample. This method was used for the separation of several phosphorylated antigens activating human gamma delta T lymphocytes from semipurified mycobacterial fractions. Their quantification revealed that the minimal concentration activating a gamma delta T cell clone is between 1 and 5 nM. This approach can be used for more general preparative purposes with samples where minute amounts of biologically active phosphoanions are analyzed.

  10. A Simple and Efficient Method for Purification of Egg White Major Proteins Using Ion Exchange Chromatography

    OpenAIRE

    Sh. Veisi; A. Mostafaie; Z. Mohammad Hasan

    2008-01-01

    Introduction & Objective: Egg white contains four high-quantity proteins which have numerous applications. In this research, a simple and efficient method for the purification of those proteins was designed and performed based on ion exchange chromatography.Materials & Methods: In this experimental study egg white was initially separated from insoluble substances by acidic pH. The resulting extract was isolated after two steps of ion exchange chromatography using CM-Sepharose and DEAE-Sepharo...

  11. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: effects of resin properties and solution chemistry.

    Science.gov (United States)

    Deng, Shubo; Yu, Qiang; Huang, Jun; Yu, Gang

    2010-10-01

    Perfluorooctane sulfonate (PFOS) is a new persistent organic pollutant of substantial environmental concern, and its removal from industrial wastewater is critical to eliminate its release into water environment. In this paper, six anion exchange resins with different polymer matrix, porosity, and functional group were evaluated for PFOS removal from simulated wastewater. Resin matrix displayed significant effect on the sorption kinetics and capacity of PFOS, and the polyacrylic resins including IRA67 and IRA958 exhibited faster sorption and higher sorption capacity for PFOS than the polystyrene resins due to the hydrophilic matrix. Sorption isotherms illustrated that the sorption capacity of PFOS on IRA67 and IRA958 was up to 4-5 mmol/g, and the amount of PFOS sorbed on the resins was more than chloride released from resins, indicating that other interactions besides anion exchange were involved in the sorption. Solution pH had little impact on the sorption of PFOS on IRA958, but displayed significant effect on IRA67 at pH above 10 due to the deprotonation of amine groups. The coexisting sulfate and hexavalent chromium in wastewater interfered with the sorption of PFOS because of their competitive sorption on the exchange sites. The spent resins were successfully regenerated using the mixture of NaCl and methanol solution. This work provided an understanding of sorption behavior and mechanism of PFOS on different anion exchange resins, and should result in more effective applications of ion exchange for PFOS removal from industrial wastewater.

  12. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics.

    Science.gov (United States)

    Valeja, Santosh G; Xiu, Lichen; Gregorich, Zachery R; Guner, Huseyin; Jin, Song; Ge, Ying

    2015-01-01

    To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.

  13. Model of a vanadium redox flow battery with an anion exchange membrane and a Larminie-correction

    Science.gov (United States)

    Wandschneider, F. T.; Finke, D.; Grosjean, S.; Fischer, P.; Pinkwart, K.; Tübke, J.; Nirschl, H.

    2014-12-01

    Membranes are an important part of vanadium redox flow battery cells. Most cell designs use Nafion®-type membranes which are cation exchange membranes. Anion exchange membranes are reported to improve cell performance. A model for a vanadium redox flow battery with an anion exchange membrane is developed. The model is then used to calculate terminal voltages for open circuit and charge-discharge conditions. The results are compared to measured data from a laboratory test cell with 40 cm2 active membrane area. For higher charge and discharge currents, an empirical correction for the terminal voltage is proposed. The model geometry comprises the porous electrodes and the connected pipes, allowing a study of the flow in the entrance region for different state-of-charges.

  14. Investigating the Effects of Guest-Host Interactions on the Properties of Anion-Exchanged Mg-Al Hydrotalcites

    Science.gov (United States)

    Malherbe, François; Besse, Jean-Pierre

    2000-12-01

    A starting [Mg-Al-Cl] LDH, prepared by coprecipitation, was further anion-exchanged to incorporate a variety of anions in the interlayer domain: (Fe(CN)6)3-, (P2O7)4-, (V2O7)4-, (CrO4)2-, and (Cr2O7)2-. The resulting materials were fully characterized using classical techniques like XRPD, FTIR, TGA/DTA, and BET, and their structural modifications studied as a function of calcination temperatures. Under mild calcination, only the oxo-anions were shown to interact strongly with the host matrix. This resulted in a systematic shrinkage of the interlamellar domain, with a negative impact on the surface properties. However, intercalation of oxo-anions proved to be beneficial to thermal stability, the lamellar structure being maintained up to 400°C in the case of the dichromate intercalated [Mg-Al]. A thorough analysis of the FTIR spectra, revealing an evolution in the symmetry of some oxo-anions, confirmed the occurrence of a grafting process. Furthermore, the permanent character of the pillars was evidenced through unsuccessful rehydration and back-exchange reactions.

  15. Anion exchange removal of Al3+ from Li+-Al3+ aqueous solution (originating from lithium recovery from brine)

    OpenAIRE

    Anissa Somrani; Ahmed Hichem Hamzaoui; Adel M’Nif

    2014-01-01

    The purpose of this study is to separate aluminum(III) ion from an aqueous solution containing Li+ at 25°C. Al3+ was transferred into [Al(C2O4)3]3- by means of complexation and removed by an anion exchange resin. This resin was anionic type Amberlite IRA 402 regenerated by sodium chloride. Hence, a theoretical study based on speciation diagrams was carried out to determine the best pH domain for separation. The complexation of aluminum ions by ammonium oxalate was studied. The motar ratio of ...

  16. Thermodynamics of ion exchange equilibrium for some uni-univalent and divalent reaction systems using strongly basic anion exchange resin Indion FF-IP

    Directory of Open Access Journals (Sweden)

    P.U. Singare

    2008-12-01

    Full Text Available The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Indion FF-IP. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. For uni-univalent ion exchange reaction systems, the equilibrium constant K’ were also calculated by considering mole fraction of ions in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems were observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 22.45, 28.57, 17.84, 15.97 kJ/mol, respectively.

  17. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    Energy Technology Data Exchange (ETDEWEB)

    Duangtum, Natapol [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Junking, Mutita; Sawasdee, Nunghathai [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Cheunsuchon, Boonyarit [Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai, E-mail: limjindaporn@yahoo.com [Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2011-09-16

    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.

  18. Oxygen isotope fractionation in phosphates: the role of dissolved complex anions in isotope exchange.

    Science.gov (United States)

    Zheng, Yong-Fei

    2016-01-01

    Oxygen isotope fractionation factors for phosphates were calculated by means of the increment method. The results suggest that Ag3PO4 and BiPO4 are enriched in (18)O relative to AgPO4, and the three phosphates are consistently depleted in (18)O relative to Ba3[PO4]2; fluorapatite and chlorapatite exhibit a similar behaviour of oxygen isotope fractionation with consistent enrichment of (18)O relative to hydroxyapatite. The valence, radii and coordination of metal cations play a quantitative role in dictating the (18)O/(16)O partitioning in these phosphates of different compositions. The calculated fractionation factors for the Ag3PO4-H2O system are in agreement with experimental determinations derived from enzyme-catalysed isotope exchange between dissolved inorganic phosphate and water at the longest reaction durations at low temperatures. This demonstrates that the precipitated Ag3PO4 has completely captured the oxygen isotope fractionation in the dissolved inorganic phosphate. The calculated fractionation factors for the F/Cl-apatite-water systems are in agreement with the enzyme-catalysed experimental fractionations for the dissolved phosphate-water system at the longest reaction durations but larger than fractionations derived from bacteria-facilitated exchange and inorganic precipitation experiments as well as natural observations. For the experimental calibrations of oxygen isotope fractionation involving the precipitation of dissolved phosphate species from aqueous solutions, the fractionation between precipitate and water is primarily dictated by the isotope equilibration between the dissolved complex anions and water prior to the precipitation. Therefore, the present results provide a quantitative means to interpret the temperature dependence of oxygen isotope fractionation in inorganic and biogenic phosphates.

  19. Analysis of particle content of recombinant adeno-associated virus serotype 8 vectors by ion-exchange chromatography.

    Science.gov (United States)

    Lock, Martin; Alvira, Mauricio R; Wilson, James M

    2012-02-01

    Advances in adeno-associated virus (AAV)-mediated gene therapy have brought the possibility of commercial manufacturing of AAV vectors one step closer. To realize this prospect, a parallel effort with the goal of ever-increasing sophistication for AAV vector production technology and supporting assays will be required. Among the important release assays for a clinical gene therapy product, those monitoring potentially hazardous contaminants are most critical for patient safety. A prominent contaminant in many AAV vector preparations is vector particles lacking a genome, which can substantially increase the dose of AAV capsid proteins and lead to possible unwanted immunological consequences. Current methods to determine empty particle content suffer from inconsistency, are adversely affected by contaminants, or are not applicable to all serotypes. Here we describe the development of an ion-exchange chromatography-based assay that permits the rapid separation and relative quantification of AAV8 empty and full vector particles through the application of shallow gradients and a strong anion-exchange monolith chromatography medium.

  20. Determination of common anions in oxalate by ion chromatography coupled with UV photolysis pretreatment

    Institute of Scientific and Technical Information of China (English)

    Sheng Lin Cao; Ming Li Ye; Wei De Lv; Guang Wen Pan; Ting Ting Zhang; Zhong Yang Hu; Li Na Liang; Yan Zhu

    2012-01-01

    A new and simple method was developed to determine anions in oxalate of analytical reagent grade.After UV photolysis with optimal 1% H2O2 in 10,000 mg/L oxalate in the fabricated photoreactor,sample was directly injected into IC system.Satisfactory linearity,detections limits,good repeatability and spiked recovery were obtained.The method was successfully applied to determine anions in two commercial oxalate samples.

  1. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Duan, QJ; Ge, SH; Wang, CY

    2013-12-01

    Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34. (C) 2013 Elsevier B.V. All rights reserved.

  2. Adsorption of Zinc and Cyanide from Cyanide Effluents on Anionic Ion-exchange Resin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-li; FANG Tao; YU Xian-jin

    2013-01-01

    The adsorption of zinc and cyanide from cyanide effluents onto strong and weak basic anion exchange resins was studied in a batch adsorption system.Factors influencing the adsorption rates such as resin selection,resin amounts,contact time and temperature were studied and scanning electron microscopy-energy disperse spectroscopy(SEM-EDS) was used in the analysis.The present study shows that the adsorption capacity of resin 201 ×7 is better than that of resin 301.The adsorption process was relatively fast and came to equilibrium after 60 min.The kinetic data were analyzed with three models and the pseudo-second-order kinetic model was found to agree with the experimental data well.The equilibrium data could also be described well by Langmuir isotherm model.Thermodynamic parameters such as enthalpy change(△H0),free energy change(△G0) and entropy change(△S0) were calculated and the adsorption process was spontaneous and endothermic.

  3. Carbon Supported Ag Nanoparticles as High Performance Cathode Catalyst for Anion Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Le eXin

    2013-09-01

    Full Text Available A solution phase-based nanocapsule method was successfully developed to synthesize non-precious metal catalyst - carbon supported Ag nanoparticles (Ag/C. XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm and narrow size distribution (2-9 nm are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR on the Ag/C and commercial Pt/C were investigated using rotating ring disc electrode (RRDE tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80 oC.

  4. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    Science.gov (United States)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin

    2016-09-01

    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  5. Expression of anion exchanger 3 influences respiratory rate in awake and isoflurane anesthetized mice.

    Science.gov (United States)

    Meier, S; Hübner, C A; Groeben, H; Peters, J; Bingmann, D; Wiemann, M

    2007-11-01

    The anion exchanger 3 (AE3) is involved in neuronal pH regulation of which may include chemosensitive neurons. Here we examined the effect of AE3 expression on respiratory rate (RR) in vivo. AE3 knockout (KO, n=5) and wild type (WT, n=6) mice were subjected to body plethysmography, both while awake and during isoflurane anesthesia. RR was significantly lower in awake AE3 KO (162+/-7SE min(-1)) than in WT mice (212+/-20 min(-1), P=0.036). The same was found during isoflurane anesthesia at 0.5 MAC (KO: 123+/-9 min(-1), WT: 168+/-15 min(-1), P=0.026) and 1.0 MAC (KO: 51+/-6 min(-1), WT: 94+/-6 min(-1), P=0.001). Hypercapnia (5% CO2) increased RR in awake and decreased RR in nesthetized (1.0 MAC) mice, whereby relative changes were larger in AE3 KO mice. Recovery from isoflurane anesthesia in respect to RR regaining baseline values was more pronounced in AE3 KO. Results show that AE3 expression profoundly influences control of breathing in mice.

  6. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    Science.gov (United States)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan

    2015-03-01

    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  7. PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.; King, W.; O' Rourke, P.

    2012-07-26

    Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

  8. A new method for antimony speciation in plant biomass and nutrient media using anion exchange cartridge.

    Science.gov (United States)

    Tisarum, Rujira; Ren, Jing-Hua; Dong, Xiaoling; Chen, Hao; Lessl, Jason T; Ma, Lena Q

    2015-11-01

    A selective separation method based on anion exchange cartridge was developed to determine antimony (Sb) speciation in biological matrices by graphite furnace atomic absorption spectrophotometry (GFAAS). The selectivity of the cartridge towards antimonite [Sb(III)] and antimonate [Sb(V)] reversed in the presence of deionized (DI) water and 2mM citric acid. While Sb(V) was retained by the cartridge in DI water, Sb(III) was retained in citric acid media. At pH 6, Sb(III) and Sb(V) formed Sb(III)- and Sb(V)-citrate complexes, but the cartridge had higher affinity towards the Sb(III)-citrate complex. Separation of Sb(III) was tested at various concentrations in fresh and spent growth media and plant tissues. Our results showed that cartridge-based Sb speciation was successful in plant tissues, which was confirmed by HPLC-ICP-MS. The cartridge retained Sb(III) and showed 92-104% Sb(V) recovery from arsenic hyperaccumulator Pteris vittata roots treated with Sb(III) and Sb(V). The cartridge procedure is an effective alternative for Sb speciation, offering low cost, reproducible results, and simple Sb analysis using GFAAS.

  9. Anionic Gallium-Based Metal;#8722;Organic Framework and Its Sorption and Ion-Exchange Properties

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debasis; Kim, Sun Jin; Wu, Haohan; Xu, Wenqian; Borkowski, Lauren A.; Li, Jing; Parise, John B. (Kwangju); (Rutgers); (SBU)

    2012-04-30

    A gallium-based metal-organic framework Ga{sub 6}(C{sub 9}H{sub 3}O{sub 6}){sub 8} {center_dot} (C{sub 2}H{sub 8}N){sub 6}(C{sub 3}H{sub 7}NO){sub 3}(H{sub 2}O){sub 26} [1, Ga{sub 6}(1,3,5-BTC){sub 8} {center_dot} 6DMA {center_dot} 3DMF {center_dot} 26H{sub 2}O], GaMOF-1; BTC = benzenetricarboxylate/trimesic acid and DMA = dimethylamine, with space group I{bar 4}3d, a = 19.611(1) {angstrom}, and V = 7953.4(6) {angstrom}{sup 3}, was synthesized using solvothermal techniques and characterized by synchrotron-based X-ray microcrystal diffraction. Compound 1 contains isolated gallium tetrahedra connected by the organic linker (BTC) forming a 3,4-connected anionic porous network. Disordered positively charged ions and solvent molecules are present in the pore, compensating for the negative charge of the framework. These positively charged molecules could be exchanged with alkali-metal ions, as is evident by an ICP-MS study. The H{sub 2} storage capacity of the parent framework is moderate with a H{sub 2} storage capacity of {approx}0.5 wt % at 77 K and 1 atm.

  10. Effect of hydroxide and carbonate alkaline media on anion exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Jose A.; Chartier, Casey; Mustain, William E. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd., Unit 3222, Storrs, CT 06269 (United States)

    2010-11-01

    The effect of hydroxide and carbonate alkaline environments on the chemical stability and ionic conductivity of five commercially available anion exchange membranes was investigated. Exposure of the membranes to concentrated hydroxide environments (1 M) had a detrimental effect on ionic conductivity with time. Over a 30-day period, decreases in conductivity ranged from 27% to 6%, depending on the membrane. The decrease in ionic conductivity is attributed to the loss of stationary cationic sites due to the Hofmann elimination and nucleophilic displacement mechanisms. Exposure of the membranes to low concentration hydroxide (10{sup -4} M) or carbonate/bicarbonate (0.5 M Na{sub 2}CO{sub 3}/0.5 M NaHCO{sub 3}) environments had no measurable effect on the ionic conductivity over a 30-day period. ATR-FTIR spectroscopy confirmed degradation of membranes soaked in 1 M KOH. Apparition of a doublet peak in the region between 1600 cm{sup -1} and 1675 cm{sup -1} confirms formation of carbon-carbon double bonds due to Hofmann elimination. Membranes soaked in mild alkaline environments did not show formation of carbon-carbon double bonds. (author)

  11. Expression of Anion Exchanger 1 Sequestrates p16 in the Cytoplasm in Gastric, Colonic Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Wei-Wei Shen

    2007-10-01

    Full Text Available p16INK4A (p16 binds to cyclin-dependent kinase 4/6, negatively regulates cell growth. Recent studies have led to an understanding of additional biologic functions for p16; however, the detailed mechanisms involved are still elusive. In this article, we show an unexpected expression of anion exchanger 1 (AEi in the cytoplasm in poorly, moderately differentiated gastric, colonic adenocarcinoma cells, in its interaction with p16, thereby sequestrating the protein in the cytoplasm. Genetic alterations of p16, AEi were not detectable. Forced expression of AEi in these cells sequestrated more p16 in the cytoplasm, whereas small interfering RNA-mediated silencing of AEi in the cells induced the release of p16 from the cytoplasm to the nucleus, leading to cell death, growth inhibition of tumor cells. By analyzing tissue samples obtained from patients with gastric, colonic cancers, we found that 83.33% of gastric cancers, 56.52% of colonic cancers coexpressed AEi, p16 in the cytoplasm. We conclude that AEi plays a crucial role in the pathogenesis of gastric, colonic adenocarcinoma, that p16 dysfunction is a novel pathway of carcinogenesis.

  12. Poly(phenyl sulfone) anion exchange membranes with pyridinium groups for vanadium redox flow battery applications

    Science.gov (United States)

    Zhang, Bengui; Zhang, Enlei; Wang, Guosheng; Yu, Ping; Zhao, Qiuxia; Yao, Fangbo

    2015-05-01

    To develop high performance and cost-effective membranes with low permeability of vanadium ions for vanadium redox flow battery (VRFB) application, poly(phenyl sulfone) anion exchange membranes with pyridinium groups (PyPPSU) are prepared and first investigated for VRFB application. PyPPSU membranes show much lower vanadium ions permeability (0.07 × 10-7-0.15 × 10-7 cm2 min-1) than that of Nafion 117 membrane (31.3 × 10-7 cm2 min-1). As a result, the self-discharge duration of the VRFB cell with PyPPSU membrane (418 h) is about four times longer than that of VRFB cell with Nafion 117 membrane (110 h). Furthermore, the VRFB cell with PyPPSU membrane exhibits higher battery efficiency (coulombic efficiency of 97.8% and energy efficiency of 80.2%) compare with that of VRFB cell with Nafion 117 membrane (coulombic efficiency of 96.1% and energy efficiency of 77.2%) at a high current density of 100 mA cm-2. In addition, PyPPSU membrane exhibits stable performance in 100-cycle test. The results indicate that PyPPSU membrane is high performance and low-cost alternative membrane for VRFB application.

  13. Iron-mediated induction of sister-chromatid exchanges by hydrogen peroxide and superoxide anion.

    Science.gov (United States)

    Larramendy, M; Mello-Filho, A C; Martins, E A; Meneghini, R

    1987-05-01

    When Chinese hamster fibroblasts were exposed to hydrogen peroxide or to a system consisting of xanthine oxidase and hypoxanthine, which generates superoxide anion plus hydrogen peroxide, sister-chromatid exchanges (SCEs) were formed in a dose-dependent manner. When the iron-complexing agent o-phenanthroline was present in the medium, however, the production of these SCEs was completely inhibited. This fact indicates that the Fenton reaction: Fe2+ + H2O2----OH0 + OH- + Fe3+ is responsible for the production of SCEs. When O2- and H2O2 were generated inside the cell by incubation with menadione, the production of SCE was prevented by co-incubation with copper diisopropylsalicylate, a superoxide dismutase mimetic agent. The most likely role of O2- is as a reducing agent of Fe3+: O2- + Fe3+----Fe2+ + O2, so that the sum of this and the Fenton reaction, i.e., the iron-catalyzed Haber-Weiss reaction, provides an explanation for the active oxygen species-induced SCE: H2O2 + O2(-)----OH- + OH0 + O2. According to this view, the OH radical thus produced is the agent which ultimately causes SCE. These results are discussed in comparison with other mechanisms previously proposed for induction of SCE by active oxygen species.

  14. Anion exchange membranes based on semi-interpenetrating polymer network of quaternized chitosan and polystyrene.

    Science.gov (United States)

    Wang, Jilin; He, Ronghuan; Che, Quantong

    2011-09-01

    Anion exchange membranes with semi-interpenetrating polymer network (semi-IPN) were prepared based on quaternized chitosan (QCS) and polystyrene (PS). The PS was synthesized by polymerization of styrene monomers in the emulsion of the QCS in an acetic acid aqueous solution under nitrogen atmosphere at elevated temperatures. The semi-IPN system was formed by post-cross-linking of the QCS. A hydroxyl ionic conductivity of 2.80×10(-2) S cm(-1) at 80°C and a tensile stress at break of 20.0 MPa at room temperature were reached, respectively, by the semi-IPN membrane containing 21 wt.% of the PS. The durability of the semi-IPN membrane in alkaline solutions was tested by monitoring the variation of the conductivity and the mechanical strength. The degradation of the conductivity at 80°C was about 5% by immersing the membrane in a 1 mol L(-1) KOH solution at room temperature for 72 h and at 60°C for 50 h, respectively. The tensile stress at break at room temperature could maintain about 20.0 MPa for the membrane soaking in a 10 mol L(-1) KOH solution at ambient temperature for more than 70 h. The water swelling of the semi-IPN membranes was discussed based on the stress relaxation model of polymer chains, and it obeyed the Schott's second-order swelling kinetics.

  15. Functional rescue of a kidney anion exchanger 1 trafficking mutant in renal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Carmen Y S Chu

    Full Text Available Mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1 can cause distal renal tubular acidosis (dRTA, a disease often due to mis-trafficking of the mutant protein. In this study, we investigated whether trafficking of a Golgi-retained dRTA mutant, G701D kAE1, or two dRTA mutants retained in the endoplasmic reticulum, C479W and R589H kAE1, could be functionally rescued to the plasma membrane of Madin-Darby Canine Kidney (MDCK cells. Treatments with DMSO, glycerol, the corrector VX-809, or low temperature incubations restored the basolateral trafficking of G701D kAE1 mutant. These treatments had no significant rescuing effect on trafficking of the mis-folded C479W or R589H kAE1 mutants. DMSO was the only treatment that partially restored G701D kAE1 function in the plasma membrane of MDCK cells. Our experiments show that trafficking of intracellularly retained dRTA kAE1 mutants can be partially restored, and that one chemical treatment rescued both trafficking and function of a dRTA mutant. These studies provide an opportunity to develop alternative therapeutic solutions for dRTA patients.

  16. Ion-exchange chromatography separation applied to mineral recycle in closed systems

    Science.gov (United States)

    Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1981-01-01

    As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.

  17. Intercalation chemistry in a LDH system: anion exchange process and staging phenomenon investigated by means of time-resolved, in situ X-ray diffraction.

    Science.gov (United States)

    Taviot-Guého, Christine; Feng, Yongjun; Faour, Azzam; Leroux, Fabrice

    2010-07-14

    Using time-resolved, in situ energy-dispersive X-ray diffraction (EDXRD), the formation of interstratified LDH structures, with alternate interlayer spaces occupied by different anions, have been demonstrated during anion exchange reactions. Novel hybrid LDH nanostructures can thus be prepared, combining the physicochemical properties of two intercalated anions plus those of the LDH host. A general trend is that inorganic-inorganic anion exchange reactions occur in a one-step process while inorganic-organic exchanges may proceed via a second-stage intermediate, suggesting that staging occurs partly as a result of organic-inorganic separation. Yet, other influencing parameters must be considered such as LDH host composition, LDH affinity for different anions and LDH particle size as well as extrinsic parameters like the reaction temperature. Hence, a correlation between the occurrence of staging phenomenon and the difficulty of the exchange of the initial anion is observed, suggesting that staging is needed to overcome the energy barrier in the case of the exchange by organic anions. Notwithstanding the LiAl(2) system, staging has mainly been observed with Zn(2)Cr LDH host so far, a peculiar LDH composition with a unique Zn/Cr ratio of two and a local order of the cations within the hydroxide layers. The formation of a higher order-staged intermediate than stage two, observed during the exchange reaction of CO(3)(2-) or SO(4)(2-) anions with Zn(2)Cr-tartrate, is in favour of a Daumas-Herold model although this model implies a bending of LDH layers. The analysis of the X-ray powder diffraction pattern of Zn(2)Cr-Cl/tartrate second-stage intermediate, isolated almost as a pure phase during the exchange of Cl(-) with tartrate anions in Zn(2)Cr LDH, indicates a disorder in the stacking sequence and a relative proportion of the two kinds of interlayers slightly different from 50/50. Besides, the microstructural analysis of the XRD pattern reveals a great reduction of the

  18. Eu(III) complexes as anion-responsive luminescent sensors and paramagnetic chemical exchange saturation transfer agents.

    Science.gov (United States)

    Hammell, Jacob; Buttarazzi, Leandro; Huang, Ching-Hui; Morrow, Janet R

    2011-06-06

    The Eu(III) complex of (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (S-THP) is studied as a sensor for biologically relevant anions. Anion interactions produce changes in the luminescence emission spectrum of the Eu(III) complex, in the (1)H NMR spectrum, and correspondingly, in the PARACEST spectrum of the complex (PARACEST = paramagnetic chemical exchange saturation transfer). Direct excitation spectroscopy and luminescence lifetime studies of Eu(S-THP) give information about the speciation and nature of anion interactions including carbonate, acetate, lactate, citrate, phosphate, and methylphosphate at pH 7.2. Data is consistent with the formation of both innersphere and outersphere complexes of Eu(S-THP) with acetate, lactate, and carbonate. These anions have weak dissociation constants that range from 19 to 38 mM. Citrate binding to Eu(S-THP) is predominantly innersphere with a dissociation constant of 17 μM. Luminescence emission peak changes upon addition of anion to Eu(S-THP) show that there are two distinct binding events for phosphate and methylphosphate with dissociation constants of 0.3 mM and 3.0 mM for phosphate and 0.6 mM and 9.8 mM for methyl phosphate. Eu(THPC) contains an appended carbostyril derivative as an antenna to sensitize Eu(III) luminescence. Eu(THPC) binds phosphate and citrate with dissociation constants that are 10-fold less than that of the Eu(S-THP) parent, suggesting that functionalization through a pendent group disrupts the anion binding site. Eu(S-THP) functions as an anion responsive PARACEST agent through exchange of the alcohol protons with bulk water. The alcohol proton resonances of Eu(S-THP) shift downfield in the presence of acetate, lactate, citrate, and methylphosphate, giving rise to distinct PARACEST peaks. In contrast, phosphate binds to Eu(S-THP) to suppress the PARACEST alcohol OH peak and carbonate does not markedly change the alcohol peak at 5 mM Eu(S-THP), 15 mM carbonate at p

  19. Selective Anion Exchange Resins for the Removal of Perchlorate [(CIO{sub 4}{sup -})] from Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Gu, B.

    1999-05-20

    The primary objective of this project was to evaluate a novel bifunctional anion exchange resin for the cost-effective, in situ treatment of groundwater contaminated with perchlorate (ClO{sub 4}{sup -}). Both laboratory and field studies were performed to determine the selectivity and capacity of the bifunctional synthetic resins to sorb ClO{sub 4}{sup -} from simulated or actual contaminated groundwater. A number of synthetic bifunctional resins, including two commercial versions made by Purolite International and three commercially available, mono-functional resins, were tested. Initial laboratory batch and column breakthrough studies determined the best synthetic resins and the optimal conditions for the field experiment. Laboratory results indicated that the bifunctional synthetic resins, D-3696 and RO-02-119 were highly selective toward ClO{sub 4}{sup -} and performed {approx}5 times better than the best commercial nitrate resin (Purolite{reg_sign} A-520E) and more than an order of magnitude better than some nonselective commercial resins (e.g. Amberlite{reg_sign} IRA-900). The bifunctional resins were particularly effective in removing trace quantities of ClO{sub 4}{sup -} in groundwater to below the detection limit ({approx} 3 {micro}g/L). A field trial demonstrated that the bifunctional resin (D-3696) was able to treat {approx} 110,000 bed volumes of groundwater before a 10% breakthrough of ClO{sub 4}{sup -} occurred under the column flow-through conditions (running at {approx} 2 bed volumes per minute). On the other hand, the Purolite{reg_sign} A-520E resin was able to treat {approx} 23,000 bed volumes of groundwater under the same experimental conditions. No pretreatment was needed to remove either dissolved organic matter or other competing anions (such as SO{sub 4}{sup 2-} or NO{sub 3}{sup -}) in the groundwater, and the treatment process did not alter the water quality by removing or adding secondary by-products because of the high selectivity of the

  20. THERMODYNAMIC STUDY ON ADSORPTION OF AROMATIC SULFONIC ACIDS ONTO MACROPOROUS WEAK BASE ANION EXCHANGER FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Chao Long; Quan-xing Zhang; Ai-min Li; Jin-long Chen

    2004-01-01

    The adsorption equilibrium isotherms of three aromatic sulfonic acid compounds, 2-naphthalenesulfonic acid, ptoluenesulfonic acid and p-chlorobenzenesulfonic acid, from aqueous solutions by macroporous weak base anion exchanger within the temperature range of 293 K-313 K were obtained. Several isotherm equations were correlated with the equilibrium data, and the experimental data was found to fit the three-parameter Redlich-Peterson equation best within the entire range of concentrations. The study showed that the hydrophobicity of solute has distinct influence on adsorption capacity of the anion exchanger for the aromatic sulfonic acid. Moreover, estimations of the isosteric enthalpy, free energy,and entropy change of adsorption were also reported. The positive isosteric enthalpy and entropy change for adsorption indicate an endothermic and entropy driven process in the present study.

  1. Development of an Ion Chromatography Method for Analysis of Organic Anions (Fumarate, Oxalate, Succinate, and Tartrate) in Single Chromatographic Conditions.

    Science.gov (United States)

    Kaviraj, Yarbagi; Srikanth, B; Moses Babu, J; Venkateswara Rao, B; Paul Douglas, S

    2015-01-01

    A single organic counterion analysis method was developed by using an ion chromatography separation technique and conductivity detector. This allows the rapid characterization of an API to support clinical studies and to fulfil the regulatory requirements for the quantitation of fumarate, oxalate, succinate, and tartrate counterions in active pharmaceutical ingredients (quetiapine fumarate, escitalopram oxalate, sumatriptan succinate, and tolterodine tartrate). The method was developed by using the Metrohm Metrosep A Supp 1 (250 × 4.0 mm, 5.0 µm particle size) column with a mobile phase containing an isocratic mixture of solution A: 7.5 mM sodium carbonate and 2.0 mM sodium bicarbonate in Milli-Q water and solution B: acetonitrile. The flow rate was set at 1.0 mL/min and the run time was 25 minutes. The developed method was validated as per ICH guidelines, and the method parameters were chosen to ensure the spontaneous quantitation of all four anions. The method was validated for all four anions to demonstrate the applicability of this method to common anions present in various APIs.

  2. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Iowa State Univ., Ames, IA (United States)

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  3. Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane.

    Science.gov (United States)

    Godjevargova, Tzonka; Dayal, Rajeshwar; Turmanova, Sevdalina

    2004-10-20

    Gluconic acid was obtained in the permeate side of the bioreactor with glucose oxidase (GOD) immobilized onto anion-exchange membrane (AEM) of low-density polyethylene grafted with 4-vinylpiridine. The electric resistance of the anion-exchange membranes was increased after the enzyme immobilization on the membrane. The gluconic acid productions were relatively low with the GOD immobilized by any method on the AEM. To increase the enzyme reaction efficiency, GOD was immobilized on membrane of AN copolymer (PAN) adjacent to an anion-exchange membrane in bioreactor. Uses of anion-exchange membrane led to selective removal of the gluconic acid from the glucose solution and reduce the gluconic acid inhibition. The amount of gluconic acid obtained in the permeate side of the bioreactor with the GOD immobilized on the PAN membrane adjacent to the AEM under electrodialysis was about 30 times higher than that obtained with enzyme directly bound to the AEM. The optimal substrate concentration in the feed side was found to be about 1 g/l. Further experiments were carried out with the co-immobilized GOD plus Catalase (CAT) on the PAN membrane adjacent to the AEM to improve the efficiency of the immobilize system. The yield of this process was at least 95%. The storage stability of the co-immobilized GOD and CAT was studied (lost 20% of initial activity for 90 d). The results obtained clearly showed the higher potential of the dual membrane bioreactor with GOD plus CAT bound to ultrafiltration polymer membrane adjacent to the AEM. Storage stability of GOD activity in GOD plus CAT immobilized on PAN//AEM membranes and on AEM.

  4. Nondestructive radio isotopic technique for performance evaluation of industrial grade anion exchange resins Amberlite IRN78 and Indion NSSR

    Energy Technology Data Exchange (ETDEWEB)

    Singare, Pravin U. [Bhavan' s College, Mumbai (India). Dept. of Chemistry

    2016-01-15

    The present study deals with the application of radiotracers 131I and 82Br as a non-destructive tool to evaluate the performance of Amberlite IRN78 (nuclear grade) and Indion NSSR (non-nuclear grade) anion exchange resins. In general based on radiotracer applications it was observed that Amberlite IRN78 resins show superior performance over Indion NSSR resins under identical operational parameters.

  5. Ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Duolite A-102 D

    Directory of Open Access Journals (Sweden)

    R.S. Lokhande

    2008-04-01

    Full Text Available The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems was observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 13.7, 38.0, 23.9, 22.9 kJ/mol, respectively.

  6. Separation of phenolic acids from natural plant extracts using molecularly imprinted anion-exchange polymer confined ionic liquids.

    Science.gov (United States)

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-04-06

    Polymer-confined ionic liquids were used for the separation of phenolic acids from natural plant extract by utilizing an anion-exchange mechanism. They were synthesized using molecular imprinting technique to reduce non-directional ion-ion interactions during anion-exchange and other interactions with interference substances that could decrease selectivity. A suitable sorbent for phenolic acid separation could be identified based on the adsorption behaviors of phenolic acids on different polymer-confined ionic liquids. Thus, the developed ionic liquid-based molecularly imprinted anion-exchange polymer (IMAP) achieved high recovery rates by solid-phase extraction of phenolic acids from Salicornia herbacea L. extract: 90.1% for protocatechuic acid, 95.5% for ferulic acid and 96.6% for caffeic acid. Moreover, the phenolic acids were separable from each other by repeated solid phase extraction cycles. The proposed method could be used to separate other phenolic acids or organic acids from complex samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    Directory of Open Access Journals (Sweden)

    Muhammad Daud

    2015-01-01

    Full Text Available This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, pH, temperature, and contact time were determined for NO3- removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudofirst-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at pH 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at pH 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater NO3- removal efficiency due to the small particle size, extremely large surface area (627 m2/g, and high adsorption capacity.

  8. A mechanistic model of ion-exchange chromatography on polymer fiber stationary phases.

    Science.gov (United States)

    Winderl, Johannes; Hahn, Tobias; Hubbuch, Jürgen

    2016-12-02

    Fibers are prominent among novel stationary phase supports for preparative chromatography. Several recent studies have highlighted the potential of fiber-based adsorbents for high productivity downstream processing in both batch and continuous mode, but so far the development of these materials and of processes employing these materials has solely been based on experimental data. In this study we assessed whether mechanistic modeling can be performed on fiber-based adsorbents. With a column randomly filled with short cut hydrogel grafted anion exchange fibers, we tested whether tracer, linear gradient elution, and breakthrough data could be reproduced by mechanistic models. Successful modeling was achieved for all of the considered experiments, for both non-retained and retained molecules. For the fibers used in this study the best results were obtained with a transport-dispersive model in combination with a steric mass action isotherm. This approach accurately accounted for the convection and dispersion of non-retained tracers, and the breakthrough and elution behaviors of three different proteins with sizes ranging from 6 to 160kDa were accurately modeled, with simulation results closely resembling the experimental data. The estimated model parameters were plausible both from their physical meaning, and from an analysis of the underlying model assumptions. Parameters were determined within good confidence levels; the average confidence estimate was below 7% for confidence levels of 95%. This shows that fiber-based adsorbents can be modeled mechanistically, which will be valuable for the future design and evaluation of these novel materials and for the development of processes employing such materials.

  9. Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC

    Energy Technology Data Exchange (ETDEWEB)

    Singare, P.U. [Bhavan' s College, Mumbai (India). Dept. of Chemistry

    2015-12-15

    Radio isotopic tracer technique as one of the versatile nondestructive technique is employed to evaluate the performance of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC. The evaluation was made on the basis of ion-isotopic exchange reaction kinetics by using {sup 131}I and {sup 82}Br radioactive tracer isotopes. It was observed that for both the resins, the values of specific reaction rate (min{sup -1}), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) were calculated to be lower for bromide ion-isotopic exchange reaction than that for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction under identical experimental conditions of 30.0 C, 1.000 g of ion exchange resins and 0.001 mol/L labeled iodide ion solution, the values of specific reaction rate (min{sup -1}), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K{sub d} were calculated as 0.377, 0.212, 0.080 and 15.5 respectively for Dowex SBR LC resin, which was higher than 0.215, 0.144, 0.031 and 14.1 respectively as that obtained for Tulsion A23 resins. Also at a constant temperature of 30.0 C, as the concentration of labeled iodide ion solution increases from 0.001 mol/L to 0.004 mol/L, the percentage of iodide ions exchanged increases from 84.75 % to 90.20 % for Dowex SBR LC resins which was higher than increases from 57.66 % to 62.38 % obtained for Tulsion A23 resins. The identical trend was observed for the two resins during bromide ion-isotopic exchange reaction. The overall results indicate superior performance of Dowex SBR LC over Tulsion A23 resins under identical experimental conditions.

  10. Facile preparation of salt-tolerant anion-exchange membrane adsorber using hydrophobic membrane as substrate.

    Science.gov (United States)

    Fan, Jinxin; Luo, Jianquan; Chen, Xiangrong; Wan, Yinhua

    2017-03-24

    In this study, a polyvinylidene fluoride (PVDF) hydrophobic membrane with high mechanical property was used as substrate to prepare salt-tolerant anion-exchange (STAE) membrane adsorber. Effective hydrophilization and functionalization of PVDF membrane was realized via polydopamine (PDA) deposition, thus overcoming the drawbacks of hydrophobic substrates including poor water permeability, inert property as well as severe non-specific adsorption. The following polyallylamine (PAH) coupling was carried out at pH 10.0, where unprotonated amine groups on PAH chains were more prone to couple with PDA. This membrane adsorber could remain 75% of protein binding capacity when NaCl concentration increased from 0 to 150mM, while its protein binding capacity was independent of flow rate from 10 to 100 membrane volume (MV)/min due to its high mechanical strength (tensile strength: 43.58±2.30MPa). With 200mM NaCl addition at pH 7.5, high purity (above 99%) and high recovery (almost 100%) of Immunoglobulin G (IgG) were obtained when using the STAE membrane adsorber to separate IgG/human serum albumin (HSA) mixture, being similar to that without NaCl at pH 6.0 (both under the flow rate of 10-100MV/min). Finally, the reliable reusability was confirmed by five reuse cycles of protein binding and elution operations. In comparison with commercial membrane adsorber, the new membrane adsorber exhibited a better mechanical property, higher IgG polishing efficiency and reusability, while the protein binding capacity was lower due to less NH2 density on the membrane. The outcome of this work not only offers a facile and effective approach to prepare membrane adsorbers based on hydrophobic membranes, but also demonstrates great potential of this new designed STAE membrane adsorbers for efficient monoclonal antibody (mAb) polishing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Adsorption of polyethylene-glycolated bovine serum albumin on macroporous and polymer-grafted anion exchangers.

    Science.gov (United States)

    Zhu, Mimi; Carta, Giorgio

    2014-01-24

    The chromatographic and adsorptive properties of BSA and BSA conjugated with 10 and 30kDa PEG polymers are determined for a macroporous anion exchanger (UNOsphere™ Diol Q) and for a polymer-grafted material having the same backbone matrix (Nuvia Q™). Chromatographic retention, adsorption capacity, and adsorption kinetics are enhanced in the polymer-grafted resin for both BSA and 10kDa PEG-BSA as a result of interactions with the grafted polymers. However, the difference between the two resins diminishes for 30kDa PEG-BSA indicating that size exclusion effects strongly affect binding in the polymer-grafted material for this larger conjugate. Images of intraparticle concentration profiles obtained by confocal scanning laser microscopy show that the transport mechanisms of both BSA and PEGylated BSA are very different in the two resins. The protein binding kinetics are dominated by ordinary pore diffusion and are essentially independent of the direction of transport for UNOsphere Diol Q as a result of its large pore size. Thus, for this material, displacement of PEGylated BSA by BSA is clearly evident at the intraparticle scale. On the other hand, the protein binding kinetics in Nuvia Q are consistent with a solid diffusion mechanism driven by the adsorbed protein concentration. For this material, protein transport is very fast for one component or two-component co-adsorption of BSA and PEGylated BSA but slows down dramatically for sequential adsorption of these species as a result of heightened diffusional hindrance when the two components counterdiffuse within the resin.

  12. HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E. A.; King, W. D.

    2012-07-31

    Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after ~4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

  13. HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.; King, W.

    2012-04-25

    Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after {approx}4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

  14. Cation exchange displacement batch chromatography of proteins guided by screening of protein purification parameters.

    Science.gov (United States)

    Kotasińska, Marta; Richter, Verena; Thiemann, Joachim; Schlüter, Hartmut

    2012-11-01

    Displacement chromatography has been shown to be an effective alternative for protein purification. We investigated in this study sample displacement chromatography, which does not require a displacer molecule. Furthermore, we performed a screening for determination of parameters for an optimal sample displacement chromatography. We screened the affinities of cytochrome C, lysozyme, myoglobin, and ribonuclease A toward a cation exchange material as a function of different pH values and to presence of different concentrations of sodium chloride in the sample application buffer. Sample displacement chromatography in batch chromatography mode for the separation of the protein mixture was studied with a sample application buffer with a pH of 5 and 7. As predicted by the screening experiments, sample displacement chromatography was most effective at pH 7 since this pH guaranteed the largest differences of the affinities of the four proteins toward the stationary phase. In summary, we describe here sample displacement chromatography in the batch chromatography mode for the separation of proteins, which is a simple and fast alternative to conventional displacement chromatography. Systematic screening of chromatographic parameters prior to sample displacement chromatography promises a successful separation of a target protein.

  15. Refolding of detergent-denatured lysozyme using β-cyclodextrin-assisted ion exchange chromatography.

    Science.gov (United States)

    Zhang, Li; Zhang, Qinming; Wang, Chaozhan

    2013-03-01

    Chromatography-based protein refolding is widely used. Detergent is increasingly used for protein solubilization from inclusion bodies. Therefore, it is necessary to develop a refolding method for detergent-denatured/solubilized proteins based on liquid chromatography. In the present work, sarkosyl-denatured/dithiothreitol-reduced lysozyme was used as a model, and a refolding method based on ion exchange chromatography, assisted by β-cyclodextrin, was developed for refolding detergent-denatured proteins. Many factors affecting the refolding, such as concentration of urea, concentration of β-cyclodextrin, pH and flow rate of mobile phases, were investigated to optimize the refolding conditions for sarkosyl-denatured lysozymes. The results showed that the sarkosyl-denatured lysozyme could be successfully refolded using β-cyclodextrin-assisted ion exchange chromatography.

  16. Preparation of novel chiral stationary phase based on click chemistry for ligand exchange chromatography

    Institute of Scientific and Technical Information of China (English)

    Chun Mei Fu; Hong Yu Shi; Guang Sheng Qian; Zhang Wan Li

    2009-01-01

    Click chemistry was applied to immobilize L-proline derivative onto azide-modified silica gel to give a novel chiral stationary phase (denoted as click-CSP) for ligand exchange chromatography. The developed protocol combines the benefits of operational simplicity, exceptionally mild conditions and high surface loadings. The enantioselectivity α of some DE-amino acids on the click-CSP were found to be in the range from 1.13 to 3.46. The chromatographic resolutions of some DL-amino acids and the stability study firmly illustrate the potential of click chemistry for preparation chiral stationary phase for ligand exchange chromatography.

  17. Strong cation exchange chromatography in analysis of posttranslational modifications: innovations and perspectives.

    Science.gov (United States)

    Edelmann, Mariola J

    2011-01-01

    Strong cation exchange (SCX) chromatography has been utilized as an excellent separation technique that can be combined with reversed-phase (RP) chromatography, which is frequently used in peptide mass spectrometry. Although SCX is valuable as the second component of such two-dimensional separation methods, its application goes far beyond efficient fractionation of complex peptide mixtures. Here I describe how SCX facilitates mapping of the protein posttranslational modifications (PTMs), specifically phosphorylation and N-terminal acetylation. The SCX chromatography has been mainly used for enrichment of these two PTMs, but it might also be beneficial for high-throughput analysis of other modifications that alter the net charge of a peptide.

  18. Mixed-bed ion exchange chromatography employing a salt-free pH gradient for improved sensitivity and compatibility in MudPIT.

    Science.gov (United States)

    Mommen, Geert P M; Meiring, Hugo D; Heck, Albert J R; de Jong, Ad P J M

    2013-07-16

    In proteomics, comprehensive analysis of peptides mixtures necessitates multiple dimensions of separation prior to mass spectrometry analysis to reduce sample complexity and increase the dynamic range of analysis. The main goal of this work was to improve the performance of (online) multidimensional protein identification technology (MudPIT) in terms of sensitivity, compatibility and recovery. The method employs weak anion and strong cation mixed-bed ion exchange chromatography (ACE) in the first separation dimension and reversed phase chromatography (RP) in the second separation dimension (Motoyama et.al. Anal. Chem 2007, 79, 3623-34.). We demonstrated that the chromatographic behavior of peptides in ACE chromatography depends on both the WAX/SCX mixing ratio as the ionic strength of the mobile phase system. This property allowed us to replace the conventional salt gradient by a (discontinuous) salt-free, pH gradient. First dimensional separation of peptides was accomplished with mixtures of aqueous formic acid and dimethylsulfoxide with increasing concentrations. The overall performance of this mobile phase system was found comparable to ammonium acetate buffers in application to ACE chromatography, but clearly outperformed strong cation exchange for use in first dimensional peptide separation. The dramatically improved compatibility between (salt-free) ion exchange chromatography and reversed phase chromatography-mass spectrometry allowed us to downscale the dimensions of the RP analytical column down to 25 μm i.d. for an additional 2- to 3-fold improvement in performance compared to current technology. The achieved levels of sensitivity, orthogonality, and compatibility demonstrates the potential of salt-free ACE MudPIT for the ultrasensitive, multidimensional analysis of very modest amounts of sample material.

  19. Fixing of metallic acetates on an anion-exchange resin; Fixation d'acetates metalliques dans une resine echangeuse d'anions

    Energy Technology Data Exchange (ETDEWEB)

    Brigaudeau-Vaissiere, M. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etude Nucleaires

    1966-06-01

    After giving a brief review of the theoretical principles governing the fixation of anionic complexes of metallic elements on an anion exchange resin, we consider the particular case of uranyl acetate. By plotting the partition curves we have been able to calculate the exchange constants in the resin. By studying the changes in the logarithm of the limiting partition coefficient as a function of the logarithm of the free acetate ion concentration, it has been possible to calculate the dissociation constants for the complexes in solution. The fixation of a large number of metallic acetates has been studied. All the tests have been negative except in the case of mercury. For this reason we have been able to consider the possibility of separating uranium from a certain number of elements. Some of these separations are possible even in the presence of interfering anions such as chlorides which have a greater affinity for the resin than have the acetate ions. In the case of water-ethanol and water-isopropanol mixtures, we have improved the conditions under which copper acetate and mercury acetate may be fixed. This study has enabled us to calculate the dissociation constant for the CuAc{sub 3}{sup -} complex in the mixtures water +40% (by weight) isopropanol and water +50% (by weight) isopropanol. It should also make it possible to use separation conditions which could not hitherto be applied in aqueous media. (author) [French] Apres avoir rappele les principes theoriques de la fixation des complexes anioniques des elements metalliques dans une resine echangeuse d'anions, nous avons etudie tout particulierement le cas de l'acetate d'uranyle. Le trace des courbes de partage nous a permis de calculer les constantes d'echange dans la resine. L'etude des variations du logarithme du coefficient limite de partage avec le logarithme de la concentration des ions acetate libres nous a conduits aux calculs des constantes de dissociation des complexes en

  20. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin; Fixation de complexes metalliques sulfosalicylate dans une resine echangeuse d'anions

    Energy Technology Data Exchange (ETDEWEB)

    Cahuzac, S. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-06-01

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO{sub 2}{sup 2+}. By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni{sup 2+} - Co{sup 2+}; Ni{sup 2+} - Co{sup 2+} - Cu{sup 2+}; UO{sub 2}{sup 2+} - Fe{sup 3+}; UO{sub 2}{sup 2+} - Cr{sup 3+}; UO{sub 2}{sup 2+} - Cu{sup 2+}; UO{sub 2}{sup 2+} - Ni{sup 2

  1. SYNTHESIS OF HYDROTALCITE Zn-Al-SO4 AS ANION EXCHANGER AND ITS APPLICATION TO TREAT OF POLLLUTANT CONTAINED HEXACYANOFERRAT(II)

    OpenAIRE

    Roto, Roto; Tahir, Iqmal; Sholikhah, Umi Nur

    2010-01-01

    Synthesis of Zn-Al-SO4 hydrotalcite and its application as anion exchanger for hexacyanoferrat (II) have been studied. Synthesis of Zn-Al-SO4 hydrotalcite was carried out by stoichiometric method and hydrothermal treatment. Sulphate in hydrotalcite interlayer was exchanged by hexacyanoferrat (II) that was assumed as pollutant. Kinetics of ion exchange was also investigated. The product of ion exchange was characterized by XRD, IR spectrophotometry and atomic absorption spectrometry. Zn-Al-SO4...

  2. Suppressed ion chromatography methods for the routine determination of ultra low level anions and cations in ice cores.

    Science.gov (United States)

    Curran, M A; Palmer, A S

    2001-06-01

    The concentration of trace ionic species in snow and ice samples was determined using suppressed ion chromatography (IC) with conductivity detection and ultra-clean sample preparation techniques. Trace anion species were determined in a single 24-min run by combining sample preconcentration with gradient elution using Na2B4O7 eluent. The detection limits (ranging from 0.001 to 0.006 microM) are the lowest reported in the literature. Cation species were analysed by direct injection of 0.25 ml and isocratic elution with a H2SO4 eluent. The clean preparation techniques showed no evidence of a difference (Student's t-test) between Milli-Q water samples analysed directly and processed Milli-Q ice samples. These robust, ultra-clean IC methods were routinely applied to the analysis of large number of samples to produce a high-resolution trace ion ice core record from Law Dome, East Antarctica.

  3. Generation of mouse anti-human urate anion exchanger antibody by genetic immunization and its identification

    Institute of Scientific and Technical Information of China (English)

    XU Guo-shuang; WU Di; CHEN Xiang-mei; SHI Suo-zhu; HONG Quan; ZHANG Ping; LU Yang

    2005-01-01

    Background Human urate anion exchanger (hURAT1) as a major urate transporter expressed on renal tubular epithelial cells regulates blood urate level by reabsorbing uric acid. Antibody is an important tool to study hURAT1. This study aimed, by genetic immunization, to produce mouse anti-hURAT1 polyclonal antibody with high throughput and high specificity and to detect the location of hURAT1 in human kidney.Methods Human renal total RNA was isolated and the entire cDNA of hURAT1 was amplified by RT-PCR. The sequence of intracellular high antigenicity fragment (A280 to R349) was chosen by prediction software of protein antigenicity, and its cDNA was amplified from cDNA of hURAT1, and then cloned into pBQAP-TT vector to construct recombinant plasmid pBQAP-TT-hURAT1-210 for genetic immunization. Mice were inoculated with this recombinant plasmid and two other adjuvant plasmids, pCMVi-GMCSF and pCMVi-Flt3L, which helped to enhance the antibody’s generation. After four weeks, the mice were sacrificed to obtain the anti-hURAT1 antibody from serum. The antibody was identified by western blot analysis and immunohistochemistry. At the same time, rabbit anti-hURAT1 antibody was produced by protein immunization. The specificity and efficiency between the rabbit and mouse anti-hURAT1 antibody were compared by western blot analysis and immunohistochemistry.Results The entire cDNA of hURAT1 and cDNA of its intracellular high immunogenic fragment were amplified successfully. Recombinant plasmid pBQAP-TT-hURAT1-210 for genetic immunization was confirmed by restriction digestion and sequencing. Both the mouse anti-hURAT1 antibody and rabbit anti-hURAT1 antibody recognized 58kD hURAT1 and 64kD glycosylated hURAT1 protein bands in western blot. Immunohistochemically, hURAT1 was located at the brush border membrane of renal proximal tubular cells. In addition, the throughput and specificity of the mouse anti-hURAT1 antibody were higher than those of the rabbit anti-hURAT1 antibody

  4. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    Science.gov (United States)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  5. Effects of pH and Competing Anions on the Solution Speciation of Arsenic by Ion Exchange Resins

    Energy Technology Data Exchange (ETDEWEB)

    Impellitteri, Christopher A.; Ryan, JAmes A.; Al-Abed, Souhail R.; Scheckel, Kirk G.; Randall, Paul M.; Richardson, Collin A.

    2003-03-26

    Anion-exchange resins (AER) are used to differentiate As(V) and As(III) by retaining As(V) and allowing As(III) to pass through. AERs allow rapid speciation of As in the field which precludes the effects of sample preservation on As speciation. Aqueous environmental samples contain anions that may interfere with the speciation of As. This study compares the speciation of As by two commercially available AERs. A silica-based AER was selected for further study. As(V) and As(III) were passed through the AER in the presence of NO3 -, SO4 2-, HPO4 2-, Cl- and HCO3 - at pH 4, 6 and 8. Recoveries of As species in mixed systems range between 90 to 100%. Breakthrough curves for As(V) are presented which allow calculation of loading rates. HPO4 2- has the greatest effect on the speciation of As by AER.

  6. Anion exchange removal of Al3+ from Li+-Al3+ aqueous solution (originating from lithium recovery from brine

    Directory of Open Access Journals (Sweden)

    Anissa Somrani

    2014-06-01

    Full Text Available The purpose of this study is to separate aluminum(III ion from an aqueous solution containing Li+ at 25°C. Al3+ was transferred into [Al(C2O43]3- by means of complexation and removed by an anion exchange resin. This resin was anionic type Amberlite IRA 402 regenerated by sodium chloride. Hence, a theoretical study based on speciation diagrams was carried out to determine the best pH domain for separation. The complexation of aluminum ions by ammonium oxalate was studied. The motar ratio of Ox/Al and pH was investigated. Optimum values of these factors were found to be 3 and 4 respectively. In this case, the remaining lithium is 98.5%.

  7. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ions...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  8. Electro-driven extraction of inorganic anions from water samples and water miscible organic solvents and analysis by ion chromatography.

    Science.gov (United States)

    Nojavan, Saeed; Bidarmanesh, Tina; Memarzadeh, Farkhondeh; Chalavi, Soheila

    2014-09-01

    A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1-heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R(2) ) between 0.987 and 0.999 were obtained. The LODs of the EME-IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications.

  9. Pentafluorobenzyl bromide-A versatile derivatization agent in chromatography and mass spectrometry: I. Analysis of inorganic anions and organophosphates.

    Science.gov (United States)

    Tsikas, Dimitrios

    2017-02-01

    Pentafluorobenzyl bromide (PFB-Br) is a versatile derivatization agent. It is widely used in chromatography and mass spectrometry since several decades. The bromide atom is largely the single leaving group of PFB-Br. It is substituted by wide a spectrum of nucleophiles in aqueous and non-aqueous systems to form electrically neutral, in most organic solvents soluble, generally thermally stable, volatile, strongly electron-capturing and ultraviolet light-absorbing derivatives. Because of these greatly favoured physicochemical properties, PFB-Br emerged an ideal derivatization agent for highly sensitive analysis of endogenous and exogenous substances including various inorganic and organic anions by electron capture detection or after electron-capture negative-ion chemical ionization in GC-MS. The present article attempts an appraisal of the utility of PFB-Br in analytical chemistry. It reviews and discusses papers dealing with the use of PFB-Br as the derivatization reagent in the qualitative and quantitative analysis of endogenous and exogenous inorganic anions in various biological samples, notably plasma, urine and saliva. These analytes include nitrite, nitrate, cyanide and dialkyl organophosphates. Special emphasis is given to mass spectrometry-based approaches and stable-isotope dilution techniques.

  10. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger.

    Science.gov (United States)

    Valsala, T P; Roy, S C; J G Shah; Gabriel, J; Raj, Kanwar; Venugopal, V

    2009-07-30

    The volumes of low level waste (LLW) generated during the operation of nuclear reactor are very high and require a concentration step before suitable matrix fixation. The volume reduction (concentration) is achieved either by co-precipitating technique or by the use of highly selective sorbents and ion exchange materials. The present study details the preparation of cobalt ferrocyanide impregnated into anion exchange resin and its evaluation with respect to removal of Cs in LLW streams both in column mode and batch mode operations. The Kd values of the prepared exchanger materials were found to be very good in actual reactor LLW solutions also. It was observed that the exchanger performed very well in the pH range of 3-9. A batch size of 6 g l(-1) of the exchanger was enough to give satisfactory decontamination for Cs in actual reactor LLW streams. The lab scale and pilot plant scale performance of the exchanger material in both batch mode and column mode operations was very good.

  11. Trace anion determination in concentrated hydrofluoric acid solutions by two-dimensional ion chromatography I. Matrix elimination by ion-exclusion chromatography.

    Science.gov (United States)

    Vermeiren, Koen

    2005-08-26

    Since years, ion exclusion chromatography (ICE) has been the standard method to separate strong acid analyte anions from concentrated weak acid matrices such as hydrofluoric acid (HF). In this work, the commercially available IonPac ICE-AS 1 column was used to separate trace levels of chloride, nitrate, sulfate and phosphate from HF solutions at 20% (w/w). The efficiency of the separation was studied in more detail using techniques such as ion chromatography (IC), inductively coupled plasma optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (ICP-MS). For 20% (w/w) HF solutions and at a water carrier flow-rate of 0.50 ml/min, the cut window was set from 8.5 to 14.5 min. Under these conditions, analyte recoveries of better than 90% were obtained for chloride, nitrate and sulfate, but only about 75% for phosphate. The HF rejection efficiency was better than 99.9%. It was found that the ICP techniques, measuring total element levels and not species, yielded significantly higher recoveries for phosphorus and sulfur compared to IC. Evidence will be given that part of the added phosphorus (approximately 15% for an addition of 10 mg PO4/kg) is present as mono-fluorophosphoric acid (H2FPO3). In the case of sulfate, the difference between IC and ICP-MS could be attributed to an important matrix effect from the residual HF concentration.

  12. Indirect UV detection-ion-exclusion/cation-exchange chromatography of common inorganic ions with sulfosalicylic acid eluent.

    Science.gov (United States)

    Kozaki, Daisuke; Mori, Masanobu; Nakatani, Nobutake; Arai, Kaori; Masuno, Tomoe; Koseki, Masakazu; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2013-01-01

    Herein, we describe indirect UV detection-ion-exclusion/cation-exchange chromatography (IEC/CEC) on a weakly acidic cation-exchange resin in the H(+)-form (TSKgel Super IC-A/C) using sulfosalicylic acid as the eluent. The goal of the study was to characterize the peaks detected by UV detector. The peak directions of analyte ions in UV at 315 nm were negative because the molar absorbance coefficients of analyte anions and cations were lower than that of the sulfosalicylic acid eluent. Good chromatographic resolution and high signal-to-noise ratios of analyte ions were obtained for the separations performed using 1.1 mM sulfosalicylic acid and 1.5 mM 18-crown-6 as the eluent. The relative standard deviations (RSDs) of the peak areas ranged from 0.6 to 4.9%. Lower detection limits of the analytes were achieved using indirect UV detection at 315 nm (0.23 - 0.98 μM) than those obtained with conductometric detection (CD) (0.61 - 2.1 μM) under the optimized elution conditions. The calibration curves were linear in the range from 0.01 to 1.0 mM except for Cl(-), which was from 0.02 to 2.0 mM. The present method was successfully applied to determine common inorganic ions in a pond water sample.

  13. Selenium speciation in pretreated human urine by ion-exchange chromatography and ICP-MS detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jons, O.; Bendahl, L.

    2001-01-01

    Urine samples were extracted by benzo-15-crown-5-ether to remove sodium and potassium. More than 90% of the sodium and potassium content of the urine was removed with this extraction. In a cation-exchange system based on oxalic acid at pH 3, chromatography of an untreated urine pool resulted in a...

  14. Superheated water ion-exchange chromatography: an experimental approach for interpretation of separation selectivity in ion-exchange processes.

    Science.gov (United States)

    Shibukawa, Masami; Shimasaki, Tomomi; Saito, Shingo; Yarita, Takashi

    2009-10-01

    Cation-exchange selectivity for alkali and alkaline-earth metal ions and tetraalkylammonium ions on a strongly acidic sulfonic acid cation-exchange resin has been investigated in the temperature range of 40-175 degrees C using superheated water chromatography. Dependence of the distribution coefficient (ln KD) on the reciprocal of temperature (1/T) is not linear for most of the ions studied, and the selectivity coefficient for a pair of alkali metal ions or that of alkaline-earth metal ions approaches unity as temperature increases. On the other hand, the retention order of tetraalkylammonium ions is reversed at 160 degrees C or above when eluted with Na2SO4 aqueous solution and the larger ions are eluted faster than the smaller ones contrary to the retention order obtained at ambient temperature. The change in ion-exchange selectivity with temperature observed with superheated water chromatography has been discussed on the basis of the effect of temperature on hydration of the ions and specific adsorption or distribution of ionic species between the external solution and ion-exchange resin. In superheated water, the electrostatic interaction or association of the ions with the fixed ion becomes a predominant mechanism resulting in different separation selectivity from that obtained at ambient temperature.

  15. Evidence for F-/SiO- anion exchange in the framework of As-synthesized all-silica zeolites

    KAUST Repository

    Liu, Xiaolong

    2011-05-12

    Not everything changes: Charge-compensating anions can be exchanged in as-synthesized zeolite frameworks with changes in both the density of defect sites and of the hydrophobic character of the zeolite. The reversible transformation occurs without dissolution/recrystallization of the zeolite and preserves the size and shape of the crystals (see picture). Fluoride removal is not possible in all-silica D4R units, for which fluoride ions play a structure-directing role. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Separation of topological forms of plasmid DNA by anion-exchange HPLC: shifts in elution order of linear DNA.

    Science.gov (United States)

    Smith, Clara R; DePrince, Randolph B; Dackor, Jennifer; Weigl, Debra; Griffith, Jack; Persmark, Magnus

    2007-07-01

    We sought to establish a single anion-exchange HPLC method for the separation of linear, open circular and supercoiled plasmid topoisomers using purified topoisomeric forms of three plasmids (3.0, 5.5 and 7.6 kb). However, finding one condition proved elusive as the topoisomer elution order was determined to depend on salt gradient slope. The observed change in selectivity increased with plasmid size and was most pronounced for the linear form. Indeed, the elution order of the linear 7.6 kb plasmid was reversed relative to the supercoiled form. This observation may have implications for methods used in quality control of plasmid DNA.

  17. Production of 61Cu using natural cobalt target and its separation using ascorbic acid and common anion exchange resin.

    Science.gov (United States)

    Das, Sujata Saha; Chattopadhyay, Sankha; Barua, Luna; Das, Malay Kanti

    2012-02-01

    (61)Cu was produced by (nat)Co(α, xn)(61)Cu reaction. (61)Cu production yield was 89.5 MBq/μAh (2.42 mCi/μAh) at the end of irradiation (EOI). A simple radiochemical separation method using anion exchange resin and ascorbic acid has been employed to separate the product radionuclide from inactive target material and co-produced non-isotopic impurities. The radiochemical separation yield was about 90%. Radiochemical purity of (61)Cu was >99% 1 h after EOI. Final product was suitable for making complex with N(2)S(2) type of ligands.

  18. Alternative purification method for recombinant measles viral nucleoprotein expressed in insect cells by ion-exchange chromatography.

    Science.gov (United States)

    Lee, Han Saem; Kim, You-Jin; Yang, Jeongsun; Yoon, Hee Sook; Kim, Seung Tae; Kim, Kisoon

    2014-03-01

    Recombinant measles virus nucleoproteins (rMeV N) and fusion (F) proteins were characterized as major antigenic proteins expressed in insect cells mediated by recombinant baculoviruses (rBVs). Band intensities were analyzed by Western blotting to recognize IgG and IgM antibodies against the rMeV N and F proteins in human sera and cerebrospinal fluids (CSFs) from patients with measles infections. Positive results from the blots using the rMeV N were consistent with the results of enzyme-linked immunosorbent assays (ELISAs) in which whole viral proteins were used as antigens. Human sera and CSFs reacted more strongly with the rMeV N than with the rMeV F proteins prepared in an identical expression system. For efficient and reliable purification, ion-exchange chromatography using Source Q anion resin was applied, and high-purity rMeV N protein was harvested. To characterize the similarity with the native viral protein to purified N protein, structural mimicry of purified recombinant proteins with intact rMeV N was shown through transmission electron microscopy, and the truncation and the phosphorylation status of the expressed protein were analyzed. These results suggest that the rMeV N purified by ion-exchange chromatography has features similar to those of naïve N including a self-assembled structure, phosphorylation and antigenic function. Thus, these expression and purification methods can be applied to the large-scale production of the rMeV N, which is essential for the development of new diagnostic tools and vaccines for acute and chronic MeV infections.

  19. Application of monodispersive anion exchangers in sorption and separation of y3+ from Nd3+ and Sm3+ complexes with dcta

    Institute of Scientific and Technical Information of China (English)

    Halina Hubicka; Dorota Kolody(n)ska

    2008-01-01

    Rare earth complexes with trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (DCTA) of the Ln(dcta)- ype exhibited an unusual sequence of affinity on the polystyrene anion exchangers: pm3+>Nd3+>Sm3+>pr3+>Ce3+>Eu3+>Gd3+>La3+>Sc3+>Tb3+>Dy3+>Ho3+>y3+>Er3+>Tm3+>yb3+>Lu3+[1]. Taking into account the position of Y3+, Sm3+, and Nd3+ in this affinity series, for the monodispersive polystyrene anion exchangers, Lewafit MonoPlus M 500, Lewatit MonoPlus M 600, Lewatit MonoPlus MP 500, Lewatit MonoPlus MP 64,and for the heterodispersive anion exchanger, Lewatit MP 62, the weight (Dg,) and bed (Dv) distribution coefficients of these complexes and working ion exchange capacities (Cw) were determined. Based on these values, purifications of Y3+ from Nd3+ and y3+ from Sm3+ in the macro-micro component system on these anion exchangers were studied. The application potential of this method was highlighted for the separation of yz3+ in the presence of Nd3+ and Sm3+. With 1 L of monodispersive and strongly basic polystyrene gel anion exchanger Lewatit MonoPlus M 500 in the acetate form, it is possible to obtain approximately 79 g Y2O3 purified from Nd2O3 and 70 g Y2O3 purified from Sm2O3 in the same process condition.

  20. Ion-Isotopic Exchange Reaction Kinetics using Anion Exchange Resins Dowex 550A LC and Indion-930A

    Directory of Open Access Journals (Sweden)

    P.U. Singare

    2014-06-01

    Full Text Available The present paper deals with the characterization of ion exchange resins Dowex 550A LC and Indion-930A based on kinetics of ion-isotopic exchange reactions for which the short lived radioactive isotopes 131I and 82Br were used as a tracers. The study was performed for different concentration of ionic solution varying from 0.001 mol/L to 0.004 mol/L and temperature in the range of 30.0 °C to 45.0 °C. The results indicate that as compared to bromide ion-isotopic exchange reaction, iodide exchange reaction take place at the faster rate. For both the ion-isotopic exchange reactions, under identical experimental conditions, the values of specific reaction rate increases with increase in the ionic concentration and decreases with rise in temperature. It was observed that at 35.00C, 1.000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution for iodide ion-isotopic exchange reaction, the values of specific reaction rate (min-1, amount of ion exchanged (mmol, initial rate of ion exchange (mmol/min and log Kd were 0.270, 0.342, 0.092 and 11.8 respectively for Dowex 550A LC resin, which was higher than the respective values of 0.156, 0.241, 0.038 and 7.4 as that obtained for Indion-930A resins. From the results, it appears that Dowex 550A LC resins show superior performance over Indion-930A resins under identical experimental conditions.

  1. Modulating methane storage in anionic nano-porous MOF materials via post-synthetic cation exchange process.

    Science.gov (United States)

    Akhbari, Kamran; Morsali, Ali

    2013-04-14

    The post-synthesis cation exchange process of [HDMA]2[Zn2(BDC)3(DMA)2]·6DMF (1) (HDMA(+): dimethylamonnium, BDC(2-): 1,4-benzenedicarboxilate, DMA: dimethylamine and DMF: N,N'-dimethylformamide) anionic MOF with Ni(2+), Cu(2+), Li(+), Na(+) and K(+) ions was investigated by ICP, CHN, XRD, (1)H-NMR and TG analyses. Replacement of the organic cation with the smaller Li(+) ion in 1 leads to an increase in its internal surface area and methane sorption capacity. By the strategy developed here, we were able to prepare ion exchanged MOFs with higher surface area and methane sorption capacity capable of operating at more ambient temperature and pressure.

  2. High pH reversed-phase chromatography with fraction concatenation as an alternative to strong-cation exchange chromatography for two-dimensional proteomic analysis

    OpenAIRE

    Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2012-01-01

    Orthogonal high-resolution separations are critical for attaining improved analytical dynamic range and protein coverage in proteomic measurements. High pH reversed-phase liquid chromatography (RPLC) followed by fraction concatenation affords better peptide analysis than conventional strong-cation exchange (SCX) chromatography applied for the two-dimensional proteomic analysis. For example, concatenated high pH reversed-phase liquid chromatography increased identification for peptides (1.8-fo...

  3. Formation of periodic interfacial misfit dislocation array at the InSb/GaAs interface via surface anion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2016-07-21

    The relationship between growth temperature and the formation of periodic interfacial misfit (IMF) dislocations via the anion exchange process in InSb/GaAs heteroepitaxy was systematically investigated. The microstructural and electrical properties of the epitaxial layer were characterized using atomic force microscope, high-resolution x-ray diffraction, transmission electron microscopy, and Hall resistance measurement. The formation of interfacial misfit (IMF) dislocation arrays depended on growth temperature. A uniformly distributed IMF array was found in a sample grown at 310 °C, which also exhibited the lowest threading dislocation density. The analysis suggested that an incomplete As-for-Sb anion exchange process impeded the formation of IMF on sample grown above 310 °C. At growth temperature below 310 °C, island coalescence led to the formation of 60° dislocations and the disruption of periodic IMF array. All samples showed higher electron mobility at 300 K than at 77 K.

  4. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3.

    Science.gov (United States)

    Akbas, F; Aydin, Z

    2012-04-03

    Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels.

  5. Production of {sup 61}Cu using natural cobalt target and its separation using ascorbic acid and common anion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujata Saha; Chattopadhyay, Sankha; Barua, Luna [Radiopharmaceuticals Laboratory, Board of Radiation and Isotope Technology (BRIT), Variable Energy Cyclotron Centre (VECC), Kolkata 700064 (India); Das, Malay Kanti, E-mail: mkdas@vecc.gov.in [Radiopharmaceuticals Laboratory, Board of Radiation and Isotope Technology (BRIT), Variable Energy Cyclotron Centre (VECC), Kolkata 700064 (India)

    2012-02-15

    {sup 61}Cu was produced by {sup nat}Co({alpha}, xn){sup 61}Cu reaction. {sup 61}Cu production yield was 89.5 MBq/{mu}Ah (2.42 mCi/{mu}Ah) at the end of irradiation (EOI). A simple radiochemical separation method using anion exchange resin and ascorbic acid has been employed to separate the product radionuclide from inactive target material and co-produced non-isotopic impurities. The radiochemical separation yield was about 90%. Radiochemical purity of {sup 61}Cu was >99% 1 h after EOI. Final product was suitable for making complex with N{sub 2}S{sub 2} type of ligands. - Highlights: Black-Right-Pointing-Pointer High purity, no-carrier added {sup 61}Cu produced from natural cobalt target. Black-Right-Pointing-Pointer {sup 61}Cu separated from impurities using anion exchange resin and ascorbic acid. Black-Right-Pointing-Pointer {sup 61}Cu preparation was successfully used to label N{sub 2}S{sub 2}-type of ligand.

  6. Stable and selective scintillating anion-exchange sensors for quantification of 99TcO4- in natural freshwaters.

    Science.gov (United States)

    Seliman, Ayman F; Helariutta, Kerttuli; Wiktorowicz, Szymon J; Tenhu, Heikki; Harjula, Risto

    2013-12-01

    New dual functionality scintillating anion-exchange resins were developed for selective determination of (99)TcO4(-) in various natural freshwater samples. Stable scintillating particles were formed by preparing the vinyl monomer 2-[4-(4'-vinylbiphenylyl)]-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (vPBD), starting with the commercial organic flour TBut-PBD and its subsequent copolymerization with styrene, divinylbenzene, and p-chloromethylstyrene mixture. To integrate the radiochemical separation and radiometric detection steps within the same bead, the chloromethyl groups of the scintillating resins were subjected to amination reactions with dioctylamine (DOA) and trioctylamine (TOA). On-line quantification of (99)TcO4(-) was achieved by packing the scintillating anion-exchange resin into Teflon tubing for quantification by a flow scintillation analyzer (FSA). The two functionalized resins were selective for pertechnetate over the common anions in natural freshwaters, especially Cl(-) and SO4(2-) with up to 1000 ppm and with up to 10 ppm I(-) and Cr2O7(2-). The uptake efficiency of the TOA sensor decreased from 97.88% to 85.08% in well water and river water, respectively, while the counting efficiency was almost constant (69.50%). The DOA performance showed lower efficiency in the two water types relative to TOA. On the other hand, the DOA sensor could be regenerated by 5 M HNO3 for reuse at least four times without losing its chemical or optical performance. The detection limit was 1.45 Bq which could be achieved by loading 45 mL from well and tap water containing the maximum contaminant level (MCL) of (99)Tc (33 Bq/L).

  7. Preparative separation of monoclonal antibody aggregates by cation-exchange laterally-fed membrane chromatography.

    Science.gov (United States)

    Madadkar, Pedram; Sadavarte, Rahul; Butler, Michael; Durocher, Yves; Ghosh, Raja

    2017-06-15

    Cation exchange (CEX) chromatography is widely used for large-scale separation of monoclonal antibody (mAb) aggregates. The aggregates bind more strongly to CEX media and hence elute after the monomeric mAb in a salt gradient. However, monomer-aggregate resolution that is typically obtained is poor, which results in low product recovery. In the current study we address this challenge through the use of cation-exchange laterally-fed membrane chromatography (LFMC). Three different LFMC devices, each containing a bed of strong cation-exchange (S) membranes were used for preparative-scale removal of mAb aggregates. Trastuzumab (IgG1) biosimilar derived from human embryonic kidney 293 (293) cells was used as the primary model mAb in our study. The other mAbs investigated were Chinese hamster ovary (CHO) cell line derived Alemtuzumab (Campath-1H) and a heavy chain chimeric mAb EG2-hFc. In each of these case-studies, aggregates were well-resolved from the respective monomer. The separated and collected monomer and aggregate fractions were analyzed using techniques such as hydrophobic interaction membrane chromatography (HIMC), native polyacrylamide gel electrophoresis (or PAGE), and size-exclusion high-performance liquid chromatography (SE-HPLC). The high efficiency of separation obtained in each case was due to a combination of the small membrane pore size (3-5μm), and the use of LFMC technology, which has been shown to be suitable for high-resolution, multi-component protein separations. Also, the LFMC based separation processes reported in this study were more than an order of magnitude faster than equivalent resin-based, cation exchange chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Studies of removal of palladium(II) ions from chloride solutions on weakly and strongly basic anion exchangers.

    Science.gov (United States)

    Hubicki, Z; Wołowicz, A; Leszczyńska, M

    2008-11-30

    Palladium and its compounds find wide application in industry as a catalytic agent in different manufacture processes. Recovery of precious metals from industrial wastes is difficult and time consuming but in spite of these disadvantages it becomes profitable. Palladium(II) ions sorption from various chloride solutions of the composition: 0.1-6.0M HCl-0.00056 M Pd(II), 1.0M ZnCl(2)-0.1M HCl-0.00056 M Pd(II), 1.0M AlCl(3)-0.1M HCl-0.00056 M Pd(II) on the weakly and strongly basic anion exchangers (Varion ATM, Varion ADM and Varion ADAM) was discussed. The sorption research of Pd(II) ions on these resins was carried out by means of static and dynamic methods. The dynamic processes were applied in order to determine the breakthrough curves of Pd(II) ions. Moreover, the working ion-exchange capacities as well as the weight and bed distribution coefficients were determined from the Pd(II) breakthrough curves. The recovery factors of Pd(II) ions (% R) depending on the phase contact time were obtained by means of static methods. The highest ion-exchange capacities for the 0.1-6.0M HCl-0.00056 M Pd(II) systems were obtained for the weakly basic ion-exchange resin Varion ADAM.

  9. Bioregeneration of perchlorate-laden gel-type anion-exchange resin in a fluidized bed reactor.

    Science.gov (United States)

    Venkatesan, Arjun K; Sharbatmaleki, Mohamadali; Batista, Jacimaria R

    2010-05-15

    Selective ion-exchange resins are very effective to remove perchlorate from contaminated waters. However, these resins are currently incinerated after one time use, making the ion-exchange process incomplete and unsustainable for perchlorate removal. Resin bioregeneration is a new concept that combines ion-exchange with biological reduction by directly contacting perchlorate-laden resins with a perchlorate-reducing bacterial culture. In this research, feasibility of the bioregeneration of perchlorate-laden gel-type anion-exchange resin was investigated. Bench-scale bioregeneration experiments, using a fluidized bed reactor and a bioreactor, were performed to evaluate the feasibility of the process and to gain insight into potential mechanisms that control the process. The results of the bioregeneration tests suggested that the initial phase of the bioregeneration process might be controlled by kinetics, while the later phase seems to be controlled by diffusion. Feasibility study showed that direct bioregeneration of gel-type resin was effective in a fluidized-bed reactor, and that the resin could be defouled, reused, and repeatedly regenerated using the method applied in this research.

  10. Bioregeneration of perchlorate-laden gel-type anion-exchange resin in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Arjun K.; Sharbatmaleki, Mohamadali [Department of Civil and Environmental Engineering, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4015 (United States); Batista, Jacimaria R., E-mail: jaci@ce.unlv.edu [Department of Civil and Environmental Engineering, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4015 (United States)

    2010-05-15

    Selective ion-exchange resins are very effective to remove perchlorate from contaminated waters. However, these resins are currently incinerated after one time use, making the ion-exchange process incomplete and unsustainable for perchlorate removal. Resin bioregeneration is a new concept that combines ion-exchange with biological reduction by directly contacting perchlorate-laden resins with a perchlorate-reducing bacterial culture. In this research, feasibility of the bioregeneration of perchlorate-laden gel-type anion-exchange resin was investigated. Bench-scale bioregeneration experiments, using a fluidized bed reactor and a bioreactor, were performed to evaluate the feasibility of the process and to gain insight into potential mechanisms that control the process. The results of the bioregeneration tests suggested that the initial phase of the bioregeneration process might be controlled by kinetics, while the later phase seems to be controlled by diffusion. Feasibility study showed that direct bioregeneration of gel-type resin was effective in a fluidized-bed reactor, and that the resin could be defouled, reused, and repeatedly regenerated using the method applied in this research.

  11. Protein-surface interaction maps for ion-exchange chromatography.

    Science.gov (United States)

    Freed, Alexander S; Cramer, Steven M

    2011-04-05

    In this paper, protein-surface interaction maps were generated by performing coarse-grained protein-surface calculations. This approach allowed for the rapid determination of the protein-surface interaction energies at a range of orientations and distances. Interaction maps of lysozyme indicated that there was a contiguous series of orientations corresponding to several adjacent preferred binding regions on the protein surface. Examination of these orientations provided insight into the residues involved in surface interactions, which qualitatively agreed with the retention data for single-site mutants. Interaction maps of lysozyme single-site mutants were also generated and provided significant insight into why these variants exhibited significant differences in their chromatographic behavior. This approach was also employed to study the binding behavior of CspB and related mutants. The results indicated that, in addition to describing general trends in the data, these maps provided significant insight into retention data of the single-site mutants. In particular, subtle retention trends observed with the K12 and K13 mutants were well-described using this interaction map approach. Finally, the number of interaction points with energies stronger than -2 kcal/mol was shown to be able to semi-quantitatively predict the behavior of most of the mutants. This rapid approach for calculating protein-surface interaction maps is expected to facilitate future method development for separating closely related protein variants in ion-exchange systems.

  12. Large Scale Solid Phase Synthesis of Peptide Drugs: Use of Commercial Anion Exchange Resin as Quenching Agent for Removal of Iodine during Disulphide Bond Formation

    Directory of Open Access Journals (Sweden)

    K. M. Bhaskara Reddy

    2012-01-01

    Full Text Available The S-acetamidomethyl (Acm or trityl (Trt protecting groups are widely used in the chemical synthesis of peptides that contain one or more disulfide bonds. Treatment of peptides containing S-Acm protecting group with iodine results in simultaneous removal of the sulfhydryl protecting group and disulfide formation. However, the excess iodine needs to be quenched or adsorbed as quickly as possible after completion of the disulfide bond formation in order to minimize side reactions that are often associated with the iodination step. We report here a simple method for simultaneous quenching and removal of iodine and isolation of disulphide bridge peptides. The use of excess inexpensive anion exchange resin to the oxidized peptide from the aqueous acetic acid/methanol solution affords quantitative removal of iodine and other color impurities. This improves the resin life time of expensive chromatography media that is used in preparative HPLC column during the purification of peptide using preparative HPLC. Further, it is very useful for the conversion of TFA salt to acetate in situ. It was successfully applied commercially, to the large scale synthesis of various peptides including Desmopressin, Oxytocin, and Octreotide. This new approach offers significant advantages such as more simple utility, minimal side reactions, large scale synthesis of peptide drugs, and greater cost effectiveness.

  13. Analysis of crude heparin by (1)H NMR, capillary electrophoresis, and strong-anion-exchange-HPLC for contamination by over sulfated chondroitin sulfate.

    Science.gov (United States)

    Keire, David A; Trehy, Michael L; Reepmeyer, John C; Kolinski, Richard E; Ye, Wei; Dunn, Jamie; Westenberger, Benjamin J; Buhse, Lucinda F

    2010-03-11

    We previously published a strong-anion-exchange-high performance liquid chromatography (SAX-HPLC) method for the detection of the contaminant over sulfated chondroitin sulfate (OSCS) in heparin sodium active pharmaceutical ingredient (API). While APIs have been processed to remove impurities, crude heparins contain insoluble material, chondroitin sulfates, heparan sulfate, and proteins that may interfere with the recovery and measurement of OSCS. We examined 500MHz (1)H NMR, capillary electrophoresis (CE), and SAX-HPLC to quantify OSCS in crude heparin. Using our standard API protocol on OSCS spiked crude heparin samples; we observed a weight percent LOD and LOQ for the NMR approach of 0.1% and 0.3%, respectively, while the SAX-HPLC method gave values of 0.03% and 0.09%, respectively. CE data was not amenable to quantitative measurement of OSCS in crude heparin. We developed a modified HPLC sample preparation protocol using crude dissolved at the 100mg/mL level with a 2.5M NaCl solution. This SAX-HPLC approach gave a weight percent LOD of 0.02% and a LOQ of 0.07% and had better performance characteristics than that of the protocol used for APIs.

  14. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography.

    Science.gov (United States)

    Dods, Stewart R; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G

    2015-01-09

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000CV/h (2s and 0.3s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12mgBSA/mL for DEAE and from 10 to 21mglysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20mgBSA/mL and 27mglysozyme/mL, respectively. At 1MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000CV/h. For compression loads of 5MPa and 10MPa, adsorbents recorded lower DBCs than 1MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an uncompressed adsorbent, compressions of 1, 5

  15. Characterization of synthetic dyes by comprehensive two-dimensional liquid chromatography combining ion-exchange chromatography and fast ion-pair reversed-phase chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Knip, Jitske; van Bommel, Maarten R; Schoenmakers, Peter J

    2016-03-04

    In the late 19th century, newly invented synthetic dyes rapidly replaced the natural dyes on the market. The characterization of mixtures of these so-called early synthetic dyes is complicated through the occurrence of many impurities and degradation products. Conventional one-dimensional liquid chromatography does not suffice to obtain fingerprints with sufficient resolution and baseline integrity. Comprehensive two-dimensional liquid chromatography (LC×LC) is employed in this study, with ion-exchange chromatography in the first dimension and fast ion-pair liquid chromatography in the second. Retention in the first dimension is largely determined by the number of charges, while the selection of a small ion-pair reagent (tetramethylammonium hydroxide) in the second dimension causes retention to be largely determined by the molecular structure of the dye. As a result, there is a high degree of orthogonality of the two dimensions, similar to the values typically encountered in GC×GC. The proposed LC×LC method shows a theroretical peak capacity of about 2000 in an analysis time of about three hours. Clear, informative fingerprints are obtained that open a way to a more efficient characterization of dyes used in objects of cultural heritage.

  16. A novel protein refolding method integrating ion exchange chromatography with artificial molecular chaperone

    Institute of Scientific and Technical Information of China (English)

    Qin Ming Zhang; Chao Zhan Wang; Jiang Feng Liu; Li Li Wang

    2008-01-01

    Artificial molecular chaperone (AMC) and ion exchange chromatography (IEC) were integrated, thus a new refolding method,artificial molecular chaperone-ion exchange chromatography (AMC-IEC) was developed. Compared with AMC and IEC, theactivity recovery of lysozyme obtained by AMC-IEC was much higher in the investigated range of initial protein concentrations,and the results show that AMC-IEC is very efficient for protein refolding at high concentrations. When the initial concentration oflysozyme is 180 mg/mL, its activity recovery obtained by AMC-IEC is still as high as 76.6%, while the activity recoveries obtainedby AMC and IEC are 45.6% and 42.4%, respectively.2008 Chao Zhan Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  17. A Simple and Efficient Method for Purification of Egg White Major Proteins Using Ion Exchange Chromatography

    Directory of Open Access Journals (Sweden)

    Sh. Veisi

    2008-04-01

    Full Text Available Introduction & Objective: Egg white contains four high-quantity proteins which have numerous applications. In this research, a simple and efficient method for the purification of those proteins was designed and performed based on ion exchange chromatography.Materials & Methods: In this experimental study egg white was initially separated from insoluble substances by acidic pH. The resulting extract was isolated after two steps of ion exchange chromatography using CM-Sepharose and DEAE-Sepharose columns, respectively. Purification degree and yield of each fraction were analyzed by electrophoresis densitometry.Results: The results showed that purification degrees of ovalbumin, ovotransferrin, ovomucoid and lysozyme were 97, 98, 85 and 99 percent and their yields were 98, 98 95 and 99 percent, respectively.Conclusion: High yields, reproducibility and feasibility on low or high scales are considered as the strengths of this method.

  18. Synthesis and characterisation of alkaline anionic-exchange membranes for direct alcohol fuel cells

    CSIR Research Space (South Africa)

    Nonjola, P

    2007-12-01

    Full Text Available , but the most important being proton exchange membrane fuel cell (PEMFC), which uses an acidic membrane like Nafion (sulfonated fluorocarbon polymers) as an electrolyte. The use of polymer electrolytes represents an interesting path to pursue...

  19. Polyvinyl alcohol (PVA) and sulfonated polyetheretherketone (SPEEK) anion exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-31

    Full Text Available problems for PEFC (using proton exchange membrane) concerning the increasing cost of platinum catalysts and decreasing amount of platinum resources2. Alkaline membrane fuel cells (AMFC) have recently been receiving a lot of attention among the different...

  20. Strong Cation Exchange Chromatography in Analysis of Posttranslational Modifications: Innovations and Perspectives

    Science.gov (United States)

    Edelmann, Mariola J.

    2011-01-01

    Strong cation exchange (SCX) chromatography has been utilized as an excellent separation technique that can be combined with reversed-phase (RP) chromatography, which is frequently used in peptide mass spectrometry. Although SCX is valuable as the second component of such two-dimensional separation methods, its application goes far beyond efficient fractionation of complex peptide mixtures. Here I describe how SCX facilitates mapping of the protein posttranslational modifications (PTMs), specifically phosphorylation and N-terminal acetylation. The SCX chromatography has been mainly used for enrichment of these two PTMs, but it might also be beneficial for high-throughput analysis of other modifications that alter the net charge of a peptide. PMID:22174558

  1. Strong Cation Exchange Chromatography in Analysis of Posttranslational Modifications: Innovations and Perspectives

    Directory of Open Access Journals (Sweden)

    Mariola J. Edelmann

    2011-01-01

    Full Text Available Strong cation exchange (SCX chromatography has been utilized as an excellent separation technique that can be combined with reversed-phase (RP chromatography, which is frequently used in peptide mass spectrometry. Although SCX is valuable as the second component of such two-dimensional separation methods, its application goes far beyond efficient fractionation of complex peptide mixtures. Here I describe how SCX facilitates mapping of the protein posttranslational modifications (PTMs, specifically phosphorylation and N-terminal acetylation. The SCX chromatography has been mainly used for enrichment of these two PTMs, but it might also be beneficial for high-throughput analysis of other modifications that alter the net charge of a peptide.

  2. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    Science.gov (United States)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  3. Chiral anion exchangers applied to capillary electrochromatography enantioseparation of oppositely charged chiral analytes: investigation of stationary and mobile phase parameters.

    Science.gov (United States)

    Lämmerhofer, M; Tobler, E; Lindner, W

    2000-07-28

    Weak anion-exchange (WAX) type chiral stationary phases (CSPs) based on tert.-butyl carbamoyl quinine as chiral selector (SO) and different types of silica particles (porous and non-porous) as chromatographic support are evaluated in packed capillary electrochromatography (CEC). Their ability to resolve the enantiomers of negatively charged chiral analytes, e.g., N-derivatized amino acids, in the anion-exchange mode and their electrochromatographic characteristics are described in dependence of several mobile phase parameters (pH, buffer type and concentration, organic modifier type and concentration) and other experimental variables (electric field strength, capillary temperature). The inherent "zwitterionic" surface character of such silica-based WAX type CSPs (positively charged SO and negatively charged residual silanols) allows the reversal of the electroosmotic flow (EOF) towards the anode at pH values below the isoelectric point (pI) of the modified surface, whereas a cathodic EOF results at pH values above the pI. Since for negatively charged analytes also an electrophoretic transport increment has to be considered, which can be either in or against the EOF direction, several distinct modes of elution have been observed under different stationary phase and mobile phase conditions: (i) co-electrophoretic elution of the negatively charged solutes with the anodic EOF in the negative polarity mode, (ii) counter-electrophoretic elution with the cathodic EOF in the positive polarity mode, and (iii) electrophoretically dominated elution in the negative polarity mode with a cathodic EOF directed to the injection end of the capillary. Useful enantioseparations of chiral acids have been obtained with all three modes. Enantioselectivity values as high as under pressure-driven conditions and theoretical plate numbers up to 120000 per meter could be achieved under electrically driven conditions. A repeatability study yielded RSD values below 2% for retention times and

  4. The Role of Anion Exchanger on Pulmonary Vascular Response to Sustained Alveolar Hypoxia in the Isolated Perfused Rabbit Lung

    Directory of Open Access Journals (Sweden)

    Farzaneh Ketabchi

    2015-05-01

    Full Text Available Background: Some respiratory diseases may induce alveolar hypoxia thereby hypoxic pulmonary vasoconstriction (HPV. However, the mechanisms of this physiologic phenomenon are not fully understood. This study was the first to investigate the role of anion exchanger in sustained HPV. Methods: Experiments were performed in the isolated perfused rabbit lung. After preparation, the lungs were divided into six groups: two DIDS (4,4-diisothiocyanostilbene 2,2-disulfonic acid, anion exchanger inhibitor-treated [200 µM (n=5 or 400 µM (n=3] hypoxic groups, two HCO3- free hypoxic groups, one control hypoxic group (n=7 and one control normoxic group (n=4. DIDS were added to the perfusate at 10 minutes before starting the experiments. In the HCO3- free groups, HEPES (4-(2-Hydroxyethylpiperazine-1-ethanesulfonic acid were added to the perfusate instead of bicarbonate. Furthermore, in the HEPES1 (n=4 and HEPES2 (n=4 groups, the lungs were ventilated with hypoxic gas with or without CO2, respectively. Results: Ventilation of the lungs with hypoxic gas resulted in biphasic HPV, the acute (0-20 minutes and sustained (20-60 minutes phases. No alteration in both phases of HPV was detected by DIDS (200 µM. However, DIDS (400 µM, extended the ascending part of acute HPV until min 24. Both phases of HPV were decreased in the HEPES1 group. However, in the HEPES 2 group, HPV tended to increase during the rising part of the acute phase of HPV. Conclusions: Since DIDS (400 µM extended acute phase of HPV, and HCO3- free perfusate buffer enhanced rising phase of it, therefore it can be suggested that anion exchanger may modulate HPV especially during the acute phase. The abstract of this article was presented as a poster in the congress of European Respiratory Society (ERS on Monday, 08 September 2014, Munich, Germany and was published in the ERJ September 1, 2014 vol. 44 no. Suppl 58 P2343.

  5. Refolding and purification of recombinant human (Pro)renin receptor from Escherichia coli by ion exchange chromatography.

    Science.gov (United States)

    Wang, Fei; Guo, Jinjin; Bai, Quan; Wang, Lili

    2014-01-01

    Purification of the recombinant human renin receptor (rhRnR) is a major aspect of its biological or biophysical analysis, as well as structural research. A simple and efficient method for the refolding and purification of rhRnR expressed in Escherichia coli with weak anion-exchange chromatography (WAX) was presented in this work. The solution containing denatured rhRnR in 8.0 mol/L urea extracted from the inclusion bodies was directly injected into the WAX column. The aggregation was prevented and the soluble form of renatured rhRnR in aqueous solution was obtained after desorption from the column. Effects of the extracting solutions, the pH values and urea concentrations in the mobile phase, as well as the sample size on the refolding and purification of rhRnR were investigated, indicating that the above mentioned factors had remarkable influences on the efficiency of refolding, purification and mass recovery of rhRnR. Under the optimal conditions, rhRnR was successfully refolded and purified simultaneously by WAX in one step within only 30 min. The result was satisfactory with mass recovery of 71.8% and purity of 94.8%, which was further tested by western blotting. The specific binding of the purified rhRnR to recombinant human renin was also determined using surface plasmon resonance (SPR). The association constant of rhRnR to recombinant human renin was calculated to be 3.25 × 10(8) L/mol, which demonstrated that rhRnR was already renatured and simultaneously purified in one step using WAX. All of the above demonstrate that protein folding liquid chromatography (PFLC) should be a powerful tool for the purification and renaturation of rhRnR.

  6. Anion exchange polymer coated graphite granule electrodes for improving the performance of anodes in unbuffered microbial fuel cells

    Science.gov (United States)

    Wang, Xu; Li, Dengfeng; Mao, Xuhui; Yu, Eileen Hao; Scott, Keith; Zhang, Enren; Wang, Dihua

    2016-10-01

    In this paper, graphite granule composite electrodes are prepared for microbial fuel cells (MFCs) by coating commercial graphite granules with the mixture of quaternary DABCO polysulfone or Nafion ion exchange polymer and carbon black. The results of electrochemical impedance spectroscopy (EIS) suggest that the addition of carbon black could significantly improve the electrical conductivity of graphite granule anodes. When phosphate buffer solution (PBS) is replaced by NaCl solution, the current densities of the pristine anode, 0.08 g Nafion coated anode and 0.16 g QDPSU coated anode decrease by 52.6%, 20.6% and 10.3% at -0.2 V (vs. Ag/AgCl), respectively. The solution resistance of ion exchange polymer coated anodes is more stable in comparison with that of pristine anode. After 40 operational days, the performance drop of 0.16 g QDPSU coated anode when switching the solution from PBS to NaCl is still smaller than that of pristine anode. However, 0.08 g Nafion coated anode shows the similar performance in NaCl solution to the pristine anode after long term operation. This study reveals that QDPSU anion exchange polymer is more suitable for the anode modification. The QDPSU coated anode promises a great potential for three-dimensional anode based MFCs to treat domestic wastewater.

  7. Removal of anionic dyes from aqueous solutions by an ion-exchanger based on pullulan microspheres.

    Science.gov (United States)

    Constantin, Marieta; Asmarandei, Ionela; Harabagiu, Valeria; Ghimici, Luminita; Ascenzi, Paolo; Fundueanu, Gheorghe

    2013-01-02

    Pullulan-graft-poly(3-acrylamidopropyl trimethylammonium chloride) (P-g-pAPTAC) microspheres were prepared by suspension cross-linking of the pullulan previously grafted with cationic moieties. Adsorption of Azocarmine B by the P-g-pAPTAC microspheres was used as a model to demonstrate the removal of anionic dyes from aqueous solutions. Batch adsorption studies concerning the effect of the contact time, pH, initial dye concentration, temperature, grafting, and the nature of sulfonated anionic dyes on the adsorption kinetics were investigated. Adsorption was shown to be independent of pH. The experimental data best fitted to the pseudo-second order model which provided values of the rate constant k(2) of 1.4×10(-4) g mg(-1) min(-1) for 100 mg L(-1) solution and of 3.7×10(-4) g mg(-1) min(-1) for 500 mg L(-1) solution. From the Langmuir isotherm linear equation, the maximum adsorption capacity determined was 113.63 mg of Azocarmine B per gram of adsorbent; the negative value of the free energy change indicated the spontaneous nature of the adsorption process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. High-performance liquid chromatofocusing and column affinity chromatography of in vitro 14C-glycated human serum albumin. Demonstration of a glycation-induced anionic heterogeneity.

    Science.gov (United States)

    Vidal, P; Deckert, T; Hansen, B; Welinder, B S

    1989-08-04

    High-performance liquid chromatofocusing of human serum albumin (HSA) after in vitro glycation with purified [14C]glucose has shown that with increasing glycation time a progressive increase in two major anionic fractions (pI 4.8 and 4.65) occurs, while the pI 4.9 fraction decreases in parallel. As early as after 5 days of glycation time, the [14C]glucose content in the anionic fractions was markedly higher than in the pI 4.9 fraction. After 10 and 15 days of glycation, a considerable heterogeneity of 10-15 components could be demonstrated. In addition, phenyl-boronic acid (PBA) affinity chromatography was applied and an enrichment of the more glycated species could be obtained using this method. We conclude that, in contrast to previous reports, glycation of HSA induces anionic heterogeneity (in accordance with the theoretically expected loss of positively charged amino groups) and, although the efficiency in separating non-glycated from monoglycated HSA was found to be very low, an enrichment of these anionic species can be achieved using PBA affinity chromatography.

  9. Liquid–liquid anion exchange extraction studies of samarium(III from salicylate media using high molecular weight amine

    Directory of Open Access Journals (Sweden)

    Aniruddha M. Mandhare

    2015-07-01

    Full Text Available Liquid–liquid extraction and separation of samarium(III were carried out by using 0.025 mol dm−3 2-octylaminopyridine(2-OAP in xylene at 298 K. The extraction behavior of samarium was studied as a function of pH, weak acid concentration, extractant concentration, diluent, and equilibration time. Samarium was quantitatively extracted at pH 7.5 to 10.0 from 0.01 mol dm−3 sodium salicylate solution with 0.025 mol dm−3 2-OAP. The possible composition of the extracted species in organic phase has been determined by using model of slope analysis method and extraction mechanism was found to proceed via an anion exchange mechanism. The stripping efficiency was found to be quantitative in HNO3, HCl and CH3COOH. The robustness of the procedure was demonstrated by the average recoveries obtained (>99.6% for samarium(III extraction in the presence of several cations and anions which are commonly associated with it. The proposed method facilitates the separation and determination of samarium(III from binary and synthetic mixtures. The various thermodynamic functions like free energy (ΔG, enthalpy (ΔH and entropy (ΔS of extraction mechanism were discussed.

  10. Removal of Cr(VI) and As(V) ions from aqueous solutions by polyacrylate and polystyrene anion exchange resins

    Science.gov (United States)

    Jachuła, Justyna; Hubicki, Zbigniew

    2013-09-01

    The sorption of Cr(VI) and As(V) from the aqueous solutions with the polyacrylate anion exchangers of the strong base functional groups Amberlite IRA 458 and Amberlite IRA 958 was studied. The studies were carried out by the static-batch method. The concentration of Cr(VI) and As(V) ions in the aqueous solution was determined by the UV-VIS spectrophotometer. The influence of several parameters was studied with respect to sorption equilibrium. The phase contact time and the concentration affect the sorption process. The equilibrium state was established already after 15 min of phase contact time. Maximum uptake of Cr(VI) and As(V) occurred at pH 5 and 10, respectively. The determined kinetic parameters imply that the sorption process proceeds according to the equation type of pseudo second-order. Sorption equilibrium data were correlated with the Langmuir and Freundlich isotherms. Removal of As(V) ions on macroporous Amberlite IRA 900 decreased about 12 % in presence of other anions (Cl-, NO3 -, SO4 2-) in the solution. The sorption was temperature dependent.

  11. Enantioseparation of Dencichine and D-Isomer on L-Cysteine Derivative Phase by Ligand-exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    Yan Shun MA; Qing Hua MENG; Hong Yu SHI; Yuan De LONG; Tian Bao HUANG

    2006-01-01

    The enantioseparation of dencichine and its D-isomer was achieved on a novel chiral stationary phase via coating N-(2-hydroxyl-3-octoxyl) propyl-S-benzyl-(L)-cysteine on YWG-C18phase by ligand exchange chromatography.

  12. Synthesis of blue-photoluminescent graphene quantum dots/polystyrenic anion-exchange resin for Fe(III) detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenjun, E-mail: wjzhang@hebut.edu.cn; Gan, Jie

    2016-05-30

    Highlights: • GQD/PS-AER was prepared as a solid fluorescent sensor with millimeter size. • The GQD/PS-AER sensor could detect Fe{sup 3+} ions selectively. • The GQD/PS-AER sensor could be reusable. • This method is simple and economical. - Abstract: A novel solid fluorescent sensor with millimeter size, based on graphene quantum dots/polystyrenic anion-exchange resin (GQDs/PS-AER) was obtained for the detection of Fe{sup 3+}. The linear response range of Fe{sup 3+} was obtained from 1 μM to 7 μM and the detection limit was as low as 0.65 μM. In addition, the sensor could be regenerated by adding complexing agent EDTA and be separated by using simple filtration.

  13. Anion-Exchange Membrane Fuel Cells with Improved CO2 Tolerance: Impact of Chemically Induced Bicarbonate Ion Consumption.

    Science.gov (United States)

    Katayama, Yu; Yamauchi, Kosuke; Hayashi, Kohei; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Kikkawa, Yuuki; Negishi, Takayuki; Watanabe, Shin; Isomura, Takenori; Eguchi, Koichi

    2017-08-30

    Over the last few decades, because of the significant development of anion exchange membranes, increasing efforts have been devoted the realization of anion exchange membrane fuel cells (AEMFCs) that operate with the supply of hydrogen generated on-site. In this paper, ammonia was selected as a hydrogen source, following which the effect of conceivable impurities, unreacted NH3 and atmospheric CO2, on the performance of AEMFCs was established. As expected, we show that these impurities worsen the performance of AEMFCs significantly. Furthermore, with the help of in situ attenuated total reflection infrared (ATR-IR) spectroscopy, it was revealed that the degradation of the cell performance was primarily due to the inhibition of the hydrogen oxidation reaction (HOR). This is attributed to the active site occupation by CO-related adspecies derived from (bi)carbonate adspecies. Interestingly, this degradation in the HOR activity is suppressed in the presence of both NH3 and HCO3(-) because of the bicarbonate ion consumption reaction induced by the existence of NH3. Further analysis using in situ ATR-IR and electrochemical methods revealed that the poisonous CO-related adspecies were completely removed under NH3-HCO3(-) conditions, accompanied by the improvement in HOR activity. Finally, a fuel cell test was conducted by using the practical AEMFC with the supply of NH3-contained H2 gas to the anode and ambient air to the cathode. The result confirmed the validity of this positive effect of NH3-HCO3(-) coexistence on CO2-tolerence of AEMFCs. The cell performance achieved nearly 95% of that without any impurity in the fuels. These results clearly show the impact of the chemically induced bicarbonate ion consumption reaction on the realization of highly CO2-tolerent AEMFCs.

  14. Chromatography.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  15. Chromatography.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  16. Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations

    Institute of Scientific and Technical Information of China (English)

    卢建刚

    2004-01-01

    The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-exchange equilibrium, salt gradient, size exclusion, mass transfer resistance, and port periodic switching mechanism, was developed to simulate the complex dynamics. The model predictions were verified by the experimental data on upward and downward gradients for protein separations reported in the literature. All design and operating parameters (number, configuration, length and diameter of columns, particle size, switching period, flow rates of feed, raffinate, desorbent and extract, protein concentrations in feed, different salt concentrations in desorbent and feed) can be chosen correctly by numerical simulation. This model can facilitate the design, operation, optimization, control and scale-up of salt-gradient ion-exchange SMBC for protein separations.

  17. Solvent extraction of beryllium from malonate solutions with liquid anion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R.R.; Khopkar, S.M.

    1983-12-01

    Beryllium was quantitatively extracted at pH 5.5-7.0 in microgram amounts with 0.06 M Aliquat 336S in xylene from 5 x 10/sup -3/ M malonic acid solution, stripped with 0.5 M hydrochloric acid, and determined spectrophotometrically at 523 nm as its complex with thorin. Those metals which could not form anionic complexes with malonic acid and were not extracted with beryllium at pH 6.5 were separated from it. Metals forming weak malonato complexes were scrubbed from the organic phase with water. The elements like bismuth, antimony, iron, uranium, gallium, and vanadium which form strong malonato complexes were separated by selective stripping with hydrochloric, sulfuric, or nitric acid. The method was extended for the analysis of beryllium in beryl and beryllium alloys. 1 figure, 6 tables.

  18. Determination of plutonium in environmental samples by controlled valence in anion exchange

    DEFF Research Database (Denmark)

    Chen, Q.J.; Aarkrog, A.; Nielsen, S.P.

    1993-01-01

    is heated at 400-degrees-C and digested in aqua regia. Na2SO3 and NaNO2 have been applied to obtain the Pu4+ valence state in 0.571 N HN03 for different samples. Plutonium and thorium are coadsorbed on anionic resin from 8N HN03. The column is eluted with 8N HN03 containing fresh NaNO2 to keep the Pu4......+ state for uranium decontamination. The system of the column is changed from 8N HNO3 to concentrated HCl with 50 ml concentrated HCI containing a few milligrams of NaNO2. Further decontamination of thorium was achieved by elution with concentrated HCI instead of 9N HCl. The plutonium is successfully...

  19. INTERACTION MECHANISM OF ORGANIC MATTER WITH GEL TYPE POLYSTYRENE STROUGLY BASIC ANION EXCHANGE RESIN AND REGENERATION OF THE ORGANISM FOULED RESIN I.The interreaction mechanism be

    Institute of Scientific and Technical Information of China (English)

    ZhuXingbao; WangZhansen; 等

    1995-01-01

    It was generally considered that contamination of the gel type polystyrene strong basic anion exchange resin by or ganic matter in natural water is the result of ion exchange and Van der waal′s adsorption on it.On the basis of laboratory and industrial experiments,this paper confirmed that the interreaction between organic matter and resin polymer matrix is primarily controled by a Van der waal′s adsorption.

  20. Illustrating Chromatography with Colorful Proteins

    Science.gov (United States)

    Lefebvre, Brian G.; Farrell, Stephanie; Dominiak, Richard S.

    2007-01-01

    Advances in biology are prompting new discoveries in the biotechnology, pharmaceutical, medical technology, and chemical industries. This paper presents a detailed description of an anion exchange chromatography experiment using a pair of colorful proteins and summarizes the effect of operating parameters on protein separation. This experiment…

  1. Evaluation of glycidyl methacrylate-based monolith functionalized with weak anion exchange moiety inside 0.5 mm i.d. column for liquid chromatographic separation of DNA

    Directory of Open Access Journals (Sweden)

    Aprilia Nur Tasfiyati

    2016-03-01

    Full Text Available In this study, the organic polymer monolith was developed as a weak anion exchanger column in high performance liquid chromatography for DNA separation. Methacrylate-based monolithic column was prepared in microbore silicosteel column (100 × 0.5 mm i.d. by in-situ polymerization reaction using glycidyl methacrylate as monomer; ethylene dimethacrylate as crosslinker; 1-propanol, 1,4-butanediol, and water as porogenic solvents, with the presence of initiator α,α′-azobisisobutyronitrile (AIBN. The monolith matrix was modified with diethylamine to create weak anion exchanger via ring opening reaction of epoxy groups. The morphology of the monolithic column was studied by SEM. The properties of the monolithic column, such as permeability, mechanical stability, binding capacity and pore size distribution, were characterized in detail. From the results of the characterization, monoliths poly-(GMA-co-EDMA with total monomer percentage (%T 40 and crosslinker percentage (%C 25 was found to be the ideal composition of monomer and crosslinker. It has good mechanical stability and high permeability, adequate molecular recognition sites (represented with binding capacity value of 36 mg ml−1, and has relatively equal proportion of flow-through pore and mesopores (37.2% and 41.1% respectively. Poly-(GMA-co-EDMA with %T 40 and %C 25 can successfully separate oligo(dT12–18 and 50 bp DNA ladder with good resolution.

  2. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats.

    Science.gov (United States)

    Kok, Miranda G M; Swann, Jonathan R; Wilson, Ian D; Somsen, Govert W; de Jong, Gerhardus J

    2014-04-01

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared to a control group. Urine samples were collected at day zero, four and eight, and analyzed by HILIC-MS. Multivariate data analysis was applied to the urinary metabolic profiles to identify biochemical variation between the treatment groups. Principal component analysis found a clear distinction between those animals receiving antibiotics and the control animals, with twenty-nine discriminatory compounds of which twenty were down-regulated and nine up-regulated upon treatment. In the treatment group receiving antibiotics for four days, a recovery effect was observed for seven compounds after cessation of antibiotic administration. Thirteen discriminatory compounds could be putatively identified based on their accurate mass, including aconitic acid, benzenediol sulfate, ferulic acid sulfate, hippuric acid, indoxyl sulfate, penicillin G, phenol and vanillin 4-sulfate. The rat urine samples had previously been analyzed by capillary electrophoresis (CE) with MS detection and proton nuclear magnetic resonance ((1)H NMR) spectroscopy. Using CE-MS and (1)H NMR spectroscopy seventeen and twenty-five discriminatory compounds were found, respectively. Both hippuric acid and indoxyl sulfate were detected across all three platforms. Additionally, eight compounds were observed with both HILIC-MS and CE-MS. Overall, HILIC-MS appears to be highly complementary to CE-MS and (1)H NMR spectroscopy, identifying additional compounds that discriminate the urine samples from antibiotic-treated and control rats.

  3. Investigation on the Use of the Weakly Basic Polyacrylate Anion-Exchanger Amberlite IRA-68 for Sorption and Separation of Iminodiacetate Complexes of Rare Earth Elements

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the determined affinity series of rare earth element complexes with IMDA for the anion-exchangers, purification of macroquantities of Nd3+ from Y3+, Sm3+ from Ho3+, La3+ from Nd3+ and La3+ from Pr3+ on the weakly basic gel anion-exchanger Amberlite IRA-68 was studied. Using the presented method on 1 L of Amberlite IRA-68 in the acetate form, it is possible to obtain about 240 g Nd2O3 purified from Y2O3. Great difference in affinity of La3+ and Nd3+ as well as Pr3+ complexes for this anion-exchanger in the acetate form indicates the possibility of applying this process for purification of lanthanum on the increased scale. On 1 L of Amberilte IRA-68 in the acetate form it is possible to obtain about 1125 g La2O3 purified from Nd2O3. On the basis of these results it can be assumed that unique properties of polyacrylate anion-exchangers enable their application for separation of rare earth elements.

  4. Evaluation and application of anion exchange resins to measure groundwater uranium flux at a former uranium mill site.

    Science.gov (United States)

    Stucker, Valerie; Ranville, James; Newman, Mark; Peacock, Aaron; Cho, Jaehyun; Hatfield, Kirk

    2011-10-15

    Laboratory tests and a field validation experiment were performed to evaluate anion exchange resins for uranium sorption and desorption in order to develop a uranium passive flux meter (PFM). The mass of uranium sorbed to the resin and corresponding masses of alcohol tracers eluted over the duration of groundwater installation are then used to determine the groundwater and uranium contaminant fluxes. Laboratory based batch experiments were performed using Purolite A500, Dowex 21K and 21K XLT, Lewatit S6328 A resins and silver impregnated activated carbon to examine uranium sorption and extraction for each material. The Dowex resins had the highest uranium sorption, followed by Lewatit, Purolite and the activated carbon. Recoveries from all ion exchange resins were in the range of 94-99% for aqueous uranium in the environmentally relevant concentration range studied (0.01-200 ppb). Due to the lower price and well-characterized tracer capacity, Lewatit S6328 A was used for field-testing of PFMs at the DOE UMTRA site in Rifle, CO. The effect on the flux measurements of extractant (nitric acid)/resin ratio, and uranium loading were investigated. Higher cumulative uranium fluxes (as seen with concentrations>1 ug U/gram resin) yielded more homogeneous resin samples versus lower cumulative fluxes (uranium. Resin homogenization and larger volume extractions yield reproducible results for all levels of uranium fluxes. Although PFM design can be improved to measure flux and groundwater flow direction, the current methodology can be applied to uranium transport studies.

  5. Comparison in the extraction properties of Pu(IV) in piperidinium and pyrrolidinium nitrate anchored anion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Selvan, B. Robert; Suneesh, A.S.; Venkatesan, K.A.; Antony, M.P.; Vasudeva Rao, P.R. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Fuel Chemistry Div.

    2016-07-01

    Piperidinium nitrate (Pip-NO{sub 3}) and pyrrolidinium nitrate (Pyr-NO{sub 3}) functional groups were anchored on a poly(styrene-divinylbenzene) matrix and evaluated the resultant anion exchange resin for the extraction of plutonium from nitric acid medium. The distribution coefficient (K{sub d}, mL/g) of Pu(IV) in these resins increased with the concentration of nitric acid, reaching a maximum K{sub d} at 7 M nitric acid, followed by decrease. The extraction of Pu(IV) increased with the duration of equilibration followed by the establishment of equilibrium, occurred within four hours of equilibration. The kinetic data were fitted with pseudo-first order and pseudo-second order rate equations. The apparent plutonium exchange capacity was determined to be ∝256 mg/g for Pip-NO{sub 3} resin and 285 mg/g for Pyr-NO{sub 3} resin at 7 M nitric acid. The radiolytic degradation of Pip-NO{sub 3} and Pyr-NO{sub 3} in presence of nitric acid (7 M) was studied upto a dose of 200 KGy and the results are reported in this paper.

  6. Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography.

    Science.gov (United States)

    Guélat, Bertrand; Ströhlein, Guido; Lattuada, Marco; Delegrange, Lydia; Valax, Pascal; Morbidelli, Massimo

    2012-08-31

    A model was developed for the design of a monoclonal antibody charge variants separation process based on ion-exchange chromatography. In order to account for a broad range of operating conditions in the simulations, an explicit pH and salt concentration dependence has been included in the Langmuir adsorption isotherm. The reliability of this model was tested using experimental chromatographic retention times as well as information about the structural characteristics of the different charge variants, e.g. C-terminal lysine groups and deamidated groups. Next, overloaded isocratic elutions at various pH and salt concentrations have been performed to determine the saturation capacity of the ion-exchanger. Furthermore, the column simulation model was applied for the prediction of monoclonal antibody variants separations with both pH and salt gradient elutions. A good prediction of the elution times and peak shapes was observed, even though none of the model parameters was adjusted to fit the experimental data. The trends in the separation performance obtained through the simulations were generally sufficient to identify the most promising operating conditions. The predictive column simulation model thus developed in this work, including a set of parameters determined through specific independent experiments, was experimentally validated and offers a useful basis for a rational optimization of monoclonal antibody variants separation processes on ion-exchange chromatography.

  7. Capillary ion-exchange chromatography with nanogram sensitivity for the analysis of monoclonal antibodies.

    Science.gov (United States)

    Rea, Jennifer C; Freistadt, Benny S; McDonald, Daniel; Farnan, Dell; Wang, Yajun Jennifer

    2015-12-11

    Ion-exchange chromatography (IEC) is widely used for profiling the charge heterogeneity of proteins, including monoclonal antibodies (mAbs). Despite good resolving power and robustness, ionic strength-based ion-exchange separations are generally product specific and can be time consuming to develop. In addition, conventional analytical scale ion-exchange separations require tens of micrograms of mAbs for each injection, amounts that are often unavailable in sample-limited applications. We report the development of a capillary IEC (c-IEC) methodology for the analysis of nanogram amounts of mAb charge variants. Several key modifications were made to a commercially available liquid chromatography system to perform c-IEC for charge variant analysis of mAbs with nanogram sensitivity. We demonstrate the method for multiple monoclonal antibodies, including antibody fragments, on different columns from different manufacturers. Relative standard deviations of <10% were achieved for relative peak areas of main peak, acidic and basic regions, which are common regions of interest for quantifying monoclonal antibody charge variants using IEC. The results herein demonstrate the excellent sensitivity of this c-IEC characterization method, which can be used for analyzing charge variants in sample-limited applications, such as early-stage candidate screening and in vivo studies.

  8. Formation of Semimetallic Cobalt Telluride Nanotube Film via Anion Exchange Tellurization Strategy in Aqueous Solution for Electrocatalytic Applications.

    Science.gov (United States)

    Patil, Supriya A; Kim, Eun-Kyung; Shrestha, Nabeen K; Chang, Jinho; Lee, Joong Kee; Han, Sung-Hwan

    2015-11-25

    Metal telluride nanostructures have demonstrated several potential applications particularly in harvesting and storing green energy. Metal tellurides are synthesized by tellurization process performed basically at high temperature in reducing gas atmosphere, which makes the process expensive and complicated. The development of a facile and economical process for desirable metal telluride nanostructures without complicated manipulation is still a challenge. In an effort to develop an alternative strategy of tellurization, herein we report a thin film formation of self-standing cobalt telluride nanotubes on various conducting and nonconducting substrates using a simple binder-free synthetic strategy based on anion exchange transformation from a thin film of cobalt hydroxycarbonate nanostructures in aqueous solution at room temperature. The nanostructured films before and after ion exchange transformation reaction are characterized using field emission scanning electron microscope, energy dispersive X-ray analyzer, X-ray photoelectron spectroscopy, thin film X-ray diffraction technique, high resolution transmission electron microscope, and selected area electron diffraction analysis technique. After the ion exchange transformation of nanostructures, the film shows conversion from insulator to highly electrical conductive semimetallic characteristic. When used as a counter electrode in I3(-)/I(-) redox electrolyte based dye-sensitized solar cells, the telluride film exhibits an electrocatalytic reduction activity for I3(-) with a demonstration of solar-light to electrical power conversion efficiency of 8.10%, which is highly competitive to the efficiency of 8.20% exhibited by a benchmarked Pt-film counter electrode. On the other hand, the telluride film electrode also demonstrates electrocatalytic activity for oxygen evolution reaction from oxidation of water.

  9. Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2012-02-01

    Full Text Available @csir.co.za *Manuscript Click here to view linked References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53... catalyst compared with acidic systems [1] . At the same time, they exhibit faster reaction kinetics enabling higher power densities. In alcohol fed fuel cells they can also better limit fuel cross-over and cost less than proton exchange membrane systems...

  10. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  11. 3-Methyltrimethylammonium poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membrane for alkaline polymer electrolyte fuel cells

    Indian Academy of Sciences (India)

    K Hari Gopi; S Gouse Peera; S D Bhat; P Sridhar; S Pitchumani

    2014-06-01

    Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl substitution and homogeneously quaternized to form an anion exchange membrane (AEM). 1H NMR and FT–IR studies reveal successful incorporation of the above groups in the polymer backbone. The membrane is characterized for its ion exchange capacity and water uptake. The membrane formed by these processes show good ionic conductivity and when used in fuel cell exhibited an enhanced performance in comparison with the state-of-the-art commercial AHA membrane. A peak power density of 111 mW/cm2 at a load current density of 250 mA/cm2 is obtained for PPO based membrane in APEFCs at 30 °C.

  12. Refolding of Denatured/Reduced Lysozyme Using Weak-Cation Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    Yan WANG; Bo Lin GONG; Xin Du GENG

    2003-01-01

    Oxidative refolding of the denatured/reduced lysozyme was investigated by using weak-cation exchange chromatography (WCX). The stationary phase of WCX binds to the reduced lysozyme and prevented it from forming intermolecular aggregates. At the same time urea and ammonium sulfate were added to the mobile phase to increase the elution strength for lysozyme. Ammonium sulfate can more stabilize the native protein than a common eluting agent, sodium chloride. Refolding of lysozyme by using this WCX is successfully. It was simply carried out to obtain a completely and correctly refolding of the denatured lysozyme at high concentration of 20.0 mg/mL.

  13. Effect of urea on protein separation by ion-exchange chromatography.

    Science.gov (United States)

    Khademi, Fatemeh; Mostafaie, Ali

    2010-05-01

    Ion-exchange chromatography (IEC) is the most frequently used chromatographic technique for the separation of proteins and peptides. In this article, the effects of urea on IEC separation of kiwifruit actinidin, egg white and urinary proteins were examined. The purity and relative amount of each protein in different conditions (in the presence or absence of urea) were compared with each other. The three parameters, including resolution, selectivity and efficiency of column in the presence of urea, were calculated and compared with the absence of urea. The results revealed that urea improved the purity of proteins and the resolution, selectivity and efficiency of IEC in separation of studied proteins.

  14. Kinetic analysis of an anion exchange absorbent for CO2 capture from ambient air.

    Science.gov (United States)

    Shi, Xiaoyang; Li, Qibin; Wang, Tao; Lackner, Klaus S

    2017-01-01

    This study reports a preparation method of a new moisture swing sorbent for CO2 capture from air. The new sorbent components include ion exchange resin (IER) and polyvinyl chloride (PVC) as a binder. The IER can absorb CO2 when surrounding is dry and release CO2 when surrounding is wet. The manuscript presents the studies of membrane structure, kinetic model of absorption process, performance of desorption process and the diffusivity of water molecules in the CO2 absorbent. It has been proved that the kinetic performance of CO2 absorption/desorption can be improved by using thin binder and hot water treatment. The fast kinetics of P-100-90C absorbent is due to the thin PVC binder, and high diffusion rate of H2O molecules in the sample. The impressive is this new CO2 absorbent has the fastest CO2 absorption rate among all absorbents which have been reported by other up-to-date literatures.

  15. 离子色谱法测定炸药FOX7中3种阴离子%Determination of Three Anions in FOX7 by Ion Chromatography

    Institute of Scientific and Technical Information of China (English)

    张勇; 何乃珍; 郭蓉; 索志荣

    2014-01-01

    建立了测定炸药FOX7中3种阴离子的离子色谱分析方法,并用该方法测定了炸药FOX7。采用离子色谱检测法,以Metrosep A Supp5-250型阴离子柱为色谱柱;3.2 mmol/L Na2 CO3+1.0 mmol/L NaHCO3为流动相,流速为0.7 mL/min。结果表明:测定SO2-4、 NO3-、 Cl-三种离子的精密度试验、重复性试验、加样回收率试验的RSD均小于3.0%,平均回收率( n=6)分别为99.1%,98.4%和99.0%。方法快速,准确,可用于炸药FOX7的质量控制。%An ion chromatography method was established for determining of three kinds of anions in FOX7 simultaneously. Ion chromatography was used. The anions were analyzed on Metrosep A Supp5 -250 anion exchange column and the mobile phase consisted of 3. 2 mmol/L Na2 CO3 +1. 0 mmol/L NaHCO3. The flow rate was 0. 7 mL/min. The RSD of precision test, reproducibility test and recovery test were all less than 3%. The average recoveries ( n=6 ) were 99. 1% for SO2-4 , 98. 4% for NO3- and 99. 0% for Cl-, respectively. A rapid, sensitive and accurate method for the determination of three kinds of anions was founded. This study may provide a scientific basis for the quality control of FOX7.

  16. Single-Crystal-to-Single-Crystal Anion Exchange in a Gadolinium MOF: Incorporation of POMs and [AuCl4]−

    Directory of Open Access Journals (Sweden)

    Javier López-Cabrelles

    2016-04-01

    Full Text Available The encapsulation of functional molecules inside porous coordination polymers (also known as metal-organic frameworks, MOFs has become of great interest in recent years at the field of multifunctional materials. In this article, we present a study of the effects of size and charge in the anion exchange process of a Gd based MOF, involving molecular species like polyoxometalates (POMs, and [AuCl4]−. This post-synthetic modification has been characterized by IR, EDAX, and single crystal diffraction, which have provided unequivocal evidence of the location of the anion molecules in the framework.

  17. Capillary ion chromatography with on-column focusing for ultra-trace analysis of methanesulfonate and inorganic anions in limited volume Antarctic ice core samples.

    Science.gov (United States)

    Rodriguez, Estrella Sanz; Poynter, Sam; Curran, Mark; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Paull, Brett

    2015-08-28

    Preservation of ionic species within Antarctic ice yields a unique proxy record of the Earth's climate history. Studies have been focused until now on two proxies: the ionic components of sea salt aerosol and methanesulfonic acid. Measurement of the all of the major ionic species in ice core samples is typically carried out by ion chromatography. Former methods, whilst providing suitable detection limits, have been based upon off-column preconcentration techniques, requiring larger sample volumes, with potential for sample contamination and/or carryover. Here, a new capillary ion chromatography based analytical method has been developed for quantitative analysis of limited volume Antarctic ice core samples. The developed analytical protocol applies capillary ion chromatography (with suppressed conductivity detection) and direct on-column sample injection and focusing, thus eliminating the requirement for off-column sample preconcentration. This limits the total sample volume needed to 300μL per analysis, allowing for triplicate sample analysis with anions, including fluoride, methanesulfonate, chloride, sulfate and nitrate anions. Application to composite ice-core samples is demonstrated, with coupling of the capillary ion chromatograph to high resolution mass spectrometry used to confirm the presence and purity of the observed methanesulfonate peak.

  18. Measuring various anions content in water with ion chromatography method%离子色谱法测定水中多种阴离子的含量

    Institute of Scientific and Technical Information of China (English)

    徐胜

    2014-01-01

    介绍了离子色谱仪的工作原理与工作流程,对离子色谱法测定水中多种阴离子含量的试验方法进行了论述,通过试验得到了水中各离子的标准物质色谱图、标准曲线及标准溶液度的偏差等,指出运用离子色谱法测定水中阴离子含量操作方便,效率高。%The paper introduces the working principles and working procedures of ion chromatography, discusses various anions content testing method with ion chromatography method, and achieves their standard chromatogram, standard curve and standard solution errors and so on, and finally points out advantages of applying ion chromatography method to test anions content, such as convenient operation and high efficiency.

  19. Strong cation-exchange chromatography of proteins on a sulfoalkylated monolithic cryogel.

    Science.gov (United States)

    Perçin, Işık; Khalaf, Rushd; Brand, Bastian; Morbidelli, Massimo; Gezici, Orhan

    2015-03-20

    A new strong cation exchanger (SCX) monolithic column was synthesized by at-line surface modification of a cryogel prepared by copolymerization of 2-hydroxyethylmethacrylate (HEMA) and glycidylmethacrylate (GMA). Sodium salt of 3-Mercaptopropane sulfonic acid (3-MPS) was used as the ligand to transform the surface of the monolith into a strong cation exchanger. The obtained material was characterized in terms of elemental analysis, infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) N2 adsorption, and used as a stationary phase for strong-cation exchange chromatography of some proteins, such as α-chymotrypsinogen, cytochrome c and lysozyme. Water permeability of the column was calculated according to Darcy's law (2.66×10(-13)m(2)). The performance of the monolithic cryogel column was evaluated on the basis of Height Equivalent to a Theoretical Plate (HETP). Retention behavior of the studied proteins was modeled on the basis of Yamamoto model to understand the role of the ion-exchange mechanism in retention behaviors. The considered proteins were successfully separated, and the obtained chromatogram was compared with that obtained with a non-functionalized cryogel column.

  20. Development and validation of an ion-exchange chromatography method for heparin and its impurities in heparin products.

    Science.gov (United States)

    Thiangthum, Sumate; Vander Heyden, Yvan; Buchberger, Wolfgang; Viaene, Johan; Prutthiwanasan, Brompoj; Suntornsuk, Leena

    2014-11-01

    An anion-exchange liquid chromatography method for the determination of heparin and its impurities (dermatan sulfate and oversulfated chondroitin sulfate) was developed using chemometric-assisted optimization, including multivariate experimental design and response surface methodology. The separation of heparin, dermatan sulfate, and oversulfated chondroitin sulfate (Rs above 2.0) was achieved on a Dionex RF IC IonPac AS22 column with a gradient elution of 10-70% of 2.5 M sodium chloride and 20 mM Tris phosphate buffer (pH 2.1) at a flow rate of 0.6 mL/min and UV detection at 215 nm. Method validation shows good linearity (r > 0.99), acceptable precision (%relative standard deviations <11.4%) and trueness (%recovery of 92.3-103.9%) for all analytes. The limits of detection for dermatan sulfate and oversulfated chondroitin sulfate are equivalent to 0.11% w/w (10.5 μg/mL) and 0.07% w/w (7.2 μg/mL), while the limits of quantification are 0.32% w/w (31.5 μg/mL) and 0.22% w/w (22.0 μg/mL) relative to heparin, respectively. The method is specific for heparin, dermatan sulfate, and oversulfated chondroitin sulfate without interference from mobile phase and sample matrices and could be used for accurate quantitation the drug and its impurities in a single run. Applications of the method reveal contents of heparin between 90.3 and 97.8%. Dermatan sulfate and oversulfated chondroitin sulfate were not detected in any of the real-life samples.

  1. Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins.

    Science.gov (United States)

    Moldes, A B; Alonso, J L; Parajó, J C

    2003-07-01

    The physicochemical properties (capacity, kinetics and selectivity) of the ion exchange resins Amberlite IRA900, IRA400, IRA96 and IRA67 were determined to evaluate their comparative suitability for lactic acid recovery. Both the kinetics of lactic acid sorption from aqueous solutions and the equilibrium were assessed using mathematical models, which provided a close interpretation of the experimental results. The best resins (Amberlite IRA96 and IRA67) were employed in further fixed-bed operation using aqueous lactic acid solutions as feed. In this set of experiments, parameters such as capacity, regenerant consumption, percentage of lactic acid recovery and product concentration were measured. Amberlite IRA67, a weak base resin, was selected for lactic acid recovery from SSF (simultaneous saccharification and fermentation) broths. Owing to the presence of nutrients and ions other than lactate, a slightly decreased capacity was determined when using SSF media instead aqueous lactic acid solutions, but quantitative lactic acid recoveries at constant capacities were obtained in four sequential load/regeneration cycles.

  2. Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system

    Energy Technology Data Exchange (ETDEWEB)

    Knauf, P.A.; Mann, N.A.

    1984-05-01

    Niflumic acid is a noncompetitive inhibitor of chloride exchange, which binds to a site different from the transport or modifier sites. When the internal Cl/sup -/ concentration is raised, at constant extracellular Cl/sup -/, the inhibitory potency of niflumic acid increases. This effect cannot be attributed to changes in membrane potential, but rather it suggests that niflumic acid binds to the anion exchange protein band 3 only when the transport site faces outward. When the chloride gradient is reversed, with Cl/sub o/ > Cl/sub i/, the inhibitory potency of niflumic acid decreases greatly, which indicates that the affinity of niflumic acid for band 3 with the transport site facing inward is almost 50 times less than when the transport site faces outward. Experiments in which Cl/sub i/ = Cl/sub o/ show no significant change in the inhibition by niflumic acid when Cl/sup -/ is lowered from 150 to 10 mM. These data suggest that the intrinsic dissociation constants for Cl/sup -/ at the two sides of the membrane are nearly equal. Thus, the chloride-loaded transport sites have an asymmetric orientation like that of the unloaded transport sites, with approx.15 times more sites facing the inside than the outside. The asymmetry reflects an approx.1.5 kcal/mol free energy difference between the inward-facing and outward-facing chloride-loaded forms of band 3. High concentrations of chloride (with Cl/sub i/ = Cl/sub o/), which partially saturate the modifier site, have no effect on niflumic acid inhibition, which indicates that chloride binds equally well to the modifier site regardless of the orientation of the transport site. 25 references, 6 figures, 3 tables.

  3. Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system

    Science.gov (United States)

    1984-01-01

    Niflumic acid is a noncompetitive inhibitor of chloride exchange, which binds to a site different from the transport or modifier sites. When the internal Cl- concentration is raised, at constant extracellular Cl- , the inhibitory potency of niflumic acid increases. This effect cannot be attributed to changes in membrane potential, but rather it suggests that niflumic acid binds to the anion exchange protein band 3 only when the transport site faces outward. When the chloride gradient is reversed, with Clo greater than Cli , the inhibitory potency of niflumic acid decreases greatly, which indicates that the affinity of niflumic acid for band 3 with the transport site facing inward is almost 50 times less than when the transport site faces outward. Experiments in which Cli = Clo show no significant change in the inhibition by niflumic acid when Cl- is lowered from 150 to 10 mM. These data suggest that the intrinsic dissociation constants for Cl- at the two sides of the membrane are nearly equal. Thus, the chloride- loaded transport sites have an asymmetric orientation like that of the unloaded transport sites, with approximately 15 times more sites facing the inside than the outside. The asymmetry reflects an approximately 1.5 kcal/mol free energy difference between the inward-facing and outward-facing chloride-loaded forms of band 3. High concentrations of chloride (with Cli = Clo), which partially saturate the modifier site, have no effect on niflumic acid inhibition, which indicates that chloride binds equally well to the modifier site regardless of the orientation of the transport site. PMID:6736917

  4. Novel quaternized poly(arylene ether sulfone)/Nano-ZrO₂ composite anion exchange membranes for alkaline fuel cells.

    Science.gov (United States)

    Li, Xiuhua; Yu, Yingfeng; Meng, Yuezhong

    2013-02-01

    A series of composite anion exchange membranes based on novel quaternized poly(arylene ether sulfone)/nanozirconia (QPAES/nano-ZrO₂) composites are prepared using a solution casting method. The QPAES/nano-ZrO₂ composite membranes are characterized by FTIR, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDX). The ion exchange capacity (IEC), water uptake, swelling ratio, hydroxide ion conductivity, mechanical properties, thermal stability, and chemical stability of the composite membranes are measured to evaluate their applicability in fuel cells. The introduction of nano-ZrO₂ induces the crystallization of the matrix and enhances the IEC of the composite membranes. The modification with nano-ZrO₂ improves water uptake, dimension stability, hydroxide ion conductivity, mechanical properties, and thermal and chemical stabilities of the composite membranes. The QPAES/nano-ZrO₂ composite membranes show hydroxide ion conductivities over 25.7 mS cm⁻¹ at a temperature above 60 °C. Especially, the QPAES/nano-ZrO₂ composite membranes with the nano-ZrO₂ content above 7.5% display hydroxide ion conductivities over 41.4 mS cm⁻¹ at 80 °C. The E(a) values of the QPAES/nano-ZrO₂ composite membranes with the nano-ZrO₂ content above 5% are lower than 11.05 kJ mol⁻¹. The QPAES/7.5% nano-ZrO₂ composite membrane displays the lowest E(a) value and the best comprehensive properties and constitutes a good potential candidate for alkaline fuel cells.

  5. Separation of tryptophan enantiomers by ligand-exchange chromatography with novel chiral ionic liquids ligand.

    Science.gov (United States)

    Qing, Haiqun; Jiang, Xinyu; Yu, Jingang

    2014-03-01

    Chiral ionic liquids (CILs) with amino acids as cations have been applied as novel chiral ligands coordinated with Cu(2+) to separate tryptophan enantiomers in ligand exchange chromatography. Four kinds of amino acid ionic liquids, including [L-Pro][CF3COO], [L-Pro][NO3], [L-Pro]2[SO4], and [L-Phe][CF3COO] were successfully synthesized and used for separation of tryptophan enantiomers. To optimize the separation conditions, [L-Pro][CF3COO] was selected as the model ligand. Some factors influencing the efficiency of chiral separation, such as copper ion concentration, CILs concentration, methanol ratio (methanol/H2O, v/v), and pH, were investigated. The obtained optimal separation conditions were as follows: 8.0 mmol/L Cu(OAc)2, 4.0 mmol/L [L-Pro][CF3COO], and 20% (v/v) methanol at pH 3.6. Under the optimum conditions, acceptable enantioseparation of tryptophan enantiomers could be observed with a resolution of 1.89. The results demonstrate the good applicability of CILs with amino acids as cations for chiral separation. Furthermore, a comparative study was also conducted for exploring the mechanism of the CILs as new ligands in ligand exchange chromatography. © 2014 Wiley Periodicals, Inc.

  6. Novel carbamoyl type quinine and quinidine based chiral anion exchangers implementing alkyne-azide cycloaddition immobilization chemistry.

    Science.gov (United States)

    Hettegger, Hubert; Kohout, Michal; Mimini, Vebi; Lindner, Wolfgang

    2014-04-11

    The synthesis and chromatographic evaluation of a series of new Cinchona derived chiral weak anion exchangers is presented. Huisgen Cu(I) mediated alkyne-azide cycloaddition, so-called click chemistry, was used as an immobilization strategy. In this way it was possible to immobilize about 90% of offered selector via 1,2,3-triazole linker, which displays a more efficient way of binding the selector to modified silica compared to common radical mediated thiol-ene addition. Problems associated with potential radical scavenging properties of chiral selectors thereby could be circumvented. The evaluation of the synthesized chiral stationary phases regarding chromatographic behavior was carried out using polar organic mode mobile phase composition and a set of representative chiral organic acids. Different loading densities revealed an optimum selector density of about 310μmol/g chiral stationary phase with respect to resolution and selectivity. A decrease of performance was observed for higher loading, indicating mutual spatial influence of selector units leading to sterical hindrance. In addition, we observed that the effect of free azide groups on retention is negligible and the overall chromatographic behavior is comparable to other Cinchona derived chiral stationary phases.

  7. Catalytic activity of thiacalix[4]arenetetrasulfonate metal complexes on modified anion-exchangers for ascorbic acid oxidation.

    Science.gov (United States)

    Odo, Junichi; Hirashima, Tomomi; Hayashida, Tomoko; Miyauchi, Asuka; Minemoto, Mami; Iuchi, Masato; Inoguchi, Masahiko

    2013-01-01

    The catalysis of ascorbic acid (AsA) oxidation by anion-exchangers modified with metal complexes of thiacalix[4]arenetetrasulfonate (Me-TCAS[4]A-500, Me=Mn(3+), Fe(3+), Co(3+), Ce(4+), Cu(2+), Zn(2+), Ni(2+), and H2) were investigated. Me-TCAS[4]A-500 (Me=Mn(3+), Fe(3+), Ce(4+), and Cu(2+)) all exhibited the ability to catalyze the oxidative reaction of AsA to dehydroascorbic acid. However, in the presence of high concentrations of AsA, only Cu(2+)-TCAS[4]A-500 was capable of complete oxidation of the acid. Moreover, after six repeat uses, Cu(2+)-TCAS[4]A-500 maintained high and relatively constant catalytic activity. Prior treatment of glucose solutions with Cu(2+)-TCAS[4]A-500, even in the presence of high AsA concentrations, enabled the satisfactory determination of glucose without interference by AsA. Cu(2+)-TCAS[4]A-500 will therefore be applicable as an artificial substitute for ascorbate oxidase, and may be useful as a means to eliminate AsA interference during the analysis of vital compounds such as glucose and uric acid.

  8. Effect of dissolved organic matter on nitrate-nitrogen removal by anion exchange resin and kinetics studies.

    Science.gov (United States)

    Song, Haiou; Yao, Zhijian; Wang, Mengqiao; Wang, Jinnan; Zhu, Zhaolian; Li, Aimin

    2013-01-01

    The effects of dissolved organic matter (DOM) on the removal of nitrate-nitrogen from the model contaminated water have been investigated utilizing the strong base anion exchange resins. With the increase of gallic acid concentration from 0 to 400 mg/L, the adsorption amount of nitrate-nitrogen on the commercial resins, including D201, Purolite A 300 (A300) and Purolite A 520E (A520E), would significantly decrease. However, the presence of tannin acid has little impact on nitrate-nitrogen adsorption on them.Compared to D201 and A300 resins, A520E resin exhibited more preferable adsorption ability toward nitrate-nitrogen in the presence of competing organic molecules, such as gallic acid and tannin acid at greater levels in aqueous solution. Attractively, the equilibrium data showed that the adsorption isotherm of nitrate-nitrogen on A520E resin was in good agreement with Langmuir and Freundlich equations. The rate parameters for the intra particle diffusion have been estimated for the different initial concentrations. In batch adsorption processes, nitrate-nitrogen diffuse in porous adsorbent and rate process usually depends on t1/2 rather than the contact time. The pseudo first- and the second-order kinetic models fit better for nitrate-nitrogen adsorption onto A520E resin. The observations reported herein illustrated that A520E resin will be an excellent adsorbent for enhanced removal of nitrate-nitrogen from contaminated groundwater.

  9. Oxygen evolution reaction characteristics of synthetic nickel-cobalt-oxide electrodes for alkaline anion-exchange membrane water electrolysis

    Science.gov (United States)

    Koo, Tae Woo; Park, ChanSu; Kim, Yang Do; Lee, Dooyong; Park, Sungkyun; Lee, Jae Ho; Choi, Sung Mook; Choi, Chul Young

    2015-11-01

    A polymer electrolyte membrane water electrolysis system can produce high-purity hydrogen gases in a highly efficient manner. However, the level of hydrogen gas production is still small. In addition, noble-metal catalysts for the reaction in acidic environments, as well as an additional drying step to remove water contained in the hydrogen, are required. Therefore, water electrolysis system with high efficiency and lower cost, an alkaline anion-exchange membrane system that can produce high-purity hydrogen without a noble-metal catalyst, is needed. Nano-size NiCo2O4 powders were prepared by using a sol-gel method to achieve an efficient and economical water electrolysis system. When the powder was calcined at 450 °C, the crystallinity and the cyclic voltammogram measurement showed the best values. In addition, the 15-wt.% polytetrafluoroethylene mixed NiCo2O4 powders exhibited the largest cyclic voltammetry active area and the highest oxygen evolution reaction activity with the appropriate stability.

  10. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane

    Science.gov (United States)

    Rahimi, Mohammad; Zhu, Liang; Kowalski, Kelly L.; Zhu, Xiuping; Gorski, Christopher A.; Hickner, Michael A.; Logan, Bruce E.

    2017-02-01

    Thermally regenerative ammonia-based batteries (TRABs) can be used to harvest low-grade waste heat as electrical power. To improve TRAB performance, a series of benzyltrimethyl quaternary ammonium-functionalized poly(phenylene oxide) anion exchange membranes (BTMA-AEMs) were examined for their impact on performance relative to a commercial AEM (Selemion AMV). The synthesized AEMs had different degrees of functionalization (DF; 25% and 40%), and thicknesses (50, 100 and 150 μm). Power and energy densities were shown to be a function of both DF and membrane thickness. The power density of TRAB increased by 31% using a BTMA-AEM (40% DF, 50 μm thick; 106 ± 7 W m-2) compared to the Selemion (81 ± 5 W m-2). Moreover, the energy density increased by 13% when using a BTMA-based membrane (25% DF, 150 μm thick; 350 Wh m-3) compared to the Selemion membrane (311 Wh m-3). The thermal-electric conversion efficiency improved to 0.97% with the new membrane compared to 0.86% for the Selemion. This energy recovery was 7.0% relative to the Carnot efficiency, which was 1.8 times greater than the highest previously reported value of a system used to capture low-grade waste heat as electricity.

  11. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  12. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications

    Science.gov (United States)

    Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei

    2016-09-01

    Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.

  13. The oxidative degradation of polystyrene resins on the removal of Cr(VI) from wastewater by anion exchange.

    Science.gov (United States)

    Xiao, Ke; Xu, Fuyuan; Jiang, Linhua; Dan, Zhigang; Duan, Ning

    2016-08-01

    Cr(VI) is a powerful oxidant and is capable of oxidizing most of the organic materials. Therefore, it is possible for Cr(VI) to oxidize the polymeric resins and change the sorption properties of the resins on the removal of Cr(VI) from wastewater by anion exchange. In this study, three polystyrene resins (D201, D202, and D301) with different functional groups (-N(+)(CH3)3, -N(+)(CH3)2(C2H4OH), and N(CH3)2) were assessed on oxidation stability for Cr(VI) removal from wastewater in fixed-bed column experiments. After a 10-cycle operation, due to the oxidation of the resin, the sorption capacity of D201, D202, and D301 resins decreased by 23.5, 29.3, and 17.3%, when approximately 20-34%, 31-50%, and 18-30% of Cr(VI) was reduced to Cr(III) during each cycle respectively. The results of the Fourier transform infrared spectroscopy (FT-IR) showed that both the cleavage of CN and the formation of CO bonds occurred on the polystyrene resins during the Cr(VI) removal process. The resin simulation experiments further validated the oxidation of CC and CN bonds connected with phenethyl groups. Based upon the results from column operations and the resin simulated experiments, the oxidation mechanism of the polystyrene resin was proposed.

  14. Regulation of AE1 anion exchanger and H(+)-ATPase in rat cortex by acute metabolic acidosis and alkalosis.

    Science.gov (United States)

    Sabolić, I; Brown, D; Gluck, S L; Alper, S L

    1997-01-01

    The cortical collecting duct (CCD) mediates net secretion or reabsorption of protons according to systemic acid/base status. Using indirect immunofluorescence, we examined the localization and abundance of the vacuolar H(+)-ATPase and the AE1 anion exchanger in intercalated cells (IC) of rat kidney connecting segment (CNT) and CCD during acute (6 hr) metabolic (NH4Cl) acidosis and respiratory (NaHCO3) alkalosis. AE1 immunostaining intensity quantified by confocal microscopy was elevated in metabolic acidosis and substantially reduced in metabolic alkalosis. AE1 immunostaining was restricted to Type A IC in all conditions, and the fraction of AE1+IC was unchanged in CNT and CCd. Metabolic acidosis was accompanied by redistribution of H(+)-ATPase immunostaining towards the apical surface of IC, and metabolic alkalosis was accompanied by H(+)-ATPase redistribution towards the basal surface of IC. Therefore, acute metabolic acidosis produced changes consistent with increased activity of Type A IC and decreased activity of Type B IC, whereas acute metabolic alkalosis produced changes corresponding to increased activity of Type B IC and decreased activity of Type A IC. These data demonstrate that acute systemic acidosis and alkalosis modulate the cellular distribution of two key transporters involved in proton secretion in the distal nephron.

  15. Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery.

    Science.gov (United States)

    Anirudhan, T S; Unnithan, Maya R

    2007-01-01

    The performance of a new anion exchanger (AE) prepared from coconut coir pith (CP), for the removal of arsenic(V) [As(V)] from aqueous solutions was evaluated in this study. The adsorbent (CP-AE) carrying dimethylaminohydroxypropyl weak base functional group was synthesized by the reaction of CP with epichlorohydrin and dimethylamine followed by treatment of hydrochloric acid. IR spectroscopy results confirm the presence of -NH(+)(CH(3))(2)Cl(-) group in the adsorbent. XRD studies confirm the decrease of crystallinity in CP-AE compared to CP, and it favours the protrusion of the functional group into the aqueous medium. Batch experiments were conducted to examine the efficiency of the adsorbent on As(V) removal. Maximum removal of 99.2% was obtained for an initial concentration of 1 mgl(-1) As(V) at pH 7.0 and an adsorbent dose of 2 gl(-1). The kinetics of sorption of As(V) onto CP-AE was described using the pseudo-second-order model. The equilibrium isotherms were determined for different temperatures and the results were analysed using the Langmuir equation. The temperature dependence indicates an exothermic process. Utility of the adsorbent was tested by removing As(V) from simulated groundwater. Regeneration studies were performed using 0.1N HCl. Batch adsorption-desorption studies illustrate that CP-AE could be used to remove As(V) from ground water and other industrial effluents.

  16. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H]3- and [M - 5H]5- insulin ions produced a single conformer type with respective collision cross sections of 528 ± 5 Å2 and 808 ± 2 Å2. [M - 4H]4- ions were comprised of more compact (Ω = 676 ± 3 Å2) and diffuse (i.e., more elongated, Ω = 779 ± 3 Å2) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H]4- and [M - 5H]5- ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis.

  17. Modeling of dual gradient elution in ion exchange and mixed-mode chromatography.

    Science.gov (United States)

    Lee, Yi Feng; Schmidt, Michael; Graalfs, Heiner; Hafner, Mathias; Frech, Christian

    2015-10-23

    Protein retention using dual gradient elution in ion exchange- and mixed-mode chromatography can be modeled using the combination of a modified Yamamoto's LGE model and a conversion term to correlate the elution salt concentration and pH at any given gradient slope. Incorporation of the pH dependence of the binding charges into the model also provides some insights on the dual effects of salt and pH in protein-ligand interaction. The fitted thermodynamic parameters (ΔGP(0)/RT, ΔGS(0)/RT, number of charged amino acids involved in binding) of the dual gradient elution data using lysozyme and mAbs on SP Sepharose(®) FF, Eshmuno(®) HCX, and Capto(®) MMC ImpRes were consistent to the results of mono gradient data. This gives rise to an approach to perform thermodynamic modeling of protein retention in ion exchange- and mixed-mode chromatography by combining both salt and pH gradient into a single run of dual gradient elution which will increase time and cost efficiency. The dual gradients used in this study encompassed a wide range of pH (4-8) and NaCl concentrations (0-1M). Curve fits showed that ΔGP(0)/RT is protein type and ligand dependent. ΔGS(0)/RT is strongly dependent on the stationary phase but not the protein. For mAb04 on mixed-mode resin Capto(®) MMC, ΔGS(0)/RT is 5-6 times higher than the result reported for the same protein on cation exchanger Fractogel(®) EMD SO3(-) (S).

  18. Separation of 1,3-Propanediol from Aqueous Solutions by Ion Exchange Chromatography

    Directory of Open Access Journals (Sweden)

    Rukowicz Beata

    2014-06-01

    Full Text Available 1,3-propanediol is a promising monomer with many applications and can be produced by bioconversion of renewable resources. The separation of this product from fermentation broth is a difficult task. In this work, the application of cation exchange resin for the separation of 1,3-propanediol from model aqueous solution was examined. The best effect of separation of 1,3-propanediol from glycerol using sorption method was obtained for H+ resin form, although the observed partition coefficient of 1,3-propanediol was low. On the basis of the results of the sorption of 1,3-propanediol, the ionic forms of the resin were selected and used in the next experiments (H+, Ca2+, Ag+, Na+, Pb2+, Zn2+. The best results in ion exchange chromatography were obtained for cation exchange resin in H+ and Ca2+ form. The use of smaller particle size of resin and a longer length of the column allows to obtain better separation of mixtures.

  19. Tailoring orthogonal proteomic routines to understand protein separation during ion exchange chromatography.

    Science.gov (United States)

    Cabrera, Rosa; Zhelyazkova, Petya; Galvis, Leonardo; Fernandez-Lahore, Marcelo

    2008-07-01

    Surface charge, molecular weight, and folding state are known to influence protein chromatographic behaviour onto ion exchangers. Experimentally, information related to such factors can be gathered via 2-DE methods. The application of 2-D PAGE under denaturing/reducing conditions was already shown to reveal separation trends within a large protein population from cell extracts. However, ion-exchange chromatography normally runs under native conditions. A tailored protocol consisting in a first separation based on IEF on Immobiline strips under native conditions followed by a second dimension SDS-PAGE run was adopted. The chromatographic versus electrophoretic separation behaviours of two model proteins, thaumatin (TAU) and BSA, were compared to better understand which proteomic routine would be better suited to anticipate IEX chromatographic separations. It was observed that the information contained in the pI value obtained with the adapted 2-DE protocol showed better correlation with the IEX chromatographic behaviour. On the other hand, chromatographic separations performed in the presence of urea as a denaturant have demonstrated the potential influence of hydrodynamic radius/conformation on protein separation. Moreover, the information provided by such 2-D system correlated well with the chromatographic behaviour of an additional set of pure proteins. An initial prediction of protein ion-exchange chromatographic behaviour could be possible utilizing an experimental approach based on 2-DE running under milder chemical conditions. This technique provides information that more closely resembles the separation behaviour observed with a complex biotechnological feedstock.

  20. Structural and microstructural changes during anion exchange of CoAl layered double hydroxides: an in situ X-ray powder diffraction study

    DEFF Research Database (Denmark)

    Johnsen, Rune; Krumeich, Frank; Norby, Poul

    2010-01-01

    Anion-exchange processes in cobalt-aluminium layered double hydroxides (LDHs) were studied by in situ synchrotron X-ray powder diffraction (XRPD). The processes investigated were CoAl-CO3 CoAl-Cl CoAl-CO3, CoAl-Cl CoAl-NO3 and CoAl-CO3 CoAl-SO4. The XRPD data show that the CoAl-CO3 CoAl-Cl process...... that one of these intermediates is a mixed nitrate- and chloride-based LDH phase, where the disorder decreases as the nitrate content increases. The XRPD data of the partial CoAl-CO3 CoAl-SO4 anion-exchange reaction show that the process is a two-phase transformation involving a sulfate-containing LDH...

  1. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2012-07-01

    Full Text Available Direct borohydride fuel cells (DBFC, which operate on sodium borohydride (NaBH4 as the fuel, and hydrogen peroxide (H2O2 as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S and a cation-exchange membrane (CMI-7000S, are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  2. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results

    Directory of Open Access Journals (Sweden)

    Shirley Nakagaki

    2016-02-01

    Full Text Available Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic. These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs and Layered Hydroxide Salts (LHSs, published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1 and intercalated with different anions (CO32− or NO3−. The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  3. Application of the two-film theory to the determination of mass transfer coefficients for bovine serum albumin on anion-exchange columns

    DEFF Research Database (Denmark)

    Hansen, Ernst; Mollerup, Jørgen

    1999-01-01

    -all driving force models fail to describe the flux correctly and this is substantiated by the theory. Results obtained with BSA on the anion exchange media Q HyperD, Source, and Poros show that the external film resistance is significant for Reynolds numbers less than one. The experimental Sherwood numbers...... are lower than expected and their dependence on the Reynolds number are much higher than expected....

  4. Differential inhibition of AE1 and AE2 anion exchangers by oxonol dyes and by novel polyaminosterol analogs of the shark antibiotic squalamine.

    Science.gov (United States)

    Alper, S L; Chernova, M N; Williams, J; Zasloff, M; Law, F Y; Knauf, P A

    1998-01-01

    Oxonol and polyaminosterol drugs were examined as inhibitors of recombinant mouse AE1 and AE2 anion exchangers expressed in Xenopus laevis oocytes and were compared as inhibitors of AE1-mediated anion flux in red cells and in HL-60 cells that express AE2. The oxonols WW-781, diBA(5)C4, and diBA(3)C4 inhibited HL-60 cell Cl-/Cl- exchange with IC50 values from 1 to 7 microM, 100-1000 times less potent than their IC50 values for red cell Cl-/anion exchange. In Xenopus oocytes, diBA(5)C4 inhibited AE1-mediated Cl- efflux several hundred times more potently than that mediated by AE2. Several novel squalamine-related polyaminosterols were also evaluated as anion exchange inhibitors. In contrast to diBA(5)C4, polyaminosterol 1361 inhibited oocyte-expressed AE2 8-fold more potently than AE1 (IC50 0.6 versus 5.2 microM). The 3-fold less potent desulfo-analog, 1360, showed similar preference for AE2. It was found that 1361 also partially inhibited Cl- efflux from red cells, whereas neither polyaminosterol inhibited Cl efflux from HL60 cells. Thus, the oxonol diBA(5)C4 is >100-fold more potent as an inhibitor of AE1 than of AE2, whereas the polyaminosterols 1360 and 1361 are 8-fold more potent as inhibitors of AE2 than of AE1. Assay conditions and cell type influenced IC50 values for both classes of compounds.

  5. [Simultaneous determination of three inorganic anions in food-grade lubricating oils by chromatography with suppressed conductivity detection].

    Science.gov (United States)

    Zhang, Liyuan; Fei, Xudong; Qiu, Feng; Lin, Miao

    2015-02-01

    An ion chromatographic (IC) method with suppressed conductivity detection was developed for the simultaneous determination of Cl-, NO3(-), SO(2-)(4) in food-grade lubricating oils. After ultrasonic extraction with 50% (v/v) methanol aqueous solution and centrifugation, the sample in aqueous phase was purified with 0. 22 µm hybrid fiber membranes, then analyzed by IC using 15 mmol/L KOH solution as eluent, and detected by a suppressed conductivity detector. Effects of the concentration and flow rate of the eluent, and the concentration of the methanol aqueous solution on the detection of the three anions were investigated. Under the optimized separation conditions, the three anions were separated completely and the system peaks didn't interfere with the determination. The calibration curves showed good linearity (R2> 0. 999) in the range of 0. 10-20. 00 mg/L. The limits of detection (LODs, S/N= 3) were 0. 01 - 0. 03 mg/kg. The average recoveries of Cl-, NO(-)3, SO(2-)4 anions were 90. 0% - 103. 6% with the relative standard deviations (RSDs) of 2. 8% - 5. 7%. This method avoids the time-consuming pretreatment process to burn or ash the oil phase matrix, and can determine the amounts of three inorganic anions (Cl-, NO(-)3, SO(2-)(4)) in food-grade lubricating oils fast and accurately. It is suitable for simultaneously separating and detecting trace inorganic anions in lubricating oils or other oil products.

  6. Understanding the Adsorption of PFOA on MIL-101(Cr)-Based Anionic-Exchange Metal-Organic Frameworks: Comparing DFT Calculations with Aqueous Sorption Experiments.

    Science.gov (United States)

    Liu, Kai; Zhang, Siyu; Hu, Xiyue; Zhang, Kunyang; Roy, Ajay; Yu, Gang

    2015-07-21

    To examine the effects of different functionalization methods on adsorption behavior, anionic-exchange MIL-101(Cr) metal-organic frameworks (MOFs) were synthesized using preassembled modification (PAM) and postsynthetic modification (PSM) methods. Perfluorooctanoic acid (PFOA) adsorption results indicated that the maximum PFOA adsorption capacity was 1.19 and 1.89 mmol g(-1) for anionic-exchange MIL-101(Cr) prepared by PAM and PSM, respectively. The sorption equilibrium was rapidly reached within 60 min. Our results indicated that PSM is a better modification technique for introducing functional groups onto MOFs for adsorptive removal because PAM places functional groups onto the aperture of the nanopore, which hinders the entrance of organic contaminants. Our experimental results and the results of complementary density functional theory calculations revealed that in addition to the anion-exchange mechanism, the major PFOA adsorption mechanism is a combination of Lewis acid/base complexation between PFOA and Cr(III) and electrostatic interaction between PFOA and the protonated carboxyl groups of the bdc (terephthalic acid) linker.

  7. Effect of dissolved organic matter on nitrate-nitrogen removal by anion exchange resin and kinetics studies

    Institute of Scientific and Technical Information of China (English)

    Haiou Song; Zhijian Yao; Mengqiao Wang; Jinnan Wang; Zhaolian Zhu; Aimin Li

    2013-01-01

    The effects of dissolved organic matter (DOM) on the removal of nitrate-nitrogen from the model contaminated water have been investigated utilizing the strong base anion exchange resins.With the increase of gallic acid concentration from 0 to 400 mg/L,the adsorption amount of nitrate-nitrogen on the commercial resins,including D201,Purolite A 300 (A300) and Purolite A 520E (A520E),would significantly decrease.However,the presence of tannin acid has little impact on nitrate-nitrogen adsorption on them.Compared to D201 and A300 resins,A520E resin exhibited more preferable adsorption ability toward nitrate-nitrogen in the presence of competing organic molecules,such as gallic acid and tannin acid at greater levels in aqueous solution.Attractively,the equilibrium data showed that the adsorption isotherm of nitrate-nitrogen on A520E resin was in good agreement with Langmuir and Freundlich equations.The rate parameters for the intra particle diffusion have been estimated for the different initial concentrations.In batch adsorption processes,nitrate-nitrogen diffuse in porous adsorbent and rate process usually depends on t1/2 rather than the contact time.The pseudo first-and the second-order kinetic models fit better for nitrate-nitrogen adsorption onto A520E resin.The observations reported herein illustrated that A520E resin will be an excellent adsorbent for enhanced removal of nitrate-nitrogen from contaminated groundwater.

  8. Coxsackievirus B3 VLPs purified by ion exchange chromatography elicit strong immune responses in mice.

    Science.gov (United States)

    Koho, Tiia; Koivunen, Minni R L; Oikarinen, Sami; Kummola, Laura; Mäkinen, Selina; Mähönen, Anssi J; Sioofy-Khojine, Amirbabak; Marjomäki, Varpu; Kazmertsuk, Artur; Junttila, Ilkka; Kulomaa, Markku S; Hyöty, Heikki; Hytönen, Vesa P; Laitinen, Olli H

    2014-04-01

    Coxsackievirus B3 (CVB3) is an important cause of acute and chronic viral myocarditis, and dilated cardiomyopathy (DCM). Although vaccination against CVB3 could significantly reduce the incidence of serious or fatal viral myocarditis and various other diseases associated with CVB3 infection, there is currently no vaccine or therapeutic reagent in clinical use. In this study, we contributed towards the development of a CVB3 vaccine by establishing an efficient and scalable ion exchange chromatography-based purification method for CVB3 virus and baculovirus-insect cell-expressed CVB3 virus-like particles (VLPs). This purification system is especially relevant for vaccine development and production on an industrial scale. The produced VLPs were characterized using a number of biophysical methods and exhibited excellent quality and high purity. Immunization of mice with VLPs elicited a strong immune response, demonstrating the excellent vaccine potential of these VLPs.

  9. Effect of modulator sorption on gradient shape in ion-exchange chromatography

    Science.gov (United States)

    Velayudhan, A.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Mobile phase additives, or modulators, are used in gradient elution chromatography to facilitate separation and reduce separation time. The modulators are usually assumed to be linearly adsorbed or unadsorbed. Here, the consequences of nonlinear modulator adsorption are examined for ion-exchange gradient elution through a series of simulations. Even when the buffer salt is identical to the modulator salt, gradient deformation is observed; the extent of deformation increases as the volume of the feed is increased. When the modulator salt is different from the buffer salt, unusual effects are observed, and the chromatograms are quite different from those predicted by classical gradient elution theory. In particular, local increases in the buffer concentration are found between feed bands, and serve to improve the separation. These effects become more pronounced as the feed volume increases, and could therefore prove valuable in preparative applications.

  10. Ion-Exchange Chromatography to Analyze Components of a Clostridium difficile Vaccine.

    Science.gov (United States)

    Rustandi, Richard R; Wang, Feng; Lancaster, Catherine; Kristopeit, Adam; Thiriot, David S; Heinrichs, Jon H

    2016-01-01

    Ion-exchange (IEX) chromatography is one of many separation techniques that can be employed to analyze proteins. The separation mechanism is based on a reversible interaction between charged amino acids of a protein to the charged ligands attached to a column at a given pH. This interaction depends on both the pI and conformation of the protein being analyzed. The proteins are eluted by increasing the salt concentration or pH gradient. Here we describe the use of this technique to characterize the charge variant heterogeneities and to monitor stability of four protein antigen components of a Clostridium difficile vaccine. Furthermore, the IEX technique can be used to monitor reversion to toxicity for formaldehyde-treated Clostridium difficile toxins.

  11. Scaled-up separation of cellobiohydrolase1 from a cellulase mixture by ion-exchange chromatography.

    Science.gov (United States)

    Ye, Zhuoliang; Lane, Andrew N; Willing, Gerold A; Berson, R Eric

    2011-01-01

    Enzymatic hydrolysis of cellulose often involves cellulases produced by Trichoderma reesei, of which cellobiohydrolase1 (CBH1) is the most abundant (about 60% of total cellulases) and plays an important role in the hydrolysis of crystalline cellulose. A method for separating sufficient quantities from the bulk cellulase cocktail is highly desirable for many studies, such as those that aim to characterize binding and hydrolysis kinetics of CBH1. In this work, CBH1 was separated from other Spezyme CP cellulases by ion-exchange chromatography using an efficient modification of a smaller scale process. The ion-exchange column was connected to a vacuum manifold system to provide a steady flow through parallel columns and thus achieve scale-up for enzyme separation. With five 5-mL columns running in parallel, about 55 mg of CBH1 was separated from 145 mg of Spezyme CP in a single separation. Step elution was used to replace the continuous gradient used at smaller scale. The purified CBH1 was collected in the fraction eluted with a buffer containing 0.33 M salt and showed comparable purity and activity as the enzyme purified by a fast protein liquid chromatography system. The stability of separated CBH1 was studied for up to 2 days and good thermal stability was observed. Separated CBH1 also showed both high adsorption to bacterial microcrystalline cellulose with ~4 μmol/g maximum adsorption and a K(a) of 5.55 ± 2.34 μM(-1) , and good hydrolytic activity based on atomic force microscopy observations that show a reduction in fiber height.

  12. Ion-exchange vs reversed-phase chromatography for separation and determination of basic psychotropic drugs.

    Science.gov (United States)

    Petruczynik, Anna; Wróblewski, Karol; Deja, Michał; Waksmundzka-Hajnos, Monika

    2015-11-01

    Ion exchange chromatography, an alternative to reversed-phase (RP) chromatography, is described in this paper. We aimed to obtain optimal conditions for the separation of basic drugs because silica-based RP stationary phases show silanol effect and make the analysis of basic analytes hardly possible. The retention, separation selectivity, symmetry of peaks and system efficiency were examined in different eluent systems containing different types of buffers at acidic pH and with the addition of organic modifiers: methanol and acetonitrile. The obtained results reveal a large influence of the salt cation used for buffer preparation and the type of organic modifier on the retention behavior of the analytes. These results were also compared with those obtained on an XBridge C18 column. The obtained results demonstrated that SCX stationary phases can be successfully used as alternatives to C18 stationary phases in the separation of basic compounds. The most selective and efficient chromatographic systems were applied for the quantification of some psychotropic drugs in fortified human serum samples.

  13. Single column comprehensive analysis of pharmaceutical preparations using dual-injection mixed-mode (ion-exchange and reversed-phase) and hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett

    2013-12-01

    The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample.

  14. An improved flow analysis-ion chromatography method for determination of cationic and anionic species at trace levels in Antarctic ice cores.

    Science.gov (United States)

    Morganti, Andrea; Becagli, Silvia; Castellano, Emiliano; Severi, Mirko; Traversi, Rita; Udisti, Roberto

    2007-11-12

    A method was developed for the quantitative determination of cations and anions in Antarctic ice cores at microgL(-1) and sub-microgL(-1) levels by ion chromatography (IC), after ultra-clean decontamination procedures. Strict manipulation and decontamination procedures were used in sub-sampling, in order to minimise sample contamination. Na+, NH4+, K+, Mg2+ and Ca2+ were determined by 12-min isocratic elution (H2SO4 eluent). Contemporaneously, in a parallel device, F-, MSA (methanesulfonic acid), Cl-, NO3- and SO4(2-) were analysed in a single 12-min run with multiple-step elution using Na2CO3/NaHCO3 as eluent. Melted ice samples were pumped from their still-closed containers (polystyrene accuvettes with polyethylene caps), shared between the two ion chromatographic systems, online filtered (0.45 microm Teflon membrane) and pre-concentrated (anions and cations pre-concentration columns) using a flow analysis system, thus avoiding uptake of contaminants from the laboratory atmosphere. Sensitivity, linear range, reproducibility and detection limit were evaluated for each chemical species. Anion or cation detection limits ranged from 0.01 to 0.15 microgL(-1) by using a relatively small sample volume (1.5 mL). Such values are significantly lower than those reported in literature for almost all the components. These methods were successfully applied to the analysis of cations and anions at trace levels in the Dome C ice core. The composition of the atmospheric aerosol for the last 850 kyr was reconstructed by high-resolution continuous chemical stratigraphies. Concentration trends in the last nine glacial-interglacial climatic cycles were shown and briefly discussed.

  15. Sodium citrate-assisted anion exchange strategy for construction of Bi{sub 2}O{sub 2}CO{sub 3}/BiOI photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    2015-02-15

    Highlights: • Heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi{sub 2}O{sub 2}CO{sub 3}/BiOI composites show high visible light photocatalytic activity. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3}/BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi{sub 2}O{sub 2}CO{sub 3} in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO{sub 3}{sup 2−} in the hydrothermal process. Citrate anion plays a key role in controlling the morphology and composition of the products. The Bi{sub 2}O{sub 2}CO{sub 3}/BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi{sub 2}O{sub 2}CO{sub 3} towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi{sub 2}O{sub 2}CO{sub 3}, which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA.

  16. [Separation and identification of beta-casein from Chinese human milk by ion exchange chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry].

    Science.gov (United States)

    Huang, Yu; Ren, Haowei; Liu, Biao; Liu, Ning; Li, Meng; Wang, Dongmao

    2013-05-01

    The selective precipitation of whole casein from skimmed milk was achieved by the addition of calcium salt under acidic pH. The effects of pH, centrifugal force and final concentration of CaCl2 on the separation of casein were studied by measuring the purity of final products using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results showed that casein with the highest purity could be obtained with the pH of 4.3, the centrifugal force of 10 400 g and the final concentration of CaCl2 of 60 mmol/L. The casein was processed with DEAE anion exchange chromatography and three peaks were obtained. Then the third peak (peak III) was identified with Western-Blot method and matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). The identification of Western-Blot showed that peak III can combine with the specificity of human milk beta-casein antibody, and it is proved to be human milk beta-casein. The fingerprints of peak III were nalyzed by Mascot searching, and the sequence coverage was 50%, further supporting it is human milk beta-casein. In conclusion, an effective method to obtain human milk beta-casein from milk samples through DEAE anion exchange chromatography was established, and it is suitable for the proteomics research requirements of the beta-casein from human milk.

  17. Improved purification process of β- and α-trypsin isoforms by ion-exchange chromatography

    Directory of Open Access Journals (Sweden)

    Alexandre Martins Costa Santos

    2008-08-01

    Full Text Available The purpose of this work was to improve the separation and yield of pure β- and α-trypsin isoforms by ion-exchange chromatography and to characterize some physical-chemical properties of these isoforms. Purification of trypsin isoforms was performed by ion-exchange chromatography in 0.1 mol/L tris-HC buffer, pH 7.10 at 4ºC. The sample loading, salt concentration, flow rate and pH of mobile phase were varied to determine their effects on the resolution of the separation. The resolution was optimized mainly between β- and α-trypsin. Pure isoforms were obtained by chromatographying 100 mg of commercial trypsin during seven days, yielding 51 mg of high purity β-trypsin and 13 mg of α-trypsin partially pure, with small amounts of contaminating of ψ-trypsin. Thus, time and resolution of purification were optimized yielding large amounts of pure active enzymes that are useful for several research areas and biotechnology.O propósito deste trabalho foi melhorar a separação e o rendimento das isoformas puras β- e α-tripsina por meio de cromatografia de troca iônica e caracterizar algumas propriedades físico-químicas dessas isoformas. A purificação de isoformas de tripsina foi realizada em SE Sephadex, com tampão tris-HCl, pH 7,10 a 4ºC. A quantidade de amostra, a concentração salina, o fluxo e o pH da fase móvel foram variados para determinar o efeito sobre a resolução da separação. A resolução foi otimizada principalmente entre β- e α-tripsina, utilizando o pH 7,10 a 4ºC. Isoformas puras foram obtidas a partir de 100 mg de tripsina comercial bovina depois de sete dias de cromatografia, fornecendo 51,0 mg de β-tripsina totalmente pura e 13,0 mg de α-tripsi